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Abstract: The powertrain efficiency of plug-in hybrid electric vehicles (PHEV) can be increased by
effectively using the engine along the electric motor to gradually discharge the battery throughout
a driving cycle. This sets the requirement of the optimal shaping of the battery state-of-charge
(SoC) reference trajectory. The paper deals with the online synthesis of the optimal SoC reference
trajectory, which inherently includes adaptive features in relation to the prediction of upcoming
driving cycle features such as the trip distance, the road grade profile, the mean vehicle velocity and
the mean demanded power. The method performs iteratively, starting from an offline-synthesized
SoC reference trajectory obtained based on dynamic programming (DP) control variable optimization
results. The overall PHEV control strategy incorporating the proposed online SoC reference trajectory
synthesis method is verified against the DP benchmark and different offline synthesis methods. For
this purpose, a model of a PHEV-type city bus is used and simulated over a wide range of driving
cycles and conditions including varying road grade and low-emission zones (LEZ).

Keywords: plug-in hybrid electric vehicle; control; optimization; dynamic programming; battery
state-of-charge trajectory; low-emission zones; varying road grade

1. Introduction

Plug-in hybrid electric vehicles (PHEV) bridge the gap between conventional and
fully electric vehicles in terms of leveraging investment costs, driving range, efficiency,
emissions, and infrastructure requirements [1]. As such, they are considered as an effective
intermediate solution towards fully electrified road transportation. The PHEVs are charac-
terized by a complex powertrain structure consisting of several power sources, including
an internal combustion engine, one or more electric machines, and a battery. Therefore,
it is essential to develop an optimal PHEV control strategy that properly coordinates the
different power sources in various operating modes. A PHEV can operate in a charge
depleting (CD) mode until its battery is discharged to a prescribed lower limit value, after
which a charge sustaining (CS) mode is activated to sustain the battery state-of-charge
(SoC) and extend the driving range. If the driving distance is known in advance, which
is particularly satisfied in the case of the city bus application considered herein, the fuel
economy can be considerably increased by gradually discharging the battery throughout
the whole driving cycle in the so-called blended (BLND) mode [2]. However, the imple-
mentation of this mode requires the planning of a proper SoC reference trajectory, which
is either commanded to an explicit SoC controller or set as a constraint when solving an
online optimal control problem [3].

SoC reference trajectory planning methods for the BLND mode are usually based on
heuristic algorithms that require a minimum knowledge of an upcoming driving cycle.
For instance, the SoC reference trajectory can be set to linearly decrease with respect
to driving distance and reach its target, lower limit value right at the end of trip [2,3].
More advanced methods employ control variable optimization algorithms, which are
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conducted either offline (e.g., immediately before the start of trip) or online on a moving
optimization horizon (the model predictive control approach, MPC), where a powertrain
model and complete or partial knowledge of the upcoming driving cycle is needed [3,4].
Apart from minimum prior knowledge, the heuristics-based methods are characterized by
computational efficiency and scalability, which makes them generally more appropriate for
production vehicles. On the other hand, they can only achieve near-optimal performance.

It is well-known from the literature (e.g., [2,5,6]) that the optimal SoC trajectory
that is expressed over a travelled distance assumes a nearly linear shape for common,
e.g., certification driving cycles. Such a linear SoC reference trajectory can readily be
applied in various PHEV control strategies. For instance, the authors in [6,7] describe a
linear SoC reference trajectory that is determined at the beginning of the driving cycle
and incorporated into an adaptive Pontryagin’s minimum principle (PMP)-based energy
management strategy. However, the optimal SoC trajectories can significantly deviate from
the linear-like trend in different real-world driving conditions, e.g., in the presence of low-
emission zones (LEZ; where electric-only driving is preferred) [8], significantly varying
road grade [5,9], and mixed driving patterns (e.g., city driving followed by highway
driving) [10]. To account for these effects, a piecewise-linear SoC reference trajectory can be
synthesized based on a principle of minimizing battery losses and dynamic programming
(DP) optimization results [8,9].

A two-stage PMP-based hierarchical predictive control strategy is proposed by the
authors in [11], who describe a strategy which relies on a driving cycle preview to compute
a global SoC reference trajectory prior to the trip. The reference trajectory is determined at
the superimposed control level and fed to the low-level adaptive PMP controller, which
controls the powertrain operating points in real time and achieves SoC reference tracking.
A fuel saving of 2% is reported when compared to the baseline strategy. In [12], the authors
describe how an offline-calculated SoC reference trajectory is modified during steep hill
climbing based on the road grade preview and heuristically determined rules, which results
in improved SoC sustainability and marginally reduced fuel consumption. A quadratic
programming-based SoC reference synthesis method is proposed by the authors in [13],
who describe a method which employs a driving cycle preview and a crude approximation
of the SoC recharging rates during negative road grades to minimize the SoC reference rates
during positive road grades, thus managing to achieve up to 8% fuel consumption savings
when compared to the baseline scenario. An MPC strategy based on PMP cost function is
revealed by the authors in [6], who describe a strategy in which the online-optimized SoC
trajectory is constrained by the upper and lower values of the offline-calculated linear SoC
reference trajectory segments and computed on the current prediction horizon.

In [14,15] the authors describe how predictive control strategies are used to optimize
the PHEV powertrain control variables online and penalize the SoC trajectory deviation
from a prescribed linear SoC reference profile. An MPC strategy proposed by the authors
in [16] relies on a simplified power balance-based PHEV powertrain model optimized
offline over a full-horizon predicted driving cycle. The resulting SoC trajectory is then
used to set the upper and lower SoC constraints for MPC law that employs a more detailed
powertrain model within a limited prediction horizon. Simulation verifications point out
that the fuel consumption can be improved by up to 5% when compared to the baseline
CD/CS operating mode. Another PMP-based MPC strategy is presented by the authors
in [17], who describe strategy in which a set of optimal SoC trajectories obtained by offline
optimization are mapped with respect to corresponding vehicle velocity profiles using a
Monte Carlo approach. SoC reference trajectories for each MPC control horizon are then
determined from these maps and predicted velocity profiles, thus reducing the overall fuel
consumption by up to 10%.

Based on the above literature review, it can be concluded that the proper planning of
an SoC reference trajectory can considerably reduce fuel consumption and improve SoC
sustainability. However, there is a lack of a systematic, near-optimal and computationally
efficient approach towards SoC reference trajectory planning for a wide range of realistic
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driving scenarios. To this end, this paper proposes an online, computationally efficient,
heuristics-based SoC reference trajectory synthesis method for a general class of driving
cycles including the presence of LEZs and varying road grades. The first step towards
the online strategy is based on an improvement of the authors’ previous work presented
in [9], in terms of designing an offline synthesis method that does not require a preview of
the whole driving cycle, but only predictions of the mean vehicle velocity and the mean
demanded power. This is a particularly proper assumption for the considered application
in city buses, as they operate on fixed routes. Finally, the online synthesis method performs
an SoC reference trajectory recalculation in each time step, to incorporate adaptive features
with respect to memorized driving cycle characteristics from the trip start until the current
time instant. The proposed methods are verified against the DP optimization benchmark,
based on a PHEV-type city bus model and a previously developed PHEV control strategy
comprising of an explicit SoC controller and an equivalent consumption minimization
strategy (ECMS) [18]. In addition, a robustness analysis with respect to prediction errors of
the road grade profile, mean velocity and mean demanded power is conducted.

The main contributions of the paper include: (i) a practical and near optimal offline
SoC reference trajectory synthesis method, applicable to a general case of varying road
grades and LEZ presence and assuming a certain knowledge of the driving cycle character-
istics, and (ii) an online SoC reference trajectory synthesis method where the instantaneous
SoC reference is updated in each time step and adapted based on an accumulated knowl-
edge of the driving cycle.

The paper is organized as follows. Section 2 presents a mathematical model and
corresponding control strategy of the considered parallel PHEV powertrain. DP-based
PHEV control variable optimization results are presented and briefly analysed in Section 3.
The proposed SoC reference trajectory synthesis methods are elaborated in Section 4.
Simulation results and corresponding analyses are presented in Section 5. Concluding
remarks are given in Section 6.

2. Powertrain Model and Control Strategy

The PHEV powertrain backward-looking model and the corresponding energy manage-
ment control strategy are outlined based on the previous publications [9,18], respectively.

2.1. Model

The modelled PHEV is of a parallel P2 configuration and corresponds to a Volvo 7900
Electric Hybrid 12-meter city bus [19]. The P2 parallel powertrain configuration consists
of an automated manual transmission with 12 gears, a motor/generator machine (M/G)
placed at the transmission input shaft and supplied by an electrochemical battery, and
an internal combustion engine connected to the rest of powertrain via the clutch, placed
between the engine and the M/G machine (Figure 1). For electric-only driving the engine
is switched off and disconnected by the disengaged clutch.
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Figure 1. Functional scheme of the considered parallel PHEV powertrain, including: (a) equivalent battery circuit, (b) SoC-
dependent open-circuit voltage Uoc and internal resistance R for LiFePO4 battery, (c) engine specific fuel consumption and
(d) M/G machine efficiency maps, including the corresponding maximum torque lines (bold lines), adapted from [9].

The powertrain is modelled based on the computationally efficient backward-looking
modelling approach [1]. The relations between powertrain variables are described by
kinematic equations formulated in the backward order, i.e., in the direction from the wheels
toward the machines. When the engine is switched on, it rotates with the same speed as
the M/G machine:

ωe = ωMG = iohωw = ioh
vv

rw
, (1)

where ωe and ωMG are the engine and M/G machine speeds, respectively, io is the final
drive ratio, h is the transmission gear ratio, ωw is the wheel speed, vv is the vehicle velocity
and rw is the effective tire radius. The engine torque τe and the M/G machine torque τMG
are summed up at the transmission input shaft to deliver the demanded torque at the
drivetrain output shaft (τcd):

τe + τMG =
τcd
ioh

=
τwηkt

tr (τw) +
P0(ωw)

ωw

ioh
, (2)

where τw is the demanded torque at the wheels, P0(ωw) represents the speed-dependent
drivetrain idling power losses, and ηtr(τw) is the torque-dependent transmission efficiency,
where the coefficient kt is defined as kt = 1 for τw < 0 (regenerative braking) and kt = −1 for
τw ≥ 0 (motoring). The maps of P0(ωw) and ηtr(τw) are defined in [7].

The wheel torque is determined according to the vehicle longitudinal dynamics
equation [1]:

τw = rw Mv
.
vv + rwR0Mvg cos(δr) + rw Mvg sin(δr) + rw > ρair A f Cdv2

v, (3)

where Mv is the total vehicle mass (including passenger mass), R0 is the rolling resistance
factor, g is the gravitational acceleration constant (g = 9.81 m/s2), δr is the road grade, > ρair
is the air density, Af is the frontal vehicle surface and Cd is the aerodynamical drag factor.
Additionally, the transmission input power demand Pd is defined as (cf. Equation (2)):

Pd = ωwτwηkt
tr (τw) + P0(ωw). (4)

The parameter values of the transmission model are given in Appendix A.
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The engine fuel mass flow
.

m f is determined from the instantaneous specific fuel
consumption map Aek(τe, ωe) (Figure 1c) as:

.
m f = Aek(τe, ωe)τeωe, (5)

where Aek is meant to be expressed in g/Ws unlike in Figure 1c where it is given in g/kWh.
The battery is modelled by an equivalent circuit shown in Figure 1a, with the param-

eter maps given in Figure 1b. The state of the charge variable SoC = Q/Qmax is the only
model state variable, defined by the following state equation [1]:

.
SoC = − Ibatt

Qmax
=

√
U2

oc(SoC)− 4R(SoC)Pbatt −Uoc(SoC)
2QmaxR(SoC)

, (6)

where Qmax is the battery charge capacity and Q is the current battery charge. Pbatt is the
battery output power defined by:

Pbatt = η
kb
MG(τMG, ωMG)τMGωMG︸ ︷︷ ︸

PMG

, (7)

where kb = −1 for motoring (PMG ≥ 0) and kb = 1 for regenerative braking (PMG < 0).

2.2. Control Strategy

In general, the aim of the energy management control strategy is to set an appropriate
powertrain operating point in each time step to achieve a favourable powertrain efficiency,
while satisfying the driver torque/power demand.

The engine torque τe and the transmission gear ratio h are selected as control variables,
which in combination with the driving cycle-defined wheel torque and speed variables
τw and ωw define the remaining powertrain variables (see Equations (1) and (2)). The
control strategy is based on a combination of a rule-based (RB) controller and an equivalent
consumption minimization strategy (ECMS) (see Figure 2 and [18]). The RB controller
consists of an SoC controller and engine start-stop logic. The SoC controller is of propor-
tional type, with a deadzone included, and it is extended with a feedforward (FF) control
signal to improve the quality of the SoC reference (SoCR) tracking. The SoC controller
determines the required battery power P*

batt which is summed up with the transmission
input power demand Pd, given by Equation (4), to calculate the engine power demand P*

e
(Figure 2). The engine start-stop logic switches the engine on (ENst = 1) if P*

e is greater
than a power-on threshold Pon, while it is switched off (ENst = 0) if P*

e is lower than a
power-off threshold Poff < Pon (see Appendix B for the control strategy parameter values).
Exceptionally, the engine will be kept switched on regardless of the P*

e signal if the M/G
machine itself cannot deliver the demanded power Pd due to its speed-dependent torque
limit denoted in Figure 1d.
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Figure 2. Block diagram of a PHEV energy management control strategy based on combining an RB controller and an ECMS.

The ECMS [18,20] provides an instantaneous minimization of the equivalent fuel
consumption

.
meq with respect to the control inputs τe and h (2D-ECMS) [18]:

min
τe ,h

.
meq =

{ .
m f+.
m f+

Aekηbatt,cPbatt
Aekη−1

batt,dPbatt︸ ︷︷ ︸
.

mbatt

, for Pbatt < 0
, for Pbatt > 0

. (8)

In this way, the actual fuel mass flow
.

m f is summed with a virtual battery fuel mass
flow

.
mbatt, which accounts for the fuel-equivalent of discharged or recharged battery power.

The variables ηbatt,d and ηbatt,c represent battery discharging and recharging efficiencies [21],
respectively, and Aek is the mean engine specific fuel consumption during the battery
discharging which is set to a constant value (Appendix B). To ensure SoC sustainability, the
ECMS search-related engine torque limits are made dependent on the SoC control error
eSoC (see function w(eSoC) in Figure 2 and [18]). When eSoC approaches zero, the engine
torque is constrained between the absolute lower limit Poff/ωe and the absolute upper limit
τe,max(ωe), i.e., the search range has the maximum width. As the SoC control error eSoC
increases, the lower and upper engine torque limits become narrower and for high errors
converge in the engine operating point defined by τe = P*

e/ ωe, where the RB controller
power demand is satisfied (i.e., SoC sustainability is guaranteed) and minimization is
conducted only with respect to the transmission gear ratio h (1D-ECMS). When the engine
is switched off, the M/G machine propels the vehicle and the transmission gear ratio h is
selected to minimize the electricity consumption [18].

In order to reduce frequent gear ratio switching that could be requested by the
RB+ECMS controller, and which would reduce driving comfort and drivability, a gear shift
delay (GSD) algorithm is incorporated into the ECMS [18]. The GSD algorithm encourages
the ECMS to keep the current gear ratio for a somewhat prolonged period, thus trading-off
efficiency for comfort.

3. Control Variable Optimization

An overview of the DP-based offline control variable optimization is presented in this
section, which is used to establish a benchmark for the verification of the online control
strategies and to gain insights into the optimal SoC patterns for different driving conditions.

3.1. Driving Cycle Scenarios

The optimization was conducted over a driving cycle recorded on a circular bus route
in the city of Dubrovnik (denoted as DUB cycle and shown in Figure 3 [22]). In addition to
velocity time profiles, the driving cycle included the road grade profile (DUB w/rec. grade).
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In addition, optimizations were conducted over three certification driving cycles that are
characteristic for heavy vehicles including HDUDDS, JE05 and WHVC. To further analyse
the influence of a varying road grade on the optimal SoC trajectory, optimization over
repetitive 4xDUB cycles with sinusoidal road grade profiles of different spatial frequency
(Figure 4a) were conducted. Finally, optimizations were conducted over repetitive driving
cycles characterized by the existence of low emission zones (LEZs). Two LEZ profiles were
considered, as illustrated in Figure 4c,d, where non-zero KLEZ corresponds to LEZ-related
segments [8].

Figure 3. DUB driving cycle: (a) velocity profile and (b) road grade profile.

Figure 4. (a) Different synthetic road grade profiles for a total, repetitive DUB driving cycle travelled distance sf = 47.3 km
and (b) corresponding altitude profiles; and low-emission zone (LEZ) profiles inserted into (c) 3xDUB driving cycle and (d)
3xHDUDDS driving cycle, adapted from [9].

3.2. Optimal Problem Formulation

As noted in Section 2, the engine torque τe and the transmission gear ratio h represent
control variables (u), which in combination with the wheel speed and torque external
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inputs (contained in v) determine the M/G machine speed ωe = ωMG and torque τMG,
while the battery SoC is the only state variable (x):

x = SoC, u =
[

τe h
]T , v =

[
τw ωw

]T . (9)

The SoC dynamics are described by the state Equation (6), which is discretized using
Euler method with Td = 1 s time step and rewritten into the following, equivalent discrete-
time form:

xk+1 = f (xk, uk, vk), k = 0, 1, . . . , N − 1, N =
t f

Td
, (10)

where tf is the driving cycle duration, while the initial condition is set as x0 = SoC(0) = SoCi.
The discrete-time cost function to be minimized is described by

J = K f

(
SoC f − f (xN−1, uN−1, vN−1)

)2

︸ ︷︷ ︸
J f

+
N−1

∑
k=0

F(xk, uk, vk), (11)

where the terminal cost Jf penalizes SoC deviation from the prescribed final value SoCf =
SoC(tf), while the second right-hand term relates to fuel consumption and reads [9]:

F(xk, uk, vk) =
.

m f ,kTd + KLEZ(sk)
.

m f ,kTd +L(xk, Pbatt,k, τe,k, ωe,k, τMG,k, ωMG,k), (12)

In the right-hand side of Equation (12), the first term corresponds to the fuel con-
sumption increment, the second term penalizes the fuel consumption within the LEZ
by multiplying it with the binary LEZ profile signal illustrated in Figure 4c,d, while the
third term penalizes the violation of different powertrain constraints/limits (i.e., those
related to SoC, battery power, and engine and M/G machine speeds and torques; see [7]
for details). The weighting factor Kf in Equation (11) is set to a large enough value to ensure
the fulfilment of the SoC boundary condition (Kf = 106, herein).

The presented optimal problem is solved by using dynamic programming (DP),
which guarantees a globally optimal solution for a general non-convex problem [23]. Its
computational complexity, which grows exponentially with the number of state and control
variables, does not pose a major constraint in the given application, as it is characterized
by only two control inputs and a single state variable [24].

3.3. Optimization Results

Figure 5 shows the DP optimization results obtained for repetitive DUB driving cycles
with recorded road grade profile and three sinusoidal road grade profiles. The LEZ were
not considered, and the initial and final SoC values were set to SoCi = 0.9 and SoCf = 0.3,
respectively. The optimal SoC trajectory expressed with respect to the travelled distance
(Figure 5a) has a linear trend in the case of a zero road grade. However, in the presence of
a road grade the optimal SoC trajectory deviates from the linear trend, particularly in the
case of low-frequency (LF) and mid-frequency (MF) grade variations [9].
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Figure 5. (a) DP optimal SoC trajectories for 4xDUB driving cycle and different road profiles,
(b) distribution of corresponding SoC rates with respect to the power demand Pd, and (c) SoC
trajectories decomposed and rearranged to battery discharging and recharging sections.

To gain a deeper insight into the optimal SoC trajectory behaviour, the rate of change
of the optimal SoC trajectory was analysed with respect to the power demand Pd defined
by Equation (4) [9]. Based on the results shown in Figure 5b, three distinct regions can be
identified: (i) regenerative braking (Pd ≤ 0), (ii) electric-only driving (0 < Pd ≤ Pd,th; where
Pd,th is the identified, driving cycle-dependent power threshold above which the engine
is used more frequently), and (iii) hybrid driving for which the SoC rate is significantly
reduced and can even be positive (recharging). In the case of regenerative braking and
electric-only driving, the optimal SoC rate’s dependence on the power demand Pd can be
approximated by a simple quadratic function independently of the grade profile (the fitting
curve in Figure 5b) [9]:

.
SoCapp,k = k1P2

d,k + k2Pd,k + k3. (13)

On the other hand, no clear
.

SoC(Pd) dependence can be extracted for hybrid driving.
In order to establish the SoC rate rules for hybrid driving, the overall optimal SoC vs.
distance trajectory was further analysed by decomposing it and rearranging into charging
and discharging segments, as illustrated in Figure 5c and described in [9]:

∆SoCrec
n,kn

∆skn

=
∆SoCk

∆sk
, ∀ Pd,k ≤ 0, kn = [0, 1, . . . , Nn − 1],

∆SoCrec
p,kp

∆skp

=
∆SoCk

∆sk
, ∀ Pd,k > 0, kp =

[
0, 1, . . . , Np − 1

]
,

∆SoCrec

∆s
=

∆SoCrec
n

∆s
_

∆SoCrec
p

∆s
,

(14)
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where kn and kp denote time instants in which the demanded power Pd,k is negative and
positive, respectively. The final, rearranged SoC gradient sequence is obtained by concate-
nating the resulting sequences with negative and positive SoC rates (operator _ denotes
concatenation of two arrays). The corresponding travelled distance increments are also
decomposed and rearranged in the same way:

∆srec = ∆srec
n,kn

_ ∆srec
p,kp

. (15)

Finally, the rearranged SoC trajectory is reconstructed as

SoCrec,k+1 = SoCrec,k +
∆SoCrec

k+1
∆sk+1

∆srec
k+1 ,

SoCrec,0 = SoCi; k = 0, . . . , Nn + Np − 1.
(16)

The reconstructed SoC trajectory shown in Figure 5c indicates linear trends in dis-
charging and charging segments for all, quite distinctive road grade profiles. This means
that the peak values of SoC gradients were effectively minimized, which minimized battery
and generally electric path power losses [25].

4. Synthesis of Battery SoC Reference Trajectory

Based on the insights gained through the DP optimization results presented in
Section 3, offline and online methods of SoC reference trajectory synthesis are proposed in
this section.

4.1. Offline Synthesis of Linear SoC Reference Trajectory for Zero Road Case
4.1.1. Case 1: No LEZ Presence

In accordance with the optimization results shown in Figure 5a (red plot), a linear
SoC reference trajectory over a travelled distance is set up. This approach only relies on
the knowledge of the total trip distance sf and the initial and final SoC (SoCi and SoCf,
respectively) [2]:

SoCR,j+1 = SoCR,j +
SoC f − SoCi

s f
sd,j+1 , j =

[
0, 1, . . . , Nj − 1

]
, (17)

where j is the discrete distance step, sd,j is the distance within jth discrete step (set to the
constant value of 10 m), sf is the driving cycle length and Nj is the total number of discrete
distance steps.

4.1.2. Case 2: LEZ Presence

In the case of LEZ presence, a piecewise linear SoC reference trajectory is applied to
comply with the DP optimization results presented in [9] (see also Section 5). The total trip
distance sf and the LEZ edge positions (see Figure 4c,d) are assumed to be known, while
the cumulative/total SoC depletion within all LEZs (∆SoCLEZ) is estimated/predicted
in advance (∆ ˆSoCLEZ; see [8] for more details). The SoC gradients associated with the
piecewise linear segments are calculated individually for LEZ segments (strictly negative
due to anticipated electric-only driving) and non-LEZ segments [8], as

∆SoCR,j

∆sj
=


SoC f−SoCi−∆ ˆSoCLEZ

s f−sLEZ
, for KLEZ

(
sj
)
= 0

∆ ˆSoCLEZ
sLEZ

, for KLEZ
(
sj
)
> 0

, (18)

where sLEZ is the total length of all LEZ segments. The non-LEZ gradient, given in the first
row of Equation (18), is determined from the total SoC difference (SoCf − SoCi) and the
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estimated SoC depletion within LEZs
(
∆ ˆSoCLEZ

)
. Finally, the SoC reference trajectory is

reconstructed as (cf. Equation (17)):

SoCR,j+1 = SoCR,j +
∆SoCR,j+1

∆sj+1
sd,j+1. (19)

4.2. Offline Synthesis of a Nonlinear SoC Reference Trajectory for Varying Road Grades

The presented method extends on the previous work [9] in terms of not requiring
a preview of the whole driving cycle, but rather a couple driving cycle features. These
features include: (i) the total trip distance sf, (ii) the road grade vs. distance profile δr(s),
(iii) the mean velocity vv, and (iv) the mean power demand Pd. The assumption of having
these data in advance while planning a trip is found to be reasonable, since sf and δr(s) can
be acquired from the vehicle navigation system, vv could be obtained from historical data
and/or cloud-based, online traffic monitoring data, while Pd could be predicted based on
historical driving data, particularly for vehicles operating over a constant set of routes (e.g.,
city buses).

As shown in Figure 5b, the optimal SoC rates for regenerative braking and electric-only
driving can accurately be expressed in dependence on the instantaneous power demand
Pd,k according to Equation (13). By inserting Equation (3) in Equation (4), the power
demand can be described as

Pd,k = Mv,k
.
vv,kvv,kηkt

tr,k︸ ︷︷ ︸
Pd,acc,k

+> ρair A f Cdv3
v,kηkt

tr,k︸ ︷︷ ︸
Pd,aero,k

+

+Mv,kR0g cos(δr,k)vv,kηkt
tr,k︸ ︷︷ ︸

Pd,roll,k

+ Mv,kg sin(δr,k)vv,kηkt
tr,k︸ ︷︷ ︸

Pd,grade,k

+ P0,k(ωw).
(20)

By introducing the assumptions on the constant vehicle velocity (denoted by vv) and
the constant vehicle mass and transmission efficiency (denoted by Mv and ηtr, respectively),
Equation (20) can be rewritten to

P̂d,k = P̂d,acc +> ρair A f Cdv3
vηkt

tr︸ ︷︷ ︸
P̂d,aero

+ MvR0g cos(δr,k)vvηkt
tr︸ ︷︷ ︸

P̂d,roll,k

+

+Mvg sin(δr,k)vvηkt
tr︸ ︷︷ ︸

P̂d,grade,k

+ P0

(
vv

rw

)
︸ ︷︷ ︸

P̂0

.
(21)

Due to the assumption of constant velocity (i.e., zero acceleration), the term P̂d,acc in
Equation (21) would be equal to zero. However, in order to account for the effort of vehicle
acceleration and the related power consumption, the term P̂d,acc is retained in Equation (21)
as a non-zero offset. This offset is determined to satisfy the mean power demand Pd, as the
driving cycle feature is assumed to be known in advance:

P̂d,acc = Pd − P̂d,aero − P̂0 −
∑N−1

k=0

(
P̂d,roll,k + P̂d,grade,k

)
N

. (22)

For steps for which the condition P̂d,k ≤ Pd,th holds, the SoC reference gradient is
derived from Equation (13) (see Figure 5b for illustration). For the remaining distance
steps (i.e., when P̂d,k > Pd,th holds), the SoC reference gradient over the travelled distance
is set to a constant that satisfies the final SoC condition. The constant gradient is selected
to minimize the SoC trajectory length and correspondingly the battery power losses, as
discussed in Section 3 and illustrated in Figure 5c. Since Equation (22) represents an
approximation based on a limited set of available driving cycle data, the threshold Pd,th is
conservatively set to 0 (the regenerative braking boundary) rather than to the real-boundary:
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the positive value from Figure 5b (electric-only driving). Hence, the SoC reference gradient
in the kth step is determined as:

∆SoCR,k

∆sk
=


(

k1P̂2
d,k + k2P̂d,k + k3

)
1
vv

, for P̂d,k ≤ 0
SoCi−SoC f−∆SoCreg,o f f

s f−∆sreg,o f f
, otherwise

, (23)

where ∆SoCreg,o f f and ∆sreg,o f f represent the cumulative, regenerative braking-related SoC
reference change and the total distance travelled, respectively, which can be calculated
from the predicted power demand profile P̂d,k, given by Equations (21) and (22), and the
assumed mean velocity vv as:

∆SoCreg,o f f =
N−1

∑
k=0

> φ1,kTd, > φ1,k =

{
k1P̂2

d,k + k2P̂d,k + k3, for P̂d,k ≤ 0
0, otherwise

, (24)

∆sreg,o f f =
N−1

∑
k=0

> φ2,k, > φ2,k =

{
vvTd, for P̂d,k ≤ 0,
0, otherwise

. (25)

where Td is the discrete time step. Note that that the total number of time steps is estimated
as N = s f /(Tdvv). The final SoC reference trajectory is reconstructed in the travelled
distance domain according to Equation (19), with sd,j = vvTd, which is conducted immedi-
ately before the trip. It should be noted that in the case of a zero road grade profile, the
above, nonlinear SoC reference trajectory generation method reduces to the linear one
presented in Section 4.1.1. Namely, due to the constant vehicle velocity assumption and
zero-road grade, the predicted power demand P̂d,k is always positive (no regenerative
braking), which results in a constant SoC gradient in accordance with Equations (23)–(25),
and consequently in a linearly falling SoC in accordance with Equation (17).

4.3. Online Synthesis of SoC Reference Trajectory

In order to achieve a better synthesis accuracy, the proposed online synthesis method
relies on actual driving cycle-related inputs and SoC change predictions based on past
inputs. The sensitivity to assumptions is mitigated by using corrective actions based on
offline synthesis results.

4.3.1. Online Prediction of PHEV Powertrain Operation Features

In the offline synthesis method (Section 4.2), the regenerative braking-related values of
the total SoC reference change (∆SoCreg,off) and travelled distance (∆sreg,off) need to be pre-
dicted before the trip. In order to enhance the synthesis accuracy, these quantities are now
meant to be updated within the online method, where they are denoted as ∆ ˆSoCreg,N and
∆ŝreg,N . The same quantities are predicted for electric-only driving (denoted as ∆ ˆSoCel,N
and ∆ŝel,N). These predictions are used by the online synthesis method presented in
Section 4.3.2.

The rearranged DP-optimal SoC trajectory from Figure 5c can further be segmented
into pure electric driving, hybrid driving, and regenerative braking segments. The corre-
sponding results shown in Figure 6a point again to a linear-like SoC vs. the distance trends
in the electric-only driving and regenerative braking segments. Therefore, the total SoC
changes and the travelled distances corresponding to those two operating modes can be
predicted/updated for the whole trip based on the data collected up to the current, kth
time step by means of linear extrapolation (see Figure 6a for illustration):

∆ ˆSoCreg,N = ∆ŝreg,N
∆SoCreg,k

∆sreg,k
=

s f

sk
∆sreg,k︸ ︷︷ ︸

∆ŝreg,N

∆SoCreg,k

∆sreg,k
=

s f

sk
∆SoCreg,k, (26)
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∆ ˆSoCel,N = ∆ŝel,N
∆SoCel,k

∆sel,k
=

s f

sk
∆sel,k︸ ︷︷ ︸

∆ŝel,N

∆SoCel,k

∆sel,k
=

s f

sk
∆SoCel,k, (27)

where sk denotes the distance travelled up to the kth instant, and ∆SoCreg,k and ∆SoCel,k
are the total SoC reference changes in regenerative braking and the pure electric drive up
to the kth instant, respectively, which are iteratively updated as defined in Appendix C.

Figure 6. (a) DP-optimal SoC trajectory decomposed and rearranged into electric-only driving, hybrid driving and
regenerative braking segments (4xDUB cycle w/recorded road grade profile), and (b) illustration of the SoC change and the
travelled distance prediction sections.

The prediction of the total distance travelled in the hybrid driving mode, ∆ŝhyb,N, is
determined as (see Figure 6a):

∆ŝhyb,N = s f − sLEZ −
s f

sk
∆sreg,k︸ ︷︷ ︸

∆ŝreg,N

−
s f

sk
∆sel,k︸ ︷︷ ︸

∆ŝel,N

, (28)

where the iterative process of updating ∆sreg,k and ∆sel,k is expressed in Appendix C.
Similarly, the prediction of the total SoC change in the hybrid driving mode, ∆ ˆSoChyb,N, is
obtained as

∆ ˆSoChyb,N = SoC f − SoCi − ∆ ˆSoCLEZ − ∆ ˆSoCel,N − ∆ ˆSoCreg,N . (29)

The predictions ∆ ˆSoCreg,N , ∆ ˆSoCel,N , ∆ ˆSoChyb,N and ∆ŝhyb,N are updated/sampled at
the end of every prediction-related trip section ∆sp,l, which is, herein, set to ∆sp,l = 1.5 km
(see illustration in Figure 6b). Note, however, that the iterative process of calculating the
components of these predictions (Appendix C) is run in each sampling instant k. The total
SoC change within the LEZs, ∆ ˆSoCLEZ, is predicted only at the beginning of the trip based
on Equation (13) (for assumed electric driving within LEZ), and the known/predicted
mean demanded power Pd and the mean velocity vv:

∆ ˆSoCLEZ =
sLEZ
vv

(
k1P2

d + k2Pd + k3

)
, (30)

4.3.2. Online Synthesis Method

The SoC reference gradient is calculated online in each discrete time step k depend-
ing on the actual values of the power demand Pd,k and the velocity vv,k, and using the
predictions given by Equations (26)–(30):

∆SoCR,k

∆sk
=


(

k1P2
d,k + k2Pd,k + k3

)
1

vv,k
, for Pd,k ≤ Pd,th or KLEZ(sk) > 0

∆ ˆSoChyb,N+∆SoCR,corr
∆ŝhyb,N

, otherwise
, (31)
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where Equation (13) is employed for electric-only driving and regenerative braking (Pd,k ≤
Pd,th), as well as within LEZs (KLEZ(sk) > 0), while a constant, predictions-dependent
SoC gradient is set for hybrid driving to resemble the DP-observed linear-like SoC vs.
distance trend (Figure 6a, black line). The threshold Pd,th is set to the mean value of the
engine power on/off thresholds (Pd,th = (Pon − Poff)/2; Appendix B). The term ∆SoCR,corr
represents a corrective action introduced to improve the robustness of the synthesis in
the presence of prediction errors. This corrective action is described in more detail at
the end of this section. Note that in the first trip section (∆sp,1 in Figure 6b), for which
there are no valid predictions, the nominal, constant SoC gradient (SoCf − SoCi)/sf (cf.
Equation (17)) is applied at the place of right-hand side of Equation (31). Alternatively, the
gradient calculated by the offline method has been considered in that case, with no notable
difference observed in the final simulation results.

The SoC reference gradient calculated by Equation (31) is limited in accordance with
the following inequality:

1
vv,k

.
SoCapp(Pd,k) ≤

∆SoCR,k

∆sk
≤ 1

vv,k

.
SoCmax, (32)

where the lower limit is introduced because the SoC gradient in hybrid driving should
not be lower (i.e., larger in absolute value) than that in the electric-only driving (here
approximated by

.
SoCapp,k given in Equation (13)), while the upper limit is imposed to

reflect the limit on the maximum battery power (see [9] for more details).
The predictions based on Equations (26)–(30) may be imprecise to some extent in the

cases of varying road grade or mixed driving patterns, thus resulting in a sub-optimal
SoC reference trajectory synthesis and a deviation from the SoC value at the end of trip
(SoCf). To improve the robustness of the synthesis, certain constraints are imposed on the
predictions. First, the prediction ∆ ˆSoCreg,N is limited as given by

kl∆SoCreg,o f f ≤ ∆ ˆSoCreg,N ≤ ku∆SoCreg,o f f , (33)

where ∆SoCreg,o f f represents the regenerative braking-related SoC change determined by
the offline synthesis method (see Equation (24)), while the coefficients kl and ku determine
the allowed prediction variation range (Appendix B). Next, a lower limit is imposed to the
prediction ∆ ˆSoCel,N :(

SoC f − SoCi − ∆ ˆSoCreg,N − ∆ ˆSoCLEZ

)
≤ ∆ ˆSoCel,N , (34)

which is derived from the ‘idealized’ case of exclusively using electric-only driving includ-
ing regenerative braking (no hybrid driving at all; cf. Equation (29)).

Finally, the prediction of the distance travelled in hybrid driving, ∆ŝhyb,N , is subject to
an upper limit derived from the opposite (worst) case of exclusively using hybrid driving
outside LEZs and apart from regenerative braking:

0 ≤ ∆ŝhyb,N ≤ s f − ∆ŝreg,N − sLEZ. (35)

In addition to the constraints imposed on the predictions, the aforementioned correc-
tive term ∆SoCR,corr is introduced in Equation (31), in order to further improve robustness
with respect to prediction errors. For this purpose, an auxiliary SoC reference trajectory
SoCR,off is set up, which is equated with the reference synthesized by the offline method
in Sections 4.1 and 4.2. The corrective term ∆SoCR,corr is then determined based on the
following proportional feedback control law:

∆SoCR,corr = kre f

(
SoCR,o f f ,k − SoCR,k

)
, (36)
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where SoCR,k is the actual SoC reference value determined by Equations (31) and (19), and
the proportional gain kref is set arbitrarily as a trade-off between robustness and perfor-
mance.

5. Simulation Results

This section presents the results of the simulation verification of the proposed SoC
reference trajectory synthesis methods, based on the PHEV backward model and RB+ECMS
controller presented in Section 2. The results are given for different repetitive driving cycles,
including varying road grade and LEZ scenarios. The performance of the overall control
strategy is verified against the DP benchmark, and also in comparison with the basic,
charge depleting/charge sustaining (CD/CS) control strategy that does not require an SoC
reference trajectory. The verification study also includes a robustness analysis with respect
to the change in the SoC prediction errors.

5.1. Scenarios with no LEZ Presence
5.1.1. Zero Road Grade

Figure 7 shows the SoC vs. the distance trajectories obtained for different driving
cycles and control strategy variants. Solid lines represent the actual SoC trajectories,
while the reference trajectories are shown by dashed lines (except for DP and CD/CS
case, where SoCR is meaningless). The initial and final SoC values were set to SoCi = 90%
and SoCf = 30%, respectively. The corresponding fuel consumption results are shown in
Figure 8 in comparison with linearly interpolated DP-minimized values determined for
different values of SoCf.

Figure 7. SoC trajectories for different control strategy variants, including DP optimal SoC trajectory,
all given for: (a) 6xWHVC, (b) 6xJE05 and (c) 10xHDUDDS repetitive driving cycles (no LEZ and
zero road grade scenario).
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Figure 8. (a) Fuel consumptions obtained by DP optimization and different control strategies and (b)
corresponding relative fuel consumption increases with respect to the DP benchmark, all given for
different driving cycles with no LEZ and zero road grade.

While the DP-optimal SoC trajectory exhibited the expected, linear-like trend for
the 6xJE05 cycle (Figure 7b), it behaved very differently in the case of the 6xWHVC and
10xHDUDDS cycles and assumed a CS/CD-like form (Figure 7a,c). This effect is analysed
in detail by the authors in [26], who shows that it is characteristic for longer driving cycles
and associated with a tendency to minimize the SoC-dependent battery power losses.
Although the DP-optimal CS/CD shape significantly differs from the linear trend, using
the linear SoCR trajectory results in a similar fuel consumption increase against the DP
benchmark of around 3% for both WHVC/HDUDDS and JE05 driving cycles (Figure 8b,
black bars), i.e., those with CS/CD and linear-like profiles of DP-optimal SoC trajectory,
respectively (cf. Figure 7).

The results in Figure 8 further indicate that in the case of a basic, CD/CS control
strategy, the fuel consumption increases with respect to the DP benchmark from around
3% to 5% depending on the driving cycle. When using the linear SoCR trajectory, this fuel
consumption excess reduces from 2.7% to 3.4%. Note that the offline synthesis gives the
same linear SoCR in the considered special case of no LEZ and zero road grade. Finally, if the
more complex, nonlinear, online-synthesized SoC reference is applied, the fuel consumption
excess is consistently further reduced from between 2.6% and 2.1% depending on the cycle.
The performance improvement of the online synthesis strategy may be explained by its
ability to anticipate regenerative braking opportunities and accordingly update the SoCR
trajectory to make use of regenerated energy later in an efficient manner. On the contrary,
when imposing the strictly linear SoCR trajectory, any regenerated energy which causes the
deviation from the linear SoCR pattern would tend to be discharged shortly afterwards,
thus affecting the efficiency.

5.1.2. Varying Road Grade

Figure 9 shows the SoC trajectories obtained for repetitive DUB cycles with recorded
and sinusoidal road grade profiles, and different control approaches. The corresponding
fuel consumption results are given in Figure 10. As already observed with Figure 5,
the DP optimal SoC trajectories can significantly vary from the linear trend for the case
of varying road grade, particularly for low- and mid-frequency variations (Figure 9).
Therefore, applying the linear SoCR trajectory in those cases may not lead to a considerable
improvement in fuel economy when compared to the basic, CD/CS strategy (see e.g.,
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the mid-frequency case in Figure 10). When using the proposed offline or online SoCR
trajectory synthesis methods, the SoC trajectory becomes closer to the DP optimal one
(Figure 9) and the fuel consumption considerably and consistently reduces, particularly in
the aforementioned mid-frequency case (Figure 10). The online method mostly performs
better than the offline one.

Figure 9. SoC trajectories for different control strategy variants, including DP optimal SoC trajectory,
all given for repetitive DUB driving cycles with (a) recorded and (b–d) sinusoidal grade profiles of
different frequency (no LEZ).

Figure 10. (a) Fuel consumptions obtained by DP optimization and different control strategies and (b) corresponding
relative fuel consumption increases with respect to the DP benchmark, given for different driving cycles with varying road
grades (recorded and sinusoidal) and no LEZ.
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5.2. LEZ Scenarios with Zero Road Grade

Figure 11 shows the comparative simulation results for two LEZ scenarios: (i) SoCi = 90%,
SoCf = 30% and (ii) SoCi = SoCf = 50%, which resemble the BLND and the CS mode
operations, respectively. The corresponding fuel economy results are shown in Figure 12.
For the sake of robustness analysis, the following three scenarios are considered depending
on the way they predict the cumulative SoC change within LEZs (∆ ˆSoCLEZ): (i) precise
prediction based on simulation, (ii) mean-like prediction based on Equation (30) (default
option for which the results in Figure 11 are given), and (iii) overprediction, where ∆ ˆSoCLEZ
is doubled with respect to precise ∆ ˆSoCLEZ from Point (i).

Figure 11. SoC trajectories for different control strategy variants, including DP optimal SoC trajectory,
all given for: (a,b) BLND-like conditions with SoCi = 90% and SoCf = 30%, and (c,d) and CS-like
conditions with SoCi = SoCf = 50% (and zero road grade scenario).

The use of offline synthesized (piecewise linear) and online determined SoC references
result in SoC trajectories that are close to DP optimal trajectories, particularly in the case
SoCi = SoCf (Figure 11). Consequently, the fuel consumption is consistently lower in these
cases when compared to the use of linear SoCR (Figure 12). According to the results shown
in Figure 12, the online synthesis provides a higher degree of robustness with respect to
accuracy of prediction ∆ ˆSoCLEZ when compared to the offline synthesis approach. In most
cases, the control strategy with online synthesized SoCR approaches the DP benchmark
within the margin of 2%, even if an inaccurate prediction ∆ ˆSoCLEZ is used.
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Figure 12. (a) Fuel consumptions obtained by DP optimization and different control strategies and (b) corresponding
relative fuel consumption increases with respect to DP benchmark, given for different driving cycles with LEZ presence and
zero road grade.

5.3. Robustness Analysis

Since both offline and online SoC reference synthesis methods directly or indirectly
rely on driving cycle predictive information, a robustness analysis was conducted with
respect to the inaccuracies of driving cycle parameters. The repetitive DUB cycle with
different road grade profiles was considered for this purpose. The boundary conditions
were set to SoCi = 90% and SoCf = 30%.

Table 1 shows the robustness analysis results for different combinations of actual and
assumed road grade profiles. The online method is characterized by a low sensitivity to
wrongly assumed road grade profiles, i.e., the relative difference between simulated and
DP optimal fuel consumption remains approximately the same for various grade profile
combinations. On the other hand, the sensitivity of the offline method is considerable.
Moreover, the online approach kept the actual SoCf closer to its target value SoCf = 30%
when compared with the offline method.

The results of the robustness analysis with respect to the inaccuracies in the mean
velocity vv and the mean power demand Pd are given in Table 2. Two scenarios were
tested: (i) the assumed values of vv and Pd were 50% higher than the actual ones, and
(ii) the assumed values of vv and Pd were taken from a different driving cycle than the
actual one. The results show that both the offline and online methods of SoC reference
synthesis have a comparable performance in terms of fuel consumption when compared to
the nominal cases.
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Table 1. Results of the robustness analysis with respect to inaccuracies in the road grade profile.

Assumed Road Grade Profile

Rec. Grade MF Grade HF Grade

Vf (L) Vf,comp
1 (%) SoCf (%) Vf (L) Vf,comp

1 (%) SoCf (%) Vf (L) Vf,comp
1 (%) SoCf (%)

Driving cycle and
actual/applied road

grade profile

6 × DUB w/Rec.
grade

Offline 8.23 +2.11 35.48 8.23 +4.23 30.88 8.12 +2.42 31.79

Online 8.29 +1.94 37.47 7.80 +2.31 23.36 8.20 +2.05 34.90

4 × DUB w/MF
grade

Offline 4.35 +4.89 46.23 3.64 +1.84 30.91 4.32 +4.70 45.67

Online 3.75 +1.84 33.86 3.63 +1.51 30.87 3.70 +1.62 32.61

4 × DUB w/HF
grade

Offline 3.97 +3.36 39.35 3.60 +4.84 28.67 3.62 +2.29 31.45

Online 3.67 +2.43 33.32 3.24 +2.62 21.69 3.63 +2.17 31.83
1 relative fuel consumption increases with respect to DP benchmark.

Table 2. Results of the robustness analysis with respect to inaccuracies in the mean velocity (vv) and the mean power demand (Pd) parameters.

Assumed Driving Cycle Characteristics

Actual Actual Ones Increased by 50%
Characteristics of Characteristics of WHVC

Driving Cycle Used
Pd = 11.14 kW, vv = 30.40 m/s

Vf (L) Vf,comp
1 (%) SoCf (%) Vf (L) Vf,comp

1 (%) SoCf (%) Vf (L) Vf,comp
1 (%) SoCf (%)

Driving cycle and
actual driving cycle

characteristics

6 × DUB w/Rec. grade
Pd = 10.94 kWvv = 6.21 m/s

Offline 8.23 +2.11 35.48 8.22 +2.13 35.50 8.23 +1.99 35.86

Online 8.29 +1.94 37.47 8.24 +1.93 36.19 8.56 +2.10 44.60

4 × DUB w/MF grade
Pd = 10.38 kWvv = 6.13 m/s

Offline 3.64 +1.84 30.91 3.64 +1.84 30.91 3.78 +2.20 34.40

Online 3.63 +1.51 30.87 3.62 +1.49 30.76 3.72 +1.60 33.31

4 × DUB w/HF grade
Pd = 6.14 kWvv = 10.33 m/s

Offline 3.62 +2.29 31.45 3.62 +2.30 31.42 3.68 +2.33 32.96

Online 3.63 +2.17 31.83 3.63 +2.16 31.78 3.76 +2.13 35.31
1 relative fuel consumption increases with respect to DP benchmark.
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6. Discussion

Practical and near-optimal, offline and online SoC reference synthesis methods have
been proposed for the PHEV blended operating mode and a wide range of driving scenarios
including those concerning LEZ and varying road grade cases. The offline method results
in an explicit, ready-to-use SoC reference, which can be employed in combination with
various PHEV control strategies. The online method calculates the SoC reference rate
in each time step based on the actual and past powertrain data collected. The proposed
methods show consistent improvements in terms of fuel consumption when compared to
the commonly used CD/CS mode and BLND mode based on linear SoC references.

The offline method relies on a-priori knowledge or a reasonable approximation of
the total trip distance sf, the road grade profile δr(s), the mean velocity vv, and the mean
power demand Pd, rather than a prediction of the full driving cycle. This is particularly
suitable for city buses and also for delivery vehicle applications, where the trip distance
and the road grade profile could be extracted from the vehicle GPS/GPRS tracking system.
This would require interfacing the tracking system with the vehicles control strategy (e.g.,
through vehicle CAN bus) and storing the road grade profile in the tracking electronic unit
memory (permanently or sporadically through communication with fleet management
system). The mean velocity vv can be readily obtained from historical or online traffic
monitoring data, while the mean power demand Pd could be predicted based on historical
driving data. This would require an extension of vehicle tracking unit software towards
a particular (PHEV) type of vehicle. An alternative implementation would be based on
vehicle control software and the navigation system. The former calculates the SoC reference
trajectory and feeds it to the internal PHEV control strategy. The latter provides the trip
distance and road grade profile, while the mean velocity and power demand predictions
would be retrieved from memorized historical data or through vehicle-to-infrastructure
communication.

The online method mostly relies on the available actual data including vehicle velocity
vv, driver-demanded power Pd, and battery SoC. The information regarding the total trip
distance is also required, which means that a basic interface with the vehicle navigation
system should be established. Unlike the offline approach, the online method does not
directly use other, more demanding driving cycle prediction information. Because of this
and also due to the adaptive feature based on usage of past driving cycle data, the online
method consistently outperforms the offline method and shows a better robustness with
respect to prediction errors. Since the enhancement is rather modest and the online method
requires specific feedback parameter tuning for good accuracy and stability, both methods
are deemed to be credible for application.

For the particular P2-parallel PHEV powertrain configuration of a 12 m city bus, the
fuel economy reduction gained by the application of the proposed SoC reference trajectory
synthesis methods when compared to the CD/CS mode and linear SoCR trajectory cases is
up to 3%. It is anticipated that the fuel economy improvement would be higher in more
complex PHEV or EREV powertrains, characterized by a higher number of control degrees
of freedom, such as series-parallel powertrains (see e.g., [2]). Verifying this hypothesis
could be a subject of future work, together with efforts to extend the online synthesis
methods with more advanced online driving cycle feature prediction algorithms. Future
work should include the implementation and testing of the proposed algorithms on more
detailed forward-looking powertrain dynamics model and ultimately on real vehicles.

7. Conclusions

Offline and online methods of the synthesis of optimal battery state-of-charge (SoC)
reference trajectories in blended operating modes have been proposed and illustrated
using an example of a parallel plug-in hybrid vehicle (PHEV) given in a P2 powertrain
configuration. The offline method is executed prior to the trip, and it relies on a certain, and
mostly aggregate predictive knowledge of the driving cycle features. The online method
updates the SoC reference in real time and adapts it with respect to past knowledge of
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the driving cycle. Both methods are designed for general cases of driving cycles (e.g., the
presence of low-emission zones and varying road grades). The SoC reference synthesis
methods have been tested based on a backward-looking PHEV powertrain model and
verified against optimal solutions obtained by the dynamic programming (DP) algorithm
in terms of the total fuel consumption.

The simulation results point out that when employing the proposed offline and online
control methods, the fuel consumption is consistently reduced in comparison with the
application of a linear SoC reference. In the case of zero road grade and no low-emission
zones (LEZ), the fuel economy performance for the online method approaches the DP
benchmark with a margin of around 2 to 2.5%, while in the case of the more common
CD/CS mode or the linear reference trajectory, this DP-benchmark related margin equals
3.5–5% and 2.7–3.5%, respectively. The improvement is emphasized more in the presence
of road grade variations (particularly low-mid frequency ones) and in the strong presence
of LEZ. In the former case, the DP benchmark approaching margin is below or around 2%,
while it grows up to 4–5% for the linear reference trajectory and the CD/CS mode. In the
latter case, the DP approaching margin is mostly below 2%, even where prediction errors
are concerned, while for the linear SoC trajectory it amounts up to 4%.
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List of Abbreviations

BLND Blended (mode)
CD Charge depleting (mode)
CS Charge sustaining (mode)
DP Dynamic programming
ECMS Equivalent consumption minimization strategy
EREV Extended range electric vehicle
FF Feedforward (control)
GSD Gear shift delay (algorithm)
HF High frequency (grade)
LEZ Low emission zone
LF Low frequency (grade)
M/G Motor/generator (machine)
MF Medium frequency (grade)
MPC Model predictive control
PHEV Plug-in hybrid electric vehicle
PMP Pontryagin’s minimum principle
RB Rule-based (controller)
SoC (Battery) State-of-charge

Appendix A. PHEV Model Parameters

The PHEV model parameters are given in what follows, with the gear ratios listed in
Table A1: Final drive ratio io = 4.72, effective tire radius rw = 0.481 m, rolling resistance
factor R0 = 0.012, vehicle mass Mv = 12,635 kg, air density > ρair = 1.225 g/m3, frontal
vehicle surface Af = 7.52 m2, vehicle aerodynamical drag factor Cd = 0.7, battery charge
capacity Qmax = 30 Ah.

http://achieve.fsb.hr/
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Table A1. Transmission gear ratios.

Gear 1. 2. 3. 4. 5. 6.

Gear ratio (-) 14.94 11.73 9.04 7.09 5.54 4.35

Gear 7. 8. 9. 10. 11. 12.

Gear ratio (-) 3.44 2.70 2.08 1.63 1.27 1.00

Appendix B. Control Parameters

The control parameters are set as follows: Engine power on threshold Pon = 85 kW,
engine power off threshold Poff = 75 kW, mean engine specific fuel consumption for equiv-
alent fuel consumption calculation during battery discharging Aek = 186 g/kWh, mean
transmission efficiency ηtr = 0.9, lower and upper margin coefficients used in SoC predic-
tion constraint (34): kl = 0.85 and ku = 1.15, gain used in proportional corrective action (36):
kref = 5.

Appendix C

The cumulative SoC reference changes in regenerative braking and electric-only
driving conditions, calculated up to the kth discrete time instant of the trip and used in
Equations (26) and (27) are determined from the following recursive equations:

∆SoCreg,k = ∆SoCreg,k−1 +

{
∆SoCR,k

∆sk
vv,kTd, for Pd,k ≤ 0 and KLEZ(sk) = 0

0, else
, (A1)

∆SoCel,k = ∆SoCel,k−1 +

{
∆SoCR,k

∆sk
vv,kTd, for 0 < Pd,k ≤ Pd,th and KLEZ(sk) = 0

0, else
, (A2)

where ∆SoCreg,0 = ∆SoCel,0 = 0.
The corresponding total distances travelled, used in Equation (28), are defined as

∆sreg,k = ∆sreg,k−1 +

{
vv,kTd, for Pd,k ≤ 0 and KLEZ(sk) = 0
0, else

(A3)

∆sel,k = ∆sel,k−1 +

{
vv,kTd, 0 < Pd,k ≤ Pd,th and KLEZ(sk) = 0
0, else

, (A4)

where ∆sreg,0 = ∆sel,0 = 0.

References
1. Guzzella, L.; Sciaretta, A. Vehicle Propulsion Systems, 2nd ed.; Springer: Berlin, Germany, 2007.
2. Škugor, B.; Cipek, M.; Deur, J. Control variables optimization and feedback control strategy design for the blended operating

regime of an extended range electric vehicle. SAE Int. J. Altern. Powertrains 2014, 3, 152–162. [CrossRef]
3. Martinez, C.M.; Hu, X.; Cao, D.; Velenis, E.; Gao, B.; Wellers, M. Energy Management in Plug-in Hybrid Electric Vehicles: Recent

Progress and a Connected Vehicles Perspective. IEEE Trans. Veh. Technol. 2017, 66, 4534–4549. [CrossRef]
4. Huang, Y.; Wang, H.; Khajepour, A.; He, H.; Ji, J. Model predictive control power management strategies for HEVs: A review. J.

Power Sources 2017, 341, 91–106. [CrossRef]
5. Onori, S.; Tribioli, L. Adaptive Pontryagin’s Minimum Principle supervisory controller design for the plug-in hybrid GM

Chevrolet Volt. Appl. Energy 2015, 147, 224–234. [CrossRef]
6. Xie, S.; Li, H.; Xin, Z.; Liu, T.; Wei, L. A pontryagin minimum principle-based adaptive equivalent consumption minimum

strategy for a plug-in hybrid electric bus on a fixed route. Energies 2017, 10, 1379. [CrossRef]
7. Xie, S.; Hu, X.; Xin, Z.; Brighton, J. Pontryagin’s Minimum Principle based model predictive control of energy management for a

plug-in hybrid electric bus. Appl. Energy 2019, 236, 893–905. [CrossRef]
8. Soldo, J.; Skugor, B.; Deur, J. Optimal Energy Management Control of a Parallel Plug-In Hybrid Electric Vehicle in the Presence of

Low-Emission Zones. SAE Tech. Pap. 1215, 2019-01-1215. [CrossRef]
9. Soldo, J.; Škugor, B.; Deur, J. Synthesis of Optimal Battery State-of-Charge Trajectory for Blended Regime of Plug-in Hybrid

Electric Vehicles in the Presence of Low-Emission Zones and Varying Road Grades. Energies 2019, 12, 4296. [CrossRef]

http://doi.org/10.4271/2014-01-1898
http://doi.org/10.1109/TVT.2016.2582721
http://doi.org/10.1016/j.jpowsour.2016.11.106
http://doi.org/10.1016/j.apenergy.2015.01.021
http://doi.org/10.3390/en10091379
http://doi.org/10.1016/j.apenergy.2018.12.032
http://doi.org/10.4271/2019-01-1215
http://doi.org/10.3390/en12224296


Energies 2021, 14, 3168 24 of 24

10. Yu, H.; Kuang, M.; McGee, R. Trip-oriented energy management control strategy for plug-in hybrid electric vehicles. IEEE Trans.
Control Syst. Technol. 2014, 22, 1323–1336.

11. Schmid, R.; Buerger, J.; Bajcinca, N. Energy Management Strategy for Plug-in-Hybrid Electric Vehicles Based on Predictive PMP.
IEEE Trans. Control Syst. Technol. 2021, 1–13. [CrossRef]

12. Liu, Y.; Li, J.; Qin, D.; Lei, Z. Energy management of plug-in hybrid electric vehicles using road grade preview. In Proceedings of
the IET International Conference on Intelligent and Connected Vehicles (ICV 2016), Chongqing, China, 22–23 September 2016.

13. Ambuhl, D.; Guzzella, L. Predictive reference signal generator for hybrid electric vehicles. IEEE Trans. Veh. Technol. 2009, 58,
4730–4740. [CrossRef]

14. Gaikwad, T.; Asher, Z.; Liu, K.; Huang, M.; Kolmanovsky, I. Vehicle Velocity Prediction and Energy Management Strategy Part 2:
Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy. SAE
Tech. Pap. 2019, 2019-01-1212.

15. Taghavipour, A.; Moghadasi, S. A Real-Time Nonlinear CRPE Predictive PHEV Energy Management System Design and HIL
Evaluation. IEEE Trans. Veh. Technol. 2021, 70, 49–58. [CrossRef]

16. Sun, C.; Moura, S.J.; Hu, X.; Hedrick, J.K.; Sun, F. Dynamic Traffic Feedback Data Enabled Energy Management in Plug-in Hybrid
Electric Vehicles. IEEE Trans. Control Syst. Technol. 2015, 23, 1075–1086.

17. Bouwman, K.R.; Pham, T.H.; Wilkins, S.; Hofman, T. Predictive Energy Management Strategy Including Traffic Flow Data for
Hybrid Electric Vehicles. IFAC-PapersOnLine 2017, 50, 10046–10051. [CrossRef]

18. Soldo, J.; Škugor, B.; Deur, J. Optimal energy management and shift scheduling control of a parallel plug-in hybrid electric vehicle.
Int. J. Powertrains 2020, 9, 240–264. [CrossRef]

19. Volvo 7900 Electric Hybrid Specifications. Available online: https://www.volvobuses.co.uk/en-gb/our-offering/buses/volvo-
7900-electric-hybrid/specifications.html (accessed on 17 March 2021).

20. Paganelli, G.; Delprat, S.; Guerra, T.M.; Rimaux, J.; Santin, J.J. Equivalent consumption minimization strategy for parallel hybrid
powertrains. Proc. IEEE Veh. Technol. Conf. 2002, 4, 2076–2081.
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