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Abstract: Accurate, real-time estimation of battery state-of-charge (SoC) and state-of-health
represents a crucial task of modern battery management systems. Due to nonlinear and battery
degradation-dependent behavior of output voltage, the design of these estimation algorithms should
be based on nonlinear parameter-varying models. The paper first describes the experimental
setup that consists of commercially available electric scooter equipped with telemetry measurement
equipment. Next, dual extended Kalman filter-based (DEKF) estimator of battery SoC, internal
resistances, and parameters of open-circuit voltage (OCV) vs. SoC characteristic is presented under
the assumption of fixed polarization time constant vs. SoC characteristic. The DEKF is upgraded
with an adaptation mechanism to capture the battery OCV hysteresis without explicitly modelling it.
Parameterization of an explicit hysteresis model and its inclusion in the DEKF is also considered.
Finally, a slow time scale, sigma-point Kalman filter-based capacity estimator is designed and
inter-coupled with the DEKF. A convergence detection algorithm is proposed to ensure that the two
estimators are coupled automatically only after the capacity estimate has converged. The overall
estimator performance is experimentally validated for real electric scooter driving cycles.

Keywords: electric vehicle; lithium-ion battery; estimation; Kalman filter; state-of-charge;
state-of-health; resistance; open-circuit voltage; battery capacity

1. Introduction

Modern battery management systems (BMSs), among other functionalities, include a number
of algorithms for estimating key battery state variables such as state-of-charge (SoC) and remaining
available charge capacity, and model parameters such as internal resistance [1]. The SoC estimate can
be used for predicting the current vehicle range, as well as for identification of current battery operating
point which is important from the standpoint of ensuring battery safety. On the other hand, the internal
resistance and capacity estimates are the main indicators used for tracking the battery degradation
level, i.e., estimation of battery state-of-health (SoH) [2]. Furthermore, almost every battery model
parameter is changing with battery degradation, so that for robust SoC and SoH estimation, those
changes should be accurately tracked, as well.

Battery state and parameter estimation algorithms are often based on Kalman filters (KF), which
in its basic linear version represent an optimal recursive solution for estimating hidden states of a linear,
time-varying Gaussian system (i.e., probabilistic inference) [3]. While the Gaussian assumption holds
in many cases based on the central limit theorem, the battery model is inherently nonlinear, which
calls for application of nonlinear KF forms. Two of the most widely used nonlinear KFs are extended
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Kalman filter (EKF) and sigma-point Kalman filter (SPKF) [3]. The EKF relies on analytical linearization
of the model around a time-varying operating point (i.e., an expected value of the estimated random
state), while SPKF statistically linearizes the model around several operating points (depending on the
number of states that are estimated).

Topic of state and parameter estimation of Li-ion battery cells has been addressed by many
previous studies. One of the first implementations of dual extended Kalman filter-based (DEKF)
estimator of SoC and resistance parameters can be found in [4]. Researchers have been upgrading the
estimators ever since, e.g., using an adaptation mechanism for process noise variance recalculation [5],
or applying more advanced filters such as SPKF [6] or particle filter (PF) [7]. These approaches are based
on the assumption of constant model parameters/characteristics such as the SoC-dependent open-circuit
voltage (OCV) characteristic Uoc(SoC) or battery remaining capacity. Since those parameters are in fact
dependent on SoH [8] and temperature [9], they should be estimated as well, for accurate and robust
overall estimation.

There are several studies that account for Uoc(SoC) variation with SoH by implementing the
offline identified response surface model of Uoc with respect to SoC and remaining capacity [10–12].
Authors in [13] use the model migration method to adapt an offline trained model. An obvious
disadvantage of this approach is related to the need of having a large data set from previously conducted
aging experiments on the same cell type, as well as lack of temperature dependency in the response
surface model. This disadvantage is tackled in this paper by describing the characteristic Uoc(SoC)
with a model whose parameters are estimated along the rest of model states and parameters within
the DEKF structure. Moreover, this approach includes an adaptation mechanism of Uoc(SoC) which
allows for identification of Uoc(SoC) hysteresis profile.

Remaining capacity estimators based on EKF and PF can be found in [14], while a recursive
approximate least-squares approach is proposed in [15]. In both cases the characteristic Uoc(SoC) is
again considered as a constant-parameter dependence. Dual estimation of SoC and capacity can be
found in [16], where authors use multiscale estimation with the online identified model, which can be
regarded as a next step towards complete estimator. Certain weaknesses of that approach include:
(i) Still an offline identified Uoc(SoC) map is used, (ii) capacity estimate shows considerable variations
in steady state, and (iii) the capacity estimator needs to be turned on manually after 25 min in order
to ensure overall estimator stability. The multiscale estimator presented in this paper improves the
capacity estimation accuracy and flexibility by using a more accurate SPKF and automated turning on
the capacity estimator by means of applying a convergence detection algorithm.

Finally, a fully-electric scooter-based experimental verification of the proposed battery estimators
is conducted, including consideration of different temperature operating points.

2. Experimental Setup

The experimental setup includes the fully-electric scooter Govecs S2.6+, powered by the 3.3 kW
BLDC electric motor and the battery pack of 400 Li-Ni0.33Mn0.33Co0.33O2 (Li-NMC) cells, connected
in the 20 × 20 matrix [17], with the total nominal voltage of 72 V, and the total energy capacity of
4.1 kWh. Battery pack is equipped with BMS which provides basic battery measurements and estimates
accessible through the scooter CAN bus.

Electric scooters became an attractive transportation solution in urban areas with mild climate
conditions, thus contributing to the current transport electrification effort aimed at reducing traffic
congestion, and air and noise pollution. There are already several strong electric scooter manufacturers
in the EU (and worldwide), e.g., Govecs, Ujet, Hrowin, Torrot, etc. NMC-type Li-ion batteries represent
a preferred energy storage solution in scooter applications [17], because they offer favorable energy
density, while not experiencing high loads (in terms of battery C-rate) and not operating in extreme,
particularly low temperature conditions, in those applications.

For the research purposes, the scooter has been equipped with the measurement and telemetry
system illustrated in Figure 1. The system is built around the Artronic SkyTrack telemetry module,
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custom-programmed for the acquisition and storage of measurement data, as well as for communication
with the server through GPRS connection in real time. The measurement system consists of voltage
and current measurement on battery output nodes, and acquisition of data available from the scooter
CAN bus. The battery current is measured by using a precise, low-offset current transducer (LEM CAB
300, [18]), while the battery voltage is measured through a 12-bit analogue input of the telemetry module.
Those two measurement values are sampled every 0.1 s and stored in the module. Selected values
from the scooter internal CAN bus, such as battery voltage, current and temperature, vehicle’s
distance travelled, motor on/off flag, as well as the vehicle’s current GPS coordinates and longitudinal
velocity are stored with the sample rate of 1 s. GPRS connection is used to send data relevant for
real-time tracking of scooter, such as its GPS coordinates, battery SoC, and other diagnostic parameters.
The whole measurement dataset, including the fast current and voltage measurements, is stored in the
telemetry module memory card and can be occasionally downloaded through USB connection to a
local PC.
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Figure 1. Scooter measurement and telemetry system.

3. Battery Pack Model

This section first presents a battery mathematical model used as a basis for SoC estimator design.
Next, models employed for estimation of battery internal parameters used by the SoC estimator are
presented. Finally, two offline identification experiments are described, which have been conducted to
determine battery model parameters that are considered as constant or used in estimator verification.

3.1. Mathematical Model

The battery model used in this research is based on the equivalent-circuit model (ECM) showed in
Figure 2, which consists of (i) a voltage source dependent on the battery SoC, i.e., the OCV characteristic
Uoc(SoC), (ii) an ohmic resistance Rohm which models voltage drops in the electrolyte and electrical
contacts, and (iii) a single polarization RC term (Rp and Cp) which models the slow battery dynamics,
i.e., diffusion process. It should be noted that the diffusion process is more accurately modelled with
the Warburg element [19] which is here avoided due to the complexity, but it can be approximated by a
single or more RC elements connected in series (a single RC element is usually used as a good trade-off

between simplicity and accuracy [20]). Moreover, note that the polarization resistance Rp in Figure 2
models all voltage drops that are not related to the ohmic one, including that related to charge transfer.
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The above ECM can be described by the following discrete-time time-varying state-space
mathematical model [4]:[

SoC(k)
ip(k)

]
=

 1 0

0 e
−

Tu
τp(SoC(k−1))

[ SoC(k− 1)
ip(k− 1)

]
+

 −
Tu
Cn

1− e
−

Tu
τp(SoC(k−1))

ib(k− 1) (1)

Ub(k) = Uoc(SoC(k)) −Rohm(k)ib(k) −Rp(k)ip(k) (2)

where Tu is the filter sampling time, Cn is the battery capacity, τp = RpCp is the polarization term time
constant, and k is discrete sample step.

3.2. OCV Model

Since the battery OCV is a nonlinear function of SoC, and to a lower extent temperature [9] and
SoH [8], it is desirable to describe it using a parametric model such as the one used in [4]:

Uoc(SoC) =
[

K0 K1 K2 K3 K4
][

1 −
1

SoC −SoC ln(SoC) ln(1− SoC)
]T

= kocxoc (3)

where vector koc contains Uoc-model parameters that need to be estimated.

3.3. Model of Internal Resistance Parameters

The presented ECM has two resistance parameters in its model. Both of those resistances are
known to depend on SoH and temperature [21]. So, it is important to have them estimated along
with the model states. Since there is no resistance model feasible for online estimator implementation,
resistances are modelled as random-walk variables:[

Rohm(k)
Rp(k)

]
= I·

[
Rohm(k− 1)
Rp(k− 1)

]
+ r (4)

where I is the identity matrix, and r is the vector containing variances of both resistances. Other variable
model parameters, such as those from Equation (3), can be modelled using this approach, as well.

3.4. Identification Experiments

The battery model parameters that are assumed to be constant or used in estimator verification
should be determined by means of specific (targeted) offline identification tests.

3.4.1. Battery OCV Curve

The curve Uoc(SoC) has been identified during low- and constant-load experiments (during
which the vehicle was in rest, while only considerable battery load was scooter headlight), in which
case any voltage drop in the battery can be neglected due to the low current (~C/50), so that the
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measured voltage Ub can be taken as the OCV Uoc. The SoC was estimated by Coulomb counting, i.e.,
by integrating the measured current. The battery capacity was also identified in this experiment by
integration of measured current during the process of full battery discharge, which gave Cn = 49.57 Ah.
Graphical illustration of the identification experiment and related results are shown in Figure 3.
The identified curve Uoc(SoC) has been used in validation of Uoc estimation results (see next sections).
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Figure 3. (a) Low- and constant-load experiment: Current, voltage, and SoC responses, and illustration
of (b) capacity and (c) Uoc(SoC) identification.

Polarization Time Constant

This parameter can be identified during the battery relaxation periods, i.e., parts of driving cycle
where current has dropped to zero and remained equal to zero for at least 15 min. The relaxation
transients to be identified were extracted from the voltage response (see Figure 4a,b) and approximated
with the ECM model shown in Figure 4c.

The identified values of relaxation time constant τp(SoC) are shown in Figure 4d. These values
were then approximated with a 3rd-order polynomial in dependence on SoC, and that polynomial
was later used for calculation of τp at every estimator step based on the current, slowly changing SoC
working point.

It is important to note that the polarization time constant can also vary with battery temperature
and aging [22,23]. These effects are neglected in the estimator problem formulation in this paper,
i.e., parameters of the characteristic τp(SoC) are not estimated online. This is motivated by the
following main reasons: (i) τp is not directly involved in the ECM voltage equation (see Equation (2)),
thus making it weakly observable in the proposed estimator design; ii) error in τp will cause an
error in voltage modelling during the transient periods (i.e., before voltage has relaxed), so that the
polarization dynamics may influence estimator accuracy only in transient conditions. As needed, the
slow temperature- and aging-influenced polarization dynamics can be accounted for in the estimator
design either by extending the τp characteristic with the temperature and SOH inputs or by considering
τp as an additional parameter to be estimated, which is a subject of future work.
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4. State and Parameter Estimator

This section deals with design, parametrization, and verification of the SoC estimator. It is
designed as a dual state and parameter estimator, thus allowing for accompanying estimation of
selected ECM parameters (i.e., the battery internal resistances and OCV parameters). A special attention
is devoted to estimation of battery OCV hysteresis based on two complementary approaches (adapting
the OCV parameters to current sign change or using an explicit hysteresis model).

4.1. DEKF-Based State and Parameter Estimator

States and parameters of the ECM are estimated with the DEKF, as a well-known
approach in the model-based estimation problems where model states and slowly varying
model parameters are to be estimated simultaneously [1]. The DEKF equations are
not listed here due to paper size constraints, and they can be found in [24]. DEKF
consists of two filters operating in parallel based on the state and parameter models:

State estimator state-space model: Parameter estimator state-space model:
x(k) = f(x(k− 1), u(k− 1), w(k− 1)) θ(k) = θ(k− 1) + r(k− 1)

y(k) = h(x(k), u(k),θ(k), v(k)) y(k) = h(x(k), u(k),θ(k), v(k))
where x and u are the vectors of model states and inputs, respectively, w is the vector of state variances
(with the corresponding covariance matrix Qx), θ is the vector of model parameters with their variances
contained in vector r (with the corresponding covariance matrix Qθ), h is the model output function
(the same output function is used in both state and parameter models), y is the measured model output
vector with measurement noise and corresponding covariance matrix denoted by v and R, respectively.
The complete, discrete-time state-space model for simultaneous state and parameter estimation then
reads (cf. Equations (1)–(4)):

x̂ =

[
SoC(k)
ip(k)

]
=

 1 0

0 e
−

Tu
τp(SoC(k−1))

[ SoC(k− 1)
ip(k− 1)

]
+

 −
Tu
Cn

1− e
−

Tu
τp(SoC(k−1))

(ib(k− 1) + w) (5)
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θ̂ =


Rohm(k)
Rp(k)
kT

oc(k)

 = I·


Rohm(k− 1)
Rp(k− 1)
kT

oc(k− 1)

+ r (6)

y(k) = Ub(k) = kocxoc −Rohm(k)ib(k) −Rp(k)ip(k) + v (7)

The state estimator model, given by Equations (6) and (8), is considered linear in state equation
under the assumption that the nonlinearity of function τp(SoC) can be neglected. The only nonlinearity
resides in the output equation of the state estimator, related to the xoc term (see Equation (3)), so that
an EKF is finally used as a model state estimator. On the other hand, the parameter estimator model,
given by Equations (7) and (8), is linear, so that the estimator reduces to KF.

4.2. Estimator Parametrization

The DEKF needs to be properly parametrized. For instance, appropriate statistic parameters such as
process and output noise covariances Q and R should be determined offline. Polarization time-constant
τp was assumed to be degradation-invariant and used as the identified SoC-dependent profile (see
previous section), while battery capacity was in this case taken as a constant value that was measured
as described in the previous section. This section also describes an estimator adaptation mechanism
that indirectly compensates for the influence of unmodelled hysteresis of curve Uoc(SoC).

4.2.1. DEKF Covariance Matrices Parametrization

The measurement variable in the DEKF model is the battery output voltage Ub (see Equation (8)).
Its measurement noise has been estimated by approximating the voltage measurement error histogram
with normal distribution, as shown in Figure 5a. The parameter µ identified in Figure 5a is the voltage
noise mean value (expectation), while σ is the standard deviation which, after being squared, yields the

measurement covariance R =
(
53·10−3

)2
mV2. The parameter Lstat in Figure 5a is the result of Lilliefors

normality test. Further in this paper, we calculate Lstat for estimator voltage residuals and compare it
to the calculated Lstat = 0.0436 of voltage sensor noise (see Figure 5a) to check how similar they are,
i.e., how accurate is the estimator.
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Figure 5. (a) Estimated voltage sensor noise, (b) amplitude of current sensor noise with respect to
measured current, taken from [18].

The process noise relates to the current sensor noise, as can be seen from Equation (6). The current
is in this case measured with LEM CAB 300 sensor, whose datasheet specifies a linear relation between
measured current and magnitude of its measurement error (see Figure 5b). The standard deviation
of current sensor noise can be estimated as a value three times lower than the noise magnitude,
and covariance matrix is then the diagonal matrix of current sensor noise variances:

σx =
1.75
350
·
1
3
·ib → Qx = diag

(
σx

2, σx
2
)
= diag

(( ib
600

)2
,
( ib

600

)2)
(8)
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4.2.2. Adaptation Mechanism

The relatively simple battery model given by Equations (1) and (2) does not take into account
some secondary, but generally influential effect such as the hysteresis of OCV curve Uoc(SoC) [25].
Since the hysteresis cannot be directly measured in this case, an adaptation mechanism is introduced in
the form of single-step increase of the elements of parameter covariance submatrix Qθ[3, 7; 3, 7] when
the start or end of charging is detected. This approach allows faster convergence of the Uoc parameters
(written in koc), which abruptly change when the sign of battery current (or SoC derivative) occurs due
to the existence of hysteresis of Uoc(SoC) curve. Note that the battery current for the given scooter
changes its sign only when the scooter is exposed to change from normal driving to charging or vice
versa, because it does not incorporate regenerative braking.

4.3. Estimation Results

The presented DEKF was validated based on the recorded scooter real city driving cycle data
consisting of seven load cycles (i.e., charge/discharge cycles) lasting for 150 h in total. The obtained
estimation results are shown in Figure 6. Since the battery SoC cannot be measured, and there is no
fully reliable SoC estimate available, the DEKF accuracy is evaluated by analyzing a posteriori voltage
residual, i.e., difference between the recorded voltage Ub and the voltage calculated from output
Equation (8) using a posteriori estimated states and parameters. The perfectly accurate filter would
reduce the voltage residual to the voltage sensor noise, i.e., the residual mean value, standard deviation,
and Lstat would be close to the values from Figure 5a.Energies 2020, 13, 540 9 of 16 
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Figure 6. DEKF verification results: (a) Voltage residual histogram including normal distribution fit,
(b,d) estimated resistances Rohm and Rp, (c) estimated and recorded Uoc(SoC) curves for a long set of
real-life discharging and charging cycles.

Figure 6a shows the voltage residuals histogram including the corresponding normal distribution
fit and its parameters. Residual mean value is low, while standard deviation and Lstat are larger
than those of the voltage sensor noise. The estimated values of resistances Rohm and Rp are shown in
Figure 6b,d, respectively, vs. SoC and color-mapped with respect to battery temperature. These results
point out that both resistances show negative correlation with respect to temperature (note: ρX,Y stands
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for correlation coefficient between vectors X and Y, and are obtained by using the MATLAB function
corrcoef), which is expected for the Li-ion cell resistances [21]. As of the correlation with respect to
SoC (based on visual inspection of Figure 6b,d), both Rohm and Rp do not seem to be correlated with
SoC, which is an expected result for the particular SoC range, based on the estimator results from the
available literature [16,21,26] in which resistances more significantly depend on SoC only at the very
low and very large SoC bands. The estimated Uoc curves during charging and discharging intervals are
shown in Figure 6c, along with the “measured” one adopted from Figure 3c. Evidently, the estimated
and “measured” curves are in good agreement, and a relatively small hysteresis is apparent (i.e.,
the charging and discharging curves do not overlap).

The two sets of estimated Uoc(SoC) curves from Figure 6c have been averaged and shown as
dotted lines in Figure 7a. Half of the difference between those two curves yields the estimate of battery
hysteresis voltage which is shown in Figure 7b. The estimated hysteresis voltage trend is in line
with the results from the literature (e.g., [25]), except in the low-SoC region (SoC < 20%), where the
estimated hysteresis is larger than what would be expected based on the literature.
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and discharge periods, (b) estimated hysteresis voltage.

Now, when the hysteresis voltage is known, the adaptation mechanism may be omitted, and the
hysteresis can be accounted for directly through a proper Uoc(SoC) model extension. A complex,
dynamic hysteresis model [27] is not necessary in this case, because the particular scooter does not
support regenerative breaking (i.e., its battery is not exposed to often changes of current sign). A simple,
instantaneous hysteresis model can be described by introducing an auxiliary variable s described as [4]:

s(k) =


1, ib(k) > 3

√
Qx

−1, ib(k) < −3
√

Qx

s(k− 1), ib(k) <
∣∣∣∣3 √

Qx

∣∣∣∣
(9)

(where 3
√

Qx is the current sensor noise amplitude calculated using the current sensor variance from
Equation (9)) and using it to modify the output equation (cf. Equation (8)):

y(k) = Ub(k) = Uoc(SoC(k)) −Rohm(k)ib(k) −Rp(k)ip(k) + s(k)M0(k) + v (10)

where M0 is the hysteresis voltage value obtained from data shown in Figure 7b by means of 10th-order
approximation polynomial. Described hysteresis is used instead of the adaptation mechanism in the
rest of the paper.
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5. Battery Capacity Estimation

This section presents the battery remaining charge capacity estimator, and its integration into
the overall SoC and capacity estimation algorithm. The capacity estimator is supplemented with a
convergence detection algorithm to perform automatic coupling of the capacity estimator with the
SoC estimator after the capacity estimate has converged. Finally, the complete estimation algorithm is
verified for real driving battery load cycles.

5.1. Capacity Estimation Model

Since the battery capacity parameter is not directly involved in the model output equation (i.e.,
Equation (8)), it is not convenient to estimate it as another random-walk parameter in the DEKF [15].
Instead, the model for capacity estimation could be defined as [15]:

C(k) = C(k− L) + rC (11)

SoC(k− L + 1) − SoC(k) =
Tu

C(k)

k∑
j=k−L+1

ib( j) + vSoC(k) (12)

where C(k) is capacity, rC is random walk noise for capacity parameter model with the corresponding
covariance QC, L is the number of basic (DEKF) sampling steps between two capacity estimates, and
vSoC is measurement noise of SoC signal difference with the corresponding covariance RSoC.

The model output is the SoC difference between two capacity estimates, while its input is the
cumulative sum of battery current between those time instances. The SoC, as an output term, cannot
be measured, but can be estimated by using the previously designed DEKF (both, estimates of SoC
mean value and its variance are available). By looking at Equation (13) it can be seen that capacity
estimate cannot be updated at the same rate as DEKF, because the signal-to-noise ratio of SoC estimate
would be too low for the SoC dynamics being much slower than the current dynamics. The capacity
estimator is therefore executed every L time steps, where L is in the range of 600–6000, i.e., 1 to 10
min. The overall estimator, i.e., the previously discussed DEKF extended with the capacity estimator,
is shown in Figure 8.
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5.2. SPKF-Based Capacity Estimator

Since the battery capacity model output equation is distinctively nonlinear, the EKF-based
estimator application has been found to give too noisy estimates with slow convergence rate. This is
an expected result since EKF uses analytic linearization through Taylor series expansion around the
current operating point, i.e., around the state variable (in this case capacity C) mean value. Another,
more coherent approach to this problem is statistical linearization which linearizes the model at
multiple points drawn from prior distribution of C. The estimator derived using this approach is
called SPKF [3]. There is a couple of SPKF versions which differ in calculation of sigma-points for
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linearization; in this paper, the method called central-difference Kalman filter (CDKF) is used because
it provides simple parametrization without compromising accuracy [3]. Comparison between EKF-
and SPKF-based capacity estimation, shown in Figure 9, clearly illustrates the benefits of using SPKF
when compared to EKF.
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Figure 9. Comparison between EKF- and SPKF-based capacity estimation, where the estimated capacity
is not fed back to DEKF-based state and parameter estimator.

It is important to note that in the case shown in Figure 9 the capacity estimates were not fed back
into the state model of the DEKF, i.e., into Equation (6). If this were the case, i.e., if the state model of
DEKF was updated with capacity estimates every L time stamps, the estimator would not converge to
correct estimates, as shown in Figure 10a–c. This is because every model parameter is estimated in a
coupled manner, so there are multiple parameter combinations where output voltage residual would
be minimized. For instance, Figure 10d shows an estimate of Uoc(SoC) which is narrower than the
actual curve, because the capacity is estimated higher than the actual one.
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Figure 10. SPKF-based capacity estimation with capacity adaptation of the DEKF from the start, i.e.,
tstart = 0: (a–c) estimated capacity vs. time with zooms, (d) estimated and measured Uoc(SoC) curves.

The capacity estimate feedback to the DEKF should be, therefore, turned on with some delay, i.e.,
until capacity estimate convergence is detected. For that purpose, capacity convergence detection
algorithm has been designed, as presented in the next subsection.
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5.3. Capacity Convergence Detection Algorithm

The capacity convergence detection algorithm is based on monitoring of the normalized estimation
error (NEE) [28]:

εy(k) = (y(k) − ŷ(k))P−1
y (y(k) − ŷ(k))T (13)

where y(k) is the SoC estimate generated by the DEKF, ŷ(k) is the SoC calculated from the SPKF model
output, and Py is the SPKF innovation matrix (which is regularly calculated as a part of SPKF; note
that it is a scalar in the particular case of single estimated parameter—the capacity). The convergence
algorithm monitors the NEE, and when it is lower than some predefined value during some predefined
number of consecutive time steps, the convergence is claimed.

5.4. Capacity Estimation Results

Results of SPKF-based capacity estimation algorithm with delayed and automatically calculated
(through capacity convergence detection algorithm) start of capacity update (i.e., tstart) within the DEKF
state model (version with hysteresis model included was used) are shown in Figure 11. The capacity
estimates plotted versus time are shown in Figure 11a along with the “measured” capacity (see
Figure 3b for details about capacity identification). Capacity convergence has automatically been
detected after 2.9 h and from that point on, SPKF has been coupled to the DEKF. Figure 11b shows
capacity estimates during the discharge periods plotted versus SoC and color-mapped with respect to
temperature. Capacity shows expected (based on the [29]) positive correlation with the temperature.
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Figure 11. SPKF-based capacity estimation with automatic convergence detection: (a) Capacity
estimates vs. time, (b) capacity estimates vs. SoC and temperature.

Figure 12 shows the same plots as in the case of Figure 6, but instead of using the adaptation
mechanism the estimator relies on the explicit hysteresis model and has the capacity estimation
included. The voltage residual is shown in Figure 12a together with the usual statistics. This residual
has higher Lstat value than the one from Figure 6a, which may be explained by the influence of added
capacity estimation. The estimates of Rohm and Rp, plotted in Figure 12b,d with respect to SoC and
temperature, respectively, are similar to those from Figure 6b,d, but with slightly higher correlation
with temperature for both resistances. Finally, it should be noted that there are no distinguishable sets
of estimated Uoc curves in Figure 12c (unlike in Figure 6c), because estimated Uoc(SoC) now describes
the central curve while the hysteresis is accounted for in the model (see Figure 7 and Equations (10)
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and (11)). Estimated Uoc(SoC) is slightly larger than the recorded one (see Figure 3c for details about
Uoc(SoC) identification) because the latter is discharge Uoc(SoC) curve while we estimate the average
Uoc(SoC) since hysteresis is explicitly modelled in this case. The overall estimation algorithm is
parametrized as given in Appendix A.
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6. Conclusions

An algorithm for dual estimation of battery state-of-charge (SoC) and remaining charge capacity
has been proposed, which is aimed to be accurate over the whole battery lifetime and real-driving
conditions including varying ambient temperatures. This was achieved by simultaneous estimation of
relevant battery degradation-dependent parameters such as internal resistances and parameters of
open-circuit voltage vs. SoC characteristic, Uoc(SoC).

To this end, the dual extended Kalman filter-based SoC estimation algorithm has been extended to
estimate parameters of the characteristic Uoc(SoC) along with the resistance parameters. This extension
allows the DEKF to adapt for Uoc(SoC) variations and capture its hysteresis without explicitly modelling
it. The latter can be useful in cases when the exact hysteresis profile is not known in advance or when
it needs to be updated at the given state-of-health level without a specific identification experiment.

Next, a battery capacity estimator has been designed as a separate estimator, as it is based on a
different model than the one that has been used in the DEKF design. Moreover, capacity estimation
is meant to be executed on a significantly slower time scale than the DEKF. It has been shown that
the EKF-based capacity estimator gives rather inconsistent estimates with a slow convergence rate,
which is explained by a distinctively nonlinear capacity model. Capacity estimator has, therefore, been
designed by using a sigma-point Kalman filter (SPKF). Furthermore, it has been demonstrated that
SoC and capacity estimators (i.e., DEKF and SPKF, respectively) cannot be started in a coupled manner,
unless it is ensured that both estimators have converged. A capacity convergence detection algorithm
has, therefore, been designed to automatically couple the two estimators.
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Finally, the overall estimator has been successfully verified based on real driving cycle data
acquired by using a fully electric scooter equipped with a telemetry measurement system. The DEKF
output voltage estimation residual distribution was confirmed to be close to the voltage measurement
noise, while resistance estimates showed expected correlations with temperature. The estimated
capacity was shown to be close to the measured one and expectedly correlated with temperature,
as well.

Future work will be directed towards further extensions and verifications of the proposed estimator
to account for temperature- and aging-dependent variations of the polarization time constant τp and
further analyze the sensitivity of estimator for broader operating conditions (e.g., wider temperature
range), respectively. The emphasis will be on using the estimator to track battery degradation features
in support of modelling the battery degradation process.
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Abbreviations

BMS Battery management system
DEKF Dual extended Kalman filter
ECM Equivalent circuit model
EKF Extended Kalman filter
KF Kalman filter
NEE Normalized estimation error
OCV Open-circuit voltage
PF Particle filter
SoC State-of-charge
SoH State-of-health
SPKF Sigma-point Kalman filter

Appendix A. Estimator Parameters

The overall estimation algorithm is parametrized as given in Table A1.

Table A1. List of estimator parameters.

Parameter Description and Its Mathematical Notation Value

Variance of Rohm estimation, Qθ[1, 1]
(
0.85·10−8

)2

Variance of Rp estimation, Qθ[2, 2]
(
0.85·10−8

)2

Variance of Uoc(SoC) estimation, Qθ[3, 7; 3, 7]
(
0.85·10−7

)2

Initial SoC, SoC(0) 93
Initial polarization current, ip(0) 0

Initial polarization resistance, Rohm(0) 50·10−3

Initial polarization resistance, Rp(0) 25·10−3

Initial Uoc parameter, K0 69
Initial Uoc parameter, K1 78·10−3

Initial Uoc parameter, K2 −10
Initial Uoc parameter, K3 0.87
Initial Uoc parameter, K4 −0.88

Scaling factor of submatrix Qθ[3, 7; 3, 7] bump in adaptation mechanism (see Section 4.2.2) 1010

NEE threshold value (see Section 5.3) 100
Consecutive time steps NEE has to be lower than the above threshold (see Section 5.3) 10

Ratio between SPKF and DEKF sampling time, L (see Section 5.1) 3000
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