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Abstract: Objective: In this study, we introduce a multi-modal sensing and feedback framework
aimed at assisting clinicians during endovascular surgeries and catheterization procedures. This
framework utilizes state-of-the-art imaging and sensing sub-systems to produce a 3D visualization of
an endovascular catheter and surrounding vasculature without the need for intra-operative X-rays.
Methods: The catheterization experiments within this study are conducted inside a porcine limb
undergoing motions. A hybrid position-force controller of a robotically-actuated ultrasound (US)
transducer for uneven porcine tissue surfaces is introduced. The tissue, vasculature, and catheter
are visualized by integrated real-time US images, 3D surface imaging, and Fiber Bragg Grating
(FBG) sensors. Results: During externally-induced limb motions, the vasculature and catheter
can be reliably reconstructed at mean accuracies of 1.9± 0.3 mm and 0.82± 0.21 mm, respectively.
Conclusions: The conventional use of intra-operative X-ray imaging to visualize instruments and
vasculature in the human body can be reduced by employing improved diagnostic technologies that
do not operate via ionizing radiation or nephrotoxic contrast agents. Significance: The presented
multi-modal framework enables the radiation-free and accurate reconstruction of significant tissues
and instruments involved in catheterization procedures.

Keywords: image-guided surgery; medical robotics; multi-modal sensing; robotic registration

1. Introduction

X-ray fluoroscopy has been commonly used as a modality for visualizing endovascular
catheters for arterial diagnosis and treatments owing to its high-speed display of complex
vasculature. Specifically, it has led to the development of remote-controlled catheter
navigation systems (RCCNS) such as Amigo remote catheter system (Catheter Precision Inc.,
Ledgewood, NJ, USA), Sensei robotic navigation system (Hansen Medical Inc., Mountain
View, CA, USA), and Niobe (Stereotaxis Inc., St. Louis, MO, USA). These commercially-
available systems have demonstrated not only that they can perform safely, but also that
they improve the control and manipulability of catheters during endovascular interventions
when compared to manually-controlled catheters [1,2]. Nonetheless, the control and
positioning of catheters are still dependent on the expertise of the clinician and require
long periods of specialized training time [3]. Moreover, despite the improvements brought
by RCCNS to the field, these systems employ fluoroscopy images as their primary source
of information, causing adverse effects to high-risk patients due to ionizing radiation
exposure [4,5]. This results in limited periods of visibility of catheters inside the body,
accompanied by additional challenges, such as those related to arterial inaccessibility and
the lack of information about three-dimensional (3D) visual feedback [6].

Some studies have investigated the integration of intraoperative magnetic resonance
imaging (iMRI) with RCNNS to reduce radiation exposure to patients and clinicians.
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Bell et al. developed a tendon-driven catheter that was visualized in real-time inside an
MRI bore [7]. However, the catheter heated up close to the edge of the scanner bore and
required a thick shaft diameter to be visible. This, in turn, increased the force necessary
to control it, which reduced its positioning accuracy. Additional drawbacks of iMRI were
noted when Liu et al. developed a framework that visualizes a robotic ablation catheter
inside an MRI scanner [8]. They had difficulties with identifying the real-time shape of the
catheter from MR images due to a low image acquisition rate. This limits automatizing
catheter control strategies using iMRI, as substantiated by Alam et al.—a comprehensive
study investigating multiple optical imaging techniques [9]. More notably, iMRI systems
produce high magnetic fields that affect the electronics of electromagnetic actuators and
sensors [10].

Several attempts have been made to bypass the use of iMRI systems by using either
ultrasound (US) imaging [11,12] or Fiber Bragg Grating (FBG) sensors [13,14]. The latter
has shown significant prospects in the real-time shape sensing of catheters [15–17]. How-
ever, these studies have not yet demonstrated real-time and simultaneous arterial and
instrument 3D reconstruction. Alternatively, robotically-actuated US transducers can be
employed for arterial reconstruction. Moreover, force/torque sensors can be integrated
with transducers, since consistent contact force is required with the skin for visualizing
blood vessels. Such strategies have shown potential for real-time automatic arterial char-
acterization [18,19]. Mathiassen et al. further suggested the potential of robotic US path
planning through force control for real-time 3D arterial reconstruction [20]. They pro-
posed a hybrid-force sensing strategy on a stationary abdominal phantom, which has
been adopted for autonomous US-guided tumor dissection [21]. However, this was not
tested on heterogeneous tissue with uneven surfaces, which is a crucial challenge for a
US-specific patient-oriented approach. This challenge was addressed by Graumann et al.,
who generated robotic US paths for covering a volume of interest selected in diagnos-
tic images [22]. Nonetheless, they assumed that the US transducer is always positioned
perpendicular to the tissue surface. A more desirable assumption would have been to
position the transducer above the vessel of interest, as would be required to visualize
catheters inside vasculature. Jiang et al. attempted to improve this framework by acquiring
real-time US images through impedance control on the US transducer [23]. However,
their method requires a full fan sweep motion of the transducer at each surface point to
optimize the US transducer orientation alone. More importantly, none of these studies
has incorporated representations of limb motions, for instance, Periodic Limb Movements
(PLMs) [24]. Such movements affect the reconstruction accuracies of autonomous image
acquisition frameworks that utilize robotic arms. PLMs that occur during interventions
introduce real-time disturbances, which should be compensated for when arterial and
instrument reconstructions are essential to the clinician.

The challenge of patient motions has been approached with non-invasive commercial
systems. Tracking systems, such as Northern Digital Inc. (NDI) Polaris (Polaris Industries,
Medina, MN, USA) [25,26] and the NDI Aurora electromagnetic (EM) tracking system [27]
have been used to visualize surgical instruments in relation to anatomic structures [28].
However, considering that the operating room is a clustered environment and the capture
volumes of these systems are small, the movement of surgical staff is confined. EM
sensors have also been integrated into US transducers themselves, resulting in so-called
Tomographic US (tUS) devices. One such device, the PIUR tUS Infinity (PIUR Imaging,
Vienna, Austria), combines data from optical markers, EM sensors, and inertial sensors [29].
However, preliminary studies have reported drawbacks associated with freehand tUS
scans, such as overlapping US slices and the loss of subsurface spatial information due to a
change in applied force between the transducer and the skin [30]. Furthermore, in a clinical
setting, metals can affect the accuracy of EM sensors [31].
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In order to obtain information about catheters inside the human body, the need for
integrating alternative imaging and sensing modalities remains paramount. Based on
the aforementioned challenges of conventional approaches, further clinical needs have
been identified: firstly, a safe solution for multi-modal sensing is required. Sub-systems
can be integrated that eliminate excessive radiation resulting from fluoroscopy. Secondly,
intra-operative visual feedback of both an endovascular catheter and vascular anatomy
should be implemented. The scope for this requirement should be to assist clinicians
during endovascular surgeries and catheterization procedures. In this study, we provide
solutions to these needs without requiring intra-operative X-ray imaging. Specifically,
we aim to generate an efficient US path to cover a surface while compensating for PLMs
and adhering to prescribed contact forces and US transducer poses. This is accomplished
by combining data from three imaging modalities (a US scanner, a 3D surface point-cloud
camera, and motion capture cameras) with FBG sensing data of an endovascular catheter.
This catheter is inserted into a porcine limb subjected to periodic motions. We show that
FBG sensors remain a viable option for flexible catheters, due to their reliability in tracking
without the need for line of sight. To the best of our knowledge, such a framework that
covers the integration of the imaging and sensing technologies discussed herein does not
exist yet. Hence, the contributions of this study are as follows:

1. Assembly and calibration of an endovascular catheter that is embedded with FBG
sensors and infrared precision spheres, allowing for real-time feedback.

2. Introduction of a radiation-free intra-operative imaging framework for catheteriza-
tions.

3. Fully autonomous US acquisition directly performed by a robotic system with visual-
servo (VS)-based compensation of externally-induced PLMs.

4. Real-time multi-modal sensing and 3D visualization of the vasculature, catheter,
and surrounding surface tissue.

This paper is organized as follows: Section 2 describes the multi-modal system in-
tegration, the calibration of the imaging and sensing modalities, and the pre-operative
US planning algorithms. In Section 3, the intra-operative planning phase is discussed.
This phase includes the VS-based motion compensation and the real-time vasculature and
catheter visualization. We then demonstrate the sensing and feedback framework in a
clinically-relevant experiment, followed by the results and a discussion of these results in
Section 4. Section 5 concludes this paper and provides directions for future work.

2. Pre-Operative Calibration and Planning

This section provides an overview of the sub-systems used in this study—specifically
with the intention to guide clinicians to utilize FBG-embedded catheters in a real-time
environment. This is followed by a description of the multi-modal calibration process,
US planning, and reconstruction algorithms. The workflow of the pre-operative phase is
illustrated in Figure 1.
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Figure 1. Pre-operative planning for the ultrasound (US) transducer. 1 The porcine tissue is
scanned pre-operatively with a computed tomography (CT) scanner. The resulting scanning data are
converted to a point-cloud dataset (B ∈ Rm×3). 3D datapoints (m) are used as input to Algorithm 1,
which calculates a set consisting of n arterial centroids (ΨCT ∈ Rn×3) 2 A second point-cloud
(C ∈ Rr×3) is obtained from a 3D surface scan of the tissue and used as input to the Algorithm 2,
the ultrasound pose planner. 3 The output is visualized as a set of poses consisting of projected
surface via-points (Υ ∈ Rn×3) and orientations (θ ∈ Sn×3). 4 Finally, in the Advanced Robotics
for Magnetic Manipulation (ARMM) workspace, a US sweep can be performed across the tissue,
followed by multi-modal feedback of the 3D artery, tissue surface, and the Fiber Bragg Grating
(FBG)-embedded catheter in the intra-operative phase.

2.1. Imaging and Sensing Modalities

This study is performed in the Advanced Robotics for a Magnetic Manipulation
(ARMM) system [32]. The framework discussed in this study is implemented on the
ARMM workstation (Precision Tower 7910, Dell Technologies, Austin, TX, USA) running
Ubuntu 18.04 (Kernel 4.4.236) and an RT-PREEMPT patch for real-time visualizations.
A Point-Cloud Library (PCL) package (Willow Garage, Menlo Park, CA, USA) is used for
the 3D rendering of point-clouds, while OpenCV (Open Source Computer Vision Library,
v.3.4.2) is used for image processing. The modalities used in this study are as follows:
A 6 degree-of-freedom (DoF) serial-link robot (Model UR5, Universal Robots, Odense,
Denmark) is used to maneuver a linear US L14-5 transducer connected to a SonixTouch
Q+ US scanner (BK Medical, Quickborn, Germany). Furthermore, a passive robot (Panda,
FRANKA EMIKA GmbH, Munich, Germany) is used to hold and adjust the pose of a 3D
depth camera (Intel Realsense SR305, Santa Clara, CA, USA). The depth camera reconstructs
a 3D point-cloud structure of any surface at a rate of 60 Hz, and the transducer captures
and streams 2D US images at a rate of 30 Hz. Motions of the catheter and tissue inside the
ARMM workspace are recorded by an Optitrack Flex13 (NaturalPoint Inc., Corvallis, OR,
USA) infrared precision sphere-based motion capture system. The endovascular catheter
shaft is embedded with an optic fiber containing FBG sensors and connected to an FBG-
Scan 804D interrogator (FBGS Technologies GmbH, Jena, Germany). These sensors provide
3D catheter reconstruction in a real-time environment.

In addition to employing these imaging and sensing modalities, this framework is
demonstrated with porcine tissue, thus ensuring a near-realistic representation of a human
limb. PLMs that mimic involuntary limb movement are simulated by a 6-DoF Stewart
platform. This movement is compensated during US image acquisition by controlling the
US transducer with a hybrid position-force controller designed for uneven body tissue
surfaces. The implemented methods within this framework encapsulate the pre-operative
planning of the arterial model of the porcine tissue, followed by the real-time intra-operative
visualization during an endovascular catheterization procedure.

2.2. FBG-Embedded Catheter Assembly

The catheter assembly (Figure 2, number 1 ) consists of an endovascular catheter
(Dc = 2 mm diameter , 270 mm length) made from Polyethylene terephthalate (PET).
This material has high stiffness and is chosen due to the curvature constraint imposed
by the FBG fiber, which has a maximum bending radius of 50 mm. The multicore fiber
( f = 32 FBG sensors, 125 µm cladding diameter) is embedded into the central lumen of
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the catheter shaft. Precision spheres with 3 M 7610 reflective tape (Engineering Systems
Technologies GmbH, Kaiserslautern, Germany) are then attached to the catheter base. This
is triangulated by the motion capture cameras in the calibration phase using a Software
Development Kit (SDK) from Motive NatNet (NaturalPoint Inc., Corvallis, OR, USA) and
represents the catheter reference frame ({C}) inside the ARMM workspace.

Motion tracker

Mold alignment

Mold shapes

FBG catheter

270

Dc = ∅2

Catheter base 

FBG-embedded fiber
f =…30, 31, 32

FBG sensor
Precision spheres1

2 3

I II   III

I

II

III

Catheter shaft 

Fiber

5

4

FBG interrogator

Figure 2. Assembly and calibration protocol for the Fiber Bragg Grating (FBG)-embedded catheter:
1 32 FBG sensors are inside a multicore fiber that is inserted in, and fixed to, the catheter shaft.

The catheter base has a known offset with respect to the first sensor ( f = 1). 2 A rigid body precision
sphere tool on the catheter base is tracked by eight infrared cameras that surround the Advanced
Robotics for Magnetic Manipulation (ARMM) workspace. 3 A mold containing three channels with
known coordinates in local frame ({L}) is used to calibrate the shape of the catheter to its base, ({C})
recorded in the global reference frame ({G}). Frame {M} is recorded via precision-spheres to obtain
the pose of the mold. The straight channel (I) acts as a reference with a zero strain shift of the FBG fiber.
The second channel (II) is used to calculate the transformation (HML ). The final channel (III) is used
to validate the global transformation between the FBG coordinates streamed by 4 , the interrogator
and both the local channel shape (HGM), and catheter base frame (HGC ). This information is combined
to display the catheter shape in real-time. All dimensions are in mm.

2.3. Calibration of the Imaging and Sensing Modalities

The motion tracker frame of origin is chosen as the global reference frame ({G})
(Figure 2, number 2 ). All homogeneous transformations between the modalities and the
motion tracker are derived to map their local reference frames to {G}. These transforma-
tions are calculated as

Ha
b =

[
Ra

b pa
b

01×3 1

]
∈ SE(3), (1)

where Ra
b ∈ SO(3) is a rotation matrix describing the relative orientation of a frame ({b})

with respect to another frame ({a}) and pa
b ∈ R3 is the translation vector from a point

in frame a to frame b. In this study, we utilize the precision spheres to calibrate the FBG
sensors with the catheter base, in addition to tracking it with the motion capture system.

In order to calibrate the catheter, we first determine the configuration of the catheter
shape in the global reference frame ({G}). This is done through a mold alignment process.
In this process, the catheter is inserted into three different channels with known curvature
(Figure 2, number 3 ). The mold reference frame ({M}) is registered in the global coordi-
nate frame ({G}) using Motive NatNet. Following this registration, the catheter is inserted
into three mold channels with local design frame ({L}), while its shape and base frame
pose are simultaneously recorded by the FBG sensors [33] and motion capture system,
respectively. The catheter shape is reconstructed in 3D Euclidean space as a point-cloud
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dataset (ΦF ∈ R3). Utilizing (1), the catheter shape in the global frame (ΦG ∈ R3) is
calculated by

ΦG = HGCHCFΦF , (2)

where HCF is calculating during the calibration procedure. Next, we register the robot base
frame ({B}) and end-effector (i.e., the US transducer) frame ({U}), to the global frame
through accurate full pose measurements (position and orientation) of the end-effector in
Cartesian space. These measurements result in obtaining HGU and HGB . The final calibration
is required to localize the polar coordinate US data (pixels) to Cartesian coordinates using
a custom-designed calibrator object. For this calibration, the US image plane is mapped to
obtain HUI , where {I} is the image reference frame. All frames are displayed in Figure 3a.
Details regarding these calibration procedures can be referred to in the Supplementary
Materials . Following these calibrations, the imaging and sensing modalities are ready to
be used in the pre-operative planning phase.

Current (𝑢) pose

s𝑖+2 s𝑖+3

𝐜𝑖

𝐜𝑖+1
𝐜𝑖+2 𝐜𝑖+3

𝐜𝑖+4
𝐜𝑖+5

𝐜𝑛

s𝑖+4
US Transducer

3D camera

FBG-embedded catheter

Tissue

(a)

Motion tracker

PLMs

s𝑛

(b) 3D centroids
Surface points

Projection ray

ෝ𝒚

( )

s𝑖+5

𝒔𝑖+1

s𝑖
s𝑖+1

C

Figure 3. Intra-operative ultrasound (US) transducer pose planning. (a) In this study, we integrate
three imaging modalities: a 3D depth camera, a US transducer, and a motion tracking system.
Additionally, data from the Fiber Bragg Grating (FBG) sensors are fused with imaging data to provide
real-time shape information of the endovascular catheter. This information is combined with the
reconstructed environment from the pre-operative planning to visualize the catheter inside the arterial
volume, which is subjected to Periodic Limb Movements (PLMs). All reference frames are indicated
in brackets ({}). (b) Surface points (si) are obtained by vertically projecting the arterial centroids
(ci) obtained from Algorithm 1, and finding the closest point on the surface point-cloud dataset (Cj).
A trajectory for the US transducer is then calculated along the tissue surface. A proportional-integral
(PI) controller positions the transducer, while its orientation is controlled by a P-controller. Together,
these controllers realize the pose of the transducer (obtained from Algorithm 2) at a 3D surface
target point.
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Algorithm 1 3D centroid generation inside an arterial volume

Sensors 2021, 1, 0 8 of 22

2.4. Pre-Operative Planning

Precision spheres are rigidly attached to a 3D-printed calibration stick that represents
the reference frame ({P}) of the porcine tissue for tracking purposes. We use an Artis Pheno
robotic C-arm cone-beam scanner (Siemens Healthcare GmbH, Forchheim, Germany) to
scan the porcine tissue. Open-source software (InVesalius, Renato Archer Information
Technology Center, Campinas, Brazil) is then utilized to eliminate soft tissues and strip
the bone structure, keeping the vasculature and the calibration stick as two separate mesh
objects. These anatomical details are converted to point-cloud data structures and used
as input to both the arterial centroid generator (Algorithm 1) and the US pose planner
(Algorithm 2).

Algorithm 1: 3D centroid generation inside an arterial volume.

Inputs :B ∈ Rm×3 ⇒ [x, y, z] point-cloud matrix of the scanned artery
Qs ∈ Rk×3 ⇒ [x, y, z] 3D STL reference points of the calibration stick
Qt ∈ Rl×3 ⇒ [x, y, z] 3D point-cloud matrix of the calibration stick
pd ∈ R3 ⇒ User-defined 3D endpoint in the artificial artery
n ∈ R⇒ User-defined number of desired centroids

Output : ΨCT ∈ Rn×3 ⇒ Path composed of n 3D centroids (ci ∈ R3, i = 1 · · · n)
1 Initialization ς(1 : m) := 0⇒ Empty vector for spline
2 Ts

t ← ICP(Qs, Qt)⇒ Derive the transformation between Qs and Qt
using a built-in ICP algorithm
for (j := 1 to m) do

3 B(j,1:4)← Ts
t [BxjByjBzj1]’⇒ Transform to frame P

4 BP (j, 1 : 3)← sort(B(j, 1 : 3), 1)⇒ Store 3D coordinates (in ascending x
order) in BP
if (BPxj < pdx) then

5 ς(j + 1)← ς(j) +
√
(BP (j + 1, 1)− BP (j, 1))2

end
end

6 ss← linspace(0, ς(m), n)⇒ Create a linearly-spaced vector with
the desired number of centroids

7 Sa ← [ones(m, 1) ς’ ς’2 ς’3 ς’4]⇒ Concatenate input spline matrix(Sa)

8 Sb ← [ones(n, 1) ss’ ss’2 ss’3 ss’4]⇒ Concatenate output spline matrix(Sb)
9 ΨCTx ←Sb(Sa\BP (1 : j, 1))⇒ Store x-coordinates

10 ΨCTy ←Sb(Sa\BP (1 : j, 2))⇒ Store y-coordinates
11 ΨCTz ←Sb(Sa\BP (1 : j, 3))⇒ Store z-coordinates
12 ΨCT ← [ΨCTx ΨCTy ΨCTz]⇒ Output CT centroid vector

The centroid generator is implemented to obtain data points that correspond to the
CT slices along the global longitudinal axis (i.e., along the length of the artificial artery).
This algorithm processes three sets of data points: Imported 3D points (Qs ∈ Rk×3) of
the calibration stick Standard Triangle Language (STL) data, the calibration stick mesh
(Qt ∈ Rl×3), and the point-cloud mesh (B ∈ Rm×3) of the vasculature, where k, l, and
m are the number of data points. Points within Qs and Qt are processed only once to
derive the transformation matrix (Hs

t ) between the CT slices and the tissue reference frame.
This is done through an iterative closest point (ICP) algorithm to compute a matching
that minimizes the root mean squared distance between these two point-sets [34]. Next,
a fourth-order polynomial representation (P(v) : R→ R3) of the artificial arterial centerline
is derived and discretized to obtain a set of n centroid positions within the arterial volume.

Algorithm 2 Robot-mounted US transducer pose generation

Sensors 2021, 1, 0 9 of 22

These centroids are individually defined as ci ∈ R3 (i ∈ 1, ..., n) and form part of a subset
(ΨCT ∈ Rn×3) consisting of n user-defined CT points.

Algorithm 2: Robot-mounted US transducer pose generation.

Inputs : C ∈ Rr×3 ⇒ point-cloud matrix of the body surface,
comprising r 3D [x,y,z] points (Cj ∈ R3, j = 1 · · · r)
ΨCT ∈ Rn×3 ⇒ Path composed of n 3D centroids (ci ∈ R3, i = 1 · · · n)

Output : Υ ∈ Rn×3 ⇒ Set of positions composed of n 3D surface points
(si ∈ R3, i = 1 · · · n)
θ ∈ Sn×3 ⇒ Set of orientations composed of nrotation matrices
(RPi ∈ SO(3), i=1· · · n)

1 Initialization
i := 0, k := 0⇒ Counters for while loop (i) and rotation matrix rows (k)

while (i < n) do
2 si ← argmin

Cj∈{C}
(‖ −−→ciCj × ŷ ‖)⇒ Project centroid vertically and find the nearest

surface point in C which is then assigned to si in frame P
3 θ̂i,z ← ci−si

‖ci−si‖ ⇒ Calculate the transducer z-axis unit vector pointing
from the surface point to the centroid

4 ŝi ← si+1−si
‖si+1−si‖ ⇒ Calculate the unit vector lying in the xy-plane pointing

from the current surface point to the next

5 θ̂i,y := θ̂i,z×ŝi
‖θ̂i,z×ŝi‖

⇒ Calculate the unit vector transducer y-axis

6 θ̂i,x :=
θ̂i,y×θ̂i,z

‖θ̂i,y×θ̂i,z‖
⇒ Calculate the unit vector transducer x-axis

RPi :=




θi,x θi,x θi,x
θi,y θi,y θi,y
θi,z θi,z θi,z


⇒ Formulate the rotation matrix

Υ(i, 1 : 3)← si ⇒ Define ith set of surface positions as 3D surface point
θ(k : k + 2, 1 : 3)← RPi ⇒ Define ith set of surface orientations
as 3D surface rotation
i:=i+1, k:=k+2⇒ Increment counters

end

Subsequently, the US pose planner Algorithm 2) is executed. The input to this algo-
rithm is the point-cloud dataset (C ∈ Rr×3) of the tissue surface. To obtain this point-cloud,
the 3D depth camera is positioned above the tissue. A 3D RGB-D image is captured and
rendered as an xyz-point-cloud structure using the PCL interface. Once both the arterial
centroids and the surface point-cloud are transformed into the same coordinate system
({P}), Algorithm 2 uses the CT-derived subset (ΨCT) and C as an input to calculate a tra-
jectory for the US transducer on the surface of the tissue. Recalling that the US transducer
should be positioned above the centroid (ci), these centroids are first projected upwards in
the porcine tissue y-axis (Figure 3b). The nearest point (Cj ∈ {C}) found on the surface to

the ray (
−−→
ciCj) then becomes a surface path point (si ∈ R3). For each surface point, a rotation

matrix (RPi ∈ SO(3)) is also calculated, defining the transducer z-axis as the vector pointing
from the surface point to the centroid. An additional vector lying on the xy-plane is derived
from two consecutive surface points (si and si+1). The final output of the algorithm is
the US transducer pose defined for each of the n corresponding arterial centroids (ΨCT),
comprising a set of positions (Υ ∈ Rn×3) and orientations (θ ∈ Sn×3) in the tissue reference
frame. With this data in place, the porcine limb is positioned in the ARMM workspace.

3. Multi-Modal Sensing and Feedback

This section describes the second half of our framework—a real-time data acquisition
protocol and multi-modal feedback via a visualization interface. We begin by describing the
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2.4. Pre-Operative Planning

Precision spheres are rigidly attached to a 3D-printed calibration stick that represents
the reference frame ({P}) of the porcine tissue for tracking purposes. We use an Artis Pheno
robotic C-arm cone-beam scanner (Siemens Healthcare GmbH, Forchheim, Germany) to
scan the porcine tissue. Open-source software (InVesalius, Renato Archer Information
Technology Center, Campinas, Brazil) is then utilized to eliminate soft tissues and strip
the bone structure, keeping the vasculature and the calibration stick as two separate mesh
objects. These anatomical details are converted to point-cloud data structures and used
as input to both the arterial centroid generator (Algorithm 1) and the US pose planner
(Algorithm 2). The centroid generator is implemented to obtain data points that correspond
to the CT slices along the global longitudinal axis (i.e., along the length of the artificial
artery). This algorithm processes three sets of data points: Imported 3D points (Qs ∈ Rk×3)
of the calibration stick Standard Triangle Language (STL) data, the calibration stick mesh
(Qt ∈ Rl×3), and the point-cloud mesh (B ∈ Rm×3) of the vasculature, where k, l, and
m are the number of data points. Points within Qs and Qt are processed only once to
derive the transformation matrix (Hs

t ) between the CT slices and the tissue reference frame.
This is done through an iterative closest point (ICP) algorithm to compute a matching
that minimizes the root mean squared distance between these two point-sets [34]. Next,
a fourth-order polynomial representation (P(v) : R→ R3) of the artificial arterial centerline
is derived and discretized to obtain a set of n centroid positions within the arterial volume.
These centroids are individually defined as ci ∈ R3 (i ∈ 1, ..., n) and form part of a subset
(ΨCT ∈ Rn×3) consisting of n user-defined CT points.

Subsequently, the US pose planner Algorithm 2) is executed. The input to this algo-
rithm is the point-cloud dataset (C ∈ Rr×3) of the tissue surface. To obtain this point-cloud,
the 3D depth camera is positioned above the tissue. A 3D RGB-D image is captured and
rendered as an xyz-point-cloud structure using the PCL interface. Once both the arterial
centroids and the surface point-cloud are transformed into the same coordinate system
({P}), Algorithm 2 uses the CT-derived subset (ΨCT) and C as an input to calculate a tra-
jectory for the US transducer on the surface of the tissue. Recalling that the US transducer
should be positioned above the centroid (ci), these centroids are first projected upwards in
the porcine tissue y-axis (Figure 3b). The nearest point (Cj ∈ {C}) found on the surface to

the ray (
−−→
ciCj) then becomes a surface path point (si ∈ R3). For each surface point, a rotation

matrix (RPi ∈ SO(3)) is also calculated, defining the transducer z-axis as the vector pointing
from the surface point to the centroid. An additional vector lying on the xy-plane is derived
from two consecutive surface points (si and si+1). The final output of the algorithm is
the US transducer pose defined for each of the n corresponding arterial centroids (ΨCT),
comprising a set of positions (Υ ∈ Rn×3) and orientations (θ ∈ Sn×3) in the tissue reference
frame. With this data in place, the porcine limb is positioned in the ARMM workspace.

3. Multi-Modal Sensing and Feedback

This section describes the second half of our framework—a real-time data acquisition
protocol and multi-modal feedback via a visualization interface. We begin by describing the
position-force hybrid controller and our VS approach. This is then followed by the image
processing of US images and reconstruction of the catheter shape for real-time visualization.

3.1. Visual-Servo-Based Motion Compensation

A custom-built 6-DoF Stewart platform is used to introduce PLMs to the tissue. This
platform functions independently from the VS-controller and is controlled by six servo
motors (MX-64AR Dynamixel, Robotis, Korea). Reflexive PLMs in patients have been
reported to occur approximately every 30 s, though they have no predictive validity [35].
Hence, we assume that the disturbance is periodic. The model that describes the periodic
motion of the tissue is given by a two-term Fourier series (see Supplementary Materials).
Second, we only introduce translational motions in the tissue zy-plane, and rotation about
the x-axis, via reference signals that describe PLMs that are motion-constrained along the
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length of a leg. These signals are recorded via precision spheres by the motion-capture
system at a rate of 120 Hz in the global reference frame ({G}).

The transducer poses acquired from Algorithm 2 are used to control the robotically-
actuated US transducer at each surface point on the tissue surface with the assumption that
the tissue is stationary. Thus, when motions occur, an updated pose should be calculated
and used as input to the robot. The current (u) robotic end-effector pose at any specific
instant is expressed in terms of the transducer position (pu ∈ R3) and angle-axis orientation
(θu ∈ S3) in the robot base frame ({B}). Therefore, according to (1), we first calculate the
transformed pose (HPi =

[
RPi , pPi

]
). Specifically,

pPi =




six − oz
siy + oy
siz + ox


, (3)

where ox, oy, and oz represent the real-time displacements of the precision spheres (obtained
from the Motive NatNet data stream and transformed to the tissue reference frame). Second,
the updated target surface position (∆si) is obtained from the translation component of the

transformation matrix (HBi = HGB
−1

HGPHPi ). Here, HGB and HGP represent the homogeneous
transformation matrices calculated according to (1), and RPi from Algorithm 2, line 7 is
updated by the rotation of the tissue in space. Concurrently, the position-orientation
controller is activated for the US transducer. Let us consider the transducer leaving a
current (u) pose to reach a target (i) pose. Then, given the current position (pu) of the
transducer, the position error (Ep ∈ R3) and orientation error (Eθ ∈ R3) are calculated.
These errors are minimized by a task-space velocity controller, outlined in Appendix A,
which allows the transducer to reach a target.

When the transducer approaches a compliant environment, i.e., the surface of the
porcine tissue, the force-based explicit force controller is active. Force-feedback is pro-
vided by a three-axis force sensor (K3D40, Mesysteme AG, Henningsdorf, Germany)
connected between the transducer and the robot tool flange. Forces are only measured
until conditions describing a positioning threshold, (|Ep| < dp ∈ R), orientation threshold,
(Eθy, Eθz < dθ ∈ R) and a force error (E f ∈ R3) have been met. The force error is calculated
as the difference between the normal force of the tissue against the transducer surface and
the desired force (d f ∈ R). The desired force is chosen such that sudden surface deflection is
avoided, and constant contact is maintained. Satisfying all feedback conditions, such as the
contact force (d f ), positioning threshold (dp), and orientation thresholds (dθ), implies that
the transducer is positioned both on the surface point (si) and above an arterial centroid
(ci) and, hence, a US image is acquired.

3.2. Ultrasound-Based Arterial Reconstruction

Brightness (B)-mode images are acquired at each surface point and converted to 2D
US images which are then processed to obtain arterial shape information. This information
consists of reconstructed arterial contour points (set ΛUS ∈ RN×3) and centroids (subset
(ΨUS ∈ Rn×3)). The boundary of the contour is estimated by a probabilistic edge-detection
filter [36]. This information is combined with the predictions of an ellipse model, which are
assumed to be suitable for semi-circular arteries. Generally, for each US slice, we describe
an arterial contour using the nonlinear dynamic system:

{
xq+1 = xq + ξq,
rq = D

(
xq
)
+ ηq,

(4)

where rq ∈ R is the output radius length and q ∈ N represents each of N indices around the
arterial centroid for which the states of the system (xq ∈ R3×1) are estimated. These states
are the lengths of the semi-major axis ( fq ∈ R) and semi-minor axis (hq ∈ R) axes, as well
as the tilt angle (φq ∈ R) of the ellipse (Figure 4a). Next, as shown in [36], we assume
white, zero-mean Gaussian process for the sequence (ξq) and measurement noise (µq)
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with known covariances which are constant throughout the entire contour. The tuning of
the covariance values is done empirically until the estimated contours adapt well to the
actual boundaries of the artery. The calculations of the model (D(xq)) and covariances are
provided in Appendix B.

Detection model

𝑓

ℎ

𝑐𝑖

Centroid estimation

Contour detection

Estimated centroid Contour points

Iteration 1 Iteration 2

(a)

(c)

(b)

Vessel boundary



…
Iteration 𝑵

Edge candidate

Boundary point

𝑟𝑚𝑎𝑥𝑟𝑞𝑗
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𝑞2

𝑞3

Seed

Figure 4. Ultrasound (US) image arterial reconstruction scheme. (a) For each US image slice,
the arterial contours are extracted and reconstructed centroids (ci) are estimated. Knowledge of
the ellipse parameters ( f , h, and φ) are required and included in an extended Kalman filter; (b)
equi-spaced edge candidates along a radial line with maximum predefined length (rmax). For each
candidate (j) in line (q), the distance to the center along this line is defined as rqj , j ∈ N (j = 1, . . . , N).
(c) Each centroid of the US slices is estimated at each iteration (q), repeated iteratively, until the
calculated center converges to the weighted center.

When each contour point has been defined, the arterial centroids (ΨCT) in the subse-
quent iterations are calculated by means of a Star Algorithm [37]. This algorithm calculates
the center of mass of all contour points (Figure 4c). After the final iteration, each centroid
is stored in the subset (ΨCT). All centroids are then compared to the previously-obtained
ground truth centroids (ΨCT) for further validation.

3.3. Catheter Shape Reconstruction

The arterial reconstruction is then followed by localizing the polar coordinate US data
to Cartesian coordinates for real-time feedback. First, homogeneous representations of the
set of N US contour positions (ΛUS ∈ RN×4) are transformed to the global reference frame
({G}) by concatenating matrices described by (1) as follows:

HGUS = HGBHBUHUIΛUS, (5)

which also applies to the arterial centroids (ΨUS) to obtain ΨG . These points are visualized
in 3D space to provide feedback on the geometry of the artery. The final step is to visualize
the catheter shape (ΦG ) obtained from (2) inside this artery. The catheter shape information
is again obtained using the FBG sensor data. By transforming this data to the reference
frame of the catheter base (as discussed in Figure 2), a real-time representation of the
catheter shaft is obtained in the global frame ({G}). Furthermore, contact points between
the catheter shaft and the inner arterial wall (spline-fitted contour points) are estimated.
Since we do not account for soft-tissue deflections in this study, we determine these contact
points in a non-deformable mock-up phantom of the porcine artery. After implementing
the discussed framework on this mock-up, these contacts are determined by estimating the
Euclidean distances between the mock-up boundary and the FBG sensor positions in 3D.
Once these distances are below a certain threshold, contacts are visualized.
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4. Experimental Results

This section describes the experimental setup used to validate our multi-modal sensing
and feedback framework. The accuracy of US reconstruction is quantified using the CT-
generated point-cloud data as a ground truth. This is followed by the estimation of contact
points between the catheter shaft and the inner arterial wall, which is validated within
the mock-up phantom of an artificial porcine artery. Finally, we validate the overall
reconstruction accuracy of an artificial artery that is inside the porcine tissue.

4.1. Procedure

Catheter insertion is performed on a freshly excised porcine hind limb obtained from a
local slaughterhouse (Figure 1, number 4 ). We prepare the limb by making incisions below
the knee and above the hip. In order to establish artificial blood flow, a flexible silicone
tube (10 mm inner diameter, 1 mm thickness) with similar dimensional characteristics of
a femoral artery is inserted into the limb [38]. The limb is scanned with the CT scanner,
and the DICOM output data file is imported into the ARMM Graphical User Interface
(GUI) [32]. This GUI converts anatomical details to point-cloud data structures which
are automatically processed by Algorithms 1 and 2 for n = 16 setpoints. Next, the pre-
operative planning phase (Section 2.4) is validated by performing a US sweep on the
stationary (ST) limb. The US focus depth is set to 20–40 mm, with a maximum depth of
90 mm and 10 Mhz resolution. The position-orientation and force-control parameters for
the US transducer are shown in Table 1. For the 10 mm diameter tube representing the
artery, we choose boundary detection indices as N = 30.

Table 1. The position, orientation, and force control parameters for the robotically-actuated ultra-
sound (US) transducer. Each parameter can be referred to in Appendixes A and B.

Control Parameter Symbol Value
Positioning setpoint dp 0.5 mm
Velocity threshold µ 25 mm
Integral time constant τ 20Position

Maximum transducer linear velocity Vd 50 mm\/s
Orientation setpoint dθ 0.01 rad
Orientation threshold γ 0.1 radOrientation
Maximum transducer angular velocity ωd 0.1 rad/s
Contact force setpoint d f 0.8 N
Proportional gain Kp 0.5Force
Integral gain Ki 0.7

Subsequently, multi-modal feedback and visualization (Section 3) are demonstrated
during PLMs, which are produced by the 6-DoF Stewart platform and compensated for
by the VS controller. The desired US transducer poses and trajectories are calculated
for a segment of the artificial artery (length 125 mm), followed by arterial visualization.
Finally, insertion is done with the FBG-embedded catheter, which is visualized inside the
artificial artery on the PCL interface in conjunction with the tissue surface. Please refer
to the accompanying video (https://www.dropbox.com/s/643q13ixv52oavn/ARMM_
Multimodal_Systems.mp4?dl=0) to view this procedure.

4.2. Results

The accuracies at which the US images and the catheter shape are reconstructed in
the stationary and VS experiments are calculated (Figure 5). In order to first validate the
accuracy of the US reconstruction, we calculate the 3D Euclidean errors of the reconstructed
arterial centroids and quantify the mean and mean absolute deviations of these errors.
During the stationary trial, the arterial centroids (ΨUS) are compared with the ground truth
data obtained from the CT slices (ΨCT) resulting in a mean spatial error of 1.1± 0.5 mm.
With PLM-induced disturbances, the arterial centroids (ΨVS) deviate from the actual cen-

https://www.dropbox.com/s/643q13ixv52oavn/ARMM_Multimodal_Systems.mp4?dl=0
https://www.dropbox.com/s/643q13ixv52oavn/ARMM_Multimodal_Systems.mp4?dl=0
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troids (ΨUS) at a mean positioning error of 1.9± 0.3 mm. These results show the desired
correspondence of the reconstructed US artery with the ground truth (Figure 6).

Dice similarity

Stationary (ST) vs. Visual-Servo (VS) validation

Positioning error

Slice (𝑖)
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Figure 5. Calculating the reconstruction accuracies: The US images are paired as slices pertaining
to each via-point on the skin surface in the transducer frame ({U}). Dice similarities are calculated
between stationary (ST) US slices and dynamic slices captured during the visual-servo (VS) trial,
both in the image reference frame ({I}). Finally, the 3D Euclidean errors (εp) are calculated, using
the centroids (c∗) of each slice (∗ = i, j) as reference point in frame ({P}).
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Figure 6. 3D Euclidean errors (εp) and reconstruction results: (a) stationary US image centroids
are compared to the ground truth centroids obtained during the Computed Tomography (CT) scan.
The mean positioning error (µ), single (σ), and double (2σ) measurement of variations are indicated
for each slice (n). (b) The Dice similarity results are shown, comparing the binary masks of the
segmented US image (I∗) pairs for the two trials (∗ = ST, VS). Each mask is mapped in image
coordinates (u, v). (c) Finally, the 3D Euclidean errors are reported, comparing the US transducer
positioning accuracy of the ST and VS acquisition trials.

Next, we validate the reproducibility of US images and the consistency of the trans-
ducer orientations. The reproducibility concerns the amount of overlap between two US
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images of the same setpoint during and without motions. This overlap is obtained by de-
riving the Sørensen–Dice coefficient of the corresponding 2D masks of 16 reconstructed US
slices. The mean similarity between US slices is 0.84. Specifically, in Figure 6c, we observe
that the controller reliably compensates for disturbances only from the second via-point,
shifting from 1.00 (n = 1) to 0.02 (n = 2). We attribute this to the gradual, low change
in tissue-transducer contact force that occurs at the second via-point. This is in contrast
to the high, sudden transition between position and force control at the first via-point.
This outlier can be improved by manually positioning the transducer close to the first
surface point before commencing the US sweep. Overall, the controller adapts quickly to
sudden changes in the phantom pose, as robot joint velocities take an average of 6 ms to
be calculated and prescribed. Finally, catheter shape information is retrieved from FBG
sensors embedded in the catheter shaft and successfully visualized (Figure 7). The shape is
represented as a point-cloud that encapsulates the measured FBG sensor positions in 3D.
The mean Euclidean error between the reconstructed coordinates of the FBG sensors and
those measured by the FBGS interrogator is 0.82 mm, with a maximum error of 1.52 mm.
Finally, we have demonstrated that FBG sensors also aid with the identification of potential
contact points inside the artery.

(a) (b)

US arterial slice

CT arterial point-cloud

Catheter shaft

(c)

Reconstructed US mesh

CT arterial point-cloud

(d)

Mesh contact
Ground contact

,

Reconstructed US mesh

Figure 7. Multi-modal visualization results: (a) The point-cloud library (PCL) interface is used to
visualize the porcine tissue surface, red projected surface points, the ultrasound (US) transducer
orientation frames, and the reconstructed US slices (white); (b) visualization of the Fiber Bragg
Grating (FBG)-embedded catheter (ΦG ) inside the artificial artery; (c) the reconstructed US artery
is reproduced as a surface mesh comprising centroids and boundaries. Visual inspection of the
reconstruction of the artificial artery yields commendatory results when compared to the Computed
Tomography (CT) point-cloud; (d) Potential contact points between the catheter shaft and the artificial
artery inner wall are estimated using an approximative method to threshold their Euclidean distances.
For the current catheter (with a radius of 1 mm), this threshold is chosen as 1.25 mm. Please refer to
the accompanying video (https://www.dropbox.com/s/643q13ixv52oavn/ARMM_Multimodal_
Systems.mp4?dl=0) to view this visualization.

4.3. Error Analysis

Sources of the cumulative localization error are divided into those concerning arterial
and catheter reconstructions, respectively. Reconstructing the arteries result from relative
motion matrices presented (5), during which errors can accumulate. These sources include
the in-image localization errors and robot positioning error (0.3± 0.1 mm) of which 90%
are attributed to robot geometric errors [39]. Catheter reconstruction errors originate
from the FBG sensor reflectivity and the uncertainties from precision sphere triangulation.
A higher reflectivity of the sensors would result in more accurate detection of the Bragg
wavelength and, hence, reduced error [33]. Moreover, triangulation errors occur due to
the calibration of the motion tracking system, which has been measured for the ARMM
system as shown in [40]. The triangulation error is 0.56± 0.08 mm, which is the mean
Euclidean distance between the coordinates in the global reference frame ({G}) and their
reprojections. Quantification of these calibration errors is explained in more detail in the
Supplementary Materials (Table S1).

Due to the nature of soft tissue, reconstruction errors are expected to be inconsistent
and dependent on the precision limitations of the sub-systems. Such errors are important
to consider for measurement accuracy of arterial geometry, and guiding catheters using

https://www.dropbox.com/s/643q13ixv52oavn/ARMM_Multimodal_Systems.mp4?dl=0
https://www.dropbox.com/s/643q13ixv52oavn/ARMM_Multimodal_Systems.mp4?dl=0
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sub-surface imaging. Apart from the reported mean positioning errors between estimated
and actual spatial coordinates, the reconstruction errors are fitted to two realistic scenarios.
In the first scenario (S.A), the dichotomous independent variable is chosen as a threshold
of 1.12 mm, defining whether the error is clinically-acceptable or not [41]. In the second
scenario (S.B), this variable is defined by the length of a US sweep, which we believe
influences the accuracy due to robotic drift. We arbitrarily choose the half the distance
traveled along the segment of the porcine artery (125 mm length) as the threshold.

Our dependent variable is constructed by three categories regarding arterial recon-
struction errors that would influence catheter tip placement for both scenarios. These
categories are based on bounds

(
εp ∈ (Dc/2, Dc)

)
of the catheter diameter, with a low

error of (≤Dc/2), a medium error within these bounds, and a high error (≥Dc). Based on
these variables, uncertainties are calculated to understand the reliability of the results. We
perform a Proportional Reduction in Error (PRE) analysis in SPSS Statistics (IBM, New
York, NY, USA) for each scenario (Table 2). This analysis delivers uncertainty coefficients
of 0.618 and 0.261, respectively. For scenario S.A, this implies that choosing a clinically-
accepted threshold reconstruction reduces the probability of a prediction error by 61.8%.
In addition, having knowledge of the artery length in scenario S.B improves the probability
of predicting the correct error by 26.1%. Finally, the US reproducibility validation metric of
0.84 is quantified for stationary measurements, resulting in a mean Dice coefficient of 0.96.
According to [42], any coefficients higher than 0.7 are regarded as an excellent agreement.

Table 2. Directional measures of association between two scenarios (S.A and S.B) and the reconstruction 3D errors.
Uncertainty coefficients of 0.618 and 0.261 are estimated and considered to be statistically significant (p < 0.01 for S.A and
p < 0.05 for S.B).

Value
Asymptotic
Standard
Error a

Approximate T b Approximate
Significance

S.A S.B S.A S.B S.A S.B S.A S.B
Lambda Symmetric 0.625 0.412 0.138 0.166 3.563 2.067 0.000 0.039

Scenario (dependent) 0.380 0.156 0.110 0.093 - - 0.000 c 0.008 cGoodman &
Kruskal tau Positioning error (dependent) 0.637 0.304 0.102 0.127 - - 0.000 c 0.009 c

Symmetric 0.508 0.216 0.084 0.091 5.597 2.283 0.000 d 0.003 d

Scenario (dependent) 0.431 0.184 0.072 0.076 5.597 2.283 0.000 d 0.003 dUncertainty
Coefficient Positioning error (dependent) 0.618 0.261 0.105 0.114 5.597 2.283 0.000 d 0.003 d

a Not assuming null hypothesis. b Using the asymptotic standard error assuming the null hypothesis. c Based on chi-square approximation. d Likelihood
ratio chi-square probability.

5. Conclusions and Future Work

In this study, we present a clinically-relevant 3D visualization framework for an
autonomous robotic system that integrates multiple imaging sub-systems with FBG sensing
technology. By means of multi-modal sensing, the robotic system provides feedback of
an FBG-embedded catheter and 3D tissue surfaces in real-time while compensating for
uncertainties such as PLMs. The controlled synchronization of a serial-link robot with a
moving limb is achieved. The stabilized images of the limb tissue surface, vasculature,
and catheter are presented to the operator, allowing for catheterization in a virtually-
motionless limb. We experimentally evaluate the reconstruction accuracy of the system in
motionless and non-static scenarios, resulting in mean positioning errors of 1.9± 0.3 mm
and 0.82± 0.21 mm for the reconstructed arteries and catheter, respectively.

5.1. Current Limitations and Clinical Feasibility

While the framework presented in this study is reliable in terms of its reconstruction
accuracies, several findings have been identified that have important implications for
developing a clinic-ready system. Firstly, whether the reported errors are considered
acceptable depends on the application for vascular surgeries. The acoustic lens of the
L14-5 transducer allows for the visualization of all arterial diameters, since the maximum
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reported diameter (24 mm) is that of the aorta [43]. In contrast to neurosurgeries, where
cerebral vein diameters are much smaller, the consensus among vascular surgeons is
that submillimeter reconstruction accuracy is not necessarily required [44]. Nonetheless,
the maximum tracking accuracies of commercial RCCNS systems are ≥4 mm [45], making
the current framework still comparable with the state-of-the-art.

Secondly, the integration of numerous sub-systems may be tedious and difficult to
implement during point-of-care diagnosis. The ARMM GUI can alleviate this difficulty
since it allows clinicians to experience surgical practice by delivering visual and sensing
information. Furthermore, some of the presented sub-systems can be reduced or replaced.
A reliable alternative for the US transducer robot arm would be a redundant 7-DoF robot
such as the Panda (Franka Emika GmbH, Munich, Germany) or the LBR IIWA robot (Kuka,
Augsburg, Germany). These robots contain integrated torque sensors which eliminate the
need for explicit force control, as an impedance controller can then instead be utilized in
conjunction with the 3D camera. Furthermore, the 3D camera can be employed for both
the purpose of streaming topographical landmarks and their poses, thereby potentially
eliminating the need for the motion-capture system.

Thirdly, this framework is regarded as safe and effective from a risk perspective.
Catheters and surrounding arteries can be visualized to a clinician with low error, and in-
dicate a strong potential of this framework towards virtual stabilization in a surgical
environment. However, there may still be cases in which intra-operative X-rays are re-
quired to visualize vascular structures at the target site or observe clinical procedures that
are more intricate. Notwithstanding, the use of US images can bypass this requirement [46].
Since US images and motion data are captured in real-time, this framework could help
clinicians visualize the vascular target and particular tools, such as stents, ablation tips,
and angioplasty balloons. This framework can aid with this visualization, given that this
target is known a priori. It is recommended that visualization should remain without
intra-operative X-ray imaging, unless mechanical complications arise.

Finally, the maneuverability of current FBG-embedded catheter is imposed by a design
constraint: the bending radius of the FBG fiber. For vascular catheterizations—especially
those relating to cardiac disease—arteries may be more tortuous than those presented in
this study. Fortunately, other FBG fibers exist which can be integrated with catheter shafts
with more resilience. Fibers with higher core aperture values and polyimide protective
coatings have been reported with bending radii of 2.6 mm [47]. Such fibers can replace
the one presented in Figure 2, in addition to choosing catheters based on the distance of
vascular lesions, the tortuousness of the route, and the diameter of the vasculature.

5.2. Future Work

In future studies, this framework will be utilized to allow for improved control over
the inner arterial positioning of catheters within the ARMM system. Catheters will be
guided in this system by means of magnetic actuation [32], followed by the demonstration
of a specific function (e.g., atrial fibrillation, angioplasty, or atherectomy techniques).
The contact-point formulation can be expanded in an attempt to combat undesirable
catheter-tissue friction during insertion. Furthermore, this framework would serve as a
baseline upon which more complicated diagnostic capabilities can be built, for example,
segmenting different layers of body tissue by exclusively processing US images and 3D
depth camera data. This would require improvements that enable the 3D reconstruction
of the entire US volume, as opposed to separate slices in that volume. Finally, different
diameters of vasculature should be tested, since this framework could then be applicable
during the treatment of brain and spinal cord aneurysms, which consist of much smaller
vascular networks than the size of those investigated in this study. It is recommended that
this framework should be tested by clinicians who conventionally utilize X-ray fluoroscopy,
and compare the results to report on its feasibility. Furthermore, the reconstruction errors
should be evaluated through practice-based statistical analysis as explained by [48], which



Sensors 2021, 21, 273 16 of 20

would require a large number of observations through US sweeps over larger distances
than those demonstrated in this study.

Supplementary Materials: The following are available at https://www.mdpi.com/1424-8220/21/1
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Appendix A. Task-Space Velocity Controller

In (A1)–(A14), all velocities are specified as those necessary to reach the target pose,
and their indices (i) and those of the error vectors are ignored here for notational simplicity.
In Section 3.1, the position error (Ep ∈ R3) of the transducer is calculated as

Ep = ∆si − pu, (A1)

followed by calculating the orientation error (Eθ = [0 Eθy Eθz]
T ∈ R3). Two unit vectors

describe the orientation of the transducer: its z-axis (θ̂z ∈ R3) and y-axis (θ̂y ∈ R3),
respectively (Figure 3a). First, the angular error between the current (u) and desired (i)
z-axes is calculated:

Eθz = arcsin (|θz|), (A2)

θz = θ̂u,z × θ̂i,z. (A3)

https://www.mdpi.com/1424-8220/21/1/273/s1
https://www.mdpi.com/1424-8220/21/1/273/s1
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Likewise, the angular error of the y-axes is

Eθy = arcsin (|θy|), (A4)

θy = RT(Eθz, θ̂z)(R(Eθz, θ̂z)θ̂u,y)× θ̂i,y). (A5)

In (A5), we compensate for the error in the z-axis through the rotation
(R(Eθz, θ̂z) ∈ SO(3)) that rotates θ̂u,z onto θ̂i,z, about θ̂z. The desired angular velocities
(ωy ∈ R3) and (ωz ∈ R3) can now be calculated for each axis:

ωy = ωd(|θ̂y|(1− e−Eθy /γ
)), (A6)

ωz = ωd(|θ̂z|(1− e−Eθz /γ)), (A7)

which then constitutes the final angular velocity,

ωe = ωy + ωz. (A8)

In (A6) and (A7), ωd is the maximum angular velocity of θy and θz and γ serves as a
threshold for the stopping region. To reduce downward surface tension before force control
is active, the 2D positioning error is considered, i.e., when (4) becomes Ep = [Epx Epy 0]T:

Ve = Vd(1− e−|Ep |/µ)Êp + (τ
∫ t

t−1
Ep dt)e−(|Ep |/µ)5

. (A9)

The constant (µ) is analogous to γ, Êp = Ep/|Ep| denotes the direction of the error, Vd

is the maximum tool velocity, and the term (1− e−|Ep |/µ) ensures continuity. The integral
time constant (τ) is tuned empirically, and t is the updated timestep at each iteration.
A discrete setpoint velocity is calculated for force-based explicit force control as

V[k] = KpE f [k] + KiV[k− 1], (A10)

where Kp and Ki are the proportional and integral gains and k describes the discrete-time
index. In this case, the positioning error in (A1) changes to E||, which is the component
that is parallel to the surface:

E|| = Ep − x̂ · (x̂ · Ep), (A11)

and x̂ is the unit vector perpendicular to the surface. The desired velocity is then recalcu-
lated by summing (A8) and (A9):

Ve = Ve + V[k]. (A12)

The spatial velocity of the robot end-effector comprises (A8) and (A12), resulting in
Vs = [Ve ωe]. Utilizing the task velocity in (A9) when the transducer is in the air, and in
(A12) for direct contact with the tissue, we prescribe joint velocities (q̇ ∈ R6) using the
robot Jacobian (Jm ∈ R6×6) inverse approach, satisfying

q̇ = J†
mVs. (A13)

J†
m denotes the damped pseudo-inverse of Jm:

J†
m = JT

m(JmJT
m + ρ2I)−1, (A14)

where ρ is the damping coefficient and I ∈ R6×6 is the identity matrix.
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Appendix B. Artificial Arterial Boundary Reconstruction

The model (D(xq)) from (4) is calculated as

D
(
xq
)
=

fqhq√
h2

q cos2
(
θq − φq

)
+ f 2

q sin2(θq − φq
) , (A15)

and relates the states of the ellipse with its radius at the angle θq. The final estimates of the
states (x̂q|q) are:

x̂q|q = x̂q|q−1 + Gq

(
rq − D

(
x̂q|q−1

))
, (A16)

where Gq is the Kalman gain calculated at each iteration (q):

Gq = Pq|q−1JT
q S−1

q . (A17)

In (A17), Pq|q−1 is the covariance of the model prediction, JT
q is the Jacobian matrix

transpose of D
(

x̂q|q−1

)
, and Sq is the covariance of the innovation

(
rq − D

(
x̂q|q−1

))
.

Finally, the covariance matrix of the states estimate is updated at each iteration as

Pq|q = Pq|q−1 −GqSqG>q . (A18)

In order to calculate the innovation term (A16), a radius (rq) is defined on the first
US image (Figure 4b). This radius originates from a 2D seed point obtained from the first
known centroid

(
ci=1 = [0, cy, cz]

)
and constitutes M equi-spaced edge candidates. It has a

weighted average length of

rq =
M

∑
j=1

rqjβqj. (A19)

Weights (βqj) determine the likelihood of a certain candidate (j) to be an edge by
assuming a normal distribution around the contour of each predicted edge point:

βqj =
pqj

∑j pqj
, (A20)

where

pqj =
Fe
(
rqj, θq

)2

√
2πSq

exp



−(rqj − D

(
x̂q|q−1

)

2Sq


 (A21)

is the probability distribution function of the correct measurement. Fe
(
rqj, θq

)
is the edge

magnitude at point (rqj, θq) and is calculated as an intensity constrained by an upper thresh-
old.
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