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Abstract 

Soft actuators are increasingly gaining attention in the robotics community due to several favourable 

properties rooted mainly in their inherent compliance. They are safe, can easily grasp different objects, 

and cheap to manufacture. However, particularly in the case of FDM (Fused Deposition Modelling) 

printed actuators, their design is usually an iterative process that relies on intuition due to complex 

material models, nonlinearities, large deformations, and residual stresses caused by imperfect interlayer 

structure. This makes such actuators difficult to model and control and limits their implementation 

despite some comparative advantages over the other 3D printing technologies. In this study, to 

characterize the properties of FDM printed soft actuators, we compare a simple but computationally 

effective linear model with a realistic experimentally generated hyperelastic material model of a soft 

actuator. Based on these insights, we 3D print a fully operational soft anthropomorphic hand and use it 

in a set of experiments to evaluate the limitations of the models and suggest design and printing 

parameters to improve soft actuators’ performance. 
(Received in February 2021, accepted in April 2021. This paper was with the authors 2 weeks for 2 revisions.) 
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1. INTRODUCTION 

Soft robotics is an increasingly growing filed that focuses on design and manufacture of robots 

out of soft materials. The field is combining robotics, chemistry, and mechanics of materials to 

enable the preprograming of function – complex motion into flexible, soft materials [1, 2]. The 

term soft refers to materials with Young’s modulus ~ 104 – 109 Pa, which is comparable to 

biological tissues such as skin, muscles, and to a lesser extent bone. Traditional robots made of 

metal alloys have elastic moduli in the range ~ 109 – 1012 Pa. Engineering materials such as 

silicones, hydrogels, rubber, thermoplastics, fit well into the range of soft materials which 

makes them suitable for soft robotics applications [3]. The actuation of these soft structures can 

be achieved by various stimuli, including pressure of fluids, both pneumatics and hydraulics, 

electrical charges for electroactive polymers, chemical reactions, shape memory alloys, and 

magnetic effects [4, 5]. 

      Applying materials with low and variable stiffness has a consequence of large structural 

strains during operation. In case of soft robots, this is favourable, since it enables different 

applications such as grasping [6, 7], locomotion and sensing [8]. Unlike conventional robots 

which are functional in a highly defined environment, soft robots provide much more flexibility, 

they are resistant to impacts, uncertainties, and can operate in loosely defined environments [9], 

[10]. In the case of multi-material design of soft robots’ body, increased flexibility in functional 

preprograming is achievable [11]. When it comes to grasping, soft robots conform to shape, 

eliminating occurrence of concentrated pressure that can lead to object damage. This makes 

them safe for grasping soft and sensitive objects as well as objects whose shape is unknown. 

https://doi.org/10.2507/IJSIMM20-2-560
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      The absence of rigid component makes soft robots inherently safe for interactions with 

humans. This opens many new paths for their application. In the medical robotics field, soft 

actuators are used for design of wearable devices that improve rehabilitation process for patients 

with diseases such as arthritis, cerebral palsy, Parkinson’s disease, and stroke [12, 13]. 

Continuum kinematics and ability to navigate through narrow spaces without damaging the 

surrounding environment makes them ideal candidates for minimally invasive surgery, 

particularly in the field of endoscopy [14]. 

      Recent applications of soft robots indicate the trend of their merging with textiles to produce 

functional clothing – wearable robotic garments. These novel products are paving the way for 

providing i.e., locomotion assistance, thermoregulation, shape change for assisted dressing, and 

therapeutic compression [15-17]. 

      A particularly important task in the mentioned applications is to characterize the relation of 

activation stimuli to the behaviour of the soft actuator. To do so, suitable methods are required, 

but currently scarcely available. Additionally, expert knowledge is required to make use of 

those available. This limits the wider penetration of soft robotic systems in real-life industrial 

applications. The filed is now expanding, and the problems included in modelling of such highly 

nonlinear properties are numerous, demanding, and not readily applicable to various structures, 

different materials, and various processes used to manufacture soft actuators. 

      Several recent studies exist which are focused on numerical modelling of soft actuators, 

including complex algorithms able to capture their hyperelastic nature, viscous phenomena, and 

other nonlinearities [18, 19]. Although important, their implementation requires a prominent 

level of knowledge in continuum mechanics and a customization of Abaqus environment to be 

implemented. In addition, these approaches are related the actuators manufactured by casting, 

and not FDM manufactured components. There is a significant difference between the two, 

since casted parts do not exhibit pronounced porosity which proved to be a primary source of 

deviation between models and experiment in this study. 

      There are a significantly fewer number of studies involved in both modelling and 

application of FDM for soft robotics applications. Data for such materials are not provided, 

which could be directly used to create realistic material models of their highly non-linear 

behaviour. It is shown in this study, but also others, that there is a slight difference of data given 

by manufacturers, and those obtained experimentally on a universal testing machine of 

processed filament for printed specimens. This is limiting wider application of FDM 

manufactured soft actuators in real world applications [20]. 

      A recent study [21] considers 3D printed NinjaFlex specimens (which is the filament used 

for soft parts of the hand presented in this study), with several constitutive models fitted to 

experimentally obtained data. Ogden model was finally adopted and used for simulation of soft 

actuators, and a good correlation was presented. Experiments performed in another study [22] 

where the focus was set on mechanical characterization of NinjaFlex, but without further soft 

robotics application also suggest the use of Ogden hyperelastic model. Although both studies 

suggest the same model, there is a difference in material model parameter values, even though 

same filament was used. This suggests that additional characterization of material is necessary. 

Also, data experimentally determined in both studies are not in a perfect agreement with those 

given by the manufacturer [23]. 

      Several recent studies consider the effect of voids on fused deposition modelled parts 

[24, 25]. The results are focused on experimental computational tomography testing and 

statistical modelling of voids depending on different printing parameters. Although significant, 

results are focused on static load cases, and are not directly applicable to more complex 

conditions including bending, and high curvatures which occur in soft actuators. Finite volume 

method in combination with finite element method for composite structure analysis including 
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trapped air voids is proposed in [26]. This approach has potential application for analysis of 

thermally activated soft actuators in 4D printing domain which is now rapidly expanding. 

      In this study, we use Thermoplastic polyurethane (TPU) based filament, proprietary 

available under name NinjaFlex to create soft parts of the proposed anthropomorphic hand. To 

model the dependency of bending in respect of activating pressure, and create initial distribution 

of air chambers, a simple linear model is used. To enable more realistic modelling, we perform 

experimental tensile strength test of specimens, and use these data to formulate a set of 

hyperelastic material models in Simulia Abaqus. Finally, we 3D print fingers in soft material 

and palm manifold in rigid material and assemble a fully functional soft anthropomorphic hand. 

The hand is then used to do experimental comparison of the linear model, hyperelastic model, 

and the physical model of the hand. We show that the properties of soft parts of the hand, 

primarily porosity, which proved to be the most influential parameter in deviation of models 

and experiment, depend significantly on the parameters used for 3D printing. We indicate 

parameters which yielded best properties in terms of reduced porosity, increased surface 

quality, reduced stringing, and reduced rigidity. 

2. MATERIALS AND METHODS 

We propose a design of the anthropomorphic hand with a rigid-soft structure. In doing so, we 

can experimentally verify material models used for simulation of soft parts of the hand. The 

outline of design procedure is schematically presented in Fig. 1. 

      The model of a human hand was used as a rough guide for dimensional proportions. 

Geometrical transformations were applied to remove or separate the parts which will not be 

printed or will be printed in different materials. Fingers are to be printed in soft material, and 

the palm manifold in rigid material. The surfaces for bonding of fingers to the palm are designed 

with maximizing the contact area in mind to reduce air leaking. The internal structure is 

designed to allow all the fingers to be independently actuated by integrating five air channels 

into the manifold of the palm. 
 

 

Figure 1: Anthropomorphic hand pre-processing and design: from initial model of a human hand to a 

finally printed and functional hand used for experimental verification. 
 

      Several simplifications of the hand presented in this study in respect to a human hand have 

been made. Motions in joints below carpometacarpal line are not included in analysis. 

Regarding the model of a human hand: it consists of 27 bones divided in following groups: 
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Carpals, Metacarpals, Proximal phalanges, Intermediate phalanges, and Distal phalanges. Of 

these, the last three belong to the fingers, with the distinction of the thumb, which does not have 

the intermediate phalange [27]. Between the bones, the joints are located, and named according 

to the bones that they connect: Carpometacarpal (CMC); Metacarpophalangeal joints (MCP); 

Proximal Interphalangeal joints (PIP), and Distal interphalangeal joints (DIP) thumb has also 

Interphalangeal joint (IP). When analysing models of human hand in terms of technical 

artifacts, usually several joints are neglected so that the total number is less than twenty [28]. 

 

Figure 2: a) joints in human hand, b) the kinematic model, c) the simplified model. 

      To simplify the kinematic model of the hand, as illustrated in Fig. 2, we apply the following 

two rules: (I) 2 DOF joints are reduced to a single degree of freedom (CMC joint of the thumb, 

and all the MCP joints) with following in mind – we remove the joint less important for the 

opposition movement which is of the paramount importance for object manipulation. (II) due 

to small range of motion, all the CMC joints are neglected. Using these two rules, the total 

number of degrees of freedom is reduced from 25 to 15. It is important to stress that in the case 

of soft robotic hand, not all 15 DOFs will be actuated, the function will be the consequence of 

the design of the soft actuator, i.e., of preprograming of the function into the material. 
 

Table I: Guide for joints range of motion using defined rules. 

Digit CMC MCP PIP IP DIP 

Thumb 

Index 

Middle 

Ring 

Little 

50° 

- 

- 

- 

- 

60° 

80° 

85° 

85° 

85° 

-  

105° 

105° 

105° 

105° 

80° 

- 

- 

- 

- 

- 

70° 

70° 

65° 

70° 

 

      Applying the rules given above, we want to design a hand to mimic the morphological 

motion and function of the human hand. Regarding the range of motion of fingers, we will use 

data given in [29], as a guide. These values vary significantly because of the discrepancies 

caused by individual’s anatomy distribution. We give the averaged and rounded values adopted 

in this study in Table I. 

2.1  Theoretical analysis and simulation of proposed soft actuators 

The objective set on hand design is to allow the fingers to resemble the movement and poses of 

human fingers. A set of conceptual designs were created, and a simplified linear model used 

for initial calculations. These results are in a later phase used to define initial geometrical 

distribution of air chambers to enable realistic motion and yielding human-like finger poses. 

Parameters of interest were the layout of air chambers and the geometry of each surface of the 
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finger, whereas to resemble to pose of human finger, the distribution of air chambers is 

particularly important. 

      Upon applying the pressure on the internal surface of the finger, and due to difference in 

material properties of various parts of the finger the part of the finger that has a higher 

compliance deforms excessively causing the finger to deform in approximately a circular 

pattern. 

      To achieve required rotation according to specified values, we perform analytical 

description of the mechanics of one finger, as illustrated in Fig. 3. 
 

 

Figure 3: Analysis of the actuator for the linear model. 
 

      The total bending moment transmitted through the cross section of the actuator equals: 

𝑀 = ∫
𝐸 ⋅ 𝑦2

𝑅
𝑑𝐴

𝐴

=
𝐸

𝑅
∫𝑦2

𝐴

𝑑𝐴 (1) 

where M is for bending moment, E is elastic modulus, R is radius of curvature, and y is the 

distance from neutral surface. Since the integral term in the above equations on the right side 

defines moment of inertia I, the relation between bending moment and radius of curvature R 

becomes: 

𝑀 =
𝐸 ⋅ 𝐼

𝑅
 (2) 

      On the other hand, external bending moment is defined as follows: 

𝑀𝑝 = 𝑛 ⋅ 𝑝 ⋅ 𝐴 ⋅ ℎ𝑒 (3) 

where Mp is for external bending moment caused by external pressure, n is the number of 

chambers, p is for pressure, A is for surface of the chamber, and he is the position of the neutral 

axis, the location of the pressure centre. 

      In the case of equilibrium, and assuming the bottom part of the actuator, defined with initial 

length l0 is deforming significantly less than the top part ε𝑏 ≪ ε𝑡 , assuming 𝑙0 = 𝑅 ∙ 𝜙 

following expression can be formulated: 

𝜙(𝑛, 𝑝) =
𝑛 ⋅ 𝑝 ⋅ 𝐴 ⋅ ℎ𝑒 ⋅ 𝑙0

𝐸 ⋅ 𝐼
 (4) 

where n is number of chambers, p is pressure, A is chamber surface, he is the position of the 

neutral axis or pressure centre, l0 is initial length of bottom part of a single chamber, E is elastic 

modulus, and I is moment of inertia. 

      If we want to make a full circle, by knowing the geometry of the finger, we can calculate 

the required number of chambers for given pressure using the expression given in Eq. (4). 

      Initial calculations, based on CAD (Computer Aided Design) geometry, have revealed that 

7 air chambers on top layer of the finger are enough to rotate the finger for 360° with internal 

pressure of ~ 0.2 MPa. This pressure is selected to be in accordance with activating pressure 

used in other studies. This means that each air chamber adds ~ 51° rotation angle. Bearing this 

in mind, the approach we take to design the fingers using the required angles from the Table I 

is as follows: MCP joints require at least two air chambers, PIP joints require three air chambers, 

and DIP joints will be approximated with a single air chamber. 
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      It is obvious that with geometry of fingers proposed, this will enable the fingers to achieve 

the desired range of motion, and with increased pressure, additional forces and more reliable 

grasping is expected.  
 

 

Figure 4: Comparison of different hyperelastic models as implemented in Abaqus with experimental 

data with confidence interval of 95 % based on tensile test of specimens (right). 
 

      To validate these initial results, a simulation is performed in Abaqus for the proposed 

geometry. To realistically formulate the material model, we performed tensile strength test on 

a set of 3D printed specimens. Those data were fitted on different material models, and finally 

Ogden second order model was chosen as the best fit for the data, as illustrated in Fig. 4. The 

data from our experiments, including four different printing patterns for fused material 

deposition were comparable to those from [22]. 

 

Figure 5: a) initial design of index finger, b) finally adopted design of fingers. 
 

      The conceptual design of a finger, based on the established relation between joint angle 

rotations and air chamber distributions, in Fig. 5 a. The simulation is performed in Abaqus using 

described material model, and hybrid tetrahedral C3D10H elements. MCP joint is replaced with 

two chambers, PIP joint with three chambers, and DIP joint with a single pressure chamber. 

Also, it is important to note that for the proposed design, the pressure applied was 0.15 MPa, 

and maximal stress was well below the yield strength of material given by manufacturer. 

      Despite initial results were promising, this design of a finger was not adopted as final due 

to used printers’ limitations. Problems with stringing, warping, and porosity were pronounced 

so the final design was modified, Fig. 5 b. In the latter design, the pose of soft finger will not as 

accurately resemble the one from biological hand, which is a trade-off we had to accept due to 

used printers' limitations. 

2.2  Printing process limitations 

The initial design was not reliably printable using a Prusa i3 printer, as illustrated in Fig. 6 a. 

Thus, additional analysis was performed which enabled an increased reliability in printing of 
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actuators. The approach to modification was twofold, including: (I) redesign of the fingers, and 

(II) tuning the process parameters of the printer. To address the former, we increased the wall 

thickness, and increased the fillets radii. Also, straight wall chambers were replaced with a 

circular wall which proved to reduce the warping of walls of air chambers. The walls were 

prone to collapsing in the initial design. To address the latter, parameters such as: retraction 

length, nozzle diameter, temperature, and fan speed were experimentally tuned. 

      Following conclusions have been made: retraction length set to 2 mm, retraction speed set 

to 120 mm/s, fan speed: 90 %, layer thickness: 0.2 mm, temperature 240 °C. Nozzle diameter 

0.4 mm. Specimen on the left in Fig. 6 b is printed with 0.8 mm nozzle, specimen in the middle 

with 0.4 mm nozzle, and specimen on the right side with 0.25 mm nozzle. The effect of the 

nozzle diameter is that higher diameter causes higher rigidity, more stringing, low outer surface 

quality, but the volume is least porous out of all. Nozzle diameter 0.25 mm yields best outer 

surface quality, takes more time to print, induces frequent problems with filament jamming, but 

most importantly the volume is highly porous and thus not applicable for soft robotic 

applications. 

 

Figure 6: a) initial design, b) specimens printed with parameters tuned and design modifications,  

c) structural porosity, d) experimental setup. 
 

      The 0.4 mm nozzle was finally adopted since it produces good surface quality, structure is 

highly compliant, and the volume is moderately porous, as illustrated in Fig. 6 c. The porosity 

of material revealed to be the most significantly limiting factor in application of FDM to 

proposed design of soft actuator. 

      It was determined that air leaking increases with increase of the pressure, but the leaking is 

also very pronounced when curvature of the structure is large. The curvature was manipulated 

also manually for constant pressure to verify that porosity increases due to increased curvature. 

The initial experimental setup for verification of the hand is schematically illustrated in Fig. 6 d. 

3. EXPERIMENTAL VERIFICATION AND DISCUSSION 

To validate the results of the linear model and the results of the proposed hyperelastic Finite 

Element Method (FEM) model, the physical hand was connected to a pressure supply, and a 

series of experiments were performed manipulating activation pressure level. 

      The measurements of experimental fingertip rotation angle were performed on the images 

presented in Fig. 7. Currently, these images were analysed using a simple image processing 

routine, but advanced methods based on photogrammetry have been recently proposed to enable 
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3D scanning of a human body [30]. Such methods can be used to analyse pose of all fingers 

simultaneously, but also for real time model reconstruction in cyber-physical domain. Both the 

fingertip rotation angle and the curvature of the fingers were measured. The fingers were 

actuated independently. The behaviour of index finger is presented. 

      The differences between the analytical model, and experimental data are in the range ~ 2° 

for initial, small pressure levels, and up to ~ 150° at pressure of 0.25 MPa. The difference 

increases with increase of internal pressure and increase of curvature. This is expected since 

nonlinearities are more pronounced in the domain of higher pressure. 
 

 

Figure 7: Experimental verification of the proposed soft anthropomorphic hand. 
 

      If we compare this data to the Ogden second order model used for simulations, it is obvious 

that increased pressure increases also internal stress, and that additional energy is required to 

achieve a constant increment of deformation. Here the maximal difference between the model 

and experimental data is in the range of up to ~ 90° for 0.25 MPa pressure. 

      The model proposed and implemented in Abaqus, which does not include porosity of 

material, although significantly better than linear model, still lacks on accuracy. Additional 

research and fine tuning of parameters is required to achieve a better agreement between the 

model and actual physical actuator. 

      The three models are compared in Fig. 8. Several points are important here: if all the values 

in Eq. (4) regarding material and geometry are constant, then the relation of rotation angle to 

internal pressure is a linear function whose slope is defined by elastic constants and finger 

geometry. This is a model simplification which does not capture highly non-linear behaviour 

of the material. It does not capture porosity of material for higher curvatures either. Despite 

significant differences between the analytical model, it might be useful for initial calculations 

or for the scenarios where speed of calculation plays a critical role, and when operating pressure 

is small. 

     The experiments performed in this study lead to the conclusion that the main origin for the 

deviation of FEM model from the physical model is the leaking of pressurized air that occurs 
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through the volume of the soft actuator. Experiments with submerging the finger under the 

water revealed that this happens along the whole surface, which is stretched, and that it is not 

located in regions of largest deformations or highest stresses. This also leads to a plateau in the 

pressure to bending ratio, which is illustrated in Fig. 8. This limits the ability of printed actuator 

to reach a full circle bending due to the leaking caused by increased porosity with increased 

curvature. Also, gravitational effects were not considered in this study, but certainly adds to the 

difference between the model and actual data. 

 

Figure 8: Comparison of experimental and analytical data for fingertip rotation. Gradient filed is to 

indicate leaking of air through walls of the actuator. 

      The proposed design was experimentally tested for grasping and lifting a variety of objects, 

a subset of which is illustrated in Fig. 9. The hand can reliably grasp from a flat surface objects 

such as apple, tomato, plastic bottle, banana, croissant, car toy model, among others without 

damaging the objects. The weight of manipulated objects was up to 0.3 kg. Once reliable grasp 

is established, lifting and manipulating of objects is smooth. 

 

Figure 9: Grasping and manipulation of objects using proposed hand. 
 

      Objects problematic for grasping are those with one dimension significantly smaller than 

the two others – such as a mobile phone. For a reliable manipulation of such objects, more 

refined grasp should be applied in combination with additional movement and positioning, 

which is difficult to achieve with proposed design. Joints critical for this grasp are eliminated 

from the structure in the design phase – such as interphalangeal joint of the thumb. One solution 

to this problem would be to increase friction on fingertips. The other approach would be to 

include additional joints which enable fine flexion, adduction, and abduction. It is worth noting 

though, that the objects, once in the hand, including a mobile phone, can be reliably held, and 

manipulated by it. The manipulation of small objects, smaller than 1 cm3 is also not reliable. A 

finer sensory-motor relationship should be implemented to reliably manipulate object of such 

sizes. 
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      The next limitation of the design proposed in this study is the design of the palm manifold, 

which is rigid, but also has an exceptionally low friction coefficient. This generates problems 

in establishing the grasp, especially in the moment when the fingers are pushing the object 

towards the palm, have still not conformed to the objects’ geometry which happens prior to 

lifting. If the object to be lifted is small and rigid, then sliding of the object along the palm can 

occur due to forces induced being not perpendicular and not oriented to the centre of gravity of 

the palm. These forces then push the object along the surface of the palm and the grasp is not 

established. 

      The fingers were bonded to the palm using a Loctite EA 3423 which is a 2-component 

structural bonding epoxy adhesive with a fixture time of 180 min. The viscosity of this epoxy 

is low, 300 mPas at 20 °C. This enables formation of a reliable bond between the small contact 

surfaces of the palm manifold and fingers which are subjected to internal pressure. 

4. CONCLUSIONS 

In this study, a fully operational anthropomorphic hand is designed and simulated with a linear 

and hyperelastic model, and finally printed using FDM low-cost open source Prusa i3 printer. 

      Printed specimens were tested on a universal testing machine to formulate a realistic 

hyperelastic material model. This model is more accurate, but significantly more time 

consuming compared to the linear model. Printing parameters and orientations were varied for 

printed specimens, which had a significant impact on their properties. Ogden second order 

model was determined to be the best fit for experimental data and was adopted as the model 

used thereafter in numerical simulations. 

      The soft actuators were printed using a Prusa i3 open source FDM printer, and material used 

was NinjaFlex TPU. Printed actuators were bonded to a rigid manifold to resemble the 

anthropomorphic hand consisting of fingers, thumb, and a palm. This enabled the experimental 

verification of the data from simulation models. The hand was used both to lift and manipulate 

a set of objects. Measuring of fingertip rotation angle along with curvature depending on 

activating pressure was performed. 

      The difference in fingertip rotation angle between the physical finger and linear model is 

150° max. The difference in fingertip rotation angle between physical finger and proposed FEM 

model is in the range of up to ~ 90° max. In the latter case, the soft actuator in the simulation 

environment almost closes a full circle, whereas experimental finger closes ~ 260°. Despite the 

difference is large, it occurs on the higher end of the pressure range, with large curvatures of 

the actuator achieved for both bending angles. In the rest of the working range, the difference 

is significantly smaller. 

      The properties of 3D printed hand in this study were constrained by the nature of FDM 

approach itself, but also by the printer used for the fabrication of the fingers. Initially proposed 

designs were not reliably printable, and some features of initial fingers were omitted in the final 

design. A thorough experimental validation and comparison with both numerical and FEM 

analysis were performed. 

      FEM model formulated in this study can capture non-linearities of the actual physical 

model. The differences between real model and FEM calculations can have roots both in not 

perfectly determined parameters for the hyperelastic Ogden model, but also a significant impact 

on accuracy is because of plateauing which occurs for large curvatures and increased porosity 

of material. The voids which are present in the volume of soft actuator manufactured by FDM 

process used here are not implemented and will be a focus in a future research. 

      Another important aspect for future research is the evaluation of properties of different 

materials used for palm manifold, but also for the fingers. The friction coefficient should be 

high to establish reliable grasp without sliding. The geometry of fingers should also be modified 
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to exhibit more concentric movement of the fingers toward the centre of mass of the palm 

manifold, instead of circular movement towards carpometacarpal region which occurs with 

present design. This would help in reducing the sliding of objects in contact with palm and 

being pushed by the fingers simultaneously. 

      Finally, there is a need for regulation of soft fingers angle of rotation with respect to external 

pressure applied. This would enable a wider range of applications, reduce energy used for 

grasping, and enable even more organic motion of the fingers. 
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