
Optimal control of double inverted pendulum

Bašić, Mate

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu,
Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:483974

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-14

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering
and Naval Architecture University of Zagreb

https://urn.nsk.hr/urn:nbn:hr:235:483974
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fsb.unizg.hr
https://repozitorij.fsb.unizg.hr
https://zir.nsk.hr/islandora/object/fsb:10598
https://repozitorij.unizg.hr/islandora/object/fsb:10598
https://dabar.srce.hr/islandora/object/fsb:10598

University of Zagreb

Faculty of Mechanical Engineering and Naval

Architecture

master’s thesis

Mate Bašić

Zagreb, 2024.

University of Zagreb

Faculty of Mechanical Engineering and Naval

Architecture

master’s thesis

Optimal control of double inverted pendulum

Mentor:

prof. dr. sc. Andrej Jokić

Student:

Mate Bašić

Zagreb, 2024.

Statement

I hereby declare that I have made this thesis independently using the knowledge acquired

during my studies and the cited references.

Zagreb, May 2024. Mate Bašić

iii

Contents

Contents iv

List of Figures vi

List of Symbols ix

Summary xii

1. Introduction 1

2. Theoretical background 3

2.1. Receding horizon control . 3

2.2. Convex optimisation . 4

2.2.1. Affine function . 5

2.2.2. Convex set . 7

2.2.3. Convex function . 7

2.3. MPC stability and recursive feasibility 8

2.3.1. Invariant set . 11

2.4. MPC stability theorem . 13

3. Pendulum model 14

3.1. Governing equations . 15

3.1.1. Alternative formulation . 19

3.2. Model linearisation . 22

iv

v

4. DIPC system control 26

4.1. LQR controller . 27

4.1.1. LQR controller performance on the DIPC system 29

4.1.2. LQR controller with constraints 31

4.2. MPC controller performance on DIPC system 39

4.2.1. MPC reference tracking . 42

5. State estimation 50

5.1. Extended Kalman filter (EKF) . 50

5.2. Unscented Kalman filter . 53

5.2.1. The scaled unscented transformation 54

5.2.2. Scaled UT applied in UKF . 57

5.3. EKF and UKF performance on DIPC system 58

5.3.1. EKF estimate as the feedback . 60

5.3.2. UKF estimated state in the feedback 63

6. Conclusion 66

7. Appendices 67

7.1. Appendix A . 67

7.2. Appendix B . 68

7.3. Appendix C . 70

7.4. Appendix D . 72

7.4.1. Simulation from initial states chosen by mouse click 72

7.4.2. Maximal invariant set function 78

Bibliography 79

List of Figures

1.1 Classical approach to a generic system control problem 1

1.2 MPC approach to a generic system control problem [1] 2

2.1 Receding horizon control principle [1] . 3

2.2 A linear subspace example, {x | Ax = 0} [1] 6

2.3 An affine set example, {x ∈ Rn | Ax = b} [1] 6

2.4 Convex vs non-convex set [1] . 7

2.5 Convex function definition . 8

2.6 Convex function definition for differentiable function 8

2.7 Bellman’s prinicple of optimality [4] . 10

2.8 Deviation between system trajectory and its prediction from earlier steps

for RHC problem [1] . 11

2.9 Maximal invariant set calculation procedure 12

3.1 Double inverted pendulum on a cart [6] 14

3.2 Double inverted pendulum on a cart alternative model derivation 20

3.3 θ0 and θ1 trajectories comparison . 21

3.4 θ0 and θ1 trajectories comparison, d2 = 0 21

3.5 Free oscilations for comparison of non-linear and linearised model 23

3.6 θ0 and θ2 in linear and non-linear model comparison, θ1,init = 45◦ 23

3.7 θ0 and θ2 in linear and non-linear model comparison, θ1,init = 30◦ 24

3.8 θ0 and θ2 in linear and non-linear model comparison, θ1,init = 15◦ 24

3.9 θ0 and θ2 in linear and non-linear model comparison, θ1,init = 5◦ 25

vi

LIST OF FIGURES vii

4.1 Poles of the passive DIPC system, linearised around the upward position 26

4.2 Poles of the LQR-controlled linearised DIPC system 28

4.3 LQR controller performance - θ1,init = 15◦ 29

4.4 LQR controlled input signal comparison for various values of R 30

4.5 LQR controller collapses at θ1,init = 30◦ 31

4.6 Polyhedron representing chosen state constraints 32

4.7 State constraints polytope slice along θ1,θ2 plane, umax = 40N 33

4.8 State constraints polytope slice along θ1,θ2 plane, umax = 10N 33

4.9 Constraints polytope projection on θ1,θ2 plane, umax = 10N 34

4.10 Maximal θ1,θ2 plane, umax = 30N . 35

4.11 Manual implementation of Runge-Kutta integration algorithm vs Matlab

ode45 function, input signal comparison 35

4.12 Manual implementation of Runge-Kutta integration algorithm vs Matlab

ode45 function, state variables comparison 36

4.13 θ1,θ2 trajectories from various initial values within the invariant set . . . 37

4.14 θ1,θ2 and input signal trajectories and the corresponding constraints . . . 37

4.15 θ1,θ2 trajectories comparison, relative to the invariant set 38

4.16 θ1,θ2 and input signal trajectories comparison of different initial values,

and the corresponding constraints . 38

4.17 MPC attraction region for N = 2, compared to LQR 40

4.18 MPC-controlled θ1,θ2 and input signal trajectories 40

4.19 MPC-controlled system is unstable with terminal state disregarded, even

for longer prediction horizon . 41

4.20 MPC θ0 reference tracking with the constant reference on the prediction

horizon, R = 0.1 . 43

4.21 MPC θ0 reference tracking with the constant reference on the prediction

horizon, R = 0.005 . 43

4.22 MPC infeasibility problem with the constant reference on the prediction

horizon, R = 0.0001 . 44

4.23 MPC perfomance with the reference change known in advance 45

4.24 MPC stabilisation and reference tracking combined 46

4.25 MPC reference tracking with the terminal cost and contraints, Nmin = 25 47

LIST OF FIGURES viii

4.26 MPC reference tracking without the terminal cost and contraints, Nmin =

35 . 48

4.27 Test which MPC with the terminal constraints fails for N = 30 49

4.28 Test which MPC with no terminal constraints passes for N = 30 49

5.1 UKF vs EKF approach to covariance estimation comparison [12] 54

5.2 EKF and UKF state estimation in open loop 59

5.3 EKF and UKF state estimation in open loop, zoomed view 60

5.4 Test procedure with the loop closed with EKF estimate 61

5.5 Estimated state variables, EKF in feedback loop 61

5.6 Estimated state variables, EKF in feedback loop - zoom 62

5.7 Test procedure with the loop closed with UKF estimate 63

5.8 θ̇1 estimate with UKF in feedback loop 64

5.9 LQR controlled system with the UKF estimate 64

5.10 θ̇1 estimate with UKF in feedback loop and LQR controller 65

5.11 Test procedure with EKF estimator and improved sensors 65

List of Symbols

α, β, κ, λ Scaling factors for the UT . 55

µ Sigma points weighted mean . 55

µz Transformed sigma points weighted mean 57

Φ State variables vector for DIPC system . 14

σi Sigma points for the UT . 55

σ′
i Sigma points modified for the scaled UT . 56

P z Transformed sigma points covariance matrix 57

zi Transformed sigma points . 57

x̂ Estimated state vector . 52

A Linearised system state matrix . 27

AJ Linearised system state matrix . 22

B Linearised system input matrix . 27

BJ Linearised system input matrix . 22

CJ Observation matrix in discrete-time linearised state space formulation 51

d Vector of friction coefficients . 15

e Measurement noise vector in continous-time state space formulation 51

F System matrix in discrete-time linearised state space formulation 52

f(x(t),u(t)) State function in continous-time non-linear state space formulation . . 51

G Input matrix in discrete-time linearised state space formulation 52

H Observation matrix in discrete-time linearised state space formulation 52

h(x(t)) Output function in continous-time non-linear state space formulation . . . 51

K Kalman gain matrix . 52

ix

LIST OF SYMBOLS x

K LQR gain matrix . 27

Kukf Kalman gain matrix in UKF . 58

L Additional matrix term in full non-linear DIPC model 19

P State estimate covariance matrix . 52

Px A-priori state estimate covariance matrix in UKF 55

Pz Model-based output vector estimate covariance matrix in UKF 57

Pxz Covariance matrix of a-priori state and measurement model estimate 58

Qest Process noise covariance matrix . 52

Q State weighting matrix in quadratic cost function 27

q Vector of generalised forces . 15

Rest Measurement noise covariance matrix . 52

R Input weighting matrix in quadratic cost function 27

u0 Stationary input signal used for linearisation 22

v Measurement noise vector in discrete-time linearised state space formulation 52

w Process noise vector in discrete-time linearised state space formulation 52

x0 Stationary system state used for linearisation 22

U Terminal constraint set . 13

X Optimisation problem project variable domain 5

Xf Terminal constraint set . 13

ωi Sigma points weighting coefficients . 55

ω′
i Sigma points weighting coefficients for the scaled UT 56

Φ Rayleigh dissipation function . 15

x State variables vector - extended for DIPC system 19

θ0 Cart position in DIPC system . 14

θ1, θ1 Double pendulum links position angles . 14

Ã State matrix of full non-linear DIPC model 19

B̃ Input matrix of full non-linear DIPC model 19

A State matrix in state space for linear systems 13

B Input matrix in state space for linear systems 13

Ekin Kinetic energy of the DIPC system components 16

Epot Potential energy of the DIPC system components 16

f0 Cost function in an optimisation problem . 5

LIST OF SYMBOLS xi

gj Inequality constraint functions in an optimisation problem 5

hi Equality constraint functions in an optimisation problem 5

I1,2 DIPC system links rotational inertias . 18

J Cost function of the optimal control problem 27

J∗
0 Optimal cost in MPC problem . 13

L1,2 DIPC system links lenghts . 18

l1,2 DIPC system links half-lenghts . 18

m Number of inequality constraint functions . 5

m0,1,2 DIPC system car and links masses . 18

N Prediction horizon length in a discrete-time MPC problem 13

p Number of equality constraint functions . 5

p(xN) Terminal cost in a MPC problem . 13

q (xk, uk) Stage cost of the k-th step in a MPC problem 13

u(t) DIPC system input variable . 14

uk control actions vector of the k-th step in a MPC problem 13

V (x) Lyapunov function . 9

Summary

In this thesis a model based control of an inverted pendulum on a cart is considered.

The system’s dynamics is nonlinear, and for control synthesis purposes the nonlinear

model is linearized around the upward position. The linearized model is then used for

synthesis of linear quadratic regulator (LQR) and model predictive controller (MPC).

In the MPC setting, terminal cost and terminal constraints have been incorporated

and their impact on the closed-loop behavior has been analyzed. It is also shown that

MPC can be used for double pendulum position reference tracking. Finally, two state

estimation techiques are compared and analysed, the extended Kalman filter (EKF) and

the unscented Kalman filter (UKF).

Keywords: Double inverted pendulum on a cart, linear quadratic controller (LQR),

model predictive control (MPC), extended Kalman filter (EKF), unscented Kalman

filter (UKF)

xii

1 Introduction

Optimal control is an approach to the synthesis of the closed-loop behaviour in

which contol actions are chosen to minimize some objective function. In that sense,

model predictive control (MPC) is one of its most widely used techniques, in the same

time being theoretically very general, but also practically applicable to the specific

control problems. Although the theory development started in the final years of 1960’s,

the first succesful industrial applications of the model predictive control occured in the

petrochemical industry in the 1970’s [1]. Since then, its usage has been continously

increased not only in various other fields of production, but also economy in a broader

sense.

The classical perspective to a generic control problem is shown in Figure 1.1, where the

controller block takes in the error and computes the actuator signal values, which in

turn influence the controlled process plant.

Figure 1.1: Classical approach to a generic system control problem

1

Chapter 1. Introduction 2

The main idea of the MPC is to compute the control actions by solving the con-

strained optimisation problem in every time step, where the cost function of this prob-

lem is formulated based on the desired system behavior. This scheme is shown in Figure

1.2, where block P stands for process and r for reference, with y being a measured

output.

Figure 1.2: MPC approach to a generic system control problem [1]

The topic of this thesis is to investigate the possibilities of such a control approach on

the double inverted pendulum model. The thesis itself is divided in six chapters. After

the introduction, the second chapter briefly presents theoretical backgrund neccessary

for MPC control problem definition. The topic of the third chapter is the derivation of

the double inverted pendulum on a cart model, which is one of the few usual benchmark

problems for a particular controller performance assessment. In the fourth chapter,

LQR and then MPC control laws are presented and their performance is analysed. The

topic of the fifth chapter is the state estimation, often an unavoidable prerequisite for

any system control. Finally, the sixth chapter closes the thesis with the concluding

remarks.

2 Theoretical background

In order to develop the idea behind the generic MPC scheme shown in Figure 1.2, a

few concepts from control theory have to be introduced.

2.1. Receding horizon control

Model predictive control is a control strategy based on receding horizon control

(RHC), which is control principle best illustrated using extension to Figure 1.2 shown

in Figure 2.1.

Figure 2.1: Receding horizon control principle [1]

So, the main point is that controller takes into consideration the behaviour of the

system over some finite time window (horizon) in the nearest future, with the calculated

3

Chapter 2. Theoretical background 4

control sequence acting along the entire horizon. Then, only the first control action is

applied, and the controlled system evolves to the next state, which is again measured

or estimated. This way a feedback action is introduced, which accounts for the model

innacurateness, and makes RHC actually a closed-loop control principle. Once the state

of the system in this new time step is obtained, the whole procedure of computing the

control actions for the entire horizon and then applying the first one is repeated.

Regarding the MPC, the above mentioned planning of the control actions sequence on

the moving horizon is carried out by solving an optimisation problem. An important part

in formulating an optimisation problem is the cost function, which can include both the

distance of the system state from the desired reference and the amplitudes of actuators

signal, thus introducing the possibility of compromising between strict reference tracking

and power consuption. Another MPC benefit of key importance is the possibility to

include the state and actuator signal constraints directly in the optimisation problem.

This way, the controller actions on the entire horizon will be calculated in a way which

minimizes the cost function, but also taking care not to bring the state of the system

outside the desired area throughout the process. Also, instead of ad-hoc saturation of

the actuator signals, MPC takes account of the actuators’ limits when formulating the

optimisation problem, therefore having a better model of realistic system possibilities

over the entire horizon. These aspects distinguish the MPC from the Linear Quadratic

Regulator (LQR), which is actually its base.

2.2. Convex optimisation

Since solving the optimisation problem is the key part of the MPC control strategy,

its type has of course great implications to the eventual controller feasibility. Although

initial classification of the optimisation problems mainly divided them to linear and non-

linear ones, modern control theory distiungishes convex and non-convex problem types

as a more important classification factor [2]. Theferore, this section briefly introduces

the features of convex optimisation problems.

One of the crucial properties of a convex optimisation problem is that every locally op-

timal solution is also globally optimal. Before we continue with a more formal definition

of a convex optimization problem, we first present a standard form of an optimisation

Chapter 2. Theoretical background 5

problem as follows:

min
x∈X

f0(x)

subject to: gj(x) ≤ 0 j = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p.

(2.1)

Here, X stands for optimisation problem project variable domain, f for cost func-

tion, gj for inequality constraint function, and hi for equality constraint function. So,

optimisation problem defined by 2.1 is convex if the following holds [1]:

• the problem domain X is a convex set

• the objective function f0 is a convex function

• the inequality constraint functions gj are all convex

• The equality constraint functions hi(x) = a⊤i x− bi are all affine

In this definition, a few more theoretical terms are arising, so their explanations also

have to be briefly discussed.

2.2.1. Affine function

Basically, affine function is a composition of a linear function and a translation.

In context of linear algebra, linear function is the m-dimensional function of the form

fm(x) = Axn, where x is a n-dimensional vector, so A is m×n-dimensional matrix. The

kernel space of such function spans a linear subspace, and is defined as a set of solutions

of vector equation Axn = 0, of more compactly written as {x | Ax = 0}, as depicted

for 2-D space example in Figure 2.2. The important characteristic of such a subspace

is that it passes through the origin. Depending on the dimensions of the independent

variable vector x and the matrix A, this definition can encompass points, lines, planes

or hyperplanes for higher-order dimensionality.

Chapter 2. Theoretical background 6

Figure 2.2: A linear subspace example, {x | Ax = 0} [1]

An affine set is defined by adding a vector of constant offset to the linear subspace,

or mathematically written affine set in n-dimensional domain is {x ∈ Rn | Ax = b}. For
two-dimensional space and one-dimensional equation Ax = b, an affine set is a one-

dimensional line, as shown in Figure 2.3.

Figure 2.3: An affine set example, {x ∈ Rn | Ax = b} [1]

In an analogous manner as the solution of the linear function formed the linear

subspace, an affine subspace can be defined by solving an equation containing an affine

function f(x) = 0, such that it has the form f(x) = Ax− b.

Chapter 2. Theoretical background 7

2.2.2. Convex set

A set X is convex if and only if for any pair of points x and y in X , any convex

combination of x and y lies in X , or to express is using mathematical notation:

X is convex ⇔ λx+ (1− λ)y ∈ X ,∀λ ∈ [0, 1],∀x, y ∈ X

An intuitive interpretation of the statement above is that all line segments with end-

points in the convex set are completely within this set, as visualised in Figure 2.4.

Figure 2.4: Convex vs non-convex set [1]

2.2.3. Convex function

An explanation of a convex set is also a prerequisite for a convex function definition.

So, a function is a convex function if and only if its domain is a convex set, and if it

satisfies the following property:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ (0, 1), ∀x, y ∈ dom(f) (2.2)

Geometrically, what the statement above essentially says is that a value of a function

between some points which belong to this function has to be below the line connecting

these two points. This concept is best visualised with the help of a sketch like the one

shown in Figure 2.5.

Chapter 2. Theoretical background 8

Figure 2.5: Convex function definition

If the function is differentiable, the same principle can be expressed using the gradient

of a function. So, if the function is convex, a first order approximation of a function is

its global underestimator, as shown in Figure 2.6.

Figure 2.6: Convex function definition for differentiable function

Now when all definitions neccessary to classify a convex optimisation problem are

clarified, a convex model predictive control problem can be addressed, as the central

topic of this thesis.

2.3. MPC stability and recursive feasibility

A crucial property of any closed-loop controlled dynamical system is its stability,

and a process controlled by model predictive controller is not an exception in that

Chapter 2. Theoretical background 9

sense. Concerning stability of an autonoumous non-linear system in the vicinity of an

equilibrium, a system is Lyapunov stable if it stays forever near this equlibrium point,

when initiated from its proximity. If this equlibrium point was a coordinate system

origin and δ and ϵ some (small) distances, that would mathematically be written as

follows [3]:

∀ε > 0, ∃δ > 0, ∥x (t0)∥ < δ ⇒ ∥x(t)∥ < ε, t ≥ 0 (2.3)

Moreover, it is said that x = 0 is asymptotically stable equilibrium point if the system

converges to it, not only stays in its proximity, or more compactly:

∀δ > 0, ∥x (t0)∥ < δ ⇒ ∥x(t)∥ → 0, t→∞ (2.4)

In his pioneering work on non-linear dynamical system stability, Lyapunov established

so called Lyapunov stability criterion, which includes finding a Lyapunov scalar function

V (x), such that:

• V (x) = 0 if and only if x = 0

• V (x) is a positive definite function, i.e. for every x ̸= 0, V (x) > 0

• V̇ (x) is negative definite function, i.e. for every x ̸= 0, V̇ (x) < 0

If there is such a function with contionous first-order partial derivations, then the au-

tonomous system ẋ = f(x) is asymptotically stable [3].

On the other hand, recursive feasibility is not so widespread term in control systems area

as the stability, but more specific to the receding horizon optimal control problems with

finite horizon. What can happen is that after some time, closed-loop trajectory may lead

the system to the states where optimisation problem becomes infeasible. It is important

to note that this infeasibility can occur even without model innacurateness or external

disturbances. Also, the set of initial conditions from which the MPC-controlled system

leads to instability depends mostly on the horizon length. Actually, the problem of infea-

sibility occurs due to deviation between closed-loop trajectory, and open-loop prediction

for the remaining part of the horizon [1]. If control horizon would be infinitely long,

then the optimisation result in the initial step would yield a control actions sequence

which would be optimal regarding the cost function. Again, with no model mismatch

or disturbances, after the control action from the first step was carried out, the system

Chapter 2. Theoretical background 10

would end in the second step exactly where the solution from the initial step predicted

it. Then in the second step, the control sequence and the predicted system trajectory

would exactly match the solution from the first step, because the new optimisation

problem is the same as the initial one, but just without the first step. This is actually

called the Bellman’s principle of optimality, which basically states that the solution of

the optimisation problem would not differ if a point on the original solution was chosen

as a new starting point. To visualise this, a sketch from Figure 2.7 can help, where

the goal of some optimisation problem is to find an optimal trajectory from from the

starting point A to the goal J.

Figure 2.7: Bellman’s prinicple of optimality [4]

For example, if the optimal solution would go through points C, F and H, then

optimal path to the goal from the point C would again pass through the points F

and H. But, in the receding horizon control problem, this is not the case, because the

prediction horizon is shifted towards future in every time step (see again Figure 2.1).

Therefore, if the horizon is short enough, closed-loop system trajectory can substantially

differ from the predictions made in previous time step for the remainig horizon, as shown

schematically for two generic systems in Figure 2.8. Consequently, in some cases this

may cause the optimisation problem infeasibility even without any model mismatch,

and especially when the predition horizons are shorter.

Chapter 2. Theoretical background 11

Figure 2.8: Deviation between system trajectory and its prediction from ear-

lier steps for RHC problem [1]

In practice, those problems of stability and infeasibility are often solved by extaned-

ing the prediction horizon and checking the controller perfomance by sampling [1]. The

idea behind ensuring these requirements theoretically is to introduce terminal constraints

and terminal cost, in way which would substitute the remaining horizon until infinity,

thus imitating the infinite horizon control.

2.3.1. Invariant set

In order to be able to define the outcomes of stability and recursive feasibility proof,

the notion of the invariant set has to be introduced.

For an autonomous discrete system x(t+ 1) = f(x(t)), a set O is positively invariant if

the system stays forever within this set, when initiated from the point which belongs to

it. Mathematically written, this sentence amounts to the following statement:

x(0) ∈ O ⇒ x(t) ∈ O, ∀t ∈ N+ (2.5)

Then, the positively invariant set which contains all positively invariant sets for some

autonomous system is called maximal positively invariant set O∞ [1]. If the allowed

system states are contained in the set denoted by X , and Ωi indicates the sets calculated

in the intermediate steps, then the maximal invariant set can be obtained using the idea

Chapter 2. Theoretical background 12

explained by the following pseudocode [5]:

Input : X
Output : O∞

Ω0 ← X
loop

Ωi+1 ← pre (Ωi) ∩ Ωi

if Ωi+1 = Ωi then
return O∞ = Ωi

end if
end loop

where operator pre (Ωi) designates the operation of generating preset. In this sense, a

preset of a set Ωi is defined as the set from which all the states evolve to Ωi in a single

time step. So the idea behind the pseudocode above is to generate the set of admissible

states as the inital set, and calculate its preset as the next candidate for the invariant

set. The procedure is repeated until the candidate is completely within the bounds

of its preset, which means by definition that the autonomous system cannot exit that

current preset, so for this system this is the positively invariant set. Moreover, since the

code is stopped the first time this happens, the current-step preset is then actually the

maximal postively invariant set. An example of this process for a 2-D system example

is shown in Figure 2.9, where it can be seen that all the trajectories from the maximal

positively invariant set converge to the origin without leaving the set, as opposed to the

red trajectories which are initiated outside it.

Figure 2.9: Maximal invariant set calculation procedure

Chapter 2. Theoretical background 13

2.4. MPC stability theorem

Although the derivation of proof for MPC stability conditions are out of the scope of

this thesis, all the prerequisites neccesary to introduce this theorem have been presented.

The discrete-time MPC problem from the initial point x0 is denoted as follows:

J∗
0 (x0) = min

U0

p (xN) +
N−1∑
k=0

q (xk, uk)

subj. to xk+1 = Axk +Buk, k = 0, . . . , N − 1

xk ∈ X , uk ∈ U , k = 0, . . . , N − 1

xN ∈ Xf

x0 = x(t)

(2.6)

Here, besides the state constraints set X , there is also a special terminal state xN

and control variables uk constraints sets denoted respectively by Xf and U . The project
variable Uo is here the set of all the inputs uk from the initial point x0 over the entire

horizon, Uo = {u0, . . . , uN−1}. A and B are state and input matrices for a linear system,

respectively. Stage cost is marked by q (xk, uk) and the final state cost by p(xN).

Three assumptions are required for the stability theorem, which then also implies recur-

sive feasibility, because a system cannot be stable or unstable if it’s not feasible:

• Stage cost q (xk, uk) is a positive definite function, i.e. it is strictly positive and

only zero at the origin

• Terminal set Xf is invariant under some local control law v(xk), with all the state

and inputs constraints satisfied in Xf

• Terminal cost p(xN) is a continuous Lyapunov function in the terminal set Xf and

satisfies the following relation with the stage cost q (xk, uk):

p (xk+1)− p (xk) ≤ −q (xk, v (xk))

Under these assumptions, the closed-loop system under the MPC control law u∗
0(x) is

asymptotically stable and the set Xf is positive invariant for the system x(k + 1) =

Ax+Bu∗
0(x) [1]. It is important to note that the local control law v(xk) does not have

to be the one which will be realised, the theorem requires only that there is one which

can satisfy all of the prescribed constraints. Using this theorem, a MPC control law can

be insured to be stable even without long prediction horizons, which can be beneficiary

in terms of computational power required for its realisation.

3 Pendulum model

In this chapter the model of the standard control problem of double inverted pendu-

lum on a cart (DIPC) is derived and analysed, with the DIPC system shown in Figure

3.1.

Figure 3.1: Double inverted pendulum on a cart [6]

Marked red in the Figure 3.1, the system input variable u(t) is the force which acts

on the cart, and three elements of the state vector θ are the cart position θ0, and two

angles of the double pendulum links, θ1 and θ2 respectively.

14

Chapter 3. Pendulum model 15

3.1. Governing equations

To be able to synthesize any kind of model-based controller, a mathematical model

of the controlled system has to be derived. If the frictional forces in DIPC system are

considered, it is a non-conservative system with single exogenous input, the control force

u(t). The system governing equations can be derived using Langrange equations [7]:

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
+

∂Φ

∂θ̇
= q (3.1)

Here, the partial derivation of the scalar variable with respect to vector variable as

e.g. ∂L
∂θ

denotes the gradient of the Langranian function L(θ̇,θ). Also, q denotes

the vector of generalised forces, i.e. the external forces or moments acting along the

chosen system generalised coordinates, in our case θ0,1,2, which actually comprise the

vector θ. As shown in [7], if frictional forces depend linearly on the time derivatives

of generalised coordinates (velocities), they can be inserted into Langrange equations

using Rayleigh dissipation function Φ. Although it has a form of energy, physically Φ

does not represent an energy [7]. Rayleigh function is defined so that it’s derivative with

repect to generalised velocity yields generalised forces which arise from viscous friction,

denoted by µ:

Φ =
1

2
(d0θ̇0

2
+ d1θ̇1

2
+ d2θ̇2

2
)

µ =− ∂Φ

∂θ̇

(3.2)

This results in friction vector being comprised of a one frictional force for a cart, and

two frictional moments for pendulum links:

µ =

−d0θ̇0
−d1θ̇1
−d2θ̇2

 (3.3)

Note that these definitions of generalised coordinates and Rayleigh disspiation function

imply that the entire system friction is modelled with repect to the apsolute, not relative

movement between components. Interpretated physically, this means that for pendulum

links the joint friction in disregarded, and air resistance is taken into account. L in 3.1

stands for Langrangian function, which is defined as a difference between system kinetic

Chapter 3. Pendulum model 16

and potential energy.

L = Ekin − Epot (3.4)

Firstly, kinetic and potential energy expressions dependent on system coordinates are

calculated from DIPC system physical properties, such as cart and link masses m1,2,3,

dimensions L1,2 and rotatinal inertias I1,2 (see Figure 3.1). To denote three rigid bodies

which comprise the DIPC system, indexes (0), (1) and (2) are used on the variables for

kinetic and potential energy Ekin and Epot, as in [6]).

Ekin = E
(0)
kin + E

(1)
kin + E

(2)
kin

Epot = E
(0)
pot + E

(1)
pot + E

(2)
pot

(3.5)

Here, it is important to note that the cart has one degree of freedom and therefore only

translational component of kinetic energy, while the pendulum links move planarly. So,

the kinetic and potential energy expressions of the cart are simply:

E
(0)
kin =

1

2
m0θ̇

2
0

E
(0)
pot = 0

(3.6)

Regarding the pendulum links, in order to rightfully use the simple superposition of

translational and rotational kinetic energy, the links translational velocity and also ro-

tational inertia around the axis perpendicular to the plane of movement have to be

calculated with respect to the center of mass of the each link. To show their con-

tributions to the system kinetic and potential energy, their expressions in Carthesian

coordinate system will be converted to the chosen set of generalised coordinates. For

the first link, they are equal to:

E
(1)
kin = E

(1)
kin(trans) + E

(1)
kin(rot)

=
1

2
m1

(
ẋ2
1 + ẏ21

)
+

1

2
I1θ̇

2
1

=
1

2
m1

{(
d

dt
[θ0 + l1 sin θ1]

)2

+

(
d

dt
[l1 cos θ1]

)2
}

+
1

2
I1θ̇

2
1

=
1

2
m1θ̇

2
0 +

1

2

(
m1l

2
1 + I1

)
θ̇21 +m1l1θ̇0θ̇1 cos θ1

E
(1)
pot = m1gy1

= m1gl1 cos θ1

(3.7)

Chapter 3. Pendulum model 17

Regarding the second link, the kinetic energy expression is:

E
(2)
kin =

1

2
m2

(
ẋ2
2 + ẏ22

)
+

1

2
I2θ̇

2
2

=
1

2
m2

{(
d

dt
[θ0 + L1 sin θ1 + l2 sin θ2]

)2

+

(
d

dt
[L1 cos θ1 + l2 cos θ2]

)2
}

+
1

2
I2θ̇

2
2,

(3.8)

which after some mathematical manipulation simplifies into:

E
(2)
kin =

1

2
m2θ̇

2
0 +

1

2
m2L

2
1θ̇

2
1 +

1

2

(
m2l

2
2 + I2

)
θ̇22 +m2L1θ̇0θ̇1 cos θ1

+m2l2θ̇0θ̇2 cos θ2 +m2L1l2θ̇1θ̇2 cos (θ1 − θ2) .
(3.9)

The expression for its potential energy is again relatively simple:

E
(2)
pot = m1gy2

= m1g (L1 cos θ1 + l2 cos θ2)
(3.10)

After potential and kinetic energy expressions for all system components are derived,

an expression for Lagrangian can be formed using 3.4, and subsequently its partial and

time derivatives required to resolve the left-hand side of the Lagrange equation 3.1. For

the right-hand side, a vector of generelised forces is very simple, because there is only

one external force, which acts on a cart exactly in the direction of the first generalised

coordinate θ0:

q =

u(t)

0

0

 =

1

0

0

u(t)

After everything is inserted into Lagrange equations 3.1, and if l1,2 are taken as auxilliary

parameters equal to half of the pendulum links lengths l1,2 = 0.5L1,2, the final set of

system governing equations is the following:

(m0 +m1 +m2) θ̈0 + (m1l1 +m2L1) cos θ1θ̈1 +m2l2 cos θ2θ̈2

− (m1l1 +m2L1) sin θ1θ̇
2
1 −m2l2 sin θ2θ̇

2
2 = u(t)− d0θ̇0(

m1l
2
1 +m2L

2
1 + I1

)
θ̈1 + (m1l1 +m2L1) cos θ1θ̈0

+m2L1l2 cos (θ1 − θ2) θ̈2 +m2L1l2 sin (θ1 − θ2) θ̇
2
2

−g (m1l1 +m2L1) sin θ1 = −d1θ̇1
m2l2 cos θ2θ̈0 +m2L1l2 cos (θ1 − θ2) θ̈1 +

(
m2l

2
2 + I2

)
θ̈2

−m2L1l2 sin (θ1 − θ2) θ̇
2
1 −m2gl2 sin θ2 = −d2θ̇2

(3.11)

Chapter 3. Pendulum model 18

The derivation of the left-hand side of equation can also be done using Matlab Symbolic

Toolbox, with the code shown in Appendix A. As expected, it can be seen that this is

highly non-linear second-order system. The idea now is to write it down in more compact

form and then convert it to first-order system. If the θ is chosen as a vector representing

state variables θ0,1,2, the equation 3.11 can be rewritten in the vectorial form:

D(θ)θ̈ +C0(θ, θ̇)θ̇ +G(θ) = Hu+ µθ̇ (3.12)

To simplify the equations, the auxilliary pendulum half-lengths are expressed in terms

of full lengths, and link inertias are expressed using their definition for rods, regarding

the axis perpendicular to the plane of motion and going through the center of mass:

I1,2 =
1

12
m1,2L

2
1,2

If the frictional forces µ(θ̇) are put together with the terms under the matrix C0, then

the new matrix C has the following form:

C(θ, θ̇) = C0(θ, θ̇) + dI,

where I denotes the identity matrix. This way, the vector-form of governing equations

is sligtlhy reformulated:

D(θ)θ̈ +C(θ, θ̇)θ̇ +G(θ) = Hu, (3.13)

with the matrices D(θ), C(θ, θ̇), G(θ) and H having the following form:

D(θ) =

m0 +m1 +m2

(
1
2
m1 +m2

)
L1 cos θ1

1
2
m2L2 cos(θ1 + θ2)(

1
2
m1 +m2

)
L1 cos θ1

(
1
3
m1 +m2

)
L2
1

1
2
m2L1L2 cos (θ1 − θ2)

1
2
m2L2 cos θ2

1
2
m2L1L2 cos (θ1 − θ2)

1
3
m2L

2
2

C(θ, θ̇) =

d0 −

(
1
2
m1 +m2

)
L1 sin θ1θ̇1 −1

2
m2L2 sin θ2θ̇2

0 d1
1
2
m2L1L2 sin (θ1 − θ2) θ̇2

0 −1
2
m2L1L2 sin (θ1 − θ2) θ̇1 d2

G(θ) =

0

−
(
1
2
m1 +m2

)
L1g sin θ1

−1
2
m2gL2 sin θ2

H =

[
1 0 0

]T

Chapter 3. Pendulum model 19

(3.14)

Nextly, if the arguments are now disregarded for the sake of compactness, the highest-

order derivative of θ is as follows:

θ̈ = −D−1Cθ̇ −D−1G+D−1Hu (3.15)

To convert the second-order system 3.15 to the first-order system of equations, a stan-

dard procedure of extending the state vector with the first derivatives is employed.

Therefore, the new expanded state vector x is defined in the following manner:

x =

[
θ

θ̇

]
.

If this state vector redefinition is used for restating the system equations 3.4, the result

is:

ẋ =

[
0 I

0 −D−1C

]
x+

[
0

−D−1G

]
+

[
0

D−1H

]
u (3.16)

Compactly written, the goverening equation is:

ẋ = Ã(x)x+ B̃(x)u+ L(x) (3.17)

with matrix terms:

Ã(x) =

[
0 I

0 −D−1C

]
, B̃(x) =

[
0

D−1H

]
, L(x) =

[
0

−D−1G

]
(3.18)

3.1.1. Alternative formulation

Alternatively, the angle of the second pendulum link can be defined relatively to the

first one, as shown in Figure 3.2. The advantage of this approach is that now the same

Rayleigh dissipation function 3.2 describes the frictional generalised forces as moments

which damp the pendulum oscilation proportional to their relative rotational velocity.

As explained earlier, with the first approach, the entire friction was modelled with regard

to pendulum absolute anguar velocity, which is physically less plausible. The code used

for deriving these equations using Matlab Symbolic Toolbox is shown in Appendix B.

Chapter 3. Pendulum model 20

Figure 3.2: Double inverted pendulum on a cart alternative model derivation

The resulting equation looks the same as the original one 3.13, but the the matrices

D(θ), C(θ, θ̇), G(θ) and H differ slightly, assuming the following form (cf 3.14):

D(θ) =

m0 +m1 +m2

(
1
2m1 +m2

)
L1 cos θ1 +

1
2m2L2cos(θ1 + θ2)

1
2m2L2 cos(θ1 + θ2)(

1
2m1 +m2

)
L1 cos θ1

(
1
3m1 +m2

)
L2
1

1
2m2L1L2 cos (θ1 − θ2)

1
2m2L2 cos θ2

1
2m2L1L2 cos (θ1 − θ2)

1
3m2L

2
2

C(θ, θ̇) =

d0 −

(
1
2m1 +m2

)
L1 sin θ1θ̇1 −m2L2sin(θ1 + θ2)(

1
2 θ̇1 + θ̇2) −1

2m2L2 sin(θ1 + θ2)θ̇2

0 d1 −m2L1L2 sin θ2(
1
2 θ̇2 + θ̇1)

0 1
2m2L1L2 sin θ2θ̇1 d2

G(θ) =

0

−(12m1 +m2)L1gsin(θ1)− 1
2m2gL2sin(θ1 + θ2)

−1
2m2gL2sin(θ1 + θ2)

H =

1

0

0

(3.19)

In order to test both model derivations, the simulation of the DIPC system oscilating

freely around pendulums ponited downwards has been put through, with the same

parameters and the same initial conditions. Since in both derivations coordinates θ0

Chapter 3. Pendulum model 21

and θ1 are defined in the same way, comparison of their trajectories is shown in Figure

3.3, where it can be seen that the two models definitely do not behave identically.

Figure 3.3: θ0 and θ1 trajectories comparison

The explanation for this discrepancy lies in the aforementioned different definition of

the damping. While in the original model [6], it is proportional to the absolute angular

velocity of the pendulum, in the second case it depends on the relative angular velocity

between the links. If the damping of the second link is disregarded, the two models

behave the same way, as shown in Figure 3.4.

Figure 3.4: θ0 and θ1 trajectories comparison, d2 = 0

Chapter 3. Pendulum model 22

3.2. Model linearisation

The theory of system dynamics and control is much more developed and versatile for

linear systems compared to the general non-linear type. Therefore, it is often desired to

obtain a linear model which describes the system dynamics accurately enough. To do

so, model-governing equations 3.11 or 3.17 can be reformulated as:

ẋ(t) = f(x(t),u(t)) (3.20)

Then, model linearised around some equilibrium state x0 and corresponding stationary

input signal u0 can be derived by computing Jacobian matrices AJ and BJ of the vector

equation 3.20.

AJ =
∂f

∂x

∣∣∣∣x=x0
u=u0

BJ =
∂f

∂u

∣∣∣∣x=x0
u=u0

(3.21)

This way, a new linear model is of the form:

ẋ = AJx+BJu (3.22)

The DIPC system from Figure 3.2 has two distinct equlibrium points, one stable with

both links pointed downwards, and one unstable with both links in upward position.

Although the first goal of the control system is to keep the pendulum in upward position,

linear and non-linear passive models cannot be compared in the vicinity of that position,

because it’s unstable. This feature will make the passive system leave the state around

which it was linearised, i.e. the pendulums will collapse. Therefore, the comparison

of the full model and it’s linearised counterpart will be carried out by observing free

oscilations around the downward position. More specifically, to induce the non-linearities

in second pendulum link movement equations, the simulation initial conditions will be

with the first link being displaced from the stationary downward position and the second

link aligned with it, like shown in Figure 3.5, with θ2 equal to zero.

Chapter 3. Pendulum model 23

Figure 3.5: Free oscilations for comparison of non-linear and linearised model

The complete procedure of deriving the linear model using Matlab Symbolic Toolbox

is shown in Appendix C. Since the second, relative θ2 definition (Figure 3.2) was used and

the linearisation was done around pendulum-down position, θ0 and θ2 oscilate around

zero in both non-linear and linearised model, and therefore these two coordinates will

be used for comparison. Firstly, the results are shown for the large initial θ1 angle of

45◦, and then in decreasing order until initial θ1 equal to 5◦.

Figure 3.6: θ0 and θ2 in linear and non-linear model comparison, θ1,init = 45◦

Chapter 3. Pendulum model 24

Figure 3.7: θ0 and θ2 in linear and non-linear model comparison, θ1,init = 30◦

Figure 3.8: θ0 and θ2 in linear and non-linear model comparison, θ1,init = 15◦

Chapter 3. Pendulum model 25

Figure 3.9: θ0 and θ2 in linear and non-linear model comparison, θ1,init = 5◦

Looking at these figures, it can be seen that considerable amount of linearised model

mismatch compared to the non-linear one present at large oscilation angles such as

45◦, gradually lowers as the initial inclination is decreased, which can be described as

expected. Also, it is interesting to note that the non-linear dynamics of the second

link are also significant at the lowest oscilation angles below 5◦, which can best be seen

on the bottom-right plot, which compares the time derivation of θ2 from both models.

This implies that the model is very non-linear even near the equilibrium point, which

definitely poses an additional challange for the control laws based on the linearised

model.

4 DIPC system control

Double inverted pendulum is inherently unstable system at the upward oriented

equilibrium point, therefore the task of the control algorithm is to stabilize it. Simililarly

to the full non-linear system, its version linearised around the upeard position also has

unstable equilibrium, which can be confirmed by inspecting the system closed-loop poles,

shown in Figure 4.1.

Figure 4.1: Poles of the passive DIPC system, linearised around the upward

position

Here the system is discretised using Matlab c2d function, because the contoller syn-

thesis is done in discrete domain. Therefore, unstable poles from the right-hand side

complex half-plane from the contionous domain transform into poles outside the unit cir-

26

Chapter 4. DIPC system control 27

cle for discrete systems. Hence their presence in pole plot of the passive system linearised

around unstable equilibrium confirms the intuition regarding the system instability.

4.1. LQR controller

The first controller applied to the DIPC system in this work is the LQR controller.

The term LQR is the abbreviation for linear quadratic regulator, because it deals with

linear systems where the optimality is found using quadratic cost function. If the

continous-time linear system described with 3.22 is converted into discrete-time sys-

tem, its generic form is:

xk+1 = Axk +Buk (4.1)

where A and B are state and input matrices for linear discrete-time state space model,

which can be calculated from their continous-time counterparts. Furthermore, the cost

function J is here defined in a quadratic form:

J = xN
TQNxN +

N−1∑
k=0

(
xk

TQxk + uk
TRuk

)
(4.2)

where Q is a symetric positive semi-definite matrix representing the weighting factors

for the state vector elements distance from the origin, and the R symetric positive semi-

definite matrix containing weights for input signal vector elements in the optimal control

problem. Solution to this problem leads to feedback control law of the form:

uk = −Kkxk (4.3)

where K stands for LQR gain matrix, derived by solving the recursive Riccati equation.

Generally, matrix Kk changes its values as the time propagates, as marked with index k

in the equation 4.3. But in the specific case, where the prediction horizon N is infinite,

the LQR gain matrix K obtains a constant value. This is the case where considering

infinite prediction horizon, which is desirable in any optimal control problem, leads

to a simpler solution then in the finite-horizon problem. Therefore, this solution will

be used in the following analysis of the LQR-controlled DIPC system. As already

mentioned, LQR control law is optimal control law for linear systems, therefore K

matrix is computed using linearised discrete-time model. In case of DIPC system, there

Chapter 4. DIPC system control 28

is only one input signal, therefore LQR gain matrix for the infinite horizon is now a

constant row vector:

uk = −Kxk (4.4)

So, when this control law is applied to the linearised DIPC system of the form 4.1, the

resulting closed-loop system has the dynamics of the autonomous system, determined

by the following equation:

xk+1 = (A−BK)xk (4.5)

As already stated, the goal of a controller is to stabilise the system. By inspecting the

closed-loop poles of the system determined by the new state matrix A−BK, it can be

seen that the linearised closed-loop system indeed is stable. As shown in Figure 4.2, all

the poles of the discrete-time system are inside the unit circle.

Figure 4.2: Poles of the LQR-controlled linearised DIPC system

Important note here is that this closed-loop stability analysis is only valid for lin-

earised system. As shown in previous chepter DIPC system is highly non-linear, even

in the vicinity of the equilibrium point. That is the reason why the LQR performance

has to be tested with the full non-linear system, as shown in the following section.

Chapter 4. DIPC system control 29

4.1.1. LQR controller performance on the DIPC system

Since the tuning of the LQR controller is out of the scope of this work, only a few

examplary cases of values of Q and R weighting matrices are presented here. As there

is only one input signal in the examined DIPC system, the R matrix is reduced to a

scalar. Regarding the Q matrix, its values determine the weights of the each element

of the state vector, which is in the case of DIPC system consisted of three coordinates

θ0,1,2 and their derivatives θ̇0,1,2:

x =

[
θ

θ̇

]
(4.6)

Since the goal of this controller is not to keep the system velocities low while bringing

the system into the origin, the relative weights on the θ are set to a three order of

magnitudes greater values than the ones for θ̇:

Q =

[
I3x3 03x3

03x3 0.001× I3x3

]
(4.7)

Similarly to the comparison of non-linear and linearised system, the chosen initial state

is both pendulum links aligned and tilted from the upward position, θ2 = 0, θ1 ̸= 0. If

the initial θ1 is chosen to be 15◦, the system non-linearity is not significant enough to

surpass the stabilising property of LQR controller, as shown in Figure 4.3.

Figure 4.3: LQR controller performance - θ1,init = 15◦

Chapter 4. DIPC system control 30

This figure also shows the effect of changing the relative weights of R and Q matrix.

In the first case when R = 10, the cost of the input signal is order of magnitude larger

than the cost of state being out of the desired position, hence the controller returns the

system relatively slowly, as best seen on the upper-left plot. The situation is opposite

for 10× lower R value, where the controller acts much more aggressively. The difference

is also visible when inspecting the input signal magnitudes, as in Figure 4.4.

Figure 4.4: LQR controlled input signal comparison for various values of R

Finally, Figure 4.5 shows how limited the application of the linear controller actually

is, because the non-linearity of the DIPC system becomes too significant at larger initial

angles.

Chapter 4. DIPC system control 31

Figure 4.5: LQR controller collapses at θ1,init = 30◦

4.1.2. LQR controller with constraints

The limitation coming from the relatively narrow area of applicability of the lin-

earised system implies that the another goal of the controller should be keeping the

system state inside some bounds. In the case of DIPC system, these state constraints

may be dependent on each other, because at larger θ1 angles, smaller values of θ2 can be

allowed, in order for linear controller to be able to handle it. Therefore, a set of chosen

state constraints are the following:

|θ1,2| <15◦

|θ1 + θ2| <20◦
(4.8)

Graphically, these constraints can be represented with the following polytope:

Chapter 4. DIPC system control 32

Figure 4.6: Polyhedron representing chosen state constraints

Moreover, hardware limitations often require the input signal to be confined within

some boundary value umax. However, since LQR controller is synthesed using the state

vector 4.6, LQR gain matrix is actually 1× 6 vector. In other words, it depends on all

the three coordinates θ0,1,2 and their derivatives θ̇0,1,2. Therefore, the full state vector

equivalent of the polyhedron shown in the Figure 4.6 is actually six-dimensional. For

some practical reasons, it also makes sense to constrain all the other elements of the

state vector. For example, the cart slider is not infinitely long, so θ0 has to be bounded.

Furthermore, it is very likely that the linear model for frictional generelised forces loses

its fidelity for very high relative velocities, so it makes sense to put another set of limits on

θ̇0,1,2. Adding all these constraints will actually close the 6-dimensional polyhedron from

all sides, making it a polytope, or mathematically |x| < xmax. Since six-dimensional

object cannot be visualised, to get the sense of consequences of implementing input

signal constraints in LQR controller DIPC system, this 6D polytope can be sliced along

the plane spanned by θ1 and θ2 coordinates, as shown in Figure 4.7 and Figure 4.8. Here,

the red regions represent the above described polytope slice along θ1 and θ2 coordinates,

while the cyan regions show the same slice, but also with the input signal contraints

included. Mathematically, the cyan region is therefore defined as the slice along the

polytope defined by:

{x | x| < xmax} ∩ {x | u = −Kx < umax} (4.9)

In the first example shown in Figure 4.7, input force maximal value of 40N was used.

Chapter 4. DIPC system control 33

Figure 4.7: State constraints polytope slice along θ1,θ2 plane, umax = 40N

For comparison, if much stricter input signal limitation of 10N is imposed, the same

polytope slice is much thinner:

Figure 4.8: State constraints polytope slice along θ1,θ2 plane, umax = 10N

At first, Figure 4.8 could be explained that with this input signal constraint, θ1 and

θ2 coordinates neccesarily have to be kept within the narrow band marked cyan. But,

since the Figure 4.8 shows the polytope slice, the correct interpretation should be that

the cyan set boundaries are valid only if all the other elements of the state vector (θ0 and

θ̇0,1,2) are equal to zero. In a general case, it could be that in some other combinations

Chapter 4. DIPC system control 34

of other state variables, LQR controller does not yield the input signal which breaks the

imposed limit. To determine if there are any regions of allowed θ1 and θ2 states where

the input signal constraint is always broken, a 6D polytope has to be projected onto

θ1,θ2 plane, not sliced along it. In Figure 4.9, this projection of 6D polytope is marked

cyan, and it can be seen that it actually covers entire set of θ1,θ2 coordinates allowed

by initially imposed state constraints (eq. 4.8). In other words, even with the relatively

strict input signal constraint of 10N, all of the θ1,θ2 pairs allowed by the initial state

constraints 4.8 can still be reached without braking the input signal constraint, providing

that all the other state variables values are located accordignly, actually matching the

second set definition criterion from equation 4.9.

Figure 4.9: Constraints polytope projection on θ1,θ2 plane, umax = 10N

So, the goal now is to find the set of initial θ1,θ2 coordinates, for which the LQR

controller will not break any of the imposed state or input constraints during the entire

procedure of stabilising the DIPC system in the upward position. To tackle this problem,

maximal invariant sets introduced in the second chapter can be used. Since all the

other state vector initial values are assumed to be zero, the goal is to find only the 2D

cross-section of 6D invariant set, sliced along θ1,θ2 plane. By using the logic behind

the pseudocode from the second chapter (with its implementation shown in Appendix

D), the maximal invariant set for linearised closed-loop DIPC system (eq. 4.5) can be

obtained. Its slice along θ1,θ2 plane with the chosen input signal limit of umax = 30N is

Chapter 4. DIPC system control 35

shown in Figure 4.10:

Figure 4.10: Maximal θ1,θ2 plane, umax = 30N

To implement a discrete-time closed-loop simulation which will illustrate that the

derived invariant set shown in Figure 4.10 really is invariant, the full non-linear system

has to be discretised. Since the non-linear state space DIPC model is in the continous-

time domain, its integration can be done by manual implementation of e.g. fourth

order Runge-Kutta method. To check this approach and inspect the required sampling

time, the same LQR-controlled initial value problem was simulated using the proposed

manual integration algorithm and Matlab built-in integration function for general non-

stiff problems ode45, with the results shown in Figure 4.11 and Figure 4.12.

Figure 4.11: Manual implementation of Runge-Kutta integration algorithm

vs Matlab ode45 function, input signal comparison

Chapter 4. DIPC system control 36

Figure 4.12: Manual implementation of Runge-Kutta integration algorithm

vs Matlab ode45 function, state variables comparison

These two figures suggest that the non-linear DIPC system initial value problem can

be integrated using the proposed integration algorithm. However, in some situations

with more aggresive input signal value change amplitudes and consequently greater

state change from one step to another, the presented simple integration scheme can

diverge. For example, if the state measurement noise is not filtered well enough, the

state estimation is also somewhat noisy, which directly leads to the input signal richer

with higher frequencies, especially if the state feedback controller with high gain is used.

In another words, if the input signal is defined as u = −Kx, the noiser x directly results

in noisier u. The alternative therefore is to use the same Matlab built-in integration

algorithm repeatedly in every step, with the integration time equal to the timestep

duration. The proposed algorithm can now be used for discrete-time simulation, with

the θ1,θ2 inital values chosen from various locations within the invariant set. As shown

in Figure 4.13, the correspoding trajectories support the claim that the system really

doesn’t exit the invariant set.

Chapter 4. DIPC system control 37

Figure 4.13: θ1,θ2 trajectories from various initial values within the invariant

set

Also, Figure 4.14 proves that all four trajectories from various corners of invariant

set do not break the chosen input and imposed sate constraints (equations 4.8).

Figure 4.14: θ1,θ2 and input signal trajectories and the corresponding con-

straints

On the other hand, Figure 4.15 and Figure 4.16 show the same plots, but comparing

the initial values of θ1 and θ2 coordinates, one chosen inside the derived invariant set,

Chapter 4. DIPC system control 38

and one outside it.

Figure 4.15: θ1,θ2 trajectories comparison, relative to the invariant set

Figure 4.16 emphasises the subtle difference between the two trajectories, and it can

be seen how the system trajectory, when it’s initiated from the area outside the invariant

set (marked red in plots), breaks the imposed constraint on the θ1 coordinate.

Figure 4.16: θ1,θ2 and input signal trajectories comparison of different initial

values, and the corresponding constraints

Chapter 4. DIPC system control 39

4.2. MPC controller performance on DIPC system

The next step in the optimal controller assessment is the implementation of the

Model Predictive Control (MPC) algorithm, already introduced in the initial sections of

this thesis. Essentially it is similar to the LQR controller, but with more complicated

formulation of the optimisation problem, since it implicitly takes into account also the

state and input signal constraints. In the previous section it was shown that the LQR

controller can stabilise the DIPC system in the upward position without braking any of

the imposed constraints, but only in case of initating the problem from the invariant set.

In another words, the region of the attraction of the LQR-controlled system is limited

to that set, so the goal of this section is to investigate if the more sophsticated MPC can

increase this set of permissible initial values of θ1 and θ2 coordinates. Another practical

approach to constuct the input signal would be ad-hoc saturation of the signal value

coming from the LQR controller. But in that case, the original LQR optimality guar-

antee is lost, because it is no longer a linear problem, which is not taken into account

when deriving LQR controller optimal gain. Even more importantly, the system can

diverge even from the initial points which satisfy all the constraints, which means that

the stability as the crucial property is also possibly compromised. Regarding the MPC

controller, using multiparametric programming solution (Matlab function mpsolve), the

MPC region of attraction can be computed. The term region of attraction is here used

synonymously with the feasible set, i.e. set of all initial points for which the MPC

problem is stable and recursively feasible. In this case, it means that MPC can bring

the closed-loop system to the origin while obeying all of the constraints, therefore the

term region of attraction is coined. However, since the state vector has 6 elements and

state constraint vector has 14 elements, the number of critical regions is very large, so

it takes very long for the Matlab to find the final attraction region. Therefore, only

the short prediction horizons are considered now. Actually, prediction horizon length

is here of a key importance - the longer it is, the greater is the attraction region from

which the MPC can bring the system to the chosen terminal set, if the one is imposed.

For DIPC system MPC controller design, both terminal cost and terminal set was used

in the problem formulation, in order to guarantee the MPC stability and the recursive

feasibility even for shorter prediction horizons, as discussed in the second chapter. If

the LQR-controlled closed-loop system invariant set is set as the terminal set, and the

Chapter 4. DIPC system control 40

solution to the discrete algebraic Riccati equation as the terminal cost, it can be proved

that with the chosen stage cost function all the three requirements needed for MPC

stability theorem are met, as shown in [1].

Initially a discrete time prediction horizon length of two steps is chosen, which corre-

sponds to the horizon of 0.1 second. Since the LQR invariant set is chosen as the terminal

one, the MPC controller expands this attraction region, as shown in Figure 4.17. Figure

4.18 confirms that the system initiated from cyan region obeys the imposed constraints.

Figure 4.17: MPC attraction region for N = 2, compared to LQR

Figure 4.18: MPC-controlled θ1,θ2 and input signal trajectories

Chapter 4. DIPC system control 41

To ilustrate the importance of the terminal cost and set constraint in such a control

problem, the same procedure of stabilizing the DIPC system was simulated without

them. Looking at the Figure 4.17, it can be seen that from the initial angles of θ1,θ2 ≈
[0.2,−0.15]rad, which corresponds to roughly 11◦ and −8◦, MPC with the terminal state

constraint can stabilize the system with the prediction horizon length of 2 steps. On

the other hand, disregarding the terminal state make the MPC-controlled system with

the same weight matrices unstable even for prediction horizon equal to 30, as shown in

Figure 4.19.

Figure 4.19: MPC-controlled system is unstable with terminal state disre-

garded, even for longer prediction horizon

This leads to a conclusion that if the linear control problem is of a type where LQR

controller is almost suitable, it maybe makes sense to upgrade it using the linear MPC

with the LQR solution for terminal cost and state contstraint, thus enabling the use of

very short prediction horizons, which possibly does not demand as high computational

power increase. If the prediction horizon is increased beyond N = 2, the solvemp

function returns error message that the feasible set is wrong. Further investigation of

this problem would involve accessing the implementation details of this built-in Multi-

Parametric Toolbox function, which is out of the scope of this thesis.

Chapter 4. DIPC system control 42

4.2.1. MPC reference tracking

Another type of control problem which often occurs in practice is the desired state

reference tracking. Regarding the MPC controller, there are generally two possible cases:

• the reference on the entire horizon is constant

• the variable reference trajectory is known for the entire horizon.

The first case appears in a situation where the reference is constant exogeneus input,

like from e.g. human operator. For example, if the vehicle yaw rate reference in the

torque vectoring system is calculated from the vehicle speed and steering wheel angle as

the instantenous data without using any of the prediction algorithms, they are constant

for the entire horizon. This is is so because the controller can not know in advance

if the driver intends to keep the vehicle in the same state permanently or not. In

the same example of torque vectoring, the changing reference can occur in the case of

autonomous driving, where some superpositioned motion planning algorithm sets the

vehicle yaw rate reference, and then it can be time-varying on the prediction horizon.

In case of DIPC system, the cart position coordinate θ0 reference tracking is an example

of control problem which can be used to analyse the MPC controller capabilities.

If the first case from the list above with the constant reference on the entire horizon

is studied, the MPC performance is shown on upper-most plot in Figure 4.20. The

second and third row of the same figure confirm that neither of the imposed state or

input signal contraint is violated. Also, the upper-most plot shows that the controller

is rather conservative, in the sense that it keeps the DIPC system very far from any of

the constraints, and therefore guiding the system from one to another reference position

relatively slowly. In an attempt to speed up the closed-loop system response, first

logical step is to tune the objective function by decreasing the stage cost of the signal

value, denoted R. If R is decreased from the initial 0.1 to the value of 0.005, the

resulting controller is much more aggresive, as shown in Figure 4.21. This can be

seen by comparing the second and third row from the Figure 4.21 with the ones from

4.20, where an increase in both of the control signal and system coordinates trajectory

amplitudes can be detected.

Chapter 4. DIPC system control 43

Figure 4.20: MPC θ0 reference tracking with the constant reference on the

prediction horizon, R = 0.1

Figure 4.21: MPC θ0 reference tracking with the constant reference on the

prediction horizon, R = 0.005

Chapter 4. DIPC system control 44

However, if the weight factor R is decreased further to the value of R = 0.0001, it

causes the problem infeasibility at around 9.5s, as shown in Figure 4.22. As mentioned

earlier, the too short prediction horizon causes the optimal solution to guide the system

into the region where eventually no feasible solution can be found. As explained earlier,

it can happen even if the model is theoretically perfect, but in this case the controller

synthesis is based on the linearised model, whereas the closed-loop simulation is done

on the full non-linear model.

Figure 4.22: MPC infeasibility problem with the constant reference on the

prediction horizon, R = 0.0001

So, if the plant model is non-linear and no terminal state cost and constraints are

used, the choice of prediction horizon length should be done simultaneously with the

controller tuning in the simulation phase, in order to avoid the controlled system failures.

The second type of the MPC reference tracking problem is the one where the change in

reference is known in advance. This is where the full potential of this control technique

can come to light, as shown in Figure 4.23.

Chapter 4. DIPC system control 45

Figure 4.23: MPC perfomance with the reference change known in advance

Here the upper-most plot is again the most informative, because it shows how the

controller starts the manouver of changing the cart position even before the reference

actually changes, in order to minimise the overall deviation from the reference during

the transient. To be more precise, it minimises the deviation on the prediction horizon,

therefore it makes sense to choose its length according to the system general inertia, i.e.

how long does it take to move the system from one reference position to another.

The two control problems of stabilising the inverted pendulum and reference tracking can

be tested together in one procedure, by simply setting the initial θ1 and θ2 coordinates

of the prodeure above to some value other than zero. Figure 4.24 shows this example,

where e.g. initial angles are θ1 = 10◦ and θ2 = −5◦.

Chapter 4. DIPC system control 46

Figure 4.24: MPC stabilisation and reference tracking combined

However, even for this relatively small initial deviation from the equlibrium, a rela-

tively long prediction horizon is still necessary to ensure optimisation problem feasibility,

because in this problem formulation no terminal constraints were imposed. The next

idea is therefore to combine the theoretical assurance for linear MPC problem feasibility

derived for pendulum stabilisation around the upward equlibrium point, with the prac-

tical problem of reference tracking. In the presented θ0 reference tracking problem all

of the reference state vector elements are zero except the θ0 coordinate. Although the

theoretical backgorund for using LQR solution as the terminal contraints to guarantee

the problem feasibility were derived for stabilisation around origin, the same LQR is

here used for reference tracking since all of the reference vectors are analogous, in the

sense there are no stationary input signal values in the reference state. So, it could

be stated that when θ0 reference is changed, actually the origin of the six-dimensional

coordinate system was translated along the first (θ0) coordinate, so the control problem

is again stabilisation around the origin, with all the theoretical MPC stability proof

assumptions being applicable. In this context, it is also important to stress out that

there exist a unneglectable mismatch between linearised model used for the MPC syn-

Chapter 4. DIPC system control 47

tesis and the non-linear one used for simulation, which means that infeasibility is the

possible problem to be dealt with by simulation experments in any case.

But the limiting factor in the use of the presented terminal cost and constraints is the

distance between the two reference states, beacuse the controller is iven a hard constraint

that it has to bring the system in the region around the new reference state from which

the LQR controller can stabilise it without braking any of the state and input signal

constraints, as shown previously. Therefore, the difference between required prediction

horizon lengths with and the without the use of the terminal constraints is not as drastic

as in the case of pure stabilisation problem. If the same procedure from Figure 4.24 with

the combination of initial stabilisation and reference tracking is used, using the terminal

cost and constraints the required horizon length is 25 steps, and without them 35 steps

(with the simulation test increment of 5 steps). The corresponding plots of these two

simulations are shown in Figure 4.25 and Figure 4.26.

Figure 4.25: MPC reference tracking with the terminal cost and contraints,

Nmin = 25

Chapter 4. DIPC system control 48

Figure 4.26: MPC reference tracking without the terminal cost and con-

traints, Nmin = 35

Moreover, by comparing the two plots, it can also be seen that using the terminal

cost and constraint and the same values of weight matrices results in a bit more ag-

gresive MPC controller regarding the input signal magnitudes and frequency. Another

remark to this simulated experiment is that the difference of required prediction hori-

zons between the terminally constrained and non-constrained MPC definitely depends

on the combination of sampling time and distance between reference states, so further

investigation would maybe show that this difference would maybe be even more signifi-

cant in some different experiment scenario. However, the effect of changing experiment

circumstances could also have the opposite effect. For example, in the modified test of

stabilisation and θ0 reference tracking, the initial angles are set to θ1 = 5◦ and θ2 = −5◦,
and θ0 reference is altered to be closer to the origin (±0.4m), but with the θ0 constraints

placed relatively close to the reference states (±0.5m). This way, all the other parame-

ters being the same, the controller with terminal cost and constraints fails if the horizon

is set to 30, while the one without them passes the test, as shown in Figure 4.27 and

Figure 4.28. The problematic part for the terminally constrained MPC is when it has

to bring the system within the LQR invariant set without moving the cart much in the

Chapter 4. DIPC system control 49

opposite direction to induce the desired system movement because it’s close to the θ0

constraint. So, this situation would represent the case where adding terminal cost and

constraints does not result in the decrease of the required prediction horizon.

Figure 4.27: Test which MPC with the terminal constraints fails for N = 30

Figure 4.28: Test which MPC with no terminal constraints passes for N = 30

5 State estimation

Since system state measurements are almost always corrupted with measurement

noise, and sometimes state variables cannot even be measured, state estimation is often

a very important branch of a system’s control. Regarding previously presented control

techniques for DIPC system, elements of the state vector were so far assumed to be

known quantitites. In reality, all of three coordinates and their respective angular ve-

locities cannot be measured without some noise. Therefore, the topic of this chapter is

to investigate the possibility of combining the measuerements with the knowledge of the

physical system model, in order to obtain the state vector estimate accurate enough for

control.

5.1. Extended Kalman filter (EKF)

Kalman filter is an recursive algorithm for estimation of the state variables. De-

veloped by the mathematician Rudolph E. Kalman in ithe 1960s, in its base form it is

applicable to linear systems. Its generalisation for non-linear systems is called extended

Kalman filter (EKF), which is based on system linearisation around estimated state from

the previous step [8]. Since the filter inherently involves the model and measurement

innacuracies, the starting point form of non-linear system for EKF implementation is

the general state space model:

ẋ(t) = f(x(t),u(t))

y(t) = h(x(t))
(5.1)

50

Chapter 5. State estimation 51

Also, due to the step-by step linearisation in the Kalman filtering algorithm, the

input and output non-linear functions f(x(t),u(t)) and h(x(t)) have to be continously

differentiable. To obtain an approximate linear model which will be used to predict the

next system state, equations 5.1 have to linearised around the current state. This yields

Jacobian matrices, similar to the controller synthesis procedure, but extended with the

simple output equation (cf 3.22):

ẋ = AJx+BJu

y = CJx,
(5.2)

where AJ ,BJ ,CJ are defined by the previous step operating point and input signal:

AJ =
∂f

∂x

∣∣∣∣x=x0
u=u0

BJ =
∂f

∂u

∣∣∣∣x=x0
u=u0

CJ =
∂h

∂x

∣∣∣∣
x=x0

(5.3)

For the discrete-time applications, the continous linearised state space equations should

be discretised. After addition of the process and measurement noise vectors w and v,

final linearised EKF model equations are as follows:

x(k) = F(k − 1)x(k − 1) +G(k − 1)u(k − 1) +w(k − 1)

y(k) = H(k)x(k) + v(k)
(5.4)

Here, k marks the sampling step, and w and v are process and measurement noise

vectors. Esentially, the matrices F, G, H are discrete-time Jacobians calculated numer-

ically from their continous-time counterparts AJ , BJ , CJ . In case that the non-linear

system is derived in the discrete-time form, the matrices F, G, H would be obtained by

differentiation around the operating point with the zero noise vectors (using only the

deterministic model part):

F(k − 1) =
∂f

∂x

∣∣∣∣x=x(k−1)
u(k−1)
w=0

G(k − 1) =
∂f

∂u

∣∣∣∣x=x(k−1)
u(k−1)
w=0

H(k) =
∂h

∂x

∣∣∣∣x=x(k−1)
v=0

(5.5)

Chapter 5. State estimation 52

Generally, Kalman filter is comprised of two substeps, where the first one corresponds

to the model-based state prediction, and the second one to the predicted state correction

based on freshly obtained measurements. So, the result of first substep of the k-th

estimation step is a-priori state estimation x̂(k | k− 1) and estimation error covariance

matrix P(k | k − 1), based on the model and the information from the previous step.

Then in the second part, the previously a-priori estimated state is corrected by fresh

measurements y(k) using the Kalman gain matrix K, thus obtaining final a-posteriori

state estimate x̂(k | k) and measurement covariance matrix P(k | k). The Kalman filter

gain is calculated using model and measurement covariance matrices Qest and Rest and

the previous measurement error covariance matrix P, in a way which is minimises the

covariance of a-posteriori state estimation error [9]. It is important to note that this

optimality, theoretically proved for linear Kalman filter (LKF) is lost for the non-linear

model and the EKF. This is so because in the derivation of the Kalman filter it is assumed

that the state and measurement noises are Gaussian, which is the property preserved

after linear transformation in the a-priori state prediction step [10]. However, the non-

linear model corrupts this assumption [11], this way losing the optimality guarantee.

Moreover, it is also hard to prove that EKF estimate is assymptotically stable, which

means that with no noise the estimation error converges to zero [10]. But, to exploit the

accuracy of the genuine non-linear model, the EKF estimator uses the original equations

5.1 in the a-priori prediction step, as well as for the calculation of the measurement

residual ỹ, which is the difference between predicted and actually measured values of

the output vector. So, the resulting extended Kalman equations read [11] [9]:

x̂(k | k − 1) = f(x̂(k − 1 | k − 1),u(k − 1))

ỹ(k | k − 1) = y(k)− h(x̂(k | k − 1))

P(k | k − 1) = F(k − 1)P(k − 1 | k − 1)FT (k − 1) +Qest(k − 1)

K(k) = P(k | k − 1)HT (k)
[
HT (k)P(k | k − 1)HT (k) +Rest(k)

]−1

x̂(k | k) = x̂(k | k − 1) +K(k)ỹ(k | k − 1)

P(k | k) = P(k | k − 1)−K(k)H(k)P(k | k − 1)

(5.6)

The EKF approaches to the problem of non-linear dynamic system state estimation

essentially by approximating the non-linear transformation function by linearising it

around the previous-step estimate. As mentioned earlier, the key part of the Kalman

filter algorithm is the propagation of uncertain states through the system dynamics,

Chapter 5. State estimation 53

where these variables are assumed to be of Gaussian distribution [12]. Basically, the filter

pretends that the transformation function is linear, and approximate the transformed

variable covariance accordingly. In some cases, this can cause considerable errors in the

posterior mean (new state estimate) and estimated variables covariance, even sometimes

leading to the filter divergence [9] [8] [12] [13]. Second set limitations is connected to the

succesive Jacobian matrices calculation, which for some systems can be hard [14] or even

impossible [13]. Generally, it could be stated that if the non-linear dynamical system

is differentiable and if the linearised version accurately enough describes the original

non-linear one, with the relatively small measurement noise the EKF algorithm often

works well [10].

5.2. Unscented Kalman filter

The problem of calculating covariance of the Gaussian variables put through the non-

linear transformation is adressed in the unscented Kalman filter (UKF) from different

perspective. While the EKF uses the linearised function approximation, the UKF use

the set of carefully chosen sample points [12] (so called sigma points), and propagates

them through the original dynamical system. This transformation is called the unscented

transformation (UT) and is based on the intuition that the probability distribution can

be approximated easier than the non-linear function whose output uncertainty (to the

Gaussian-shaped input) has to be described [13]. So, instead of linearising the transfor-

mation function, the UT uses weighted samples around the previously calculated state

estimate and passes them through the non-linear transformation, and then calculates the

new mean (a-priori estimate of the new state) and its covariance. Although at first this

may resemble particle filters [13] [14], the crucial difference is that sample points are not

drawn randomly, but selected assigned weights in the way which preserves higher-order

infromation about the distribution [13]. This way, only a small number of sample points

(actually 2nx+1, where nx is the state dimensionality) are neccessary to reconstruct the

covariance matrix of the transformed sample points [14]. Also, the final choice of the

sigma points distribution and their corresponding weighting is not unique, but can be

tuned according to the properties of the observed dynamical system. This is somewhat

different than the EKF, where the only tuning parameter is the process noise covariance

matrix, in the case where measurement noise covariance is readily available from the

Chapter 5. State estimation 54

measurements itself, as mentioned in [9].

The difference in general approaches between EKF and UKF is shown schematically in

Figure 5.1, where on the left side the true mean and covariance of some 2-dimensional

system is shown before and after the transformation. The middle part shows the distri-

bution approximation obtained by transforming middle point and linerasing the trans-

formation function around it, as essentially done in EKF. The right side of the figure

represents the UT approach with the weighted sigma points as described above, and it

can be seen that for this example UT can approximate the transformed variable distri-

bution better than the algorithm where the transformation function itself is linearised.

Figure 5.1: UKF vs EKF approach to covariance estimation comparison [12]

5.2.1. The scaled unscented transformation

Although at first the UT and its deployment in UKF theoretically offers an improve-

ment over the EKF without significant increase in the computational effort [12], it also

has its drawbacks. The first is related to the property that when estimating systems of

higher dimensionality, the spread of sigma points increases as well [14] [15]. Although

the transformation properties are still preserved, sigma points may then capture non-

local transformation properties, which often has undesirable effect on state estimation

[14] [15]. In the DIPC example, if the sampling points in θ1 and θ2 corrdinate direction

are 60◦ away from the current estimate, their outputs from the dynamical system will

Chapter 5. State estimation 55

not provide much of the useful information about the covariance of the new a-priori

estimated state, simply because the system behaves completely different on these coor-

dinates. Also, some of recommendations for the scaling parameters [15] can lead to the

negative parameters for the problems with number of states higher than 3, which can

consequentally cause non-positive semidefinite covariance matrix estimate. This prop-

erty is required for the Cholesky decomposition, which is numerically stable algorithm

for taking matrix square root used in the UKF [13] [15], as it will shown later. Therefore,

the attempt to overcome this unsuitability of the UT for the higher-dimensional state

estimation problems represents the scaled unscented transformation.

In short, this approaches tackles the spread of the sigma points by deriving their alter-

native set moved towards the mean, and then derives an alternative weighting to each

point, in order to preserve second order accuracy both for the mean and covariance [14].

To fully describe the UT, its scaled version and its implementation within the UKF, the

entire algorithm will be explained step by step.

So, in the general non-linear state space example, both the state and output equations

are non-linear functions. In the context of UT, they represent the non-linear transfor-

mation function, so the beginning is actually the same as for the EKF:

ẋ(t) = f(x(t),u(t))

y(t) = h(x(t))
(5.7)

Next up, the sigma points σi and their weights for the UT need to be defined, using

the scaling factors α, β and κ. The first sigma point is the mean µ, i.e. previously

estimated state, and the remaining 2nx are distributed symetrically around it:

σ0 = µ, σ±i = µ±
[√

(nx + λ)Sx

]
i
,

ω0 =
λ

nx+λ
, ω±i =

1
2(nx+λ)

,
(5.8)

Here i denotes the ith column vector in the expressions for the symetrically distributed

sigma points. λ stands for composed scaling parameter, defined by

λ = α2 (nx + κ)− nx

and Sx represents decomposition of the covariance matrix, such that

SxS
⊤
x = Px.

Chapter 5. State estimation 56

ωi denotes weighting factors for the each sigma point, derived so that they represent the

prior distribution (mean and covariance), according to the expressions:

µ =
2nx∑
i=0

ωiσi

P =
2nx∑
i=0

ωi (σi − µ) (σi − µ)T .

(5.9)

It has to be noted that the weights ωi are not explicity bounded to be between zero and

one, but negative weights are also permitted, with the neccesary condition that their

sum is equal to one.
2nx∑
i=0

ωi = 1

However, some sources state that negative values could lead to the numerical issues in

the algorithm execution [15], and therefore one of the conditions used for setting the

tuning parameters in this thesis is to avoid this situation. So far, ”regular” UT sigma

points and their corresponding weights were presented, and in the scaled UT, the sigma

points are modified as follows:

σi
′ = σ0 + α (σi − σ0) (5.10)

Since α is limited to be in the set (0, 1], the scaled sigma points are either equal to

the non-scaled (for α = 1), or approaching the zeroth sigma point, i.e. previous state

estimate. To preserve the properties of the UT, the weighting coefficents also have to

be corrected, which is done as follows:

ω′
i =

ω0/α
2 + (1− 1/α2) i = 0

ωi/α
2 i ̸= 0

(5.11)

Important is that in [14] it is shown that the covariance matrix of the transformed

sigma points is guaranteed to be positive semidefinite if all of the transformed weighting

coefficients are non-negative, so the line of reasoning to avoid the negative weights is also

confirmed. Nextly, if the transformed sigma points are denoted zi, in case of non-linear

transformation from the system state equation, they are defined by:

zi = f(σi) (5.12)

Chapter 5. State estimation 57

After the transformation of the of the sigma points through the system state equation,

the a-priori estimate of the state variable vector (mean), and its covariance matrix are

obtained via:

µz ≈
2nx∑
i=0

ωizi

P z ≈
2nx∑
i=0

ωi (zi − µz) (zi − µz)
T

+
(
1− α2 + β

)
(z0 − µz) (z0 − µz)

T ,

(5.13)

where β is additional scaling paramter, used to add extra weight to the zeroth trans-

formed sigma point [14] [15].

5.2.2. Scaled UT applied in UKF

As already mentioned, the above explained procedure of the scaled unscented trans-

formation can be deployed in the unscented Kalman filter used for state estimation for

non-linear state space, as the one described by equations 5.1. Actually, the scaled UT

is applied twice, so the UKF algorithm can be summarised as follows:

• Firsly, the UT is applied on the state equation with the previous state estimate

being zeroth sigma point, thus obtaining the a-priori new state estimate. To cal-

culate the a-priori estimate covariance, process noise covariance matrix is simply

added to the covariance matrix obtained by UT.

• Then, the same procedure is applied to the non-linear output equation, hence

getting the model-based best guess of the measured values. Instead of adding the

process noise, the measurement noise covariance matrix is added to the calculate

the corresponding covariance matrix.

• The third step is to calculate the Kalman gain matrix from the covariance matrices,

using the expressions below [16]:

Pxz =
2nx∑
i=0

ωi (σi − µx) (zi − µz)
T

Kukf = PxzP
−1
z

Chapter 5. State estimation 58

• After obtaining fresh measurements y(k), final two steps are to correct a-priori

estimete via Kalman gain matrix, thus obtaining final a-posteriori new state esti-

mate x̂, and also to update the state estimate covariance matrix P using Kalman

gain matrix [16]:

x̂ = µx +Kukf (y(k)− µz)

P = P−KukfPKT
ukf

Although the expressions for the Kalman gain and the estimate covariance matrix update

look differently then in the case of EKF (cf. 5.6), in [16] it is shown that mathematically

they represent the same thing.

5.3. EKF and UKF performance on DIPC system

This section present the closed-loop performance of the MPC-controlled DIPC sys-

tem, if the state vector is estimated only from noisy position and angle measurements,

so only three out of six elements of the the state vector are measured.

The chosen simulation and controller environment is the MPC without the terminal

cost and constraints, with the θ0 reference varying on the prediction horizon, but close

to the θ0 constraint, like the one from Figure 4.28. The measurements are corrupted

with the white noise characterised by its standard deviation, where the corresponding

noise numerical data was taken from the datasheets of commercially available linear

potentiometier [17] for cart position measurement and Hall-effect angle sensor [18]. The

procedure of comparing the performance of the two filters will be as follows:

• The measurement noise covariance matrix Rest is calculated as the diagonal ma-

trix, with the members on the main daigonal being sqaured standard deviation

values from the sensor datasheets

• The process noise covariance matrix Qest is tuned the goal to achieve the desired

EKF state estimation performance, which is used as a benchmark for the UKF

• The UKF scaling factors α and κ are tuned to compare the UKF performance

with the EKF

Initially, both estimation algorithms can be compared in the open loop, i.e. with the use

of simulated state variables as the system inputs, so as if all the state vector variables

Chapter 5. State estimation 59

were perfectly measured. Such a state estimation of both the estimators is shown in

Figure 5.2, with the zoomed plots in Figure 5.3. From them it can be seen that both

estimators similarly assess the θ0 coordinate. For θ̇0 and also θ̇1 UKF shows less noise,

but also small stationary offset. Regarding θ1 and θ2, it can be deduced that EKF relies

heavily on the measurements, while the UKF has more significant filtering action. Since

the system is very unstable, increasing the model reliability in the filter, i.e. setting the

lower values into the Qest matrix, causes it the system in the closed loop to diverge,

threfore these open loop estimation results are considered as a starting point for the

next subsections.

Figure 5.2: EKF and UKF state estimation in open loop

Chapter 5. State estimation 60

Figure 5.3: EKF and UKF state estimation in open loop, zoomed view

5.3.1. EKF estimate as the feedback

If the EKF is used as the feedback, the noisy state estimate influences the reduced

precision in the pendulum positioning, i.e. θ0 coordinate, as seen in Figure 5.4. The

estimation algorithms comparison shown in Figure 5.5 shows that when EKF is used in

the closed loop, the two estimators behave almost the same.

Chapter 5. State estimation 61

Figure 5.4: Test procedure with the loop closed with EKF estimate

Figure 5.5: Estimated state variables, EKF in feedback loop

Chapter 5. State estimation 62

Inspecting the enlarged view of the estimated variables comparison shown in Figure

5.6 confirms the previous conclusion that in case where the actual system is oscilating

due to the noisy state estimate, both the estimators yield practically the same results.

The middle left plot in Figure 5.6 shows that UKF still exhibits a bit better filtering

action, while EKF again relies almost completely on measurements.

Figure 5.6: Estimated state variables, EKF in feedback loop - zoom

In spite of oscilating motion of the pendulum cart (θ0 coordinate), the presented

EKF manages to give the estimate of the non-measured state vector elements (θ̇0,1,2)

well enough that the pendulum remains stabilised in the upward position.

Chapter 5. State estimation 63

5.3.2. UKF estimated state in the feedback

Second option discussed in this thesis is the use of the UKF estimator output in

the feedback loop. The state variables trajectories in this case are shown in Figure 5.7,

where it can be seen that compared to the EKF, slighly less noisier estimator gives a bit

less noise in the control signal and consequentually in some state variable trajectories,

as for example θ1. However, a more significant difference between the use of the two

algorithms is the small stationary offset present in the controlled variable θ0.

Figure 5.7: Test procedure with the loop closed with UKF estimate

The state variable estimation plots at first look similar to the case where EKF

estimator is deployed, so again both EKF and UKF yield practically the same estimates

(see Figure 5.5). However, the enlarged view od the first link angle derivative θ̇1 estimate

reveals that UKF tends to drift off from the simulation trajectory, while the EKF follows

it better, as shown in Figure 5.8. This could explain why the same controller with the

UKF estimate in the feedback loop does not follow the desired θ0 reference. If the θ1 is

offset, the predictive controller expects both of the links will start falling to the side, and

so it has to wait until the pendulum links are tilted, so it can catch them in the same

time bringing the cart to the desired position. Since it then does not initiate any cart

movement, the pendulum link never assume any significant tilting angle, and therefore

Chapter 5. State estimation 64

the cart remains stuck in the offset position.

Figure 5.8: θ̇1 estimate with UKF in feedback loop

This effect is even exagurated when inifinite horizon LQR controller is deployed with

the UKF estimate in the feedback loop, as shown in Figure 5.9.

Figure 5.9: LQR controlled system with the UKF estimate

As expected, looking at the enlarged view of the θ̇1 estimate plot shown in 5.10, it

can be seen that again not negligible amount of this state variable estimate offset is

present.

Chapter 5. State estimation 65

Figure 5.10: θ̇1 estimate with UKF in feedback loop and LQR controller

Further investigation of this effect could include deployment of the offset-free model

predictive controller (as in [19] [20]), if the UKF was to be employed. The interesting

part of the problem is the fact that adjusting the UKF tuning parameters does not affect

the estimate offset.

If the EKF was to be used, and the presented system accuracy was not satisfactory,

the solution would be to increase the sensor quality in terms of the output noise. For

example, if the noise amplitudes were halved and the EKF estimator would be deployed,

the resulting DIPC positioning accuracy would be better, as shown in Figure 5.11.

Figure 5.11: Test procedure with EKF estimator and improved sensors

6 Conclusion

In this thesis the double inverted pendulum on a cart dynamical model was derived

using the first principles equations. Model linearisation was carried out, with the com-

parison of the original model and its linearised counterpart, where it was shown that the

presented system is highly non-linear. Inifite horizon linear quadratic controller (LQR)

was used to stabilise the system, and the invariant set for LQR-controlled system was

analysed. Then, linear model predictive controller (MPC) was deployed, and subse-

quently it was shown how the usage of the terminal cost and constraints can decrease

the required prediction horizon, which is important factor for the system hardware re-

quirements. Subsequently, MPC was used for reference tracking problems, with the

constraints designed to constraint the system’s trajectories to the applicability region of

the linear model used in the controller synthesis. Simulation results of the closed-loop

behaviour was presented for two cases, when the reference signal change is known in

advance, i.e. over the whole prediction horizon, and also when this knowledge is not

available. Finally, it was assumed that only position sensors were available, so the anal-

ysis of the state estimation algorithms was performed and presented. For this puprose,

the extended and unscented Kalman filters (EKF and UKF) were derived and analysed.

It was shown that by using the UKF the measurement noise is filtered slightly better,

but also that the closed-loop system exhibits stationary offset when UKF estimate is

used as a feedback. Regarding the EKF, it was shown that it can be used for the

double pendulum positioning problem, but that for increased accuracy higher sensor

requirements are needed.

66

7 Appendices

All the codes are written inMatlab, version R2022b. As the sidenote, some linebreaks

were added to the text version of the original code, in order to fit the page. Since there

is no NDA, original code is available upon request.

7.1. Appendix A

Appendix A shows the code which calculates the terms on the left-hand side of the

Langrage equations 3.1, using the θ2 definition from figure 3.1

syms theta0(t) theta1(t) theta2(t) m0 m1 m2 g L1 L2

J1=1/12*m1*L1^2;

J2=1/12*m2*L2^2;

% kinetic energy of the cart

Ek0=1/2*m0*(diff(theta0,t))^2;

% potential and kinetic energy of the first link

Ep1=m1*g*L1*0.5*cos(theta1);

x1=theta0+1/2*L1*sin(theta1);

y1=1/2*L1*cos(theta1);

Ek1t=1/2*m1*((diff(x1))^2+(diff(y1))^2);

Ek1r=1/2*J1*(diff(theta1))^2;

Ek1=Ek1r+Ek1t

67

Chapter 7. Appendices 68

Ek1s=simplify(Ek1)

% potential and kinetic energy of the second link

Ep2=m2*g*(L1*cos(theta1)+1/2*L2*cos(theta2));

x2=theta0+L1*sin(theta1)+1/2*L2*sin(theta2);

y2=L1*cos(theta1)+1/2*L2*cos(theta2);

Ek2t=1/2*m2*((diff(x2))^2+(diff(y2))^2);

Ek2r=1/2*J2*(diff(theta2))^2;

Ek2=Ek2r+Ek2t;

Ek2s=simplify(Ek2)

Ek=Ek0+Ek1+Ek2

Eks=simplify(Ek, Steps=30)

Ep=simplify(Ep1+Ep2);

Lag=Ek-Ep;

Lag0=diff(diff(Lag,diff(theta0)),t)-diff(Lag,theta0);

Lag0s=simplify(Lag0)

Lag1=diff(diff(Lag,diff(theta1)),t)-diff(Lag,theta1);

Lag1s=simplify(Lag1)

Lag2=diff(diff(Lag,diff(theta2)),t)-diff(Lag,theta2);

Lag2s=simplify(Lag2)

7.2. Appendix B

Appendix B shows the code which calculates the terms on the left-hand side of the

Langrage equations 3.1, using the θ2 definition from figure 3.2.

syms theta0(t) theta1(t) theta2(t) m0 m1 m2 g L1 L2

J1=1/12*m1*L1^2;

Chapter 7. Appendices 69

J2=1/12*m2*L2^2;

% kinetic energy of the cart

Ek0=1/2*m0*(diff(theta0,t))^2;

% potential and kinetic energy of the first link

Ep1=m1*g*L1*0.5*cos(theta1);

x1=theta0+1/2*L1*sin(theta1);

y1=1/2*L1*cos(theta1);

Ek1t=1/2*m1*((diff(x1))^2+(diff(y1))^2);

Ek1r=1/2*J1*(diff(theta1))^2;

Ek1=Ek1r+Ek1t

Ek1s=simplify(Ek1)

% potential and kinetic energy of the second link

Ep2=m2*g*(L1*cos(theta1)+1/2*L2*cos(theta1+theta2));

x2=theta0+L1*sin(theta1)+1/2*L2*sin(theta1+theta2);

y2=L1*cos(theta1)+1/2*L2*cos(theta1+theta2);

Ek2t=1/2*m2*((diff(x2))^2+(diff(y2))^2);

Ek2r=1/2*J2*(diff(theta2)+diff(theta1))^2;

Ek2=Ek2r+Ek2t;

Ek2s=simplify(Ek2)

Ek=Ek0+Ek1+Ek2

Eks=simplify(Ek, Steps=30)

Ep=simplify(Ep1+Ep2);

Lag=Ek-Ep;

Lag0=diff(diff(Lag,diff(theta0)),t)-diff(Lag,theta0);

Lag0s=simplify(Lag0)

Lag1=diff(diff(Lag,diff(theta1)),t)-diff(Lag,theta1);

Chapter 7. Appendices 70

Lag1s=simplify(Lag1, Steps=30)

Lag2=diff(diff(Lag,diff(theta2)),t)-diff(Lag,theta2);

Lag2s=simplify(Lag2, Steps=30)

7.3. Appendix C

Appendix C shows the code which derives the linearised model of the DIPC system

3.22 using Matlab Symbolic Toolbox :

syms theta0(t) theta1(t) theta2(t) m0 m1 m2 g L1 L2 d0 d1 d2 u

dtheta0=diff(theta0)

dtheta1=diff(theta1)

dtheta2=diff(theta2)

% non-linear model matrices

% do not fit the pdf page in the code form

% see the paper for expressions

H=[1;0;0]

G=[0;-(0.5*m1+m2)*L1*g*sin(theta1)-0.5*m2*L2*g*sin(theta1+theta2);

...-0.5*m2*g*L2*sin(theta1+theta2)]

D=[m0+m1+m2, (0.5*m1+m2)*L1*cos(theta1)+1/2*m2*L2*cos(theta1+theta2),

... 0.5*m2*L2*cos(theta1+theta2);

... (0.5*m1+m2)*L1*cos(theta1)+1/2*m2*L2*cos(theta1+theta2),

... (1/3*m1+m2)*L1^2 + 1/3*m2*L2^2+m2*L1*L2*cos(theta2),

... 1/3*m2*L2^2+0.5*m2*L1*L2*cos(theta2);

...0.5*m2*L2*cos(theta1+theta2),

... 0.5*m2*L1*L2*cos(theta2)+1/3*m2*L2^2, 1/3*m2*L2^2]

D_inv=D\eye(3)

C=[d0, -(0.5*m1+m2)*L1*sin(theta1)*dtheta1-

...m2*L2*sin(theta1+theta2)*(dtheta2+0.5*dtheta1),

... -0.5*m2*L2*sin(theta1+theta2)*dtheta2;

...0, d1, -0.5*m2*L1*L2*sin(theta2)*dtheta2-L1*L2*m2*sin(theta2)*dtheta1;

Chapter 7. Appendices 71

... 0, 0.5*m2*L1*L2*sin(theta2)*dtheta1, d2]

A_=[zeros(3,3),eye(3); zeros(3,3),-D_inv*C]

B_=[0;0;0;D_inv*H]

L=[0;0;0;-D_inv*G]

% intermediate step for jacobian derivation

Aj=formula(A_)

Bj=formula(B_)

Lj=formula(L)

x_=[theta0,theta1,theta2,dtheta0,dtheta1,dtheta2]

% defining the non-linear model in the form x_dot=f(x,u)

f1=Aj(1,:)*x_’+Lj(1)+Bj(1)*u

f2=Aj(2,:)*x_’+Lj(2)+Bj(2)*u

f3=Aj(3,:)*x_’+Lj(3)+Bj(3)*u

f4=Aj(4,:)*x_’+Lj(4)+Bj(4)*u

f5=Aj(5,:)*x_’+Lj(5)+Bj(5)*u

f6=Aj(6,:)*x_’+Lj(6)+Bj(6)*u

% vector of equations

f=[f1,f2,f3,f4,f5,f6];

% general jacobian calculations

A1=jacobian(f,x_)

B1=jacobian(f,u)

% calculation of the jacobian matrices

% of the linearisation around pendulum-down position

theta0=0

theta1=pi

theta2=0 % theta_2 is defined relatively

Chapter 7. Appendices 72

dtheta0=0

dtheta1=0

dtheta2=0

A1s=subs(A1)

B1s=subs(B1)

7.4. Appendix D

Appendix D shows the code which derives the maximal invariant set for linearised

DIPC system with the chosen state and input constraints, and then performs a simula-

tion of the closed-loop system, with the initial state chosen by the click on the invariant

set slice displayed in plotted graph.

7.4.1. Simulation from initial states chosen by mouse click

%function which plots the polyhedron which

% represnts the set of constraints

%on theta1 and theta2

%Parameters

m0=1.5;

m1=0.5;

m2=0.5;

L1=1;

L2=1;

g=9.81;

d0=0.1;

d=0.1;

d1=d;

d2=d;

Chapter 7. Appendices 73

% Linearised system dynamics - from live script (for theta1,2=0):

matrices Ac and Bc too long to fit the pdf, therfore omitted

see: Lagrange_dpic_livescript_jacob Appendix B

sys = ss(Ac,Bc,eye(6),zeros(6,1)); %D matrix is zero

% Conversion from continous to discrete system

Ts=0.05; % sample time

sysd = c2d(sys, Ts);

[A,B,C,D] = ssdata(sysd);

% Criterion weight matrices

Q = [eye(3),zeros(3);zeros(3),eye(3)*0.001];

R =0.1;

%LQR controller gain

[K,~,~] = dlqr(A,B,Q,R);

Acl = A-B*K; % closed loop system matrix

%% State constraints - theta_0,1,2 theta_dot_0,1,2 (meters and radians)

f0=[2, 15*pi/180,15*pi/180,10,720*pi/180,720*pi/180]’;

% additional constraints on sum of theta_1 and theta_2

%abs(theta1+theta2)<20 deg

F0=[0 1 1 0 0 0];

F = [eye(6);-eye(6);F0;-F0]; f=[f0;f0;20*pi/180;20*pi/180];

P1 = Polyhedron (F,f);

Pcut1 = slice(P1, [1 4 5 6]);

plot(Pcut1, ’Color’, ’r’);

hold on

Umax=30; %[N]

%Input signal constraints

Chapter 7. Appendices 74

% U = {u | Mu <= m}

M = [1;-1]; m = [Umax;Umax];

% u=-Kx, therefore another polyhedron of states represents the input signal

% constraint

% intersection of input constraints with the state

% constraints X = {x | Fx <= f}

FF = [F;-M*K]; ff = [f;m];

P2 = Polyhedron (FF,ff);

Pcut2 = slice(P2, [1 4 5 6]);

plot(Pcut2, ’Color’, ’c’);

hold on

% %% projection of entire polytope onto a theta1,2 plane

% figure(2)

% plot(Pcut1, ’Color’, ’r’);

% hold on

% Pproj=projection(P2,[2 3]);

% plot (Pproj,’Color’, ’c’)

%

% legend(’State constraints’,’Input signal defined constraints’)

% xlabel(’\theta_1 [rad]’)

% ylabel(’\theta_2 [rad]’)

% title (’Projection, u_{max}=10 N’)

%% Maximal invariant set

% Xf = maxInvar(Acl, Polyhedron(FF,ff));

% Finvar = Xf.A;

Chapter 7. Appendices 75

% finvar = Xf.b;

Pcut_invar = slice(Xf, [1 4 5 6]);

plot(Pcut_invar, ’Color’, ’g’)

%% closed-loop simulation

h=Ts; %time step for manual runge kuuta implementation

traj = cell(0); % cell which will contain all the trajectories

while 1

fprintf(’\nClick on figure for trajectory (right-click for exit)\n’)

[x,y,button] = ginput(1);

if button > 1, break; end

sol.x = [];

sol.x(:,1) = [0;x;y;0;0;0];

if all(Finvar*sol.x(:,1) <= finvar)

% x is inside invariant set, for plot color

sol.feasible = 1;

else

sol.feasible = 0;

end

i = 1;

while norm(sol.x(:,end)) > 1e-2

% Simulation lasts until the system converges to origin

% discrete LQR controlled optimal actions

sol.u(:,i) = -K*sol.x(:,i);

% Application of the control action to the system

% --> manual 4th order runge kutta implementation -

%for integration of non-linear system

Chapter 7. Appendices 76

% rename dpic into odefun_dpic_newtheta_RK

k_1 = dpic(sol.x(:,i), m0, m1, m2, L1, L2, g, d0, d,sol.u(:,i));

k_2 = dpic(sol.x(:,i)+0.5.*h.*k_1, m0, m1, m2, L1, L2, g, d0, d,sol.u(:,i));

k_3 = dpic(sol.x(:,i)+0.5.*h.*k_2, m0, m1, m2, L1, L2, g, d0, d,sol.u(:,i));

k_4 = dpic(sol.x(:,i)+k_3.*h, m0, m1, m2, L1, L2, g, d0, d,sol.u(:,i));

sol.x(:,i+1) = sol.x(:,i) + (1/6).*(k_1+2.*k_2+2.*k_3+k_4).*h;

% main equation

i = i + 1;

end

% each trajectory is a separte cell object

traj{end+1} = sol;

% Plotting the trajectores

plot(sol.x(2,:),sol.x(3,:),’--k’);

plot(sol.x(2,:),sol.x(3,:),’.k’,’markersize’,5);

end

legend(’State constraints’,’Input signal defined constraints’,..

...’Invariant set for LQR controlled system’)

xlabel(’\theta_1 [rad]’)

ylabel(’\theta_2 [rad]’)

title (’Slice, u_{max}=30 N’)

figure;

hold on; grid on;

num_traj = numel(traj);

for i=1:num_traj

sol = traj{i};

o = ones(1,size(sol.x,2));

Chapter 7. Appendices 77

if sol.feasible

color = ’g’;

else

color = ’r’;

end

subplot(2,2,1)

hold on; grid on;

plot(sol.x(2,:),’Color’,color,’markersize’,20,’linewidth’,2);

plot(1:size(sol.x,2),f(2)*o,’k’,’linewidth’,2)

plot(1:size(sol.x,2),-f(8)*o,’k’,’linewidth’,2)

ylabel(’\theta_1 [rad]’)

subplot(2,2,2)

hold on; grid on;

plot(sol.x(3,:),’Color’,color,’markersize’,20,’linewidth’,2);

plot(1:size(sol.x,2),f(3)*o,’k’,’linewidth’,2)

plot(1:size(sol.x,2),-f(9)*o,’k’,’linewidth’,2)

ylabel(’\theta_2 [rad]’)

subplot(2,2,3)

o = ones(1,size(sol.u,2));

hold on; grid on;

plot(sol.x(3,:)+sol.x(2,:),’Color’,color,’markersize’,20,’linewidth’,2);

plot(1:size(sol.u,2),f(13)*o,’k’,’linewidth’,2)

plot(1:size(sol.u,2),-f(14)*o,’k’,’linewidth’,2)

ylabel(’\theta_1 + \theta_2 [rad]’); xlabel(’Simulation steps, Ts=0.05 s’)

subplot(2,2,4)

o = ones(1,size(sol.u,2));

hold on; grid on;

plot(sol.u,’Color’,color,’markersize’,20,’linewidth’,2);

plot(1:size(sol.u,2),m(1)*o,’k’,’linewidth’,2)

Chapter 7. Appendices 78

plot(1:size(sol.u,2),-m(2)*o,’k’,’linewidth’,2)

ylabel(’u’); xlabel(’Simulation steps, Ts=0.05 s’)

end

7.4.2. Maximal invariant set function

% Function which calculates maximal invariant set for automous system

% x_dot=Ax, with polyhedron set of constraints

function Xf = maxInvar(A, X)

while 1

prevX = X; %invariant set candidate

T = X.A; t = X.b;

preX = Polyhedron(T*A,t); % preset of X calculation

%function polyhedron creates polyhedral set

%from matrix A and vector b such that {x | Ax <= b}

X = intersect(preX,X);

%if X is completely within its preset, then it means that X is maximal

%invariant set

% translated, this means that the intersection of X and its preset is

% equal to X

if prevX == X

break

end

end

Xf = X;

end

Bibliography

[1] M. Zeilinger; C. Jones; F. Borrelli; M. Morari. Lecture slides from model predictive

control, part one – introduction, 2016.

[2] Andrej Jokić. Lecture slides from the optimisation course, 2020.

[3] Josip Kasać. Lecture slides from the fuzzy and digital control course, 2022.

[4] Mr. Keshav M. Jadhav. Introduction to dynamic programming and bellman’s prin-

ciple of optimality, accessed in May 2024.

[5] Branimir Novoselnik. Practical lectures from predictive control course, 2023.

[6] Ian J. P. Crowe-Wright. Control theory: The double pendulum inverted on a cart.

Master’s thesis, University of New Mexico, 2018.

[7] Dragan Pustaić; Hinko Wolf; Zdenko Tonković. Mehanika III. Golden marketing -

Tehnička knjiga, 2005.

[8] Eric L. Haseltine and James B. Rawlings. Critical evaluation of extended kalman

filtering and moving-horizon estimation. Industrial and Engineering Chemistry

Research,44, 2451-2460, 2005.

[9] Mario Hrgetić. Vehicle Dynamics State Estimation Based On Sensor Fusion By

Adaptive Kalman Filter. PhD thesis, Faculty of Electrical Engineering and Com-

puting, 2015.

79

BIBLIOGRAPHY 80

[10] California Institute of Technology Henrik Sandberg. Moving horizon estimation

lecture slides, 2006.

[11] Kris Kitani. Extended kalman filter lecture slides, Carnegie Mellon University.

[12] Rudolph van der Merwe Eric A. Wan. The unscented kalman filter for nonlinear

estimations. Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing,

Communications, and Control Symposium (Cat. No.00EX373), 2000.

[13] JEFFREY K. UHLMANN SIMON J. JULIER. Unscented filtering and nonlinear

estimation. PROCEEDINGS OF THE IEEE, VOL. 92, NO. 3, 2004.

[14] SIMON J. JULIER. The scaled unscented transformation. Proceedings of the 2002

American Control Conference (IEEE Cat. No.CH37301), 2002.

[15] Caroline Svahn; Kristin Nielsen; Hector Rodriguez-Deniz; Gustaf Hendeby. Ukf pa-

rameter tuning for local variation smoothing. Proceedings of the 2021 IEEE Inter-

national Conference on Multisensor Fusion and Integration for Intelligent Systems

(MFI), 2021.

[16] Cyrill Stachniss. Slam course - 06 - unscented kalman filter, lecture slides,

2013/2014.

[17] Waycom series lmi12-sl and lmi12-se linear potentiometer datasheet, accessed in

January 2024.

[18] Allegro microsystemsy a1334 angular hall sensor datasheet, accessed in January

2024.

[19] Spahija; Švec; Matuško; Ileš. Successive linearization based predictive vehicle

torque vectoring. 2019 International Conference on Electrical Drives and Power

Electronics, 2019.

[20] Moritz M. Diehl James B. Rawlings, David Q. Mayne. Model Predictive Control:

Theory, Computation, and Design, 2nd Edition. Nob Hill Publishing, 2017.

	 Contents
	 List of Figures
	 List of Symbols
	 Summary
	1. Introduction
	2. Theoretical background
	2.1. Receding horizon control
	2.2. Convex optimisation
	2.2.1. Affine function
	2.2.2. Convex set
	2.2.3. Convex function

	2.3. MPC stability and recursive feasibility
	2.3.1. Invariant set

	2.4. MPC stability theorem

	3. Pendulum model
	3.1. Governing equations
	3.1.1. Alternative formulation

	3.2. Model linearisation

	4. DIPC system control
	4.1. LQR controller
	4.1.1. LQR controller performance on the DIPC system
	4.1.2. LQR controller with constraints

	4.2. MPC controller performance on DIPC system
	4.2.1. MPC reference tracking

	5. State estimation
	5.1. Extended Kalman filter (EKF)
	5.2. Unscented Kalman filter
	5.2.1. The scaled unscented transformation
	5.2.2. Scaled UT applied in UKF

	5.3. EKF and UKF performance on DIPC system
	5.3.1. EKF estimate as the feedback
	5.3.2. UKF estimated state in the feedback

	6. Conclusion
	7. Appendices
	7.1. Appendix A
	7.2. Appendix B
	7.3. Appendix C
	7.4. Appendix D
	7.4.1. Simulation from initial states chosen by mouse click
	7.4.2. Maximal invariant set function

	 Bibliography

