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Frequency-shifting-based algebraic approach
to extended state observer design

Josip Kasac, Antonia Pender, Marko Pranjic, and Denis Kotarski

ABSTRACT

In this paper, a frequency-shifting-based (FSB) algebraic approach to
the extended state observer (ESO) design is proposed. The proposed algebraic
approach provides almost instantaneous convergence towards the exact values
of the system states and disturbances. The main benefit of the proposed
approach is the elimination of the peaking phenomenon, which is inevitable
in the case of the conventional observer design. In comparison with the linear
ESO, the proposed algebraic ESO is less sensitive to the choice of the observer
bandwidth, and it is more robust to the measurement noise. The simulation and
experimental results illustrate the efficiency of the proposed algebraic approach
in comparison with the linear ESO.

Key Words: active disturbance rejection control, extended state observer,
algebraic state estimation, peaking phenomenon

I. INTRODUCTION

Control of nonlinear systems with unknown
dynamics and partially measurable state variables in
the presence of external disturbances is still a topic of
active research and a large number of approaches have
been proposed in the literature. The active disturbance
rejection control (ADRC) emerged relatively recently
as a promising methodology for the output control of
uncertain systems with unknown external disturbances
[1, 2, 3]. The main idea of the ADRC is that the model
uncertainty and external disturbances are aggregated to
one total disturbance, and the extended state observer
(ESO) is used to estimate the system state and total
disturbance, which is treated as an extended system
state [4, 5]. The estimated extended state is then used
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in the feedback controller to compensate the unknown
total disturbance.

The ADRC has been successfully used to control
various uncertain dynamic systems involving the speed
control of synchronous motor [6], control of pneumatic
actuators [7], control of flexible wing unmanned aerial
vehicle [8], control of the hovercraft vessel [9], etc.
Also, it has been successfully implemented for the
control of systems with the input time-delay [10].

The ESO is the key component of the ADRC
methodology, and its estimation accuracy determines
the control performance of the closed-loop system [11,
12, 13]. The conventional ESO has limited accuracy and
phase delay in the estimation of the system state, which
deteriorates the control performance of the ADRC
system. Better accuracy and performance improvement
can be achieved by increasing the observer gains [14].

However, the high observer gains may lead to the
so-called peaking phenomenon, i.e., the appearance of
high amplitude oscillations in the transient response of
the estimated variables. If the observer is a component
of an output feedback system, it results in large control
input, which may not be feasible in a real actuator.
The peaking phenomenon significantly deteriorates the
control performances and could even destabilize the
closed-loop nonlinear system. Another disadvantage
of the high-gain observers is the limited robustness
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against measurement noise. Hence, the conventional
disturbance observer tuning is always a compromise
between estimation quality and noise sensitivity.

The peaking phenomenon in high-gain observers
has been addressed in several papers. In [15, 16, 17]
saturation functions are used to mitigate the peaking
in state estimation. In [18] the time-varying gain ESO
is presented, with gain value slowly increasing from
a small initial value to its maximal value. The time-
varying gain methods reduce the peaking phenomenon
caused by the constant high gain. A nonlinear non-
smooth function is used in [19] for the ESO design
to ensure the smaller peaking values of the estimated
states. In [20] the reset observers are used to alleviate
the peaking phenomenon. Note that the mentioned
approaches provide only a reduction of the peaking
phenomenon, but not its complete elimination. Also, the
proposed observers provide asymptotic convergence of
the estimated states.

A promising approach to improve the ESO perfor-
mances is the state estimation based on the algebraic
methodology [21, 22]. The algebraic estimation method
provides determination of the system state in the
form of an exact algebraic expression which depends
only on measurable input and output variables. Unlike
traditional methods, the algebraic estimator is non-
asymptotic: the convergence towards the exact values
of the system states is almost instantaneous. The
algebraic methods have been applied mostly to the
online parameter identification [21, 23, 24] and to the
state estimation [25, 26, 27]. In [28], the algebraic
method is applied for the derivative estimation of noisy
signals.

The main problem of the conventional algebraic
estimation methods is the inherent instability of the
state-space realization of the estimator filters. Since
the estimator variables are unbounded, an additional
periodic resetting mechanism is necessary to ensure the
boundedness of the state variables [29]. The problem
of the inherent instability of the conventional algebraic
estimators is resolved in [30] in the case of the
online parameter identification of linear systems of
arbitrary order, and in [31] in the case of second-order
system state estimation. In [32], a new stable algebraic
approach to the online signal derivatives estimation
is proposed. The proposed frequency-shifting-based
(FSB) algebraic approach provides stable online
parameters and state estimation without needs for
periodic re-initialization.

In [31] the FSB algebraic approach is applied to the
state estimation of the second-order system in the case
without external disturbances. In this paper, the FSB

algebraic approach is proposed for the design of the
ESO for the unknown nonlinear second-order systems
with external disturbances. The proposed third-order
FSB algebraic observer provides the nonasymptotic
estimation of the system position, velocity and the
total disturbance. In comparison with the previous
methods which provides just a reduction of the peaking
phenomenon, the main contribution of this article is
design of the stable algebraic ESO which provides
its complete elimination. The second contribution is
the improvement of the closed-loop system response
of the ADRC based on algebraic ESO because the
nonasymptotic convergence does not depend on the
observer parameters.

The rest of the paper is organized as follows.
The ADRC method based on linear ESO is presented
in Section II. The frequency-shifting-based algebraic
approach to the ESO design is presented in Section
III. The comparison with linear ESO is considered in
Section IV. The simulation and experimental results are
presented in Section V and Section VI, respectively.
Finally, the concluding remarks are emphasized in
Section VII.

II. ADRC BASED ON LINEAR ESO

In this section, a brief review of the linear ESO
is presented for the purpose of comparison with the
proposed algebraic ESO.

Consider a single input-single output nonlinear
second-order dynamic system described by

ÿ = f(y, ẏ, w(t), t) + bu, (1)

where f(y, ẏ, t) represents the unknown system
dynamic, w(t) is an unknown external disturbance, b
is an unknown parameter, u is the control signal, and
y is the measured output. The unknown parameter
b can be represented as b = b0 + b̃, where b0 is the
best available estimate of b, and b̃ is its associated
uncertainty. By inserting this representation in (1), the
following expression is obtained

ÿ = d(t) + b0u(t), (2)

where d(t) = b̃u(t) + f(y, ẏ, w(t), t) is the total distur-
bance. Now, by defining the total disturbance as an
extended state, x3 = d(t), the augmented state-space
form of the system (2) is

ẋ = Asx + Bsu+ Eh(t),
y = Csx,

(3)
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where x =
[
x1 x2 x3

]T
is the extended state vector

with the components x1 = y, x2 = ẏ, and x3 = d(t).
The system matrices are

As =

 0 1 0
0 0 1
0 0 0

 , Bs =

 0
b0
0

 , E =

 0
0
1

 ,
and Cs =

[
1 0 0

]
. The function h(t) = ḋ(t) is the

rate of change of the total disturbance, and it is assumed
to be an unknown but bounded function. By treating
d(t) as a state, it is possible to estimate it by using the
Luenberger state observer,

˙̂x = Asx̂ + Bsu+ L(y − ŷ),
ŷ = Csx̂,

(4)

where x̂ =
[
x̂1 x̂2 x̂3

]T
represents the estimate of

the extended state vector, and L =
[
l1 l2 l3

]T
is the

observer gain vector. From Eq. (3) and Eq. (4) the
following error equation is obtained

ė = (As − LCs)e + Eh, (5)

where e = x− x̂. In the unperturbed case when h = 0,
stability is determined by the characteristic equation:

det(sI−As + LCs) = s3 + l1s
2 + l2s+ l3 = 0.

The observer gains l1, l2, l3 can be calculated by the
pole-placement method. By taking a stable multiple
pole −ωo, where ωo > 0, from the identity s3 + l1s

2 +

l2s+ l3 = (s+ ωo)3 it follows L =
[

3ωo 3ω2
o ω3

o

]T
,

so that the observer bandwidth, ωo, is the only tuning
parameter.

For ωo > 0, under the assumption of boundedness
of h(t), bounded input-bounded output stability for the
observer error dynamics (5) is assured. In the special
case, when the total disturbance is constant in time, h =
0, the estimation errors will go to zero asymptotically.
Similar results can be expected if the rate of change of
the total disturbance is relatively small.

The feedback control law which provides asymp-
totic tracking of the continuous reference signal yd(t) is
u = b−10 (ÿd(t)− kd ˙̃y − kpỹ − d) so that the closed-loop
tracking error ỹ = y − yd satisfies ¨̃y + kd ˙̃y + kpỹ = 0,
which is asymptotically stable for the positive gains
kp and kd. The controller gains can be determined by
the pole placement method as kp = ω2

c and kd = 2ωc,
where ωc is the controller bandwidth.

Usually, the velocity ẏ and total disturbance d are
not directly measured, but can be estimated using ESO
(4), so that the resulting controller takes the form as

u =
1

b0
[ÿd − kp(x̂1 − yd)− kd(x̂2 − ẏd)− x̂3]. (6)

The linear ADRC has only two tuning parameters,
namely, the closed-loop bandwidth ωc and the observer
bandwidth ωo. Only observer bandwidth significantly
affects the tracking speed of the ESO [14].

III. FSB ALGEBRAIC APPROACH TO ESO
DESIGN

In the unperturbed case when h = 0, the input-
output equation of the augmented state-space system (3)
is ...

y = b0u̇(t). (7)

The proposed FSB algebraic approach provides an
estimation of the output ŷ and its derivatives ŷ(1),
and ŷ(2), based on the measured output y. The total
disturbance estimate can be obtained from the Eq. (2),
as d̂ = ŷ(2) − b0u.

The Laplace transform of the differential equation
(7) is

s3y(s)− b0su(s) = R(s), (8)

where y(s) = L{y(t)}, u(s) = L{u(t)}, and R(s) =
y0s

2 + v0s+ a0 − b0u0. The initial conditions y(0) =
y0, ẏ(0) = v0, ÿ(0) = a0, and u(0) = u0 are assumed to
be unknown.

3.1. Annihilation of initial condition

The asymptotically convergent transient response
of the conventional linear observers significantly
depends on the initial conditions. The first step of the
algebraic approach is the annihilation of the second-
order polynomial R(s), which contains unknown initial
conditions. The elimination of initial conditions leads to
the algebraic expressions for the estimated system states
which provide nonasymptotic convergence toward its
true values.

Instead of a conventional derivative-based annihi-
lator [21], we will use the finite-difference annihilator
in the complex domain [30], which leads to the stable
algebraic observer realization. The finite difference
operator in the Laplace domain of a function f(s) is
defined as follows

δqf(s) = f(s+ q)− f(s). (9)

The difference operator decreases the order of
polynomials for one degree, so that δnq sn−1 = 0. In
other words, for the annihilation of the second-order
polynomial function R(s) = y0s

2 + v0s+ a0 − b0u0,
the operator δq should be applied three times: δqR(s) =
y0(2sq + q2) + v0q, δ2qR(s) = 2q2y0, and δ3qR(s) = 0.
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By applying the operator δ3q on (8), the following
expression is obtained

z3(s)− b0z0(s) = 0, (10)

where z0(s) = δ3q [su(s)], and z3(s) = δ3q [s3y(s)] can be
evaluated based on definition (9),

z0(s) = (s+ 3q)u(s+ 3q)− 3(s+ 2q) (s+ 2q)

+ 3(s+ q)u(s+ q)− su(s), (11)
z3(s) = (s+ 3q)3y(s+ 3q)− 3(s+ 2q)3y(s+ 2q)

+ 3(s+ q)3y(s+ q)− s3y(s), (12)

The equation (12) can be rearranged in the polynomial
form

z3(s) = s3w3(s) + s2w2(s) + sw1(s) + w0(s), (13)

where the functionswi(s) depend linearly on the shifted
values of the output y(s+ jq), for i, j = 0, 1, 2, 3. This
linear relation can be represented in the matrix form

w(s) = Γ1yq(s), (14)

where

Γ1 =

 0 3q3 −24q3 27q3

0 9q2 −36q2 27q2

0 9q −18q 9q
−1 3 −3 1

 , (15)

and

w(s) =

w0(s)
w1(s)
w2(s)
w3(s)

 , yq(s) =

 y(s)
y(s+ q)
y(s+ 2q)
y(s+ 3q)

 . (16)

Also, Eq. (11) can be rewritten in the polynomial form

z0(s) = sξ1(s) + ξ0(s), (17)

where the functions ξi(s) depend linearly on the shifted
values of the input u(s+ jq), for i = 0, 1, and j =
0, 1, 2, 3. This linear relation can be represented in the
matrix form

ξ(s) = Γ2uq(s), (18)

where

Γ2 =

[
0 3q −6q 3q
−1 3 −3 1

]
, (19)

and

ξ(s) =

[
ξ0(s)
ξ1(s)

]
, uq(s) =

 u(s)
u(s+ q)
u(s+ 2q)
u(s+ 3q)

 . (20)

By inserting Eqs. (13) and (17) in Eq. (10), the
following polynomial expression is obtained

s3w̃3(s) + s2w̃2(s) + sw̃1(s) + w̃0(s) = 0, (21)

where the functions w̃i(s), for i = 0, 1, 2, 3, can be
expressed in the matrix form

w̃(s) = w(s) + Tξ(s), (22)

where

w̃(s) =

 w̃0(s)
w̃1(s)
w̃2(s)
w̃3(s)

 , T =

−b0 0
0 −b0
0 0
0 0

 . (23)

3.2. Invariant filtering

To overcome the effects of high-frequency noise in
the measurement of the output variable we must avoid
the time-derivatives of the output variable, which are
represented by terms sjw̃i(s) = L{w̃(j)

i (t)} in Eq. (21).
By multiplying (21) with G(s)3, where

G(s) =
1

s+ λ
, (24)

is the low-pass invariant filter transfer function with the
cut-off frequency λ > 0, we get

s3G(s)3w̃3(s) + s2G(s)3w̃2(s)

+ sG(s)3w̃1(s) +G(s)3w̃0(s) = 0.
(25)

By using the properties of the transfer function G(s)

sG(s) = 1− λG(s), (26)
skG(s)n = G(s)n−k[1− λG(s)]k, (27)

where n = 3 and k = 1, 2, 3, we can see that all
time derivative operators sk, for k = 1, 2, 3, can be
eliminated from the expression (25). After some
algebraic manipulations, the following expression is
obtained

w̃3(s) = G(s)w̄1(s) +G(s)2w̄2(s) +G(s)3w̄3(s), (28)

where the complex functions w̄i(s) are linearly related
with the functions w̃j(s), for i = 1, 2, 3, and j =
0, 1, 2, 3. This connection can be expressed in the matrix
form

w̄(s) = Λw̃(s), (29)

where w̄(s) =
[
w̄1(s) w̄2(s) w̄3(s)

]T
and

Λ =

 0 0 −1 3λ
0 −1 2λ −3λ2

−1 λ −λ2 λ3

 . (30)
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3.3. State-space realization

The expression (28) can be rearranged as

w̃3(s) = G(s){w̄1(s) +G(s)[w̄2(s) +G(s)w̄3(s)]},

and the following state variables in the complex domain
can be defined

x3(s) = G(s)w̄3(s), (31)
x2(s) = G(s)[w̄2(s) + x3(s)], (32)
x1(s) = G(s)[w̄1(s) + x2(s)], (33)

so that
w̃3(s) = x1(s). (34)

The state equations in the complex domain (31)-
(33) can be rewritten in the time domain as

ẋ = Ax + w̄(t), (35)

where

x =

 x1x2
x3

 , A =

−λ 1 0
0 −λ 1
0 0 −λ

 , (36)

and w̄(t) is obtained from Eq. (14), (18), (22) and (29)

w̄(t) = Λw̃(t) = Λ[w(t) + Tξ(t)]

= ΛΓ1yq(t) + ΛTΓ2uq(t). (37)

The vector functions in the time domain yq(t) and uq(t)
are

yq(t) = L−1{yq(s)} = ϕ(t)y(t),

uq(t) = L−1{uq(s)} = ϕ(t)u(t),
(38)

where

ϕ(t) =
[

1 e−qt e−2qt e−3qt
]T
. (39)

Now, the state-space equations (35) can be
rewritten as

ẋ = Ax + b1(t)y(t) + b2(t)u(t), (40)

where

b1(t) = ΛΓ1ϕ(t), b2(t) = ΛTΓ2ϕ(t), (41)

and the output equation (34) can be written in the time
domain as

w̃3(t) = eT
1 x(t), (42)

where e1 =
[

1 0 0
]T

.

3.4. Output equations

The final estimates of the system state variables,
denoted as ŷ(0)(t), ŷ(1)(t), and ŷ(2)(t), will be
determined from the output equation (42). The relation
between function w̃3(t) and the measured system output
y(t) can be determined from the Eq. (14), (22), and (38)

w̃3(t) = eT
4 w̃ = eT

4 w = eT
4 Γ1ϕ(t)y(t)

= γT
4 ϕ(t)y(t) = g(t)y(t), (43)

where e4 =
[

0 0 0 1
]T

, γT
4 = eT

4 Γ1 =[
−1 3 −3 1

]
, and

g(t) = γT
4 ϕ(t) =

(
e−qt − 1

)3
. (44)

Now, by comparing the Eq. (43) with (42), we can
obtain the estimate of the measured variable y(t),

ŷ(0)(t) = c1(t)Tx, c1(t)T =
1

g(t)
eT
1 . (45)

Further, by taking the first time derivative of the
Eqs. (42) and (43), the following expression is obtained

˙̃w3(t) = g(t)ẏ(t) + ġ(t)y(t)

= eT
1 ẋ = eT

1 Ax + eT
1 b1(t)y(t), (46)

where we used eT
1 b2(t) = 0, so that the estimate of the

first derivative can be obtained as

ŷ(1)(t) = c2(t)Tx, (47)

where

c2(t)T = c1(t)T
(
− ġ(t)

g(t)
I + A + b1(t)c1(t)T

)
,

and I ∈ R3×3 is the unit matrix. Following the
similar procedure, the second derivative estimate of the
measured variable y(t) can be obtained

ŷ(2)(t) = c3(t)Tx + b0u, (48)

where we used cT1 Ab2(t) = b0, and where

cT3 = cT1 A2 +

(
−2

ġ(t)

g(t)
+ cT1 b1

)
cT2

+

(
− g̈(t)

g(t)
+ cT1 Ab1 + cT1 ḃ1

)
cT1 .

The time derivatives ġ(t), g̈(t), and ḃ1(t) can be
calculated from the Eqs. (44), (39), and (41) as

ġ(t) = γT
4 ϕ̇(t) = γT

4 Υϕ(t),

g̈(t) = γT
4 Υϕ̇(t) = γT

4 Υ2ϕ(t),

ḃ1(t) = ΛΓ1Υϕ(t),

(49)
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where ϕ̇(t) = Υϕ(t), and Υ = diag{0,−q,−2q,−3q}.
Finally, the vector of estimated states can be

written as
ŷ(t) = C(t)x, (50)

where d̂(t) = ŷ(2)(t)− b0u(t), and

ŷ(t) =

 ŷ(0)(t)ŷ(1)(t)

d̂(t)

 , C(t) =

 c1(t)T

c2(t)T

c3(t)T

 . (51)

The singularity of the matrix C(t) in the time instant
t = 0 can be avoided by the evaluation in t ≥ ε > 0,
where ε is some small positive parameter, [22, 31].

3.5. ADRC based on algebraic ESO

The ADRC based on algebraic ESO has the same
form as the ADRC based on linear ESO (6), with x̂1 =
ŷ(0), x̂2 = ŷ(1), and x̂3 = d̂. In the matrix formulation,
the control low (6) can be rewritten as

u =
1

b0
kT (yd(t)− ŷ(t)), (52)

where

k =
[
kp kd 1

]T
, yd(t) =

[
yd(t) ẏd(t) ÿd(t)

]T
.

The overall closed-loop control system is illus-
trated in Fig. 1.

IV. COMPARISON WITH LINEAR ESO

In this section, the asymptotic equivalence between
algebraic and linear ESO is proven in the case when
λ = ωo. This equivalence provides a framework for an
adequate comparison of the algebraic and linear ESO.

4.1. Asymptotic equivalence with Luenberger
observer

In the asymptotic case when t→∞, we have

ϕ̄ = lim
t→∞

ϕ(t) =
[

1 0 0 0
]T
,

b̄1 = lim
t→∞

b1(t) = ΛΓ1ϕ̄ =
[
−3λ 3λ2 −λ3

]T
,

b̄2 = lim
t→∞

b2(t) = ΛTΓ2ϕ̄ = b0
[

0 −1 λ
]T
,

C̄ = lim
t→∞

C(t) =

 −1 1 0
−2λ −1 1
λ2 −λ −1

 ,

so that the linear time-varying state-space and output
equations (40) and (50) become the linear time invariant
equations

ẋ = Ax+ b̄1y(t) + b̄2u(t), ŷ = C̄x. (53)

Now, by inserting the state vector obtained from the
output equation, x = C̄−1ŷ, in the state-space equation,
the following expression is obtained

˙̂y = C̄AC̄−1ŷ + C̄b̄1y(t) + C̄b̄2u(t). (54)

The linear ESO state-space equation (4) can be
rewritten in the form

˙̂x = (As − LCs)x̂ + Ly + Bsu. (55)

By comparing the Eq. (54) with (55) in the case when
ωo = λ, it follows

C̄AC̄−1 = As − LCs =

 −3λ 1 0
−3λ2 0 1
−λ3 0 0

 , (56)

C̄b̄1 = L =
[

3λ 3λ2 λ3
]T
, (57)

C̄b̄2 = Bs =
[

0 b0 0
]T
. (58)

In other words, the algebraic ESO, in the asymptotic
case when t→∞ and ωo = λ, is equivalent to the linear
ESO.

4.2. Comparison of algebraic and linear ESO

The main characteristics of the linear and algebraic
ESO are summarized in Table 1. The FSB algebraic
approach to the ESO design leads to the linear
time-varying state-space realization which provides
nonasymptotic convergence of the estimated states.
This almost instantaneous convergence toward exact
values of the system states and total disturbance
resolves several problems of the linear ESO: a)
the peaking phenomenon; b) the transient response
sensitivity on the observer bandwidth ωo; c) noise
amplification due to the high gain observer design.

The ADRC based on linear ESO guarantees
good tracking performances only in the case when
the observer bandwidth ωo is much higher than the
controller bandwidth ωc, ωo � ωc. But, the high value
of ωo leads to the measurement noise amplification, and
the peaking phenomenon becomes more enhanced.

On the other side, the nonasymptotic convergence
of the algebraic ESO does not depend on the observer
bandwidth λ, which means that the transient response
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u = 1
b0
kT ỹ ÿ = f(y, ẏ, w(t), t) + bu

ẋ = Ax+ b1(t)y + b2(t)u

ŷ = C(t)x

yd(t) ỹ u y

w(t)

−

ŷ

x

Fig. 1. The block diagram of ADRC based on algebraic ESO.

Table 1. Comparison of the main characteristics of the linear and algebraic ESO in the case of constant or slow varying disturbances.

Linear ESO Algebraic ESO

State-space ˙̂x = Asx̂ + Bsu+ L(y − ŷ) ẋ = Ax + b1(t)y + b2(t)u

realization ŷ = Csx̂ ŷ = C(t)x

Estimation asymptotic; dependent on nonasymptotic; independent on
convergence initial conditions initial conditions
Peaking inevitable, especially for eliminated; independent on
phenomenon large values of ωo parameters λ and q
Transient depends on ωc and ωo; depends only on ωc;
response good response only for ωo � ωc good response even for λ < ωc

Noise amplify noise because of suppress noise because of
attenuation high value of ωo � ωc low value of λ < ωc � ωo

of ADRC based on algebraic ESO depends only on
controller bandwidth ωo. Also, for the low values of
the observer bandwidth, λ < ωc � ωo, the algebraic
ESO is much less sensitive to the measurement noise
in comparison with linear ESO.

The mentioned characteristics of the linear and
algebraic extended state observers will be illustrated by
simulation examples in the subsequent section.

V. SIMULATION RESULTS

In this section, the performances of the FSB
algebraic ESO are compared with the conventional
linear ESO. The first example illustrates the elimination
of the peaking phenomenon in the case of the algebraic
ESO. The second example illustrates the low sensitivity
of the closed-loop system response regarding the
choice of the observer bandwidth. Simulation results
are obtained by using Matlab 4th order Runge-Kutta
integration routine.

5.1. DC servo motor motion control

The dynamic model of the Quanser’s DC servo
motor motion control system, presented in [12], is

ẋ1 = x2, ẋ2 = ax2 + bu, (59)

where the state variables are x1 = θ and
x2 = θ̇, θ is motor load angle, u is the motor
control voltage, the output variable is y = x1,
a = −((BeqRm + ηgηmKmKtK

2
g )/(JeqRm)), and

b = (ηgηmKtKg)/(JeqRm)). The parameter Beq is
the viscous damping coefficient, Rm is the armature
resistance, ηg is the gearbox efficiency, ηm is the motor
efficiency, Km is the back EMF constant, Kt is the
motor torque constant, Kg is the gearbox ratio and Jeq
is equivalent moment of inertia at the load.

The nominal values of system parameters, includ-
ing the controller and observer gains, are also
taken from [12]. The system parameters are: Beq =
0.004 Nm/(rad/s), Rm = 2.6 Ω, ηg = 0.9, ηm = 0.69,

c© 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls



8 Asian Journal of Control, Vol. 13, No. 1, pp. 1–14, January 2011

Km = 0.00767 V/(rad/s),Kt = 0.00767 Nm, andKg =

70 and Jeq = 0.0021 kg m2. The controller gains are
obtained for the controller bandwidth ωc = 10 rad/s.
The gains of the linear ESO are obtained for the
observer bandwidth ωo = 60 rad/s. The reference signal
is θd = sin(t).

In [12], the initial conditions for the plant, as
well as observer, are taken as zero. In this simulation
example, the nonzero plant initial conditions are
chosen, θ(0) = 0.5 rad and θ̇(0) = −0.3 rad/s, with aim
to illustrate the peaking phenomenon.

Since the algebraic ESO in asymptotic case is
equivalent with linear ESO, the parameter λ is chosen
same as the linear ESO observer bandwidth, λ = ωo =

60 rad/s. The switch-on time of the algebraic ESO is
ε = 0.02 s, and the frequency shift is q = 0.1.

The comparison between linear and algebraic ESO
is shown in Figs. 2-6. It can be seen from Fig. 2 that
estimated positions have a similar response. But, the
estimated velocity in the case of linear ESO has a high
amplitude transient in a short initial time interval, as can
be seen in Fig. 3. The maximal value of the estimated
velocity is 18.27 rad/s for the linear ESO, and 1.03 rad/s
for the algebraic ESO. This high amplitude transient
is a typical manifestation of the peaking phenomenon,
as a consequence of the nonzero initial conditions and
the high observer gains. The velocity estimation error
ŷ(1) − y(1) for the linear and algebraic ESO is shown in
Fig. 4. It can be seen that the estimation error is much
larger in the case of linear ESO. The small velocity
error of the algebraic ESO is a direct consequence of
the nonasymptotic convergence.

For the linear ESO, the peaking phenomenon is
especially dominant in the case of disturbance estimate,
as it is shown in Fig. 5. The maximal value of the
estimated disturbance is 416.84 for the linear ESO, and
53.82 for the algebraic ESO. The observed peaking
phenomenon in the case of linear ESO has as a
consequence the high amplitude peak of the control
variable, as illustrated in Fig. 6. On the other hand, the
algebraic ESO provides a very fast estimation of the
velocity and total disturbance, without any overshoots.

The numerical results in Table 2 provide a
comparison of the maximal values of estimated
variables for the linear and algebraic ESO for different
choices of the initial conditions. It can be seen that
the maximal values of estimated variables are much
larger in the case of the linear ESO, which is a direct
consequence of the peaking phenomenon.
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Fig. 2. The estimated positions for the linear and algebraic ESO.
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Fig. 3. The estimated velocities for the linear and algebraic ESO.
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Fig. 4. The velocities estimation error for the linear and algebraic ESO.
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Fig. 5. The estimated disturbances for the linear and algebraic ESO.

5.2. Multirotor altitude control

The altitude dynamics of a multirotor [31] can be
reduced to

mz̈ = −mg + dext + u, (60)

c© 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls



Pender et al: FSB Algebraic Aproach to ESO design 9

Table 2. Estimated values of system parameters in the cases with and without measurement noise.

Linear ESO Algebraic ESO

y(0) ẏ(0) max |ŷ(1)(t)| max |d̂(t)| max |u(t)| max |ŷ(1)(t)| max |d̂(t)| max |u(t)|

0.0 0.0 1.205 61.365 0.673 1.134 58.353 0.639

0.5 0.0 18.340 418.40 8.830 1.037 53.824 0.588

0.5 −0.3 18.277 416.84 8.798 1.037 53.826 0.588

−0.5 0.0 18.039 418.75 9.215 2.494 126.63 1.398

−0.5 0.3 17.985 417.19 9.182 2.481 126.02 1.391
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Fig. 6. The control signals for the linear and algebraic ESO.

where m is the multirotor mass, g is the gravity
constant, u is the control thrust force, and dext is the
external disturbance like unknown slow varying wind
force or unknown constant lifting force in the case of the
balloon-quadrotor. The Eq. (60) can be rewritten as z̈ =
b0u+ d, where b0 is the best estimate of the parameter
b = 1/m, and the total disturbance is d = (b− b0)u+
(dext −mg)/m. The nominal values of parameters are
taken as m = 0.5 kg, and dext = 10.9 N.

In this example, the controller bandwidth is
relatively low, ωc = 1, and Fig. 7 and Fig. 8 illustrate
the closed-loop responses for the linear and algebraic
ESO. The parameter b0 is chosen as b0 = b, so that the
total disturbance is the unknown constant acceleration,
d = dext/m− g. It can be seen that the response of
the system in the closed loop with the linear ESO
significantly depends on the choice of the observer
bandwidth ωo. In the case of linear ESO, the satisfactory
system response without overshoots can be achieved for
the higher values of the observer bandwidth. On the
other hand, the response of the system in the closed loop
with the algebraic ESO is invariant to the choice of the
observer bandwidth λ, and depends only on the choice
of the controller bandwidth ωc. Since the choice of the
observer bandwidth λ has no influence on the system

response, it can be chosen low enough to reduce noise
sensitivity of the observer.

Figures 9 and 10 illustrate the performances of
the linear and algebraic ESO in the case of the
position measurement noise, zm(t) = z(t) + 0.8χ(t),
where χ(t) is some Gaussian noise of standard normal
distribution N (0, 1). Fig. 9 shows the closed-loop
response in the case of algebraic ESO for the choice
λ = 1, and a similar response in the case of linear ESO,
obtained for ωo = 7. Fig. 10 shows the total disturbance
estimates in the case of the linear and algebraic ESO.
It can be seen that possibility of choosing small values
of the observer bandwidth in the case of algebraic ESO
provides significant noise reduction in comparison with
the linear ESO.

Figures 11 and 12 illustrate the closed-loop
responses and disturbance estimate in the case when
b0 = 2b. In this case, the total disturbance is time-
varying since it depends on the control variable. It can
be seen that the convergence of the algebraic ESO is
not almost instantaneous, as in the case of the constant
total disturbance. But, it is still much faster than in
the case of linear ESO. The fast disturbance estimation
provides a closed-loop system response with much
smaller overshoots than in the case of linear ESO.

VI. EXPERIMENTAL RESULTS

In order to verify the simulation results, a two-rotor
experimental setup was designed and manufactured.
The setup consists of two quadrotor arms, the central
part and the axis around which the rotor arms rotate,
where the control of the pitch angle is considered.
The rotor arms are 200 mm long, at the ends of
which are mounted propulsion units which consist of an
MN2214 (920 Kv) BLDC motor on which a Graupner
cProp 9040 propeller is mounted, and the motor is
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Fig. 13. The experimental setup.
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Fig. 7. The response of the system in closed-loop with the linear and
algebraic ESO, in the case when b0 = b, and ωo = λ.
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Fig. 8. The total disturbance estimate for the linear and algebraic ESO,
in the case when b0 = b, and ωo = λ.

controlled by KW30E ESC. The control system consists
of a Pixhawk Cube flight controller with an associated
remote control module. The control algorithm was
written and implemented using Matlab Simulink, in
which a connection with the experimental setup is
achieved in real-time using external communication.
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Fig. 9. The closed-loop system response of the linear ESO withωo = 7,
and algebraic ESO with λ = 1, in the case with measurement
noise.
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Fig. 10. The total disturbance estimate of the linear ESO with ωo = 7,
and algebraic ESO with λ = 1, in the case with measurement
noise.

For testing purposes, a load of mass m1 = 0.12 kg was
placed on one arm, at a distance of d1 = 0.16 m from
the center of rotation. The experimental setup is shown
in Fig. 13.
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Fig. 11. The response of the system in closed-loop with the linear and
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Fig. 12. The total disturbance estimate for the linear and algebraic ESO,
in the case when b0 = 2b, and ωo = λ.

The angular dynamics of the two-rotor system with
the load can be written as

Jθ̈ = −m1d1g cos(θ) + u, (61)

where J is the two-rotor moment of inertia, g is
the gravity constant, θ is the angular position, and u
is the control torque. The Eq. (61) can be rewritten
as θ̈ = b0u+ d, where b0 is the best estimate of the
parameter b = 1/J , and the total disturbance is d =
(b− b0)u−m1d1g cos(θ)/J . The initial conditions are
θ(0) = −0.58 rad and θ̇(0) = 0 rad/s.

The linear and algebraic ESO are used for the
monitoring of the system state and disturbance. Fig.
14 shows the measured angular position and control
torque, which are used as inputs for the observers. The
parameter λ of the algebraic ESO is chosen same as the
linear ESO observer bandwidth, λ = ωo = 8 rad/s. The
switch-on time of the algebraic ESO is ε = 0.1 s, and
the frequency shift is q = 0.2.

The estimated angular position, velocity and total
disturbance, for the linear and algebraic ESO, are shown
in Figs. 15-17. It can be seen that the estimated velocity
and total disturbance in the case of linear ESO have
a large initial estimation error. On the other hand,
the algebraic ESO eliminates the initial peaking of
the estimated variables. After some transient time, the
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Fig. 14. The measured angular position and control torque.
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estimated variables of both observers look very similar,
as can be expected from the asymptotic equivalence of
the linear and algebraic ESO.
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VII. CONCLUSIONS

In this paper, a new stable algebraic approach
to the extended state observer has been proposed.
The proposed algebraic ESO provides nonasymptotic
convergence toward the exact values of the state
variables, ensuring the elimination of the peaking
phenomenon. The nonasymptotic convergence of the
algebraic ESO provides a closed-loop system response
that is less sensitive to the choice of the observer
bandwidth. In the case of constant or slow-varying
disturbances, the bandwidth of the algebraic ESO can
be chosen enough small to reduce the influence of the
measurement noise, without deterioration of the closed-
loop system response. The future work will be oriented
toward FSB algebraic design of the generalized ESO
with the arbitrary number of extended states, which will
provides better estimation accuracy in the case of the
fast time-varying disturbances.
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