Optimizacija oblika krila male bespilotne letjelice primjenom proširene metode noseće linije za proračun uzgona i otpora

Grabar, Petar

Undergraduate thesis / Završni rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:782770

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-21

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Petar Grabar

Zagreb, 2024.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentori:

Student:

Izv. prof. dr. sc. Pero Prebeg

Petar Grabar

Zagreb, 2024.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru dr.sc. Peri Prebegu na izrazitoj pomoći i velikom razumijevanju tijekom izrade ovog rada te na izričito velikoj mogućnosti prenošenja znanja. Također, veliko hvala dr.sc. Marijanu Andriću i dr.sc. Milanu Vrdoljaku na savjetima i stručnoj pomoći.

Cijeli ovaj proces bio bi nemoguć bez stalne potpore djevojke, roditelja, brata, obitelji, kolega i prijatelja kojim ovim putem zahvaljujem od srca.

Petar Grabar

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za završne i diplomske ispite studija zrakoplovstva

Sveučilište u Zagrebu	
Fakultet strojarstva ibrodogradnje	
Datum	Prilog
Klasa: 602 - 04 / 24 - 06 / 01	
Ur.broj: 15 - 24 -	

ZAVRŠNI ZADATAK

Student: Petar Grabar

JMBAG: 0035226575

Naslov rada na Optimizacija oblika krila male bespilotne letjelice primjenom proširene hrvatskom jeziku: metode noseće linije za proračun sila uzgona i otpora

Naslov rada na engleskom jeziku: Small unmanned aerial vehicle wing shape optimization using extended lifting line method for lift and drag calculation

Opis zadatka:

U konceptualnoj fazi projektiranja zrakoplova potrebno je odrediti geometriju krila koja zadovoljava postavljene zahtjeve primjenom metoda koje omogućuju brzu procjenu ili analizu aerodinamičkih značajki. Primjena optimizacije u tom procesu omogućuje pronalaženje najbolje varijante prema korištenom cilju. U radu je potrebno u programskom jeziku Python izraditi matematički model za optimizaciju geometrije krila male bespilotne letjelice primjenom prikladne optimizacijske metode te implementacijom proširene metode noseće linije za određivanje aerodinamičkih koeficijenata sila uzgona i otpora.

Zadatak obuhvaća sljedeće:

- upoznavanje sa zapisom geometrije male bespilotne letjelice primjenom CPACS (Common Parametric Aircraft Configuration Schema) formata
- · formulaciju optimizacijskog problema projektiranja oblika krila male bespilotne letjelice
- izradu Python modula koji omogućuje promjenu geometrije krila zapisanog u CPACS formatu
- izradu Python modula za određivanje aerodinamičkih koeficijenata sila uzgona i otpora u ovisnosti o
 geometriji krila primjenom proširene metode noseće linije
- izradu Python modula za optimizaciju oblika krila koji integrira prethodna dva modula s postojećom implementacijom prikladne optimizacijske metode
- provedbu optimizacije primjenom implementiranih Python modula, na primjeru male bespilotne letjelice.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

30.11.2023

Zadatak zadao:

Izv. prof. dr. sc. Pero Prebeg

Datum predaje rada:

1. rok: 22, i 23, 2, 2024, 2. rok (izvanredni): 11, 7, 2024, 3. rok: 19, i 20, 9, 2024, Predviđeni datumi obrane:

1. rok: 26. 2. - 1. 3. 2024. 2. rok (izvanredni): 15. 7. 2024. 3. rok: 23. 9. - 27. 9. 2024.

Predsjednik Povjerenstva:

Prof. dr. sc. Milan Vrdoljak

SADRŽAJ

POPIS SLIKA	III
POPIS TABLICA	. V
POPIS OZNAKA	VII
SAŽETAK	XI
SUMMARY	XII
1. UVOD	1
1.1. Općenito o optimizaciji	1
1.2. Matematičko modeliranje optimizacije	2
1.3. Lokalni i globalni optimumi	2
1.4. Kvadratno programiranje s ograničenjima jednakosti i nejednakosti	3
1.4.1. Metoda aktivnih ograničenja	4
1.5. Sekvencijalno kvadratno programiranje	5
2. CPACS zapis geometrije krila	7
2.1. Pozicioniranie sekcija	9
2.2. Elementi i segmenti krila	10
3. Proširena metoda noseće linije	12
3.1 Računske veličine krila	12
3.2 Prandlov model noseće linije	12
3.3 Weissingerov model	15
3.3.1. Brzina inducirana Π vrtlogom	16
3.3.1.1. Pronalazak nepoznatih intenziteta cirkulacija П vrtloga	18
3.3.2. Metoda panela	20
3.3.2.1. Rubni uvjeti	23
3.3.2.2. Izračun nepoznatih gustoća vrtloga, brzine opstrujavanja i koeficijenta tlal	ka
panelnom metodom	24
3.3.3. Izračun gradijenta koeficijenta sile uzgona po napadnom kutu	25
3.3.3.1. Izračun koeficijenta sile uzgona za profil	28
3.3.3.2. Izračun gradijenta koeficijenta sile uzgona po napadnom kutu	28
3.3.4. Geometrija II vrtloga u Python-u	29
3.3.4.1. Implementacija brzina induciranih II vrtlogom u Python	31
3.3.5. Aerodinamicki koeficijenti krila	32 22
	33
336 Prociena koeficijenta parazitnog otnora	35
3 3 6 1 Otpor trenia CDf	35
3 3 6 2 Otpor dra <i>CDb</i>	36
3.3.6.3. Valni otpor. <i>CDw</i>	37
3.4. Vektorizacija koda u <i>Python</i> -u	38
3.4.1. Prednosti vektoriziranog koda	38
4. Opis Python skbiblioteke za optimizaciju krila	40
5. Optimizacija krila male bespilotne letjelice	42

Petar Grabar Završni rad	d
5.1. Optimizacija krila s jednim segmentom	2
5.1.1. Projektne varijable	2
5.1.2. Projektna ograničenja43	3
5.1.3. Optimizacija krila s ciljem minimizacije koeficijenta otpora, CD	4
5.1.3.1. Optimizacija s prvom inicijalnom geometrijom krila, tj. početnim projektom	ı
P1	4
5.1.3.2. Optimizacija s drugom inicijalnom geometrijom krila, tj. s početnim	
projektom <i>P</i> 2	9
5.1.3.3. Optimizacija s trećom inicijalnom geometrijom krila, tj. početnim	
projektom optimalnog projekta P353	3
5.1.4. Optimizacija krila s ciljem maksimizacije odnosa <i>CL/CD</i>	7
6. Zaključak	2
LITERATURA	3

POPIS SLIKA

Slika 1.	Podobno područje određeno projektnim ograničenjima	2
Slika 2.	Globalni i lokalni minimumi	3
Slika 3.	Hijerarhijski prikaz modeliranja podataka u CPACS-u [9]	8
Slika 4.	Definiranje krila u CPACS formatu [9]	9
Slika 5.	Pozicioniranje x-z ravnina sekcija [9]	. 10
Slika 6.	Prikaz elemenata krila [9]	. 11
Slika 7.	Segmenti krila određeni s dva elementa krila [9]	. 11
Slika 8.	Vrtložna nit na presjecima y i $y + dy$ [1]	. 13
Slika 9.	Vrtložna plahta krila [1]	. 14
Slika 10.	Inducirana brzina i položaj vrtložne niti dΓ [1]	. 14
Slika 11.	Vrtložna nit prikazana kao dvije u Weissingerovom modelu [1]	. 15
Slika 12.	Π vrtlozi [1]	. 15
Slika 13.	Utjecaj desnog slobodnog dijela Π vrtloga [1]	. 16
Slika 14.	Utjecaj vezanog dijela П vrtloga [1]	. 17
Slika 15.	Prikaz kontrolne točke profila realnih debljina [1]	. 19
Slika 16.	Segmenti metode panela [1]	. 20
Slika 17.	Utjecaj diferencijalnog elementarnog vrtloga na točku P [1]	. 21
Slika 18.	NACA 2415	. 26
Slika 19.	NACA 2408	. 26
Slika 20.	Usporedba debljina NACA 2415 i NACA 2408	. 27
Slika 21.	Nagib pravca u $cl(\alpha)$ dijagramu	. 27
Slika 22.	Uvijeno krilo	. 30
Slika 23.	Uvijanje dvaju segmenata krila	. 30
Slika 24.	Krilo s dihedralom	. 31
Slika 25.	Sile otpora i uzgona po pojedinim Π vrtlozima za poluraspon krila	. 34
Slika 26.	Nulti otpori u subsonici, transonici i supersonici [8]	. 35
Slika 27.	Ovisnost koeficijenta podtlaka o Machovim brojevima za subsonične brzine	. 37
Slika 28.	Struktura biblioteke SAPO	.40
Slika 29.	Prikaz vertikalnih sila krila	.43
Slika 30.	Izometrijski prikaz krila početnog projekta P1	. 45
Slika 31.	Pogled odozgo krila početnog projekta P1	. 46
Slika 32.	Pogled sprijeda krila početnog projekta P1	. 46
Slika 33.	Izometrijski prikaz krila optimalnog rješenja 01	.47
Slika 34.	Pogled odozgo krila optimalnog riešenja 01	. 47
Slika 35.	i ogiću odožgo kina optinianog ijesenja o i	•••
	Pogled sprijeda krila optimalnog rješenja 01	. 48
Slika 36.	Pogled sprijeda krila optimalnog rješenja 01 Izometrijski prikaz krila početnog projekta P2	. 48 . 50
Slika 36. Slika 37.	Pogled sprijeda krila optimalnog rješenja 01 Izometrijski prikaz krila početnog projekta P2 Pogled odozgo krila početnog projekta P2	. 48 . 50 . 50
Slika 36. Slika 37. Slika 38.	Pogled sprijeda krila optimalnog rješenja O1 Izometrijski prikaz krila početnog projekta P2 Pogled odozgo krila početnog projekta P2 Pogled sprijeda krila početnog projekta P2	. 48 . 50 . 50 . 51
Slika 36. Slika 37. Slika 38. Slika 39.	Pogled sprijeda krila optimalnog rješenja O1 Izometrijski prikaz krila početnog projekta P2 Pogled odozgo krila početnog projekta P2 Pogled sprijeda krila početnog projekta P2 Izometrijski prikaz geometrije krila optimalnog projekta O2	. 48 . 50 . 50 . 51 . 51
Slika 36. Slika 37. Slika 38. Slika 39. Slika 40.	Pogled sprijeda krila optimalnog rješenja O1 Izometrijski prikaz krila početnog projekta P2 Pogled odozgo krila početnog projekta P2 Izometrijski prikaz geometrije krila optimalnog projekta O2 Pogled odozgo krila optimalnog projekta O2	.48 .50 .50 .51 .51 .52
Slika 36. Slika 37. Slika 38. Slika 39. Slika 40. Slika 41.	Pogled sprijeda krila optimalnog rješenja O1 Izometrijski prikaz krila početnog projekta P2 Pogled odozgo krila početnog projekta P2 Izometrijski prikaz geometrije krila optimalnog projekta O2 Pogled odozgo krila optimalnog projekta O2 Pogled sprijeda krila optimalnog projekta O2	.48 .50 .50 .51 .51 .52 .52
Slika 36. Slika 37. Slika 38. Slika 39. Slika 40. Slika 41. Slika 42.	 Pogled odožgo krila optimalnog rješenja 01 Pogled sprijeda krila optimalnog rješenja 01 Izometrijski prikaz krila početnog projekta P2 Pogled odožgo krila početnog projekta P2 Izometrijski prikaz geometrije krila optimalnog projekta 02 Pogled odožgo krila optimalnog projekta 02 Pogled sprijeda krila optimalnog projekta 02 Pogled sprijeda krila optimalnog projekta 02 Izometrijski prikaz krila početnog projekta 02 	.48 .50 .50 .51 .51 .52 .52 .52
Slika 36. Slika 37. Slika 38. Slika 39. Slika 40. Slika 41. Slika 42. Slika 43.	 Pogled odožgo krila optimalnog rješenja 01 Pogled sprijeda krila optimalnog rješenja 01 Izometrijski prikaz krila početnog projekta P2 Pogled odožgo krila početnog projekta P2 Pogled sprijeda krila početnog projekta P2 Pogled odožgo krila optimalnog projekta 02 Pogled odožgo krila optimalnog projekta 02 Pogled sprijeda krila optimalnog projekta 02 Izometrijski prikaz krila optimalnog projekta 03 	.48 .50 .50 .51 .51 .52 .52 .52 .54 .55
Slika 36. Slika 37. Slika 38. Slika 39. Slika 40. Slika 41. Slika 42. Slika 43. Slika 44.	 Pogled odožgo krila optimalnog rješenja 01 Pogled sprijeda krila optimalnog rješenja 01 Izometrijski prikaz krila početnog projekta P2 Pogled odožgo krila početnog projekta P2 Pogled sprijeda krila početnog projekta P2 Pogled odožgo krila optimalnog projekta 02 Pogled odožgo krila optimalnog projekta 02 Pogled sprijeda krila optimalnog projekta 02 Pogled sprijeda krila optimalnog projekta 02 Pogled sprijeda krila optimalnog projekta 02 Izometrijski prikaz krila optimalnog projekta 03 Izometrijski prikaz krila optimalnog projekta 03 	.48 .50 .50 .51 .51 .52 .52 .52 .54 .55 .59
Slika 36. Slika 37. Slika 38. Slika 39. Slika 40. Slika 41. Slika 42. Slika 43. Slika 44. Slika 45.	 Pogled odožgo krila optimalnog rješenja 01 Pogled sprijeda krila optimalnog rješenja 01 Izometrijski prikaz krila početnog projekta P2 Pogled odozgo krila početnog projekta P2 Pogled sprijeda krila početnog projekta P2 Izometrijski prikaz geometrije krila optimalnog projekta 02 Pogled odozgo krila optimalnog projekta 02 Pogled sprijeda krila optimalnog projekta 02 Pogled sprijeka krila optimalnog projekta 03 Izometrijski prikaz inicijalne geometrije krila za maksimizaciju CL/CD Prikaz inicijalne geometrije krila odozgo za maksimizaciju CL/CD 	.48 .50 .50 .51 .51 .52 .52 .52 .54 .55 .59 .59
Slika 36. Slika 37. Slika 38. Slika 39. Slika 40. Slika 41. Slika 42. Slika 43. Slika 44. Slika 45. Slika 46.	 Pogled odožgo krila optimalnog rješenja 01 Pogled sprijeda krila optimalnog rješenja 01 Izometrijski prikaz krila početnog projekta P2 Pogled odožgo krila početnog projekta P2 Pogled sprijeda krila početnog projekta P2 Pogled odožgo krila optimalnog projekta 02 Pogled odožgo krila optimalnog projekta 02 Pogled sprijeda krila optimalnog projekta 02 Pogled sprijeka krila optimalnog projekta 03 Izometrijski prikaz krila sprijeka za maksimizaciju CL/CD Prikaz inicijalne geometrije krila sprijeda za maksimizaciju CL/CD 	.48 .50 .51 .51 .52 .52 .52 .52 .55 .59 .59

Petar Graba	ır.	Završni rad
Slika 48.	Prikaz geometrije krila odozgo za maksimizaciju CL/CD	
Slika 49.	Prikaz geometrije krila sprijeda za maksimizaciju CL/CD	61

POPIS TABLICA

Tablica 1.	Karakteristike profila u korijenu i vrhu krila	29
Tablica 2.	Uspoređivanje članova jednadžbi za određivanje matrice B i varijabli u funkc	21J1 32
Tablica 3.	Usporedba vremena izvršavanja nevektoriziranog i vektoriziranog koda	38
Tablica 4.	Projektne varijable	42
Tablica 5.	Projekta ograničenja	43
Tablica 6.	Vrijednosti geometrije i aerodinamičkih koeficijenata krila prije i nakon	
	optimizacije, s početnim projektom P1	44
Tablica 7.	Vrijednosti geometrije i aerodinimičkih koeficijenata krila prije i nakon optimizacije s početnim projektom <i>P</i> 2	49
Tablica 8.	Vrijednosti geometrije i aerodinamičkih koeficijenata krila prije i nakon optimizacije s početnim projektom <i>P</i> 3	53
Tablica 9.	Usporedni prikaz optimalnih projekata 01, 02 i 03	56
Tablica 10.	Inicijalne i optimalne vrijednosti maksimizacije CL/CD	58

Petar Grabar

POPIS OZNAKA

Oznaka	Jedinica	Opis
x_A	т	aerodinamička apscisa napadnog ruba
C_A	m	srednja aerodinamička tetiva
x	m	koordinatna os duž trupa zrakoplova
у	m	koordinatna os duž krila
x_0	m	promjena x koordinate po vrhu krila
$\Lambda_{1/4}$	rad	strijela jedne četvrtine krila
Γ	m^2/s	intenzitet vrtloga (cirkulacija)
Γ'		gustoća vrtloga
<i>w</i> _{ind}	m/s	inducirana brzina
η	т	udaljenost vrtložne niti
V_{∞}	m/s	brzina neporemećene struje
$\overrightarrow{V_2}$	m/s	vektor inducirane brzine desnog dijela Π vrtloga
$\overrightarrow{n_x}$		vektor normale u smjeru osi x
$\overrightarrow{n_z}$		vektor normale u smjeru osi z
$\overrightarrow{r_2}$	m	vektor udaljenosti od točke B (desnog ruba vrtloga) do točke C (promatrane točke)
h_2	m	udaljenost od točke B do C
$artheta_B$	rad	kut između vektora $\overrightarrow{r_2}$ i slobodne desne vrtložne niti
$artheta_A$	rad	kut između vektora $\overrightarrow{r_1}$ i slobodne lijeve vrtložne niti
$\overrightarrow{V_1}$	m/s	vektor inducirane brzine lijevog dijela П vrtloga
$\overrightarrow{r_1}$	m	vektor udaljenosti od točke A (lijevog ruba vrtloga) do točke C
$\overrightarrow{V_0}$	m/s	vektor inducirane brzine srednjeg dijela Π vrtloga
$\overrightarrow{r_0}$	m	razlika vektora $\overrightarrow{r_1}$ i $\overrightarrow{r_2}$, vektor udaljenosti točke A i točke B
$\overrightarrow{B_{\iota J}}$		vektor eks produkata orta $\overrightarrow{n_x}$ i udaljenosti do točaka A i B
с	т	duljina tetive
h	т	udaljenost od ¼ krila do kontrolne točke C
a_0	1/rad	gradijent sile uzgona po napadnom kutu
α	rad	napadni kut
J		jedinični stupac
G		bezdimenzijska cirkulacija

Fakultet strojarstva i brodogradnje

Petar	Grabar

ykt	т	y koordinate kontrolnih točaka П vrtloga
xkt	т	x koordinate kontrolnih točaka П vrtloga
zkt	т	z koordinate kontrolnih točaka П vrtloga
ϕ	rad	kut dihedrala
ckt	m	duljine tetiva pozicija kontrolnih točaka
<i>c</i> 0,	т	duljina tetive u korijenu krila
ct	т	duljina tetive na vrhu krila
i _r	rad	kut uvijanja u korijenu krila
i _t	rad	kut uvijanja na vrhu krila
i	rad	uvijanje krila
Р		jedinična matrica [1 × m]
α_{pos}	rad	postavni kut krila
$ ho_\infty$	kg/m ³	gustoća zraka
C_L		koeficijent sile uzgona
Α		vitkost krila
S_{ref}	m^2	referentna površina krila
$C_{L\alpha}$		koeficijent sile uzgona po napadnom kutu
D_{ij}		matrica induciranih brzina Π vrtloga slobodnih krakova
$C_{D\alpha^2}$		koeficijent inducirane sile otpora po kvadratu napadnog kuta
h(x)		funckija ograničenja jednakosti
g(x)		funckija ograničenja nejednakosti
λ		Lagrangeov multipikator jednakosti
μ		Lagrangeov multiplikator nejednakosti
p_k		pomak točaka iteracija kvadratičnog programiranja
α_k		najveća duljina koraka iteracije
λ_0		početni Lagrangeov multiplikator
c_k		konstantna vrijednost ograničenja u točki x_k
A_k		koeficijent koraka iteracije točke x_k
C_{D0}		nulti koeficijent otpora
C_{Df}		koeficijent otpora radi trenja
C_{f}		koeficijent sile trenja

Fakultet strojarstva i brodogradnje

R_{LS}		koeficijent korekcije otpora trenja radi kuta strijele
A _{wet}	m ²	površina u kontaktu sa strujom zraka koja prestrujava preko nje
M_a		Machov broj
R _e		Reynoldsov broj
λ		suženje krila, omjer duljine vršne i korijenske tetive
p_b	Pa	tlak na izlaznoj površini dna
p_∞	Pa	tlak struje
S_b	m ²	izlazna površina dna
q_∞	Pa	dinamički tlak
C_P		koeficijent podtlaka izlazne površine dna
C_{Db}		koeficijent otpora dna
C_{Dw}		koeficijent valnog otpora
γ		gustoća elementarnih vrtloga
S_k	т	duljina panela
r	т	udaljenost promatrane točke od panela
ξ	т	apscisa lokalnog koordinatnog sustava metode panela
η	т	ordinata lokalnog koordinatnog sustava metode panela
$V_{\xi k}$	m/s	ξ komponenta brzine inducirane k-tim panelom
$V_{\eta k}$	m/s	η komponenta brzine inducirane k-tim panelom
ξ		bezdimenzijska koordinata lokalnog koordinatnog sustava
$\overline{\eta}$		bezdimenzijska koordinata lokalnog koordinatnog sustava
$\overline{V_{\xi k}}$		bezdimenzijska komponenta inducirane lokalnog koordinatnog sustava
$\overline{V_{\eta k}}$		bezdimenzijska komponenta inducirane lokalnog koordinatnog sustava
γ'		bezdimenzijska gustoća elementarnog vrtloga
u_P	m/s	poremećaj brzine V_{∞} u smjeru osi x
W_P	m/s	poremećaj brzine V_{∞} u smjeru osi z
δ	rad	kut između horizontalne osi i r panela
C_{n1}		koeficijent za proračun normalne komponente inducirane brzine
C_{n2}		koeficijent za proračun normalne komponente inducirane brzine

m/s	prvi integralni koeficijent inducirane brzine
m/s	drugi integralni koeficijent inducirane brzine
m/s	treći integralni koeficijent inducirane brzine
m/s	četvrti integralni koeficijent inducirane brzine
	koeficijent za proračun tangencijalne komponente inducirane brzine
	koeficijent za proračun tangencijalne komponente inducirane brzine
	bezdimenzijska brzina opstrujavanja j-tog panela
	koeficijent tlaka j-tog panela
Ν	sila uzgona inducirana pojedinim Π vrtlogom
Ν	sila otpora inducirana pojedinim П vrtlogom
°/m	gradijent uvijanja krila
	m/s m/s m/s m/s N N

U ovome radu, u programskom jeziku Python, izrađen je matematički model za optimizaciju krila male bespilotne letjelice. Distribucije sila otpora i uzgona računaju se pomoću proširene Prandtlove metode odnosno tzv. Weissingerovog modela koji opstrujavanje krila modelira Π vrtlozima po rasponu krila. U radu je dan detaljan opis generiranja ulaznih podataka za Weissingerov model iz geometrije krila koji se može sastojati iz više trapeznih segmenata, sukladno CPACS zapisu modela krila. Također je korištena panelna metoda koja omogućuje izračunavanje koeficijenta uzgona aeroprofila u ovisnosti o napadnom kutu, a koja je korištena za korekciju rezultata Weissingerovog modela za nesimetrične aeroprofile. Izrađeni Python model primijenjen je na primjeru optimizacije male bespilotne letjelice

Ključne riječi: optimizacija, uzgon, otpor, Weissinger, Π vrtlog, panel, CPACS

SUMMARY

In this thesis, a mathematical model for the optimization of the wing of a small unmanned aerial vehicle is developed using the Python programming language. The distributions of drag and lift forces are calculated using the extended Prandtl method, specifically the Weissinger model, which models wing airflow with Π vortices along the wing span. The paper provides a detailed description of generating input data for the Weissinger model from the wing geometry, which can consist of multiple trapezoidal segments, in accordance with the CPACS data of the wing model. The panel method is also utilized, allowing for the calculation of the airfoil lift coefficient as a function of the angle of attack. This method is used to correct the results of the Weissinger model for non-symmetric airfoils. The developed Python model is applied to the optimization example of a small unmanned aerial vehicle.

Key words: optimization, lift, drag, Weissinger, Π vortices, panel, CPACS

1. UVOD

1.1. Općenito o optimizaciji

Optimizacija predstavlja jedan od ključnih alata u projektiranju tehničkih sustava. Da bi se iskoristio taj alat, prvo se mora identificirati određeni cilj. Taj cilj može biti profit, vrijeme, potencijalna energija ili bilo koja količina koja se može predstaviti jednim brojem. Cilj ovisi o određenim karakteristikama sustava, nazvanim varijable ili nepoznanice. Svrha je pronaći vrijednosti varijabli koje optimiziraju cilj. Često su varijable ograničene na neki način, poput nemogućnosti negativnih vrijednosti, kao što su gustoća elektrona u molekuli ili kamatna stopa na zajmu.

Postupak modeliranja uključuje identifikaciju cilja, varijabli i ograničenja za određeni problem. Formuliranje optimizacijskog problema je ključan, često i najvažniji korak u procesu optimizacije. Ako je model prejednostavan, može nedostajati korisnih uvida u praktični problem. S druge strane, ako je previše složen, može biti izazovno za rješavanje.

Nakon formulacije modela, koristi se optimizacijski algoritam kako bi pronašao rješenje. občno uz pomoć računala. Nema univerzalnog optimizacijskog algoritma, već je potrebno odabrati optimizacijski algoritam prema karakteristikama optimizacijskog problema koji se rješava.

Nakon primjene algoritma optimizacije, ključno je prepoznati uspjeh u pronalaženju rješenja. U mnogim slučajevima postoje matematički izrazi, poznati kao uvjeti optimalnosti, koji provjeravaju je li trenutni set varijabli stvarno rješenje problema. Ako uvjeti optimalnosti nisu ispunjeni, mogu pružiti korisne informacije o tome kako trenutna procjena rješenja može biti poboljšana. Model se može poboljšati primjenom tehnika poput analize osjetljivosti, koja otkriva osjetljivost rješenja na promjene u modelu i podacima. Tumačenje rješenja u smislu primjene također može sugerirati načine na koje se model može poboljšati ili doraditi. Ako se bilo kakve promjene naprave na modelu, optimizacijski problem se ponovno rješava, a proces se ponavlja [7].

1.2. Matematičko modeliranje optimizacije

Optimizacija predstavlja traženje minimalne ili maksimalne vrijednosti funkcija cilja koje su definirane sljedećom notacijom :

- *x* projektne varijable (engl. *design variables*)
- *f* projektni ciljevi (funkcije cilja, engl. *design objectives*)
- h, g projektna ograničenja (jednakosti, nejednakosti, engl. *Design constraints*)

Slika 1. Podobno područje određeno projektnim ograničenjima

1.3. Lokalni i globalni optimumi

Ukoliko se postavi optimizacijski problem te se dođe do nekog rezultata, taj rezultat ne mora nužno značiti da je dobiven minimum ili maksimum te funkcije , već da za zadani interval dobije lokalni optimum. Optimizacijske metode koje u svom radu koriste gradijent funckije cilja, isto koriste i za identifikaciju ekstrema odnosno optimalne točke, no tako definiran optimum je lokalni optimum i ne mora značiti da je ujedno i globalni optimum (Slika 2). Takve metode mogu garantirati samo pronalazak lokalnog optimuma.

Da bi se povećala mogućnost da takav algoritam pronađe globalno rješenje uobičajeno je pokretanje optimizacije s više startnih točaka. Nakon toga rješenja se međusobno usporede i odabere najbolje. Dakako, odabir najboljeg rješenja ne znači upravo da je on globalni optimum.

Slika 2. Globalni i lokalni minimumi

1.4. Kvadratno programiranje s ograničenjima jednakosti i nejednakosti

U ovom poglavlju definirat će se problemi kvadratnog programiranja koji se sastoje od ograničenja jednakosti i nejednakosti, prema [5]. U ovom problemu potrebno je pronaći točku koja zadovoljava sva ograničenja jednakosti i nejednakosti koja mogu biti :

- aktivna točka leži na rubu nejednakosti
- neaktivna točka se nalazi unutar ograničenja

Najčešća zadaća kvadratnog programiranje je minimiziranje ili maksimiziranje kvadratne funkcije cilja. Promatrajući minimizaciju funkcije

$$f(x) \to \min \tag{1}$$

uz ograničenja

$$h_i(x) = 0 \tag{2}$$

$$g_i(x) \ge 0 \tag{3}$$

može se definirati Karush-Kuhn-Tuckerove (KKT) uvjete optimalnosti za koje postoje jedinstveni Lagrangeovi multiplikatori λ i μ koji zadovoljavaju ograničenja

$$(\nabla f)(x) - (\nabla h)(x)\lambda - (\nabla g)(x)\mu = 0 \tag{4}$$

$$h(x) = 0 \tag{5}$$

$$g(x) \ge 0 \tag{6}$$

$$\mu \ge 0 \tag{7}$$

$$g^T(x)\mu = 0. (8)$$

Iz ograničenja multiplikatora može se primjetiti da Lagrangeovi multiplikatori za nejednakosti izričito moraju biti veći od nule, to ograničenje još se naziva komplementarno ograničenje (engl. *Complementary slackness*). Ono definira ako je neko ograničenje aktivno, Lagrangeovi multiplikatori nejednakosti moraju biti veće od nula.

KKT uvjeti su ujedino i dovoljni ukoliko je funkcija cilja konveksna te ako su ograničenja linearna.

1.4.1. Metoda aktivnih ograničenja

Kako bih se mogla pronaći rješenja kvadratnog programiranja s ograničenjima jednakosti i nejednakosti, potrebno je pronaći skup aktivnih ograničenja nejednakosti u točki optimuma i tretirati ih kao ograničenja jednakosti. Zadavanjem regularne točke, metoda određuje pomak između svake iteracije i time se osigurava da je svaka početna točka nove iteracije regularna točka

$$x_{k+1} = x_x + \alpha_k p_k \tag{9}$$

Gdje k predstavlja iteraciju u radnom podskupu W_k , dok α_k predstavlja najveću duljinu koraka tako da sva ograničenja budu zadovoljena za novu točku x_{k+1} . Ograničenja nejednakosti možemo prikazati u obliku

$$a_i^T x \ge b_i \tag{10}$$

te ako nam je potrebna najveća duljina intervala možemo ju dobiti preko sljedećeg izraza

$$\alpha_k = \min(1, \min \frac{b_i - a_i^T x}{a_i^T p_k})$$
⁽¹¹⁾

za koje vrijedi da

 $i \notin W_k$.

Daljnjom iteracijom dodaje se ograničenja u radni skup dok točka x ne minimizira ciljnu funkciju, odnosno dok pomak u toj točki ne bude jednak nuli. Također, treba uzeti u obzir da ta krajnja vrijednost x zadovoljava KKT uvjete. Ako zadovoljava, ta točka predstavlja rješenje minimuma kvadratičnog programiranja sa ograničenjima jednakosti i nejednakosti.

1.5. Sekvencijalno kvadratno programiranje

Kvadratnim programiranjem prikazano je rješavanje problema u kojem su ciljne funkcije kvadratne dok su ograničenja linearna. Sekvencijalnim kvadratnim programiranjem (SQP-engl. *Sequential Quadratic programming*) može se rješavati nelinearne funckije cilja s nelinearnim ograničenima, a ideja je da se u svakoj iteraciji nelinearni optimizacijski problem aproksimira kvadratičnim problemom.

Ukoliko se prikaže originalnu funkciju cilja Lagrangeovom funkcijom, dobije se sljedeći izraz

$$L(x_k + p, \lambda_k) = \frac{1}{2} p^T \nabla^2 L(x_k, \lambda_k) p + \nabla L(x_k, \lambda_k)^T p + L(x_k, \lambda_k).$$
⁽¹²⁾

Promatrat će se sličan problem kao u prošlom poglavlju, no u ovom slučaju funkcije su nelinearne

$$f(x) \to min_x \tag{13}$$

uz ograničenja

$$h_i(x) = 0, \qquad i \in I \tag{14}$$

$$g_i(x) \ge 0, \qquad i \in \mathbb{E} \tag{15}$$

može se zapisati u obliku

$$min_p \ \frac{1}{2} p^T \nabla^2 L(x_k, \lambda_k) p + \nabla f(x_k)^T p + f(x_k)$$
(16)

uz ograničenja

$$\nabla h_i(x_k)^T p + h_i(x_k) = 0, \qquad i \in I$$
(17)

$$\nabla g_i(x_k)^T p + g_i(x_k) \ge 0, \qquad i \in \mathcal{E}.$$
(18)

Preostalo je još definirati početni Lagrangeov multiplikator

$$\lambda_0 = -[\nabla h(x_0)^T h(x_0)]^{-1} \nabla h(x_0)^T \nabla f(x_0) \,. \tag{19}$$

Sada kada se definirao prijelaz iz nelinearnog problema u kvadratični program može se odrediti rješenje pomoću metode aktivnih ograničenja. Ako se definira sljedeći problem

$$min_p \ \frac{1}{2} p^T \nabla^2 L(x_k, \lambda_k) p + \nabla f(x_k)^T p + f(x_k)$$
(20)

uz ograničenje

$$A_k p + c_k = 0 \tag{21}$$

sustav se može zapisati matrično u obliku

$$\begin{bmatrix} \nabla^2 L_k & -A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} p_k \\ \lambda_{k+1} \end{bmatrix} = \begin{bmatrix} -\nabla f_k \\ c_k \end{bmatrix}.$$
 (22)

Rješavanjem sustava dobit će se pomak p_k i Lagrangeov multiplikator za sljedeću iteraciju λ_{k+1} dok se vrijednost točke pomaknuti za pomak i dobiti x_k . Daljnjim iteracijama ta vrijednost funkcije približavat će se minimalnoj, odnosno maksimalnoj vrijednosti, ovisno što smo definirali kao problem.

2. CPACS zapis geometrije krila

CPACS (*engl. Common Parametric Aircraft Configuration Schema*) zapis geometrije krila može se primijeniti na sve nosive površine zrakoplova kao što su horizontalni stabilizator, vertikalni stabilizator, kanarske površine itd [9].

CPACS je otvoreni format zapisa temeljen na XML-u za opisivanje zrakoplova.

Podaci u CPACS-u modelirani su u hijerarhijskoj strukturi koja slijedi koncept top-down opisa sustava. Ova struktura proizlazi iz konceptualnog i preliminarnog dizajna zrakoplova, gdje razina detalja počinje niskom i postupno raste kako napreduje proces dizajna.

Za određene koncepte unutar CPACS-a primjenjuje se i bottom-up pristup. To znači da se komponente prvo detaljno definiraju te se zatim povezuju unutar viših koncepta koji su instancirani. Ovaj pristup je koristan kada se iste komponente koriste više puta u složenim sustavima, kao što su motori, koji se definiraju samo jednom i zatim se višestruko referenciraju na zrakoplovu. Kombinacija ova dva pristupa poznata je kao middle-out pristup, a omogućava potpunu parametrizaciju zrakoplovnih sustava.

Slika 3. Hijerarhijski prikaz modeliranja podataka u CPACS-u [9]

Kako je problem ovog rada ograničen na krilo, u nastavku je dan opis CPACS zapisa krila. Vanjski oblik krila definiran je aeroprofilima krila koji se postavljaju unutar trodimenzionalnog prostora. Dva aeroprofila integriraju se unutar pojedinog segmenta krila. Za preciziranje položaja profila koriste se različite sekcije. Unutar svake sekcije definirani su jedan ili više elemenata, a oblik profila precizira se unutar tih elemenata. U situacijama gdje je potrebno, zakretanje u vanjskom obliku krila, moguće je definirati dva različita profila u jednoj sekciji koristeći dva elementa. Obično će svaka sekcija sadržavati samo jedan element ali ih može sadržavati dva ili više. Vektori pozicioniranja koriste se za dodatno pomicanje sekcija putem kuta uvijanja i kuta dihedrala. Važno je napomenuti da prvo pozicioniranje može biti različito od nule. Često će biti postavljeno na nulu kako bi se krilo pozicioniralo prema određenoj translaciji, ali to je opcionalno. Konačno, segmenti krila oblikuju se kombiniranjem dva uzastopna elementa.

Slika 4.Definiranje krila u CPACS formatu [9]

2.1. Pozicioniranje sekcija

Pozicioniranje sekcija (eng. *section*) određuje se translacijama. Pozicioniranje zapravo predstavlja vektor sa svojom duljinom i orijentacijom opisanom pomoću dva parametra, kutem uvijanja i kutem dihedra. Ukoliko su oni jednaki nuli, vektor predstavlja pozitivnu y os za slučaj pozitivne duljine vektora. Ukoliko postoje, sekcije se ne rotiraju.

Korištenjem parametra 'fromSectionUID' definira se 'from-to' translacije sekcija.

2.2. Elementi i segmenti krila

Unutar elemenata definirani su aeroprofili krila. Svaka sekcija može sadržavati jedan ili više elemenata krila koji predstavljaju translaciju, rotaciju ili skaliranje koordinatnog sustava pojedinih sekcija.

Segmenti su određeni s dva elementa koji se povezuju u jedan segment krila.

Slika 7. Segmenti krila određeni s dva elementa krila [9]

3. Proširena metoda noseće linije

Proširena metoda zasnovana je na Prandtlovom modelu noseće linije u kojoj je glavni nedostatak bio taj da linija koja spaja točke na jednoj četvrtini krila mora biti okomita na ravan simetrije krila, odnosno da strijela jedne četvrtine krila mora biti jednaka nuli $\Lambda_{1/4} = 0$.

Zadano krilo ima vrijednost strijele po jednoj četvrtini krila, odnosno $\Lambda_{1/4} \neq 0$, te je taj model potrebno proširiti. Unatoč tome se metoda naziva proširena, dok ju još nazivamo prema njezinom autoru i Weissingerova metoda noseće linije.

Izvodi i izrazi preuzeti su iz 5. poglavlja literature [1].

3.1. Računske veličine krila

Računske veličine krila definiraju se kao:

• aerodinamička apscisa napadnog ruba (aerodynamic apses od leading edge)

$$x_A = \frac{2}{S} \int_0^{b/2} x_0(y) \cdot c(y) \, dy \tag{23}$$

• srednja aerodinamička tetiva (aerodynamic midchord)

$$c_A = \frac{2}{S} \int_0^{b/2} c(y)^2 dy$$
 (14)

3.2. Prandlov model noseće linije

Promatrajući pozitivne vrijednosti po rasponu krila, y > 0, prikazat će se cirkulacija zraka Γ oko svakog profila. Pri porastu y za vrlo mali pomak dy prikazat će se promjena cirkulacije zraka $\Gamma - d\Gamma$. Za presjek koji se nalazi na y < 0 će jedna vrtložna nit d Γ ulaziti, dok za presjeke y > 0 vrtložna nit d Γ će izlaziti, odnosno možemo reći da s lijeve strane krila utječu vrtložne niti, a s desne strane istječu. Ta zakonitost vrijedi samo ukoliko je napadni kut pozitivan, ako je negativan dobivamo suprotnu zakonitost.

Promjenom y mijenja se vrijednosti Γ , tj. ona je funkcija presjeka $\Gamma(y)$ koja je ista na lijevoj i desnoj strani krila, $\Gamma(-y) = \Gamma(+y)$.

Slika 8. Vrtložna nit na presjecima y i y + dy [1]

Intenzitet jedne vrtložne niti koja izlazi iz ruba krila na mjestu y :

$$d\Gamma = \Gamma' dy \,. \tag{25}$$

Prandtlovim modelom dobije se jedan vezani vrtlog (*bound vortex*) na prvoj četvrtini tetive krila, okomit na brzinu iz beskonačnosti i na slobodne vrtloge (*free-trailing vortex*). Na taj način se postiže vrtložni trag krila, odnosno vrtložna plahtu.

Prandtlov model unatoč ovakvom načinu slaganja vrtložnih niti ima ograničenja koja su već navedena, no krilo može biti bilo kojeg oblika.

Sve vrtložne niti induciraju brzinu w_{ind} :

$$w_{ind} = \frac{1}{4\pi} \int_{-b/2}^{b/2} \frac{\Gamma' d\eta}{\eta - y}$$
(26)

gdje $\eta\,$ predstavlja udaljenost vrtložne niti u presjeku y. Inducirana brzina bit će uvijek okomita na brzinu neporemećene struje V_∞

3.3. Weissingerov model

Promatranjem dva susjedna presjeka u Prandlovom modelu može se jednu vrtložnu nit prikazat kao rezultantu dvaju vrtloga, jedna nit dolazi dok druga odlazi u beskonačnost.

Slika 11. Vrtložna nit prikazana kao dvije u Weissingerovom modelu [1]

Na taj način, svaku vrtložnu nit u Prandtlovom modelu prikazuje se pomoću dvije te se tako kreira $m \prod$ vrtloga intenziteta Γ po polurasponu krila.

Slika 12. Π vrtlozi [1]

Svaki Π vrtlog ima dva slobodna kraka i vezani vrtlog koji leži na ¼ tetiva dok slobodni kraci idu u pravcu neporemećene brzine.

3.3.1. Brzina inducirana П vrtlogom

Promatrat će se zasebno na koji način svaki dio Π vrtloga inducira dio brzine u točki C. Prvo će se vidjeti utjecaj desne slobodne niti.

Os x pratit će smjer neporemećene brzine, dok os y će ići po pravcu raspona krila.

Slika 13.Utjecaj desnog slobodnog dijela II vrtloga [1]Slobodni vrtlog prikazan od točke B do beskonačnosti inducira brzinu (Biot - Savartov zakon¹)u smjeru osi z, odnosno u smjeru orta $\overrightarrow{n_z}$

$$\overrightarrow{V_2} = \overrightarrow{n_z} \, \frac{\Gamma}{4\pi \cdot h_2} (\cos \vartheta_B + 1). \tag{27}$$

Pomoću jednadžbi

$$\overrightarrow{n_x} \cdot \overrightarrow{r_2} = r_2(\cos \vartheta_B + 1) \tag{28}$$

$$\overrightarrow{n_x} \times \overrightarrow{r_2} = \overrightarrow{n_z} r_2 sin \vartheta_B = \overrightarrow{n_z} h_2$$
(29)

se dolazi do izraza za induciranu brzinu desnog dijela vrtloga

$$\overrightarrow{V_2} = \frac{\overrightarrow{n_x} \times \overrightarrow{r_2}}{h_2} \frac{\Gamma}{4\pi \cdot h_2} (\cos \vartheta_B + 1).$$
⁽³⁰⁾

Kako vrijedi

¹ Biot-Savartov zakon $v = \frac{\Gamma}{2\pi h}$

$$\frac{\cos\vartheta_B + 1}{{h_2}^2} = \frac{1}{r_2(r_2 - \overrightarrow{n_x} \cdot \overrightarrow{r_2})}$$
(31)

konačan izraz za induciranu brzinu bit će

$$\overrightarrow{V_2} = \frac{\overrightarrow{n_x} \times \overrightarrow{r_2}}{r_2(r_2 - \overrightarrow{n_x} \cdot \overrightarrow{r_2})} \frac{\Gamma}{4\pi}.$$
(32)

Po uzoru na prošli izraz, izraza za induciranu brzinu lijevog slobodnog dijela vrtloga

$$\overrightarrow{V_1} = -\frac{\overrightarrow{n_x} \times \overrightarrow{r_1}}{r_1(r_1 - \overrightarrow{n_x} \cdot \overrightarrow{r_1})} \frac{\Gamma}{4\pi}.$$
(33)

Korištenjem Biot-Savartova zakona dolazi se i do početnog izraza za induciranu brzinu vezanog dijela Π vrtloga

$$\overrightarrow{V_0} = -\overrightarrow{n_z} \frac{\Gamma}{4\pi \cdot h_0} (\cos\theta_A - \cos\theta_B).$$
⁽³⁴⁾

Ako se označi vektor $\overrightarrow{r_0} = \overrightarrow{AB}$, odnosno $\overrightarrow{r_0} = \overrightarrow{r_1} - \overrightarrow{r_2}$ dobije se krajnji izraz

$$\overrightarrow{V_0} = \frac{\Gamma}{4\pi} \frac{r_1 + r_2}{r_1 r_2 (r_1 r_2 + \overrightarrow{r_1 r_2})} \overrightarrow{r_1} \times \overrightarrow{r_2}.$$
⁽³⁵⁾

Naposljetku sve brzine se mogu zbrojiti kako bi prikazali induciranu brzinu Π vrtloga

$$\vec{w} = -\frac{\vec{n}_{\vec{x}} \times \vec{r}_{1}}{r_{1}(r_{1} - \vec{n}_{\vec{x}} \cdot \vec{r}_{1})} \frac{\Gamma}{4\pi} + \frac{\Gamma}{4\pi} \frac{r_{1} + r_{2}}{r_{1}r_{2}(r_{1}r_{2} + \vec{r}_{1}\vec{r}_{2})} \vec{r}_{1} \times \vec{r}_{2}$$

$$+ \frac{\vec{n}_{\vec{x}} \times \vec{r}_{2}}{r_{2}(r_{2} - \vec{n}_{\vec{x}} \cdot \vec{r}_{2})} \frac{\Gamma}{4\pi}$$

$$(36)$$

odnosno, zapisano kraće

$$\vec{w} = \vec{B} \cdot \Gamma \tag{37}$$

gdje je vektor

$$\vec{B} = \frac{1}{4\pi} \left(-\frac{\vec{n_x} \times \vec{r_1}}{r_1(r_1 - \vec{n_x} \cdot \vec{r_1})} + \frac{r_1 + r_2}{r_1r_2(r_1r_2 + \vec{r_1}\vec{r_2})} \vec{r_1} \times \vec{r_2} + \frac{\vec{n_x} \times \vec{r_2}}{r_2(r_2 - \vec{n_x} \cdot \vec{r_2})} \right).$$
(38)

Funkcijom *pivrtlog* pronađeno je rješenje vektora \vec{B} kojoj su ulazni parametri koordinate rubova segmenta te koordinate kontrolne točke dok je vektor $\vec{n_x}$ zadan u smjeru osi x.

3.3.1.1. Pronalazak nepoznatih intenziteta cirkulacija П vrtloga

Postavljanjem $m \prod$ vrtloga oponaša se strujanje oko krila, te će svaki m-ti \prod vrtlog imati svoj intenzitet cirkulacije Γ (Γ_1 , Γ_2 , ..., Γ_m). Za određivanje tih iznosa potrebno je postaviti m rubnih uvjeta.

Kod profila realnih debljina točka C udaljena je od vrloga za udaljenost $h = \frac{c}{2} \frac{a_0}{2\pi}$ u kojoj je inducirana brzina $w = V_{\infty} \alpha$ što je rubni uvjet, pa se može reći da je na udaljenosti od *h* rubni uvjet zadovoljen. Kontrolna točka se zatim nalazi na udaljenosti $\frac{c}{4} + \frac{c}{2} \frac{a_0}{2\pi}$ od napadnog ruba [1].

Ukupna inducirana brzina svih $m \prod$ vrtloga bit će

$$\overrightarrow{w_j} = \sum_{i=1}^m \overrightarrow{B_{ij}} \, \Gamma_i \,. \tag{39}$$

Uvođenjem m rubnih uvjeta (uvjet nepromočivosti stjenke) za Π vrtlog kontrolnih točaka C

$$\sum_{i=1}^{m} B_{ij} \Gamma_i = -V_{\infty} sin\alpha$$
⁽⁴⁰⁾

koji se može još iskazati uvođenjem jediničnog stupca J

$$\Gamma = -V_{\infty} sin\alpha \left(\boldsymbol{B}^{-1} \cdot \boldsymbol{J} \right). \tag{41}$$

Česti oblik prikaza cirkulacija je u bezdimenzijskom obliku

$$G = \frac{\Gamma}{\frac{b}{2}V_{\infty}sin\alpha}.$$
(42)

Fakultet strojarstva i brodogradnje
3.3.2. Metoda panela

Jedna od numeričkih modela za proračun koeficijenta sile uzgona za profil je i metoda panela. Njome se raspoređuje elementarne vrtloge po čvorovima koji imaju linearnu zavisnost svake prethodne gustoće vrtloga .

Također, ova metoda će biti potrebna za određivanje gradijenta koeficijenta uzgona profila po napadnom kutu.

Ako se definiraju gustoće elementarnih vrtloga u čvorovima kao

$$\gamma_1, \gamma_2, \gamma_3 \dots \gamma_k, \gamma_{k+1} \dots \gamma_m \tag{43}$$

u kojoj treba razlikovati da je m broj čvorova po profilu, dok u preostalim poglavljima m predstavlja broj segmenata Π vrtloga.

Ovisnost između čvorova prikazaje se kao

$$\gamma(s) = \gamma_k + \frac{\gamma_{k+1} - \gamma_k}{S_k} s \tag{44}$$

gdje k predstavlja trenutni segment, a S_k duljinu segmenta.

Svaki segment inducira diferencijalnu brzinu i ima svoj utjecaj kao prema slici 11.

Slika 17. Utjecaj diferencijalnog elementarnog vrtloga na točku P [1]

Prema Biot-Savartu inducirana brzina u točki P jednaka je

$$dV_{ind} = \frac{\gamma ds}{2\pi r} \tag{25}$$

u kojoj je

$$r^{2} = (\xi_{p} - \xi)^{2} + \eta_{p}^{2} .$$
(46)

Ako komponente inducirane brzine segmentom k u ξ , η koordinatnom sustavu se prikažu na način da je

$$V_{\xi k} = -\frac{1}{2\pi} \int_0^{S_k} \frac{\eta_p}{r} dV_{ind}$$
(47)

$$V_{\eta k} = -\frac{1}{2\pi} \int_0^{S_k} \frac{\xi_p - \xi}{r} dV_{ind}$$
(48)

te raspisivanjem se dobije

$$\overline{V_{\xi k}} = -\left[\int_{0}^{1} \overline{\eta_{p}} \frac{1 - \overline{\xi}}{(\overline{\xi_{p}} - \overline{\xi})^{2} + \overline{\eta_{p}}^{2}} d\overline{\xi}\right] \cdot \gamma_{k}' - \left[\int_{0}^{1} \overline{\eta_{p}} \frac{\overline{\xi}}{(\overline{\xi_{p}} - \overline{\xi})^{2} + \overline{\eta_{p}}^{2}} d\overline{\xi}\right] \cdot \gamma_{k+1}'$$

$$\overline{V_{\eta k}} = \left[\int_{0}^{1} \frac{\overline{(\xi_{p}} - \overline{\xi})(1 - \overline{\xi})}{(\overline{\xi_{p}} - \overline{\xi})^{2} + \overline{\eta_{p}}^{2}} d\overline{\xi}\right] \cdot \gamma_{k}' + \left[\int_{0}^{1} \frac{\overline{(\xi_{p}} - \overline{\xi})\overline{\xi}}{(\overline{\xi_{p}} - \overline{\xi})^{2} + \overline{\eta_{p}}^{2}} d\overline{\xi}\right] \cdot \gamma_{k+1}'$$

$$(50)$$

prikazani preko bezdimenzijskih veličina za koje vrijede

$$\overline{\xi} = \frac{\xi}{S_k} \tag{51}$$

$$\overline{\eta} = \frac{\eta}{S_k} \tag{3}$$

$$\overline{V_{\xi k}} = \frac{V_{\xi k}}{V_{\infty}} \tag{53}$$

$$\overline{V_{\eta k}} = \frac{V_{\eta k}}{V_{\infty}} \tag{54}$$

$$\gamma' = \frac{\gamma}{2\pi V_{\infty}}.$$
(55)

Iz lokalnog ξ,η koordinatnog sustava potrebno je transformirat u globalni koordinatni sustav x, z na način da vrijedi

$$\begin{bmatrix} u_P \\ w_P \end{bmatrix} = \begin{bmatrix} \cos\delta_k & -\sin\delta_k \\ \sin\delta_k & \cos\delta_k \end{bmatrix} \cdot \begin{bmatrix} V_{\xi k} \\ V_{\eta k} \end{bmatrix}.$$
(56)

Konačno komponente brzine u x, z koordinatnom sustavu dobije se pomoću

$$V_{xp} = V_{\infty} \cdot \cos\delta_k + u_P \tag{57}$$

$$V_{zp} = V_{\infty} \cdot \sin\delta_k + w_P \tag{58}$$

3.3.2.1. Rubni uvjeti

Najčešći rubni uvjet koji se pojavljuje je nepromočivost stijenke, pa je to i jedan od rubnih uvjeta koji se promatra, odnosno normalna komponenta brzine segmenta u kontrolnoj točki jednaka nuli.

$$V_n = 0 \tag{59}$$

Ukoliko je *m* broj segmenata bit će i *m* jednadžbi za ponalazak gustoća vrtloga. Broj kontrolnih točaka označavaju se sa j = 1, 2, 3, ..., m.

Za *m* kontrolnih točaka dobije se sljedeći izraz:

$$\sum_{k}^{m} C_{n1jk} \gamma'_{k} + \sum_{k}^{m} C_{n2jk} \gamma'_{k+1} = \sin\left(\alpha - \delta_{j}\right)$$
⁽⁶⁰⁾

u kojoj su

$$C_{n1jk} = I_{1jk} \sin(\delta_j - \delta_k) + I_{3jk} \cos(\delta_j - \delta_k)$$
(61)

$$C_{n2jk} = I_{2jk} \sin(\delta_j - \delta_k) + I_{4jk} \cos(\delta_j - \delta_k)$$
(62)

$$I_{1jk} = \int_0^1 \overline{\eta_p} \frac{1 - \overline{\xi}}{(\overline{\xi_p} - \overline{\xi})^2 + \overline{\eta_p}^2} d\overline{\xi}$$
(63)

$$I_{2jk} = \int_0^1 \overline{\eta_p} \frac{\overline{\xi}}{(\overline{\xi_p} - \overline{\xi})^2 + \overline{\eta_p}^2} d\overline{\xi}$$
(64)

$$I_{3jk} = \int_0^1 \frac{\overline{(\overline{\xi_p} - \overline{\xi})}(1 - \overline{\xi})}{\overline{(\overline{\xi_p} - \overline{\xi})^2 + \overline{\eta_p}^2}} d\overline{\xi}$$
(65)

$$I_{4jk} = \int_0^1 \frac{\overline{(\overline{\xi_p} - \overline{\xi})}\overline{\xi}}{\overline{(\overline{\xi_p} - \overline{\xi})^2 + \overline{\eta_p}^2}} d\overline{\xi}.$$
 (66)

Na taj način dobili smo m jednadžbi za m + 1 broj nepoznatih vrtloga.

Potrebno je odrediti još gustoću vrtloga u točki u kojoj se nalazi početak prvog segmenta i kraj zadnjeg *m* segmenta. U toj točki javlja se dvije brzine, na gornjanci i donjanci, pa se kaže da je cirkulacija jednaka nuli pošto su u toj točki iste brzine.

$$\gamma_1 + \gamma_{m+1} = 0 \tag{67}$$

Na taj način eliminirano je m + 1 vrtlog i iz rubnog uvjeta može se pronaći nepoznate cirkulacije profila.

3.3.2.2. Izračun nepoznatih gustoća vrtloga, brzine opstrujavanja i koeficijenta tlaka panelnom metodom

Kako je već spomenuto, nepoznate cirkulacije mogu se dobiti rješavajući m rubnih uvjeta koje se može još napisati u obliku

$$\sum_{k}^{m} A_{njk} \gamma_k' = B_j \tag{68}$$

Za koju vrijedi da je

$$A_{njk} = C_{n1jk} - C_{n2jm} \ za \ k = 1$$
(69)

$$A_{njk} = C_{n1jk} + C_{n2jk-1} \quad za \ k = 2 \dots m.$$
(70)

Brzine optjecanja profila dobije se na sljedeći način

$$\overline{V_j} = \cos(\delta_j - \alpha) + \sum_k^m A_{tjk} \gamma'_k$$
⁽⁷¹⁾

Gdje su analogno C_{n1jk} i C_{n2jk} prikazani koeficijenti tangencijalne komponente

$$C_{t1jk} = I_{1jk} \cos(\delta_j - \delta_k) + I_{3jk} \sin(\delta_j - \delta_k)$$
(72)

$$C_{t2jk} = I_{2jk} \cos(\delta_j - \delta_k) + I_{4jk} \sin(\delta_j - \delta_k)$$
(73)

Sada kada je opstrujavanje poznato u kontrolnim točkama može se pronaći koeficijent tlaka u *j*-toj kontrolnoj točki

$$C_{pj} = 1 - \overline{V_j}^2 \tag{74}$$

3.3.3. Izračun gradijenta koeficijenta sile uzgona po napadnom kutu

Za pronalazak točne pozicije kontrolne točke pojedinog segmenta potreban je gradijent koeficijenta sile uzgona po napadnom kutu koji se određuje za profile.

U prijašnjem poglavlju pojašnjena je metoda panela koja je glavni alat za izračun koeficijenata uzgona.

Na slikama 18 do 20 prikazane su točke gornjake i donjake za dva aeroprofila, jedan u korijenu krila NACA 2415 dok je na vrhu krila NACA 2408. Može se primijetiti da su profili isti, samo debljina varira.

U daljnjem proračunu pretpostavljena je linearna promjena debljine od korijenskog profila do profila na vrhu krila.

Gradijent koeficijenta uzgona po napadnom kutu označavamo sa a_0 koji predstavlja nagib pravca u $c_l(\alpha)$ dijagramu.

$$a_0 = \frac{dc_l}{d\alpha} \tag{75}$$

Slika 21. Nagib pravca u $c_l(\alpha)$ dijagramu

3.3.3.1. Izračun koeficijenta sile uzgona za profil

Kako bih se našao nagib pravca potrebno je poznavati vrijednosti u dvije točke, no prije toga mora se pronaći na koji način iz metode panela dobiti koeficijent sile uzgona za profil.

Ako se definiraju vrlo mali segmenti koordinata

$$dx = S \cdot \cos(\delta) \tag{76}$$

$$dz = S \cdot \sin(\delta) \tag{77}$$

elementarni doprinosi sila tlaka na tim mjestima su

$$dfx = C_P dz \tag{78}$$

$$dfz = -C_P dx \,. \tag{79}$$

Ukupni doprinosi svih panela mogu se označiti kao

$$cz = -\sum dfz \tag{80}$$

$$cx = -\sum dfx \,. \tag{81}$$

Konačno se dolazi do rješenja za koeficijent sile uzgona profila

$$c_l = cz \cdot \cos(\alpha) - cx \cdot \sin(\alpha) \tag{82}$$

3.3.3.2. Izračun gradijenta koeficijenta sile uzgona po napadnom kutu

Već je spomenuto da je potrebno poznavati dvije točke kako bi se moglo odrediti gradijent sile uzgona po napadnom kutu.

$$a_0 = \frac{c_{l2} - c_{l1}}{\alpha_2 - \alpha_1} \tag{83}$$

NACA 2415	NACA 2408
$c_{l_{-}0} = 0.2620 \ za \ \alpha = 0^{\circ}$	$c_{l_{-}0} = 0.2328 za \alpha = 0^{\circ}$
$c_{l_{-}8} = 1.2336 \ za \ \alpha = 8^{\circ}$	$c_{l_{-}0} = 0.2620 za \alpha = 8^{\circ}$
$a_{0_{-15}} = 6.9586$	$a_{0_0} = 6.6649$

 Tablica 1.
 Karakteristike profila u korijenu i vrhu krila

3.3.4. Geometrija П vrtloga и Python-и

U skripti *waissill.py*, implementiran je programski kod koji omogućuje slaganje $m \Pi$ vrtloga po polurasponu krila. Cilj ovoga dijela skripte je pronaći koordinate kontrolnih točaka Π vrtloga, hvatišta sila, lijevih te desnih rubova Π vrtloga.

Po uzoru na dio skripte *weissinger.m*, originalnog autora dr.sc. Slobodana Jankovića, uz preinake, napravljen je dio *waissill.py* koji priprema geometrijske značajke za daljnji proračun. Kao i do sada, koordinatne osi x i y ostaju iste pa se j-te kontrolne točke C nalaze na

$$ykt = \frac{(j+0.5) \cdot b}{2 \cdot m} za \ polurapon, \qquad j = 1 \dots m$$
⁽⁸⁴⁾

$$ykt = -\frac{b}{2} + \frac{(j+0.5) \cdot b}{m} \text{ za cijeli raspon, } j = 1 \dots m$$
⁽⁸⁵⁾

$$xkt = 0.25 \cdot ckt + h + ykt \cdot tg(\Lambda_{1/4}) \tag{86}$$

$$zkt = ykt * tg(\phi) \tag{87}$$

gdje je j = 1...m, dok se duljine tetiva *ckt* mijenjaju linearno u odnosu na *ykt*

$$ckt = c0 - \frac{(c0 - ct) \cdot ykt}{\frac{b}{2}}.$$
(88)

Uvodimo sljedeće geometrijske karakteristike krila :

• Uvijeno krilo

Uvijenost krila također će se pretpostaviti kao linearnu promjenu po rasponu krila, a to znači da će se svaki segment nalaziti u novoj ravnini te će svaka točka imati svoj vektor normale $\overrightarrow{n_l}$.

Slika 23. Uvijanje dvaju segmenata krila

• Krilo s dihedralom

Vidjelo se da se za z koordinatu kontrolne točke treba kut dihedrala uzeti u obzir pa je tako potreban i za vektor normale $\overrightarrow{n_i}$.

Slika 24. Krilo s dihedralom

Definirajući tako geometrijske kutove krila možemo odrediti vektor normale

$$\overrightarrow{n_j} = [sin(i + \alpha_{pos}), P \cdot (-sin(\phi)), cos(i + \alpha_{pos}) + cos(\phi)]^T.$$
(90)

Uslijed promjene smjera normalne potrebno je definirati novi rubni uvjet koji mora biti zadovoljen

$$\sum_{m} \overrightarrow{w_{ij}} \cdot \overrightarrow{n_j} + \overrightarrow{V_{\infty}} \cdot \overrightarrow{n_j} = 0$$
⁽⁹¹⁾

odnosno

$$\sum_{m} (\overrightarrow{n_j} \cdot \overrightarrow{B_{\iota j}}) \Gamma_i = - \overrightarrow{n_j} \cdot \overrightarrow{V_{\infty}} \,. \tag{92}$$

Za m jednadžbi možemo pronać
i $\varGamma_1,\varGamma_2,\ldots,\varGamma_m$.

3.3.4.1. Implementacija brzina induciranih Π vrtlogom u Python

Dosada su se nalazili izrazi potrebne za određivanje nepoznatih intenziteta cirkulacija Π vrtloga te smo definirali vektor \vec{B} . Te izraze

Originalni programski kod, napisan u *MATLAB*-u, preuzet je od autora profesora dr.sc. Milana Vrdoljaka i dr.sc. Slobodana Jankovića [13], koji je bilo potrebno konvertirati u *Pythonovu*-ovu sintaksu .

Pomoćna funkcija *pivrtlog* kao ulazni podatak koristi točke A, B i C odnosno koordinate vrhova pojedinih Π vrtloga te koordinate kontrolnih točaka C koji se nalaze između vrhova Π vrtloga odmaknutih za duljinu *h*.

Za rješenje *pivrtlog* se dobiva matrica **B** korištenjem jednadžbe (38) u kojoj su varijable prikazane u tablici 2.

Jednadžba (16)	Varijable u funkciji <i>pivrtlog</i>
$\overrightarrow{n_x}$	ort = [1,0,0]
r_1	mr1
r_2	mr2
$-\frac{\overrightarrow{n_x}\times\overrightarrow{r_1}}{r_1(r_1-\overrightarrow{n_x}\cdot\overrightarrow{r_1})}\frac{1}{4\pi}$	Vw1
$\frac{\overrightarrow{n_x} \times \overrightarrow{r_2}}{r_2(r_2 - \overrightarrow{n_x} \cdot \overrightarrow{r_2})} \frac{1}{4\pi}$	Vw2
$\frac{\overrightarrow{n_x} \times \overrightarrow{r_2}}{r_2(r_2 - \overrightarrow{n_x} \cdot \overrightarrow{r_2})} \frac{1}{4\pi}$	Vw0

Tablica 2.	Uspoređivanje članova jednadžbi za određivanje matrice B i varijabli u funkciji
	pivrtlog

3.3.5. Aerodinamički koeficijenti krila

Aerodinamičke koeficijente uzgona i otpora moguće je odrediti iz sila uzgona i otpora. Definirajući silu uzgona

$$L = \rho_{\infty} V_{\infty} \int_{-b/2}^{b/2} \Gamma(y) dy$$
⁽⁹³⁾

dobijemo izraz za izračun koeficijenta uzgona

$$C_{L} = \frac{L}{\frac{\rho_{\infty}V_{\infty}^{2}}{2}S_{ref}} = \frac{\rho_{\infty}V_{\infty}\int_{-b/2}^{b/2}\Gamma(y)dy}{\frac{\rho_{\infty}V_{\infty}^{2}}{2}S_{ref}} = \frac{2}{S_{ref}}\int_{-b/2}^{b/2}\frac{\Gamma(y)}{V_{\infty}}dy.$$
 (94)

Uvrštavajući jednadžbu (20) u (28) dobivamo sljedeći izraz

$$C_{L\alpha} = A \int_0^1 \overline{G \ dy} \tag{95}$$

gdje je $\overline{dy} = \frac{dy}{b/2}$.

Krajnji izraz za koeficijent sile uzgona po napadnom kutu jednak je

$$C_{L\alpha} = A \frac{\sum_{j=1}^{m} G_j}{m}$$
⁽⁹⁶⁾

Analogno vrijedi i za koeficijent induciranog otpora gdje je inducirana sila otpora jednaka

$$D = \int_{-b/2}^{-b/2} \rho_{\infty} w\Gamma \cdot \cos\Lambda_{1/4} = 2\rho_{\infty} \int_{0}^{-b/2} w\Gamma dy$$
⁽⁹⁷⁾

pa je koeficijent induciranog otpora

$$C_{Dind} = A\alpha \int_0^1 \frac{w}{V_{\infty}} G \overline{dy} = \frac{A}{m} \alpha \sum_{j=1}^m \frac{w_j}{V_{\infty}} G_j .$$
⁽⁹⁸⁾

Vidimo da se u izrazu za koeficijent induciranog otpora , C_{Dind} , pojavljuje inducirana brzina. Po uzoru na jednadžbu (39) induciranu brzinu možemo odrediti pomoću slobodnih krakova vrtloga

$$\frac{w_j}{V_{\infty}} = \alpha \frac{b}{2} \sum_{i=1}^m D_{ij} \cdot G_j = \alpha \cdot g_j \,. \tag{99}$$

Za pronalazak matrice D_{ij} stvorena je nova funkcija (poput *pivrtlog*) naziva *trag* koja pronalazi matricu D sadržavajući inducirane brzine slobodnih krakova Π vrloga.

Pronalazeći matricu D_{ij} , te povezivanjem jednadžbi (98) i (99) može se konačno odrediti koeficijent induciranog otpora

$$C_{Dind} = \frac{A}{m} \alpha^2 \sum_{j=1}^{m} g_j G_j \tag{100}$$

odnosno

$$C_{Dind} = C_{D\alpha^2} \alpha^2 \,. \tag{101}$$

3.3.5.1. Implementacija aerodinamičkih koeficijenata u Python

Definirali smo do sada izraze određivanja aerodinamičkih koeficijenata, no to je sada potrebno unijeti u *Python*.

Nova skripta *waissill.py* napravljena je po uzoru na originalnu skriptu *weissinger.m* autora dr.sc. Slobodana Jankovića [13].

Skripta *waissill.py* sadrži pomoćne funkcije *pivrtlog* i *trag* za određivanje matrica induciranih brzina koji kao ulaz koristi koordinate rubova Π vrtloga te kontrolnih točaka.

U ovom modelu uveden je kut dihedrala i uvijanje pa se mijenjaju rubni uvjeti (vidi podnaslov 2.3.4.) te će se pronalaziti gustoće Π vrtloga za svaki segment. Na taj način dobiti ćemo utjecaj svakog segmenta na krilo iz kojeg možemo, prema Kutta-Joukovskom, dobiti uzgonsku sila svakog segmenta

$$L_i = \rho V_{\infty} \Gamma_i \, dy \,, \qquad za \, i = 1 \dots m \tag{102}$$

te zbrajanjem sila svih segmenata možemo dobiti uzgonsku silu induciranu Π vrtlogom. Analogno tome tako ćemo odrediti i silu otpora pojedinog segmenta

$$D_i = \rho w_{ind} \Gamma_i dy, \quad za i = 1 \dots m.$$
(103)

Slika 25. Sile otpora i uzgona po pojedinim Π vrtlozima za poluraspon krila

3.3.6. Procjena koeficijenta parazitnog otpora

Parazitni otpor, odnosno nulti otpor (engl. *zero-lift drag*) prikazat ćemo kao zbroj više otpora , odnosno koeficijenta otpora trenja, C_{Df} (engl. *friction drag*), koji je posljedica trenja zraka po površini dijelova letjelice, zatim otpora sila tlaka koji su okomito na sve površine letjelice, C_{Dw} (engl. *wave drag*) te koeficijenta otpora dna , C_{Db} (engl. *base drag*) , koji je posljedica podtlaka na krajnjim dijelovima letjelice .

$$C_{D0} = C_{Df} + C_{Db} + C_{Dw}$$
(104)

Slika 26. Nulti otpori u subsonici, transonici i supersonici [8]

Tijekom polijetanja i slijetanja mogu se pojaviti još dodatni otpori radi podvozja te otklona zakrilaca koji su u ovom radu zanemareni, kao i otpori radi hrapavosti površine.

Također, u ovom radu promatraju se subsonične brzine te pripadni parazitni otpori za takve brzine.

3.3.6.1. Otpor trenja, C_{Df}

Otpor trenja možemo prikazati kao produkt koeficijenta sile trenja C_f , korekcijskog faktora radi strijele krila te količnika "oplakivane" površine i referentne površine krila

$$C_{Df} = C_f \cdot R_{LS} \cdot \frac{A_{wet}}{S_{ref}}.$$
(105)

Koeficijent sile trenja ovisi o Machovom broju , M_a , Reynoldovom broju, R_e , korijenskoj tetivi c0 i suženju

$$C_{f} = \frac{1}{\left(1 + 0.2M_{a}^{2}\right)^{0.467}} \frac{0.472}{\left(\log_{10}\left(R_{e} \cdot c0 \cdot \frac{1+\lambda}{2}\right)\right)^{2.58}} \cdot \left[1 - \frac{(1-\lambda)^{4}(4.55 - 0.27 \cdot \log_{10}(R_{e})) \cdot c0}{100}\right]$$
(106)

gdje je

$$\lambda = \frac{ct}{c0}.$$
(107)

Kako je bitno postojanje strijele krila radi povećanja kritičnog Machovog broja u našem modelu parazitnog otpora treba i to uzeti u obzir. Kod otpora trenja uzimamo korekciju radi strijele krila

$$R_{LS} = 1.07 + \frac{8}{35} (M_a - 0.25) - 0.972 (1 - \cos\Lambda_{1/4})^{1.848}$$
(108)

koja je ovisna o Machovom broju, M_a .

Metodom panela objašnjeno je kako se dolazi do duljine segmenta , ako se duljine segmenata jednog profila zbroji dobit će se opseg tog profila. Promatrani model razmatra dva profila, u korijenu NACA 2415 i u vrhu krila NACA2408 , dok je između njih linearna promjena pa je odnos oplakivane i referentne površine definiran na sljedeći način :

$$\frac{A_{wet}}{S_{ref}} = \frac{S_{NACA2415} + S_{NACA2408}}{2}.$$
 (109)

3.3.6.2. Otpor dna, *C*_{*Db*}

Ukoliko je postavljen pogon u trupu ili na krilima te iza svakog dijela letjelice pojavljuje se mjesta u kojima je tlak manji od neporemećenog tlaka. Zbog toga podtlaka stvara se sila kočenja koja ovisi o veličini izlazne površine dijela

$$D_b = (p_\infty - p_b) \cdot S_b \,. \tag{110}$$

Uvođenjem koeficijenta podtlaka

$$C_P = \frac{p_b - p_\infty}{q_\infty} \tag{111}$$

pa je

$$D_b = q_{\infty} \cdot (-\mathcal{C}_P) \cdot S_b \tag{112}$$

Pri optimizaciji samog krila površine izlaznih rubova su praktički linije pa je površina $S_b = 0$, prema tome ovaj otpor u ovom modelu nije uzet u obzir.

No, ukoliko je to potrebno i nema informaciju o tlaku na izlaznoj površini S_b , koeficijent podtlaka za subsonične brzine leta mogu se aproksimirat sljedećom jednadžbom

$$-C_P = 0.139 + 0.419 \cdot (M_a - 0.161)^2 \tag{113}$$

odnosno dijagramom na slici 13.

Slika 27.Ovisnost koeficijenta podtlaka o Machovim brojevima za subsonične brzine3.3.6.3.Valni otpor, C_{Dw}

Uslijed okomitih sila tlaka na površine javlja se valni otpor. Stvarni raspored tlaka pod utjecajem viskoznih učinaka rezultira promijenjenim valnim otporom. Mjerenja otpora standardnih profila, pri niskim brzinama gdje se može zanemariti stlačivost, pokazuju da izmjerena vrijednost otpora odgovara trenju.

U supersoničnom području, prisutnost udarnih valova uvijek rezultira valnim otporom, ova komponenta otpora i dobiva naziv prema udarnim valovima, iako nisu jedini uzrok valnog otpora. Valni otpor postoji i u subsoničnom području kada nisu zadovoljeni uvjeti za d'Alambertov princip, dok se udarni valovi javljaju samo u transsoničnom i supersoničnom području [3].

Ovaj optimizacijski model krila razmatramo za subsonične brzine pa je valni otpor zanemaren u ukupnom parazitnom otporu.

3.4. Vektorizacija koda u Python-u

Vektorizacija je proces pretvaranja niza podataka u vektore ili matrice numeričkih vrijednosti. U kontekstu programiranja, vektorizacija često označava optimizaciju koda tako da se operacije izvode na cijelim vektorima ili matricama podataka umjesto na pojedinačnim elementima.

U Pythonu, *NumPy* biblioteka igra ključnu ulogu u vektorizaciji. Biblioteka *NumPy* omogućava rad s višedimenzionalnim poljima podataka, no također sadrži niz funkcija za računanje nad cijelim poljima.

Nadalje, vektorizacija može biti vrlo kompleskna za napraviti, ali korištenjem novih AI alata to je u novije doba puno lakše.

3.4.1. Prednosti vektoriziranog koda

Niz je prednosti koje dobivamo koristeći vektorizirane izraze u *Python-*u, a neki od tih prednosti su :

• Povećanje brzine izvršavanja koda

Vektorizacija optimizira izvršavanje koda tako da operacije rade na cijelim nizovima podataka odjednom što uveliko smanjuje vrijeme izračuna.

Tablica 3.	Usporedba vremena	izvršavanja	nevektorizirano	g i vektorizirano	g koda
	1			0	0

Vrijeme izvršavanja originalnog	Vrijeme izvršavanja vektoriziranog
(nevektoriziranog) koda waissill.py	koda <i>waissill.py</i>
1.8781 sekunde	0.0051 sekunde

Može se primjetiti da se računanje koda ubrzalo približno 370 puta.

• Optimizacija predmemorije

Vektorizacija omogućava bolje korištenje predmemorije jer operacije rade na cijelim nizovima podataka istovremeno. Bolje iskorištava raspoložive resurse, uključujući procesorske resurse i energetske resurse te smanjuje potrebu za prečestim korištenjem glavne memorije. To je važno u kontekstu sustava s ograničenim resursima, poput ugrađenih sustava .

4. Opis Python skbiblioteke za optimizaciju krila

Struktura biblioteke SAPO (*Simple Aircraft Platform Optimization*), koji se također nalazi na GitHubu kao "*open source*", prikazana je na slici 28.

Slika 28. Struktura biblioteke SAPO

U mapi src, nalaze se moduli potrebni za definiranje modela krila i izračunavanje aerodinamičkih i inercijskih sila. Skripta *waissll.py* definira geometrijske značajke Π vrtloga i omogućuje izračun sila uzgona i otpora, ne samo iznose već i smjerove, po pojedinom Π vrtlogu. Uzgonske komponente modelirane su tako da budu kompatibilne sa CPACS zapisom. Kao ulaz za definiranje geometrijskih značajki, između ostalog, potreban je i gradijent koeficijenta uzgona po napadnom kutu, a_0 . Za dobivanje te vrijednosti služi skripta *panel.py* koja implementira metodu panela, odnosno daje informacije, uz skriptu naca.py, o aeroprofilima. Osim tih informacija, panel.py omogućuje izračun koeficijenta uzgona pri nultom napadnom kutu za nesimetrične profile. Također, u datoteci src nalazi se skripta aero.py koja sadrži dvije glavne funkcije. Prva funkcija calc_air_density_speedsound_ICAO za određene visine leta daje gustoću zraka na toj visini, brzinu zvuka te dinamičku viskoznost izračunatu prema Sutherlandovoj formuli. Druga funkcija, calc_friction_drag_constant, za određene Machove i Reynoldsove daje iznose koeficijenta otpora radi trenja. Model zrakoplova definiran je u skripti *aircraft.py* koja osim što generira krilo, daje za mogućnost izmjene uvjete leta te dodavanja drugih zrakoplovnih površina kao što su horizontalni rep, vertikalni rep, itd. U ovom radu opisana je optimizacija krila pa je, za sada, samo to sadržano.

U mapi *examples* nalaze se moduli s primjerima modela zrakoplova (*factory.py*) te optimizacijskih problema zrakoplova u mapi *uav_6kg*. Prvi Python modul *uav_6kg*, *opt* sadrži

sve nužno za definiranje i rješavanje optimizacijskog problema primjenom Python biblioteke moobench [11], [12]. Za pokretanje optimizacije potrebno je pokrenuti skriptu *run_uav_6kg_one_seg.py*.

5. Optimizacija krila male bespilotne letjelice

5.1. Optimizacija krila s jednim segmentom

Za optimizacijski problem rješavat će se minimizacija otpora i maksimizacija odnosa uzgona i otpora. Otpor ima ključnu ulogu u potrošnji goriva, što je manji otpor veća ušteda goriva. Također, smanjenjem otpora omogućuje se povećanje dosega s istom količinom goriva.

Razmatrati će se zrakoplov mase 6kg, pri sljedećim uvjetima leta :

- neporemećena brzina , $V_{\infty} = 14 \ m/s$
- napadni kut , $\alpha = 2^{\circ}$
- faktor opterećenja n = 1
- visina h =0 m

5.1.1. Projektne varijable

Projektne varijable te njihove gornje i donje granice prikazane su sljedećom tablicom:

Projektne varijable	Interval
b, raspon segmenta	[0.5, 3] <i>m</i>
c_r , duljina korijenske tetive	[0.01, 0.5] <i>m</i>
c_t , duljina vršne tetive	[0.01,0.5] <i>m</i>
Λ , kut strijele	[0, 45] °
i_r , kut uvijanja u korjenu krila	[-3, 5] °
<i>i_{slope}</i> , gradijent uvijanja	[-7, 0] °/ <i>m</i>
ϕ , kut dihedra	[0, 20] °

Tablica 4.Projektne varijable

5.1.2. Projektna ograničenja

Ograničenja su definirana u tablici 5. Definirano je jedno ograničenje jednakosti i dva ograničenje nejednakosti. Za ograničenje jednakosti postavljeno je da je suma svih sila u vertikalnom smjeru jednaka nuli, tj. promatrat će se ravnotežni horizontalni let.

Radi utjecaja dihedrala postojat će vertikalna i horizontalna komponenta uzgona čiji zbroj vertikalnih komponenti uzgona mora odgovarati iznosu težine zrakoplova.

Weissingerovom metodom dobiva se ne samo iznose uzgona induciranih Π vrtlogom već i smjer vektora djelovanja sila uzgona te sumiranjem vertikalnih komponenti sila možemo doći do ukupne vertikalne uzgonske sile inducire Π vrtlozima .

Slika 29. Prikaz vertikalnih sila krila

Također, postoje i dva ograničenja nejednakosti. Prvo je da je vitkost krila manja ili jednaka 10, čime je postavljena maksimalna dozvoljena vitkost krila. Nadalje, sljedeće ograničenje se odnosi na tetive, tj. da je korijenska tetiva veća ili jednaka od tetive na vrhu krila.

Tablica 5.Projekta ograničenja

Projektna ograničenja	Formulacija ograničenja
h_1	$\sum_{i}^{m} F_{zi} - W = 0$
g_1	$A \le 10$
<i>g</i> ₂	$c_r \ge c_t$

5.1.3. Optimizacija krila s ciljem minimizacije koeficijenta otpora, C_D

U poglavlju 1.3. dano je objašnjenje korištenja više startnih projekata za pronalaženje globalnog rješenja, što će i ovdje biti slučaj, tj. postojat će više inicijalnih geometrija krila .

Ako promatramo funkciju cilja kao

$$f = C_D \tag{113}$$

tražit će se

$$\min(f)$$
. (114)

5.1.3.1. Optimizacija s prvom inicijalnom geometrijom krila, tj. početnim projektom P₁

Za generiranje inicijalne geometrije korištena je opcija generiranja slučajne geometrije unutar gornjih i donjih granica za svaku varijablu.

Inicijalne i optimalne vrijednosti prikazane su u sljedećoj tablici :

Komponente	Inicijalne vrijednost, P_1	Optimalne vrijednosti, O_1
optimizacijskog problema		
b	1.7095 m	2.3625m
Cr	0.313 m	0.494 m
Ct	0.027 m	0.486 m
Λ	2.89°	2.82°
i _r ,	1°	1.54°
i _{slope} ,	-3.47 °/m	-3 °/m
<i>i_t</i> ,	-4.961°	-5.54°
$\phi,$	6.77°	6.77°
$g_{1,A} \leq 10$	20.112	10

Tablica 6.Vrijednosti geometrije i aerodinamičkih koeficijenata krila prije i nakon
optimizacije, s početnim projektom P_1

C_L	0.401	0.35
C _D	0.0068	0.0024
C_L / C_D	58.67	144.39
$C_L^{3/2}/C_D$	37.15	85.46

Suma svih sila u smjeru z optimalnog projekta O_1 jednaka je nuli, tj. ograničenje h_1 je zadovoljeno.

Slika 31. Pogled odozgo krila početnog projekta P₁

Slika 32. Pogled sprijeda krila početnog projekta P₁

Slika 34. Pogled odozgo krila optimalnog rješenja *O*₁

5.1.3.2. Optimizacija s drugom inicijalnom geometrijom krila, tj. s početnim projektom P_2 Inicijalne i rezultantne vrijednosti optimizacije prikazane su sljedećom tablicom:

Komponente	Inicijalne vrijednost, P_2	Optimalne vrijednosti, O_2
optimizacijskog problema		
b	0.9175 m	4.048 m
C _r	0.367 m	0.5 m
Ct	0.309 m	0.31 m
Λ	12.56°	33.10°
i _r	-2.85°	0.128°
i _{slope}	-3.76 °/m	-1.79 °/m
i _t	-6.951°	-3.5°
ϕ	11.96°	6.77
$g_{1,A} \leq 10$	5.429	7.33
C _L	0.212	0.388
C _D	0.0088	0.0018
C_L / C_D	24.08	211.72
$C_L^{3/2}/C_D$	11.08	131.93

Tablica 7.Vrijednosti geometrije i aerodinimičkih koeficijenata krila prije i nakon
optimizacije s početnim projektom P2

Suma svih sila u smjeru z optimalnog projekta O_2 jednaka je nuli, tj. ograničenje h_1 je zadovoljeno.

Slika 38. Pogled sprijeda krila početnog projekta P₂

Slika 39. Izometrijski prikaz geometrije krila optimalnog projekta *O*₂

Slika 40.

Pogled odozgo krila optimalnog projekta O₂

5.1.3.3. Optimizacija s trećom inicijalnom geometrijom krila, tj. početnim projektom optimalnog projekta $P_{\rm 3}$

U ovom poglavlju prikazat će se inicijalna geometrija krila u kojoj su vrijednosti kuta dihedrala i kuta strijele jednake nuli.

Komponente optimizacijskog problema	Inicijalne vrijednost, P_3	Optimalne vrijednosti, O_3
opunnensjonog prooronn		
b	1.5 m	2.5 m
Cr	0.4 m	0.5 m
Ct	0.4 m	0.5 m
Λ	0°	3.54°
i _r	2.5°	4.2°
i _{slope}	-3°/m	-1.09°/m
i _t	-2°	1.467°
ϕ	0°	0.04
$g_{1,A} \leq 10$	7.5	10
C_L	0.182	0.316
C _D	0.0015	0.0031
C_L / C_D	124.48	102.73
$C_L^{3/2}/C_D$	54	57.7

Tablica 8.	Vrijednosti geometrije i aerodinamičkih koeficijenata krila prije i nakon
	optimizacije s početnim projektom P_3

Suma svih sila u smjeru z optimalnog projekta O_3 jednaka je nuli, tj. ograničenje h_1 je zadovoljeno.

Slika 42. Izometrijski prikaz krila početnog projekta *P*₃

Slika 43. Izometrijski prikaz krila optimalnog projekta *O*₃
Komponente	Optimalne	Optimalne	Optimalne
optimizacijskog	vrijednosti, O ₁	vrijednosti, O ₂	vrijednosti, O ₃
problema			
b	2.3625m	4.048 m	2.5 m
Cr	0.494 m	0.5 m	0.5 m
Ct	0.486 m	0.31 m	0.5 m
Λ	2.82°	33.10°	3.54°
i _r	1.54°	0.128°	4.2°
i _{slope}	-3 °/m	-1.79 °/m	-1.09°/m
it	-5.54°	-3.5°	1.467°
φ	6.77°	6.77	0.04
$g_{1,A} \leq 10$	10	7.33	10
	0.35	0.388	0.316
C _D	0.0024	0.0018	0.0031
C_L / C_D	144.39	211.72	102.73
$C_L^{3/2}/C_D$	85.46	131.93	57.7

Tablica 9.Usporedni prikaz optimalnih projekata O_1 , O_2 i O_3

Rezultati optimizacije mogu i ne moraju ovisiti o početnim projektima, no s obzirom da pokretanje s različitih početnih projekata rezultira različitim optimalnim projektima, može se zaključiti da postoji više lokalnih optimuma. U praksi bi se naravno odabralo najbolje ostvareno optimalno rješenje, no to ne znači da je isto ujedno i globalni optimum.

Također se može zaključiti da optimalni projekt O_3 daje veći otpor od inicijalnog ali to je zato što u inicijalnom modelu geometrije ograničenja nisu zadovoljena, dok su kod optimalnog rješenja sva ograničenja zadovoljena. Također, kut diherdala je vrlo blizak nuli, iako nije točno nula kao što je bilo očekivano, no mogući razlog za to je uvijanje krila.

5.1.4. Optimizacija krila s ciljem maksimizacije odnosa C_L/C_D

Sljedeći optimizacijski zadatak biti će maksimizirati odnos koeficijenta uzgona i koeficijenta otpora. I u ovom zadatku traži se optimum gdje će koeficijent otpora biti što manji, no također će se tražiti što veća vrijednost koeficijenta uzgona, što nije bio uvjet u prošlom problemu. Maksimizacija odnosa koeficijenta uzgona i koeficijenta otpora prikazat će se na način da je

$$f = C_L / C_D \tag{115}$$

$$\max f = \min(-f) \,. \tag{116}$$

U prošlom poglavlju prikazano je više rezultata za više inicijalnih geometrija krila, no u ovom optimizacijskom problemu prikazana samo jedna inicijalna geometrija krila jer koja god da se zada dobije se isto optimalno rješenje u zadanim intervalima. Također, u ovome optimizacijskom problemu ne primjenjuju se direktno koeficijenti za uzgon i otpor pri nultom napadnom kutu, već se uvodi pretpostavka da polovicu mase krila uravnotežuje sila uzgona pri nultom napadnom kutu.

Inicijalne i rezultantne vrijednosti optimizacije prikazane su sljedećom tablicom :

Komponente optimizacijskog	Inicijalne vrijednost	Optimalne vrijednosti
problema		
b	1.122 m	2.5m
Cr	0.372 m	0.5 m
Ct	0.106 m	0.5 m
Λ	13.71°	27.26°
i _r	-2.851°	5°
i _{slope}	-0.042 °/m	-1.85 °/m
i _t	-2.774°	0.38°
ϕ	6.3°	20°
$g_{1,A} \leq 10$	4.7	10
C _L	0.271	0.308
C _D	0.0047	0.0027
C_L / C_D	57.45	115.43
$C_L^{3/2}/C_D$	29.9	64.9

Tablica 10.Inicijalne i optimalne vrijednosti maksimizacije C_L/C_D

Suma svih sila u smjeru z optimalnog rješenja jednaka je nuli, tj. ograničenje h_1 je zadovoljeno.

Slika 44. Izometrijski prikaz inicijalne geometrije krila za maksimizaciju C_L/C_D

Slika 45. Prikaz inicijalne geometrije krila odozgo za maksimizaciju C_L/C_D

Slika 46. Prikaz inicijalne geometrije krila sprijeda za maksimizaciju C_L/C_D

Slika 47. Izometrijski prikaz geometrije krila za maksimizaciju C_L/C_D

Slika 48. Prikaz geometrije krila odozgo za maksimizaciju C_L/C_D

Slika 49. Prikaz geometrije krila sprijeda za maksimizaciju C_L/C_D

6. Zaključak

Primjena optimizacije, u okviru projektiranja zrakoplova, omogućuje razne benefite, poput uštede materijala, goriva, produljivanja trajanja leta i slično. Optimizacijski problem direktno ovisi o proračunskom modelu koji je odabran za proračun sila uzgona i otpora. Za proračunski model korištena je Weissingera metoda. Osim krila, ovom metodom se mogu računati sile i na ostalim uzgonskim površinama kao što su vertikalni i horizontalni rep te je i njih moguće uključiti u optimizacijski model.S tog aspekta moguće je uvoditi i proračun stabilnosti te uzeti u obzir konstrukcijske značajke letjelice koje bi upotpunile optimizacijski model, što bi mogao biti jedan od budućih koraka nakon ovoga rada.

LITERATURA

- [1] S. Janković, Z. Virag, M. Vrdoljak, *Aerodinamika I*, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, Zagreb 2016.
- [2] P.Kesić, *Osnove aerodinamike*, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje , Zagreb 2002.
- [3] S. Janković, *Mehanika leta zrakoplova*, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, Zagreb 2001.
- [4] A. Scopatz , K.D. Huff , *Effective Computation in Physics*, Poglavlje 8-NumPy: Thinking in Arrays
- [5] D. Kraft, A Software Package for Sequential Quadratic Programming, Institut für Dynamik der Flugsysteme ,Oberpfaffenhofen
- [6] M. S. Gockenbach, Introduction to sequential quadratic progamming
- [7] J. Nocedal, S. J. Wright, *Numerical Optimization*, drugo izdanje, Northwestern University, Evanston
- [8] D. Bergman, Modeling & implementation of Aerodynamic Zero-lift Drag into ADAPDT, School of Inovation, Design and Engineering, 2009
- [9] <u>https://dlr-sl.github.io/CPACS/</u>, 19.2.2024.
- [10] <u>https://github.com/pprebeg/sapo</u>
- [11] https://github.com/pprebeg/moobench
- [12] Hrvojić, V. Usporedba rješenja višeciljne optimizacije na primjeru dimenzioniranja jednostavne brodske konstrukcije (Diplomski rad), 2022. Zagreb: Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje.
- [13] Portal za E-učenje Fakulteta Strojarstva i Brodogradnje, Aerodinamika I, https://eucenje.fsb.hr/course/view.php?id=65