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SAZETAK

Trenje izazvano radom klipnog mehanizama doprinosi 40% do 50% ukupnom trenju
motora s unutarnjim izgaranjem. Proizvodaci automobila traze u€inkovite metode u smanjenju
trenja bez nedostataka u izdrZljivosti, buci i vibracijama. S obzirom na to, efikasno ispitivanje
parametara 1 optimizacije simulacijskih modela dobiva sve viSe na vaznosti. Cilj rada istraziti

je razlike u rezultatima izmedu simulacije i mjerenja provedenih na motoru AVL FRISC.

AVL FRISC je jednocilindarski motor s unutarnjim izgaranjem konstruiran za
proucavanje rezultata dinamike klipa i klipnih prstena s naglaskom na rezultate sile trenja,
bocne sile klipa, srednjeg tlaka trenja, potro$nje ulja klipnog mehanizma i prestrujavanja zraka
u donji dio ku¢ista motora (blow-by). Simulacijski modeli izradeni su u programima AVL
EXCITE™ Piston&Ring i AVL EXCITE™ Power Unit. U programu AVL EXCITE™
Piston&Ring izradena su dva modela koji se razlikuju s obzirom na koristeni paket klipnih
prstena, osnovni paket klipnih prstena i paket klipnih prstena sa smanjenim trenjem. Takoder,
izradeni su modeli koji se razlikuju u pristupu rjeSavanja simulacijskog modela:
pojednostavljeni pristup ili 2D te napredniji pristup ili 3D. Rezultati potro$nje ulja klipnog
mehanizma, prestujavanja zraka, dinamike klipnih prstena i gubitaka trenja klipnih prstena
dobiveni su simulacijom u programu AVL EXCITE™ Piston&Ring. Proucavanje ukupnih
gubitaka tlaka trenja klipnog mehanizma, sile trenja i bocne sile na klip provedeno je u
programu AVL EXCITE™ Power Unit s osnovnim paketom klipnih prstena i paketom klipnih
prstena sa smanjenim trenjem. Simulacijski modeli izradeni su na pojednostavljen i napredan
nacin. Pojednostavljeni model koristt REVO spoj, dok napredan model koristi EHD spoj.
Prikazani su rezultati dinamike klipa, gubitci trenja klipa, sile trenja 1 bo¢ne sile na klipu.
Dostupna su mjerenja potroSnje ulja, prestrujavanja zraka, sile trenja, bo¢ne sile na klipu i
srednjeg tlaka trenja, kao i njihova usporedba sa simulacijskim rezultatima. Na kraju je prikazan

utjecaj parametara na uskladivanje simulacijskog modela 1 mjerenja.

Kljuéne rije¢i: trenje klipnog mehanizma, mjerenja AVL FRISC, AVL EXCITE™
Piston&Ring, AVL EXCITE™ Power Unit, srednji tlak gubitaka, potrosnja ulja, prestrujavanje
zraka, sila trenja, bocna sila na klipu, tangencijalna sila klipnog prstena, 2D i 3D pristup,

REVO, EHD, utjecaj parametara.
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SUMMARY

Piston group is the main contributor to friction with an amount of 40%-50% of the total
IC engine friction. The market is looking for efficient friction reduction methods without
drawbacks in durability and NVH. In light of this, efficient parameter studies and optimization
processes in multibody dynamics simulation are becoming increasingly important and must be
setup. The aim of this thesis is to investigate the differences in the results of simulation and
measurement on the AVL FRISC engine.

The AVL FRISC (FRIction Single Cylinder) engine is a research IC engine designed
for the investigation of piston and piston ring dynamics in view of measuring friction force side
force, friction mean effective pressure (FMEP), lube oil consumption (LOC) and blow-by
values. Simulation models are built in the AVL EXCITE™ Piston&Ring and AVL EXCITE™
Power Unit software’s. In EXCITE™ Piston&Ring, models with two different piston ring
packages (basic and low friction package) are created for different simulation solvers:
simplified (2D) and advanced (3D) solver. The differences between the basic and low friction
ring package is in the tangential force. The results of LOC, blow-by, piston ring dynamics and
piston ring friction losses are given by the AVL EXCITE™ Piston&Ring software. To
investigate the total FMEP values of piston group, friction force and side force, AVL
EXCITE™ Power Unit models are created for a basic and low friction package. Simulation
models are also created with a simplified and advanced approach. Revolute Joints (REVO) are
used in the simplified approach, whereas Elasto-Hydrodynamic journal sliding bearing (EHD2)
is used in the advanced approach. The results of piston dynamics, piston friction losses, friction
and side force are presented. For the simulated AVL FRISC engine, the measurements of LOC,
blow-by, FMEP, friction and side forces are available and simulation results are compared with
the available measurements. Finally, a study on tuning parameters for results correlation and

sensitivity of tuning parameters is presented.

Key words: piston group friction, AVL FRISC measurement, AVL EXCITE™ Piston&Ring,
AVL EXCITE™ Power Unit, FMEP, LOC, blow-by, friction force, side force, tangential force

on piston ring, 2D and 3D simulation solver, REVO, EHD, tuning parameters
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PROSIRENI SAZETAK

Ovaj diplomski rad je izraden u suradnji sa tvrtkom AVL - AST d.o0.0. iz Zagreba i AVL
List GmbH iz Graza s ciljem da se usporede rezultati simulacije i mjerenja dinamike klipa i
Klipnih prstena. Simulacijski modeli izradeni su u 2 programska alata: AVL EXCITE™
Piston&Ring i AVL EXCITE™ Power Unit. U programu AVL EXCITE™ Piston&Ring
proucava se dinamika klipnih prstena i potrosnja ulja klipnog mehanizma, dok se u programu
AVL EXCITE™ Power Unit proucava dinamika klipa.

Ovaj rad je strukturiran u 4 poglavlja te je na kraju dan zakljucak i predloZene su
preporuke za daljnji rad. U prilogu se nalaze dodatni rezultati simulacijskih modela i usporedbe
simulacija i mjerenja. Sam rad je baziran na stranim doktorskim radovima, znanstvenim
¢lancima i dokumentaciji koriStenih programa.

U 1. poglavlju je dan motivacija u kojoj je opisana vaznost simulacija u odnosu na
testiranja i prikazan je utjecaj trenja klipnog mehanizma na sveukupni iznos trenja u
automobilskim sustavima. Nadalje, opisana je funkcija i znacajke klipa, predocena je podjela
klipova s obzirom na materijal (Celi¢ni, ¢eli¢ni lijev, aluminijski) te su prikazani razliciti tipovi
¢eli¢nih klipova u automobilima pogonjeni dizelskim gorivom. Osim navedenog, prikazana je
usporedba celi¢nog i aluminijskog klipa. Na Slici 1., prikazana je konstrukcijska usporedba

celi¢nog 1 aluminijskog klipa.

Steel Aluminum

>
]
eight [«—»|

Top land h
Compression height

Compression height
Top land height |«

Slika 1. Konstrukcijske razlike izmedu ¢eli¢nog i aluminijskog Klipa. [8]

1z slike je vidljivo da celi¢ni klip ima manju kompresijsku visinu 1 visinu plamenog
pojasa. Smanjenjem kompresijske visine za istu konstrukciju motora mozemo ugraditi dulju
klipnjacu a da ne mijenjamo kompresijski volumen. Time Smanjujemo iznos boc¢ne sile na klipu

a samim time i trenje uzrokovano klipom u koSuljici cilindra. Glavni uzrok koristenja ¢eli¢nih
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u odnosu na aluminijske klipove je veéa zamorna Gvrstoéa Celiéni klipovi time ispunjaju
zahtjeve ¢vrstoe za moderne automobile pogonjene dizelskim gorivom gdje vrs$ne vrijednosti
tlaka u cilindru iznose ¢ak 250 bar. Osim klipova, u uvodnom dijelu opisana je svrha klipnih
prstena, njihova podjela i danasnje prevlake za smanjenje trenja uzrokovane klipnim prstena.
Takoder, prikazani su modeli trenja s obzirom na podmazivanje te su prikazani uzroci potros$nje
ulja u klipnom mehanizmu.

U 2. poglavlju opisan je rad i konstrukcija AVL FRISC motora. AVL FRISC motor je
jednocilindarski razvojni motor na kojem se izvode ispitivanja klipnog mehanizma s naglaskom
na mjerenje iznosa sile trenja a samim time i odrezivanja srednjeg tlaka trenja. Princip rada
zasniva se na sistemu ,,plutajuc¢e kosuljice cilindra“ (floating liner) kod kojeg je cilindar
oslonjen na cetiri senzora sile koji mjere dinamiku sile uzrokovanu uslijed gibanja klip u
cilindru od gornje do donje mrtve toc¢ke. Shematski prikaz AVL FRISC motora prikazan je na
Slici 2.

Minimize the influence of the head to liner
sealing on the liner force measurement

AN
Cylinder/ | Head
|
|
: I ’7 Firing pressure
I introduce load on
,_+) o Sensors
( i
I'“Irv—/ 1] Friction and lateral
—] f— forces to measure
/i
Force sensors I‘ / i
coupled to the i ||
“Floating ""J / /’t ! 1
Llncergl1"l':clta||jsr:he / :_ \ memtfrl«;gge;eal to
= '-i — - . . =
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Slika 2. Shematski prikaz AVL FRISC motora. [2]

Osim plutajuce kosuljice cilindra, jedan od osnovnih dijelova je i brtveni prsten koji se
nalazi izmedu plutajuce kosuljice cilindra i glave motora. Uslijed kontakta brtvenog prstena i
kosuljice cilindra te djelovanja tlaka u cilindru na prsten, generira se sila u aksijalnom smjeru
(z 0s) koja utjeCe na iznos trenja i stvara ,,Stick-slip” efekt. Mjerenja, a kasnije i simulacije,
provodna su za dva slucaja paketa klipnih prstena, osnovni i paket sa smanjenim trenjem.
Razlika izmedu paketa je vidljiva u iznosu tangencijalne sile prvog i drugog kompresijskog

klipnog prstena.
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U tre¢em poglavlju su prikazani simulacijski modeli te su opisani osnovni ulazni podaci.

Od ulaznih podataka, prikazane su krivulje opterecenja, profili kosuljice cilindra, klipa, klipnih

prstena i karakteristike povrSinske hrapavosti. U programu AVL EXCITE™ Piston&Ring

usporedeni su rezultati dinamike klipnih prstena za osnovni sklop klipnih prstena i sklop klipnih

prstena sa smanjenim trenjem. Uz to, prikazane su razlike izmedu rjeSavanja izmedu koristenja

2D i 3D simulacijskog solvera. Na Slici 3. je prikazan simulacijski model izraden u AVL

EXCITE™ Piston&Ring programu.

Ring Package:

3 rings are modeled separately

including

+ General ring data

+ Detail ring profile on
+ running face
+ bottom face
+ top face

= Piston groove geometry and
piston land geometry above
and below ring groove

» Thermal expansion of ring

groove and ring end

Liner

TopRing

Znafting

OilRing

Slika 3. EXCITE™ Piston&Rings model.

Li

ner:
Rigid Body

+ Liner cold and hot

deformation
Liner Surface
temperature

Osima navedenog simulacijskog modela, u ovom poglavlju su prikazani rezultati dobiveni

programom AVL EXCITE™ Power Unit. U tom programu usporedeni su rezultati dinamike

klipa za osnovni sklop Klipnih prstena i sklop klipnih prstena sa smanjenim trenjem. Uz to,

prikazane su razlike izmedu koristenja REVO i EHD spojeva u modelu. . Na Slici 4. je prikazan

simulacijski model izraden u AVL EXCITE™ Power Unit programu.

Piston:

» Condensed Model

+ Flexible Body

+ Degrees of Freedom: 1-3

Piston Pin:

+ Shaft Model

+ Flexible Body

- Degrees of Freedom : 1-3

Conrod:

- Condensed Model

- Flexible Body

- Degrees of Freedom : 1-3

Force sensors:
- FTAB joints

- Stiffness and damping:1-3 DOF

FTos

| I |
] ed e ol
Cramkcase

EPIL Joint

- Liner - Piston Skirt (Crown) Joint
- Hydrodynamic joint with asperity contact

in

cludes:
Contact model definition

SeanngFreson

-—(’\.ﬁ}.'a seating * ﬁ‘y ~Snies eah

» Piston profile and temperature expansion
« Liner cold and hot deformation
- il properties

- Thermal boundary condition for oil viscosity

evaluation

Liner

« Condensed Model

» Flexible Body

» Freedom degrees: 1-3

Cylinder Head
» Rigid Body
+ Freedom degrees: 3

SealRing
- Rigid Body
- Freedom degrees: 1,3

Crankcase:

» Rigid Body

+ Freedom degrees:
constraint

Slika 4. EXCITE™ Power Unit REVO FRISC model.
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U 4. poglavlju je prikazana usporedba rezultat izmedu mjerenja i simulacija. Usporedeni
su profili sile trenja i bocne sile na klipu, srednjeg tlaka trenja, potrosnje ulja klipnog
mehanizma i prestrujavanja zraka. Takoder, prikazana je raspodjela srednjeg tlaka trenja
klipnog mehanizma i ispitan je utjecaj mijenjanja razlic¢itih parametara trenja na rezultate
srednjeg tlaka trenja.

U 5. poglavlju istaknuti su zakljucci provedenog istrazivanja i preporuke za daljnji rad.
Male razlike su vidljive u rezultatima prestrujavanja zraka u kuciste motora izmedu rezultata
simulacija osnovnog paketa i paketa smanjenog trenja klipnih prstena, te su vidljive znacajnije
razlike u prestrujavanju izmedu mjerenja i rezultata modela sa smanjenim trenjem. Takoder,
vrijednosti prestrujavanja izracunati sa 3D solverom imaju vise vrijednosti u odnosu na
rezultate sa 2D solverom. Postignuta je slicnost u obliku krivulja sile trenja i bocne sile
izraGunate simulacijom i dobivene mjerenjem. Izmedu naprednijeg modela (EHD) i
jednostavnijeg modela (REVO) nije vidljiva razlika u krivuljama sile trenja. Na slici 5. je

prikazana usporedba sile trenja izmedu simulacija i mjerenja.

Friction Forces: 3000rpm15.5_BASIC

Friction Force (N}

Crankangle [(deg)

Slika 5. Usporedba rezultata sile trenja.

Simulacijski rezultati srednjeg tlaka trenja izracunati paketom klipnih prstena sa smanjenim
trenjem ukazuju nize vrijednosti u odnosu na rezultate osnovnog paketa klipnih prstena dok
rezultati mjerenja ukazuju na vise vrijednosti srednjeg tlaka trenja kod paketa sa smanjenim
trenjem. Klipni prsteni najvise doprinose srednjem tlaku trenja u ukupnom iznosu srednjeg tlaka
trenja klipnog mehanizma, a najvec¢i doprinos dolazi od uljnog klipnog prstena. Poveéanjem
opterecenja, doprinos srednjoj vrijednost tlaka od glave motora se povecava, a srednja

vrijednost tlaka generirana dodirom klipa i koSuljice cilindra se smanjuje
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1. INTRODUCTION

This thesis is done in cooperation with AVL — AST d.o.0. from Zagreb and AVL List GmbH
from Graz with the purpose of simulating a FRISC (FRIction Single Cylinder) engine of the AVL

diesel development project, based on full engine models.

1.1. Motivation

The automotive industry is one of the largest industries in the world. As such, every part
of it is brought almost to perfection in regard to cost efficiency and sustainability. ICEs are still
the power source of the majority of the automotive powertrains. Although hybrid and electric
vehicles are lately coming into fashion, the ICE is still ruling the market, at least for the time
being Internal combustion. Fired hardware test are essential for the engine development process
but is very time and cost intensities. Therefor it has to be planed carefully and the tested set up
has to be selected in a prober way. To reduce the hardware variants on the testbed the efficient
parameter studies and optimization processes performed by simulation (multibody dynamics
simulation) are gaining more importance. The advantages of simulations are short response times
for different variants, lower cost compared to testbed and view “beyond the edge”.

Internal combustion engines are a major fossil fuel consumer as well as a main source of
air pollution. Engine friction and oil consumption are the major contributors to the oil and fuel
economy. The engine durability, emission and fuel economy are the main targets, which
characterize the development of a modern internal combustion engine [1].

A significant contribution of the total power losses in ICEs is due to the piston ring-pack
friction. Diesel engines are inefficient with only approximately 40% of the total energy produced
by combustion being used as work. Friction accounts for approximately 10% of the total loss
and, of that, 50% can be attributed to the piston, connecting rod, and rings with the rings being
the cause of the majority. The rest is lost to heat, friction, or auxiliaries such as oil pumps, water

pumps, etc. [2].
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Mechanical
Friction
(4-15%)

:;I;alons. Rods
ok (18-33%)
40-55%) Rings

(28-45%)

Other

(38-41%) (30-60%)

Piston
(25-47%)

Distribution of total energy in a fired engine Distribution of the total engine mechanical friction Distribution of pistorvring/rod friction

Figure 1. Distribution of engine losses and friction [3].

A common term used to describe engine friction loss is the friction mean effective
pressure (FMEP). To calculate fired engine FMEP, the indicated mean effective pressure (IMEP)
and the brake mean effective pressure (BMEP) are measured with FMEP being the difference
between the two. Indicated mean effective pressure is calculated from the cylinder pressure and
represents power produced by combustion pressure. Brake mean effective pressure is calculated

from the output torque and represents engine output after losses.

A
p
In idle:
pi J/V| = Wm pm
pi Wc = 0
_(,1 ;
VH V
Figure 2. Engine working cycle [3].
1.2. PISTON

The piston is one of the most important parts of internal combustion engines. In the cylinder
of an engine, the energy bound up in the fuel is rapidly converted into heat and pressure during
the combustion cycle. The heat and pressure values have a strong increase within a very short
time period. The piston, as the moving part of the combustion chamber, has the main function of

converting this released energy into mechanical work.
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The basic structure of the piston is a hollow cylinder, closed on one side, with the segments
piston crown, top land, second land, third land, top compression ring groove, second compression

ring groove, oil ring groove, skirt and pin boss.

Piston crown
Topland
Ring carrier
Ring belt ;
2nd and

3jand = I —

Pistan ring

Pin retainer ) ¥ Pistan skirt
Pinboss &7,/ @

Piston pin — —

Figure 3. Piston structure [2].

At Figure 4. the most important piston dimensions are shown.

1
—
A

|
|
Z—:/. /’//; ,;}/ ///f;m/‘ |
/ P :
= ﬁ/ “ﬁ 2 g | [ |1 BO: Pin bore @ (piston pin @)
I'il KH: Compression height
e o g \ | & NA: Pin boss spacing
f ! \ "\\ oy D: Piston @
777y ' LN ! s:  Crown thickness
sz, | \ ) = _ .
- i ¥ DL: Expansion length
\ i ;’// SL: Skirt length
; GL: Total height
| NA UL: Lower height

Figure 4. Piston major dimensions [2].

The piston crown transfers the gas forces resulting from the combustion of the fuel-air
mixture via the pin boss, the piston pin, and the connecting rod, to the crankshaft. As a moving
and force-transmitting component, the piston, with the piston rings, must reliably seal the
combustion chamber against gas passage and the penetration of lubricating oil under all load
conditions. This task can be achieved only if a hydrodynamic lubricating film is present between

the piston rings or skirt and the cylinder bore. At four-stroke engines, the piston crown also
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supports the mixture formation. It has a partially jagged shape, with exposed surfaces that absorb

heat and reduce the load capacity of the component [2].

1.2.1. Piston tasks and requirements

The most important task that piston should achieved are [2]:
* to transfer the force of gas pressure to the conrod
» sealing off the working chamber
* guiding the sealing elements (piston rings)
* guiding the conrod
* controlling charge exchange (two-stroke engines)
» support of mixture formation (shape of piston head)
* heat dissipation
» variable bounding of the working chamber
To be able to achieve all tasks, piston must fulfill following features [2]:
* structural strength
» adapting to operating conditions
* low friction
* low wear
* low weight with sufficient shape stability
* low oil consumption
* low pollutant emission values
The optimum solution is difficult to achieve because piston requirements are partly contradictory,

both in terms of design and material.

1.2.2. Gas pressure and temperature in diesel engines

The maximum gas pressure in the combustion cycle has critical significance for the
mechanical loads. Gas pressures occur depending on the combustion process and charge intake
(naturally aspirated/turbocharger). In diesel naturally aspirated engine maximum gas pressure
achieves value of 80 — 100 bar, and in turbocharged engines the gas pressure increases up to 140
— 240 bar.

The peak temperatures of the exhaust gas can reach levels in excess of 2200°C. The
exhaust gas temperature range between 600 to 850°C for diesel engines. Average temperatures

on piston crown is 200 — 500 °C (depend on material), 150 — 260 °C on pin boss and 120 — 180 °C
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on piston skirt. The amplitude of the temperature fluctuations is only a few °C at the piston
surface and drops off rapidly toward the interior. Heat flows that lead to characteristic

temperature fields result from the material cross sections heat are determined by the design [2].

[‘C] 375.0
350.0
343.0
321.0
311.0
295.0
270.0 |
263.0
247.0
231.0
2150
190.0
183.0
167.0

151.0

135.0 { J

Figure 5. Temperature distribution on piston for diesel engine [2].

The temperature level and distributions in the piston depends on [2]:

»  Operating principle (two or four stroke)

* Combustion process (direct/indirect injection)

* Operating point of the engine (speed, torque)

» Engine cooling (water/air)

» Friction between piston skirt/lands and liner

* Design of the piston and cylinder head (location and number of gas channels and valves,

type of piston, piston material)

» Piston cooling (spray jet cooling, cooling channel, cooling channel location, etc.)
The strength properties of the piston materials are very dependent on the temperature. High
thermal loads cause a drastic reduction in the fatigue resistance of the piston material. The critical
locations for diesel engines with direct injection are the boss zenith and the bowl rim. The
temperatures in the first piston ring groove are significant in terms of oil coking. If certain limit
values are exceeded, the piston rings tend to “lock up” (coking) due to residue build-up in the

piston ring groove, which leads to an impairment of their functionality.
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1.2.3. Piston clearance and ovality

The piston deforms and stretches under the influence of the gas pressure and gas
temperatures. This change in shape must be considered in advance to prevent binding at operating
temperatures. This is done with a piston shape that deviates from the ideal circular cylinder. The
piston must therefore be installed with some clearance in the cold state, which takes the expected
deformation and the secondary piston motion into consideration. The piston profile (micro piston
contour) deviates from the ideal circular cylinder in the axial direction (conicity, barrel shape)
and in the circumferential direction (ovality) [2].

Pistons typically have a slightly smaller diameter in the piston pin axis than in the thrust
— antithrust plane due to ovality. The oval shape of the crown and skirt provides many design
opportunities. The skirt ovality creates space for thermal expansion in the piston pin axis
direction. The ovality can be varied to generate an even wear pattern with sufficient width. It is
typically (diametric) 0.3—0.8% of the piston diameter. In addition to the normal ovality, ovalities
with superposition are also possible, such as double or tri-ovality. For double ovality, in the form
of a positive or negative superposition, the local piston diameter is greater or less than for normal
ovality. The positive superposition widens the wear pattern relative to normal ovality, and the
negative makes it narrower. Tri-ovality widens the wear pattern, which is limited due to a reduced

local piston diameter starting at about 35° from the thrust — antithrust axis [2].

Double oval
HPlus
/ P rm I
D'Of"“" -\7/\// Double oval O‘Of"“' g, rmal oval
R il NI —— %) S
-0 4: K -0 4} SN Tricoval
| RS | .Y e
| NN ] K
0.6 AN 0.6} A\
| \\ \ | \\
5 | N 5 | \
& | \ & | \
=] \ =
O | \ o
& | & | \
: P A § —— Ly il
Thrust-antithrust direction Thrust-antithrust direction

Figure 6. Ovality and superposition [2].
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1.2.4. Diesel piston types

The piston shape is determined by the combustion process. In Diesel engines with directed
injection of fuel into the cylinder, the combustion chamber is located in the dent of the piston
head. Diesel engines with split combustion chamber have a shallow dent at the head of the piston,
which enhances the swirling of the fuel mixture that flows from the antechamber or swirling

chamber to the cylinder.

1.2.4.1 Ring carrier pistons

The ring carrier is made of an austenitic cast iron with a similar coefficient of thermal
expansion to that of the piston material. The material is particularly resistant to frictional and
impact wear. The first piston ring groove is protected with ring carrier against excessive wear.
This is particularly advantageous at high operating temperatures and pressures, which are

particularly prevalent in diesel engines [2].

2’
=

’/’
’1

Figure 7. Ring carrier piston [2].

1.2.4.2  Piston with cooled ring carrier

The cooled ring carrier significantly improves the cooling of the first piston ring groove
and the thermally highly loaded combustion bowl rim. The intensive cooling of this ring groove

makes it possible to replace the usual double keystone ring with a rectangular ring [2].
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Figure 8. Piston with cooled ring carrier [2].

1.2.4.3  Piston with bushing in the pin bore

One of the most highly stressed areas of the piston is the piston pin bearing. Temperatures
of up to 240°C can occur in this area, a range at which the strength of the aluminum alloy starts
to drop off considerably. For this reason, is developed a reinforcement of the pin bore, using

shrink-fit bushings made of a material with higher strength (CuzZn31Si1) [2].

Figure 9. Piston with bushing in the piston bore [2].
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1.2.44 FERROTHERM piston

FERROTHERM piston is commercial name for pistons that are designed by manufacturer
MAHLE. This piston has two parts, piston crown and piston skirt and they are implemented
separately. The piston crown, made of forged steel, transfers the gas pressure to the crankshaft
via the piston pin and connecting rod. The aluminum skirt bears the lateral forces that arise due
to the angle of the connecting rod and can therefore support the piston crown with an appropriate
design. The FERROTHERM piston exhibits good wear values in addition to high strength and
temperature resistance. Its consistently low oil consumption, small dead space, and relatively
high surface temperature provide good conditions for maintaining low exhaust emissions limits.

FERROTHERM pistons are used in highly loaded commercial vehicle engines [2].

Figure 10. FERROTHERM piston. [2]

1.2.45 MONOTHERM piston

MONOTHERM piston is commercial name for pistons that are designed by manufacturer
MAHLE. This piston type is a single-piece forged steel piston that is weight optimized. With a
small compression height (to less than 50% of the cylinder diameter) and machining above the
pin boss spacing (internal), the piston mass, including the piston pin, is nearly that of the mass of
a comparable aluminum piston with piston pin. The MONOTHERM piston is used in commercial

vehicle engines with peak cylinder pressures of up to 20 MPa [2].
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Figure 11. MONOTHERM piston (left) and optimized MONOTHERM piston (right) [2].

On the right picture is shown MONOTHERM optimized piston. The advantages of the optimized
MONOTHERM piston are:

+ Stiffening of the structure (reduced deformation and greater load capacity)

* Reducing the secondary piston motion, resulting in both a reduced tendency to cavitate

and improved guide properties, particularly for the piston rings

*  Smoothing of surface pressure on the skirt

» Additional surface and additional cross section for heat dissipation

* Advantages in forging and machining

The optimized MONOTHERM piston is used for peak cylinder pressures of up to 25 MPa [2].

1.2.4.6 MonoXcomp piston

MonoXcomp piston is commercial name for pistons that are designed by manufacturer
MAHLE. This piston is a composite piston consisting of several parts:

* The piston crown with integrally formed antifatigue shaft and screw thread

* The thrust sleeve, which features a nut thread and an elastically deformable part with

contact zone for transmitting power to the piston skirt

» The piston skirt with the counterpart to the contact zone.
It has an integrally formed antifatigue collar, and the interior is deformable like a Belleville spring
washer. The ability to use different materials for the piston crown, piston skirt, and thrust sleeve
enables the optimal utilization of material potentials. For piston crowns, the use of highly
temperature-resistant and oxidation-resistant materials allows for extreme loads. The structure,

which is very rigid due to its closed form, reduces deformations in the piston and thereby enables
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thin walls and peak cylinder pressures greater than 25 MPa. The thin walls in the bowl area, in

turn, improve the piston cooling and thus allow greater heat flow [2].

Figure 12. MonoXcomp piston [2].

1.2.4.7 Monosteel piston

Monosteel piston is commercial name for pistons that are designed by manufacturer
Federal — Mogul. This is dual friction-welded construction, enabling large cooling galleries for
high — temperature resistance and strength. The two-piece welded piston design allows the
cooling gallery to be closer to the top of the piston, resulting in significant piston temperature

reduction [4].

Figure 13. Monosteel piston [4].

Monosteel Magnum is optimized Monosteel piston by manufacturer Federal — mogul. It
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is a first diesel piston with double — band piston skirt. This piston has friction reduction of 17%

when compared to conventional steel pistons.

Figure 14. Monosteel Magnum [5].

1.2.5. Piston materials

The functions of the piston and the loads that act on it present a set of requirements for
the piston material. If low piston weight is the goal, then a low-density material is preferred.
Besides its design shape, the strength of the material is the deciding factor for the load capacity
of the piston. The change in loads over time requires both good static and dynamic strength.

The thermal conductivity of the material is of significance for the temperature level. As a
rule, a high thermal conductivity is advantageous, because it promotes uniform temperature
distribution throughout the piston. Low temperatures not only allow greater loading of the
material, but also have a beneficial effect on the process parameters at the piston crown, such as
the volumetric efficiency and knock limit.

Static and dynamic strength values describe material behavior under isothermal
conditions. Pistons are exposed to severe changes in temperature at times. The transient heat
stresses that arise place cyclical loads on the material that can sometimes exceed the elastic limit,
so materials must be resistant to these stresses. Due to the motions and forces that occur at the
sliding and sealing surfaces, piston materials must also meet high requirements for seizure
resistance, low friction, and wear resistance.

The requirements for the thermal expansion behavior of the piston material depend on the

material pairings of the cylinder and the piston pin. Differences in thermal expansion coefficients
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should be kept as low as possible in order to minimize changes in clearance between the cold and
warm states.

A material with good machining properties supports cost-effective production in large
quantities. The manufacture of the raw part should be as near to net shape as possible and should
contribute to high material quality. Suitable processes include gravity die casting and forging.
The sliding and sealing surfaces demand high-precision finishing, which requires suitable

machinability of the material [2].

1.25.1  Aluminium materials

As a light alloy with high thermal conductivity, aluminum is often used as a piston
material. In the unalloyed state, its strength and wear resistance are too low. Alloys that are

suitable for pistons mainly have aluminum-copper-magnesium and aluminum-magnesium silicon

solid solutions.

Figure 15. Aluminum pistons for diesel engines [6].

Pistons are almost exclusively made of aluminum-silicon alloys of eutectic, and partly
hypereutectic composition, which can be cast easily and nearly always can be forged as well.
Aluminum-silicon piston alloys are employed mainly for cast pistons. They can also be forged
for special purposes, which leads to somewhat different microstructures and properties.
Compared to the cast state, the material in the forged state exhibits greater strength and greater
plastic deformability (greater elongation after fracture). The strength advantage of the forged
material structure is greatest in the lower and middle temperature ranges, up to about 250°C, and

drops off at high temperatures [2].
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1.25.2 Cast iron materials

Cast iron materials generally have a carbon content of > 2%. MAHLE uses high-quality
cast iron with lamellar and spherolithic graphite for its products. For the materials used in piston
casting, the basic material of the structure is largely perlitic, due to its good strength and wear
properties. Pistons in highly stressed diesel engines and other highly loaded components in
engines and machine design are predominantly made of M-S70 spherolithic cast iron. This
material is used for single-piece pistons and piston skirts in composite pistons. Due to their
relatively high thermal expansion in comparison to cast irons with perlitic or ferritic basic

structures, austenitic cast iron materials are of great significance to produce ring carrier pistons

12].

Figure 16. Cast iron piston [7].

1.25.3 Steel materials

Steels used for components generally have a carbon content of less than 0.8%. For very
highly stressed pistons and piston components, the chromium-molybdenum alloy of heat-treated
steel 42CrMo4 is used. Both alloying elements promote carbide formation to improved full
hardenability, and molybdenum also increases strength at elevated temperatures. Decrease in
strength toward the core area must be expected for very large heat-treatment cross sections or
changes in cross section [2].

Material, 38MnVS6 is preferably used in steel pistons for commercial vehicle engines

and for forged steel skirts in composite pistons. This steel material is built with technology for
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increasing the strength of metallic materials, and this technology is called precipitation
hardening. Precipitation-hardened ferritic-perlitic steels exhibit small amounts of vanadium or
niobium added. This material is preferably used in steel pistons for commercial vehicle engines
and for forged steel skirts in composite pistons. The advantages of this group of materials,
compared to heat-treated steels, are improved machinability of the ferritic-perlitic structure and
the elimination of costly subsequent heat treatment [2].

Both steel grades, 42CrMo4 heat-treated steel and 38MnVS6 AFP steel, are suitable for
use at temperatures of up to 450°C regarding strength at elevated temperatures and oxidation
resistance.

Bolts that connect the piston crown of a composite piston to the piston skirt are generally
made of 42CrMo4 heat-treated steel. They must comply with the highest DIN 267 strength
classification of 10.9. Sometimes, 34CrNiMo6 heat-treated steel is used, which has even greater

full hardenability due to the addition of nickel [2].

1.2.6. Coatings on steel pistons used in diesel engines

Coating of the piston skirt is intended to prevent local welding between the piston and the
cylinder, or piston seizing. Under moderate operating conditions, a piston does not require a skirt
coating if its dimensions are designed carefully and correctly. Risk of seizing does exist under
extreme operating conditions [2]:

* Lack of'local clearance caused by mechanical and/or thermal deformation of the cylinder

* Insufficient oil supply, such as during cold start

* Insufficient lubrication capability of the engine oil, caused by fuel contamination,

extremely high operating temperature, or excessive aging of the oil

* In brand-new condition, when the piston and cylinder have not yet been run in
A coating on the piston skirt provides protection in such extreme situations. It is important that

the skirt coating be tribologically matched to the cylinder bore (cast iron or aluminum).
1.2.6.1 Grafal 255

The standard coating for the piston skirt is GRAFAL, for pistons of all sizes and types
that are paired with cast iron cylinders. GRAFAL 255 is commercial name for piston coating
created by manufacturer MAHLE. GRAFAL is an approximately 20-um thick sliding lacquer
coating with fine graphite particles embedded in a polymer matrix. It withstands temperatures of

up to 250°C that can occur at the piston skirt and is resistant to oils and fuels. The film-forming
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polymer matrix supports the action of the solid graphite lubricant during dry running, with
advantageous tribological properties. This provides great seizure resistance for very low
clearances and a lack of oil. Under normal loading conditions, the coating does not wear. Under
extreme loads, particularly in case of high local surface pressure, it can be partially worn off
locally. Due the self-lubricating properties of GRAFAL, pistons can exhibit very low clearances,
which produces favorable acoustic properties with low friction [2].

1.2.6.2 Grafal 210

GRAFAL 210 is commercial name for piston coating created by manufacturer MAHLE.
The layer consists of a highly temperature-resistant polymer matrix, in which graphite particles
and molybdenum sulfide pigments added as a pressure resistant component are embedded. The
layer thickness is about 8 um and provides longer antiscuffing/-seizing protection in the piston
pin bore during the run-in phase. This coating is used for steel piston in heavy duty Diesel engines

of commercial vehicles [2].

1.2.6.3 Phosphate

Phosphate coatings can provide effective protection against seizing and scuffing between
sliding pairs, especially in run-in phases. This effect can also be exploited for pistons, particularly
for diesel engine pistons to protect the pin boss. Thick layers (averaging 5 um) of manganese-
iron mixed phosphates are deposited on steel pistons (MONOTHERM, FERROTHERM). They

enable direct pairing with hardened steel pins, without the use of pin bore bushings [2].

1.2.6.4 EvoGlide

EvoGlide was developed to improve the sliding lacquer layer wear resistance in the
piston/cylinder bore system over the service life of the engine. The sliding lacquer layer should
be improved because the lateral forces on the piston skirt are increased when implementing a
downsizing concept. The addition of certain additives makes the resin matrix more wear-

resistant. EvoGlide is an approximately 15-pm thick sliding lacquer coating [2].
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1.2.7. Differences between aluminium and steel pistons

This chapter describes differences in design, temperature field, cooling, friction and fuel

consumption between steel and aluminium pistons.

1.2.7.1  Comparison of the steel and aluminum piston designs

Steel is characterized by the following properties as compared with aluminum:

* reduced thermal expansion

* increased strength

+ greater density

» reduced thermal conductivity

Compared to aluminum, steel possesses a higher fatigue strength, which allows it to fulfill
the demands placed on modern passenger car diesel engines peak cylinder pressures of up to 250
bar. This is one of the main reasons why is today often used steel piston in comparison to the
aluminum pistons in diesel engines.

For the steel piston, the wall thickness can be reduced greatly due to its higher strength.
Consequently, the weight of the piston group can be the same or even lower with a steel piston
concept. The reduced oscillating masses may make it possible to eliminate the balance shafts.
The reduced compression height can be used to extend the length of the conrod in an existing
engine concept, while keeping the swept volume the same. This reduces the maximum lateral
forces and therefore the friction forces on the piston skirt. It is also possible to take advantage of
the reduction in compression height by adjusting the displacement of the engine and the
combustion chamber geometry. It appears possible to reduce compression height by up to 30 %
and top land height by up to 50 %. For a new development of an engine series, the reduced
compression height can directly reduce the overall height of the engine, thus decreasing the
installation space required. This can have a positive effect on the cw value and pedestrian

protection for the vehicle [8].
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Figure 17. Geometrical comparison of steel and aluminum pistons [8].

Reducing the top land volume, the first piston ring on the steel piston can be placed at a higher
position than on the aluminum piston. The smaller top land volume is advantageous for CO
emissions of the steel piston and has a positive influence on the effective compression ratio for
the same combustion chamber geometry. It is beneficial to reduce this volume, which makes this
a system advantage of the steel piston [§].

For measurements with identical ring packs, the steel piston results in 15 to 45 % less
blow-by. About 30 % (at partial load) or 10 % (at high load) of the advantages in fuel consumption

can be ascribed to the difference in blow-by.

1.2.7.2  Piston cooling

Key factors in designing the cooling gallery include a small distance from the bowl rim
as well as thermal shielding of the first ring groove. The steel piston allows the cooling gallery
to be positioned higher thus reducing the top land height. Compared to aluminum pistons the
cooling gallery volume is 57 % larger, and the effective gallery heat transfer surface 54 % larger.
Also important is the free inner cooling gallery height, which enables high heat flows during the
piston stroke by convection. The lower temperature level in the ring zone compared with
aluminum pistons according to the analysis reduces ring groove carbonization as well as groove
and piston ring wear over piston lifetime [8].

An optimized oil flow rate provides the opportunity to adjust the piston temperature in a
targeted manner with a reasonable level of effort. This is better achieved for the steel piston than
for the aluminum piston. For small oil flow volumes, the steel piston exhibits a friction advantage

0f 0.04 bar (corresponding to 1 g/ kWh BSFC). This is because the temperature at the skirt rises
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by 15 °C for a smaller oil volume flow, and the reduced oil viscosity has a positive effect on
friction. In contrast, small oil volume flows are critical for steel pistons with respect to cooling

channel coking and surface scaling [8].

Geometry cooling gallery

Aluminum
Volume: 57 100 %
Surface: 154 100 %

Figure 18. Geometry cooling gallery [8].
1.2.7.3  Temperatures on pistons

The temperature distribution in the aluminum and steel piston are fundamentally different.
In the aluminum piston, the heat is distributed more uniformly due to the high thermal
conductivity and larger material cross sections and is then dissipated by the cooling oil. The heat
transport in the steel piston, in contrast, is rather limited and takes place primarily by means of
the cooling oil. The lower thermal expansion of steel furthermore allows the installation clearance
to be tight, while maintaining sufficient operating clearance, when the piston is hot. Due to the
difference in thermal expansion between steel piston and aluminum cylinder block, the operating
clearance increases as the temperature rises, and the piston may strike the cylinder wall with
greater impact. This can be counteracted by optimizing the piston installation clearance, the shape
of the piston, and the piston pin offset.

Bowl rim temperatures ranging from 360 to 420 °C are attained with aluminum pistons,
whilst steel piston temperatures here range from 385 to 450 °C. Due to lower thermal
conductivity of steel an approximately 30 °C higher temperature occurs at the bowl rim. An
approximately 50 °C lower temperature in the first ring groove is a characteristic feature of
passenger car steel pistons. While aluminum pistons exhibit groove temperatures of 260 to
300 °C, the groove temperatures determined for steel pistons reach a lower level of 220 to 245 °C
as a result of longer heat conduction path between combustion bowl and ring zone, lower thermal
conductivity of steel and a large cooling gallery with increased cooling oil flow. Pin boss
temperatures measured for aluminum pistons are 230 to 250 °C. The significantly reduced
compression height of steel pistons and the resulting lower distance between pin boss and

combustion bowl lead to pin boss temperatures of 290 to 320 °C [8].
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Figure 19. Measured temperatures of aluminum and steel pistons [8].

Figure 20. Measured temperature distribution on aluminum and steel piston [8].

The Figure 20. shows the temperature distribution for both piston designs for identical
engine performance demonstrates the influence of significantly lower thermal conductivity of
steel. The larger cooling gallery in the steel piston shields the ring zone from the heat input into
the combustion chamber bowl, such that the groove temperatures are more than 50 °C lower than
with aluminum pistons. Temperature levels more than 30 °C higher arise in the bowl rim and

bowl bottom.

1.2.7.4  Friction losses

Steel piston have reduction of friction losses in comparison to aluminum pistons. There is a less

thermal overlap in cylinder block because steel have reduced thermal elongation.
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Figure 21. Thermal expansion behavior of the aluminum piston (top) and steel piston (bottom)
[10].
In connection with the minimized area and asymmetric design of the piston skirt surfaces, this

effect leads to a 50 % decrease in average friction power at the observed partial load point [8].

100 -

Aluminum piston

-50 %

Normalised average friction [%]
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ThC Crank angle [*CA] oC

Figure 22. Normalized average friction between aluminum and steel pistons [8].

The steel piston has a friction advantage under high loads of up to 0.1 bar friction mean
effective pressure (FMEP), which corresponds to as much as 3 g/kWh break specific fuel
consumption (BSFC). Under low loads, the frictional loss behavior of the steel and aluminum
variants can be considered essentially comparable (measurement accuracy AFMEP =+ 0.03 bar).
The equivalent level of friction in this comparison is achieved with an aluminum piston with
relatively high installation clearance. As the clearance is reduced, the frictional loss advantage of

the steel piston becomes more pronounced [8].
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1.2.7.5 Emission

The higher surface temperatures of the steel piston have a positive effect on the HC, CO
and carbon particles emissions at partial load. This can be attributed to better fuel mixture
preparation and more complete combustion. The reduction of HC emissions by 76 % at a
constantly maintained EGR rate is significant, but the lowering of soot emissions by 50 % as well
as the CO emissions by 23 % also demonstrate a clear advantage for the steel piston. Increased
surface temperatures and improved fuel utilization however result in higher combustion
temperatures, which lead to 29 % higher NOx emissions. In combination with longer connecting
rods, which reduce lateral forces and piston skirt friction, the improved fuel utilization also leads
to an advantage in specific fuel consumption of up to 4 % [8].

Measurements under full load show that NOx emissions are on the same level as for
aluminum pistons when operating under the same boundary conditions as steel pistons (peak
cylinder pressure, turbocharger speed). The cause for this is the dominant combustion
temperature at full load as compared to the temperature on the piston surface. An exhaust
temperature increases of only 1 %, caused by thermal flow restriction, results in an advantage for
steel pistons in the order of 20 % regarding soot emissions. HC and CO emissions only play a

subordinate role under full load in the range of only a few ppm [8].
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Figure 23. Engine operating performance with aluminum and steel pistons [8].
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1.3.  PISTON RINGS

A piston ring is a split ring that fits into a groove on the outer diameter of a piston in an internal
combustion engine. Piston ring are the most endangered in the Diesel engines, and the most
endangered is the first piston ring (compression ring) because it is exposed to the highest pressure
and the highest combustion temperatures. Except the compression ring, pistons are with oil ring
and mostly with second compression ring assembled [9].
Piston rings main functions are [9]:

» sealing the gap between moving piston and cylinder liner surface to prevent the

combustion gases from penetrating into the crankcase

* to provide a uniform oil film on the cylinder gore surface

* to prevent the oil passing from the crankcase to the combustion chamber

+ assuring the heat flow from the piston to the cylinder
Piston rings main target are [9]:

* blow-by reduction based on optimized ring conformability and overall balance between

piston and rings

» friction loss reduction by optimizing tangential forces and piston ring profiles

» 0il consumption reduction by optimizing bore distortion and tangential forces

* running face wear reduction based on improved material properties
The top ring seals the ring-liner interface to prevent high pressure gas from escaping from the
cylinder into the lower parts of the ring pack. The oil control ring regulates the amount of oil that
passes the ring-liner interface to lubricate the upper rings. A second ring is also present in most

engines. This ring scrapes down excessive oil that passes the oil control ring-liner interface.

1.3.1. Piston rings design

The top two rings are designed with a diameter that is larger than the size of the cylinder
bore in which they are to be installed. They are made with a gap in their circumference so that
they can be compressed to fit into the cylinder bore during installation. Once they are installed,
their own tension allows them to maintain an effective seal against the liner.

The top ring has a barrel-shaped face profile, which has been shown to be most effective
for lubrication. Sufficient lubrication is critical for the top ring as it is subjected to the high
cylinder pressures, which can result in large radial forces acting on the back of the ring. If there
is no lubrication between the top ring and the liner, large contact pressures can be generated, and

this can result in significant wear and an increase in the top ring gap over time. This will result
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in higher power losses due to the larger amount of high-pressure gases in the cylinder that can
escape through the larger gap. Cast iron Goetze KV4 or KV1 with flash chrome plated side faces
or steel nitride with 18% chrome (X90CrMoV18) is often used for manufacturing first piston
ring [12].

The second ring, also called the scraper ring, has a tapered face so that it cannot accumulate oil
on its upper edge to scrape it in the upward direction towards the combustion chamber. However,
it can very effectively accumulate oil on its lower edge to scrape it down toward the crankcase to

prevent excessive oil from reaching the top ring.

Direction of
Piston Motion s No Scraping

: 1

Direction of
Piston Motion

L J

Figure 24. Effect of taper face ring profile on oil transport [11].

The design of the oil control ring is quite different from that of the compression rings. The
twin-land oil control ring 1s one of designs of oil control rings and it is typically used in large
diesel engines. This ring consists of a spring mounted inside two rails to ensure adequate
conformability to the liner. The circumferential length of the spring determines the tension of the
oil control ring once installed in the cylinder bore. The high-tension force from the ring on the
liner created by the spring is necessary to achieve adequate conformability when thermal and
mechanical deformation of the cylinder bore occurs during engine operation. Cast iron or steel
nitride are used for manufacturing oil ring.

Piston rings are designed to have positive ovality or negative ovality. High speed gasoline
engines usually have rings with positive ovality since this condition has a damping effect on the
vibration of the ring thus reducing ring flutter. If rings having excessive negative ovality, then

blow-by past the ring can be high with subsequent loss in performance and possible wear.
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Figure 25. Piston ring ovality [2]
On the Figure 26. and figure 27. are shown different types of compression and oil ring
profiles. These profiles are developed for different piston and for friction reduction and different

lubrication performance.
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Figure 26. Compression rings [13].
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1.3.2. Piston rings materials and manufacturing

The rings are manufactured with different materials depending on the type of engine in which
they are to be installed. In larger diesel engines, the rings are typically made of ductile cast iron

due to the high thermal stability of the material, which makes it suitable to the high operating
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temperatures in these engines. Steel is the more popular material for rings to be used in smaller
gasoline engines because it is stronger than cast iron, and therefore, the size of the rings can be
reduced, and conformability improved without a reduction in ring life. High strength, thermal
conductivity, thermal expansion, corrosion resistance and resistance to micro welding are
properties that determine the characteristics of piston ring materials [13].

Typical axial heights of piston rings range from 1 mm to 4 mm. As a result, machining the
rings to precisely match the design specifications is difficult, and tolerances are often on the order
of the design values themselves.

Grey cast iron is universally used for the manufacture of piston rings. It’s had good
mechanical properties, friction and wear characteristics and it is cheap and readily available
material. Some cast irons are manufactured containing controlled amounts of carbides obtained
by adding chromium, molybdenum and vanadium. Malleable and nodular irons are used where
higher strength and fatigue resistance is required but they have the least satisfactory wear

characteristics [13].

Material Specification Minimum Modulus of Grade
Material Bending Strength Elasticity **)
=) 10% x
(N/mm?) (Nimm?)
Tensile strength *)
GOE 61 - 18% Cr-Steel 1300 230 Martensitic
GOE 65C - 13% Cr- 1150 210 Chromium Steel
Steel 1020 206 Spring Steel
GOE 64 - SAE 9254
GOE 52 - KV1 1300 =150 Modular Cast Iron,
unalloyed,
GOE 56 - KV4 1300 =150 heat-treated
GOE 44 300 =165 Malleable Cast [ron
GOE 32-F14 650 130 - 160 Grey Cast Iron, alloyed,
heat-treated
GOE 12-STD 350 85-115 Grey Cast Iron,
GOE 13 420 95 - 125 unalloyed,
pearlitic

not measurable on steel rings

Figure 28. Federal Mogul piston rings materials [14].

Cast iron piston rings are manufactured by casting. There are different types of casting
methods, and every method depend on piston ring type. Some of this casting methods are:
centrifugal, sand, or individually casting. Except casting, piston ring can be manufactured by
powder metallurgy. This manufacturing method is suitable for small piston rings, and the iron,
carbon, copper and molybdenum powders are blended together and cold pressed in metal dies to
produce ring blanks. The rings are sintered, repressed, resintered, oil impregnated and finish

machined. After casting or sintering, piston ring plots must be machined on the highspeed lathes.
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The various shapes used for oil control rings are milled out and the ring gap is cut out. Steel
piston ring are made from a profiled wire. The rings are first coiled into the circle shape and then
the gap is cut out. The necessary shape is obtained using a heat treatment process in which the
rings are mounted onto a spindle appropriately designed to impart the required radial pressure
distribution [13].

1.3.3. Blow- by

One of most important aspects about analyzing piston rings dynamics is blow — by. Blow —
by is a part of the total amount of engine gas that flows from combustion chamber into the
crankcase. In addition to the resulting energy loss, blow — by also poses a risk to the piston and
piston ring lubrication due to contamination and displacement of the lubricating film, and due to
oil coking as a result of overheated temperatures at the locations in contact with the combustion
gases. Sealing against gas penetration is mainly accomplished by the first piston ring, which is a
compression ring. For naturally aspirated engines, the quantity of blow-by is a maximum of 1%;

for turbocharged engines, it is a maximum of 1.5% of the theoretical air intake volume.
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Figure 29. Gas flow in crankcase [9].
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1.4. LUBRICATION AND ENGINE FRICTION

Oil consumption is the change of amount of oil in the sump during time. Lube oil
consumption occurs due the turbo system, valves, camshafts and the main contributor is piston

bore interface. Oil emission is the loss of lube oil through the exhaust system

1.4.1. Lube oil consumption

Lube oil consumption results caused by piston bore interface are:
» total and current lube oil consumption due to evaporation of lube oil from liner wall
* oil throw — off from accumulated oil above the top ring due to inertia forces
» oil blow through the end gap of the top ring into to combustion chamber due to a
negative pressure gradient

* oil scraping at piston top land’s edge

LOC due to evaporation
from liner wall

12 2/

LOC due to throw-off
' above top ring

i} LOC due to oil blow
through end gap into
combustion chamber

' LOC due to scraping of
piston top

Figure 30. Lube oil consumption [9].

The lubricant itself is a multi-constituent fluid that strongly influences the lubrication regime
of the lubricated parts. Various additives provide different functions in the oil: to maintain the
temperature sensitivity of the oil viscosity, to protect against wear through formation of surface
films, and to reduce solid-to-solid friction by making the surfaces more slippery. In addition,
other additives keep the component surfaces clean and maintain the oil properties to within

acceptable levels. In recent years, lubricant additive derived ash in the exhaust stream has become
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an important issue in advanced diesel engines equipped with emission after treatment control
systems. Engine design and the lubricant-additive formulation need to be optimized to
simultaneously protect both the engine and the emission-control system from contamination by

ash, sulfur and phosphorous originating in the oil.

1.4.2. Lubrication in piston assembly

Due to the variation in oil supply to the different piston rings throughout the engine cycle,
each ring encounters different modes of lubrication while traveling along the liner. When the
lubricant can separate the surfaces, the friction is considerably less in comparison with the
situations at which the surfaces are in direct contact. If the surfaces are separated by fluid film
due to motion, the lubrication mechanism is called hydrodynamic lubrication (HL) and when the
contacting bodies deform elastically due to the contact pressure the lubrication mechanism refers
to as elasto-hydrodynamic lubrication (EHL).

When the sliding velocity between 2 surfaces in contact is high, due to the hydrodynamic
effects, the 2 surfaces are fully separated by the lubricant. In this situation the pressure of the
fluid in the contact is high enough to separate the surfaces (EHL regime) and the friction
coefficient is governed by lubricant properties and is typically of the order of 0.01.

When the velocity decreases the pressure of the fluid in the contact decreases and
consequently the asperities of the surfaces start to touch each other and part of the load is carried
by the asperity which leads to an increase in the friction. In this situation the friction is carried
out by the shear between the interacting asperities as well as by the shear of the lubricant. The
lubrication regime in this region is called mixed lubrication (ML). Decreasing the sliding velocity
further, the pressure of the lubricant at the contact region approaches the ambient pressure and
the total normal load is carried by the interacting asperities. The lubrication regime is called
boundary lubrication (BL). Boundary lubrication usually occurs under high-load and low-speed
conditions in machine components such as bearings, gears and traction drives. It is the regime

which controls the lifetime of the mechanical system.
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Figure 31. Lubrication modes [9].

In Hydrodynamics lubrication friction depends on oil film formation (oil viscosity). In
this mode of lubrication, the oil supports the load from the ring on the liner, and therefore the
amount of friction generated by the ring-liner interaction depends on the properties of the
lubricant as well as the film height and width under the ring surface. In Mixed lubrication friction
depends on separation of solid and hydrodynamic contact. In Boundary lubrication friction
depends on solid contact (surface treatment and oil additives) [11].

Micro-EHL can be of great importance for the functioning of a rough surface operating
in the BL and ML regime. This can be seen not only as a primary point of interest of the surface
life, but also with respect to the performance of rough surfaces in general. As is shown on Figure

32., in BL and ML regime are two curves.
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MicroEHL (solid) \

Micro-EHL (hguid)
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\\\\
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Eoundary
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Figure 32. Friction coefficient depend on modes of lubrication. [11]

The lower curve indicates the occurrence of micro-EHL at the interacting asperities. Since

shear stress in an asperity contact operating under micro-EHL conditions is less than the shear
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stress in boundary lubricated micro-contacts, one may notice that the coefficient of friction
increases at a smaller rate as HL decreases. The lower curve observed phenomenon is the micro-
EHL (solid). If the load is completely carried by the asperities, the coefficient of friction does not
depend on a lubrication number. The reason is the very high pressure at the micro contacts. As a
result, the lubricant may act as a solid. In this case the shear does not depend on the shear rate
and the friction coefficient is constant.

Most of the piston assembly friction comes from either piston-skirt/ liner interaction, or ring-
pack/liner interaction. There is also lubrication and friction as the rings slide radially against the
inside surfaces of the ring grooves in which the rings reside. However, the ring-groove
interactions are only intermittent and do not contribute significantly to energy losses, but rather

to ring-grooves wear issues.

1.4.3. Piston - liner friction

The lubrication regimes and friction losses in the piston-skirt-liner subsystem are
significantly influenced by the piston secondary motion. Piston secondary motion results
primarily in a variable slight tilt of the piston as it rotates about the piston-pin, and an impact
force, commonly called piston slap, of the piston as it switches from sliding up on one side of the
sliding down on the other side of the liner. Skirt-liner friction is higher when there is solid-solid
contact in the boundary lubrication and mixed lubrication regimes. The axially barrel-shaped
skirt profile is expected to provide the hydrodynamic pressure to sufficiently separate the skirt
from the liner in maintaining hydrodynamic lubrication. However, when the piston speed
approaches zero at the ends of the piston travel up or down strokes, the squeeze-film damping
there remains as the essential mechanism to maintain a reasonably oil film, often not thick enough
to avoid solid-solid contact [15].

The important parameters governing piston skirt-liner friction include the surface
characteristics, such as textures or waviness patterns on the skirt and surface roughness; piston —
liner arm clearances (material combination), skirt design details such as ovality and axial profile,
and lubricant thickness and rheology. The key in reducing piston skirt-liner friction lies in
maintaining hydrodynamic lubrication of the skirt. With an adequate oil supply to the skirt, most
other issues of skirt profile design and surface characteristics affecting boundary lubrication

would disappear or diminish [15].
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1.4.4. Piston ring — liner friction

Except piston — liner friction, one of the most influence contributors of increasing friction
power loss in ICEs are friction between piston ring and liner. The important parameters governing
piston ring-liner friction include the surface characteristics, such as textures or surface roughness;
piston rings design details such as piston ring cross section, and lubricant thickness and rheology.
Oil supply plays a very important role in ring-liner lubrication. For a single grade oil, the viscosity
of the oil depends only on its temperature, which is controlled primarily by the temperature
distribution along the liner. As piston speed increases, the liner temperature may increase,
causing a reduction in lubricant viscosity. Therefore, for the case of single grade oils, friction
power losses only increase with higher engine speeds if the reduction in lubricant viscosity does

not offset the increase in piston speed [15].

1.4.5. Engine friction reduction

The industry has made large improving in energy consumption by lowering friction in
passenger cars. The turbocharged, direct-injection spark ignition engine with downsizing is one
of the technical solutions that have been used in the market. In the case of diesel engines, the
turbocharger had to be utilized to meet strict emissions regulations along with fuel economy
improvement requirements.

General the relative friction losses of an engine can be reduced by increasing the engine load.
This is since the load on the engine has low influence on the friction power losses. Increasing the
load often means changing gear ratio such that the engine runs at lower RPM, while still
providing the same vehicle speed. This can be beneficial also because the friction power loss is
highly dependent on velocity and can be reduced with lower engine speed.

Surface texturing has been recognized as a method for enhancing the tribological properties
of sliding surfaces. After surface texturing, surface have a lot of dimples. The dimple (micropit,
hole, oil pocket or cavity) can serve either as a micro-hydrodynamic bearing in cases of full or
mixed lubrication, a micro-reservoir for lubricant in cases of starved lubrication or a micro-trap
for wear debris in either lubricated or dry sliding. It was found that surface texturing of contacting
elements reduced the frictional force substantially in comparison to untextured surfaces [16]. A
lot of testing are made with laser textured surfaces and the laser textured surfaces showed less
friction than surfaces manufactured by conventional honing.

Except surface texturing, piston rings coating is today a most useful method for reduction

piston ring — liner friction [17]. Ever since coatings were acknowledged as an essential design
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feature they have inevitably been a point for improving friction losses in the tribological system
of piston ring and cylinder bore. Carbon-based, diamond-like coatings (Diamond-like Carbon,
DLC) are particularly used for components which undergo solid-to-solid contact with other
components during operation. The excellent properties of DLC coatings ensue from the
generation of a thermally and mechanically induced transformation of the top layer of the DLC
film into a material of lower shear strength than the layer itself, and which therefore becomes
self-lubricating. Traditional DLC coatings are limited in their application on piston rings by the
following features. Typical layer thicknesses are lying in the region of a few microns, which
limits coating lifetimes. If the coating is thicker the risk of delamination increases due to typical
internal stresses. Hard DLC coatings make it difficult to achieve very smooth piston ring running
surfaces to ensure excellent friction levels and avoid cylinder bore wear. DLC piston ring
coatings currently are often used as a running-in layer on other wear-resistant coatings [17].

DuroGlide is a commercial name for DLC coating manufactured by Federal — Mogul. This
coating suitable for lifetime use in highly loaded gasoline and diesel engines. Due to the high
amount of sp3-hybridised carbon (tetrahedral structure) DuroGlide can be applied with a layer
hardness of up to 5000 HV 0.2. The coating has a layer thickness of up to 25 um with an excellent
adhesion to cast iron and or steel surfaces. The temperature resistance of up to 500°C allows the
application in diesel engines. Figure 33. shows a relative comparison of the coefficients of friction
found in the piston ring coatings used today in gasoline and diesel engines. The coefficient of
friction was measured outside the engine under test conditions which represent a high mixed
friction share while using oil without additives. Compared to chromium-based coatings such as
chrome ceramic coating (Chrom-Keramik-Schicht: CKS) and Goetze diamond coating (GDC) as
well as physical vapor deposition (PVD) coatings such as CrN, the use of DuroGlide reduces the
coefficient of friction by up to 60 % [17].

100

80

B0
40
: N B B
0

Steel nitrided CKS/GDC CarboGlide DuroGlide

Relative coefficient of friction [-]

Figure 33. Relative comparison of the friction coefficient of various piston ring coatings [17].
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As DuroGlide can be applied to base materials such as cast iron and steel and is feasible for
different running surface designs, it is equally suited for compression rings and oil rings. Figure
33. shows a conceptual setup of a piston ring pack for passenger car diesel and gasoline engines.
As the top compression ring and the oil ring each contribute around 40% to the mechanical
friction loss, DuroGlide is preferred for these two ring types. The coated piston rings show the
highest level of wear and scuff resistance when compared to all conventional piston ring coatings
and thus contribute to a fuel efficiency improvement of up to 1.5%. This is equivalent to a

reduction of CO2 emissions by up to 3g/km, depending on the engine application [17].

i . Design detail
Basic design Measures Ring running surface

Reduced tangential force
Lower axial height
Reduced radial wall thickness
Friction work-optimised coating
Optimised base material

Figure 34. Example of low — friction piston ring packages for passenger car engines [17].

1.5. Objective of the thesis

The objective of this thesis is to correlate results of simulation models and available
results given from measurement on an AVL FRISC engine. This includes influence of tangential
force on friction and differences between simplified and advanced modeling. Simulation models
are created in software’s AVL EXCITE™ Piston&Ring (piston ring dynamic) and AVL EXCITE™
Power Unit (piston dynamic). Also, sealring and cylinder head are implemented in EXCITE™
Power Unit models and influence on friction behavior caused by stick slip effect is observed. In

results, friction force, side force, LOC, blow-by and FMEP values are compared.
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2. AVL FRISC Engine — friction measurement

AVL FRISC engine ((FRIction Single Cylinder) is the name for the research engine with a
floating liner concept. On Figure 35., AVL FRISC engine concept is presented.

; Cylinder head
Radial seal ring with ‘15"‘3)“ L

ring carrier in head

Floating liner with
cooling jacket and
Ilner carrier

package

’f"-’ Sensor

Baseplate

Figure 35. AVL FRISC engine concept [18].

2.1. AVL FRISC engine and floating liner in general

AVL FRISC engine is in fact a single cylinder engine, which has a quite robust and stable
design for the base engine consisting of crank-case, mass balancing system (up to second order),
auxiliary devices and power cell [19]. The measurement of piston to liner friction is done with
the “floating liner” engine concept. One aim of friction measurement is to evaluate the force data
for the FMEP (friction mean effective pressure) evaluation. Such design requires the liner to be
mounted via force sensors onto the crankcase. Contact forces between the liner and cylinder head
or any other part of the engine must be reduced to minimum. With this design the liner is
“floating” on its force sensors and any dynamic force introduced into the liner is recorded as an
add-on to the static force required to hold the liner in place. The practicality of engine testing
requires a floating liner engine design capable of operation at relevant engine conditions and
providing mechanical interfaces for an easy exchange of piston or liner without compromising

the setup of the sensor system [20]. Figure 36 shows the schematic view of AVL FRISC engine.
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Minimize the influence of the head to liner
sealing on the liner force measurement

Firing pressure
unable to
introduce load on
Sensors

Floating Liner

|} Friction and lateral
forces to measure

Force sensors
coupled to the
"Floating
Liner” with the
crankcase

Rubber
M membrane seal to
avoid oil drain

Figure 36. Schematic view of AVL FRISC engine [21].

The functional principle is as follows: If one imagine the force sensors being springs (because
of their elasticity) and a piston with ring pack, guided by the liner, is going up and down, friction
forces occur due to the contact between liner and piston skirt as well as rings. Simultaneously
mechanical forces arise which act normal to the liner surface and in direction of the liner surface
(into direction of the liner axis). These forces into z — direction (friction forces) will modify the
spring length (because of the elasticity of the sensors there will be a displacement in z — direction)
what is the signal measured. Because of the friction forces acting on the liner surface the whole
floating liner system will also move (mainly into z — direction). This movement is first of all the

reason for the name “floating liner” [19].

2.2. Mechanical system and resonance cases

The power cell is moving according kinematics of the crank drive. The dynamics of the
FRISC engine can be defined with the following action and reaction forces. Direction of this
forces can be seen on Figure 37.

Action forces [19]:
e Friction forces between piston skirt, rings and inner liner surface: Fgr(t),

e Contact normal forces between piston skirt, rings and inner liner surface: Fn(t),

e Gas forces from the chamber acting on top of the liner Fg(t),
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¢ Normal and friction force of the sealing ring on top of the liner: Frs(t) and Fns(t),

e Gas forces from crankcase are acting on bottom of the liner Fec(t).

Reaction forces:

e The force sensors are reacting with “spring” forces Fs(t),

Frs(t) Fs(t)
z[ '

X

e The friction force is Fr(t).

STV

A

=
—Faa® Fo (6]
777 e

Figure 37. Forces acting on liner and liner carrier [19].

According the principle of linear momentum we have the following equation in global z -
direction [19]:

m-Z(t)+D-z=2F(t) =K, (t) + F. (t) + F (t) + F () + K () (1)

The FRISC system is highly dynamic, in that it has time varying movement and forces.
One has to take into account also that the FRISC engine consists of a large number of different
parts out of different materials. These parts are flexible bodies (not infinitely stiff) and as such
have their own individual frequency response. In addition, there are fluids in the joints and gas
in the combustion chamber and surrounding volumes all of which alters the frequency response
of the system. As the engine speed increases the signal amplitudes increase and it is necessary to
detect those operating points where eigen frequencies and harmonics of the individual parts, or
those of the system as a whole, may occur. Generally speaking these so-called resonance cases
can never be avoided but they have clearly be observed [19].
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2.3. FRISC engine design

Figure 38. shows the floating liner assembly. Main part of the design will be described at
the following section. With this design, the exchange of piston, piston rings and liner without

interference to the sensor package installation is accomplished.

Liner Carrier
Sensor Bolt
Sensor

Baseplate

Cooling Jacket

Figure 38. Floating liner assembly [22].

Liner carrier and floating liner:

This part connects the liner and its cooling water jacket with the engine block via the force
sensors central screws. The mounting screws are tightened for a precisely defined static pre-load.
Together with the cooling jacket, the liner is inserted into the carrier and fixed with a clamping
disk [21].

The floating liner is a part which is inserted into the cooling jacket. It is disjointed from
the cylinder head with a seal ring. For a high-precision evaluation of piston to liner clearance
effects, a form honing procedure at the liner is applied to achieve the original liner distortion,

thus maintaining correct clearance dimensions.

Sensor package:

The selection of force sensor stiffness and sensor positions within the engine structure
ensures the static stability of the liner [21]. The sensors’ dynamic response and sensitivity are
key to providing accurate dynamic force measurements. The sensor package is tightened to the

baseplate with bolts.

The sensor package includes four force sensors, each providing force signals in the axial,

lateral and longitudinal direction. Each sensor signal component includes force components
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acting along the respective axis as well as residual components because of the sensor element’s

cross-talk sensitivity.

Handling the 12 force signal components is accomplished with a multichannel data
recorder. The sensor package sensitivity matrix (comprised of 36 sensitivity matrix elements in
total) is used in a real time analyzer to provide instantaneous output of engine force components
[21].

Seal ring

The radial seal ring is one of the most important parts of the AVL FRISC engine because
it enables the sealing between the liner and the cylinder head. The seal ring’s contact to the liner
together with gas pressure acting on the ring surface imposes residual force components acting
along the liner axis [21]. Even if this axial force can be minimized with the selection of seal ring
design parameters, the measurement system’s high sensitivity shows its effects as a residual force
superimposed on the basic friction signal components. The friction signal shows a negative spike
around the crank angle position of the maximum cylinder pressure. In the fired operation, the
response of the ring to the rising pressure together with the downward motion of the piston
introduces a microscopic stick — slip motion with a consequent reaction force seen in the force
signals. This small microscopic motion is known as the “stick-slip” effect and results will show
an influence of this motion for friction. The signal appears as a spike superimposed and
counteracting to the friction signal of the accelerating piston after combustion TDC. Seal ring
tension and contact force to the liner are the parameters of influence. The stick-slip effect will be

described later in the thesis.

Cylinder head:

Prototype or mass production cylinder heads need a minor modification to provide the
space for mounting the seal ring between head and liner. Camshaft operation is achieved with a
tooth belt. Tooth wheels are mounted on to the front end of the camshafts. Original cylinder head
bolts and bolt positions are maintained. Coolant and lubrication are provided via suitable hose
connections to the base engine and further on to the media supply unit. With such modifications,
amulticylinder head is operated as a single cylinder engine, and engine operation can use original

stationary engine calibration parameters [21].
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Crankcase:

The crankcase provides a module to allow the mechanical interface to the cylinder head
bolts, the interface to the force sensors between crankcase and floating liner, and the housing for
cranktrain and balancer shafts. Side openings provide a mechanical window to access the conrod
screws. The engine uses first and second order balancer shafts to minimize crankcase vibrations
[21].

2.4. FRISC engine parameters and cases

In this chapter parameters and measurement cases of FRISC engine will be represented.
Parameters are given in Table 1. FRISC measurements were made for full load and for partial
load. Friction force result, blow-by and lube oil consumption are calculated from cases given in

Table 2. Cases are named by speed and BMEP values in bar.

Table 1. FRISC engine parameters.

Properties Unit Value
Bore mm 77
Stroke mm 80
No. cylinders - 1
Volume/cylinder Itr 0,37
Fuel type - Diesel
Coolant temperature °C 90
Oil temperature °C 90

Table 2. Measurement and simulation cases.

Load type CASE Engine speed [rpm] BMEP [bar]
Full load 3000_15p5 3000 155
Full load 2500_15p4 2500 154
Full load 2000_15p2 2000 15.2
Full load 1500_14p8 1500 14.8
Partial load 3000 _9p3 3000 9.3
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Partial load 3000 5p3 3000 5.3
Partial load 3000 _2p9 3000 2.9
Partial load 2500 _9p2 2500 9.2
Partial load 2500 _2p8 2500 2.8
Partial load 2000_8p6 2000 8.6
Partial load 2000 _2p7 2000 2.7
Partial load 1500 _8p8 1500 8.8
Partial load 1500 _4p7 1500 4.7
Partial load 1500 _2p3 1500 2.3

Measurement is performed for two ring packages. Differences are in the tangential force
on the top and second ring and in the width of the second ring. Running faces of the piston ring
are the same. Tangential force, Fy, is a force which is sufficient to compress the ring to the
specified closed gap. Knowing the value of the tangential force, contact pressure can be

calculated. The equation for calculating contact pressure is [23]:

I
= — 2
P=ih @)

Where r is the radius of piston ring and h is the piston ring axial width.

Figure 39. shows constant contact pressure and tangential force. Except for constant contact

pressure, contact pressure can also be a variable.
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Figure 39. Tangential force and contact pressure distribution [23].

The contact pressure determines how high the ring is pressed against the cylinder wall.

This pressure is governed by the dimensions and total free gap of the ring and by the modulus of
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elasticity of ring material. The total free gap is defined as the distance, measured along the neutral
axis, between the ends of a piston ring in its uncompressed state [23].

Total Free Gap m
Closed Gap Ring Ends

\ncompressed Ring
/ \ Compressed Ring
V

[
|
{ !
\ /

\ \b / | Ring Running Face
\\,__/ Ring Sides

a = radial wall thickness
h = axial width
d = nominal diameter

Figure 40. Total free and closed gap [23].

Table 3. shows differences in parameters between ring packages.

Table 3. Difference in parameters in cases.

CASE name Tangential force (Top and 2" ring) Radial Thickness (2" ring)

BASIC 6N 2.7 mm

LOW FT 5N 2.6mm
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3. SIMULATION MODELS

Simulation models are made in AVL EXCITE™ software in two modules: PowerUnit and
Piston&Rings. Models are created in a simplified and in an advanced way. Guidelines and

recommendations for an efficient modelling will be presented.

3.1.  General about analysis in Piston & Rings.

In AVL EXCITE™ Piston&Rings module two types of analysis are considered: piston

ring dynamics and lube oil consumption.

Piston ring dynamics was developed to analyze effects of design modifications of piston
and piston rings in view of low LOC, blow-by and friction values. For the determination of the
dynamic loads upon the rings, the piston ring dynamics considers forces and moments due to
inertia, friction and the flow of the gas from the combustion chamber through the inter-ring
volumes into the sump. The calculation is simultaneously done at TS (thrust side) and ATS (anti-
thrust side), the mutual influence being considered (“quasi three-dimensional™). Along the
circumference direction, constant conditions are assumed. The simulation also gives values for

blow-by, inter-ring pressures and oil film thickness between the rings and liner over crank angle.
The main characteristics of the Piston ring dynamics are the following [24]:

e Each ring is modelled as a single mass. The interaction between the thrust and anti-thrust
sides is given by a beam model and a model for pressure compensation. Twisting,
(including the pre-twist angle) is considered.

e For the calculation of the gas flow through the rings, inter-ring areas are considered as
volumes, which are given by the piston and ring geometries and the actual clearances
between piston and liner. The volumes are connected due to the actual clearances of ring
end gaps and the actual position of the rings in the grooves. The possible gas flow behind

the rings and between ring and groove flanks is considered.

e The oil film is considered between the ring running surface and liner by calculating the

pressure distribution in the clearance according to the liner and ring contours.

The Lube Oil Consumption Module was developed to calculate the lube oil consumption in the
piston-ring-liner group. Any losses in the shafts of the valves, in the turbo charger or general
leakages of the entire engine are not considered. The following consumption mechanisms are
considered [24]:
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e Evaporation at the oil film from the liner surface
¢ Oil transport around the first piston ring — including oil throw off
e Oil blow through the gap of the first ring from and into the combustion chamber

e Oil scraping at the top land's top edge (considering deposits)

3.1.1. Piston ring dynamics and gas flow models

In piston ring dynamics, there are forces acting on the piston ring in the axial and radial
direction. The schematic display of forces is given in Figure 41.

TOP

piston F_s=

cylinder
" liner

& Pocicw A

BOTTOM

MOTION OF PISTON

Figure 41. Piston ring forces [9].

In the axial direction, the forces acting on the piston ring are [9]:
e mass force (including gravity and piston tilting motion)
o friction force between liner and ring running surface: Frric_ax
e gas force: Fgas ax
e damping force caused by the oil filling of the groove: Fhydr ax
e Dbending force caused by the interaction between TS and ATS: Foend

According to the equilibrium of dynamic forces acting upon the ring, the equation of motion in

the axial direction is given by [9]:

(3)
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Mring * jéring = z F= Fmassax + Ffricax + Fgasax + Fpena + thdr_ax

The contact force Fcontact between the ring and ring groove, if the ring is in contact with the groove
flank will be [9]:

Feontact = Fmass.ax + Firicax T Fgas.ax T Frend + Fhydr ax (4)
If the Fcontact >0 ring is moved with the piston and if the Fcontact <O ring is lifted from the groove
flank [9].
In the radial direction, the forces acting on the piston ring are:
e force caused by the tension of the ring: Ftension
e gas force: Fgas rad
e friction force between ring and ring groove: Frric_rad

e force caused by the hydrodynamic pressure in the gap between liner and ring running
surface (incl. radial damping force): Fnydr rad

The contact force between the liner and ring running surface is given by:

Feontact rad = Firic.rad T Fgas_rad T Frension + Fhydr rad (5)
If the Feontact_rad <O ring is lifted from liner.

The friction force Fic_rad IS calculated using Stribeck model based on the relative radial
velocity between ring and piston. The relative radial velocity is the result of the radial velocity
due to piston secondary motion and the one due to ring dynamics.

For the calculation of the gas forces acting upon the piston rings, the pressures resulting
from the gas flow must be known. For this, the entire ring package will be divided into chambers
(volumes behind and between the rings), which are connected one to another by throttling points.
Starting upon the known pressures pcomb 0N the piston top land and peranke below or behind the oil
ring, the pressures in the chambers will be determined in a quasi-stationary way by means of a
step-by-step calculation of the gas masses flowing through the throttling points [9]. Gas flow

model for entire ring package is shown on Figure 42.
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Figure 42. Gas flow model for entire ring package [9].

For the flow processes, an isothermal change in the state is assumed, the max. velocity of flow
is limited to the sound velocity in the throttle. Mass flow change of mass and pressure in the

chamber are calculated as follows [9]:

2 K+l
w7 255 (G- G7)

where 7 is mass flow,

Am =m- At (7
where Am is change of mass,

R.TC-(m+Am) )

Pc =

where p¢ is pressure in the chamber.

For the calculation of the pressures, the gas flows over the following throttling point are
considered [24]:

e ring running surface

e ring end gap
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e ring top and bottom flanks

Throttling points and discharge areas are shown in Figure 43.

Figure 43. Throttling points and discharge areas [24].

3.2. EXCITE Piston & Ring models

Piston ring model is shown in Figure 44. For creating the model, AVL EXCITE™ 2018b
software is used. The model is created from the liner and ring package (top ring, 2" ring and oil
ring). Each part is filled with parameters which are mostly calculated from piston, liner and piston
rings drawings. Other parameters are either set as default or calibrated for good overlapping

between simulation and measurement results.

Ring Package: — S

3 rings are modeled separately (M) B | roro
including
+ General ring data P
+ Detail ring profile on Liner:
» running face Ofing * Rigid Body
+ bottom face « Liner cold and hot
+ top face deformation
« Piston groove geometry and Lines + Liner Surface
piston land geometry above temperature
and below ring groove
« Thermal expansion of ring \_ \_

groove and ring end o —

Figure 44. Simulation model

The solving of simulation model will be considered in two ways: 2D enhanced and 3D
approach. The input data between the two approaches are the same, only difference is the

simulation solver. Simulation solver selection is shown in Figure 45.
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Figure 45. Selection of simulation solver

In 2D enhanced module, the balance of the forces applied on the ring cross section is
considered in both radial and axial direction. In the circumferential direction, only two elements
are considered. One of them is at the thrust side and other on the anti-thrust side. The calculation
is carried out by solving the equations of motion of forces and moments equilibrium conditions
on each ring. The explicit integration method in time domain is used to solve the resulting
dynamic equation. The forces applied on the ring, which depend on the position of the piston ring
in groove, are calculated iteratively. The hydrodynamic contact between the ring running face

and liner is calculated using the Reynolds equation [24].

In the 3D module, the 3 dimension, which is the circumferential direction, is added to
the piston ring analysis domain. The 3D ring model is based on the finite-element (FE) beam-
mass formulation. The ring is divided into equal segments in the circumferential direction. The
mass of each segment is concentrated at its center (mass lump) and is associated with the mass
and inertia tensor of that segment. Each mass section contains one node connected with that
section with RBE2 (kinematic coupling). It is recommended to use one mass point on every 5 to
10 degrees, result in 36 to 72 mass points. Increasing the number of mass points, the liner and
ring contact have better conformation, but simulation time increases significally. The center of
the ring segment has 6 degrees of freedom, 3 translational and 3 rotational DOFs. This results in
12x12 stiffness and mass matrices for each element. The stiffness and mass matrices, as well as
the force vector, are assembled, and the resulting system of equation is solved iteratively. The

hydrodynamic and asperity contacts are evaluated at each ring segment [24].
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Figure 46. Ring partitioning into equal mass lumps connected beam [9].

3.3.  Input data for piston & ring model

This chapter describes main input data such as load, data necessary for describing surface

contact, piston ring profile and liner profile.

3.3.1. Loaddata

Load input data is divided into two types: cylinder pressure curve data and
thermodynamic data. For each operating point, cylinder pressure curves are different, and they
are taken from the measurement on the AVL FRISC engine. In the following figures, cylinder

pressure curves for full and partial load are shown.

Cylinder pressure curves - full load
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Figure 47. Cylinder pressure curves for full load.
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Cylinder pressure curves - partial load
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Figure 48. Cylinder pressure curves for partial load.

This pressure curves are also used in Power Unit model and they are shifted for 2.266 deg
because of piston pin and crankshaft offset. In Piston & ring model, pressure curves are shifted
for 362.266 deg and ignition start at O deg.

Thermodynamic data used for the LOC simulation are the same for all cases and they are
taken from benchmark. In Figure 49. The combustion gas temperatures, liner heat coefficient and

cylinder swirl number are shown.

Comb. Gas Temp Liner HeatCoef Cylinder_Swirl_2_inv

iTC (K]

HTC

Figure 49. Thermodynamic load.

3.3.2. Surface contact

For calculating friction between piston ring running face and liner it is very important to
know the material properties and the surface roughness between the parts. Figure 50. shows
surface roughness for the liner and top ring. The EHD contact is described by Asperity Contact
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— Greenwood/Tripp approach and the averaged Reynolds equation is described by the Patir and

3 TopRing - Ring Surface - a X
e
Relative Height |1 g
2 £ Cancel
Contact Help
Contact Model Type [Asperity Contact - Greenwood/Tripp =]
Ring Liner
Summit Roughness (rm.s )| micron 095 3
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Elastic Factor poor
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Averaged Reynolds Equation
Definition Type  [Acc. 1o Patir and Cheng -]
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Surface Roughness (rm.s)| micron 237 ﬁ 604
Roughness Orientation H 1.138 p 585
View Flow Factors

Figure 50. Surface contact for Top ring.

The contact between the interacting roughness summits is a combination of micro-
hydrodynamic contact and partly local solid contacts. The ratio between micro-HD and solid
contact depends on the local gap size between the asperity summits h.. The asperity interaction
gap size hi depends on the local asperity contact lubrication number Ln. Lubrication number
depends on mean dynamics viscosity, sliding speed, asperity contact pressure and reference
length for summit contact. Main lubrication number contributor is sliding speed [24]. Increasing
sliding speed, lubrication number increase, and micro-HD friction coefficient also increase.
Lubrication asperity friction model is shown in Figure 51. Constants a, b, ¢ and reference length
are mainly used for model calibration. Influence of abrasive coefficient was not considered in the

simulation. Default value for adhesive coefficient is 0.1, and maximum value is 0.15 for dry/dry

contact.
L4
{3 TopRing - Asperity Friction and Wear Definition - m] X
s e oK
Lubricated Asperity Friction and Wear
Cancel
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Figure 51. Lubricated asperity friction model [9].
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Constants a, b, ¢ and reference length for each ring are shown in Table 4.

Table 4. Values of friction constants in Piston & rings model.

Constanta | Constantb | Constantc | Reference length
Top ring 2,71 30000 100 300
2nd ring 2,718 30000 100 100
Oil ring 2,718 40000 350 200

3.3.3. Piston & rings profiles

In the EXCITE Piston&Rings module, the profiles of piston rings and liner must be

inserted. After creating a profile in ASCII format, the files are imported into software.

Piston ring profiles are separately created for each piston ring and loaded in to the
software. These profiles represent the cross section of piston rings. For the top, second and oil
ring, it is necessary to import profiles in three positions. These three positions are the profile of
ring face, top side face and bottom side face. First, these profiles are created in Excel, CAD
software or in some other program (MatLab). For each ring, main dimension of profile is known
on drawing and all other profile points are interpolated between the known points. Figure 52.
shows the cross-section profile of the top ring, Figure 53. shows the profile of the second ring

and Figure 54. shows the profile of the oil ring.
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Figure 52. Cross section of top ring.
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Figure 54. Cross section of oil ring.

Liner profiles are calculated in cold and warm conditions. The cold liner profile describes

the radial and circumferential deformation from an ideal cylinder at assembling the liner in

engine. The cold liner deformation is constant for all operating conditions. Cold profile can be

imported in one ASCII file or created via meridians in circumferential direction. Figure 55. shows

the cold profile of liner created in liner profiler via meridians. All meridians together create a

patch which is displayed on Figure 56. Input data for creating meridians are taken from

benchmark.
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measured on liner top, middle and bottom position in four circular points for all cases. The
average temperature value of this circular point is calculated for each position on the liner. The

temperature fields from measurement are shown in Table 5.

Table 5. Temperature fields from measurement.

CASE TOP [°C] MIDDLE [°C] BOTTOM [°C]
3000_15p5 168 112 113
2500_15p4 158 111 112
2000_15p2 158 110 111
1500_14p8 160 110 111
3000_9p3 142 110 110
3000_5p3 132 108 105
3000_2p9 122 103 101
2500_9p2 140 109 108
2500_2p8 116 100 99
2000_8p6 135 107 106
2000_2p7 109 97 96
1500_8p8 143 112 109
1500_4p7 121 105 101
1500_2p3 107 97 96

The warm profile is described by the thermal radial deviation. This value can be calculated
or defined directly. For calculation, liner temperature field (LinerT) and thermal expansion
coefficient of liner wall should be imported as shown in Figure 57. Except LinerT, which
represents the mean temperature of the liner wall, the temperature of the liner surface (SurfT)
should also be imported. The surface temperatures will be used on determination of lube oil
viscosity for the hydrodynamics between the ring running face and liner wall and the surface
temperature of the oil vapor used for the simulation of the evaporation rate in lube oil
consumption. The surface temperature will not influence the radial profile of liner specified in

the liner profile.
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Figure 57. Calculation of radial thermal deviation in case 3000_15p5.

3.4.  EXCITE™ Piston&ring simulation results

This chapter describes simulation results of piston and rings models. Results are presented

for basic and low friction ring package. Except different ring package, results are also presented
for different simulation solver (2D or 3D solver).

3.4.1. EPR results - basic ring package

Results of piston ring dynamics, friction characteristics, blow — by and lube oil
consumption for basic ring package are presented only for engine speed 3000rpm for all load

cases. At appendix A, the results for 2500, 2000 and 1500 rpm for basic ring package are
documented.
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Figure 58. Basic ring package — Friction characteristics overview.

Above Figure 55. shows total friction power loss which is sum of friction power losses

on top, second and oil ring. On figure are also calculated mean integration values of friction

power loss over degree crank angle. Total cumulated FMEP values of all cases are also presented.

Friction forces between piston rings and liner are also shown.
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Figure 59. Basic ring package — FMEP overview.
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Above Figure 59. represents FMEP contribution of each piston ring. Total FMEP value for

each case and contribution of hydrodynamic and asperity cumulated FMEP are presented.
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Figure 60. Basic ring package — Friction Power Loss overview.

Above Figure 60. represents friction power loss contribution of each piston ring.

Contribution of hydrodynamic and asperity friction power loss is presented.
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Figure 61. Basic ring package — Piston ring dynamics overview.
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Above Figure 61., presents piston land pressure between piston ring and piston groove.
Relative axial position of ring represents axial position of piston ring inside piston groove. When
is ring on bottom position in groove value is 0 and when is ring on top position in groove, value

is 100. Twist angle of piston ring regarding x-axis is presented.
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Figure 62. Basic ring package — Lube Oil Consumption and Blow-by overview.

Above Figure 62., presents total lube oil consumption and contribution of each lube oil
consumption segements caused by piston bore interface. Total blow-by in crankcase is also
presented.

Results summary — basic ring package

Above results shows that friction power loss at top ring increases with load for the same
operating speed. Friction power loss of oil ring have cycle behavior through engine cycle and
friction power loss of top ring increased after ignition in combustion chamber. Friction power
loss of top ring is load dependent and friction power loss of oil ring are more speed dependent.
Friction mean effective pressure are higher if load increased and the most contributor of FMEP
comes from oil ring. Top and oil ring change relative axial position in groove 4 times and second
ring change 2 time. After first change of oil ring the axial position is not defined in the groove.

Also, twist angle of oil ring has the higher value every time in changing movement of piston in
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liner. Lube oil consumption and blow—by values are higher if load increases. The most contributor

of lube oil consumption is evaporation from liner.

3.4.2.

EPR results - comparison basic and low friction ring package

In following figures results of basic and low friction force ring package is shown. Low

friction package has reduced tangential force on top and second ring by 17%. Results are

displayed only for one operating point (3000rpm_15.5) and other results for different load cases

at speed 3000 rpm are shown in appendix B.
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Figure 63. Comparison between BASIC and LOW FT ring package - Friction characteristics

overview.
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Figure 65. Comparison between BASIC and LOW FT ring package — Friction Power Loss

overview.

Faculty of mechanical engineering and naval architecture 61



Ljudevit Putarek

Master's thesis

Top Ring 2nd Ring Qil Ring
Piston Land Pressure 1 . Piston Land Pressure 2 . Piston Land Pressure 3
—120 e 2
= ] [ @
2 J L7 279
—100 o R ™18
Lt} | ad
= b e @474
7 209 573 @
@ 0] FLE @16
o ] 3 ® 154
& 60 244 o1e
= ] a3 o 1.4
G <0 22 2124
2 1 LEE 512
5 204 = 3 = 114
2 = O
a e T T T T T T g T T T T T T T oos T T T T T T T
80 S0 180 270 280 450 540 €320 =0 0 %0 180 270 2\0 450 540 €30 80 o S0 180 270 280 450 540 630
Crankang (deg) Crankang (deg) CrankAng (deg)
& Relative Axial Position of Ring 1 in Groove & Relative Axial Position of Ring 2 in Groove S Relative Axial Position of Ring 3 in Groove
cnID T cnID D&‘D
E% 20 E% é 20 4
W 804 — W 804
[=} 3 [=} o
= 703 < < 704 3000rpm_1 E-pE-.Baslc
= El = = @0 3000rpm_15p5.Low
@ 5 @ @ 5
o | o =1
2 40 o O 44
T a3 [} 3 ap 4
z 203 z % 204
@ E| @ @
> 10 = = 107
= 3 = =
% 0 T T T T T T % T T T T T T T % o T T T T T T T
o -850 20 180 270 280 450 540 620 o o 20 180 270 280 450 540 820 o 50 o 20 180 270 2680 450 540 820
CrankAng (deq) CrankAng (deq) CrankAng (deg)
Twist Angle of Ring 1 Twist Angle of Ring 2 Twist Angle of Ring 3
0.3 0.2 0z
§nz— ga_;__ gn.‘—
o = ] =
o1+ @ 0.14 @ 0.1
= L} ] @
= p=2} 4 [=2]
[ = J =
E 0 ey < o _‘V—‘ﬁ— < o
z B ]
=01 = Z 1]
-0.2 T T T T T T 0.2 T T T T T T T 0.2 T T T T T T T
-20 20 120 70 380 450 540 320 -0 Q 20 180 270 380 450 540 830 -90 o 20 180 270 380 450 540 830

CrankAng (deg)

CrankAng (deq)

CrankAng (deq)

Figure 66. Comparison between BASIC and LOW FT ring package — Piston rings dynamics

overview.
Evaporation from Liner s Qil Scraping of Piston Top land
= 1
Mean ¥ (int.dx) B os] Mean Y (int.dX)
0.843258 = 0
o 08 o
0.843031 B ol
02
2
=m0
& 0z
© 9.4
o
S-06
@—D &
T T T T T T T & 7 T T T T T T T
a 20 180 270 380 450 540 630 = -20 o 80 180 270 280 480 540 830
CrankAng (deg) o

Throw off at Piston Top Land

CrankAng (deg)

il Blow Through Ring End Gap

=)
=
o 17
o atX Mean Y (int.dx)
= 0. -850 0
= -80 0
w o.
g’ 0.
x
] 5
3 grn 3000rpm_15pS.Basic
E E 0 3000rpm_15p5.Low
E =4
E| ERNE
T T T T T T T m T T T T T T 1
80 0 50 180 270 280 450 540 e  — =0 0 50 180 270 280 450 540 220
CrankAng (deq) o CrankAng (deq)
Sum of LOC Blow-By
&80
Mean Y (int.dX) o E Mean Y (int.dX)
0.843261 E 6.27063
0.843039 ceo g £.2496
=
=
=
@
=
p=]
m
T T T T T T T o T T T T T T T
a 20 180 270 280 450 540 e20 -20 o 20 180 270 2380 450 540 e20
X Axis (deg) CrankAng (deg)

Figure 67. Comparison between BASIC and LOW FT ring package — Lube Oil Consumption

and Blow-by overview.

Faculty of mechanical engineering and naval architecture

62



Ljudevit Putarek

Master's thesis

Results summary — comparison between basic and low friction ring package

Above results shows that friction power loss and FMEP values slightly decreased with

reduced tangential force ring package. Axial movement and twist angle only show minor

differences both ring packages. Lube oil consumption is little bit lower in ring package with

reduced tangential force. Blow-by values are higher in ring package with reduced tangential

force. This trend of results is the same in other operating points of engine. In Appendix B, results

of this comparison for different load cases at 3000rpm are shown.

3.4.3.

EPR results — comparison between 2D and 3D solver

In following figures results of 2D and 3D simulation solver for basic ring package will be

shown. In 2D approach piston ring dynamic is calculated only with 2 mass point and in 3D

approach, piston ring dynamic is calculated with 36 mass point. Results are displayed only for

one operating point (3000rpm_15.5) and other results for different load cases at speed 3000 rpm

are shown in Appendix B.
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Figure 70. Comparison between 2D and 3D basic ring package - Friction Power Loss overview.
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Figure 72. Comparison between 2D and 3D basic ring package — Lube oil consumption and Blow-

by overview.
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Results summary — comparison between 2D and 3D

Above results shows that friction power loss and FMEP values slightly increased with 3D
simulation solver. Visible is difference in hydrodynamics and asperity cumulated FMEP value.
Hydrodynamic cumulated FMEP have higher values with 2D solver and asperity cumulated
FMEP have higher value with 3D solver. Friction ring forces have slightly higher value with 3D
simulation solver. Axial movement of piston ring in groove are pretty the same in both cases and
twist angle is slightly higer in case with 3D simulaton solver. Lube oil consumption are the same
in both cases and blow by results significaly increased in model with 3D simulation solver. In
other lower speed cases (1500 rpm) in simulation with 3D solver ring end shut of top ring. This
phenomenon is very bad for engine because that phenomenon significaly increased friction losses
in cylinder. The reason of ring end shut on lower engine speed is probably caused because 3D
approach calculated liner deformation and shapes in all circumferential direction and 2D

approach calculated liner deformation and shapes only in one point on TS and on point on ATS.

3.5.  General about analysis in modul EXCITE™ Power Unit.

AVL EXCITE™ Power Unit is a multi dynamic simulation tool for engine design and for
the analysis and optimization of existing engines and power units. This module is used for
analyzing dynamics of cranktrain components, 3D piston dynamics, engine NVH, detailed
bearing analaysis, acustics etc. The simulation concept is based on dividing the non-linear
mechanical system into subsystems with linear elastic behavior and non-linearities occurring only
at the connections between these subsystems. Therefore, in the simulation model, linear elastic
bodies interact through highly non-linear connections. Since the system is nonlinear the equations
of motion are solved in time domain. An effective time integration procedure with adjusted step
size is provided. The results can be transformed into the frequency domain afterward [24].

The elastic bodies are represented by Finite element models using reduced structure
matrices. FE- models have a large number of degrees of freedom (DOF) which are not practical
to use in multibody dynamics calculations. Assuming small displacements, modal superposition
can be used to significantly reduce the number of DOF and therefore the size of the model. The
main idea of modal superposition is that the deformation behavior of a component with a very
large number of degrees of freedom (DOF) can be captured with a much smaller number of modal
DOFs. The main assumption behind working with flexible bodies is that the procedure is valid

only for small, linear body deformations relative to a local frame of reference, while that local
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reference frame is undergoing large, non-linear global motions. The data transfer to EXCITE™
Power Unit is organized by interfaces to FE-solvers [25].

In the graphics window, the user can switch between the 2D (block model) view and the
3D view. Both - the uncondensed (or any surface) mesh and the condensed mesh - can be
displayed for a body. Joints are displayed by lines between the connected nodes. Once the 2-D
representation of the system is defined, the properties of the bodies and joints can be defined.
The Crank Train Globals tool is used to define various specifications of the system, such as

engine speed, bore, stroke, etc [24].

3.6. EXCITE™ Power Unit models

In this chapter, simulation model, based on full engine models, will be described. There are
created two simulation models in EXCITE™ Power Unit module: a simplified and an advanced
model. Differences in models are in using different joint connections between bodies. After in
this chapter, those joints will be described. In next figures, 2D view of AVL FRISC simulation

model are presented.

Piston: R Liner
- Condensed Model | :ﬁi B - « Condensed Model
- Flexible Body W W - Flexible Body

- Degrees of Freedom: 1-3 - Freedom degrees: 1-3

Cylinder Head
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Figure 73. EXCITE™ Power Unit FRISC engine.
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Figure 74. Differences between simplified and advanced model.

In above figures, body and joint elements can be seen. Piston, conrod, liner and piston pin
are flexible bodies. In advanced model this bodies are FE models with reduced structure matrices,
and before that they are meshed in SimLab software. In simplified model, piston pin is created
via Shaft Modeler. Liner mesh are the same in both models, but piston and conrod mesh models
are different between simplified and advanced model. Crankcase is creted like rigid body. Rigid
body is not deformable body in which displacement of all nodes of that body are the same. In
model are also implemented bodies of cylinder head and sealring. That are dummy rigid bodies
with mass, moments of inertia and initial position in engine. They are imported to investigate
“stick-slip” effect of sealring and vertical movement of the cylinder head. In chapter about
comparison between simulation and measuremet results of friction caused by “stick-slip” effect

will be shown.

Condensed nodes of piston and liner are connected with EPIL joints on top land, second land
and skirt. Piston and piston pin are in simplified model connected with REVO joints (marked
with red circle) and in advanced with EHD joints (marked with blue circle). Conrod in simplified
model is connected to piston pin and crank pin with REVO joint (marked with red circle) and in
advanced model with EHD joint (marked with blue circle). Main difference between REVO and
EHD joint is that EHD model consider elasto-hydrodynamic contact which depend on oil
viscosity, temperature, surface properties and REVO model describe contact with spring and
damper. Also, REVO model connect only one node of connected bodies and EHD joint connect
surfaces or nodes between bodies. On Figure 75. are presented differences in connections in

joints.
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Figure 75. Connections between jonits [26].

It is important to note that EHD joints allows axial movement so axial thrust bearing must
be implemented inside model (marked with green circle). Liner and crankcase are connected with

FTAB joints on 4 symmetrical positions and they represent force sensors in real engine model.

3.6.1. FTAB joint

FTAB joint, or full name Table Force/ Moment Jonits, defines the properties of a user-
defined spring force/moment versus relative displacement and/or a user-defined damping
force/moment versus relative velocity. Optionally, the force/moment can also be speed
dependent. This joint represent linear or nonlinear static siffness between bodies. The model force
is interpolated from the defined table values. Interpolation of the input table values can be linear
or cubic. For the purpose of cubic interpolation at least 3 data points need to be defined. This

joint can connect one node of one body with one node of another body in the same DOF [24].

In this model, same values of stiffness and damping are given for all 4 FTAB jonits whose
connect liner and crankcase corrensponding to stiffness of the force sensors. Each FTAB have

given valus for stiffness and damping in 3 directions: axial, longitudional and vertical.

3.6.2. REVO joint

REVO joint, or full name Revolute Joint is joint who connect one node of a body with another
node of another body. The initial distance of the two connected nodes has to be zero. Main
aplication of this joint is for main bearings, big and small end bearing. On Figure 76. connection

between two bodies with REVO joint are presented [24].
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Bearing Shell
(&) Bearing Journal

Figure 76. Connection of bodies with a REVO joint [24].

Connection between two nodes is describes via spring — damper functions. A formula for the
computation of an unknown force f (a moment computation can be written analogously) is

depicted in equation (9):

F=kKg - X+ AX, 9)

joint
where Ax and Ax denote the distance and its first derivative in time of the connected nodes. In the

case of a linear spring damper model, the coefficients kjoim and d joint are constant. For non-linear

modeling, kjoim and djoim are determined via the non-linear equations [24].

3.6.3. EHD and EPIL joint

The Elasto-Hydro-Dynamic journal sliding bearing (EHD?2) is joint which can connect a
number of bearing pin nodes of a body with a number of bearing shell nodes of another body.
This joints defines the properties of a journal sliding bearing using the Reynolds equation with a
mass conserving cavitation model under constant or variable viscosity. The viscosity depends on
the temperature, pressure and shear rate of the lubricant. The model force is a highly nonlinear
function depending on the relative displacement (clearance), the relative velocity of the

connected nodes and the oil film history in terms of the fill ratio.

The Elastic Piton-Liner Contact (EPIL) is a joint which can connect several numbers of
piston skirt nodes with several numbers of liner nodes. This joint defines the properties of an
elastic piston-liner contact using the Reynolds equation. Constant oil film height and a constant

or pressure dependent viscosity is considered. The joint force is a highly nonlinear function of
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the relative displacement (clearance), the relative velocity of the connected nodes and the oil film
history in terms of fill ratio.

For both joints, the excitation joint forces are computed from hydrodynamic pressure and
hydrodynamic friction via integration. The hydrodynamic pressure distribution of the oil film in
a lubrication region between two bodies can be calculated using a modified Reynolds equation
derived from the Navier-Stokes equation and the equation of continuity. In equation (10) is
presents modified Reynolds equation for EHD joint given in shell body fixed coordinate system.
For EPIL joint this equation is the same, only difference is that the EPIL jonits equation is given

in piston body fixed coodinate system.

0 é-afa—f’ 9 é-af@ +a(9LﬁR)+a(9'7R):0 (10)
OX ox ) oz 0z OX ot

The Elastohydrodynamic Lubrication (EHL) contact model is used to evaluate contact pressures,
which is distributed over a large contact area (journal contact) and contact which is concentrated
on a very small area and generates very high pressures, with high pressures and thin oil films
while taking local elastic deformations into account. These two features are combined by solving
the Reynolds equation for the pressure distribution together with the film thickness equation for
the elastic deformation [24]. Asperity contact can be modeled in different ways:
Greenwood/Tripp, composite, microslide import and user define. If Asperity Contact -
Greenwood/Tripp is selected, the solid-to-solid contact of the asperity summits is modeled by
force-compliance relationship, which is based on a statistical evaluation over all contact spots.
Each individual conjunction is approximated by a Hertzian contact of a sphere with a rigid plane,

where the contact condition between the two rough surfaces is implicitly considered.

3.7.  Input data for EXCITE™ Power Unit simulation

This chapter decribed main input data such as load, data necessary for describing surface

contact, piston profile and liner profile.

3.7.1. Loaddata

In EXCITE™ Power Unit models, the same pressure curves like in EXCITE™
Piston&Rings model are used. In Chapter 3.3.1. the pressure curves are shown. Besides pressure
curves in EXCITE™ Power Unit models, the friction forces calculated from EXCITE™

Piston&Rings simlation are acting on the liner. Those friction forces are shown in results in
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Chapter 3.4. and in Appendix A for basic ring package. At the sealring a cylinder pressure
dependant normal force is acting on radial area of sealring. On the cylinder head an axial force is

modeled from cylinder pressure. This force curves are shown in Figures 77. and 78.
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Figure 77. Load curves acting on cylinder head.
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Figure 78. Load curves acting on sealring.
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3.7.2. Surface contact

For calculating friction between piston and liner it is very important to know the material
properties and the surface roughness between them. Figure 79. shows surface roughness for the
liner and piston skirt. Surface contact are modeled in three EPIL jonits. On top and second land
contact on EPIL joint are modeled like dry asperity contact without hydrodynamics. Piston skirt
contact is modeled like hydrodynamics with or without asperity contact. The EHD contact is
described by Asperity Contact — Greenwood/Tripp approach and the averaged Reynolds equation
is described by the Patir and Cheng model.

— Contact Model
Contact Model Type [Asperity Contact - Greenwood/Tripp =
[ piston(1) | Liner@) |

Summit Roughness (rms.) micron ||1.105 3

Mean Summit Height micron an 25
| Young's Modulus Nmmt2  [210000 [r15200

Poisson's Ratio H 3 jo26

Elastic Factor W [
Ultimate Pressure Limit |200 MPa

Ref. Velocity PO mm's
Friction Coeff. (0.1 =]

Start Transition Velocity |E mmis
Stiction Transition Velocity |'| mm/s

[ Surface Contact Layer

Figure 79. Surface contact for second land.

The contact between the interacting roughness summits is a combination of micro-
hydrodynamic contact and partly local solid contacts. This type of contact is explained in Chapter
3.3.2. In Power Unit model, this contact is modeled on piston skirt. Top and second land have

standard value of friction coefficient set as default value (0.1).

Constants a, b, c and reference length for piston skirt are shown in Table 6.

Table 6. Values of friction constants in Power Unit model.

Constanta | Constantb | Constantc | Reference length
) ) ) (micron)
Piston skirt 2.71828 1000 1000 2
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For calculation friction between piston and liner is very important to know nominal radial
clearance of piston skirt, second and top land. This value represent distance between liner and
piston segments. FE model of liner and piston should be created with the same diameter. Very
important is to use correct values of nominal radial clearances because friction results would not
be accurate, and it is possible that simulation will be failed. On Figure 80. is shown how nominal
radial clearance is calculated.

NOMINAL CLEARANCE, PISTON AND LINER DEVIATION, CONSTANT OIL HEIGHT

Constant Oil Height
at Inner Liner Wall

Nominal Radial Clearance

Deviation (Piston)

Piston profile

_— Deviation (Liner)

pe—

Prston Reference Central Axrs
Liner Reference Central Axis

Piston Reference Radius

Liner Reference Radius ( = Bore/2 ) |
I

Liner profile

Figure 80. Nominal radial clearance display [9].

3.7.3. Power Unit Profiles

In the EXCITE™ Power Unit module, the profiles of piston and liner must be inserted.
After creating a profile in ASCII format, the files are imported into software. The same liner
profile described in Chapter 3.3.3. are used in Power Unit model.

Piston profiles are calculated in cold and warm conditions. The cold piston profile is a
profile that describes how the piston profile differs in the radial and circumferential direction
from an ideal cylinder in assembling piston in engine. In all cases the cold piston profiles is the
same. Cold profiles are imported with .txt file. This piston has 2 cold profiles: piston skirt and
second land profile. Top land doesn’t have cold profile because there are no differences in radial

and circumferential direction from ideal cylinder.
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The warm profile is described by the thermal radial deviation. This value can be calculated
from FE analysis or defined calculated by using temperature field. In this case, thermal radial

deviation is calculated from temperature filed.

Table 7. Piston temperature field.

CASE Skirt [°C] | Second Land | Second Land | Top Land | Top Land

Bottom [°C] Top [°C] Bottom[°C] | Top[°C]
3000_15p5 120 211 263 298 382
2500_15p4 115 211 263 298 382
2000_15p2 110 211 263 298 382
1500_14p8 100 211 263 298 382
3000_15p5 110 206 258 293 377
3000_5p3 106 201 253 288 372
3000_2p9 102 196 248 283 367
2500 _9p2 108 206 258 293 377
2500_2p8 100 196 248 283 367
2000_8p6 106 206 258 293 377
2000_2p7 96 196 248 283 367
1500_8p8 97 206 258 293 77
1500_4p7 92 201 253 288 372
1500_2p3 87 196 248 283 367

For piston skirt a constant temperature field over skirt height is assumed. Top and second
land was calculated with two temperatures, on bottom and top height of this piston segments.
Thermal expansion coefficient of piston wall should be also defined. Figure 81. shows equation

for calculating thermal deviation of piston profile with temperature field.
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Figure 81. Calculation of thermal deviation.

After importing cold and warm piston profiles, total piston profile is sum of both profiles. In next
Figure 82., piston profiles of top land, second land and piston skirt are displayed. This Campbell
diagrams represent piston radial and circumferental deformation over piston height for each

piston segment. At figure, 180 degree represent piston TS and ATS is presented with 0 and 360
degree.
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Figure 82. Piston profiles.
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3.8.  EXCITE™ Power Unit simulation results

This chapter describes simulation results of EXCITE™ Power Unit models. Results are
presented for basic and low friction ring package. Except different ring package, results are also
presented for simplifies (REVO) and advanced (EHD) model.

3.8.1. EPU results — basic ring package

This chapter describes results of piston movement, pressures, force in FTAB joint and
friction power losses for basic ring package with REVO joints. Reasults are presented only for
load case 3000_15.5. At Appendix D, other lower load cases for engine speed 3000rpm with
basic ring package are shown.

Radial Displacement Friction Force on Piston
50 300
—_ AG—E Min % atX Max™  atX | Displacement Skirt (mm) 250 Min %" atX Max™  atX Friction Force Skirt (M)
s q-38.2034 1071 432285 1124 200 -34.9555 994 528187 1114 Friction Force Second Land (N}

-65.0584 1077 69.2437 1084

SUM Friction Force (N}

150 1-89.306 1082 86.1733 1084

Z

c

S

8

w

o

c

=

3 04
5
i ‘\__‘__/——r"t
c 50
g =0
=
=
=

w

1440

——T T T T T 1% +——T1+J1 T T "7 T 7T
720 210 200 990 1080 1170 1260 1350 1440 720 210 200 990 1080 1170 1260 1350 1440
AngR (deg) AngR (deg)
Tilting — Peak Thermal Load
D047 Hao
% 4 Min ¥ Max ¥ | Titing Angle Skirt (deg) EEO_ Max atX Mean ¥ (int.dX) TLoad Skirt (W/mm2)
= 037-0.123215 0.357659 E 10.8661 990 295415 TLoad Second Land (W/mm2}
3 = 703673872 1410 225685
E - 80
3 8 50
m =
S ©
fa} Ean
s oo
202 = 10
C m
<03 T T T T T T T & a 1 T T 1 T T T
720 210 200 980 1080 1170 1260 1350 1440 720 210 800 990 1080 1170 1260 1350
AngR (deg) AngR (deg)
Side Force Minimum Qil Film Thickness
3000 20
E Side Force Skirt (N} 1g - Min atXx Minimum ©il Film Thickness Skirt (micron)
20004 Side Force Second Land (N} 16400141054 1111
g 1000 SUM Side Force (M) 5 143
@ q 2 124
o ]
o ] ~JA E o]
LL 1000 3 = g
3 onop JMINYatX MaxY — atX S5 .3
[l J-3347.18 1117 251202 1063 =

_appp J-380.113 1410 636506 1084
1-3347.18 1117 286549 1065

-4000

T T T T T T T T T T T T T
720 210 500 820 1080 1170 1280 1350 1440 720 210 200 280 1080 1170 1260 1350

AngR (deg) AngR (deg)

Figure 83. Piston results overview — 3000_15.5.
Above figure presents radial displacement ot piston motion between ATS and TS side.
Movement of piston is also described with tilting around the piston pin ratotation axis. Lateral
force whose act on skirt and second land are presented with side forces. Sum of friction forces

on skirt and second land at TS and ATS can be also seen. Peak thermal load represents friction
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energy which is applied at a certain spoat at the skirt and second land. Minimum oil film thickness

describes oil film thickness between liner and skirt over crank angle.
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Figure 84. Pressure and friction results — 3000_15.5.

Peak total pressure describes maximum pressure at the contact between liner and skirt

— second land over crank angle. Peak total pressure is the sum of peak asperity and peak

hydrodynamic contact pressure whose are presented above. Total friction power loss are the sum

of asperity and hydrodynamic friction power loss.
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Figure 85. Campbell pressure distribution— 3000_15.5.

Local extremum of total pressure present points on piston skirt where the highest pressure
occure. This pressure is combination of asperity and hydrodvnamic pressure.
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Figure 86. FTAB forces and friction power loss — 3000_15.5.

Above figure presents comparison between side forces generated on piston and
calculated sum of lateral force in y — direction from FTAB joints (force signals). Comparison
between friction forces generated on piston and calculated sum of vertical forces in z — direction
can be seen. Friction forces at FTAB included piston ring friction forces, forced caused by stick
slip effect (cylinder head vertiacal displacement), piston skirt and second land friction forces.
Reaction friction force which act on crankcase is also shown. Total friction power losse are
calculated like the product of friction force and piston velocity of midpoint. Profile of piston
velocity are shown. After calculating total friction power loss, comparison with piston friction

power loss are made.

Results summary — basic ring package, REVO

Above figures shows results of piston simulation with REVO joints. Radial displacement
amplitude is inside AVL guideline area (+/- 0.2% of bore radius = 77microns). Tilting angle are
slightly above AVL guideline (0.33deg). Friction force which acting on piston are higher on
second land and peak of that force appear at FTDC. Pressure at skirt are mostly influenced by

hydrodynamics pressure. On second land, around FTDC, asperity contact is visible. Minimum
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oil film thickness appears also around FTDC in the area of high asperity pressure. Due to high
tilting, local high pressure appears at top of skirt height on ATS. On piston skirt a small constant
value of asperity pressure occurs on a long period around TDC asperity contact at of second land
appears. Side force calculated from EPIL and from FTAB joint have the same values. Difference,
between friction force a EPIL and FTAB are caused by friction forces from piston rings
simulation and vertical force from cylinder head movement in opposite direction after FTDC
included at FTAB joint. Total friction power loss is calculated like product of piston velocity and
sum of friction forces in FTAB joint. In results are also visible big difference in total friction
power loss and friction power loss only generate from piston. Friction power loss are used for
calculation of FMEP values, but more about that topic will be described in next chapter.

3.8.2. EPU results - comparison basic and low friction ring package

In following figures results of basic and low friction force ring package for REVO model are
shown. Results are displayed only for one operating point (3000rpm_15.5) and other results for
different load cases at speed 3000 rpm are shown in Appendix E. Solid curves represents results
with basic ring package, and dotted curves represents results with reduced tangential force

package.
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Figure 87. Comparison between basic and low friction ring package, REVO model, piston results
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Figure 88. Comparison between basic and low friction ring package, REVO model, Pressure and

friction results — 3000_15.5.
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Figure 89. Comparison between basic and low friction ring package, REVO model, FTAB forces

and friction power loss —3000_15.5.

Results summary — comparison between basic and low friction ring package, REVO

In above figures, results of piston simulation models with basic ring package and low

friction ring package connected with REVO jonits are displayed. There are no big differences

between results of this models. Fricton and side force have the same trend line. Model with low

friction ring package shows slightly lower values of total friction power loss, and piston friction

power loss are the same. It can be concluded that this slightly lower values of total friction power

loss are caused only by piston ring package.

3.8.3.

EPU results — comparison between simplified and advanced model

In following figures results of simplified (REVO) and advanced (EHD) simulation models

for basic ring package are shown. Results are shown only for one operating point (3000rpm_15.5)

and other results for different load cases at speed 3000 rpm are shown in Appendix F. Solid

curves represents REVO results, and dotted curves represents EHD results.
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Figure 90. Comparison between REVO and EHD model, basic ring package, piston results
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Figure 91. Comparison between REVO and EHD model, basic ring package, pressure and friction
results — 3000_15.5.
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Figure 92. Comparison between REVO and EHD model, basic ring package, FTAB forces and

friction power loss — 3000_15.5.

Results summary — comparison between REVO and EHD model, Basic ring package

In above figures, results of piston simulation of models with REVO joints and EHD joints

are displayed. There are no big differences between results of this models. Some differences are

visible in tilting where EHD model has higher peak of tilting angle and radial displacement than
REVO model. Reason of that is caused by different stiffness and damping behavior in joints.

Also, is visible that REVO model have slightly lower value of friction power loss, so FMEP

values will be also lower in that case.

3.8.4. “Stick slip effect”

In above results is visible that friction force changes direction around FTDC. Friction

force signal depends on ignition pressure and on friction of the FRISC sealring. Lubrication on

FRISC sealring reduces friction force peak values. In this case, this phenomenom of changing

direction is so called “stick slip effect” of sealring and marked at Figure 93.
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Figure 93. Position of “stick slip effect”.

Stick slip effect can be described as surfaces alternating between sticking to each other and
sliding over each other, with a corresponding change in the force of friction. Typically, the static
friction coefficient (a heuristic number) between two surfaces is larger than the kinetic friction
coefficient. If an applied force is large enough to overcome the static friction, then the reduction
of the friction to the kinetic friction can cause a sudden jump in the velocity of the movement
[27]. Stick-slip causes a single impulse or a series of impulses which will excite surrounding
structures to respond with resonance vibrations. Stick-slip behaviour depends on surface

topography and on the elastic and plastic properties of the sliding materials [28].

Effect on Stick slip of sealring is primary caused by cylinder head movement upwards. This
movement is based on elongation of cylinder head bolts and bending of cylinder head. This thesis
will be observed influence on that cylinder head movement on friction. In that case, validation of
model with measurement should be done. Results of cylinder head movement of full REVO
model will be compared with simplified EXCITE model and MATLAB Simulink model.
Simplified EXCITE model and MATLAB Simulink model are dynamic systems with one degree
of freedom (vertical axis). This model has one mass, which represent mass of cylinder head, one
spring (stiffness of cylinder head bolts) and one damper (damping coefficient of cylinder head
bolts). On Figure 94., MATLAB Simulink model are presented and on Figure 95. is simplified
EXCITE model. Full REVO model is shown at Figure 73. Load are implemented on cylinder

head and values are given in time domain. Load curves are shown on Figure 77.

Faculty of mechanical engineering and naval architecture 86


https://en.wikipedia.org/wiki/Friction
https://en.wikipedia.org/wiki/Static_friction
https://en.wikipedia.org/wiki/Static_friction
https://en.wikipedia.org/wiki/Kinetic_friction
https://en.wikipedia.org/wiki/Force
https://www.sciencedirect.com/topics/engineering/surface-topography
https://www.sciencedirect.com/topics/engineering/surface-topography
https://www.sciencedirect.com/topics/engineering/plastic-property

Ljudevit Putarek Master's thesis

To Workspace To Workspace1
Scope3 Scope?
1 S N N S =
From s s

Add
Workspace Integrator Integrator 1 Gan1 Scopet

To Workspace2

Figure 94. Simulink model.
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Figure 95. Simplified EXCITE model.

In following figures, comparison between Simulink, simplified EXCITE and full REVO model
are shown. On following figures, cylinder head displacement, velocity and acceleration are

presented for two operating points.
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Cylinder head displacement, 3000_15.5
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Figure 96. Cylinder head displacement, 3000rpm15.5.
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Figure 97. Cylinder head displacement, 3000rpm2.9.

Peak of cylinder head displacement is the same for al models. There is visible that full
model has shifted curves for both cases. Reason of that is that full REVO model has implemented
sealring into model and applied normal force on sealring which caused this shift. Also, it can be
seen that shift is lower if is load lower. It can be concluded that shift doesn’t have big influence

on results of cylinder head displacement and full REVO model is validated.
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Cylinder head acceleration, 3000_15.5
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Figure 101. Cylinder head acceleration, 3000rpmz2.9

Above figures presents cylinder head velocity and acceleration. Shift of full REVO model
curves are also presented like in cylinder head displacement. Except that shift, visible is that
Simulink curves have higher values of acceleration peak points on lower operating point. The

biggest differences can be seen on cylinder head acceleration for full load at speed 3000 rpm.
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4. CORRELATION BETWEEN MEASUREMENT AND SIMULATION

In this chapter, correlation between measurement on FRISC and results from simulation are
shown. Values of friction forces, side force, FMEP, LOC and blow-by are correlated. Results are

presented for basic and low friction ring package.

In EXCITE™ Piston&Ring simulaton, FMEP and friction power loss values of each ring are
calculated. Piston simulation in EXCITE™ Power Unit represent only values of friction power
loss, so FMEP values has to be calculated. Equation (11) described the method of calculating

FMEP from friction power loss values.

FMEP = =00 oy (11)
0,5-n-V,

where: FPL is Friction Power Loss [W], n is engine speed [rpm] and Vw is cylinder volume [m?]

Side force is force which act lateral on liner wall. This force is generated from lateral up and
down movement of the piston in the liner. This force depends on inertia force (oscillating
masses), load force (generated from cylinder pressure) and offsets (piston pin, crankshaft offset).
Side force can be calculated analytical, so results of side force given in simulation and
measurement will be compared with analytical side force. In equations (12) are presented method

of calculating analytically side force.

Piston
offset = o,

Crankshaft
offset = o,

(—-\
CA
Crankshaft
z &

i-sin(64:]+{pp—oc)
y S=arcsin| 2

L

Figure 102. Dimensions necessary for calculation side force.
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Side force is calculated like component of difference between cylinder pressure force and
oscillating inertia force.

F,=(F-F,)-tan(5) [N], (12)
Where, F is cylinder pressure force [N], Finer is 0scilating inertia force [N] and o is shifted angle

[deqg].

Cylinder pressure force is calculated like:

-p(ar) [N], (13)

where, D is cyliner bore [m] and p(«) is cylinder pressure [Pa].
Inertia force caused from oscillating masses is calculated like:

Finer = mosc -a [N]’ (14)

where, M. is oscilating mass [kg] and a is piston accelereation [m/s?].

Piston acceleration is calculated like:
| cos (o) + ———2 [m/s?], (15)
where @ is engine speed [rad/s], s is stroke [m] and L is conrod length [m].

Shifted angle is calculated like:

E-sin(oz)+(op—oc)

S =arcsin-| 2 - [deg],

(16)

where, s is stroke [m], L is conrod length [m], O; is piston pin offset [m] and O, = crankshaft

offset [m].
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4.1. Blow-by and LOC results

In Table 8., results of blow-by are shown. Those results are calculated from Piston & ring

module for basic and low friction package and for different simulation solver (2D or 3D).

Table 8. Blow-by results.

SIMULATION MEASUERMENT
Blow by LOWFT
CASE 2D 3D 2D 3D
3000/15,5 6.27 11.46 6.35 11.46 6.70
3000/9,3 6.05 11.09 6.11 11.13 6.41
3000/5,3 5.90 10.96 5.90 10.95 6.11

3000/2,9 5.47 9.00 5.39 8.90 5.77
2500/15,4 7.51 12.41 7.47 12.42 7.67
2500/9,2 7.56 13.57 7.51 14.31 7.50
2500/2,8 5.09 8.42 5.17 8.41 5.40

2000/15,2 8.50 68.02 9.87 69.72 11.36
2000/8,6 10.63 | 12.67 6.95 12.77 10.29

2000/2,7 5.98 9.34 5.63 9.19 8.06
1500/14,8 9.69 54.25 9.03 55.52 9.08
1500/8,8 5.32 39.39 8.54 40.74 6.57
1500/4,7 4.30 30.66 4.15 31.16 5.13

1500/2,3 3.30 30.66 8.02 24.05 4.38

Faculty of mechanical engineering and naval architecture 93



Ljudevit Putarek Master's thesis

In Figure 103, results of camparison between measurement and simulation for basic ring package

with different simulation solver are shown.

Basic ring package - 2D simulation vs. measurement
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Figure 103. Comparison blow-by between measurement and simulation for basic ring package.
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In Figure 104., results of camparison between measurement and simulation for low friction ring

package with different simulation solver are shown.

Low FT ring package - 2D simulation vs. measurement
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Figure 104. Comparison blow-by between measurement and simulation for low friction ring

package.
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In Figure 105., results of camparison between simulation results for basic and low friction ring

package with different simulation solvers are shown.

Blow by results - 2D simulation
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Figure 105. Comparison blow-by simulation results between basicand low friction ring package.
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In Table 9., results of LOC are shown. Those results are calculated from Piston & ring
module for basic and low friction package

Table 9. LOC results.

CASE |EBRSASIGN|2D_LOW FT [Measurement B Measurement L
1500/2,3 0.27 0.27 0.51
1500/4,7 0.37 0.37 0.47
1500/8,8 0.63 0.63 0.55
1500/14,8 0.79 0.78 0.99
2000/2,7 0.31 0.31 0.43
2000/8,6 0.54 0.54 0.56
2000/15,2 0.83 0.83 0.80
2500/2,8 0.42 0.42 0.61
2500/9,2 0.74 0.75 1.36
2500/15,4 1.02 1.02 1.58
3000/2,9 0.53 0.53 0.63
3000/5,3 0.67 0.68 1.04
3000/9,3 0.79 0.79 1.13
3000/15,5 1.26 1.26 1.21

In Figure 106., results of comparison between measurement and simulation for basic and low

friction ring package are shown.
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Basic ring package - 2D simulation vs. measurement
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Figure 106. Comparison of LOC results between measurement and simulation for basic and low
friction ring package.
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Results summary — LOC and blow-hy

In above figures and tables, blow-by and LOC results are presented. Simulation model
with basic ring package and calculated with 2D solver is calibrated to measurement. Exceptions
can be seen on lower speed and on speed 2000 rpm with full load where is measured the biggest
blow-by. There are not big differences between 2D simulation models with basic and low friction
ring package. Low friction ring package shows slightly higher blow-by compared to basic ring
package and bigger differences regarding to measurement. Between 2D and 3D simulation solver
big differences are presented. Also, on lower speed (1500rpm) in simulation with 3D solver
piston ring end shut occurs and that lead to significant increase of blow-by value. The reason of
that effect in 3D simulation are not further evaluated. Lube oil consumption results are not fully
calibrated because thermodynamic data are taken from older similar project and all cases have
the same thermodynamic data. It can be seen that at lower speeds (1500 and 2000 rpm) are the

smaller LOC differences in simulation with basic ring package and measurement.

4.2. Friction and side forces

In this chapter, correlation of friction and side forces between simulation and measurement
are described. Friction force results are presented for basic and low friction ring package for
simplified (REVO) and advanced (EHD) models. Measurement and simulation side forces are
compared with analytical calculated side forces and they are presented only for simplified model
with basic ring package. Reason of that is because side force only depends on engine design,
cylinder pressure and oscillating mases and in all other cases (advanced model, low friction ring
package) those parameters are the same. Results are presented only for engine speed 3000rpm
for all load cases. At appendix G, friction forces with basic ring package are shown and at
appendix H friction forces with low friction ring package are shown for other laod cases. Side

forces for other load cases are shown at appendix I.
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Friction forces with basic ring package
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Figure 107. Comparison of friction forces, basic ring package, 3000rpm.
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Friction forces with low friction package
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Figure 108. Comparison of friction forces, low friction ring package, 3000rpm.
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Side forces with basic ring package
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Figure 109. Comparison of side forces, basic ring package, 3000rpm.
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Results summary — friction and side forces

In above figures, friction and side forces are presented. Friction force calculated in REVO
model have similar behavior like friction forces given from measurement. Second peak after
FTDC, caused by cylinder head movement, is visible in simulation results. There are differences
in peak values between simulation and measurement results. Friction forces calculated from EHD
model have the same trend line as forces calculated with REVO model. Peak values of EHD
model are slightly higher than forces given from REVO simulation model. Friction forces
calculated with basic and low friction package are very similar. Analiticaly calcualted side forces
have same trend line compared to simulation. Only minor differences in peak values are visible.
Differences are caused by piston dynamic beahviour in simultion model. Measured side forces
have big differences compared to simulation or analitical side forces. Reason of that behavior is
not further investigated.

4.3.  Friction mean effective pressure (FMEP)

In this chapter, the correlation of FMEP between simulation and measurement are
described. FMEP results are presented with basic and low friction ring package for simplified
(REVO) and advanced (EHD) models. Except FMEP values, friction power loss (FPL) is also
displayed. In Table 10, comparison between measurement and REVO model with basic ring

package is shown.

Table 10. Comparison between measurement and REVO model with basic ring package.

REVO_BASIC ring package

CASE n (rpm) FPL SUM (W) [ FPL Piston (W) |FPL Piston Rings (W)[FPL Cylinder Head (W)| Total FMEP (Pa) |[Total FMEP (bar)] Measurement (bar) Difference
3000rpm_15p5 3000 371.3 1334 153.3 84.6 40141 0.401 0.409 -2%
3000rpm_9p3 3000 301.2 1115 130.8 58.9 32565 0.326 0.310 -6%
3000rpm_5p3 3000 265.2 105.0 119.9 40.2 28669 0.287 0.261 -12%
3000rpm_2p9 3000 265.5 105.6 124.4 35.5 28704 0.287 0.248 -14%
2500rpm_15p4 2500 286.0 96.9 124.7 64.4 37104 0.371 0.364 -6%
2500rpm_9p2 2500 229.7 80.7 105.6 434 29798 0.298 0.274 -10%
2500rpm_2p8 2500 187.2 72.3 915 235 24290 0.243 0.212 -15%
2000rpm_15p2 2000 201.9 61.9 96.0 44.0 32741 0.327 0.309 -7%
2000rpm_8p6 2000 163.8 54.5 79.8 29.4 26560 0.266 0.239 -11%
2000rpm_2p7 2000 137.6 49.4 71.3 16.9 22317 0.223 0.188 -16%
1500rpm_14p8 1500 143.6 37.9 75.0 30.7 31054 0.311 0.339 4%
1500rpm_8p8 1500 109.4 30.3 59.5 19.6 23657 0.237 0.221 -8%
1500rpm_4p7 1500 94.6 28.9 53.3 125 20463 0.205 0.179 -12%
1500rpm_2p3 1500 89.8 29.6 50.6 9.6 19419 0.194 0.177 -13%

In Table 10. results of total friction power loss (generated in FTAB), piston friction power
loss (piston skirt and second land), piston rings friction power loss (calculated in EXCITE
Piston&Rings) and cylinder head friction power loss are visible. Cylinder head friction power
loss is calculated as difference between total friction power loss and friction power loss generated

from piston and piston ring. Total FMEP values are calculated with equation (11) and they are
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compared with measurement. Difference between total FMEP given from simulation (red) and

measurement (green) is shown in percentage (blue).

In Table 11., comparison between measurement and REVO model with low friction package is

shown.

Table 11. Comparison between measurement and REVO model with low friction ring package.

REVO_LOW FT ring package
CASE n (rpm) FPL SUM (W) | FPL Piston (W) |FPL Piston Rings (W)|FPL Cylinder Head (W)| Total FMEP (Pa) [Total FMEP (bar)] Measurement (bar) Difference
3000rpm_15p5 3000 370.0 1334 150.8 85.7 39997 0.400 0.409 -1%
3000rpm_9p3 3000 297.5 1115 127.1 58.9 32163 0.322 0.339 4%
3000rpm_5p3 3000 261.4 104.9 116.3 40.2 28264 0.283 0.293 1%
3000rpm_2p9 3000 258.0 105.6 118.1 343 27888 0.279 0.285 -1%
2500rpm_15p4 2500 278.4 92.9 121.6 63.9 36118 0.361 0.369 2%
2500rpm_9p2 2500 226.4 80.7 102.3 434 29370 0.294 0.310 2%
2500rpm_2p8 2500 184.2 71.7 89.5 23.0 23898 0.239 0.247 -1%
2000rpm_15p2 2000 197.8 61.9 91.9 44.0 32070 0.321 0.328 2%
2000rpm_8p6 2000 159.6 54.5 75.8 29.4 25889 0.259 0.262 -2%
2000rpm_2p7 2000 134.4 49.1 68.4 17.0 21800 0.218 0.212 -4%
1500rpm_14p8 1500 142.7 37.9 741 30.6 30848 0.308 0.328 2%
1500rpm_8p8 1500 106.0 30.3 56.4 19.3 22928 0.229 0.234 0%
1500rpm_4p7 1500 93.6 28.9 52.2 12.5 20242 0.202 0.186 -8%
1500rpm_2p3 1500 88.4 29.6 49.5 9.3 19123 0.191 0.173 -9%

In Table 12., comparison between measurement and EHD model with basic friction package is

shown.

Table 12. Comparison between measurement and EHD model with basic ring package.

EHD_BASIC ring package

CASE n (rpm) FPL SUM (W) | FPL Piston (W) |FPL Piston Rings (W)|FPL Cylinder Head (W), Total FMEP (Pa) [Total FMEP (bar)] Measurement (bar) Difference
3000rpm_15p5 3000 363.6 132.0 153.3 78.3 39303 0.393 0.409 1%
3000rpm_9p3 3000 294.6 1104 130.8 53.4 31848 0.318 0.310 -4%
3000rpm_5p3 3000 260.1 103.7 119.9 36.5 28124 0.281 0.261 -10%
3000rpm_2p9 3000 260.9 105.4 124.4 311 28204 0.282 0.248 -13%
2500rpm_15p4 2500 273.6 91.3 124.7 57.5 35493 0.355 0.364 -2%
2500rpm_9p2 2500 223.2 783 105.6 39.4 28959 0.290 0.274 -1%
2500rpm_2p8 2500 184.6 718 91.5 21.3 23946 0.239 0.212 -14%
2000rpm_15p2 2000 197.4 61.4 96.0 40.1 32015 0.320 0.309 -4%
2000rpm_8p6 2000 159.0 52.7 79.8 26.5 25788 0.258 0.239 -8%
2000rpm_2p7 2000 136.1 49.4 713 15.4 22076 0.221 0.188 -15%
1500rpm_14p8 1500 142.4 39.5 75.0 27.9 30781 0.308 0.339 5%
1500rpm_8p8 1500 106.8 30.6 59.5 16.6 23086 0.231 0.221 -6%
1500rpm_4p7 1500 92.3 28.3 53.3 10.7 19952 0.200 0.179 -10%
1500rpm_2p3 1500 87.6 29.0 50.6 8.0 18943 0.189 0.177 -11%

In Table 13., comparison between measurement and EHD model with low friction package is

shown.

Table 13. Comparison between measurement and EHD model with low friction ring package.

EHD_LOW FT ring package
CASE n (rpm) FPL SUM (W) | FPL Piston (W) [FPL Piston Rings (W)|FPL Cylinder Head (W) Total FMEP (Pa) [Total FMEP (bar) Measurement (bar) Difference
3000rpm_15p5 3000 361.2 132.0 153.3 75.9 39045 0.390 0.409 2%
3000rpm_9p3 3000 290.9 110.4 130.8 49.8 31452 0.315 0.339 7%
3000rpm_5p3 3000 256.5 103.6 119.9 329 27726 0.277 0.293 3%
3000rpm_2p9 3000 254.6 105.4 124.4 24.8 27520 0.275 0.285 1%
2500rpm_15p4 2500 2705 91.3 124.7 54.4 35086 0.351 0.369 5%
2500rpm_9p2 2500 220.0 782 105.6 36.1 28535 0.285 0.310 5%
2500rpm_2p8 2500 182.6 71.8 91.5 193 23687 0.237 0.247 -1%
2000rpm_15p2 2000 1933 61.3 96.0 36.0 31345 0.313 0.328 5%
2000rpm_8p6 2000 155.1 52.7 79.8 22.6 25146 0.251 0.262 1%
2000rpm_2p7 2000 133.2 49.4 713 12.5 21608 0.216 0.212 -3%
1500rpm_14p8 1500 139.9 39.5 75.0 25.4 30244 0.302 0.328 4%
1500rpm_8p8 1500 103.3 30.6 59.5 13.2 22344 0.223 0.234 3%
1500rpm_4p7 1500 91.1 28.3 53.3 9.6 19708 0.197 0.186 -6%
1500rpm_2p3 1500 86.4 29.0 50.6 6.8 18687 0.187 0.173 -7%
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In Figures 110. and 111., total FMEP values from measurement and simulation models are

shown.
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Figure 110. Comparison of FMEP values between measurement and REVO simulation model
with basicand low friction ring package.
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Figure 111. Comparison of FMEP values between measurement and EHD simulation model with

basic and low friction ring package.

Above figures and tables show differences between simulation model and measurement.

Itis visible that the highest deviation from measurement is coming from REVO simulation model

Faculty of mechanical engineering and naval architecture 105



Ljudevit Putarek Master's thesis

with basic ring package. The major deviations are visible on lower load operating points. Model
with REVO joints and low friction ring package shows lower FMEP values over all engine
operating points. In other hand, measurement with low friction ring package shows higher values
than measurement with basic ring package. Reason of this measurement results are not clear.
Model with EHD joints shows slighty lower FMEP values compared to model with REVO joints
with both ring packages.

Distribution of FMEP values

In following figures and tables, distribution of FMEP values are shown. Distribution is
presented for piston, cylinder head and ring package for REVO model with basic and low friction

ring package.

Table 14. Distribution of FMEP values for REVO model with basic ring package are shown.

REVO_BASIC ring package

CASE n (rpm) Piston FMEP (bar) | Head FMEP (bar) | FMEP_Top ring (bar) FMEP_Oil ring (bar)
3000rpm_15p5 3000 0.144 0.094 0.071 0.086
3000rpm_9p3 3000 0.121 0.066 0.043 0.088
3000rpm_5p3 3000 0.114 0.045 0.028 0.090
3000rpm_2p9 3000 0.114 0.040 0.022 0.093
2500rpm_15p4 2500 0.126 0.086 0.059 0.085
2500rpm_9p2 2500 0.105 0.058 0.036 0.085
2500rpm_2p8 2500 0.094 0.032 0.019 0.090
2000rpm_15p2 2000 0.100 0.074 0.061 0.084
2000rpm_8p6 2000 0.088 0.051 0.033 0.084
2000rpm_2p7 2000 0.080 0.029 0.018 0.087
1500rpm_14p8 1500 0.082 0.068 0.070 0.085
1500rpm_8p8 1500 0.066 0.044 0.038 0.084
1500rpm_4p7 1500 0.062 0.029 0.025 0.083
1500rpm_2p3 1500 0.064 0.022 0.019 0.084

Table 15. Distribution of FMEP values for REVO model with low friction ring package are

shown.

REVO_LOW FT ring package

CASE n (rpm) Piston FMEP (bar) | Head FMEP (bar) | FMEP Top ring (bar) FMEP Qil ring (bar)
3000rpm_15p5 3000 0.144 0.095 0.069 0.086
3000rpm_9p3 3000 0.121 0.066 0.041 0.088
3000rpm_5p3 3000 0.113 0.045 0.027 0.090
3000rpm_2p9 3000 0.114 0.039 0.021 0.093
2500rpm_15p4 2500 0.121 0.085 0.057 0.085
2500rpm_9p2 2500 0.105 0.058 0.034 0.085
2500rpm_2p8 2500 0.093 0.032 0.018 0.090
2000rpm_15p2 2000 0.100 0.074 0.058 0.084
2000rpm_8p6 2000 0.088 0.050 0.031 0.084
2000rpm_2p7 2000 0.080 0.029 0.016 0.087
1500rpm_14p8 1500 0.082 0.068 0.069 0.085
1500rpm_8p8 1500 0.066 0.043 0.031 0.084
1500rpm_4p7 1500 0.063 0.029 0.024 0.083
1500rpm_2p3 1500 0.064 0.021 0.018 0.084
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Contribution of FMEP values in percentage are shown in pie charts for all operating points at

engine speed 3000 rpm.

BASIC ring LOW FT ring
package 3000rpm15.5 package 3000rpm15.5

m Piston m Cylinder Head m Piston m Cylinder Head
= Top ring Second ring = Top ring Second ring
m Oil ring m Oil ring
Figure 112. Comparison of FMEP distribution between basic and low friction ring package,
3000_15.5.
BASIC ring LOW FT ring
package 3000rpm9.3 package 3000rpm9.3
m Piston ylinder Head - Pistor_1 CyIinder_Head
® Top ring Second ring = Top ring Second ring
m Oil ring m Oil ring

Figure 113. Comparison of FMEP distribution between basic and low friction ring package,
3000_9.3.
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BASIC ring LOW FT ring
package 3000rpmb5.3

package 3000rpm5.3

m Piston = Cylinder Head m Piston m Cylinder Head
mTopring Second ring = Top ring Second ring
= Oil ring m Oil ring

Figure 114. Comparison of FMEP distribution between basic and low friction ring package,

3000 5.3.
BASIC ring LOW FT ring
package 3Q00rpm?2.9 package 3000rpm2.9
m Piston inder Head m Piston ylinder Head
= Top ring Second ring = Top ring Second ring
m Oil ring m Oil ring

Figure 115. Comparison of FMEP distribution between basic and low friction ring package,
3000_2.9.

Above figures and tables show distribution of FMEP values generated from REVO
simulation model with basic and low friction ring package. Is can be seen that FMEP generated
from a whole piston ring package have the most influence on total FMEP value compared to
other components. Biggest contribution on whole piston ring package FMEP come from oil ring
and the second ring have the smallest contribution. Also, visible is that low friction package has
slighty higder percentage FMEP values generated on piston compared to basic ring package. The
reason of that is beacuase low friction package have lower piston ring FMEP values than basic
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ring package and FMEP values generated on piston are the same for both ring packages.
Increasing the load, FMEP values from cylinder head are higher and FMEP values generated

from piston are lower.

4.4.  Friction tuning parameters

This chapter describes sensitivity of tuning friction parameters. Those parameters have
purpose for calibration simulation model with measurement results. Friction coefficients whose
describe lubrication asperity friction model (Figure 51) are changed in EXCITE™ Piston&Ring

and EXCITE™ Power Unit. For each model, two variants of parameters sets are tested.

In Table 16. the values of friction tuning parameters for 2D EXCITE™ Piston&Ring model with

basic ring package are dislayed.

Table 16. Friction tuning parameters for EXCITE™ Piston&Ring model.

Friction Constant Reference
Coefficient 3 b c Lenght
[-] [-] [-] [-] [microns]
Top Ring 0.1 2.71 | 30000 100 300
2nd Ring 0.1 2.718 | 30000 100 100
Oil Ring 0.1 2.718 | 40000 350 200
| variamA
Top Ring 0.125 2.718 | 30000 1000 300
2nd Ring 0.125 2.718 | 30000 2000 100
Oil Ring 0.125 2.718 | 40000 3500 200
Variant B
Top Ring
2nd Ring
Oil Ring

In Table 16. are presented changed values of friction coefficient for boundary condition,
base for exponential function for solid contact (Constant a), exponent coefficient for exponential
function of solid contact (Contants b), micro hydrodynamic coefficient (Constant c¢) and
reference length for different piston ring. Variant A and B have higher values of friction
coefficient for boundry condition and constant ¢ than AVL FRISC model. Reference length and
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constant b are the same for Variant A and AVL FRISC model and Variant B have smaller those

values.

In Table 17. and on Figure 116. comparison of FMEP values of piston rings are presented for all

operating points. Results are presented only for 2D simulation solver model with basic ring

package.
Table 17. Comparison of piston rings FMEP values.
Piston ring FM EP (bar)
CASE n (rpm) FRISC Variant A Variant B
3000rpm_15p5 3000 0.163 0.244 0.337
3000rpm_9p3 3000 0.139 0.217 0.315
3000rpm_5p3 3000 0.128 0.205 0.305
3000rpm_2p9 3000 0.133 0.213 0.314
2500rpm_15p4 2500 0.159 0.235 0.326
2500rpm_9p2 2500 0.135 0.209 0.302
2500rpm_2p8 2500 0.117 0.191 0.290
2000rpm_15p2 2000 0.153 0.221 0.287
2000rpm_8p6 2000 0.127 0.195 0.281
2000rpm_2p7 2000 0.114 0.187 0.263
1500rpm_14p8 1500 0.160 0.238 0.294
1500rpm_8p8 1500 0.127 0.186 0.259
1500rpm_4p7 1500 0.113 0.174 0.251
1500rpm 2p3 1500 0.108 0.173 0.253
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Figure 116. Comparison of piston rings FMEP values.
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Variant A and B have higher FMEP values than AVL FRISC model. Comparing friction
parameters is visible that value of Constant C has the biggest difference. In Variant B, on top
and second ring, Constant ¢ have 100-time higher value than in AVL FRISC model. It can be
concluded that increasing Constant ¢ lead to increasing FMEP values in EXCITE™
Piston&Ring.

In Table 18. shows values of friction tuning parameters for REVO EXCITE™ Power Unit model with

basic ring package.

Table 18. Friction tuning parameters for EXCITE™ Power Unit model.

Friction Constant Reference
Coefficient 3 b c Lenght
[] [] [] [] [microns]
Skirt 2.71828 | 1000 | 1000 | 2 |
Skirt 0.15 2.71828 | 10000 | 10000 20
Variant D
Skirt 0.18 1.71828 | 1000 | 100000 200

Table 18. shows different values of friction coefficient for boundary condition, base for
exponential function for solid contact (Constant a), exponent coefficient for exponential function
of solid contact (Contants b), micro hydrodynamic coefficient (Constant c) and reference length
for piston skirt. Variant C and D have higher values of friction coefficient for boundry condition,
constant ¢ and reference length than AVL FRISC model. Constant b is the same for Variant D
and AVL FRISC model and lower than in Variant C. Constant a is the same for Variant C and
AVL FRISC model and higher than in Variant C.

In Table 19. and on Figure 116. comparison of total FMEP values calculated from FTAB jonits
are presented for all operating points. Results are presented only for REVO model with basic ring

package.
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Table 19. Comparison of total FMEP values.
Total FMEP (bar)

CASE n (rpm) FRISC Variant C Variant D
3000rpm_15p5 3000 0.401 0.411 0.415
3000rpm_9p3 3000 0.326 0.327 0.329
3000rpm_5p3 3000 0.287 0.288 0.285
3000rpm_2p9 3000 0.287 0.288 0.283
2500rpm_15p4 2500 0.371 0.368 0.386
2500rpm_9p2 2500 0.298 0.299 0.306
2500rpm_2p8 2500 0.243 0.243 0.242
2000rpm_15p2 2000 0.327 0.330 0.357
2000rpm_8p6 2000 0.266 0.267 0.283
2000rpm_2p7 2000 0.223 0.224 0.227
1500rpm_14p8 1500 0.311 0.314 0.349
1500rpm_8p8 1500 0.237 0.239 0.264
1500rpm_4p7 1500 0.205 0.206 0.221
1500rpm_2p3 1500 0.194 0.195 0.204
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Variant D have higher FMEP values than AVL FRISC model on full load operating points
and Variant C have slightly higer FMEP values. Comparing friction parameters is visible that
value of Constant C has the biggest difference. It can be concluded that increasing Constant ¢
lead to increasing FMEP values in EXCITE™ Piston&Ring. Also, importat is to emphasize that
changing of this friction tuning parameters have big influence on FMEP values on full operating

point.

Figure 117. Comparison of total FMEP values.

Faculty of mechanical engineering and naval architecture



Ljudevit Putarek Master's thesis

5. CONCLUSION AND RECOMMENDATIONS

The main goal of this thesis was to correlate results of simulation model and available
results given from measurement on an AVL FRISC engine. Also, influence of tangential force
on friction and differences between simplified and advanced modeling is presented. Simulation
model are described, and main input data are presented. Simulation model with basic ring
package and calculated with 2D solver is calibrated to measurement (blow-by). Sealring and
cylinder head are implemented in EXCITE™ Power Unit models and influence on friction
behavior caused by stick slip effect is accomplished. In results, friction force, side force, LOC,

blow-by and FMEP values are compared.

5.1. Conclusions

Based on examined literature and results of this thesis some conclusions can be made. Firstly,

conclusions of EXCITE™ Piston&Rings simulation results are presented:

e Friction power loss of top ring is load dependent and friction power loss of oil ring is
more speed dependent. Also, friction power loss of top ring increases with load for the
same operating speed. Piston ring FMEP is higher if the load is increased and the main
contributor of FMEP comes from oil ring. Lube oil consumption and blow-by values are

higher if load increases. The most contributor of LOC is evaporation from liner.

e Piston ring friction power loss and FMEP values slightly decreased with reduced
tangential force ring package. Lube oil consumption is little bit lower in ring package
with reduced tangential force. Blow-by values are higher in ring package with reduced
tangential force. Axial movement and twist angle only show minor differences both ring

packages.

e Hydrodynamic cumulated FMEP of piston ring package have higher values with 2D than
3D solver and asperity cumulated FMEP have higher value with 3D than 2D solver.
Friction power loss of piston ring package and FMEP values slightly increased with 3D
simulation solver. Friction ring forces have slightly higher value with 3D simulation
solver. Axial movement of piston ring in groove is the same in both models (2D and 3D
simulation solver). Blow by results significally increased in model with 3D simulation

solver.

Conclusions of simulation results from EXCITE™ Power Unit models are:
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Tilting angle are slightly above AVL guideline Pressure on piston skirt is mostly
influenced by hydrodynamics pressure. Minimum oil film thickness appears around
FTDC where area of asperity pressure is presented. Asperity contact appear on second
land of steel piston. Local high pressure appears at the top of skirt on ATS due to high
tilting. Side force calculated from EPIL and from FTAB joint have the same values.
Difference between friction force and friction power loss in EPIL and FTAB is visible in

peak values.

Simulation results of REVO model with basic and low friction ring package don’t show
significant differences. Friction and side force have the same trend line. Model with low
friction ring package shows slightly lower values of total friction power loss, and piston
friction power loss are the same. It can be concluded that this slightly lower values of

total friction power loss are caused only by piston ring package

Simulation results of REVO and EHD model with basic ring package don’t show
significant differences. Some minor differences are visible in tilting where EHD model
have higher peak of tilting angle and radial displacement The REVO model have slightly
lower value of friction power loss, so FMEP values are also lower in that case. Also,
important is to emphasize that simulation time of EHD model is 2-3 time longer and

therefore more computer resources is needed.

Conclusions of comparison between simulation and measurement results are:

Minor differences in blow-by results of 2D simulation models with basic (calibrated to
measurement) and low friction ring package. Simulation results of 2D model with low
friction ring package shown lower values of blow-by compared to measurement. Results
of blow-by calculated with 3D solver in both ring package cases are higher than
measurement results. Lube oil consumption results are not fully calibrated and on lower
speeds (1500 and 2000 rpm) are the smaller LOC differences in simulation with basic

ring package and measurement.

Friction force calculated in REVO model with both piston ring packages have similar
behavior like friction forces given from measurement. Second peak after FTDC, caused
by cylinder head movement, is visible in simulation results. Also, friction force calculated
from EHD model have the same trend line as forces calculated with REVO model. Side
forces analytical calculated and given from simulation have same trend line, only are
visible little differences in peak values caused by piston dynamic. Measured side forces

have big differences compared to simulation or analytical side forces.
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5.2.

The highest deviation of FMEP values from measurement is coming from REVO
simulation model with basic ring package. Model with REVO joints and low friction ring
package shows lower FMEP values over all engine operating points. In other hand,
measurement with low friction ring package shows higher values than measurement with
basic ring package. Model with EHD joints shows slightly lower FMEP values compared

to model with REVO joints with both ring packages.

Is can be seen that FMEP generated from a whole piston ring package have the most
influence on total FMEP value compared to other components. Biggest contribution on
whole piston ring package FMEP come from oil ring and the second ring have the smallest
contribution. Increasing the load, FMEP values from cylinder head are higher and FMEP

values generated from piston are lower.

Recommendations and future work

Some recommendation for future work in this field:

For better understanding friction force behavior, important is to know all parameters that
are used on measurement. In further work on this model, bore distortion of liner should
be calculated for used liner (in model are implemented liner profile from old similar
FRISC model). Also, temperature field of piston is assumed from old project and thermal

simulation of piston should be done for better input data.

Results of friction force, side force and FMEP calculated with REVO joint model don’t
have significant differences compared to EHD model. For further investigation of similar

FRISC project, REVO model should be used because simulation time is 2-3 times shorter.

Further investigation of EXCITE Piston&Rings model should be done because in 3D
model ring end shut appear at lower speeds. After implementing exact liner profile, this

appearance of ring end shut could be solved.

Cylinder head and sealring can be examined as finite element model and in that form can
be implemented in numerical simulation software. In that way, influence of real
distributed mass of cylinder head and saelring on stick-slip effect can be examine. This

approach is more complicate approach and therefore more computer resources is needed.

Further investigation of friction parameters whose describe lubrication asperity friction

model.
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Appendix A

In this appendix EXCITE™ Piston&Rings results for other operating point of engine with basic

ring package are performed.

Engine speed = 2500rpm
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Figure A. 2. Basic ring package — FMEP overview.
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Figure A. 4. Basic ring package — Piston ring dynamics overview.
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Figure A. 5. Basic ring package — Lube Oil Consumption and Blow-by overview.
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Figure A. 6. Basic ring package — Friction characteristics overview.
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Figure A. 8. Basic ring package — Friction Power Loss overview.
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Figure A. 10. Basic ring package — Lube Oil Consumption and Blow-by overview.
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Figure A. 12. Basic ring package — FMEP overview.
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Figure A. 13. Basic ring package — Friction Power Loss overview.
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Figure A. 14. Basic ring package — Piston ring dynamics overview.
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Figure A. 15. Basic ring package — Lube Oil Consumption and Blow-by overview.

Appendix B

In this appendix EXCITE™ Piston&Rings results between basic and low FT ring package for

engine speed 3000 rpm are performed.
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Figure B. 1. Comparison between BASIC and LOW FT ring package - Friction characteristics

overview.
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Figure B. 2. Comparison between BASIC and LOW FT ring package — FMEP overview.
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Figure B. 3. Comparison between BASIC and LOW FT ring package - Friction Power Loss

overview.
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Figure B. 5. Comparison between BASIC and LOW FT ring package — Lube Oil Consumption

and Blow-by overview.
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overview.
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Figure B. 7. Comparison between BASIC and LOW FT ring package — FMEP overview.
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Figure B. 9. Comparison between BASIC and LOW FT ring package - Piston ring dynamics

overview.
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Appendix C

In this appendix EXCITE™ Piston&Rings results between 2D and 3D basic ring package for

engine speed 3000 rpm are performed.

Operating point = 3000rpm_9.3
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Figure C. 1. Comparison between BASIC and LOW FT ring package — Friction characteristics

overview.
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Figure C. 8. Comparison between 2D and 3D basic ring package - Friction Power Loss overview.

Faculty of mechanical engineering and naval architecture

138



Ljudevit Putarek Master's thesis

Top Ring 2nd Ring Qil Ring
Piston Land Pressure 1 Piston Land Pressure 2 Piston Land Pressure 3
80 5o gw.s
gﬁ“ 3 oz4 [RE-E
g0 2 7 2 179
2 Sed 5184
8% 2. FREE
— © 7 @
o 40 ol D127
k=l 04 o
=204 2,3 ol
8. 5 ©123
2203 23 e
= =1
% 104 % 13 % 14
oo T T T T T T T ace T T T T T T T oose T T T T T T
20 0 50 180 270 380 450 540 630 20 ) 80 180 270 360 450 540 630 80 o 20 180 270 360 450 540 620
CrankAng (deg) CrankAng (deg) CrankAng (deg)
£ Relative Axial Position of Ring 1 in Groove =z Relative Axial Position of Ring 2 in Groove = Relative Axial Position of Ring 3 in Groove
o100 o1 sl
£ 503 £ =04 £ =03
P_: 80 4 E 80 E 80
[=} o =]
o 70 c 70 c 70
S =3 S e S e g
T 50 EE EE
e L L
R EaEE T 304
ESE £ 33 EE
@ @ @
é 104 2 103 g 103
% 0 T T T T T T T % o T T T T T T T % o T T T T T T
o -920 a 20 180 270 380 450 540 830 o -20 o 20 180 270 360 450 540 830 o -920 o 20 180 27 280 450 540 &30
CrankAng (deq) CrankAng (deg) CrankAng (deg)
Twist Angle of Ring 1 i i Twist Angle of Ring 3
02 g g 0 Twist Angle of Ring 2 0 g a 20_BASIC
. —— 30_BASIC
— 0.z 0.2 & 024
2 2 k)
g KR @ 0.1+ @ 0.1
g P g
T —‘,=§,1‘_W £ o £ .
=1 a1 Z 4]
0.2 T T T T T T T 0.2 T T T T T T T 0.2 T T T T T T
-80 o 20 180 270 280 450 540 e30 -90 o 20 180 270 360 450 540 830 -920 o 20 180 27 280 450 540 830
CrankAng (deg) CrankAng (deg) CrankAng (deg)
Figure C. 9. Comparison between 2D and 3D basic ring package - Piston ring dynamics overview.
Evaporation from Liner 5 Qil Scraping of Piston Top land
=7 = 1
s Mean ¥ (int.dx) 2 osd Mean ¥ (int.dX)
e 0.454402 FETE °
25 0.454028 8.3 o
Ea 5 024
= B 0
=TE & o1 —— 20_BASIC
521 =24 —— 30_BASIC
s, 3 £ 0.6
% g—ﬂ 8
mo 1 T T : T 7 7 g T T T T T T T I
-90 Q 20 180 270 380 450 540 830 6 -80 o 80 180 270 280 450 540 8320

CrankAng (deq) CrankAng (deg}

—_ R = R R
< Throw off at Piston Top Land = Qil Blow Through Ring End Gap
~—0.025 a 1
o Max ¥ S E atX Mean ¥ (int.dX)
© - 0.0227383 6.1 05 -90 0
2 0.0z © 084
= 3.11286e-07 4.32682e-10 = -90 o0
5 w o4
0015 Doz
é r o
® 1 C 923
o 0.01 g):l.
= o 044
= 0.005 o = -08-
t=3 =
F-1 £ 08
=4 o T T T T T T T 2 - T T T T T T T
"E -80 0 80 180 270 380 450 540 &30 E -80 o 80 180 270 380 450 540 &30
CrankAng (deg) o CrankAng (deg)
Sum of LOC Blow-By
7 50
a5 3 Mean ¥ (int.dx)
& an 3 5.89558
—=] Tas] 10.9579
=5
B4 ]
w
ESE
=2
4
o T T T T T T T - T T T T T T T
-80 0 80 180 270 380 450 540 &30 -80 o 80 180 270 380 450 540 &30

X Axis (deg) CrankAng (deg}

Figure C. 10. Comparison between 2D and 3D basic ring package — Lube Oil Consumption and

Blow-by overview.

Faculty of mechanical engineering and naval architecture 139



Ljudevit Putarek

Master's thesis

Operating point = 3000rpm_2.9

Total Friction Power Loss Rings

Total Friction Power Loss

Top Ring

S3s0 250
= Max Mean Y (intdX) 5 MaxY Mean ¥ (intdX)
@ 200 334363 124433 = 221586 207789
g 250 267.835 113.745 ] = 223.237 20.0625
o 250 S
%253 3 a 1504
a 2
S 1509 8100
ERLLE =
Y 50 E 7 F\
=2 [
2 e T T T T 1 T T 0 T T T T < T T
=90 o 20 180 270 260 450 540 830 =90 o 20 180 270 380 450 540 820
Crankang (deg) Crankang (deg)
Total Friction Force - Rings 2nd Ring
150 180
— MinY  MaxY  Mean Y (int.dx} 120 3 MaxY  Mean ¥ (int.dX)
Z 100 S106.01 106.171 1.00494 =" 179.364 163779
5 -103.627 106.352 0.686762 140 T4.5479 6.42091
= 50 Z 120 J
= 2 490 3
' 4 w
0
o g 0 — 20_BASIC
¥ -50 a0 3
= 5 —— 30 _BASIC
B 3 04 —
S -100 1]
= T 20
-150 T T T T T T T o T T T T T T T 4—’_{
=90 o 20 180 270 260 450 540 830 =90 o 20 180 270 380 450 540 820
Crankang (deg) Crankang (deg)
Ring Package
Total cumulated FMEP Qil Ring
o 180
0023 ALK
= 1ap 3
002 e
5 % 120 4
S008 2100 3
o
Wi -0.08 3 3 80
= — &
[TREPRE, = 603
Min Y S 0] Max¥ Mean Y (int.dX)
0123 -0.132633 g 160.943 87,2724
0121113 [ 158.307 87.2625
0.14 T T T T T T o T T T T T T T
-80 o 80 180 270 360 450 540 a30 -80 o 80 180 270 380 450 540 630
CrankaAng (deg) CrankAng (deg)
Cummulated FMEP of Rings
Ring Package Top Ring
o o
002 00z
ER
0043 —-0.0863
g-ﬂ.ﬂf-— §’-D.DB e
o o 0.1
1 -0.05 | ooz
i Ea
A | 0144
91 I Miny Mean ¥ (int.dx) “Fuiny
0,12 -0.132633 -0.0783539 0184 00221161
-0.121113 -0.0695204 018 4 p.0213948
-0.14 T T T T T T T 0.z T T T T T T T
-90 o 20 180 270 280 450 540 e30 -0 o 20 180 270 380 450 540 820
X Axis (deg) CrankAng (deg)
Hydrodynamic cumulated FMEP 2nd Ring
[ [ ]
0025 0.024 }
-0.043 0s]
-0.08 008
So0s3 S00s — 20_BASIC
o 0.1 o 0.1 -
&2 & 2] 3D_BASIC
=012 =012
L p1ed— L p1sd—
o 10 3 Min o 10 3 Min
7 0082501 =T -0.0178178
0183 p 0694364 .18 4 000683818
0.2 T T T T T T T 0.2 T T T T T T T
-80 o 80 180 270 360 450 540 830 -80 o 80 180 270 380 450 540 630
CrankAng (deg) CrankAng (deg)
Asperity cumulated FMEP Qil Ring
o o
0024
0.014 0021
= —-0.08
S5-0.02 5
g g-U.UB =
o 002 o 014
w Wyq
Za0s PPE
Min o 1e JMin
-0.05-0.0501319 D189 0.092899
-0.051677 018  _0.0928804
-0.08 T T T T T T T 0.z T T T T T T T
-80 o 80 180 270 360 450 540 830 -80 o 80 180 270 380 450 540 630

CrankAng (deg)

CrankAng (deg)

Figure C. 12. Comparison between 2D and 3D basic ring package — FMEP overview.
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Figure C. 14. Comparison between 2D and 3D basic ring package - Piston ring dynamics

overview.
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Appendix D

In this appendix EXCITE™ Power Unit results for other operating point at engine speed 3000

rpm with basic ring package are performed.

Operating point = 3000rpm_9.3
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Figure D. 2. Pressure and friction results — 3000_9.3.
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Side Force: FTAB vs. Piston
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Figure D. 3. Campbell pressure distribution— 3000_9.3.
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Figure D. 4. FTAB forces and friction power loss —3000_9.3.
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Operating point = 3000rpm_5.3
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Figure D. 6. Pressure and friction results — 3000_5.3.
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Figure D. 8. FTAB forces and friction power loss —3000_5.3.
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Operating point = 3000rpm_2.9
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Figure D. 9. Piston results overview —3000_2.9.
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Figure D. 10. Pressure and friction results — 3000_2.9.
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Figure D. 11. Campbell pressure distribution— 3000_2.9.
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Figure D. 12. FTAB forces and friction power loss — 3000_2.9.
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Appendix E

In this appendix EXCITE™ Power Unit results between basic and low FT ring package for engine

speed 3000 rpm are performed.

Operating point = 3000rpm_9.3
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Figure E. 1. Comparison between basic and low friction ring package, REVO model, piston results

overview — 3000 9.3.
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Figure E. 2. Comparison between basic and low friction ring package, REVO model, Pressure and
friction results — 3000_9.3.

Faculty of mechanical engineering and naval architecture

149



Ljudevit Putarek

Master's thesis
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Figure E. 3. Comparison between basic and low friction ring package, REVO model, FTAB forces
Radial Displacement Friction Force on Piston
a0
—_ Max¥  atx Displacement Skirt (mmj Friction Force Skirt (N} Friction Force Skirt (N)
5 2 5 -~ Displacement Skirt (mm) Friction Force Second Land (N) riction Force Second Land (N}
2 SUM Friction Force (N} SUM Friction Force (N}
£
=
5
£-10 .
g a
EESE ]
§_ -50 3
a2 1003
-40 T T T T T T T 180 T T T T T T
720 210 800 2990 1080 1170 1260 1380 1440 720 210 200 990 1080 1170 1260 1380 1440
AngR (deg) AngR (deg)
Tilting = Peak Thermal Load
= 04 200
E’ iting Angle Skirt (deg) t 10 MaxY atx Mean Y (int.dX) TLoad Skirt (W/mmz2)
=02 ing Angle Skirt (deg) E o 3112954 500 265765 TLoad Second Land (Wimm2}
nCJ 0z 1.88851 TLoad Skirt (W/mm2)
£ 2 TLoad Second Land (W/mm2)
D01
=
F 97 —— BASIC
[P
= LOW FT
g-u.z—
Zoa , , 0 |

T T T T T
720 810 200 990 1080 1170 1260 1350 1440
AngR (deg)

Side Force

T T T ? T T
720 810 200 220 1080 1170 1280 1350 1440
AngR (deg)

Minimum Qil Film Thickness

5000 20
Side Force Skirt (N} Side Force Skirt (N} e dMny  atx Minimum Oil Fim Thickness Skirt (micron}
4000 Side Force Second Land (N) Side Force Second Land (N) 1640208521 1083 Minimum O Film Thickness Skirt (micron)
= 2000 SUM Side Force (N} - SUM Side Force (N) T, 0208804 1083
8 2000 212
5 E104
L 1000 I E
5 <)
k=] o LE
w
~+ 47%
1000 J E
-2000 T T T T T T T a T T T T T T T
720 810 500 980 1080 1170 1260 1350 1440 720 810 00 980 1080 1170 1280 1350 1440
AngR (deg) AngR (deg)

Figure E. 4. Comparison between basic and low friction ring package, REVO model, piston results

overview —3000_5.3.
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Figure E. 5. Comparison between basic and low friction ring package, REVO model, Pressure and
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Figure E. 6. Comparison between basic and low friction ring package, REVO model, FTAB forces

and friction power loss —3000_5.3.
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Operating point = 3000rpm_2.9
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Figure E. 7. Comparison between basic and low friction ring package, REVO model, piston results
overview — 3000_2.9.
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Figure E. 8. Comparison between basic and low friction ring package, REVO model, Pressure and
friction results — 3000_2.9.
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Figure E. 9. Comparison between basic and low friction ring package, REVO model, FTAB forces

and friction power loss — 3000 2.9.

Appendix F

In this appendix EXCITE™ Power Unit results between REVO and EHD basic ring package for
engine speed 3000 rpm are performed.

Operating point = 3000rpm_9.3
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Figure F. 1. Comparison between REVO and EHD model, basic ring package, piston results

overview — 3000_15.5.
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Figure F. 2. Comparison between REVO and EHD model, basic ring package, pressure and

friction results — 3000_15.5.
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Figure F. 3. Comparison between REVO and EHD model, basic ring package, FTAB forces and
friction power loss — 3000_15.5.
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Figure F. 4. Comparison between REVO and EHD model, basic ring package, piston results
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Figure F. 5. Comparison between REVO and EHD model, basic ring package, pressure and
friction results — 3000_15.5.
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Figure F. 7. Comparison between REVO and EHD model, basic ring package, piston results
overview — 3000 15.5.
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Figure F. 8. Comparison between REVO and EHD model, basic ring package, pressure and
friction results — 3000 _15.5.
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Figure F. 9. Comparison between REVO and EHD model, basic ring package, FTAB forces and

friction power loss — 3000_15.5.
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Appendix G

In this appendix comparison od friction forces between simulation and measurement for other

operating point of engine with basic ring package are performed.

Engine speed = 2500rpm
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Figure G. 1. Comparison of friction forces, basic ring package, 2500rpm.
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Engine speed = 2000rpm

Friction Forces: 2000rpm15.2_BASIC
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Figure G. 2. Comparison of friction forces, basic ring package, 2000rpm.
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Engine speed = 1500rpm
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Figure G. 3 Comparison of friction forces, basic ring package, 1500rpm.
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Appendix H

In this appendix comparison od friction forces between simulation and measurement for other

operating point of engine with low friction ring package are performed.

Engine speed = 2500rpm

Friction Forces: 2500rpm15.4_LOW Ft
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Figure H. 1 Comparison of friction forces, low friction ring package, 2500rpm.
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Engine speed = 2000rpm

Friction Forces: 2000rpm15.2_ LOW Ft
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Figure H. 2. Comparison of friction forces, low friction ring package, 2000rpm.
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Engine speed = 1500rpm

Friction Forces: 1500rpm14.8_ LOW Ft
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Figure H. 3. Comparison of friction forces, basic ring package, 1500rpm.
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Appendix I

In this appendix comparison od side forces between simulation, measurement and analytics for

other operating point of engine with basic ring package are performed.
Engine speed = 2500rpm
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Figure I. 1. Comparison of side forces, basic ring package, 2500rpm.
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Engine speed = 2000rpm
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Figure I. 2. Comparison of side forces, basic ring package, 2000rpm.
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Engine speed = 1500rpm
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Figure I. 3. Comparison of side forces, basic ring package, 1500rpm.
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