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Abstract 

In this study, we have introduced a framework for an automatic patient registration procedure using 

freely distributed fiducial markers within a robot application in neurosurgery. The localization 

procedures in the image space and in the physical space are fully automated. We have developed a 

novel algorithm for finding the point pair correspondence between freely distributed fiducial markers 

in the image and in the physical space. The algorithm introduces a similarity matrix to maximize the 

possibility of successful point pairing and to remove the potential outlier points. The correspondence 

algorithm has been tested in 900,000 computer simulations and also on the real data from five 

laboratory phantom CT scans and twelve clinical patient CT scans, which were paired with 1415 

readings captured with an optical tracking system. Testing of simulated point scenarios showed that 

the correspondence algorithm has a higher percentage of success when a larger number of fiducial 

markers and a lower number of outlier points were present. In the 24055 tests on the clinical data, 

there has been a 100 % success rate. 
(Received in March 2018, accepted in June 2018. This paper was with the authors 1 week for 1 revision.) 
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1. INTRODUCTION 

There is a growing trend for applying robotic systems in different aspects of medical practice 

because of numerous benefits that they provide. Robotic systems coupled with medical 

imaging techniques (computed tomography – CT, magnetic resonance imaging – MRI, etc.) 

can provide great accuracy of positioning the surgical instrument on planned targets, 

repeatability of position and motion, ability to hold the position over a period of time without 

tremor, and programmability of complex motions. As with any technology-driven change, 

newer versions aim to improve their primary features, the efficiency, and the ease of use. 

Modern medical robotic systems and image-guided surgical procedures possess little 

autonomy or very few automated functions [1]. A great number of operations are still 

performed manually, which can be attributed to the unstructured working environment in the 

operating room (OR) and to demanding safety requirements in robotic surgery. 

State-of-the-art robotic systems intended for neurosurgery and their patient registration 

methods differ in regard to the employed patient localization features, localization techniques, 

sensors, and registration procedures. Fiducial markers which can be used as reference points 

are physical objects used in the localization process. Medical image registration techniques 

are used for aligning the image space with the physical space by calculating their rigid body 

transformation [2, 3]. As shown by Widmann et al. [4], registration based on paired points is 

still the gold standard in frameless stereotactic neurosurgery. Nevertheless, in a number of 

patient registration procedures with robotic systems, corresponding points between the image 

and the physical space, either fiducial points or anatomical landmarks, need to be manually 

matched. This is a time consuming but also an error-prone process because the operator has to 

point out each fiducial marker by hand and confirm the choice. In comparison to manual 
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methods which depend on the operator and the technology, the automatic correspondence can 

be achieved in a few milliseconds (depending on the correspondence algorithm and the 

number of points). Cardinale et al. [5] evaluate the new Neuromate (Renishaw, 

Gloucestershire, UK) Neurolocate touch-free localization device and its clinical workflow. 

After an intraoperative 3D image has been obtained with the O-arm, the centres of the 

Neurolocate fiducial markers need to be selected semi-automatically in multi-planar 

reconstructions within the planning software. In [6], Benedictis et al. reported on the ROSA 

Brain neuronavigation robotic assistant (Medtech, Montpellier, France) which can be used 

with two types of registrations: fiducial marker registration using bone-attached fiducials and 

frameless surface-based registration (i.e. noncontact patient localization). The first procedure 

is based on the manual positioning of the robot tool centre point (mechanical pointer) within 

the implanted screws on the patient’s skull. González-Martínez et al. [7] and Lefranc et al. [8] 

used the ROSA Brain neuronavigation robotic system with the noncontact localization 

method utilizing a custom-built laser for measuring distance. The main drawback of this 

approach is that the initial alignment between the image space and the physical space is done 

by the operator, through manual guidance of the robotic arm, pinpointing a series of 

anatomical landmarks previously localized by the operator in the image space. Kronreif et al. 

[9] demonstrated a miniature robotic assistant system, B-RobII, which is navigated by a 

certified neuronavigation device (VectorVision, BrainLAB AG, Germany) using a manual 

registration procedure based on paired points. Gerber et al. [10] presented a semiautomatic 

ball-in-cone positioning method for the localization of fiducial markers in the physical space 

by using a novel surgical robotic system with force feedback control. In [11], Meng et al. 

present an optically tracked robotic system that utilizes a pointer tool and a patient reference 

frame in order to determine the correspondence between fiducial points in the physical and 

the image space. The same method of robotic guidance was used in our previous research 

[12]. Lin et al. [13] developed a neurosurgical robotic drilling and navigation system which 

utilizes manual localization of fiducial points in the physical space. 

In this study, we propose a complete solution for achieving highest level of automation in 

the robotic neurosurgical patient registration procedure. To avoid the manual localization of 

fiducial markers in patient images, we use the previously developed automatic localization 

algorithm which calculates the coordinates of each fiducial marker [14]. An optical tracking 

system (OTS) Polaris Spectra (NDI – Northern Digital Inc., Ontario, Canada) with a large 

field of view is used for the localization of fiducial markers attached to the patient and the 

robot in the OR. For accurate point-based registration, it is crucial to determine the exact 

matching order and positions of all the fiducial markers. A novel algorithm for the point pair 

correspondence is described and evaluated. The algorithm uses a known positional mean error 

and the standard deviations of the input data from the OTS and a CT scanner with the 

localization algorithm to validate successful point pairing and to remove potential outliers. 

The successful point pairing between the patient image localization algorithm output and the 

OTS measurements ensures that there is no need for medical personnel to intervene in any 

phase of the patient registration procedure. 

The paper is structured as follows. In section 2 we present the robotic system used in this 

study, the advantages of using the freely distributed markers, and disadvantages of manual 

localization. In section 3 we present all the phases of the robot clinical procedure and 

demonstrate transformations between all the coordinate systems which enable automation of 

the entire patient registration procedure. A state of the art in registration and correspondence 

algorithms and a novel algorithm for finding the point pair correspondence is described and 

evaluated in section 4. Finally, in section 5 we discuss the algorithm’s test results and the 

plans for future research. 
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2. RESEARCH MOTIVATION 

Our research group has developed a dual-arm robotic system for frameless stereotactic 

neurosurgery, RONNA G3. The main system components, registration procedure, and the 

overall operating procedure were first presented in [15] and the position planning strategies 

which search for the optimal placement of a neurosurgical robot in [16]. In the registration 

procedure, a rigid bone-implanted x-shaped frame, shown in Fig. 1 a, was used for localization 

in the patient images (patient CT scan) and the robot coordinate system in the physical space. 

The x-shaped frame is designed to carry four fiducial markers positioned at a unique distance 

from each other. During the first series of human clinical trials carried out in cooperation with 

a team of neurosurgeons from the University Hospital Dubrava (Klinička bolnica Dubrava – 

KBD), we noticed that the x-shaped frame implantation procedure proved to be impractical 

due to the frame size. An alternative was to replace the x-shaped frame with three or more 

individual self-drilling and self-tapping screws shown in Fig. 1 b. Thus, retro-reflective 

spheres, i.e. fiducial markers, can be attached to them. In this study, individual fiducial 

markers that are implanted on the head of the patient will be called freely distributed fiducial 

markers. Advantages of using freely distributed fiducial markers are: 

 less invasiveness because of the smaller insertion diameter used for individual markers, 

 better flexibility in choosing a position of fiducial markers on the patient’s head in relation 

to the planned surgery target, 

 simpler pre-operative procedure for implanting self-drilling and self-tapping screws, 

 smaller registration error when individual fiducial markers are placed at larger distances, 

 ability to use more than four fiducial markers if higher precision and accuracy are required, 

 shorter distance from the fiducial markers to the surgical target. 

 

Figure 1: a) The bone-implanted x-shaped frame a2 with four fiducial markers a1 and skin-attached 

fiducial markers a3; b) Freely distributed fiducial markers composed of: a self-drilling and 

self-tapping screw b1, a removable base b2, a retro-reflective sphere, i.e. a fiducial marker b3. 

Freely distributed skin-attached fiducial markers shown in Fig. 1 a are also used in the 

OTS surgical navigation which is a standard medical method for the tracking and 

visualization of specially designed surgical tools relative to the real patient image. Surgical 

navigation by means of the OTS uses skin-attached fiducial markers that are freely distributed 

on the patient’s skull. These fiducial markers are manually localized by the medical personnel 

in both the image space and the OR, and the correspondence between the associated point 

pairs is determined manually. The disadvantages of manual procedures are duration of 

localization, a possibility of a human error, insufficient accuracy, and staff training required to 

perform the localization procedure. The robot-guided interventions share a similar registration 

procedure with that of the OTS surgical navigation and hence share the same disadvantages if 

manual localization and registration are used. A fully automated patient registration procedure 

with a robot system using freely distributed fiducial markers requires automated localization 

procedures and an algorithm that can determine the corresponding point pairs between the 

image space and the physical space data sets. 



Suligoj, Jerbic, Svaco, Sekoranja: Fully Automated Point-Based Robotic Neurosurgical … 

461 

3. RONNA G3 CLINICAL PROCEDURE FOR AUTOMATIC PATIENT 

REGISTRATION 

The RONNA G3 clinical procedure is composed of three phases: the preoperative phase, the 

preparation phase, and the operation phase, as shown in Fig. 2. In the following sub-sections, 

the clinical procedure is described with an emphasis on the automation of the patient 

registration procedure and the calculation of transformations between all coordinate systems. 

 

Figure 2: Technical workflow of the RONNA G3 clinical procedure. 

      A better general description of the RONNA G3 surgical procedure can be found in the 

paper by Švaco et al. [17] while a medical case in which the RONNA G3 system was used is 

presented in the paper by Dlaka et al. [18]. 

3.1  Preoperative phase 

In the preoperative phase, the bone-attached screws are fixed to the patient’s head and the 

patient is scanned with a CT scanner. During this phase, the positioning of individual fiducial 

markers in relation to one another is critical because only the right positioning guarantees 

successful point pairing in the later phases of the registration process. After scanning, the 

patient images are imported into the software for operation planning (RONNAplan) [17]. 

 

Figure 3: Trajectory definition in the RONNAplan planning software is shown with the freely 

distributed markers attached on the patient during clinical tests. 
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      Since the trajectory point coordinates are defined in the CT coordinate system, they need 

to be transformed to the coordinate system of the robot denoted as R. The localization of 

fiducial markers in the patient images is the first step in the patient registration procedure. 

Automatic localization is achieved with our localization algorithm developed and described in 

[14]. The algorithm uses a unique approach combining machine vision algorithms, biomedical 

image filtration methods, and mathematical estimation methods to determine the centre of 

each individual fiducial marker. The output of the localization algorithm is a set of fiducial 

points {xi}. RONNAplan enables visualization of the patient’s anatomy and planning of  

i = 1, …, a number of operation trajectories in the coordinate system of the CT scanner 

(denoted as CT). Each operation trajectory is composed of two points, an entry point eni 

written as translation vector 𝐭eni
CT  defined on the surface of the patient’s skull and the surgery 

target point tri denoted as 𝐭tri

CT . An example of the planned trajectory is shown in Fig. 3. 

3.2  Preparation phase 

At the start of the surgery, in the preparation phase of the RONNA G3 procedure, the patient 

is brought to the OR and the robot is positioned near the patient. In the OR, an OTS, i.e. an 

infrared stereo camera system with a large operating volume, is used for the localization of 

fiducial markers placed on the patient and on the robot. At this phase, there are two separate 

point sets. The first set of i = 1, …, n points {xi} are positions of the fiducial markers in the 

image space (CT). The second set of j = 1, …, m points {yj} are coordinates of the fiducial 

markers attached to the patient in the physical space captured by the OTS (coordinate system 

OTS). In this paper, every point xi or yj will also be denoted as translation vector 𝐭xi
CT  or 𝐭yj

OTS , 

depending on the context. To solve the rigid point-based registration problem, the 

correspondence between {xi} and {yj} must be established. Once at least three corresponding 

point pairs have been matched, the problem is reduced to calculating the 33 rotation matrix 

P and the 31 translation vector t that aligns the corresponding l number (l can be smaller 

than m and n if the point set includes outliers) of points from {xi} and {yj} in a way which 

minimizes the root-mean-square (RMS) distance between the points: 

𝑑2 =  
1

𝑙
∑|𝐲

i
− (𝐏𝐱i + 𝐭)|

2
𝑙

𝑖=1

 (1) 

      Typically, because of the localization errors, the value of d cannot be zero. An example of 

the method for the rigid point-based registration is the least squares fitting of two 3D point 

sets [6]. The final goal of the registration procedure is to find the transformation between the 

image space and the physical space for the OTS: 

TOTS
CT = [ POTS

CT tOTS
CT

0 1
], (2) 

or for the robot: 

TR
CT = [ PR

CT tR
CT

0 1
] (3) 

      If the correspondence of points between the coordinate systems CT and OTS can be 

established, we can calculate the position of the patient in the robot coordinate system R.  

As can be seen in Fig. 4, the OTS which retrieves the coordinates of the fiducial markers is 

used to attain the position and the orientation of the dynamic reference frame M mounted on 

the robot tool ( 𝐓M
OTS ) and the positions of the freely distributed fiducial markers {yi} attached 

to the patient. M is retrieved in the OTS as 𝐓M
OTS , i.e. the position and orientation of the 

predefined configuration of individual fiducials attached to the robot tool. 
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Figure 4: Coordinate systems and transformations used for achieving an automatic patient registration 

procedure. 

      Positions of the patient fiducial markers in the coordinate system of the OTS are the 

translation vectors which will be denoted as 𝐭yi
OTS . The connection between the position and 

orientation of the fiducial marker attached to the robot tool and the tool centre point (TCP) of 

the robot is defined by the transformation 𝐓TCP
M . The transformation TTCP

OTS  is calculated as: 

TTCP
OTS = TM

OTS ∙ TTCP
M  (4) 

      The position and orientation of the pre-calibrated TCP in the robot base coordinate system 

( 𝐓TCP
R ) is aquired from the robot controller. The translational and rotational parts of the 

transformation 𝐓TCP
M  are determined by means of tool calibration. The translation 𝐭TCP

M  is first 

calculated by moving the TCP of the robot arm in several configurations around the same 

point in space and by using the method described in [19]. The orientation is calculated by 

moving the TCP of the robot in three points and by creating a new coordinate system TEMP 

in the space which is shared by the robot 𝐓TEMP
R  and the OTS 𝐓TEMP

OTS . For the calculation of 

rotation matrix 𝐏TPC
M , the orientation of the marker captured by the OTS and the orientation of 

the TCP in the robot coordinate system are recorded at the same time. 

𝐏TCP
M = ( 𝐏TEMP

OTS −1 ∙ 𝐏M
OTS )−1 ∙ ( 𝐏TEMP

R −1 ∙ 𝐏TCP
R ) (5) 

      When 𝐓TCP
M  is known, we can calculate the value of TTCP

OTS  using the Eq. (4) and determine 

the coordinates of the fiducial markers in the TCP coordinate system: 

𝐭yi
TCP = 𝐓TCP

OTS −1 ∙ 𝐭yi
OTS  (6) 

      The coordinates of the fiducial markers in the R coordinate system are then calculated as: 

𝐭yi
R = 𝐓TCP

R ∙ 𝐭yi
TCP  (7) 

on the assumption that the robot joint positions used for calculating 𝐓TCP
R  are identical to the 

ones used when capturing 𝐓M
OTS  and 𝐭yi

OTS . Knowing the coordinates of the fiducial markers in 
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the robot base coordinate system means that the patient position in relation to the robot is 

known. At this point, the preparation phase is completed. 

3.3  Operation phase 

In the operation phase, the fiducial marker localization by means of a robot is performed 

using the RONNAstereo device [17]. RONNAstereo consists of two infrared cameras with 

macro lenses (acA2000-50gmNIR, Basler, Ahrensburg, Germany). The two cameras are used 

to create the virtual TCP that corresponds with the TCP of the robot. The robot arm with the 

mounted RONNAstereo device is sent to every 𝐭yi
R  and all the fiducial points are re-localized 

directly in the robot base coordinate system. Re-localization ensures better precision than the 

sole reliance on the OTS coordinates. After registration, the RONNAstereo is physically 

replaced with a surgical tool. The surgical tool can then be moved by the robot to any 

trajectory 𝐭eni
CT → 𝐭tri

CT  planned by the surgeon in the preoperative phase. 

4. REGISTRATION AND CORRESPONDENCE BETWEEN POINT 

PAIRS 

Finding point pairs between two sets of points, {xi} and {yi}, which have the root-mean-

square (RMS) distance d between the points equal to zero, would mean that both inputs have 

zero positioning errors and no outlier localized points. In actual situations, the positioning 

errors from input devices are a consequence of environmental signal noise, errors produced 

due to discretization of the input signal, and the resolution of the device itself. Registration 

algorithms used for the geometric alignment of 3D point data are a well-researched topic in 

the fields of robotics and computer vision. Bellekens et al. [20] give an overview of the state-

of-the-art registration methods, such as Singular Value Decomposition (SVD), Principal 

Component Analysis (PCA), and Iterative Closest Point (ICP) algorithm [21] with its variants. 

These methods are mostly used for processing data collected from various 3D sensors. The 

SVD method uses the cross correlation matrix to calculate the optimal transformation (in the 

least squares sense) between two point clouds when the correspondence between point pairs is 

known. The PCA gives a rotation matrix when aligning the directions of the largest 

eigenvectors extracted from the covariance matrices of the two data sets. Since the PCA 

method is very sensitive to outlier points, it is generally used only as the first rough estimation 

of the initial transformation in other algorithms such as the ICP. The ICP algorithm guesses 

the point correspondences between the data sets based on the nearest neighbour approach and 

iteratively refines the transformation. After each iteration of the algorithm, the outliers are 

disregarded in order to improve the previous estimate of the transformation parameters. 

For our problem, we needed a registration algorithm that can compute the transformation 

between two point sets containing up to ten points each, with noise from the input devices and 

with a possibility of outlier points in both sets. Sets of up to ten points are realistic in regard to 

the number of fiducial markers used in standard neurosurgical applications when 

neuronavigation systems are used. As a solution to our specific problem, we have developed a 

novel correspondence algorithm. 

4.1  The correspondence algorithm 

Since we register data sets in a medical environment, the solution to our particular 

correspondence problem has to ensure great safety. It is of paramount importance for the 

algorithm to get the correct correspondence between every point pair in the presence of noise 

and potential outlier points, and to determine with a high level of statistical confidence that 

the mathematical solution is unique. Furthermore, it is important that no actual fiducial 
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markers are classified as outliers. From the perspective of computing speed, the extenuating 

circumstance is that the number of used fiducial markers is always relatively small as it 

ranges between three and eight. The algorithm is used for finding correspondence between a 

known number of points in {xi} with i = 1, …, n points and in {yj} with j = 1, …, m points. It 

should be noted that the positions of the individual markers are registered with an error which 

is composed of the resolution of input devices and the localization error which can be written 

as in [22]: 

𝐱i = 𝐱î + 𝐞𝐱𝐢 (8) 

𝐲j = 𝐲ĵ + 𝐞𝐲𝐣, (9) 

where 𝐱î and 𝐲ĵ are the true point coordinates and xi and yj are the coordinates from the 

patient images and the OTS, which contain their respective errors exi and eyj. The flow chart 

of the algorithm is shown in Fig. 5. 

 

Figure 5: Correspondence algorithm flowchart. 

      In the first step of the algorithm, for every point in set {xi} and for every point in set {yj}, 

the Euclidean distance is calculated in relation to all the other points in the same point set. 

The Euclidean distance between any two points x1 and x2 is denoted as d(x1, x2). As a result, 

every point in both data sets has a related vector containing distances to all the other points of 

the same data set:  

𝐝𝐱𝐢
=  [𝑑(𝐱1, 𝐱i), 𝑑(𝐱2, 𝐱i), … ,     𝑑(𝐱n, 𝒙i) ] (10) 

      In the second step, the similarity value simij is calculated between all points xi in set {xi} 

and yj in set {yj}: 

𝑠𝑖𝑚𝑖𝑗 = count_members {(𝐝𝐱i
− 𝐝𝐲j

) < 𝑒}, (11) 

where e is the value of the largest difference allowed between any two values in 𝐝𝐱i
 and 𝐝𝐲j

 

that will be treated as a similarity point. The notation “count_members” in Eq. (11) is used for 

counting the number of shared distance instances between any two points in both data sets, 

and writing it into the similarity matrix. The minimum value that simij can attain is zero and 

the maximum value is the number of points in the smaller data set minus one. The logic 

behind the similarity matrix is that for all the actual fiducial points in the one point set and all 

the distances between the points of the same set there should be the same number of fiducial 

points in the second set with the distances between those points smaller than the value of 

parameter e. There is one less distance instance in a vector 𝐝𝐱i
 than the number of points in a 

set since d(xi, xi) = 0. Since e is the measure of acceptance between any two distances, it is in 

our interest to make it as small as possible for the algorithm to be able to differentiate 

between similar distances. On the other hand, if our input devices return data which contains 

measurement errors for a fiducial point position which is greater than e, then that fiducial 

point would be excluded and the correspondence cannot be established. For that reason, the 
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interval of values for parameter e is based on the measured error of the input devices. The 

calculated similarity values of simij for every two points in the two data sets are used for 

creating a 2D similarity matrix: 

        𝐱1 … 𝐱n 

𝐲1

⋮
𝐲m

[
𝑠𝑖𝑚11 ⋯ 𝑠𝑖𝑚1𝑛

⋮ ⋱ ⋮
𝑠𝑖𝑚𝑚1 ⋯ 𝑠𝑖𝑚𝑚𝑛

] (12) 

      In the third step shown in the flowchart, rows and columns of the similarity matrix are 

evaluated in comparison to the expected number of fiducials. If the number of rows and 

columns is equal to the expected number of fiducial markers and every point in {xi} has its 

unique pair in {yj}, the algorithm has been successful in finding correspondence between the 

paired points (steps 3-4C-5B). If one or more outlier points are found in any of the point sets, 

simij values in rows and columns of those points will be lower than that of the fiducial points. 

Every row or column of the matrix that does not have at least one value that satisfies the 

condition is then removed (step 4A). This marks the end of one iteration of the algorithm. The 

algorithm iterates the procedure in steps 1-4A with a reduced number of points until it 

removes all the outliers or until the solution is confirmed as not being mathematically unique. 

Step 4B is initiated if the number of rows and columns in the similarity matrix is equal to the 

expected number of fiducial markers, but all the points do not have only one possible 

solution. In that case, the matrix is evaluated to find at least three corresponding points that 

are unique so that all the other point coordinates can be transformed to the coordinate systems 

of corresponding points (one for {xi} and one for {yi}) and compared in the Cartesian space. 

All the transformed points are checked in order to find their pairs based on their coordinates; 

the Euclidean distance between them should be smaller than e. The number of unique point 

pairs is then verified in step 4C. If the unique correspondence cannot be found due to great 

errors or too many outlier points, the algorithm increases the allowed error e (step 5A) and 

iterates through steps 1-3. 

When freely distributed fiducial markers are used, there is a possibility of placing the 

markers at a similar distance from one to the other or symmetrically, which prevents 

achieving a unique mathematical solution for the correspondence between paired points of 

fiducials. Simple examples of such a setup are: three markers are used and placed in the 

positions to form a perfect equilateral triangle and four markers forming a square. In the case 

of mathematical insecurity for point-pairing, the registration cannot be performed 

automatically based only on the coordinates of the points and additional information is needed 

to resolve the ambiguous situation. In those situations, our algorithm relies on the manual 

intervention of the human operator who uses a specially designed pointer tool to point all 

fiducial markers. 

4.2  Correspondence algorithm testing in a simulated point environment 

The testing of the correspondence algorithm requires the input data to be modelled with 

realistic configurations of the fiducial markers and the measured distribution of fiducial 

localization errors. The fiducial localization error (FLE) is defined as a distance between the 

true and the measured position of fiducial markers, as shown in Eqs. (8) and (9). In general, 

the FLE in the patient images is a result of noise produced by imaging artifacts, the resolution 

of the reconstructed images produced by the CT or the MR scanner, and the accuracy of the 

localization method [23, 24]. In our study, the FLE is generated by a CT scanner, an OTS, and 

by their localization methods. The zone of the potential FLE from both input devices is shown 

in Fig. 6. It should be noted that the zone of localization error can be a circle/sphere (2D/3D) 

if the error distribution is isotropic or an ellipse/ellipsoid (2D/3D) if the error distribution is 

anisotropic. 
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Figure 6: Potential zone of the fiducial localization error (FLE) with respect to the distance between 

any two fiducials. 

      The maximum distance error which is compared to e in the correspondence algorithm is 

calculated as the maximum potential error caused by the FLE: 

𝑒𝑚𝑎𝑥 = 𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛 = 𝑑𝑡𝑟𝑢𝑒 + 𝑒𝐶𝑇 − 𝑑𝑡𝑟𝑢𝑒 − (−𝑒𝑂𝑇𝑆) = 𝑒𝐶𝑇 + 𝑒𝑂𝑇𝑆, (13) 

where eCT can be viewed as the scalar value of exi and eOTS as a scalar value of eyj in the 

situation of maximum error.To test the correspondence algorithm in a simulated environment, 

we need to calculate the distribution of eOTS and eCT. 

In our previous work [14], we developed the algorithm for the localization of fiducial 

markers in CT images. In the experiment of that study for calculation of eCT, we used the x-

shaped frame (shown in Fig. 1) with four fiducial markers which were localised in the CT 

scans of twelve patients and five CT scans of the test phantom. Six distances between fiducial 

markers of every CT scan were calculated and compared to those measured on the coordinate 

measuring machine (CMM). Separate statistics were calculated for the phantom and for the 

patient CT scans. The measured mean error for the patient CT scans was 0.4414 mm, with a 

standard deviation of 0.56 mm. The phantom CT scans demonstrated a significantly lower 

mean error value at 0.11 mm with a standard deviation of 0.10 mm. The normality of 

distribution was confirmed by the Kolmogorov-Smirnov test. 

The FLE in the OR is a result of the signal noise captured by the OTS and the resolution 

of cameras. In our previously published article [12], we measured the accuracy of the OTS 

Polaris Vicra (Nothern Digital), which was used for guiding the industrial robot arm to 

positions planned in the CT scan. The measured accuracy of the OTS was determined when 

the x-shaped frame with four fiducial markers was used. For calculating eOTS, we needed 

measurements for a single fiducial marker error. Wiles et al. [25] made an in-depth analysis of 

error distribution of the Polaris OTS. Over 1500 points were measured in the working area of 

the OTS by moving a single fiducial marker. The error between the ground truth data 

measured on the CMM and the positions of individual fiducial marker measured using the 

OTS showed an RMS of 0.26 mm, a mean error of 0.19 mm, and a standard deviation of 

0.17 mm. 

For the algorithm testing, we used coordinates of eight adhesive fiducial markers manually 

attached by the neurosurgeon to three patients and localized in the CT scans. To compensate 

for the difference in the anatomy of a human head and the positioning of fiducial markers in 

different surgeries, we used a uniform distribution on the coordinates of every fiducial marker 

inside a 10 mm radius sphere. The number of fiducial markers was f  [3, 8]. Randomly 

chosen fiducial markers were removed from the original set in every simulation when 

situations with less than eight markers were tested. The order of points in the second set was 

changed after the original set of points had been replaced. The noise was applied to both sets 

according to the calculated normal standard distribution, i.e. 0.56 mm on the original set and 

0.17 mm on the second set. Furthermore, tests were run with o  [0, 4] outlier points added in 
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both sets. The positions of simulated outlier points were randomly chosen following a 

uniform distribution inside a sphere with a radius of 300 mm and with the centre defined as 

the centroid of the fiducial markers. Ten thousand simulations were performed for each of the 

three patients. For each combination of the number of fiducial markers f  [3, 8], and each 

number of added outlier points o  [0, 4], we ran ten thousand simulations, resulting in a total 

of 900 000 tests. The algorithm was tested with the e  [1, 6] mm parameter and 0.1 mm step. 

There were three possible outcomes: 

1. Successful correspondence – the exact number of points was corresponding and the 

returned order of points was identical to the known order of points in both sets, 

2. Unsuccessful correspondence – due to big errors in the input data or an unambiguous 

solution, 

3. False-positive result – when the algorithm returned the correspondence but the order of 

points was not correct when checked with the known order of points in both sets. 

      The results of correspondence algorithm testing for unsuccessful correspondence and a 

false-positive result are shown in Fig. 7. 

 

Figure 7: Results of the correspondence algorithm testing on simulated data; 

left: unsuccessful correspondence, right: false-positive result. 

As expected, the correspondence algorithm has shown a higher percentage of success 

when a larger number of fiducial markers and a smaller number of outlier points were used. 

For five to eight fiducial markers and 0-4 outlier points, the percentage of unsuccessful 

correspondence was between 0-0.81 % and the number of false-positive results was between 

0-0.026 %. When only three or four fiducial markers were used, there was a higher chance of 

ambiguous solutions and hence a higher chance of unsuccessful correspondence and false-

positive results. The unsuccessful correspondence for four fiducial markers was 3.86-5.03 % 

and 7.98 %-15.53 % for three (not shown in Fig. 7.). False-positive results for four fiducial 

markers amounted to 0.01-0.06 % and 0.05-0.89 % for three. Based on the test results, in the 

case when three or four fiducial markers are used, we suggest that there should be a physical 

template which would enable unique positioning distances in the patient preparation 

procedure. This can be achieved with a three point physical template that can be attached to 

pretty much any shape and size of the human skull. The presented algorithm only needs three 

points to be placed in a unique spatial configuration to guarantee successful correspondence. 

4.3  Correspondence algorithm testing on clinical data 

The purpose of these tests was to verify the reliability of the developed correspondence 

algorithm with the parameter e  [1, 6] mm used on a real data set. The input data for the 

correspondence algorithm were the coordinates of the fiducial markers localized both in the 

physical and in the image space. In the image space, the fiducial markers were localized using 

the developed localization algorithm on CT scans of twelve patients done after a brain biopsy 

procedure and five CT scans of a laboratory phantom. In the physical space, the fiducial 

markers were localized using the Polaris Spectra OTS. We made 1415 measurements of the 

four fiducial markers mounted on the x-shaped frame. During the data acquisition stage, the 
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x-shaped frame was constantly moved to ensure that different areas of the working volume 

are covered with the OTS. In Figs. 8 and 9, the percentage of successful correspondences is 

shown in relation to the parameter e used in the algorithm. 

 

Figure 8: Success rate of the correspondence algorithm with the data from five CT scans of a 

laboratory phantom and OTS measurements. 

 

Figure 9: Success rate of the correspondence algorithm with the data from 12 patient CT scans and 

OTS measurements. 

      In 24055 tests, the success rate was 100 %. This can be contributed to the x-shaped marker 

which ensured that four fiducial markers were positioned at unique distances from one to the 

other. In Figs. 8 and 9 one can note that the standard deviation of the errors in the phantom 

CT scans was lower than that in the patient CT scans and that the same OTS data was used in 

both cases. Consequently, there was a wider range of the applied parameter e that yields 

successful correspondence results. All the phantom CT scans had a 100 % success rate for the 

e  [1.8, 4.5] mm and all the patient CT scans for the e  [2.5, 4] mm. There were no cases 

with unsuccessful correspondence or false-positive results in the specified interval of 

parameter e because the highest value of e was lower than those of the most similar distances 

between any two fiducial markers. 

5. CONCLUSION AND FUTURE WORK 

In this paper, we have introduced a framework for robotic neurosurgical patient registration 

using freely distributed fiducials with a high level of automation. Both the image space and 

the physical space localization, and subsequently the registration, are executed autonomously 

and do not require additional assistance of the medical personnel. We have also presented a 

novel correspondence algorithm that uses a similarity matrix to maximize the possibility of 

successful point pairing and to remove the potential outlier points. The test results have 

shown that the algorithm has a high level of reliability in determining the correct 

correspondence and in removing the outlier points. In the future, we aim to modify the 

algorithm so that it will be able to manage a larger number of fiducial points while 

maintaining the robustness to outlier points. With such improvements, the algorithm will 

become more suitable for a wider range of applications which use point cloud data. 
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In the future research, we also plan to extend the use of robots into the preoperative patient 

preparation phase. At this point, the placement of fiducial markers onto the patient is 

performed by the neurosurgeon. Manual placement of fiducial markers can result in a bigger 

registration error due to the inadequate positioning of the markers with respect to the planned 

operative trajectories. West et al. [26] report that the registration error can be reduced if: more 

fiducial markers are used; fiducials are not placed in near-collinear configurations; and the 

centroid of all the fiducial points is closer to the target point. We plan to develop a robotic 

arm equipped with a 3D scanner, which would be able to perform marker-less registration of 

the patient’s head and also with a tool for implanting or attaching fiducial markers. Once the 

patient is localized by the robot, the algorithm would calculate the best positions of the 

fiducial markers on the surface of the patient’s head. 
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