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Abstract

The EU legislation put the focus on the material recovery of waste while energy recovery is not elaborate enough and all
thermochemical conversion technologies are classified in the same category regardless of the final products, which can
hamper overall sustainability. Therefore, this research analyses technologies for recovery of plastic waste to review the
existing EU legislation and technology classifications. Most important LCA impact categories from the legislation point
of view were identified and used in the analysis. As alternative thermochemical recovery technologies are not widely used,
their inventories were modelled based on an extensive literature review. Results show that pyrolysis of plastic waste has
46%, 90%, and 55%, while gasification up to 24%, 8%, and 91%, lower global warming, abiotic depletion, and cumulative
energy demand-related impacts, respectively, compared to incineration with CHP generation. Incineration-based scenarios
show lower impacts only in the acidification potential category which is dependent on energy mixes of substituted energy
vectors which are quickly changing due to the energy transition. Thus, alternative thermochemical recovery technologies
can help in reaching sustainable development goals by lowering environmental impacts and import dependence. But, before
considering new investments, the substitution of less environmentally sustainable fuels in facilities like cement kilns needs
to be looked upon. Results of this analysis provide levelized results for environmental and resource sustainability based on
which current legislative views on individual thermochemical recovery technologies may be re-examined.

Graphical abstract

EU puts emphasis on recycling while energy
recovery legislation is not elaborate enough.
EU legislation classifies all thermochemical
conversion technologies in the same category
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Introduction

European production of polymers reached 61.8 million
tonnes in 2018, which is equivalent to 17% of the world’s
production (European Plastics 2019). When the distribution
of polymer use by industry sectors is looked upon, 40% of
overall production is consumed in packaging production,
20% in the construction sector, 10% in automotive, 6% in
electrical and electronic, 4% in household leisure and sports,
and 3% in agriculture. Where some products can have a life
span of less than a day (such as packaging), others need
decades to reach waste streams (like automotive or electronic
parts). Therefore, the amounts and composition of plastic
waste do not correspond to consumption. Thus, in 2018,
from a total of 29.1 million tonnes of collected plastic post-
consumer waste, over 61% was packaging waste, although
packaging production accounts for 40% of polymers con-
sumption (European Plastics 2019).

Even though polymer waste represents a major problem,
until recently there was no dedicated legislative framework
on the EU level, and this problem has been only indirectly
addressed through non-specific waste legislation. Also, dur-
ing the years EU put emphasis only on material recovery,
while energy recovery of waste is neglected. Because of that,
energy recovery technologies have been looked upon mainly
from the aspect of mixed waste with the exception of bio-
waste. This led to problems with insufficiently elaborated
classifications of waste recovery technologies where legis-
lation does not make difference between different thermo-
chemical recovery technologies. This problem is especially
pronounced in the case of plastic waste management (WM),
especially nowadays the EU put stricter control on plastic
waste exports and completely banned exports to non-OECD
countries (EP 2020). When all of this is looked at from the
plastic WM aspect, where recycling capacity is capped at
30% of production (on a level of 8.5 million tons per year)
(Waste Management World 2021), the importance of energy
recovery technologies is much more emphasized.

Due to this, this research provides an important contribu-
tion by evaluating the environmental impacts of emerging
thermochemical technologies for plastic waste valorization,
i.e. pyrolysis and gasification, from the points of view of the
most actual legislation defined targets, and comparing them
with legislatively recognized technologies, with a goal of the
revision of the current technology classification and creation
of a more sustainable framework. Results of this study could
help in reduction in resource use and imports, decupling
prices of petrochemical products and plastic from the oil
price, and decrease environmental impacts which leads to
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increase in sustainability from an environmental, economic,
and political point of view.

Waste recovery and wider sustainability agenda

The EU principles for MSW management were defined
by the Waste Framework Directive (2008/98/EC) through
the waste hierarchy and recovery goals which need to be
met by 2020. Further along, the New Waste Package (EP
2018) increased targets for MSW reuse and recycling (55%
by 2025, 60% by 2030, and 65% by 2035), MSW disposal
(max. 10% by 2035), and packaging waste recycling (70% by
2030), as well ban landfilling of separately collected wastes
and recyclable/recoverable wastes (from 2030).

One of the waste categories that had a separate legislative
framework for many years now is packaging waste—from
1985 and the Directive on containers of liquids for human
consumption (85/339/EEC). Over the years, packaging-
related guidelines have been adapted to ensure greater envi-
ronmental protection and set minimum recovery rates, which
included incineration, for overall packaging waste, with spe-
cific targets by different materials. Based on a review of
waste legislation conducted in 2014, EC revised the Direc-
tive on Packaging and Packaging Waste (2015/720) and
defined measures for the reduction of the consumption of
lightweight plastic bags with a thickness below 50 microns.
The latest amendment from 2018 under the Waste Package
(EP 2018) raised the packaging recycling target to 70% by
2030, with specific targets per material, whereas for plastics
it is set to 55% by 2030 (50% by 2025).

Although the packaging and MSW legislations partially
covered the plastic WM, only in recent years, it has been
actively addressed. European Strategy for Plastics in a
Circular Economy (EC 2018a) from 2018 seeks to change
how plastic products are designed, manufactured, used, and
recycled. Sorting and recycling capacities are to increase
fourfold from 2015 to 2030, exports of poorly sorted plastic
waste are to be phased out, all plastic packaging needs to
be recyclable by 2030, and the use of single-use plastic and
microplastics need to be limited. Directive (EU) 2019/904
on the reduction of the impact of certain plastic products on
the environment bans disposable plastic products from the
market where alternatives are readily available and afford-
able and limits the use of other plastic products. Targets
of 90% separate collection of plastic bottles by 2029 (77%
by 2025), 25% share of recycled plastics in PET bottles by
2025, and 30% in all plastic bottles by 2030 were defined.

WM legislation is a constituent part of wider legislation
packages that have a goal of solving the problem of energy
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and material scarcity in Europe, which at the same time rep-
resents economic, political, and security problem of the EU
(Tomi¢ and Schneider 2020). Energy scarcity, especially fos-
sil fuels scarcity, and climate change problems are tackled
within the same legislation frameworks—the 2020 Climate
and Energy Package (EC 2008a) and the 2030 Climate and
Energy Framework (EC 2014) whose goals are in line with
the Roadmap for moving to a competitive low-carbon econ-
omy in 2050 (EC 2011a), the Transport White Paper (EC
2011b), and the Energy Roadmap 2050 (EC 2011c). This
path includes GHG emissions reduction of 80% by 2050
(compared to 1990)—transport sector emissions reduction
by 60% by 2050 using biofuels and electrification, the power
sector should become carbon neutral and heating should
be based on renewable electricity or low-emission source.
These goals are not specifically connected to EU legislation,
as CO, emissions mitigation is also part Clean Development
Mechanism of the Kyoto Protocol and the United Nations
Framework Convention on Climate Change (UNFCCC)
(Alizadeh et al. 2014). Along with this path, Heat Roadmap
Europe (Persson et al. 2014) classifies waste as the primary
district heating heat source. On the other hand, material
scarcity is tackled through the Raw Materials Initiative (EC
2008b) and the Flagship Initiative for a Resource Efficient
Europe (EC 2011d) which outlines the transformation of the
EU economy into a sustainable one till 2050. It emphasizes
the importance of decoupling resource consumption (mate-
rial and energy) and environmental impact from economic
growth. Resource Efficient Europe (EEA 2019) strategy aims
for a reduction in raw material consumption, an increase in
security of supply, support combat against climate change,
and limits the environmental impact associated with the
exploitation of resources. On this path, the “transformation
within a generation—in energy, industry, agriculture, fish-
eries, and transport systems” is outlined in the Roadmap
to a Resource Efficient Europe (EEA 2019) and Circular
Economy (EP 2018) is emphasized as the best concept for
this transformation. All these plans and aspirations are con-
cise under the Circular Economy strategy and the European
Green Deal with initiatives that cover the entire life cycle of
products, aiming to ensure that the used resources are kept
within the EU economy for as long as possible, and striving
to establish climate-neutral Europe.

As it can be seen, EU waste legislation put emphasis on
material recovery (i.e. recycling) while energy recovery is
subordinate to it and/or clearly neglected. This is not in line
with findings presented in previous publications where it
is found that implementation of thermolysis-based energy
recovery technologies, besides mechanical recycling, is
technically and energetically feasible (Mastellone 2019),
and that, next to material recovery, energy recovery also
represents an important link in the circular economy (Tomié
and Schneider 2022). Thus, material and energy recovery

complement each other. Also, EU legislation does not dif-
ferentiate waste recovery outside of binary classification
on material and energy recovery (except anaerobic diges-
tion), and the only well-defined energy recovery technol-
ogy is waste incineration (Tomi¢ and Schneider 2018). In
this context, SUSCHEM (2018) provided an insight into
the (thermo)chemical recycling of waste plastics. Post-con-
sumer plastic waste contains impurities and additives (e.g.
pigments, paints, and fabric softeners) and other materials
(e.g. cellulose, aluminium, and lead), and despite precise
selection and separation the polymer materials that enter
mechanical recycling are made up of a different mixture of
polymers which affects the value and restricts potential use
of the recycled material (Ragaert et al. 2020). Also, there
is a problem with the quality of the multiple times recycled
materials. Other solutions such as thermochemical recycling
can be applied to a wide variety of plastic wastes that are not
suitable for mechanical recycling and can be the most appro-
priate recovery technique for mixed plastic waste (MPW).
While it can also be sensitive to contaminants of batches
with macroscopic contaminants (metal parts, minerals,
etc.) and chemicals (chlorine, oxygen, and nitrogen), thus
separation of feedstock must be carried out, it is much less
sensitive to mixing of different polymers and the majority of
contamination-related problems can be solved through the
use of catalysts and purification of semi-products/products.
Also, mechanical recycling limitations, due to the increase
of residues with each new cycle, do not apply to (thermo)
chemical recycling (Business Europe 2019). Thus, it repre-
sents an option for recycling of mixed and multi-layered, as
such, it is complementary to mechanical recycling, and from
a life cycle standpoint represents a more viable alternative
to incineration and disposal.

Products of alternative thermochemical conversion pro-
cesses, such as pyrolysis and gasification, can be used as
raw materials for fuels, chemicals, and materials produc-
tion, thereby reducing dependence on petroleum products
as well as environmental impact. This helps in decupling
prices of petrochemical products and plastic from the oil
price, which is in line with EU legislation. However, in the
EC document Best Available Techniques (BAT) for waste
incineration (EC 2018b), these technologies are listed under
alternative technologies for thermal waste treatment and
therefore are classified as waste incineration technologies,
even though their products can be used as feedstock material
in a wide range of production processes. Considering that in
EU categorizes anaerobic digestion as recycling, due to the
production of compost-like digestate, the classification of
alternative thermochemical conversion technologies into the
category of recycling should be considered, or it should be
otherwise differentiated from waste incineration. Although
the EU is very slow when it comes to legislation changes,
EU waste legislation already has integrated mechanisms that
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can circumvent the strict regulatory implementations. Like
ones in the Waste Framework Directive, which defines that
potential deviations from the waste hierarchy, which under-
lies overall EU waste legislation, can be justified through
considerations that include impacts on the level of the whole
life cycle. Therefore, the same approach can be used to dif-
ferentiate particular technologies. Based on these two prem-
ises, the hypothesis of this research is formed and states that
by using a legislatively recognized approach and analysing
technologies through an approach that includes considera-
tions of impacts on the level of the whole life cycle, compre-
hensive and legislatively meaningful results can be obtained
and used for substantiating possible legislation changes.

Literature review and research objective

Due to importance of “closing the loop”, benefits of WM
and recovery were analysed from many angles, from sepa-
rate collection (Schneider et al. 2021) reuse of wastes (Aydin
et al. 2017), chemical recycling (Huang et al. 2022), ther-
mochemical recovery (Ongen 2016; Kremer et al. 2021,
2022; Siwal et al. 2021), to energy recovery via incineration
(Tomi¢ et al. 2017; Jadhao et al. 2017; Matak et al. 2021).
But, when the sustainability of WM is considered, it needs
to be analysed at the level of the overall life cycle and is
most often conducted through life cycle assessment (LCA),
which is a standardized scientific method for assessing life
cycle impacts whose framework was adopted through the
ISO 14040 and 14,044:2066 standards. Thus, LCA can be
used in line with the propositions of the Waste Framework
Directive. In addition, the EC emphasized the importance
of LCA and classified it as “the best framework for assess-
ing the potential environmental impacts” (Lima et al. 2018).
Therefore, over the past two decades, many LCA of MSW
WM systems have been conducted (Istrate et al. 2020), but
if the search is limited to recent plastic waste-focused ones,
the number of publications is much lower.

Aryan et al. (2019) conducted an LCA of landfilling,
recycling, and incineration of PE and PET waste in India
using the University of Leiden CML method is conducted.
The environmental and economic impacts of recycling,
incineration, and landfilling as end-of-life management
options for HDPE products were compared using the Eco-
Indicator 99 (EI99) LCIA method by Simdes et al. (2014).
Environmental impact analyses of post-consumer and indus-
trial PLA waste mechanical recycling, chemical recycling
as well as thermal treatment were conducted by Maga et al.
(2019) and reported results of 11 arbitrary selected mid-
point ReCiPe impact categories and the Cumulative Energy
Demand (CED) method. Zhang et al. (2020) conducted an
LCA and life cycle cost (LCC) analysis of recycling of PET
and production of blankets using the Shandong University
SDU method and reported results for all 15 midpoint impact
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categories. Nakem et al. (2016) used CML and Eco-indicator
99 methods to assess global warming potential (GWP) and
energy use in PVC WM. As can be seen, all these research-
ers focus on only specific, separate, monopolymers recov-
ery, which is the best possible scenario when polymer waste
recovery is analysed.

Cascone et al. (2020) analysed plastic granule produc-
tion from greenhouse covering films through footprint and
CED analyses. Ahamed et al. (2020) conducted an LCA
of pyrolysis of flexible plastic packaging with pyrolytic
oil and nanotubes production and reported on 8 selected
ReCiPe midpoint categories. Hou et al. (2018) presented
complete BEES method results and compared the environ-
mental impacts of incineration and landfilling as end-of-
life treatments for plastic films. Horodytska et al. (2020)
used the IMPACT 2002 + method for printed plastic films
recycling environmental assessment (upcycling and down-
cycling) and compared it to incineration. Lin et al. (2022)
analysed the environmental impacts of treatment and recy-
cling of express delivery packaging waste via C-footprint
assessment. Beigbeder et al. (2019) analysed end-of-life
scenarios (mechanical recycling, incineration, and indus-
trial composting) of polymer (PP and PLA) biocomposites
using arbitrary selected 6 midpoint ReCiPe categories. La
Rosa et al. (2021) used ReCiPe endpoint and CED results for
environmental assessment reporting on chemical recycling
of carbon fibre thermosets for the production of thermoplas-
tic composites and compared open and closed-loop scenario
results. These researchers analysed the treatment of specific
polymer wastes, and obtained results were compared with
results for only a minority of available alternative recovery
technologies.

Less specific plastics waste streams analyses are even less
represented, especially when treatments in different tech-
nologies are compared. Thus, Khoo (2019) used the ReCiPe
method for reporting climate change, terrestrial acidification,
and particulate matter formation results and compared MPW
recovery systems consisting of a mix of technologies for
energy recovery (thermal treatment with electricity genera-
tion, gasification with ethanol production, and pyrolysis with
diesel production), but only specific scenarios are analysed
without analyses of the influence of alternative products
production. Gear et al. (2018) used the CML method for
designing MPW thermal cracking process, and compared
different system configurations results with incineration and
landfilling results, but this is a more specific application of
LCA. Cossu et al. (2017) analysed different technologies for
the treatment of residual waste from plastic waste separa-
tion using the EASYWASTE model. In that case, analysed
the waste stream consisted of 57% of plastic (where the
rest are metals (27%), textiles (3%), and bio-waste (13%)),
while analysed technologies are incineration in different
plants (including the substitution of coal in cement kiln),
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gasification, and landfilling. While reviewed research ana-
lysed substitution of primary fuel in cement kiln as a treat-
ment option, related changes in emissions were neglected.
Also, Benavides et al. (2017) analysed fuel production via
gasification of non-recycled plastic waste using the GREET
model. In this research, the consumption of fossil energy and
water is tracked as well as greenhouse gasses production,
but only from one technology. Jeswani et al. (2021) com-
pared environmental impacts of households’ MPW chemical
recycling and energy recovery via pyrolysis using arbitrar-
ily selected midpoint indicators from two different impact
assessment methods (Environmental Footprint and ReCiPe).
As it can be seen, these publications analyse the treatment/
recovery of MPW or (in majority) plastic containing waste
streams, but compare them with only arbitrary selected
technologies/scenarios or ignore some of the problems con-
nected with modelling of analysed solutions, as well as pos-
sible alternative products.

In many cases, simpler and more practical forms of life
cycle-based analyses should be used instead of complete,
comparative, LCA of systems and technologies (Petrov
2007), which also represent an important mean to overcome
prejudice about the complexity of LCA as well as the dif-
ficulty in understanding the obtained results by a broader
group of people as well as decision-makers. In this con-
text, energy indicators are used in a wide range of activi-
ties (Huijbregts et al. 2010; Arvidsson et al. 2012; Scipi-
oni et al. 2013) to identify possible areas for improving
production performance or to compare different scenarios
during decision-making. Also, Bueno et al. (2015) con-
cluded that “comparisons of alternative systems in terms of
direct energy recovery or direct material recovery should be
avoided in favour of other indicators already proposed in the
LCA framework, such as the CED category from Ecoinvent,
or the global warming potential and the Abiotic Resources
Depletion categories from the CML 2001 method”. This is
based on the properties of those methods, which allow com-
parison of life cycles of very different systems that encom-
pass energy as well as material flows of a very different
nature that are not directly comparable nor can be directly
substituted with each other.

CED is an energy-based LCA indicator (Rohrlich et al.
2000) that is quantitative and captures all energy flows
which affect the overall life cycle (Huijbregts et al. 2006).
It is also an intermediary for environmental impact assess-
ment, correlates with more complex single score impact
assessment methods (Mert et al. 2017), gives convergent
results with other indicators (such as Ecological Footprint,
Cumulative Exergy Extraction in the Natural Environment,
Climate Footprint, Ecological Scarcity, and Eco-Indicator),
and provides a comparable ranking of impacts (Huijbregts
et al. 2010). For this reason, CED is used for selecting a
more environmentally friendly alternative (Penny et al.

2013), evaluating the results of overall LCA (Rohrlich et al.
2000), constructing economy-sustainability connection of
WM systems (Tomi¢ et al. 2022), and represents an appro-
priate decision-making tool (Giugliano et al. 2011). Thus,
in WM analyses CED was used for sustainability analysis
of energy recovery of waste through energy return indica-
tor (Tomi¢ and Schnieder 2017), comparison of municipal
WM systems in two towns (Kaufman et al. 2010), and was
reported next to CML 2001 results for comparison of dif-
ferent WM practices (Giugliano et al. 2011). Very few pub-
lications used CED as an indicator in plastic waste recovery
sustainability assessments (Antelava et al. 2019), and only
three more recent publications in this field are found—CED
results were reported next to Carbon and Water Footprints
for energy and environmental assessment of material recov-
ery of greenhouse covering films (Cascone et al. 2020), as
well as next to ReCiPe results for the analysis of recycling
and incineration of waste PLA (Maga et al. 2019) and for
environmental assessment of chemical recycling of carbon
fibre thermosets for production of carbon fibre thermo-
plastic composites (La Rosa et al. 2021). Thus, it can be
seen that there is a lack of publications that use CED, as a
proven decision-making tool, in MPW management/recov-
ery assessments. This research gap has also been addressed
through the presented research.

As it can be seen, while many studies analysed energy
recovery of plastic waste from the life cycle perspective,
there is a lack of recent studies which are not focused on
the specific type of polymers and analyse MPW, especially
from an energy recovery perspective. This is even more
pronounced from decision-making point of view where a
clear lack of comparisons of all applicable technologies can
be seen. Also, no previous study has been found to take
into account legislative goals in the analysis of the sustain-
ability of the plastic waste recovery, and the majority of
reviewed studies report results on all impact category indica-
tors within selected impact assessment method, or on only
arbitrary selected ones, without any importance assessments
or applicable reasoning. It is important to emphasize these
research gaps as EC recognized LCA as a tool that could
be used for the elaboration of non-compliance with legis-
lative determinants and thus could be also used as a tool
for guiding the changes within the EU legislation. Thus,
this research makes a step forward in closing the identi-
fied research gaps by conducting LCA-based comparison
of alternative thermochemical recovery technologies, tak-
ing into account different marketable products that can
be produced, and other commonly used technologies for
recovery and disposal of MPW through impact indicators
which results can be directly connected with specific EU
goals in the field of sustainable development. This is done
to re-examine the actual industry’s views, plastics strategy,
and existing stances towards the alternative technologies
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for thermochemical recovery of plastic waste, thereby sub-
stantiating possible changes in the classification of par-
ticular technologies within the WM hierarchy, best avail-
able techniques reference document for waste incineration,
and broader EU waste legislation. Results of this analysis
can provide a levelized assessment of environmental and
resource sustainability for dedicated and not-dedicated tech-
nologies for MPW recovery in the areas which are empha-
sized as the most important by EU legislation and previously
published research, and can give an answer to the following
research question: can alternative thermochemical conver-
sion technologies be better option regarding MPW recov-
ery in the overall sustainable and circular economy oriented
development. Based on provided answers, current views on
individual thermochemical recovery technologies may be
re-examined.

Methods

This research is comparing the environmental impacts of
the two most recognized alternative technologies for ther-
mochemical conversion of mixed polymer waste, i.e. gasifi-
cation and pyrolysis, with the most commonly used energy
recovery and disposal technologies. The results of this
research do not include a comparison with material recov-
ery/recycling technologies because this research puts focus
on mixed polymer wastes treatment and does not want to
question the position of recycling in the waste hierarchy.

Goal and scope definition

The goal of this research is to use LCA as a legislatively
recognized tool to assess the environmental sustainability
of differentiation of waste recovery technologies which are
by EU legislation classified in the same category, i.e. ther-
mal treatment technologies. Even though the results of this
analysis are used to question a part of the EU legislative
framework, to reduce the level of aggregation and number
of assumptions due to geographical variability, case studies
are developed on the basis of the capital city of the new-
est EU member state (City of Zagreb, Croatia). Croatia
became an EU member in 2013, and, since then, imple-
mented many changes in its legislature as well in the WM
system to meet EU goals (Luttenberger 2020). Today, the
majority of municipal plastic waste is collected as a part of
separate packaging waste collection system (Fig. 1). Pack-
aging waste composition is analysed based on 12 samples
collected during one day in October of 2019 from different
trucks which have collected packaging waste from different
parts of the town. Around 120 kg of sampled waste was
then homogenized and quartered until the final sample of
7.4 kg was obtained for separation and composition analysis.
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Separation and composition analysis is done by manual sep-
aration using Resin Identification Code (RIC) system labels,
through examination of material properties (physical proper-
ties, melting range, flame tests, and gravity tests).

LCI datasets, that describe analysed WM technologies,
are modelled to represent average technology data for cor-
responding plants for the treatment of one tonne of collected
mixed packaging waste of similar properties as one collected
in the City of Zagreb, while background processes are mod-
elled through local market activities as described in Ecoin-
vent database.

LCA is designed per ISO 14044 standard as cradle-
to-grave analysis, and ecomaps all activities needed for
treatment of generated plastic waste which is separately
collected, starting from its generation through collection/
transport, pretreatment (i.e. separation, drying, and shred-
ding), and final treatment, which is important to reassess the
classification of particular thermochemical recovery tech-
nologies from an environmental sustainability standpoint.
Due to emphasis on the comparison of technologies for
recovery of MPW fraction, analysed systems are made only
of essential components to implement analysed technolo-
gies so that their influence on results is minimal, and one
tonne of collected waste is used as a functional unit. Thus,
only separately collected waste recovery is looked upon and
connection to local mixed MSW management system is not
modelled.

Analysed systems and boundaries of the systems

Seven different treatment technologies for MPW were
analysed and compared—gasification with electricity and
ethanol production (a), pyrolysis with emphasis put on oil
production (b), incineration with electricity and combined
heat and power (CHP) production (c), thermal treatment via
co-incineration in the cement kiln (d), and landfilling (e).
System boundaries encompass main treatment technologies,
collection, and pre-treatment if needed—Fig. 2.

0.6% 1.3%
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PP

PS

PET
m Mixed polymers
= Multylayer packhaging
= Mixed materials
m Paper
m Metals
m Tiney residues
m |[norganic waste

2.3%

&\

16.6%

Fig.1 Composition of separately collected packaging waste in the
City of Zagreb
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Fig.2 Boundaries of the analysed systems

Thus, LCA of gasification and pyrolysis encompasses the
waste collection, sorting, drying, and shredding of MPW
before the main recovery technology. Commonly used
technologies such as incineration and disposal usually treat
MPW together with other types of wastes (i.e. as it is col-
lected) and pretreatment is not needed, or it is a part of the
final treatment plant, as in the case of incineration where
separation of metals is done in incineration facility. Regard-
ing co-incineration in cement kiln, because these kinds of
plants have strict requirements regarding quality and compo-
sition, the collected waste is also sorted, dried, and shredded
before use. Gasification can be also used for the treatment
of mixed waste, but in this case, this treatment option will
not be analysed.

LCA system modelling and uncertainty analysis is done
using OpenLCA 1.8.0. software with Ecoinvent 3.5 LCI
database where datasets are used for modelling background
processes and markets. For final data analysis and presenta-
tion of results, Microsoft Excel is used.

* substitution of consumption

Life cycle inventory (LCI)

Ecoinvent datasets ecomap all known input—output data as
data providers allow; thus, it does not incorporate quantita-
tive cut-off criteria (Weidema et al. 2013). To enable consist-
ency, this approach is also applied when using literature data
for the creation of inventory datasets; thus, this analysis does
not have defined quantitative cut-off criteria. Regarding the
possible problems which can arise with using different data
sources for technology modelling (Suh et al. 2016), while
some of them are avoided by incorporation of all known
data in LCI datasets, others are addressed by adaptation to
local conditions and matching flows with corresponding
local market activities in the Ecoinvent database. Through
this, and through averaging of collected datasets, possible
problems connected with the use of location-dependent data
from different sources, have been also addressed.

Used Ecoinvent database represents one of the biggest
commercial LCI databases, and includes average datasets
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for all common WM technologies like MPW incineration
and waste disposal, but it does not recognize not-so-widely
implemented thermochemical conversion technologies like
gasification or pyrolysis. To model those technologies,
input—output data for plastic waste gasification and pyrolysis
technologies are sourced from an extensive literature review,
and data for 43 different plants are shown in Tables A1, A2,
A3, and A4 in Appendix. To model the average technology
life cycle inventory (LCI) (input—output) dataset, all avail-
able data for analysed technology are gathered and final
datasets are modelled using average values of significant
flows for the same type of technologies.

While basic pyrolysis processes produce pyrolytic oil,
synthetic gas, and char, some of the plants from the tech-
nology review have in-house post-processing in a form of
fractional distillation for the production of different fuels—
Tables Al and A2. To circumvent these differences, final
LCI datasets modelled pyrolysis without any post-process-
ing, and, to simplify modelling and analysis, produced pyro-
lytic oil has been marketed as petroleum (oil) due to similar
properties and use options. As it can be seen from the gasifi-
cation technology review results (Tables A3 and A4), itis a
most common practice to use produced synthetic gas, which
is the main product of the plant, to locally generate electric-
ity. The second most common transformation of synthetic
gas is its use for ethanol production which is modelled by
(Haig et al. 2013).

Based on literature review data and previous elaborations,
average technology LCI datasets for thermic gasification of
plastic waste in fluidized bed reactor with electricity gen-
eration and catalytic pyrolysis with pyrolytic oil production
are modelled (Tables 1 and 2), and the differential dataset
for ethanol production, which shows the difference between
gasification with electricity production LCI dataset and the
ethanol producing one, is presented in Table 3.

As presented LCI datasets are based on datasets that cover
input—output flows of tens of actual plants, it was possible to
calculate confidence intervals for the inventory data. As spe-
cific input—output data cannot be negative, for probabilistic
design lognormal distribution is assumed and the geometric
standard deviation is calculated as a measure of dispersion
analogously to the geometric mean of the corresponding
technology data reported in the Appendix.

LCI dataset for pre-treatment is also adapted from the
literature (Arena et al. 2003) (Table 4), while the waste col-
lection is modelled based on collection and transport service
data (Spielmann et al. 2007) and Ecoinvent data for waste
collection with a 21-ton lorry (Table 5).

As in most cases, plastic waste is incinerated in grate
incinerators together with MSW or as unrecyclable plastic
waste or refuse-derived fuel (RDF). Because of that, incin-
eration technology is modelled as incineration of MPW
in an average MSW grate incinerator with an electrostatic
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precipitator based on the existing Ecoinvent LCI unit process
(UPR) dataset, and the production of heat and electricity
has been adapted through a review of data on existing waste
incinerators (ISWA 2017; Tomic¢ et al. 2016). Landfilling
of plastic waste is modelled as regulated MSW landfill, as
plastic waste is landfilled as a part of the MSW stream, and
average (representative) technology is modelled based on
data from the used LCI database data.

Cement kilns are also used for the final treatment of
many types of burnable wastes that meet certain require-
ments (Rahman et al. 2013). This makes sense because the
replacement of primary fuel enables savings of up to 50 €/t
(EcoMondis 2018). In available LCI datasets, a cement Kiln
is defined as a facility whose main fuels are hard coal and
petroleum coke, and its substitution with MPW needs to be
modelled. To do this, changes in direct emissions due to
co-incineration of MPW are modelled on the basis of stoi-
chiometric calculations and laboratory data (Asamany et al.
2017). These data are obtained from the analysis of changes
in emissions of NO,, CO,, H,0, SO,, volatile organic
compounds (VOC), particulate matter (PM) <2.5 pum,
PM > 2.5 pm, and ash production, due to the substitution
of coal/coke fuel (1:1 mixture of coal and petroleum coke
by mass) with plastic waste materials—plastic contain-
ers, films, expanded polystyrene (EPS), Construction and
Demolition (C&D) sourced plastics and textiles. It is found
that coal/coke substitution with plastic waste, based on the
same energy input, can reduce emissions of NO, by up to
79%, CO, by up to 34%, SO, by up to 9%, PM <2.5 um by
up to 14%, PM > 2.5 um by up to 77%, and increase H20
emissions in air by 194%. Even though VOC emissions are
also analysed, because there were no comparative results for
the substituted fuel obtained in the same laboratory condi-
tions, these results are not taken into account. Changes in all
other emissions and their confidence intervals are also not
taken into account. Based on these calculations, the Ecoin-
vent clinker production dataset is adapted to correspond to
20% of coal/coke fuel mixture substitution by plastic waste
mixture, while substitution of emissions is done by sup-
plied energy equivalent. The derived LCI dataset is shown
in Table 6.

The inputs and outputs of the respective technologies are
connected with the outputs of other activities from the used
database and in a majority of cases market activities (i.e.
with LCI datasets for local market activities for particular
materials, energy vectors, and/or services). Market activi-
ties datasets represent a market mix of all activities with
the same reference product in a particular area and include
the impacts of all the activities that precede the use of an
individual product in a specific location (including produc-
tion, transportation, processing, and transformation), thus
representing the average market data for the particular geo-
graphic area.
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Table 1 LCI dataset for gasification with electricity production

Flow Unit Value Gy
Input Input* Waste plastic, mixture t 1.000 1.000
Energy consumption Electricity, medium voltage kWh 524.287 1.620
Other inputs Oxygen kg 1170.461 1.128
Zeolite, powder kg 53.500 1.000
Diesel 1 0.209 1.000
Sodium hydroxide, without water, in 50% solution state kg 5.000 1.000
Activated carbon, granular kg 0.500 1.011
Feldspar 1 0.417 1.000
Heat kWh 146.377 2.089
Water, turbine use, unspecified natural origin 1 5591.360 1.969
Lime, hydrated, loose weight kg 6.469 1.008
Additional fuel: Natural gas, high pressure kWh 1560.000 1.000
Output Energy products Electricity, medium voltage kWh 1267.587 1.459
Steam kg 2210.871 1.876
Material by-products Refinery gas kg 214.000 1.000
Sulphur kg 1.500 1.000
Salt tailing kg 5.500 1.000
Ground granulated blast furnace slag kg 112.000 1.000
Other: Char, for disposal kg 148.660 1.000
Blast furnace slag kg 7.942 3.653
Coal tar kg 141.500 1.000
Process-specific burdens, residual material landfill kg 44.462 2.665
Waste zeolite kg 1.695 1.000
Fly ash and scrubber sludge kg 92.822 2.131
Refinery sludge kg 22.500 1.008
Process-specific burden, sanitary landfill kg 6.500 1.000
Output Emissions in air: Particulates, >2.5 um. and < 10um kg 6.802E-02  3.618
Particulates, <2.5 um kg 3.841E-02  2.425
Carbon dioxide kg 1899.1783 2.631
Methane kg 0.4725 3.220
Hydrogen chloride kg 2.947E-02  2.184
Sulphur dioxide kg 1.142E-01 1.657
Sulphur oxides kg 1.010E-01 1.028
Dinitrogen monoxide kg 9.900E-02  4.052
Nitrogen oxides kg 7.154E-02  1.146
Carbon monoxide kg 3.975E-01 3.371
Mercury kg 9.696E-07  1.738
Cadmium kg 4.807E-06  3.557
Lead kg 1.607E-03  4.559
VOC, volatile organic compounds kg 2.350E-01 4.457
Hazardous Air Pollutants (HAPs), unspecified kg 5.000E-02 1.000
Ammonia kg 3.350E-05 1.039
Dioxins and furans, unspecified kg 5.981E-12 1.299
Acetaldehyde kg 0.030 1.000
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Table 1 (continued)

Flow Unit Value Gy
NMVOC, Non-methane volatile organic compounds kg 0.100 1.000
Antimony kg 6.562E-04  4.023
Arsenic kg 9.594E-07 1.390
Titanium kg 2.591E-06  1.270
Chromium kg 5.412E-04  2.608
Iron kg 2.514E-03  1.876
Copper kg 3.322E-03  2.985
Zinc kg 6.250E-05  1.000
Emissions in water: Wastewater kg 6077.150 2.578
Table 2 LCI dataset for pyrolysis
Flow Unit Value Gy
Input Input* Waste plastic, mixture t 1.000 1.000
Energy consumption: Electricity, medium voltage kWh 283.215 3.554
Other: Zeolite, powder kg 21.346 2.258
Water, turbine use, unspecified natural origin 1 1587.770 3.847
Additional fuel: Natural gas, high pressure MWh 0.431 2.050
Output Energy products: Synthetic gas MWh 0.065 1.000
Pyrolytic oil kg 708.653 1.140
Pyrolytic gas kg 142.608 1.523
Other: Char, for disposal kg 77.805 1.351
Process-specific burdens, residual material landfill kg 128.117 1.602
Waste zeolite kg 15.050 2.175
Process-specific burden, sanitary landfill kg 15.627 3.544
Hazardous waste, for incineration kg 23.000 2.470
Wastewater, average 1 613.754 4.797
Emissions in air: Particulates, > 2.5 um, and < 10um kg 0.078 3.742
Carbon dioxide kg 401.445 1.328
Hydrogen chloride kg 1.500E-04 1.000
Hydrocarbons, unspecified kg 2.058 1.452
Sulphur dioxide kg 0.045 4.129
Dinitrogen monoxide kg 0.459 1.563
Nitrogen oxides kg 0.583 3.144
Carbon monoxide kg 0.482 2.013
Mercury kg 1.764E-11 1.000
Lead kg 5.050E-03 2.595
VOC, volatile organic compounds kg 0.273 4.747
Ammonia kg 5.500E-03 1.138
Life cycle impact assessment (LCIA). the current classification of energy recovery technologies.

However, this research wants to assess the compatibility of ~ Because of it, the choice of LCIA indicators is steered by
analysed technologies with EU legislation goals and challenge ~ findings of an overview of actual legislation frameworks
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Table 3 Gasification with Flow Unit Value 5
ethanol production— g
Differential LCI dataset Input Other inputs Water, turbine use, unspecified kg +5322.000 1.969
natural origin
Energy consumption Heat kWh +800.000 2.089
Output Production Ethanol kg 584.000 1.667
Reactor off-gas kWh 1900.000 1.000
Electricity medium voltage kWh - 1454.760 1.620
Other Wastewater, average kg +5195.000 2.578
Table 4 LCI dataset for waste Flow Unit Value 5
pre-treatment g
Input Input* Waste plastic mixture, unsorted, t 1.730 1.000
from collection service
Energy consumption Diesel kg 1.4E-3 1.105
Electricity, medium voltage kWh 0.284 3.554
Output Output Plastic waste mixture, sorted kg 1.29 1.000
Residues Municipal solid waste kg 0.435 1.000
Table 5 LCI dataset for collection
Flow Unit Value G,
Input Energy consumption Diesel kg 0.336 1.105
Other inputs Road m-a 0.00064 1.000
Waste collection lorry, 21 metric ton items 4.520E-7 1.000
Output Product* Municipal waste collection service by 21 metric ton lorry t-km 1 1.000
Emissions in air Ammonia kg 7.95E-6 1.221
Benzene kg 6.77E-5 1.221
Cadmium kg 4.480E-09 2.253
Carbon dioxide, fossil kg 1.060 1.000
Carbon monoxide, fossil kg 2.730E-3 2.239
Chromium kg 1.690E-08 2.253
Copper kg 5.710E-7 2.253
Dinitrogen monoxide kg 5.250E-5 1.221
Lead kg 4.870E-09 2.253
Methane, fossil kg 8.460E-5 1.221
Nickel kg 2.350E-08 2.253
Nitrogen oxides kg 7.58E-3 1.221
NMVOC, non-methane volatile organic compounds kg 3.450E-3 2.253
Particulates, <2.5 um kg 6.150E-4 1.221
Particulates, > 10 um kg 1.750E-4 1.221
Particulates, > 2.5 um, and < 10um kg 1.050E-4 1.414
Selenium kg 3.360E-09 2.253
Sulphur dioxide kg 2.020E-4 1.000
Toluene kg 2.710E-5 1.221
Xylene kg 2.710E-5 1.221
Zinc kg 3.330E-6 2.253
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Table 6 LCI dataset for clinker production with co-incineration of MPW

Flow Unit Value Oy
Input Input* Waste plastic, mixture kg 0.00597015 1.000
Energy consumption Hard coal kg 53.500 1.105
Heavy fuel oil kg 0.209 1.105
Light fuel oil kg 5.000 1.105
Petroleum coke kg 0.417 1.105
Other inputs Ammonia, liquid kg 0.000908 1.105
Bauxite kg 0.00012 1.105
Calcareous marl kg 0.466 1.105
Clay kg 0.331 1.105
Industrial machine, heavy, unspecified kg 0.0000376 1.105
Lime kg 0.841 1.105
Lime, hydrated, loose weight kg 0.00392 1.105
Lubricating oil kg 0.0000471 1.105
Meat and bone meal kg 0.00961 1.105
Refractory, basic, packed kg 0.00019 1.105
Refractory, fireclay, packed kg 0.0000821 1.105
Refractory, high aluminium oxide, packed kg 0.000137 1.105
Sand kg 0.00926 1.105
Steel, chromium steel 18/8, hot rolled kg 0.0000586 1.105
Tap water kg 0.34 1.105
Water, unspecified natural origin m3 0.00162 1.105
Additional fuel: Diesel MJ 524.287 1.105
Electricity, medium voltage kWh 1170.461 1.105
Natural gas, high pressure m’ 0.500 1.105
Output Products: Clinker kg 1.00 1.000
Other outputs: Inert waste, for final disposal kg 0.00008 1.105
Municipal solid waste kg 0.000045 1.105
Output Emissions in air: Ammonia kg 0.0000228 1.105
Antimony kg 0.000000002  1.105
Arsenic kg 0.000000012  1.251
Beryllium kg 0.000000003  1.251
Cadmium kg 0.000000007  1.251
Carbon dioxide, fossil kg 0.829509391 1.105
Carbon dioxide, non-fossil kg 0.014929192  1.105
Carbon monoxide, fossil kg 0.000472 1.105
Chromium kg 1.45E-09 1.251
Chromium VI kg 5.5E-10 1.251
Cobalt kg 0.000000004 1.251
Copper kg 0.000000014  1.251
Dioxins, measured as 2,3,7,8-tetrachlorodibenzo-p-dioxin kg 9.6E-13 1.105
Hydrogen chloride kg 0.00000631 1.251
Lead kg 0.000000085 1.253
Mercury kg 0.000000033  1.251
Methane, fossil kg 0.00000888 1.105
Nickel kg 0.000000005  1.251
Nitrogen oxides kg 0.001003442  1.105
NMVOC, non-methane volatile organic compounds kg 0.0000564 1.105
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Table 6 (continued)

Flow Unit Value Gy
Particulates, <2.5 um kg 2.44245E-05 1.105
Particulates,> 10 um kg 6.07498E-06  1.251
Particulates, > 2.5 um, and < 10um kg 8.50067E-06 1.434
Selenium kg 0.000000002  1.253
Sulphur dioxide kg 0.000328563  1.105
Thallium kg 0.000000013  1.251
Tin kg 0.000000009  1.253
Vanadium kg 0.000000005  1.251
Water m’ 0.000300629  1.105
Zinc kg 0.00000006 1.251
Emissions in water: Wastewater m’ 0.001666 1.221

regarding WM but also regarding the sustainable development
of the entire European economy, as well as findings gathered
through literature review in the field of WM and recovery
(analyses, comparisons, and decision-making), which are pro-
vided as a part of the Introduction section. EC emphasized the
importance of assessments on the level of the whole life cycle,
especially LCA. Because of this, in this research, the CML
baseline 2001 problem-oriented impact assessment charac-
terization method is used for conducting overall LCA, which
belongs to a group of problem-oriented approaches (mid-point
categories) that are used for environmental and human impact
assessments (Aryan et al. 2019).

As can be seen from the legislative review, one of the
main EU problems is resource scarcity (material and
energy), which also encompasses waste recovery, and
impact on climate change. Due to this, this research takes
into account three CML mid-point category indicators—
global warming potential (GWP (expressed in kg CO,)),
abiotic resource depletion (ARD (in kg Sbeq)), and acidi-
fication potential (AP (in kg SOZeq)). The first two indi-
cators are chosen as they cover emissions of greenhouse
gasses and depletion of a wide range of earth resources
which is directly connected to EU legislation frameworks.
While the World Health Organisation (WHO) emphasizes
the positive impacts of the circular economy on GHG
emissions, it also comments on the positive influence
on air pollution (WHO 2018). Also, in previous publica-
tions, the importance of reduction of air pollution in the
context of not only EU legislation aiming at improving
environmental sustainability and at carbon neutrality,
but also international agreements such as the Sustainable
Development Goals, Kyoto Protocol, and Paris Climate
Agreement is clearly identified (Torkayesh et al. 2021).

Thus, the last tracked indicator covers the emission of air
pollutants.

GWP accounts for GHG emissions with a time horizon
of 100 years, to account for different release times. It tracks
emissions of CO, from fossil sources only and does not
account for biogenic emissions. ARD assesses the extraction
of metals, minerals, and fossil fuels considering their deple-
tion rate and reserves. AP covers emissions of compounds
with acidification potential—NO,, SO, and ammonia which
are considered the main air pollutants by the National Emis-
sions Ceilings (NEC) Directive (2016/2284/EU).

Previous research identified that comparisons of alterna-
tive systems in terms of direct energy or material recovery
should be avoided in favour of indicators such as CED from
Ecoinvent or GWP and ARD from the CML 2001 method
(Bueno et al. 2015). Also, CED has been identified as a suit-
able sustainability indicator for decision-making in WM sys-
tems (Rohrlich et al. 2000). Because of that, next to CML
2001 category indicators, this analysis also tracks energy
flows (consumption and production) and reports on associ-
ated impacts through CED results.

To assess the combined influence of all input uncertain-
ties and a degree of possible deviations of results, especially
for modelled pyrolysis and gasification technology results,
uncertainty propagations and quantifications, using reported
confidence intervals, are reported. For this Monte Carlo
approach is used, as the most popular approach for obtain-
ing uncertainty analysis results as a part of LCA (Lloyd
and Ries 2007). Normalization and weighting are per ISO
standards defined as optional elements of LCA and were not
performed as a part of this analysis due to the uncertainties
which are associated with the normalization factors calcu-
lations (Heijungs et al. 2007; Hung and Ma 2009) as well
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as because the associated loss of transparency (Reap et al.
2008).

Results and discussion

Based on described methods, environmental impact results
are calculated using OpenLCA 1.8.0. program—Figs. 3, 4
and 5. The allocation of impacts and benefits of production
of secondary material and energy flows (multifunctionality
consideration) was performed using the system expansion
method and production was valued through the avoided con-
sumption of primary products/resources. In interpreting the
results, a negative value indicates the positive effect, and a
higher positive value represents the greater adverse impact.

The worst GWP results can be seen for incineration-based
scenarios and pyrolysis shows the best results, a similar situ-
ation is in the case of ARD with a difference of gasification
with electricity production which here show worse results
than incineration, and on the other hand, incineration with
electricity production shows the best results regarding AP
while all other dedicated waste treatment technologies
lag at least 20% behind it, and pyrolysis shows the lowest

positive impact regarding AP. Co-combustion of MPW in
cement kiln shows overall the best results, being second
only to pyrolysis regarding ARD. The last scenario used for
comparison, landfilling, shows a relatively small negative
impact across all impact analyses which is due to landfilling
of inert material and the majority of the impacts come from
energy and material consumption which are not offset by
any production.

To validate results and compare uncertainties within
newly modelled LCI datasets the Monte Carlo Analysis is
performed which is a sampling-based uncertainty quantify-
ing method, where, to estimate the uncertainty (i.e. prob-
ability distribution of the specific result) the calculation
needs to be repeated a number of times (Helton et al. 2006).
An obtained probability distribution can be then used for
informing decision-makers on characteristics/probability of
obtaining reported results through statistical data. There is
no clear argument on a number of Monte Carlo runs needed
for effective uncertainty analysis, and literature data suggest
from 100 iterations (BIPM 2008) over 2000 (Hongxiang and
Wei 2013) to over 10,000 (Xin 2006). Thus, in this analysis,
Monte Carlo analysis of 10,000 runs is done and statistical
analysis is performed on obtained distributions.
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Following obtained statistical analysis results, 5% Percen-
tile and 95% Percentile results are denoted by correspond-
ing error lines (Figs. 3, 4 and 5) to depict the quality of
assessment and compare uncertainties. It can be seen that
the smallest deviations are obtained for landfill and incin-
eration-based technologies, which can be expected as these
LCI datasets are based on Ecoinvent data. Possible errors
in results for pyrolysis and gasification-based scenarios are
double on average when compared to incineration-based sce-
narios, and the biggest possible errors can be expected with
waste treatment in cement kiln due to the biggest dataset
needed to model this technology. Overall, even though some
scenarios show much bigger dissipation of results, there is a
small chance that it can affect previously drown conclusions
and rankings.
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Fig. 7 Acidification potential—the main contributors

Ethanol

To analyse the main drivers of these results, the contri-
bution of dedicated technologies and markets are shown in
Figs. 6, 7 and 8. To make diagrams more readable, only the
six most significant impacts are shown. Here, the greatest
overall greenhouse gasses (GHG) emissions are associated
with the incineration of MPW with electricity production,
followed by incineration with CHP production. This is
expected due to direct GHG emissions, which represent the
biggest impact, and are only partially offset by energy pro-
duction. Indirect emissions impacts are at least two orders
of magnitude smaller. Gasification-based technologies
show better results than incineration-based ones mainly due
almost 40% smaller direct emissions. Other significant emis-
sions come from catalyst use and heat consumption. These
emissions are partially offset through electricity, steam, and
ethanol productions. Pyrolysis has the best results among
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Fig. 8 Abiotic depletion—the main contributors

all recovery technologies due to the smallest direct emis-
sions which are then partially offset with production, mainly
pyrolysis oil (which can replace petroleum in refineries). On
the other hand, in the case of co-combustion in cement Kiln
which results are not presented in diagrams because values
of influences by each contributor (technology/market) are
not in the same order of magnitude as in other scenarios,
the majority of GHG emissions are direct emissions, and
the majority of emission savings comes from coal and coke
substitution. Other impacts are just a few percent and come
from the consumption of other inputs needed for clinker
production.

Regarding AP, the smallest positive impact of dedicated
recovery technologies is recorded for pyrolysis, as negative
impacts associated mainly with electricity consumption and
catalyst use are marginally smaller than petroleum substi-
tution-connected impacts. For gasification with electricity
production, the biggest negative AP impact is from catalyst
consumption, followed by energy consumption and disposal
of waste products. Gasification direct emissions contribute
only to 10% of emissions compared to catalyst consumption.
Regarding positive influence, the situation is similar to the
case of GWP where ethanol production has a bigger influ-
ence than electricity production. Incineration with electricity
production shows the best results due to the local electricity
mix which has a bigger AP than heat from district heating.
On the other hand, due to modern flue gas filtration, direct
emissions of waste incinerators are only 2.4 times bigger
than those of waste collection services. In the treatment of
MPW in cement kiln, there are similar results on the positive
side, where clinker produced with alternative fuel in mix
offset all acidification-related emissions, but on the nega-
tive side, acidification contribution is more dispersed. Thus,
around 60% of emissions are direct emissions, while the rest
are distributed evenly across heavy fuel oil, electricity, hard
coal, and lime consumptions.
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Pyrolisis

Pyrolysis shows the best ARD results that are directly
connected to the production of pyrolysis oil which is valu-
ated as petroleum substitution and more than makes up for
abiotic depletion due to electricity and catalyst consump-
tion. In the case of gasification with ethanol production,
ethanol and steam market substitution are two main positive
contributors, while negative contributors are catalyst use,
electricity, and heat consumption. In the case of electricity
production, results are worse due to four times lower positive
influence than ethanol substitution on market, regardless of
smaller energy requirements on the input side. Regarding
incineration, the only significant overall impact on ARD
result is due to energy substitution on respective markets,
while all other impacts are at least one order of magnitude
smaller. The cement kiln shows similar results as before
on the impact reducing side, while the main contributors
to resource consumption are fuel and energy consumption
(coal, fuel oil, and electricity).

As can be seen, AP shows different results compared to
the other two impact categories. This is mainly due sub-
stitution of electricity with the average local energy mix
which leads to bigger acidification impact reduction but also
increases burdens associated with non-electricity producing
technologies. Also, a relatively big acidification impact is
associated with catalyst consumption. Direct impacts have
a minor impact here, which cannot be said for the GWP
category where direct emissions generally have the biggest
impact. On the other hand, the ARD impact category only
accounts for material and energy consumption. ARD fac-
tor is based on the state of resources, their reserves, and
exploitation rate, and is expressed in the form of equivalent
of reference resource depletion—antimony depletion. In
this form, this characterization factor accounts for material
depletion and does not include consumption of resources
which overall reserves cannot be estimated, thus neither is
renewable energy accounted for.
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Overall results show that incineration, when compared to
technologies that produce semi-products (ethanol or petro-
leum), shows substantially worse overall results when all
impact categories are looked upon. Deviation of this con-
clusion can be seen in the case of AP where incineration
with electricity production shows the best results. Climate
change results are the most influenced by direct emissions,
because cracking of hydrocarbons leads to GHG emissions,
and avoided emissions cannot compensate because there are
more efficient ways for the production of these products.
The worse situation is with incineration because complete
combustion leads to the biggest emissions on the one side
and avoided emissions from electricity or heat production
are low because these energy vectors can be produced from
many energy sources including renewable ones. Pyrolysis
shows one of the best results, mainly because it has the
smallest direct emissions due to the production of the heav-
ier main product. At the same time, the only technology with
a negative climate change impact is the cement kiln, mainly
due to the type of fuel it substitutes, and reduced CO2 emis-
sions with its substitution. AP results show opposite results
regarding incineration mainly due to efficient flue gas fil-
tration/scrubbing, while avoided impacts are energy mix
dependent. Other thermochemical transformation technolo-
gies have significant negative impacts due to catalyst use and
electricity consumption which pushes even the technology
with the largest avoided impacts (gasification with ethanol

Fig.9 CED results in MJ
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production) to a third place. Similar results regarding nega-
tive impacts can be also seen in the case of ARD but final
results differ due to avoided production associated impacts,
where the biggest ones are due to ethanol and pyrolysis oil/
petroleum production. The market placement of other gasi-
fication and pyrolysis products also leads to substantial posi-
tive environmental impacts.

Another used LCA-based approach is CED assessment
which accounts for the overall consumption of each ana-
lysed chain and displays its contributions in a form of con-
sumed primary energy (PE) equivalent—Fig. 9. Thus, the
CED result accounts for the consumption of all materials
from nature through the energy used for their extraction.
Not only that it looks upon energy use through extraction,
but also through reprocessing, transformation, production,
recovery, and disposal, thus covering the entire life cycle of
products and materials, taking into account renewable, fos-
sil, and nuclear energy consumption. Even though it does
not account for direct contributions it is used for the overall
environmental sustainability assessment of WM and recov-
ery systems.

Regarding PE, gasification with ethanol production gives
the best results, followed by pyrolysis while incineration is
lagging. As can be seen, even though the CED approach
looks into energy and material consumption, its results differ
from ARD results. Why that is can be seen in Fig. 10 which
shows the contribution per type of energy source.
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Fig. 10 Cumulative energy demand results per energy source
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As it can be seen, 16% of overall PE consumption is cov-
ered by renewable energy sources (RES) in the case of incin-
eration with CHP production, 30% in the case of incineration
with electricity production, 9% in the case of gasification
with electricity production, 3% in the case of pyrolysis pro-
duction, and 55% in the case of gasification with ethanol
production. As ARD, per its definition, take into account
resources reserves and exploitation rate, it neglects renew-
able resources, and thus, does not represent overall resource
consumption.

Energy sustainability results calculated through the CED
indicator show that gasification with ethanol production
has the biggest PE return (avoided impacts) of all analysed
recovery technologies, while pyrolysis shows the second-
best result. Worst results are achieved by electricity-gener-
ating technologies, incineration with electricity production,
and gasification with electricity production, due to smaller
energy conversion efficiency. The biggest PE return of gasi-
fication with ethanol production comes from RES, especially
biomass, with over 50% of the overall contribution. In elec-
tricity-generating technologies, the majority of renewable
energy impacts/benefits are directly dependent on RES share
in the electricity mix.

Conclusion

The plastic waste problem is one of the last identified prob-
lems by the EU. Even though the EU is tackling this prob-
lem through general WM legislation, and in the last years
directly through the legislative framework with a goal of
reducing plastic waste generation, problems of plastic are
also alleviated through the circular economy and other leg-
islative frameworks which tend to increase the efficiency of
resource use and increase the sustainability of overall EU
economy. In all of this, the main focus was put on material
recovery and the legislative framework for energy recovery
is not elaborate enough because of which it classifies all
thermochemical conversion technologies in the same cat-
egory as incineration regardless of sustainability results and
what the final products are. This is contrary to other waste
recovery legislation which classifies anaerobic digestion of
bio-waste as material recovery due to one of the products
being a compost-like substance, i.e. not having energy only
production. Because of this, this research analysed the envi-
ronmental, resource, and energy intensity of technologies for
energy recovery of plastic waste with a goal of reviewing
the existing EU legislation technology classification of ther-
mochemical waste recovery technologies. To give appropri-
ate results, EU legislation on sustainable development was
reviewed and the most important impact categories from the
legislation aspect were used in this analysis, as well as those
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identified by previous research as the most suitable for WM
and recovery system analysis and comparison.

From overall results, it can be concluded that pyrolysis of
plastic waste and gasification of plastic waste with ethanol
production show better results when climate change poten-
tial, abiotic depletion potential, and CED impacts are taken
into account. Thus, pyrolysis shows a 49/46% decrease in
GHG emissions compared to incineration with electricity/
CHP production, and gasification with ethanol production
GHG emission results is 29/24% lower, respectively. Differ-
ences in abiotic depletion results are also substantial in the
case of pyrolysis which shows a 143/90% bigger decrease in
abiotic depletion, respectively, while in the case of gasifica-
tion with ethanol production there is an 8% bigger reduction
in comparison with incineration with electricity production,
while in comparison with CHP production, a 16% smaller
reduction is recorded. Large differences can be also seen in
the CED category with a 63/55% bigger increase in primary
energy return in the case of pyrolysis and 101/91% in the
case of gasification with ethanol production, respectively.
The only impact indicator that shows better results in the
case of incineration-based scenarios when compared to
pyrolysis and gasification is AP. Here, results of gasifica-
tion with ethanol production are 60/32% worse than from
incineration with electricity production/CHP production,
respectively, while pyrolysis results are the overall worst.
Also, regarding direct emissions, all alternative technologies
show better results from incineration, and the difference is
generated through indirect emissions/savings.

If gasification with electricity production results is looked
upon, they are worse than in the case of ethanol generation,
and while it shows around 9 to 15% better results than incin-
eration in GHG emissions, results for abiotic depletion are
14 to 33% worse, and in the case of CED 19 to 20% worse
than in the case of incineration. On the other hand, cement
kiln CED results show less than half of primary energy
recovery than gasification with ethanol production and its
result is a little better when compared to pyrolysis, its energy
recovery is almost on par with other incineration-based sce-
narios. In the ARD category, it shows second best results,
with the only pyrolysis ahead of it and other technologies’
results lagging around 40% and more behind its results. On
the other hand, the AP category shows that cement kilns
can lead to the largest decrease in acidification-related emis-
sions, and in the case of climate change results, it is the
only analysed solution that shows a decrease in GHG emis-
sions. But, when taking into account these results, it should
be noted that cement kiln results have the widest spread
between 5% Percentile and 95% Percentile results.

Presented results show that the environmental impact of a
specific technology is largely dependent on the final products
which are placed on the market and thus the sustainability
of products it replaces. Thus pyrolysis can be considered
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largely superior to incineration regarding a large number
of EU directives and can help in meeting the goals regard-
ing the establishment of the circular economy, sustainable
development, decrease resource use, imports, and climate
impacts, as well increase in the security of supply. All of
this can also be concluded for gasification with ethanol pro-
duction, even if ARD results are only, on average, on par
with incineration-based technologies. It is because the ARD
impact category does not take into account, not depletable
resources, such as RES, which are important when conduct-
ing sustainability analysis from the legislation point of view.
Here, CED impact category proved to be important as it
takes into account the consumption of all resources, includ-
ing RES, and thus complements the results of the ARD
impact category. Because of this, it can be concluded that
CED is not only the go-to single score impact assessment
indicator for benchmarking WM systems, as is concluded in
previous research but also an important indicator for sustain-
ability analysis and comparison from the legislation point
of view.

The only area where these two technologies are not supe-
rior is the air pollution in a form of AP. Even though the
reduction of AP-related emissions is larger for incineration-
based technologies at this point, these results are strongly
linked to the electricity and heat market energy mix and with
increased RES share it can be expected that these results will
also shift towards pyrolysis and gasification technologies.
This is most pronounced in electricity-producing technolo-
gies as its market mix quickly is changing towards greater
use of RES and is less pronounced in heat generation as
district and industrial heating systems transition to other
sources of heat (such as electricity or waste heat) much
slower. Other recovery technologies are connected to the
substitution of final products which production routes are not
expected to drastically change in the next decades.

Even though incineration is a less sustainable solution,
co-incineration in a cement kiln can be a preferred solution.
Here, plastic waste substitutes for coal and petroleum coke
which are the most environmentally unsustainable fuels.
By doing this, co-incineration of plastic waste becomes the
most sustainable and preferred option from the EU legisla-
tion standpoint when compared to all other analysed plastic
WM solutions.

This analysis provides levelized results for environmental
and resource sustainability for MPW recovery technologies
in legislatively most important areas. Based on the pre-
sented results, it can be concluded pyrolysis and gasification
technologies for the treatment of MPW can lead to lower
environmental impacts when compared with plastic waste
incineration and can help the EU to reach sustainable devel-
opment goals. This conclusion also answers the research
question. These conclusions are viable now, but also in the
foreseeable future as the sustainability of electricity and

heat generating technologies is expected to decrease with
the meeting of EU RES targets. But before building new
treatment facilities dedicated to waste treatment, possibilities
for (partial) substitution of less environmentally sustainable
fuels in other facilities need to be looked upon, which could
lead to even better results from the legislation and sustain-
ability standpoints. By looking upon all these findings which
are obtained through legislative recognized approach, it can
be also concluded that current views on dedicated, but also
not dedicated, thermochemical recovery technologies need
to be re-examined and EU institutions need to be encouraged
to put the effort in revising EU legislation regarding classify-
ing and ranking of different thermochemical process based
recovery technologies taking into consideration type of final
products and the final impacts of such production, which
also represents a confirmation of the established hypothesis.
This conclusion is backed up by the fact that the majority of
alternative thermochemical conversion technologies prod-
ucts can be used as inputs in other industries, like pyrolysis
oil (which can be used for petroleum substitution) and etha-
nol, and do not need to be strictly used as fuels (i.e. energy
vectors). Thus, the same rezoning for legislation changes can
be used as the ones used for classifying anaerobic digestion
of bio-waste in the recycling category.

In the future work, this analysis will be expanded with
sensitivity analysis which analyse the impact of changes in
energy mixes on the results as well as broaden to include
economic assessment which also makes one of the important
pillars in decision-making.

Appendix

Gathered data for modelling of LCI datasets
for pyrolysis and gasification

As there were no LCI data representing gasification and
pyrolysis technologies in available LCI databases, LCI sets
had to be modelled from the beginning. As for legislation
making, average data for the specific sector/industry and
activity/product should be used and not specific cases which
could represent extremes instead of average situation, an
extensive literature review of used pyrolysis and gasification
technologies for the treatment of plastic waste is conducted
and all available technology (technical, input/output and
emissions) data on these plants/technologies are gathered
and presented in Tables 7, 8, 9 and 10. In these tables, all
available data from the cited literature are summarized and
encompasses data for 42 individual plants for thermochemi-
cal conversion of plastic waste, plastic waste mixtures, and
wastes that contain plastic in a significant proportion. The
presented data are only adapted from the literature data in
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a way that they are converted to the metric system to be
comparable.

As can be seen, available data from different data sources
vary greatly, both in the amount of data and in the form of
their presentation. Thus, for the formation of a representable
dataset, many data sources are consulted and collected data
adapted and averaged to represent the general dataset for
analysed technologies. This way, the lack of data from indi-
vidual data sources can be compensated, as well as errors
and inconsistencies in the gathered data.
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