Dimenzioniranje konstrukcije plovnog pontona pučinske vjetroelektrane.

Skenderović, Ivan

Undergraduate thesis / Završni rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:292559

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-08-19

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STOJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Ivan Skenderović

Zagreb, 2023.

SVEUČILIŠTE U ZAGREBU FAKULTET STOJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentor:

Student:

Prof. dr. sc. Jerolim Andrić dipl. ing.

Ivan Skenderović

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite

Sveučilište u Zagrebu		
Fakultet strojarstva i brodogradnje		
Datum	Prilog	
Klasa: 602 – 04 / 23 – 6 / 1		
Ur.broj: 15 - 1703 - 23 -		

ZAVRŠNI ZADATAK

Student:	Ivan Skenderović	JMBAG:	0035219969
Naslov rada na hrvatskom jeziku:	Dimenzioniranje konstrukcije plovnog pontona pučinske vjetroelektran		
Naslov rada na engleskom jeziku:	Structural design of floating support ponto turbine	on for an of	fshore wind

Opis zadatka:

Tijekom posljednjih godina, potražnja za električnom energijom dobivenom iz obnovljivih izvora energije značajno raste. Ovaj trend doveo je do povećanja snage i veličine vjetroelektrana kao efikasnog načina iskoristivosti energije vjetra. Kopnene vjetroelektrane trenutno dosežu granice svojih mogućnosti, a trend je da se sele na pučinu, slično trendu industrije nafte i plina u prošlim desetljećima.

Kroz rad potrebno je dimenzionirati konstrukciju plovnog pontona 15MW pučinske vjetroelektrane na osnovu osnovnih izmjera (duljine, širine, visine) iz zadanog predloška danog u literaturi.

Zadatak obuhvaća:

- 1) Analizu dostupne literature i upoznavanje s tehničkim Pravilima za dimenzioniranje elemenata plovnog pontona nekog od relevantnih klasifikacijskih društava (DNV, BV, LR i sl.).
- 2) Dimenzioniranje oplate i ukrepa prema kriteriju lokalne čvrstoće koristeći projektne formule i izraze prema odabranim tehničkim Pravilima.
- 3) Dimenzioniranje elemenata poprečne čvrstoće i kontrolu globalnog strukturnog odziva provesti koristeći metodu konačnih elemenata (MKE). Prilikom dimenzioniranja koristiti kriterije dozvoljenih naprezanja i izvijanja. Za direktni proračun metodom konačnih elemenata koristiti neke od računalni sustav FEMAP/MAESTRO dostupne na FSB-u.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

Datum predaje rada:

20.4.2023.

2. rok (izvanredni): 12. 7. 2023.
3. rok: 21. i 22.9. 2023.

Predviđeni datumi obrane:

2. rok (izvanredni): 14. 7. 2023. **3. rok:** 25. 9. – 29. 9. 2023.

Predsjednik Povjerenstva:

Izv. prof. dr. sc. Ivan Ćatipović

Zadatak zadao:

Prof. dr. sc. Jerolim Andrić

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se svojemu mentoru prof. dr. sc. Jerolimu Andriću na svim savjetima i pomoći koja mi je pružena tijekom izrade ovoga rada. Također, zahvaljujem svojoj obitelji na podršci tijekom cijeloga školovanja.

Ivan Skenderović

SADRZ	ŽAJ
POPIS TA	BLICAV
POPIS OZ	ZNAKAVI
SAŽETAI	XVIII
SUMMAI	RYIX
1. UVOD	1
2. DIMI DET NOF	ENZIONIRANJE OPLATE I OREBRENJA PONTONA PREMA PRAVILIMA RSKE VERTIASA (DNV)
2.1 U	Jvod3
2.2	Opterećenje5
2.2.1	Opterećenje uslijed hidrostatskog tlaka u balastnim tankovima5
2.2.2	Opterećenje uslijed vanjskog tlaka mora6
2.3 I	Dimenzioniranje oplate i elemenata pontona6
2.3.1	Odabrane debljine oplate balastnih pontona6
2.3.2	Odabrani elementi orebrenja oplate balastnih tankova7
2.3.3	Odabrane debljine oplate uzgonskih cilindara8
2.3.4	Odabrani elementi orebrenja oplate uzgonskih cilindara8
2.3.5	Odabrani elementi orebrenja dna, platforme i pokrova uzgonskih cilindara9
2.3.6	Odabrane debljine oplate tornja10
2.3.7	Odabrani elementi orebrenja oplate tornja11
2.3.8	Odabrani elementi orebrenja dna, platformi i pokrova tornja12
3. STRU	JKTURNA ANALIZA PROTOTIPNE KONSTRUKCIJE METODOM
KONAČN	NIH ELEMENATA (MKE)14
3.1 U	Jvod14
3.2 \$	Strukturni model14
3.3 I	Rubni uvjeti19
3.4 N	Model opterećenja 21

Iva	n Skenderov	vić	Završni rad
	3.5 An	aliza odziva	
	3.5.1	Analiza pomaka	23
	3.5.2	Analiza naprezanja	
	3.5.3	Analiza kriterija podobnosti	
4.	REDIM	ENZIONIRANJE I PRIJEDLOG PODOBNE KONSTRUKCIJE	
5.	5. ZAKLJUČAK41		
Lľ	FERATUI	RA	42
PR	ILOZI		43

Slika 1. Vjetroelektrane na pučini mora1
Slika 2. Prikaz tlocrta pontona
Slika 3. Prikaz nacrta pontona
Slika 4. Prikaz orebrenja balastnih pontona15
Slika 5. Prikaz orebrenja uzgonskog cilindra16
Slika 6. Prikaz orebrenja tornja17
Slika 7. Prikaz 3D modela pontona
Slika 8. Prikaz rubnih uvjeta
Slika 9. Prikaz rubnih uvjeta na 3D modelu
Slika 10. Prikaz tlaka na vanjsku oplatu za slučaj opterećenja LC121
Slika 11. Prikaz tlaka na vanjsku oplatu za slučaj opterećenja LC222
Slika 12. Prikaz tlaka na vanjsku oplatu za slučaj opterećenja LC322
Slika 13. Prikaz progiba balastnih tankova za slučaj opterećenja LC3 (mm)24
Slika 14. Prikaz pomaka uzgoskih cilindara za slučaj opterećenja LC3 (mm)25
Slika 15. Prikaz pomaka cijelog modela za slučaj opterećenja LC3 (mm)26
Slika 16. Prikaz najvećeg ekvivalentnog naprezanja balastnih pontona za LC328
Slika 17. Prikaz najvećeg ekvivalentnog naprezanja uzgonskih cilindara za LC329
Slika 18. Prikaz najvećeg ekvivalentnog naprezanja tornja za LC3
Slika 19. Prikaz vrijednosti faktora podobnosti kriterija PCCB za LC1
Slika 20. Prikaz vrijednosti faktora podobnosti kriterija PCCB za LC2
Slika 21. Prikaz vrijednosti faktora podobnosti kriterija PCCB za LC3
Slika 22. Prikaz vrijednosti faktora podobnosti kriterija PFLB za LC1
Slika 23. Prikaz vrijednosti faktora podobnosti kriterija PFLB za LC3
Slika 24. Prikaz vrijednosti faktora podobnosti kriterija PFLB za LC2

Slika 25. Prikaz ekvivalentnog naprezanja redimenzionirane oplate balastnih tankova za LC1
Slika 26. Prikaz ekvivalentnog naprezanja djelomično redimenzionirane oplate tornja za LC3
Slika 27. Prikaz kriterija PFLB djelomično redimenzionirane oplate tornja za LC3

POPIS TABLICA

Tablica 1. Osnovne značajke
Tablica 2. Odabrane debljine oplate balastnih pontona
Tablica 3. Odabrani uzdužni elementi balastnih pontona7
Tablica 4. Odabrani poprečni elementi balastnih tankova7
Tablica 5. Odabrane debljine oplate uzgonskih cilindara
Tablica 6. Odabrani poprečni elementi uzgonskih cilindara9
Tablica 7. Odabrani prsteni uzgonskih cilindara9
Tablica 8. Odabrani uzdužni elementi dna, platforme i pokrova uzgonskih cilindara10
Tablica 9. Odabrani prsteni dna i pokrova uzgonskih cilindara10
Tablica 10. Odabrane debljine oplate tornja 11
Tablica 11. Odabrani poprečni elementi tornja 12
Tablica 12. Odabrani prsteni tornja12
Tablica 13. Odabrani uzdužni elementi dna, platformi i pokrova tornja13
Tablica 14. Odabrani prsteni dna, platformi i pokrova tornja13
Tablica 15. Karakteristike projektnog vala 21
Tablica 16. Slučaji opterećenja modela21
Tablica 17. Prikaz najvećih progiba balastnih pontona
Tablica 18. Prikaz najvećih pomaka uzgonskih cilindara
Tablica 19. Prikaz najvećih pomaka cijelog modela24
Tablica 20. Prikaz najvećih vrijednosti ekvivalentnog naprezanja balastnih pontona27
Tablica 21. Prikaz najvećih vrijednosti naprezanja uzgonskih cilindara
Tablica 22. Prikaz najvećih vrijednosti ekvivalentnog naprezanja tornja28
Tablica 23. Kriteriji podobnosti
Tablica 24. Prikaz najmanjih vrijednosti faktora podobnosti
Tablica 25. Prikaz dopuštanih naprezanja

Oznaka	Jedinica	Opis	
pd	kN/m ²	Hidrostatski tlak u balastnim tankovima	
ρ	kg/m ³	Gustoća mora	
g 0	m/s ²	Ubrzanje zemljine sile teže	
h _{op}	m	Stupac tekućine u balastnom tanku	
γf,G,Q		Faktor opterećenja za kontinuirana opterećenja	
a _v	m/s^2	Vertikalna komponenta ubrzanja tekućine u tanku	
γf,E		Faktor opterećenja za vanjsko opterećenje	
p _{dyn}	kN/m ²	Tlak zraka kojim se prazni balastni tank	
P _{d,ULS}	kN/m ²	Vanjski tlak mora	
p _s	kN/m ²	Hidrostatska komponenta vanjskog tlaka mora	
pe	kN/m ²	Hidrodinamička komponenta vanjskog tlaka mora	
T _E	m	Gaz	
Zb	m	Vertikalna udaljenost od dna pontona	
Cw		Redukcijski faktor Smithovog efekta	
D _D	m	Udaljenost od dna pontona do vrha brijega vala	
ζ_{a}	m	Valna amplituda	
k		Valni broj	
Z	m	Udaljenost od mjesta opterećenja do slobodne površine	
х	m	Duljina propagacije vala	
ω	rad/s	Frekvencija vala	
р	kN/m ²	Razlika hidrostatskog tlaka u balastnim tankovima i vanjskog tlaka mora	
t _{min}	mm	Minimalna dopuštena debljina oplate prema DNV-u [5]	
t ₀	mm	Početna debljina oplate za primarni konstrukcijski element	
f_{yd}	N/mm ²	Konstrukcijska granica razvlačenja čelika	
ka		Korekcijski faktor	
k _f		Korekcijski faktor zakrivljenosti uzdužnjaka	
S	mm	Razmak uzdužnjaka	
σ_{pd1}	N/mm ²	Dopušteno naprezanje oplate	
k _{pp}		Faktor upetosti oplate	
Zs	mm ³	Moment otpora nosača	

Ivan Skenderović

1	m	Nepoduprti raspon
km		Faktor momenta savijanja
σ _{pd2}	N/mm ²	Dopušteno naprezanje nosača
k _{ps}		Faktor upetosti nosača
λ	m	Valna duljina
Н	m	Visina vala
с	m/s	Brzina propagacije vala
Т	s	Valni period
σ _{jd}	N/mm ²	Ekvivalentno naprezanje lima oplate u lokalnoj čvrstoći
f_y	N/mm ²	Granica razvlačenja čelika
γm		Faktor materijala

SAŽETAK

Tema ovoga završnoga rada je projektiranje konstrukcije pontona 15 MW plutajuće vjetroelektrane [1].

U prvoj fazi dimenzionirana je oplata i elementi orebrenja prema pravilima klasifikacijskoga društva Det Norske Veritas (DNV) [5] na temelju osnovnih geometrijskih značajki pontona. Dobivene dimenzije korištene su kao ulazni podaci prilikom modeliranja 3D modela u drugoj fazi.

U drugoj fazi modeliran je 3D model u računalnom sustavu FEMAP [4], a nakon toga provedena je analiza pomoću metode konačnih elemenata (MKE) u računalnom sustavu MAESTRO [3].

Nakon definiranja tri slučaja opterećenja provedena je analiza odziva prototipne konstrukcije čiji je rezultat ukazao nepodobnost određenih elemenata konstrukcije kao i nezadovoljavanje kriterija dopuštenih naprezanja.

U trećoj fazi provedeno je djelomično redimenzioniranje konstrukcije te je dan prijedlog kako bi konstrukcija mogla zadovoljiti kriterije podobnosti i naprezanja.

Ključne riječi: vjetroelektrana, konstrukcija ponton, MKE, kriterij podobnosti, izvijanje, popuštanje, redimenzioniranje.

SUMMARY

The subject of this project is a structural design of floating support pontoon for an offshore wind turbine.

First designing phase, based on elementary geometrical characteristics, includes defining construction elements according to the Det Norske Veritas (DNV) [5] classification society. Dimensions obtained in this phase are used as base data for the second phase.

Second designing phase consists of creating 3D FEM model of prototype in software FEMAP [4] and then the 3D FEM model was transferred in software MAESTRO [3] in order to conduct a finite element method structural analysis.

Analysis response of the prototype model, which was done after defining three load cases, indicated inadequate structural elements as on the deviation of permissible stresses. Based on those results, a suggestion was made so that the structure could meet adequacy and stress criteria.

Key words: wind turbine, floating support pontoon structure, FEM, structural adequacy criteria, yield stress, buckling, redefining

1. UVOD

U današnje vrijeme javlja se veliki interes za strojeve i uređaje koji su pogonjeni električnom energijom umjesto fosilnih goriva koja su se do sada koristila. Samim time javlja se velika potražnja za električnom energijom dobivenom iz obnovljivih izvora energije. Velika potražnja dovodi do zahtjeva za povećanjem snage i veličine vjetroelektrana. Zbog toga kopnene vjetroelektrane dolaze do maksimuma svojih mogućnosti i javlja se trend selidbe vjetroelektrana na pučinu. Princip rada vjetroelektrane temelji se na pretvaranju kinetičke energije vjetra u mehanički rad te potom u električnu energiju.

Slika 1. Vjetroelektrane na pučini mora

Da bi se vjetroelekrana mogla izgraditi na pučini potrebno je dimenzionirati plovni ponton koji će vjetroelektranu održavati na površini mora. Ponton se sastoji od tri balastna pontona i tri uzgonska cilindra koji su međusobno pomaknuti za 120 stupnjeva. U središtu gdje se spajaju balastni pontoni nalazi se toranj na kojem je vjetroagregat.

Kroz ovaj rad proračun konstrukcije pontona proveden je u dvije faze:

- 1. Dimezioniranje oplate i orebrenja prema kriteriju lokalne čvrstoće koristeći projektne formule i izraze prema pravilima Det Norske Veritasa (DNV) [5].
- Kontrola globalnog strukturnog odziva pomoću metode konačnih elemenata (MKE) koristeći računalni sustav FEMAP [4] i MAESTRO [3].

2. DIMENZIONIRANJE OPLATE I OREBRENJA PONTONA PREMA PRAVILIMA DET NORSKE VERTIASA (DNV)

2.1 Uvod

Proračun dimenzija konstrukcije pontona proveden je prema pravilima DNV-a [5] korištenjem računalnog sustava MS Excel [2]. Osnovne značajke pontona prikazane su u tablici 1, a uzete su prema predlošku iz [1]:

Udaljenost od središta uzgonskog cilindra do središta tornja	51.75 [m]
Promjer uzgonskih cilindara	12.5 [m]
Promjer tornja	10 [m]
Visina balastnih tankova	7 [m]
Širina balastnih tankova	12.5 [m]
Visina uzgonskih cilindara	35 [m]
Visina tornja	170 [m]
Razmak okvira balastnih tankova	2.7 [m]
Razmak uzdužnjaka boka balastnih tankova	0.700 [m]
Razmak uzdužnjaka dna i pokrova balastnih tankova	0.625 [m]
Razmak okvira uzgonskih cilindara	0.613 [m]
Razmak okvira tornja	0.654 [m]
Volumen istisnine sustava	20206 [m ³]
Masa balastnih pontona i uzgonskih cilindara	17854 [t]
Masa tornja	1263 [t]
Masa vjetroagregata	991 [t]
Masa tekućeg balasta	11300 [t]
Masa krutog balasta	2540 [t]

Tablica 1. Osnovne značajke

Ponton se sastoji od tri balastna tanka koji su izvedeni u mješovitom sustavu gradnje i u koje se krca tekući balast tj. morska voda. Također sastoji se još od tri uzgonska cilindra i tornja. Cilindri se nalaze na krajevima balastnih tankova, izvedeni su mješovitim sustavom gradnje i u njih se krca kruti balast tj. mješavina betona i željezne rude. Toranj se nalazi u središtu gdje se spajaju sva tri balastna tanka, izveden je mješovitim sustavom gradnje do 35 m visine. Nakon 35 m visine toranj nije orebren.

Dimenzije koje su dobivene ovim proračunom su minimalne dimenzije koje zahtijevaju pravila DNV-a [5] i služe kao ulazni podaci za proračun metodom konačnih elemenata (MKE). U okviru ovoga rada cijela konstrukcija projektirana je korištenjem običnog brodograđevnog čelika.

Slika 2. Prikaz tlocrta pontona

Slika 3. Prikaz nacrta pontona

2.2 Opterećenje

2.2.1 Opterećenje uslijed hidrostatskog tlaka u balastnim tankovima

Zbog krcanja tekućeg balasta u balastne tankove dolazi do pojavljivanja hidostatskog tlaka kojim određena visina balasta djeluje na oplatu. Prema pravilima DNV-a [5] za izračun hidrostatskog tlaka korištena su dva izraza i uzima se onaj tlak koji je veći.

$$p_d = \rho \cdot g_0 \cdot h_{op} \cdot \left(\gamma_{f,G,Q} \cdot \frac{a_v}{g_0} + \gamma_{f,E}\right) \tag{1}$$

$$p_d = \left(\rho \cdot g_0 \cdot h_{op} + p_{dyn}\right) \cdot \gamma_{f,G,Q} \tag{2}$$

2.2.2 Opterećenje uslijed vanjskog tlaka mora

Vanjski tlak sastoji se od hidrostatske komponente na određenome gazu i tlaka vala. Prema pravilima DNV-a [5] vanjski tlak je računan prema izrazu (3)

$$p_{d,ULS} = p_s \cdot \gamma_{f,G,Q} + p_e \cdot \gamma_{f,E} \tag{3}$$

u kojem je:

$$p_s = \rho \cdot g_0 \cdot (T_E - z_b) \left(kN/m^2 \right) \ge 0 \tag{4}$$

$$p_e = \rho \cdot g_0 \cdot C_w (D_D - z_b) \left(kN/m^2 \right) za \, z_b \ge T_E \tag{5}$$

$$p_e = \rho \cdot g_0 \cdot \xi_a \cdot e^{kz} \cdot \cos(kx - \omega t) \ (kN/m^2) \ za \ z_b < T_E$$
(6)

2.3 Dimenzioniranje oplate i elemenata pontona

2.3.1 Odabrane debljine oplate balastnih pontona

Oplata balastnog pontona sastoji se od oplate boka koja je podijeljena u tri zone, oplate dna i oplate pokrova. Prema pravilima DNV-a [5] zadan je izraz za minimalnu neto debljinu oplate (8) kao i izraz za neto debljinu oplate (9).

S obzirom na to da je u tankovima ukrcan balast, hidrostatski tlak balast i vanjski tlak mora su suprotnog smjera djelovanja pa se međusobno poništavaju. Izraz za tlak koji je korišten pri izračunu debljina glasi:

$$p = p_{d,ULS} - p_d \tag{7}$$

$$t_{min} = \frac{14.3t_0}{\sqrt{f_{yd}}} \tag{8}$$

$$t = \frac{15.8k_a \cdot k_f \cdot s \cdot \sqrt{p}}{\sqrt{\sigma_{pd1} \cdot k_{pp}}} \tag{9}$$

Tablica 2. Odabrane debljine oplate balastnih pontona

Pozicija	Visina zone [mm]	Odabrana debljina [mm]
Zona 1.	2400	13.5
Zona 2.	2400	13.5
Zona 3.	2400	13.5
Dno	/	13.5
Pokrov	/	13.5
Uzdužna pregrada	/	13.5

2.3.2 Odabrani elementi orebrenja oplate balastnih tankova

Uzdužni i poprečni elementi orebrenja proračunani su prema pravilima DNV-a [5] tj. prema izrazu (10) za minimalni dopušteni moment otpora.

$$Z_s = \frac{l^2 \cdot s \cdot p}{k_m \cdot \sigma_{pd2} \cdot k_{ps}} \cdot 10^6 \ [mm^3] \tag{10}$$

Pozicija	Udaljenost od dna [mm]	Odabrani profil
Oplata boka #1	700	HP 320x12
Oplata boka #2	1400	HP 320x12
Oplata boka #3	2100	HP 300x12
Oplata boka #4	2800	HP 300x12
Oplata boka #5	3500	HP 300x12
Oplata boka #6	4200	HP 300x12
Oplata boka #7	4900	HP 300x12
Oplata boka #8	5600	HP 300x12
Oplata boka #9	6300	HP 300x12
Dno	0	HP 300x11
Pokrov	7000	HP 300x11

Tablica 3. Odabrani uzdužni elementi balastnih pontona

Uzdužni elementi koji su odabrani za oplatu boka vrijede i za uzdužne elemente uzdužne pregrade također po istim udaljenostima od dna.

Tablica 4. Odabrani poprečni elementi balastnih tankova

Pozicija	Odabrani profil
Sponja	T 800x25/280x50
Rebrenica	T 800x25/290x50
Okvir boka	T 900x25/325x50
Okvir uzdužne pregrade	T 900x25/325x50

2.3.3 Odabrane debljine oplate uzgonskih cilindara

Debljine oplate uzgonskih cilindara također su odabrane prema izazima (8) i (9) uz iznimku da je tlak računan prema izrazu (3).

Pozicija	Udaljenost od dna [mm]	Visina zone [mm]	Odabrana debljina [mm]
Zona 1.	0	3500	13.5
Zona 2.	3500	3500	12.5
Zona 3.	7000	4200	12
Zona 4.	11200	4200	10.5
Zona 5.	15400	4600	9
Zona 6.	20000	4900	7
Zona 7.	24900	4900	7
Zona 8.	29800	5200	7
Dno	0	/	15
Platforma	7000	/	15
Pokrov	35000	/	7

Tablica 5. Odabrane debljine oplate uzgonskih cilindara

2.3.4 Odabrani elementi orebrenja oplate uzgonskih cilindara

Orebrenje uzgonskih cilindara sastoji se od gustog poprečnog orebrenja i jakih prstenova na određenom rasponu. Sve orebrenje proračunano je prema izrazu (10) uz iznimku da je tlak računan prema izrazu (3).

Pozicija	Udaljenost od dna [mm]	Visina zone [mm]	Odabrani profil
Zona 1.	0	3500	HP 400x14
Zona 2.	3500	3500	HP 370x15
Zona 3.	7000	4200	HP 400x14
Zona 4.	11200	4200	HP 370x13
Zona 5.	15400	4600	HP 370x13
Zona 6.	20000	4900	HP 320x12
Zona 7.	24900	4900	HP 240x12
Zona 8.	29800	5200	HP 140x7

Tablica 6. Odabrani poprečni elementi uzgonskih cilindara

Tablica 7. Odabrani prsteni uzgonskih cilindara

Pozicija	Udaljenost od dna [mm]	Odabrani profil
Prsten 1.	3500	T 1145x50/500x100
Prsten 2.	11200	T 1040x50/500x100
Prsten 3.	15400	T 1000x50/400x100
Prsten 4.	20000	T 955x50/400x100
Prsten 5.	24900	T 700x50/300x100
Prsten 6.	28900	T 625x30/300x60

2.3.5 Odabrani elementi orebrenja dna, platforme i pokrova uzgonskih cilindara

Orebrenje dna i pokrova uzgonskih cilindara sastoji se od uzdužnih elemenata čije se centralne osi sijeku u središtu dna ili pokrova uzgonskih cilindara. Također, u orebrenju nalaze se i jaki prsteni na određenom rasponu. Orebrenje je proračunano prema izrazu (10) uz iznimku da je tlak računan prema izrazu (3).

Pozicija	Udaljenost od središta [mm]	Odabrani profil
Dno	625	HP 200x9
	1875	HP 260x12
	3750	HP 300x13
Platforma 625		HP 200x9
	1875	HP 260x12
	3750	HP 300x13
Pokrov	625	HP 200x9
	1875	HP 260x12
	3750	HP 300x13

Tablica 8. Odabrani uzdužni elementi dna, platforme i pokrova uzgonskih cilindara

Tablica 9. Odabrani prsteni dna i pokrova uzgonskih cilindara

Pozicija	Udaljenost od središta [mm]	Odabrani profil
Dno	625	T 470x15/150x30
	1875	T 470x15/150x30
	3750	T 700x30/320x60
Platforma	625	T 470x15/150x30
	1875	T 470x15/150x30
	3750	T 700x30/320x60
Pokrov	625	T 470x15/150x30
	1875	T 470x15/150x30
	3750	T 700x30/320x60

2.3.6 Odabrane debljine oplate tornja

Debljine oplate tornja odabrane su prema izrazima (8) i (9). U prvoj i drugoj zoni tlak je računan prema izrazima (1) i (2) i uzeta je veća vrijednost. Razlog tome je to što u tim zonama djeluje samo hidrostatski tlak tekućeg balasta u tankovima. Za ostale zone tlak je računan prema izrazu (3).

Pozicija	Pozicija Udaljenost od dna [mm] Visina zone [mm]		Odabrana debljina [mm]
Zona 1.	0	3500	7
Zona 2.	3500	3500	7
Zona 3.	7000	4200	12.5
Zona 4.	11200	4200	11
Zona 5.	15400	4600	9.5
Zona 6.	20000	4900	7.5
Zona 7.	24900	4900	7
Zona 8.	29800	5200	7
Zona 9.	35000	12000	15
Zona 10.	48000	14000	15
Zona 11.	62000	14000	15
Zona 12.	76000	14000	15
Zona 13.	90000	14000	15
Zona 14.	104000	14000	15
Zona 15.	118000	14000	15
Zona 16.	132000	14000	15
Zona 17.	146000	14000	15
Zona 18.	160000	10000	15
Dno	0	/	16
Platforma 1.	7000	/	16
Platforma 2.	35000	/	7
Pokrov 3.	170000	/	16

Tablica 10. Odabrane debljine oplate tornja

2.3.7 Odabrani elementi orebrenja oplate tornja

Orebrenje tornja izvedeno je na isti način kao i orebrenje uzgonskih cilindara u potpoglavlju 2.3.5. Sam toranj orebren je do devete zone, a nadalje nije orebren. Elementi orebrenja proračunani su prema izrazu (10), a tlakovi su računani kao i u potpoglavlju 2.3.6.

Pozicija	Udaljenost od dna [mm]	Visina zone [mm]	Odabrani profil
Zona 1.	0	3500	HP 240x11
Zona 2.	3500	3500	HP 200x11.5
Zona 3.	7000	4200	HP 400x16
Zona 4.	11200	4200	HP 400x14
Zona 5.	15400	4600	HP 370x13
Zona 6.	20000	4900	HP 320x12
Zona 7.	24900	4900	HP 260x10
Zona 8.	29800	5200	HP 180x8

Tablica 11. Odabrani poprečni elementi tornja

Tablica 12. Odabrani prsteni tornja

Pozicija	Udaljenost od dna [mm]	Odabrani profil
Prsten 1.	3500	T 560x30/270x60
Prsten 2.	11200	T 870x45/405x90
Prsten 3.	15400	T 755x45/380x90
Prsten 4.	20000	T 700x45/345x90
Prsten 5.	24900	T 600x45/240x90
Prsten 6.	28900	T 500x30/200x60

2.3.8 Odabrani elementi orebrenja dna, platformi i pokrova tornja

Orebrenje dna, platfomi i pokrova tornja izvedeno je na isti način kao i orebrenje dna, platforme i pokrova uzgonskih cilindara u potpoglavlju 2.3.5. Orebrenje je proračunato prema izrazu (10), a tlakovi prema izrazu (3).

Pozicija	Udaljenost od središta [mm]	Odabrani profil
Dno	625	HP 260x10
	2500	HP 320x12
Platforma 1.	HP 260x10	
	2500	HP 320x12
Platforma 2.	625	HP 260x10
	2500	HP 320x12
Pokrov	625	HP 260x10
	2500	HP 320x12

Tablica 13. Odabrani uzdužni elementi dna, platformi i pokrova tornja

Tablica 14. Odabrani prsteni dna, platformi i pokrova tornja

Pozicija	Udaljenost od središta [mm]	Odabrani profil
Dno	625	T 500x25/230x50
	2500	T 500x25/230x50
Platforma 1.	625	T 500x25/230x50
	2500	T 500x25/230x50
Platforma 2.	625	T 500x25/230x50
	2500	T 500x25/230x50
Pokrov	625	T 500x25/230x50
	2500	T 500x25/230x50

3. STRUKTURNA ANALIZA PROTOTIPNE KONSTRUKCIJE METODOM KONAČNIH ELEMENATA (MKE) 3.1 Uvod

U računalnom sustavu FEMAP [4] pomoću konačnih elemenata izrađen je 3D model pontona te je zatim u računalnom sustavu MAESTRO [3] provedena strukturna analiza prototipne konstrukcije pomoću metode konačnih elemenata (MKE) s ciljem provjere podobnosti konstrukcijskih elemenata. Sama analiza provedena je jer poprečni elementi konstrukcije, koji utječu na poprečnu čvrstoću, indirektno utječu i na uzdužnu čvrstoću jer se uzdužni elementi oslanjaju na njih. Analiza odziva pomoću metode konačnih elemenata (MKE) uzima u obzir međudjelovanje uzdužnih i poprečnih elemenata konstrukcije.

Ulazne dimenzije elemenata prilikom modeliranja dobivene su u prvoj fazi proračuna tj. u poglavlju 2.

3.2 Strukturni model

3D MKE model izrađen je u računalnom sustavu FEMAP [4], a sam model sastoji se od pločastih i grednih elemenata. Sve dimenzije modela odgovaraju stvarnim dimenzijama tj. radi se o kompletnom MKE modelu cjelokupne konstrukcije u mjerilu 1:1.

Sama gustoća mreže različito je izvedena na pojedinom dijelu konsturkcije. Na balastnim tankovima gustoća mreže je takva da su u uzdužnom smjeru četiri pločasta elementa između dva okvira, a u poprečnom i vertikalnom smjeru se nalazi jedan pločasti element između svakog uzdužnjaka. Na uzgonskim cilindrima i tornju gustoća mreže je izvedena tako da se u obodnom smjeru nalazi jedan pločasti element između svakog poprečnog elementa, a u vertikalnom smjeru broj pločastih elemenata varira ovisno o udaljenosti dva prstena, ali se zadržala ista visina od 700 mm između svakog pločastog elementa. Dna, platforme i pokrovi uzgoskih cilindara i tornja izvedeni su po principu "paukove mreže".

Opločenje svih dijelova konstrukcije modelirano je četverokutnim Q4 elementima osim spojeva balasnih tankova sa uzgonskim cilindrima i tornjem koji su na nekim dijelovima modelirani trokutastim Q3 elementima. Svi nosači modelirani su grednim elementima. Koordinatni sustav određen je na sljedeći način:

- Ishodište se nalazi u središtu dna tornja tj. na mjestu gdje se sijeku centralne osi dna balastnih pontona.
- Globalna os X usmjerena je vertikalno, pozitivna prema gore.
- Globalna os Y usmjerena je uzdužno u smjeru jednog od odabranih balastnih pontona, pozitivna od uzgonskog cilindra odabranog balastnog pontona prema tornju.
- Globalna os Z usmjerena je poprečno na odabrani balastni ponton, pozitivna prema lijevo.

Slika 4. Prikaz orebrenja balastnih pontona

Slika 5. Prikaz orebrenja uzgonskog cilindra

Slika 6. Prikaz orebrenja tornja

Slika 7. Prikaz 3D modela pontona

3.3 Rubni uvjeti

Rubni uvjeti sprječavaju translacijske i rotacijske pomake modela te se postavljaju na određene čvorove tj. na fizikalne oslonce. U ovom slučaju postavljeni su na mjesta gdje bi se nalazio sidreni lanac.

Rubni uvjeti su propisane vrijednosti pomaka definirane kao 0 – slobodan pomak, 1 – spriječen pomak.

Re	straints						_	_			\times	
Su	mmary General											
		Rz							Fi	x		
	Votation DFree 1Fixed	X-sym	Y	'-sy	m	Z	-sym	ſ	Pinr	ned		
	2Enforced X	-Asym	Y-	As	ym	Z٠	Asyn	n N	o Ro	tation		
m	odule/ponton-700			ŀ	•		Add	Nod	al G	roup		
Ap	ply all load cases											
	Module Name	ID		Х	Y	Z	Rx	Ry	Rz	DX(m	m)	DY
1	/top/uzgonski cilindri-bocni	i 5570)9	1	1	1	0	0	0			
2	/top/uzgonski cilindri-bocni	i 5474	4	1	1	1	0	0	0			
3	/top/uzgonski cilindri-bocni	i 5668	34	1	1	1	0	0	0			
Г												
L												
	ОК)el	Ro	w		Ca	ance		He	lp	

Slika 8. Prikaz rubnih uvjeta

Slika 9. Prikaz rubnih uvjeta na 3D modelu

3.4 Model opterećenja

Prilikom postavljanja modela opterećenja postavljeno je opterećenje na ravnoj vodnoj liniji i opterećenje valova. Projektni val definiran je kao ekstremni val za 50 godina povratnog perioda.

Tablica 15. Karakteristike projektnog vala

Vrsta vala	λ [m]	H [m]	c [m/s]	T [s]	ω [rad/s]
Trohoidni	288.78	21.4	21.23	13.6	0.462

Analizirana su tri slučaja opterećenja prikazana u tablici 15.

Slučaj opterećenja	Opis opterećenja
LC1	Opterećenje na ravnoj vodnoj liniji
LC2	Opterećenje na valu uz napadni kut vala $\beta = 90^{\circ}$
LC3	Opterećenje na valu uz napadni kut vala $\beta = 45^{\circ}$

Tablica 16. Slučaji opterećenja modela

Slika 10. Prikaz tlaka na vanjsku oplatu za slučaj opterećenja LC1

Slika 11. Prikaz tlaka na vanjsku oplatu za slučaj opterećenja LC2

Slika 12. Prikaz tlaka na vanjsku oplatu za slučaj opterećenja LC3

3.5 Analiza odziva

Analiza odziva prototipa izrađenog prema dimenzijama elemenata dobivenim u drugom poglavlju podijeljena je u tri faze:

- 1. Analiza pomaka
- 2. Analiza naprezanja
- 3. Analiza kriterija podobnosti

3.5.1 Analiza pomaka

Analizirajući balastne tankove modela najveći progibi javljaju se u sredini, tj. na mjestu spajanja s tornjem i prikazani su tablicom 16.

Slučaj opterećenja	Najveći progib [mm]
LC1	118.65
LC2	138.40
LC3	144.29

Tablica 17. Prikaz najvećih progiba balastnih pontona

Analizirajući uzgonske cilindre modela najveći pomaci za slučajeve LC1 i LC2 javljaju se u negativnom smjeru globalne osi Y, dok se za slučaj opterećenja LC3 javlja u pozitivnom smjeru globalne osi Z. U tablici 17 prikazani su najveći pomaci uzgonskih cilindara

Tablica 18. Prikaz najvećih pomaka uzgonskih cilindara

Slučaj opterećenja	Najveći pomak [mm]
LC1	65.1
LC2	189
LC3	268

Analizirajući cijeli model najveći pomaci modela su ujedno i najveći pomaci tornja i za sva tri slučaja opterećenja javljaju se na vrhu tornja. Za slučaj LC1 najveći pomak je u pozitivnom smjeru globalne osi Y, dok za slučaj LC2 najveći pomak je u negativnom smjeru globalne osi Y i za slučaj LC3 najveći pomak javlja se u negativnom smjeru globalne osi Z. U tablici 19 prikazani su najveći pomaci modela

Slučaj opterećenja	Najveći pomak [mm]
LC1	1420
LC2	2340
LC3	2700

Tablica 19. Prikaz najvećih pomaka cijelog modela

Slika 13 prikazuje progibe za LC3 balastnih tankova, slika 14 prikazuje pomake za LC3 uzgonskih cilindara i slika 15 prikazuje pomake za LC3 cijelog modela

Slika 13. Prikaz progiba balastnih tankova za slučaj opterećenja LC3 (mm)

Slika 14. Prikaz pomaka uzgoskih cilindara za slučaj opterećenja LC3 (mm)

otal Displaceme	otal Displacement(mr	
2.70E+03	2.70E+03	
2.53E+03		
2.36E+03		
2.19E+03		
2.03E+03		
1.86E+03		

1.69E+03

1.52E+03

1.35E+03

1.18E+03

1.01E+03

8.44E+02

0.00E+00

Slika 15. Prikaz pomaka cijelog modela za slučaj opterećenja LC3 (mm)

3.5.2 Analiza naprezanja

Analizirajući naprezanja cijelog modela za sva tri slučaja opterećenja dobiveni rezultati ukazuju da na nekoliko mjesta naprezanja prelaze dopuštenu granicu naprezanja.

Analizirajući balastne tankove najveća naprezanja u sva tri slučaja opterećenja javljaju se na mjestima gdje se spajaju pokrovi balastnih pontona. Također, na tim mjestima naprezanja prelaze dopuštenu granicu naprezanja. Tablicom 20 prikazane su najveće vrijednosti naprezanja balastnih pontona za sva tri slučaja opterećenja.

Slučaj opterećenja	Iznos ekvivalentnog naprezanja [N/mm ²]
LC1	213.84
LC2	420.62
LC3	436.75

Tablica 20. Prikaz najvećih vrijednosti ekvivalentnog naprezanja balastnih pontona.

Analizirajući uzgonske cilindre najveća naprezanja za LC2 i LC3, tj.za valna opterećenja javljaju se na uzgonskom cilindru koji prilikom udara vala ostaje sam. U ova dva valna slučaja opterećenja koja su razmatrana u trenutku nailaska vala zbog trokrakog oblika pontona val će udariti dva cilindra istovremeno ili samo jedan cilindar. U slučaju udara u samo jedan cilindar na tom se cilindru javljaju najveća naprezanja. Kod opterećenja na mirnoj vodnoj liniji najveća naprezanja javljaju se malo iznad dna pontona. Također treba napomenuti da se prema analizi zapravo najveća naprezanja javljaju na mjestima gdje su postavljeni rubni uvjeti, ali ta naprezanja nisu relevantna zbog toga što smo mi sami ograničili pomake elementa na kojem je rubni uvjet. Da bismo mogli naprezanja na tom elementu uzeti u obzir trebali bismo dodatno modelirati sam lanac sidra i na mjesto gdje se on spaja s dnom mora postaviti naše rubne uvjete.

Tablicom 21 prikazane su najveće vrijednosti naprezanja uzgonskih cilindara za sva tri slučaja opterećenja.

Slučaj opterećenja	Iznos ekvivalentonog naprezanja [N/mm ²]
LC1	150.02
LC2	254.01
LC3	323.97

Tablica 21. Prikaz najvećih vrijednosti naprezanja uzgonskih cilindara.

Analizirajući naprezanja na tornju najveća naprezanja za sva tri slučaja opterećenja javljaju se na mjestu gdje se toranj spaja sa spojnicama. Spojnica je element konstrukcije koji spaja uzgonski cilindar s tornjem, postavljena okomito na vrh oplate uzgonskog cilindra i okomito na oplatu tornja. Razlog pojavljivanja najvećih naprezanja na tom mjestu je taj što se sam toranj ponaša kao konzola.

Tablicom 22 prikazane su najveće vrijednosti naprezanja tornja za sva tri slučaja opterećenja.

Slučaj opterećenja	Iznos ekvivalentnog naprezanja [N/mm ²]
LC1	265.40
LC2	392.96
LC3	462.98

Tablica 22. Prikaz najvećih vrijednosti ekvivalentnog naprezanja tornja.

Slika 16 prikazuje mjesto najvećeg ekvivalentnog naprezanja balastnih pontona za LC3, slika 17 prikazuje mjesto najvećeg ekvivalentnog naprezanja uzgonskih cilindara za LC3, a slika 18 prikazuje mjesto najvećeg ekvivalentnog naprezanja tornja za LC3.

Slika 16. Prikaz najvećeg ekvivalentnog naprezanja balastnih pontona za LC3

Slika 17. Prikaz najvećeg ekvivalentnog naprezanja uzgonskih cilindara za LC3

Slika 18. Prikaz najvećeg ekvivalentnog naprezanja tornja za LC3

3.5.3 Analiza kriterija podobnosti

Analiza podobnosti provodi se na temelju dobivenih naprezanja i pomaka s razlogom provjere izdržljivosti samih elemenata konstrukcije. U slučaju da neki od elemenata konstrukcije ne mogu izdržati pojedina opterećenja smatraju se nepodobnima i moraju se redimenzionirati kako bi zadovoljili kriterij podobnosti. Za samu konstrukciju nije dovoljno odrediti samo naprezanja, nego je potrebno saznati hoće li doći do popuštanja, izvijanja ili neke druge vrste oštećenja. Analiza podobnosti daje nam informaciju hoće li doći do prekoraćenja strukturnog odziva konstrukcije.

Podobnost konstrukcije definira se kao odnos zahtjeva i izdržljivosti što možemo prikazati izrazom (11):

$$g = \frac{C - \gamma D}{C + \gamma D} \tag{11}$$

Gdje je:

g – faktor podobnosti

C – izdržljivost (Capability)

D-zahtjev (Demand)

γ – faktor sigurnosti

Faktor podobnosti poprima vrijednosti u interval između -1 i 1. U slučaju kada je izdržljivost jednaka nuli faktor podobnosti će poprimiti vrijednost g = -1, a u slučaju kada je zahtjev jednak nuli faktor izdržljivosti poprima vrijednost g = 1. Kada se vrijednost faktora podobnosti nalazi između 0 i 1 smatramo da je element konstrukcije podoban, a ako je faktor podobnosti negativan, element konstrukcije nije podoban i potrebno ga je redimenzionirati. U ovom radu razmatraju se kriteriji podobnosti s obzirom na izvijanje

U tablici 23 prikazani su razmatrani kriteriji podobnosti.s obzirom na izvijanje

Kriterij	Naziv kriterija	Faktor sigurnosti γ
PCCB	Panel Collapse, Combined Buckling	1.00
	(Bi-aksijalno izvijanje ukrepljenog panela)	
PFLB	Panel Failure, Local buckling	1.00
	(Uni-aksijalno izvijanje opločenja)	

Tablica 23. Kriteriji podobnosti

PCCB kriterij odnosi se na izvijanje ukrepljenog panela nastalog prilikom djelovanja uzdužnih, poprečnih i smičnih naprezanja, dok se kriterij PFLB odnosi na lokalno izvijanje oplate između ukrepa djelovanjem biaksijalnog naprezanja.

Slika 19. Prikaz vrijednosti faktora podobnosti kriterija PCCB za LC1

Slika 20. Prikaz vrijednosti faktora podobnosti kriterija PCCB za LC2

Slika 21. Prikaz vrijednosti faktora podobnosti kriterija PCCB za LC3

Slika 22. Prikaz vrijednosti faktora podobnosti kriterija PFLB za LC1

Slika 24. Prikaz vrijednosti faktora podobnosti kriterija PFLB za LC2

Slika 23. Prikaz vrijednosti faktora podobnosti kriterija PFLB za LC3

Uzimajući u obzir sva tri slučaja opterećenja za oba kriterija vidljivo je da konstrukcija nije podobna u području spajanja tornja sa spojnicama. Također, vidljivo je za kriterij PFLB da konstrukcija još nije podobna na nekim dijelovima balastnih pontona i uzgonskih cilindara. Tablicom 24 prikazane su najmanje vrijednosti faktora podobnosti za sva tri slučaja opterećenja.

Kriterij	Slučaj opterećenja	Faktor podobnosti g
PCCB	LC1	-0.520
l	LC2	-0.655
l	LC3	-0.694
PFLB	LC1	-0.416
l	LC2	-0.709
l	LC3	-0.582

Tablica 24. Prikaz najmanjih vrijednosti faktora podobnosti

4. REDIMENZIONIRANJE I PRIJEDLOG PODOBNE KONSTRUKCIJE

Dobiveni rezultati naprezanja na nekim dijelovima konstrukcije ne zadovoljavaju kriterij dopuštenog naprezanja te ih je potrebno redimenzionirati. Vidljivo je da kriterije ne zadovoljava debljina oplate na određenim dijelovima, dok svi nosači zadovoljavaju kriterij dopuštenog naprezanja kao i kriterij podobnosti.

Prema pravilima DNV-a [5] dan je izraz za određivanje dopuštenog naprezanja oplate

(12) 1 izraz za određivanje dopuštenog naprezanja nosača (13).

$$\sigma_{pd1} = 1.3(f_{yd} - \sigma_{jd})$$
(12)

$$\sigma_{pd2} = f_{yd} - \sigma_{jd} \tag{13}$$

$$f_{yd} = \frac{f_y}{\gamma_m} \tag{14}$$

Vrsta konstrukcijskog elementa	Dopuštena naprezanja [N/mm ²]
Oplata	212.727
Nosač	163.636

Tablica 25. Prikaz dopuštanih naprezanja

U samom redimenzioniranju nije provedeno klasično redimenzioniranje da se zadovolje kriteriji zbog toga što bi to zahtijevalo dodatne proračune, tj. ponovni proračun iz drugog poglavlja, ali s dobivenim rezultatima naprezanja lokalne čvrstoće iz analize metodom konačnih elemenata (MKE).

Prijedlozi redimenzioniranja slijede:

Prema analizi potrebno je povećati debljinu opločenja balastnih pontona pogotovo u području gdje se balastni pontoni spajaju s tornjem. Nakon što se povećaju debljine balastnih pontona na 40 mm, oba su kriterija podobnosti PCCB i PFLB zadovoljena za balastne pontone, dok je kriterij naprezanja zadovoljen samo za slučaj opterećenja LC1. Uz samo povećanje debljine oplate moguće je koristiti čelik povišene čvrstoće AH36 s granicom razvlačenja od 355 N/mm².

Također, potrebno je povećati debljine uzgonskih cilindara zbog zadovoljavanja kriterija podobnosti PCCB i PFLB. Isto kao i kod balastnih pontona kada se debljine povećaju na 40 mm, oba kriterija podobnosti, kao i kriterij naprezanja, su zadovoljena za sva tri slučaja opterećenja.

Nadalje, potrebno je povećati debljinu oplate tornja, pogotovo u području gdje se toranj spaja sa spojnicama. Nakon provedene analize rezultati su pokazali da se povećanjem debljine oplate na 40 mm zadovoljavaju oba kriterija podobnosti PCCB i PFLB. Također, zadovoljava se i kriterij naprezanja za sva tri slučaja opterećenja.

Uz samo povećanje debljine oplate moguće je koristiti čelik povišene čvrstoće AH36 s granicom razvlačenja od 355 N/mm².

Uz same promjene debljina opločenja potrebno je dodatno provjeriti još slučajeva valnih opterećenja promatranjem ponašanja konstrukcije na napadnim kutevima vala u krugu od 360°, odnosno, potrebno je napraviti valna opterećenja gdje je razlika između napadnih kuteva valova između npr. 15° ili 30°.

Slika 25. Prikaz ekvivalentnog naprezanja redimenzionirane oplate balastnih tankova za LC1

Slika 26. Prikaz ekvivalentnog naprezanja djelomično redimenzionirane oplate tornja za LC3

Prema slici 26 na redimenzioniranom dijelu ispod spoja sa spojnicama vidljivo je smanjenje naprezanja za razliku od neredimenzioniranog dijela koji se nalazi iznad spoja sa spojnicama.

Slika 27. Prikaz kriterija PFLB djelomično redimenzionirane oplate tornja za LC3

Prema slici 27 na redimenzioniranom dijelu ispod spoja sa spojnicama vidljivo je zadovoljavanje kriterija podobnosti za razliku od neredimenzioniranog dijela koji se nalazi iznad spoja sa spojnicama.

5. ZAKLJUČAK

Kroz ovaj rad projektiran je ponton 15 MW vjetroelektrane kroz tri faze:

- 1. Dimenzioniranje oplate i elemenata orebrenja prema pravilma DNV-a.
- 2. Strukturna analiza prototipne konstrukcije metodom konačnih elemenata (MKE).
- 3. Redimenzioniranje i prijedlog podobne konstrukcije.

U prvoj fazi dimenzionirana je oplata i elementi orebrenja koristeći računalni sustav MS Excel [2] prema pravilima DNV-a [5] te su generirane dimenzije prototipne konstrukcije.

U drugoj fazi izrađen je 3D model prema dimenzijama dobivenim u prvoj fazi u računalnom sustavu FEMAP [4] te je potom provedena analiza u računalnom sustavu MAESTRO [3] pomoću metode konačnih elemenata (MKE). Nakon rezultata analize provedeno je djelomično redimenzioniranje te je predloženo rješenje koje bi zadovoljavalo kriterij podobnosti i kriterij naprezanja.

U okviru ovoga rada od velikog se značaja pokazala analiza ekvivalentnih naprezanja na oplati konstrukcije kao i kriteriji podobnosti (izvijanje i popuštanje).

Naime, analizom 3D modela jasno se vidi da naprezanja na oplati balastnih pontona u području gdje se pontoni međusobno spajaju i gdje se spajaju s tornjem nisu zadovoljila kriterij naprezanja u sva tri slučaja opterećenja. Također, oplata balastnih pontona za valna opterećenja na nekim dijelovima ne zadovoljava uvjete podobnosti.

Nadalje, naprezanja koja se javljaju na tornju u području gdje se toranj spaja sa spojnicama ne zadovoljavaju kriterij naprezanja kao ni oba kriterija podobnosti.

Zbog ne zadovoljavanja kriterija naprezanja i podobnosti potrebno je provesti redimenzioniranje oplate pontona povećanjem debljina oplate unatoč tome što su dimenzije oplate proračunane u prvoj fazi zadovoljile sva propisana pravila.

Ovakav rezultat činjenica je da dimenzioniranje konstrukcije prema pravilima klasifikacijskih društava, u ovom slučaju DNV-a [5], koja se temelje na proračunu lokalne čvrstoće neće uvijek zadovoljavati i primarnu čvrstoću. Zato je od velike važnosti provoditi analizu primarne čvrstoće metodom konačnih elemenata (MKE).

LITERATURA

- IEA Wind TCP Task 37, Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind, Techincal Report, July 2020.
- [2] Microsoft Excel 2016, Microsoft Office 365, USA 2016.
- [3] MAESTRO Version 11.5.0, Software Documentation. DRS-C3 Advanced Technology Center, Stevensville, USA, 2017.
- [4] FEMAP Version 2019.1 MP1, 2019 Siemens Digital Industries Software".
- [5] Det Norske Veritas, Floating wind turbine structures, DNV-ST-01, June 2021.
- [6] Det Norske Veritas, Environmental Conditions and Environmental Loads, DNV-RP-C205, October 2010.

PRILOZI

I.