Ljutić, Sandro

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:525016

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-14

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Sandro Ljutić

Zagreb, 2023.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Turbomlazni motor za pogon bespilotne letjelice

Mentor:

Student:

Prof. dr. sc. Zvonimir Guzović, dipl. ing.

Sandro Ljutić

Komentorica:

Dr. sc. Marina Barbarić, mag. ing.

Zagreb, 2023.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se roditeljima što su mi osigurali uvjete potrebne za studiranje te obitelji na potpori tijekom studija.

Zahvaljujem se mentoru prof. dr. sc. Zvonimiru Guzoviću i komentorici dr. sc. Marini Barbarić, na potrebnoj literaturi, savjetima i susretljivosti u tijeku izrade ovoga rada.

9. Lj.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za završne i diplomske ispite studija zrakoplovstva

Sveučili	šte u Zagrebu
Fakultet stroja	rstva i brodogradnje
Datum	Prilog
Klasa: 602 - 04	/23-6/1
Ur.broj: 15 - 170)3 - 23 -

DIPLOMSKI ZADATAK

Student: Sandro Ljutić

JMBAG: 0036493714

Naslov rada na hrvatskom jeziku: Turbomlazni motor za pogon bespilotne letjelice

Naslov rada na engleskom jeziku: Turbojet engine for unmanned aircraft propulsion

Opis zadatka:

Cilj diplomskog zadatka je napraviti idejni projekt turbomlaznog motora za pogon bespilotne letjelice. Polazište u razvoju projekta je sila potiska od 1600 N uz maksimalnu temperaturu ciklusa 1400 K. Predviđena brzina letjelice je 220 m/s a dolet 600 km. U okviru diplomskog zadatka je potrebno:

1) dati prikaz tipova bespilotnih letjelica i mogućnosti njihova pogona;

2) predložiti strukturu turbomlaznog motora za pogon bespilotne letjelice (tip turbokompresora, komore izgaranja i plinske turbine);

3) provesti termodinamički proračun ciklusa turbomlaznog motora;

4) provesti aero-termodinamički proračun turbokompresora, komore izgaranja i plinske turbine;

5) izraditi crtež uzdužnog presjeka turbomlaznog motora.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

19. siječnja 2023.

Zadatak zadao:

Prof. dr. sc. Zvopimir Guzović

Datum predaje rada: 23. ožujka 2023. Predviđeni datumi obrane:

27.-31. ožujka 2023.

Predsjednik Povjerenstva:

Prof. dr. sc. Milan Vrdoljak

SADRŽAJ

SADRŽAJII
POPIS SLIKA IV
POPIS TABLICAV
POPIS TEHNIČKE DOKUMENTACIJE
POPIS OZNAKA
SAŽETAKXII
SUMMARY
1. UVOD
1.1. Pogonski sustavi bespilotnih letjelica2
1.1.1. Motori s unutarnjim izgaranjem (pogonski sustav na (tekuće) gorivo)4
1.1.2. Hibridni pogonski sustav
1.1.3. Električni pogonski sustav9
2. O PROJEKTU TM 1600 N 11
3. TERMODINAMIČKI PRORAČUN CIKLUSA TURBOMLAZNOG MOTORA 13
4. PRORAČUN TURBOKOMPRESORA
5. PRORAČUN KOMORE IZGARANJA
5.1. Toplinski proračun komore izgaranja - proračun procesa izgaranja:
5.2. Provjera dimenzija (toplinskog opterećenja) komore izgaranja usvojene geometrije:
5.3. Određivanje temperature stijenke plamene cijevi:
6. PRORAČUN PLINSKE TURBINE
6.1. Termodinamički i plinskodinamički proračun stupnja po srednjem promjeru: 46
6.2. Određivanje parametara toka na unutarnjem i vanjskom promjeru:
7. PRORAČUN KONSTRUKCIJE PROFILA PROTOČNOG DIJELA
CENTRIFUGALNOG KOMPRESORA
7.1. Imperer
7.2. Kombinirani dituzor
8. PRORACUN KONSTRUKCIJE PROFILA PROTOCNOG DIJELA AKSIJALNOG PLINSKO-TURBINSKOG STUPNJA 71
8.1. Statorska rešetka 71
8.2. Rotorska rešetka

9.	ZAKLJUČAK	84
10.	LITERATURA	85
PR	ILOZI	87

POPIS SLIKA

Slika 1.1.	Bespilotna letjelica Kratos XQ-58 A [1]2
Slika 1.2.	Kategorije bespilotnih letjelica [3] – [7]
Slika 1.3.	Turbomlazni motor Kratos za pogon letećeg projektila ili bespilotne letjelice [9]5
Slika 1.4.	Vrste mlaznih motora [8]: (a) Turbomlazni; (b) Turboventilatorski; (c) Turbopropelerski; (d) Turboosovinski
Slika 1.5.	Klipni motor Rotax 582UL [10]6
Slika 1.6.	Bespilotna letjelica Lockheed Martin SR-72 [11]7
Slika 1.7.	Hibridni motor LaunchPoint HPS400 GenSet (klipni motor Rotax 582UL i elektromotor LaunchPoint) [13]
Slika 1.8.	Elektromotor CR Flight eVP-50 [14]10
Slika 3.1.	Prikaz ciklusa turbomlaznog motora u T-s dijagramu14
Slika 3.2.	Teorijski omjer gorivo/zrak u zavisnosti o prirastu temperature u komori izgaranja
Slika 4.1.	Shematski prikaz centrifugalnog kompresora s kombiniranim difuzorom [15] 23
Slika 6.1.	Uzdužni presjek kroz turbinski stupanj [15]46
Slika 6.2.	Plinskodinamičke funkcije
Slika 6.3.	Nastavak plinskodinamičkih funkcija
Slika 6.4.	Nastavak plinskodinamičkih funkcija
Slika 6.5.	Zavisnost $\sigma' = f(\lambda, \varphi)$
Slika 6.6.	Zavisnost koeficijenta brzine ψ o konfuzornosti rešetke k i kutu zakreta toka ($\beta_1 + \beta_2$)
Slika 7.1.	Meridionalni presjek impelera centrifugalnog kompresora [15] 62
Slika 7.2.	Parametri lopatice "rotirajućeg pretkola" čija je skeletnica kružni luk [15]64
Slika 7.3.	Poprečni presjek kombiniranog difuzora [15]69
Slika 8.1.	Zavisnost kuta otklona toka $\Delta \alpha (\Delta \beta) = \alpha_1 (\beta_2) - \alpha_{1r} (\beta_{2r})$ o Machovom broju M _{1c} (M _{2w}) na izlazu iz rešetke s različitim kutovima $\alpha_{1r} (\beta_{2r})$

POPIS TABLICA

Tablica 1.1. Karakteristike bespilotnih letjelica sa različitim vrstama krila	4
Tablica 1.2. Usporedba karakteristika motora s unutarnjim izgaranjem i karakteristika bespilotih letjelica s pojedinom vrstom motora	8
Tablica 6.1. Rezultati proračuna parametara toka ovisno o položaju	. 61
Tablica 8.1. Polazni podaci za konstrukciju profila statorskih lopatica	.71
Tablica 8.2. Polazni podaci za konstrukciju profila rotorskih lopatica	.77

POPIS TEHNIČKE DOKUMENTACIJE

Radionički crtež:	SLJ_D_2023_01
	SLJ_D_2023_02
	SLJ_D_2023_03

POPIS OZNAKA

Ovdje treba voditi računa o preklapanju simbola i indeksa. Preklapanja postoje zato da bi se smanjio i ovako opsežan broj oznaka i indeksa.

Oznaka	Jedinica	Opis
<i>A</i> , <i>F</i>	m ²	Površina
а	m/s	Brzina zvuka
а	mm	Visina
b	mm	Duljina tetive
B, b, s	mm	Širina
С	m/s	Brzina
С	mm	Debljina
C _f	_	Koeficijent otpora trenja diska
c_p	kJ/((kgK))	Specifični toplinski kapaciteti
D, d	_	Promjer
F_{sp}	Ns/kg	Specifična sila potiska
g_{sp}	_	Specifična potrošnja goriva
g_s	_	Stvarni omjer gorivo/zrak
g_t	_	Teorijski omjer gorivo/zrak
Н	kJ/(m ³ hPa)	Toplinsko opterećenje radnog volumena plamene cijevi
h	mm	Visina lopatice
h	kJ/kg	Specifična entalpija
i	٥	Napadni kut
K _M	_	Korekcijski faktor s obzirom na Machov broj
L	J/kg	Specifični rad

Oznaka	Jedinica	Opis
L	kg_z/kg_g	Količina zraka
l	mm	Duljina
\overline{L}_s	_	Koeficijent izentropskog rada
\overline{L}_t	_	Koeficijent tehničkog rada
$m_{_}$	kg_kg_g	Maseni sastav produkata izgaranja
n	okr/s	Brzina vrtnje
Nu	_	Nusseltova značajka
Р	kW	Snaga
p	bar	Tlak
Q	kW	Toplina
R	_	Reaktivnost
R	mm	Polumjer skeletnice lopatice
r	mm	Polumjer
r_	kg_/kg _{pi}	Maseni udio produkata izgaranja
Re	_	Reynoldsov broj
Т	К	Temperatura
t	mm	Korak rešetke
и	m/s	Obodna brzina
W	m/s	Relativna brzina
w_g	m/s	Uvjetna brzina zraka u području izgaranja
Ζ	_	Broj lopatica

Oznaka	Jedinica	Opis		
α	0	Kut apsolutne brzine		
α	$W/(m^2K)$	Koeficijent prijelaza topline		
α_{td}	_	Relativni gubitak rada na trenje diska		
$lpha_u$	_	Ukupni pretičak zraka		
β	0	Kut relativne brzine		
β_{td}	_	Koeficijent gubitka na trenje diska		
δ	0	Kut otklona		
$\overline{\delta \iota}$	_	Normirani gubitak rada		
ζ	_	Relativni gubitak		
η	_	Iskoristivost		
η_e	_	Iskoristivost energetske pretvorbe		
η_h	_	Hidraulička iskoristivost		
η_p	_	Iskoristivost potiska (Froudeova iskoristivost)		
η_u	_	Ukupna iskoristivost		
θ	_	Koeficijent protoka		
θ	٥	Kut zakreta toka		
θ	٥	Kut nagiba unutarnje konture kanala		
λ	_	Koeficijent brzine		
μ	_	Faktor skliza; viskoznost		
ξ	_	Koeficijent gubitaka		
ρ	kg/m ³	Gustoća		
$ ho_{st}$	_	Reaktivnost stupnja		
τ	_	Koeficijent suženja strujnog presjeka		
arphi	٥	Kutno rastojanje između ulaznih bridova lopatica, kut zaobljenja		

Oznaka	Jedinica	Opis
ψ	_	Koeficijent brzine

Zna	čen	ie	ind	eksa
LIIA	cen	Je	шu	eksa:

' = izentropska promjena stanja; utočnjena vrijednost

- = normirana (relativna) veličina
- 0 = zaustavna veličina stanja; teoretska; ulaz u statorske lopatice turbine
- 1 = veličina stanja iza usisnika (na ulazu u rotor kompresor)
- 2 = veličina stanja na izlazu iz kompresora (na ulazu u komoru izgaranja); veličina stanja na izlazu iz rotora kompresora (na ulazu u bezlopatični dio kombiniranog difuzora); veličina stanja na izlazu iz rotorskih lopatica turbine
- 3 = veličina stanja na izlazu iz komore izgaranja (na ulazu u t; produkti izgaranjaurbinu); veličina stanja na ulazu u lopatični dio kombiniranog difuzora
- 4 = veličina stanja na izlazu iz turbine; veličina stanja na izlazu iz difuzora
- 5 = veličina stanja na izlazu iz mlaznice
- a = atmosferska veličina stanja; aksijalno
- d = difuzor

div = divergencija

- e = ekvivalentni
- g = gorivo
- gr = granično
- iz = izlaz
- k = kompresor; konačna veličina stanja; korijeni
- kor = korigirano
- kr = kritična veličina stanja
- m = meridionalano, maksimalno

Značenje indeksa:

- pc = plamena cijev
- *pi* = produkti izgaranja
- s = izentropski
- *sr* = srednji
- *st* = stupanj; srednji; stvarni
- t = turbina
- *tr* = trenje
- u = obodna (vrtložna) komponenta

v = vratilo; vršni

z = zrak

SAŽETAK

Svijet se nalazi u kriznoj situaciji koja je uzrokovana ratnim zbivanjima u Ukrajini. Za vrijeme takvih ratnih zbivanja postoji pojačana potreba za razvojem tehnologije, pa time i mlaznih motora, a u ovom radu je prikazan jedan takav Turbomlazni motor 1600 N (TM 1600 N).

TM 1600 N je turbomlazni motor posebne namjene namijenjen za pogon bespilotne letjelice (drona), a koji se ugradnjom niskotlačne plinske turbine umjesto mlaznice pretvara u plinsku turbinu opće namjene. U ratu, kao što je rat između Ukrajine i Rusije bespilotne letjelice su od velike važnosti (što se i pokazalo na terenu) iz razloga što su to besposadne letjelice, koje se mogu upravljati na daljinu ili letjeti samostalno uporabom unaprijed programiranog plana leta, što znači da njihovim obaranjem nema ljudskih žrtava.

Ključne riječi: bespilotne letjelice, Turbomlazni motor 1600 N (TM 1600 N), centrifugalni kompresor, komora izgaranja sa zakretom toka, aksijalna plinska turbina, aero-termodinamički proračun.

SUMMARY

The world is in a crisis situation caused by war in Ukraine. During war events, there is an increased need for the development of technology, and thus of jet engines, and this paper presents one such Turbojet engine 1600 N (TM 1600 N).

The TM 1600 N is a special-purpose turbojet engine intended for an unmanned aerial vehicle (drone), which, by installing a low-pressure gas turbine instead of a nozzle, turns into a general-purpose gas turbine. At war, such as the war between Ukraine and Russia, drones are of great importance (which has been proven on the ground) because they are unmanned aerial vehicles, which can be controlled remotely or fly autonomously using a pre-programmed flight plan, which means that by shooting them down there is no human casualties.

Key words: unmanned aerial vehicles, Turbojet engine 1600 N (TM 1600 N), centrifugal compressor, reverse flow combustion chamber, axial gas turbine, aero-thermodynamic calculation.

1. UVOD

Bespilotne letjelice, BPL (engl. *Unmanned aerial vehicle*, *UAV*), (termin, koji će se koristiti u ovom radu umjesto "drona", jer se "dron" spominje najčešće u kontekstu manjih i električki pogonjenih letjelica) su razvojem tehnologije sve značajnija pojava u suvremenom svijetu. Postoje mnoge prednosti bespilotnih letjelica zbog njihove jednostavnosti upotrebe, sigurnosti, niske cijene i ekološke prihvatljivosti, zbog kojih mogu izvoditi razne vrste opasnih, dalekoletnih i dugotrajnih misija. Njihov značaj od velike je važnosti u ratnim zbivanjima (za izviđanje i napad na ciljeve), koja su zadesila svijet 2022. godine (rat između Rusije i Ukrajine). Osim u ratu bespilotne letjelice mogu se koristiti za brojne civilne zadaće, kao što su vatrogasni zadaci, policijsko praćenje, istraživanje terena ili istraživanje vremenskih nepogoda (uragan).

Na slici 1.1. prikazana je eksperimentalna bespilotna borbena letjelica *Kratos XQ-58 A* (UCAV, engl. *unmanned combat aerial vehicle*) u vlasništvu Američkog ratnog zrakoplovstva.

Slika 1.1. Bespilotna letjelica Kratos XQ-58 A [1]

Bespilotna borbena letjelica *Kratos XQ-58 A* je primjer bespilotne letjelice pogonjene turbomlaznim motorom. Upravo jedan od takvih turbomlaznih motora za pogon bespilotne letjelice obrađuje se u ovom radu.

1.1. Pogonski sustavi bespilotnih letjelica

Bespilotne letjelice mogu se podijeliti u šest kategorija s obzirom na njihovu vrstu krila (slika 1.2.): bespilotne letjelice s fiksnim krilom (engl. *fixed-wing UAVs*), bespilotne letjelice s više rotirajućih krila (multirotori) (engl. *multi-rotary-wing UAVs*), bespilotni helikopteri (engl. *unmanned helicopters*), bespilotni cepelini (engl. *blimp*), bespilotne letjelice s padobranom (engl. *parachute-wing UAVs*) i bespilotni mahokrilci (engl. *flapping-wing UAVs*) [2].

a) Bespilotna letjelica s fiksnim krilom

c) Bespilotni helikopter

b) Bespilotna letjelica s više rotirajućih krila

e) Bespilotni mahokrilac Slika 1.2. Kategorije bespilotnih letjelica [3] – [7]

U tablici 1.1. prikazane su karakteristike bespilotnih letjelica sa različitim vrstama krila. Iz tablice 1.1. se uočava da bespilotne letjelice sa fiksnim krilom mogu: prenijeti najteži teret, postići najviše brzine, najviše vremena provesti u zraku te postići najviše visine leta, pri čemu je bitno naglasiti da ove visoke performanse ovise u mnogočemu o pogonskom sustavu bespilotne letjelice te zbog navedenog takva vrsta letjelice koristi mlazne ili nabojne motore o kojima će riječ biti kasnije. Američko i kinesko ratno zrakoplovstvo koriste ovakvu vrstu bespilotnih letjelica zbog izvrsnih performansi te je to razlog njihove široke primjene na bojištima. Multirotorske bespilotne letjelice karakterizira niska cijena, jednostavan rad, mala masa, prenosivost te stabilnost leta i češće se koriste za civilne potrebe.

Model	Kategorije BPL	Duljina krila/m	Masa tereta/kg	Brzina	Vrijeme u letu	Visina leta/m
RQ-4	Fiksno krilo	35,4	10400	650 km/h	32 h	20000
Soar Dragon	Fiksno krilo	24,86	600	700 km/h	10 h	18000- 20000
Inspire 2	Više rotirajućih krila	N/A	0,8	94 km/h	23-27 min	2500- 3000
S-100	Helikopter	N/A	50	220 km/h	6 h	5500
CA-36R	Cepelin	N/A	150	72 km/h	5 h	1500
SY-2000	S padobranom	2	3-5	60 km/h	3-4 h	4000
A160T	Helikopter	N/A	454	260 km/h	30-40 h	9144
ASN-211	Mahokrilac	0,6	0,22	6-10 m/s	N/A	20-200
Robo Raven-V	Mahokrilac	0,61	0,71	6,7 m/s	10-15 min	N/A

Tablica 1.1. Karakteristike bespilotnih letjelica sa različitim vrstama krila

Bespilotne letjelice mogu se još podijeliti u kategorije prema veličini kao mini, mikro i nano bespilotne letjelice te prema brzini kao bespilotne letjelice male brzine, podzvučne, transzvučne, nadzvučne i hiperzvučne brzine [2].

Ovisno o vrsti bespilotne letjelice ovisi i vrsta pogonskog sustava.

Pogonski sustav određuje, koju će misiju moći izvršiti karakteristična bespilotna letjelica.

Pogonski sustav se sastoji od izvora energije i pogonske jedinica (motor). Prema izvorima energije, pogonski sustavi bespilotnih letjelica mogu se podijeliti u tri vrste: oni, kojima je izvor energije gorivo, hibridni izvor energije (kombinacija goriva i struje) i električni izvor energije. Također, postoji i podjela unutar pogonskih jedinica (motora) koje koriste (tekuće) gorivo (motori s unutarnjim izgaranjem) na: klipne motore, mlazne motore i nabojne motore (engl. *ramjet* i *scramjet*).

1.1.1. Motori s unutarnjim izgaranjem (pogonski sustav na (tekuće) gorivo)

Prednosti bespilotnih letjelica, koje koriste motore s unutarnjim izgaranjem su: velika nosivost, dugo vrijeme provedeno u letu, dugi dolet i brzo punjenje spremnika gorivom. Međutim, sa sve većim ekološkim problemima i iscrpljivanjem fosilnih goriva, energetski problem letjelica postao je stalni izazov te su sada u fokusu istraživanja hibridne i električne bespilotne letjelice.

Prednosti mlaznih motora (slika 1.3.) su: mala masa u odnosu na ukupnu masu bespilotne letjelice, značajni omjer snage i težine te široki raspon primjene, pa se uvelike koriste u pogonskim sustavima bespilotnih letjelica i zrakoplova. Međutim, ispušni plinovi, koji izlaze iz turbomlaznih motora imaju visoku vrijednost temperature i tlaka. Ti ispušni plinovi imaju još uvijek puno neiskorištene energije te zbog toga turbomlazni motori imaju nedostatke kao što su niska iskoristivost i visoka potrošnja goriva pri malim brzinama.

Slika 1.3. Turbomlazni motor Kratos za pogon letećeg projektila ili bespilotne letjelice [9]

Na slici 1.4. prikazane su sve vrste mlaznih motora. Turboosovinski mlazni motor jedini se od preostala tri može koristiti za bespilotni helikopter, dok se ostala tri koriste za bespilotne letjelice s fiksnim krilom.

Slika 1.4. Vrste mlaznih motora [8]: (a) Turbomlazni; (b) Turboventilatorski; (c) Turbopropelerski; (d) Turboosovinski

Prednosti klipnih motora su: provjerena tehnologija, jednostavnija konstrukcija u odnosu na mlazne motore, jeftiniji za proizvodnju i upotrebu te imaju dobru ekonomičnost i pouzdanost. Nedostaci klipnih motora u usporedbi s mlaznim motorima su: nizak omjer snage i težine, ograničenje brzine (ne mogu se ostvariti nadzvučne brzine zbog ostvarivanja potiska putem elise) i loše performanse na višim nadmorskim visinama zbog rjeđeg zraka. Na slici 1.5. prikazan je klipni, dvocilindrični, dvotaktni motor *Rotax 582UL*.

Slika 1.5. Klipni motor Rotax 582UL [10]

Za brzine veće od brzine zvuka koriste se nabojni motori, zato što se pri brzinama većim od brzine zvuka performanse mlaznog motora smanjuju i niže su u odnosu na nabojne motore. Primjer bespilotne letjelice, koja koristi turbomlazni i nabojni motor je *Lockheed Martin SR-72 [11]* (slika 1.6.). *SR-72* koristi kombinirani turbinski pogon koji je još u razvoju. Pogon je kombinirani iz razloga što bespilotna letjelica da bi došla do brzine Mach 3 koristi turbomlazni motor, a za brzinu do Mach 6 koristi nabojni (engl. *scramjet*).

Slika 1.6. Bespilotna letjelica Lockheed Martin SR-72 [11]

Glavni parametri motora s unutarnjim izgaranjem prikazani su u tablici 1.2., iz koje se može uočiti da turbomlazni i turboventilatorski motori imaju u odnosu na ostale motore iz tablice 1.2. značajno bolje performanse pri visokim brzinama, sposobnost letenja na visokim nadmorskim visinama kao i omjer snage spram težine. Stoga su takve vrste motora prikladne za vojne bespilotne letjelice, za izviđanje na velikim nadmorskim visinama itd. Turbopropelerski motori osiguravaju manje brzine i ne mogu ubrzati letjelicu do brzine zvuka zbog pojave udarnog vala. Iz tablice 1.2. se može uočiti da većinu najnižih karakteristika pružaju klipni motori izuzev vremena u letu (po čemu su ponajbolji).

	Karakteristike motora				Karakteristike bespilotnih letjelica		
Vrsta	Izlazna snaga	Brzina vrtnje u minuti	Omjer snage i mase, kW/kg	Brzina, km/h	Visina leta, m	Vrijeme u letu, h	Ukupna masa letjelice, kg
Klipni motor	20-400 Ks	3000- 7000	0,76- 1,37	110- 260	2500- 9700	<40	<1150
Zvjezdasti motor	<120 Ks	6000- 12000	<4,1	N/A	2500- 8000	N/A	<1000
Turbomlazni	<170 kN	N/A	<10	700- 1100	3000- 14000	<2,5	<2500
Turboventilatorski	<560 kN	N/A	<11	500- 1100	3000- 20000	<42	<12000
Turbopropelerski	<1000 Ks	1000	≈ 4	350- 500	14000- 16000	<32	<3200
Turboosovinski	<9000 Ks	N/A	3-7	180- 300	4000- 6100	<4	<1500

Tablica 1.2.	Usporedba karakteristika	motora s unutarnjim	izgaranjem	i karakteristika	bespilotih
	letjelica	a s pojedinom vrstom i	motora		

1.1.2. Hibridni pogonski sustav

Hibridni pogonski sustav (slika 1.7.) sastoji se od motora s unutarnjim izgaranjem i elektromotora, koji rade zajedno kako bi osigurali snagu potrebnu za let bespilotne letjelice, čime se učinkovito štedi oko 30 % goriva u usporedbi s motorima s unutarnjim izgaranjem [12]. Kod motora s unutarnjim izgaranjem gubici uglavnom dolaze od motora, a mehanički gubici od trenja između zupčanika i pogonskog vratila. Kod hibridnog pogonskog sustava sam elektromotor ima određeni gubitak energije te još postoje mehanički i toplinski gubici, a dio električne energije gubi se zbog zagrijavanja vodiča prilikom prijenosa energije između elektromotora i baterije.

Na slici 1.7. prikazan je klipni motor *Rotax 582UL* čije se specifikacije mogu pogledati na [10] i hibridni motor *LaunchPoint HPS400 GenSet* čije se specifikacije mogu pogledati na [13].

Slika 1.7. Hibridni motor LaunchPoint HPS400 GenSet (klipni motor Rotax 582UL i elektromotor LaunchPoint) [13]

Klipni motori imaju mnogo veću iskoristivost od mlaznih i nabojnih motora i u kombinaciji s elektromotorom (hibridni pogonski sustav) iskoristivost im je još veća. Također, velika prednost klipnog motora, a time i hibridnih motora je u tome što je njihova kombinirana masa (masa motora, goriva i baterija) manja od kombinirane mase mlaznog motora i goriva. Prednost hibridnih pogonskih sustava u odnosu na pogonske sustave samo sa motorom s unutarnjim izgaranjem je i ta što povećavaju dolet letjelice.

1.1.3. Električni pogonski sustav

Električni pogonski sustavi (slika 1.8.) koriste elektromotore kao pogonsku jedinicu i stoga ne emitiraju štetne ispušne plinove, tj. ispušne plinove uopće, te time smanjuju zagađenje atmosfere. Prednost električnih pogonskih sustava je i niska cijena izvora energije i elektromotora (izuzev same baterije) te visoka iskoristivost energije. Električne bespilotne letjelice zadovoljavaju trenutne ekološke potrebe za očuvanjem energije i smanjenjem štetnih emisija i predstavljaju važan smjer razvoja bespilotnih letjelica. Smanjenje štetnih emisija nastupit će samo ako se za izvor električne energije koriste obnovljivi izvori energije (vjetroelektrane, hidroelektrane, solarne elektrane) u protivnom ako se koriste primjerice termoelektrane na kruto gorivo za proizvodnju električne energije efekt je isti kao i da koristimo motore pogonjene gorivom. Također, prednost električnog pogonskog sustava je u tome što se umjesto jednog velikog elektromotora i elise može koristit više manjih elektromotora i elisa čime se postiže bolja stabilnost i upravljivost bespilotne letjelice. Takav električni pogonski sustav naziva se distribuirani električni pogonski sustav [8].

Slika 1.8. Elektromotor CR Flight eVP-50 [14]

Zbog gore navedenih prednosti mlaznih motora te zbog kompaktnih dimenzija te zahtijevanih performansi od motora u ovom radu će se provesti proračun jednog takvog turbomlaznog motora. Pri tome takav turbomlazni motor se može primijeniti za bespilotnu letjelicu sa fiksnim krilom ili za leteći projektil.

2. O PROJEKTU TM 1600 N

Cilj projekta TM 1600 N je razviti vlastiti turbomlazni motor posebne namjene za pogon bespilotne letjelice. Također, ugradnjom niskotlačne plinske turbine umjesto mlaznice dobije se plinska turbina opće namjene.

Polazište u razvoju motora je tehnički zahtjev kojim je zadana statička sila potiska od 1600 N uz maksimalnu temperaturu od 1400 K. Predviđena brzina letjelice je 220 m/s, a dolet 600 km.

Projekt turbomlaznog motora mora biti maksimalno prilagođen postojećim tehnološkim mogućnostima i korištenju dostupnih postojećih komponenti turbomlaznih motora.

Kod definiranja procesa u turbomlaznom motoru potrebno je voditi računa o tri osnovne karakteristike. Prva karakteristika je postavljanje procesa temeljem zahtjeva maksimalne termodinamičke iskoristivosti i specifične potisne sile. Zadovoljenje prvenstveno tog zahtjeva vodi prema složenijoj konstrukciji i težem motoru s aksijalnim turbokompresorom s više stupnjeva. Zahtjev lake jednostavne konstrukcije moguće je zadovoljiti korištenjem centrifugalnog kompresora s jednim stupnjem, koji ima maksimalni teoretski i praktični kompresijski omjer $\varepsilon = 4$. Također, prednost centrifugalnog kompresora je i njegova kompaktnost. Projekt se temelji na korištenju jedne komore izgaranja sa zakretom toka koja je strujno i toplinski najdelikatniji sastavni element turbomlaznog motora. Turbina je kao i kod svih turbomlaznih motora aksijalna, a u ovom slučaju imat će jedan stupanj. Ovime je u cijelosti određena struktura motora. Zahtjev pogodne tehnologičnosti se temelji na sadašnjim tehnološkim mogućnostima. Razvojem novog kompresora, turbine, mlaznice pomoćnih sklopova i agregata, koji se bez većih poteškoća mogu izraditi korištenjem postojećih tehnološki mogućnosti, uz odabranu postojeću komoru izgaranja, može se razviti turbomlazni motor zahtijevanih parametra za pogon bespilotne letjelice.

Termodinamički proračun procesa u turbomlaznom motoru i aero-termodinamički proračun pojedinih njegovih sastavnih dijelova izrađen je tako da su dobivene sve potrebne podloge za konstrukciju motora. Tijekom izrade konstrukcije može se javiti potreba manjih promjena u proračunu zbog usklađivanja funkcionalnih karakteristika i geometrijskih veličina. Postavljeni algoritmi termodinamičkih i plinskodinamičkih proračuna su takvi da se potrebne

modifikacije u proračunu mogu lako provesti. Cjelokupni proračun je proveden pomoću programskog jezika *MATLAB* koji omogućava brze izmjene parametara i iščitavanje novih rezultata.

Zbog velikog broja oznaka i indeksa u cijelom proračunu često su iste oznake u različitim poglavljima korištene s različitim značenjem, isto kao što su poneke i ponovljene, pa o tome prilikom čitanja i korištenja proračuna treba voditi računa.

U nastavku će biti prikazan niz proračuna putem kojih se određuju dimenzije turbomlaznog motora prema zadanim tehničkim zahtjevima. U svakom poglavlja biti će prikazane relacije u matematičkom obliku i proračunske vrijednosti, a uz rad će biti priložen potrebni *MATLAB* kod za dobivanje rezultata iz ovog rada. "*m*." datoteke iz priloga sukcesivno odgovaraju poglavljima 3. - 8.

Proračun je izrađen pomoću mnogih literatura: [15] – [24] od kojih su neke dostupne na Fakultetu strojarstva i brodogradnje.

3. TERMODINAMIČKI PRORAČUN CIKLUSA TURBOMLAZNOG MOTORA

Tehnički zahtjevi za turbomlazni motor:

Nominalna statička sila potiska	F = 1600 N
Brzina letenja	$c_a = 220 \text{ m/s}$
Maksimalna temperatura ciklusa	$\dots T_{03} = 1400 \text{ K}$
Donja ogrijevna vrijednost goriva	$H_d = 42800 \text{ kJ/kg}$

Prihvaćeni polazni podaci za proračun:

Tlak okoliša $p_a = 1,013$ bar
Temperatura okoliša $T_a = 288 \text{ K}$
Kompresijski omjer $\varepsilon = 4$
Izentropska iskoristivost kompresora $\eta_k = 0,8013$
Izentropska iskoristivost turbine $\eta_t = 0.86$
Izentropska iskoristivost usisnika $\eta_{us} = 0,93$
Izentropska iskoristivost mlaznice $\eta_{ml} = 0.95$
Mehanička iskoristivost $\eta_m = 0,99$
Iskoristivost komore izgaranja $\eta_{ki} = 0,97$
Gubitak tlaka u komori izgaranja $\Delta p_{ki} = 6\%$
Specifični toplinski kapacitet zraka $c_{pz} = 1005 \text{ J/(kgK)}$
Specifični toplinski kapacitet plinova izgaranja $c_{pp} = 1155 \text{ J/(kgK)}$
Individualna plinska konstanta za zrak $R_z = 287 \text{ J/(kgK)}$
Individualna plinska konstanta za plinove izgaranja $R_p = 289 \text{ J/(kgK)}$
Izentropski eksponent za zrak $\kappa_z = 1,4$
Izentropski eksponent za plinove izgaranja $\kappa_p = 1,333$

Ciklus turbomlaznog motora sa karakterističnim točkama prikazan je na slici 3.1. Dijagram je dobiven na temelju idealnog nepovratnog *Braytonovog* ciklusa za stvarne procese u turbomlaznom motoru.

Slika 3.1. Prikaz ciklusa turbomlaznog motora u T-s dijagramu

3.1. Tlak i temperatura ispred usisnika pri atmosferskom stanju, p_a odnosno T_a :

 $p_a = 1,013$ bar $T_a = 288$ K

3.2. Zaustavna temperatura i tlak iza usisnika (na ulazu u kompresor) T_{01} odnosno p_{01} :

Proračun se izvodi za statičke uvjete ($c_a = 0$ m/s) na razini zemlje iz razloga što se u tim uvjetima vrši mjerenje potisne sile dinamometrom.

Kako se mjerenje potisne sile motora vrši na zemlji u stanju mirovanja, proračun se radi za statičke uvjete. Prema tome:

$$T_{01} = T_a$$
$$p_{01} = p_a$$

U slučaju da postoji brzina letenja, $c_a \neq 0$:

$$T_{01} = T_a + \frac{c_a^2}{2c_{pz}}$$
$$p_{01} = p_a \left(1 + \eta_{us} \frac{c_a^2}{2R_z T_a}\right)$$

3.3. Zaustavni tlak na izlazu iz kompresora, p_{02} :

$$p_{02} = \varepsilon p_{01} = 4,052$$
 bar

3.4. Razlika zaustavnih temperatura na izlazu i ulazu kompresora, $T_{02} - T_{01}$:

$$T_{02} - T_{01} = \left(\frac{T_{01}}{\eta_k}\right) \left[\left(\frac{p_{02}}{p_{01}}\right)^{\frac{\kappa_z - 1}{\kappa_z}} - 1 \right] = 174,67 \text{ K}$$

3.5. Specifični rad kompresora, L_k :

$$L_k = c_{pz}(T_{02} - T_{01}) = 175547,5 \text{ J/kg} = 175,5475 \text{ kJ/kg}$$

3.6. Zaustavna temperatura na izlazu iz kompresora (na ulazu u komoru izgaranja), T_{02} :

$$T_{02} = T_{01} + (T_{02} - T_{01}) = 462,67 \text{ K}$$

3.7. Razlika zaustavnih temperatura na izlazu i ulazu u komoru izgaranja, $T_{03} - T_{02}$:

$$T_{03} - T_{02} = 937,33 \text{ K}$$

3.8. Zaustavni tlak na izlazu iz komore izgaranja (na ulazu u turbinu), po3:

$$p_{03} = p_{02}(1 - \Delta p_{ki}) = 3,809$$
 bar

3.9. Razlika zaustavnih temperatura na ulazu i izlazu iz turbine, $T_{03} - T_{04}$:

$$T_{03} - T_{04} = \frac{c_{pz}(T_{02} - T_{01})}{\left(1 + \frac{\dot{m}_g}{\dot{m}_z}\right)c_{pp}\eta_m} = 149,95 \text{ K}$$

3.10. Zaustavna temperatura na izlazu iz turbine, T_{04} :

$$T_{04} = T_{03} - (T_{03} - T_{04}) = 1250,05 \text{ K}$$

3.11. Specifični rad turbine, L_t :

$$L_t = c_{pp}(T_{03} - T_{04}) = 173196,9 \text{ J/kg} = 173,1969 \text{ kJ/kg}$$

3.12. Izentropska zaustavna temperatura na izlazu iz turbine, T'_{04} :

$$T'_{04} = T_{03} - \frac{(T_{03} - T_{04})}{\eta_t} = 1225,63 \text{ K}$$

3.13. Zaustavni tlak na izlazu iz turbine, p_{04} :

$$p_{04} = p'_{04} = p_{03} \left(\frac{T'_{04}}{T_{03}}\right)^{\frac{\kappa_p}{\kappa_p - 1}} = 2,236$$
 bar

3.14. Ekspanzijski omjer mlaznice, $\frac{p_{04}}{p_a}$:

$$\frac{p_{04}}{p_a} = 2,208$$
 bar

3.15. Kritični omjer tlakova, $\frac{p_{04}}{p_{kr}}$:

$$\frac{p_{04}}{p_{kr}} = \frac{1}{\left[1 - \frac{1}{\eta_{ml}} \left(\frac{\kappa_p - 1}{\kappa_p + 1}\right)\right]^{\frac{\kappa_p}{\kappa_p - 1}}} = 1,919 \text{ bar}$$

ODABIR VRSTE MLAZNICE:

- I) Slučaj konvergentne mlaznice:
- 3.16. Statička temperatura plinova na izlazu iz mlaznice, T_5 :

$$T_5 = T_{kr} = T_{04} - \eta_{ml} T_{04} \left[1 - \left(\frac{p_5}{p_{04}}\right)^{\frac{\kappa_p - 1}{\kappa_p}} \right] = T_{04} \left(\frac{2}{\kappa_p + 1}\right) = 1071,62 \text{ K}$$

3.17. Statički tlak plinova na izlazu iz mlaznice, p_5 :

$$p_5 = p_{kr} = \frac{p_{04}}{\frac{p_{04}}{p_{kr}}} = 1,166$$
 bar

3.18. Statička gustoća plinova na izlazu iz mlaznice, ρ_5 :

$$\rho_5 = \frac{p_5}{R_{\rm p}T_5} = 0.376 \, \rm kg/m^3$$

3.19. Brzina plinova na izlazu iz mlaznice, c_5 :

$$c_5 = \sqrt{\kappa_p R_p T_{kr}} = 642,52 \text{ m/s}$$

3.20. Omjer izlazne površine mlaznice i masenog protoka plinova, $\frac{A_5}{m_n}$:

$$\frac{A_5}{\dot{m}_p} = \frac{1}{\rho_5 c_5} = 0,004136 \text{ m}^2 \text{s/kg}$$

3.21. Specifična sila potiska, F_{sp} :

$$F_{sp} = (c_5 - c_a) + \frac{A_5}{\dot{m}_p}(p_{kr} - p_a) = 705,588 \text{ Ns/kg}$$

- II) Slučaj konvergentno-divergentne (De Lavalove) mlaznice:
- 3.22. Izentropska statička temperatura na izlazu iz mlaznice (za slučaj ekspanzije do okolišnog tlaka), *T*₅':

$$T_5' = T_{04} \left(\frac{p_a}{p_{04}}\right)^{\frac{\kappa_p - 1}{\kappa_p}} = 1025,66 \text{ K}$$

3.23. Brzina na izlazu iz konvergentno-divergentne mlaznice, c_5 :

$$c_5 = \sqrt{\frac{2c_{pp}(T_{04} - T'_5)}{\eta_{ml}}} = 738,65 \text{ m/s}$$

3.24. Specifična sila potiska, F_{sp} :

Kako je na izlazu iz mlaznice tlak jednak okolišnom $p_5 = p_a$ (za slučaj pravilno proširene mlaznice), a brzina leta $c_a = 0$, tada vrijedi:

$$F_{sp} = (c_5 - c_a) + \frac{A_5}{\dot{m}_p}(p_5 - p_a) = c_5 = 738,654 \text{ Ns/kg}$$

Specifična sila potiska je nešto viša u slučaju konvergentno-divergentne mlaznice (manje od 5 %), ali s obzirom na jednostavnost konstrukcije konvergentne mlaznice, višu cijenu konvergentno-divergentne mlaznice i buke koju stvaraju udarni valovi te činjenice da u slučaju konvergentne mlaznice kritični tlak je uvijek viši od atmosferskog tlaka (i u uvjetima povišenog tlaka zraka) (1,166 bar > 1,013 bar) odabire se konvergentnu mlaznicu.

3.25. Teorijski omjer gorivo/zrak, g_t :

 $g_t = 0,023$ (iz dijagrama na slici 3.2.)

3.26. Stvarni omjer gorivo/zrak, g_s :

$$g_s = \frac{g_t}{\eta_{ki}} = 0,0237$$

3.27. Specifična potrošnja goriva, g_{sp} :

$$g_{sp} = \frac{3600g_s}{F_{sp}} = 0,121 \text{ kg/(hN)}$$

3.28. Maseni protok plinova izgaranja, \dot{m}_p :

$$\dot{m}_p = \frac{F}{F_{sp}} = 2,268 \approx 2,27 \text{ kg/s}$$

3.29. Maseni protok zraka, \dot{m}_z :

$$\dot{m}_z = \frac{\dot{m}_p}{1+g_s} = 2,215 \approx 2,22 \text{ kg/s}$$

3.30. Maseni protok goriva, \dot{m}_g :

$$\dot{m}_g = \frac{\dot{m}_p}{1 + \frac{1}{g_s}} = 0,053 \approx 0,05 \text{ kg/s}$$

Slika 3.2. Teorijski omjer gorivo/zrak u zavisnosti o prirastu temperature u komori izgaranja

3.31. Potrebna izlazna površina konvergentne mlaznice, A_5 :

$$A_5 = \frac{A_5}{\dot{m}_p} \dot{m}_p = 0,009378 \text{ m}^2$$

3.32. Promjer izlaznog presjeka mlaznice, d_5 :

$$d_5 = \sqrt{\frac{4A_5}{\pi}} = 0,1093 \text{ m} = 109,3 \text{ mm}$$
3.33. Polovica kuta mlaznice, θ :

$$\theta \approx 10^{\circ}$$

3.34. Iskoristivost energetske pretvorbe (koliko se toplinskog toka dobivenog izgaranjem goriva iskoristi za kinetičku snagu mlaza), η_e :

$$\eta_e = \frac{\dot{m}_p c_5^2 - \dot{m}_z c_a^2}{2\dot{m}_g H_d} = 0,219 = 21,9 \%$$

3.35. Iskoristivost potiska (Froudeova iskoristivost), η_p :

$$\eta_p = \frac{2}{3 + \frac{c_5}{c_a}}$$

Kako je brzina leta $c_a = 0$, slijedi da je i iskoristivost $\eta_p = 0$.

3.36. Ukupna iskoristivost, η_u :

 $\eta_u = \eta_e \eta_p = 0$

Ponovno iz razloga što je $c_a = 0$, $\eta_u = 0$.

4. PRORAČUN TURBOKOMPRESORA

Tehnički zahtjevi za kompresor:

Kompresijski omjer $\varepsilon = 4$
Maseni protok zraka $\dot{m} = 2,22 \text{ kg/s}$
Početni tlak (na ulazu u rotor kompresora) $p_p = p_a = 1,013$ bar
Početna temperatura (na ulazu u rotor kompresora) $T_p = T_a = 288 \text{ K}$
Individualna plinska konstanta za zrak $R_z = 287 \text{ J/(kgK)}$
Izentropski eksponent za zrak $\kappa_z = 1,4$

Prihvaćeni polazni podaci za proračun:

A) ROTOR - RADIJALNI BEZ POKROVNOG DISKA

Ulazni kut rotorske lopatice $\beta_{1I} = 35^{\circ}$ (30° do 40°)
Izlazni kut rotorske lopatice $\beta_{2l} = 90^{\circ}$ (15° do 90°)
Koeficijent predvrtloga toka na ulazu u rotor $\varphi_1 = 0$ (nema pretkola) (0 do 0,15)
Relativni korijeni promjer lopatice na usisu $\xi_k = 0,450$ (0,3 do 0,6)
Relativni vršni promjer lopatice na usisu $k_0 = \sqrt{\frac{2}{1+\xi_k^2}} = \sqrt{\frac{2}{1+0.450^2}} = 1,290$
Relativni vanjski promjer rotora $\bar{d} = 0,440$ (0,4 do 0,65)
Relativna debljina rotorske lopatice na izlazu $\overline{\delta_2} = 0,007$ (0,006 do 0,012)
Relativna debljina rotorske lopatice na ulazu $\overline{\delta_1} = 0,0035$ $(\overline{\delta_1} = 0,5\overline{\delta_2} \text{ do } 0,6\overline{\delta_2})$
Broj strana rotora $n_{kol} = 1$ (jednoradno) (1 ili 2)
Korekcijski faktor za rotore bez pokrovnog diska $k_{td} = 2$
Hrapavost površine diskova $R_z = 6.3 \cdot 10^{-6} \text{ m}$
Koeficijent unutarnjih prestrujavanja $\alpha_{ut} = 0.02$ (0.01 do 0.02)
Omjer broja lopatica na ulazu i izlazu iz rotora $z_1/z_k = 1$ (1 ili 0,5)
Gustoća rotorskih lopatica
Koeficijent gubitaka na ulazu u rotorsko kolo $\xi_s = 0,22$ (0,2 do 0,25)

Koeficijent gubitaka u kanalima rotora $\xi_w = 0,25$	(0,15 do 0,3	5)
B) DIFUZOR - KOMBINIRANI $(d_3/D \ge 1)$		
Svedena radijalna komponenta apsolutne brzine na izlazu iz rotora	a. $c_{2r} = 0,20$	(0,20 do 0,27)
Omjer izlaznih širina bezlopatičnog dijela difuzora i rotora	$K_b = 1,4$	(1,0 do 1,4)
Relativni ulazni promjer u bezlopatični dio difuzora	$\bar{d}_2 = d_2/D$	= 1,03
	(1,03 do 1,	05)
Relativni izlazni promjer iz bezlopatičnog dijela difuzora	$\bar{d}_3 = d_3/D$	= 1,08
	(1,08 do 1	,15)
Relativni izlazni promjer iz lopatičnog dijela difuzora	$\bar{d}_4 = d_4/D$	= 1,3
	(1,3 do 1,5	55)
Koeficijent difuznosti	$k_d = 2,6$	(2,0 do 2,6)
Gustoća lopatica difuzora	$\dots (l/t)_d = 2$,2 (2,0 do 2,4)
Koeficijent trenja u difuzoru	$\xi_{tr} = 0,00^{\circ}$	75
	(0,0075 do	0,01)
Koeficijent difuzora	C = 6 (6 c	lo 8)
Omjer širina kanala na izlazu i ulazu u bezlopatični dio difuzora	$b_3/b_2 = 1$,	4 (1,0 do 1,4)
Omjer širina kanala na izlazu i ulazu u lopatični dio difuzora	$b_4/b_3 = 1$,	4 (1,0 do 1,4)
Relativna debljina lopatice difuzora	$\bar{\delta}_3 = 0,003$	3
	(0,0025 do	0,004)
Koeficijent gubitaka na izlazu	$\xi_{iz} = 0,5$	(0,3 do 0,5)

Termodinamički i plinskodinamički proračun:

Shematski prikaz uzdužnog i poprečnog presjeka centrifugalnog kompresora s karakterističnim fizikalnim i geometrijskim veličinama te presjecima dan je na slici 4.1.

Slika 4.1. Shematski prikaz centrifugalnog kompresora s kombiniranim difuzorom [15]

4.1. Konačni tlak, p_k :

$$p_k = \varepsilon \cdot p_p = 4,052$$
 bar

4.2. Gustoća na ulazu u rotor, ρ_p :

$$\rho_p = \frac{P_p}{RT_p} = 1,226 \text{ kg}/m^3$$

4.3. Volumni protok na ulazu u rotor, \dot{V}_p :

$$\dot{V}_p = \frac{\dot{m}}{\rho_p} = 1,811 \text{ m}^3/\text{s}$$

4.4. Brzina zvuka za početno stanje, a_p :

$$a_p = \sqrt{\kappa_z R T_p} = 340,17 \text{ m/s}$$

4.5. Kritična brzina zraka za početno stanje, $a_{kr,p}$:

$$a_{kr,p} = \sqrt{\frac{2\kappa_z}{\kappa_z + 1}RT_p} = 310,54 \text{ m/s}$$

4.6. Kut apsolutne brzine na ulazu u rotor, α_1 :

Budući da je predviđena konstrukcija bez pretkola nema predvrtloga, $\varphi_1 = 0$, odnosno u rotor je realiziran aksijalni ulaz, pa je $\alpha_1 = 90^\circ$.

4.7. Normirana meridionalna, apsolutna i relativna brzina na ulazu u rotor, \bar{c}_{1m} , \bar{c}_1 i \bar{w}_1 :

$$\bar{c}_{1m} = (1 - \varphi_1)\bar{d} \operatorname{tg}(\beta_{1l}) = 0,3081$$
$$\bar{c}_1 = \sqrt{\bar{c}_{1m}^2 + \varphi_1^2 \bar{d}^2} = 0,3081 = \bar{c}_{1m}$$
$$\bar{w}_1 = \frac{(1 - \varphi_1)\bar{d}}{\cos(\beta_{1l})} = 0,5371$$

4.8. Broj lopatica rotora, z_k :

$$z_k = \left(\frac{l}{t}\right)_{sr} \pi \frac{1+\bar{d}}{1-\bar{d}} \sin\left(\frac{\beta_{1l}+\beta_{2l}}{2}\right) = 15,764$$
$$z_k = 16$$

4.9. Faktor skliza, μ :

Faktor skliza je definiran kao omjer obodne komponente apsolutne brzine fluida koji napušta impeler u odnosu na obodnu brzinu lopatice na izlazu iz impelera. Jedna je od najvažnijih konstrukcijskih varijabli zbog direktnog utjecaja na prijenos energije s lopatica na radni fluid. Sile suprotnog gradijenta tlaka odmiču tok unazad tako da je obodna komponenta apsolutne brzine na izlazu sporija od brzine vrtnje lopatice.

$$\mu = \frac{1}{1 + \frac{2}{3}\frac{\pi}{z_k}\frac{1}{1 - \bar{d}^2}} = 0,86$$

4.10. Normirana vrtložna komponenta toka na izlazu iz rotora u slučaju beskonačnog broja lopatica, $\bar{c}_{2u\infty}$:

$$\bar{c}_{2u\infty} = 1 - \bar{c}_{2r} \operatorname{ctg}(\beta_{2l}) = 1$$

4.11. Normirana vrtložna komponenta toka na izlazu iz rotora u slučaju konačnog broja lopatica, \bar{c}_{2u} :

$$\bar{c}_{2u} = \mu \bar{c}_{2u\infty} = 0,86$$

4.12. Normirana apsolutna brzina na izlazu iz rotora i pripadajući kut, \bar{c}_2 i α_2 :

$$\bar{c}_2 = \sqrt{\bar{c}_{2r}^2 + \bar{c}_{2u}^2} = 0,883$$

 $\alpha_2 = \operatorname{arctg}\left(\frac{\bar{c}_{2r}}{\bar{c}_{2u}}\right) = 13,087^\circ$

4.13. Normirana relativna brzina na izlazu iz rotora i pripadajući kut, \overline{w}_2 i β_2 :

$$\overline{w}_2 = \sqrt{\overline{c}_{2r}^2 + (1 - \overline{c}_{2u})^2} = 0,244$$
$$\beta_2 = \operatorname{arctg}\left(\frac{\overline{c}_{2r}}{1 - \overline{c}_{2u}}\right) = 55,074^\circ$$

4.14. Koeficijent tehničkog rada, \overline{L}_t :

$$\bar{L}_t = \bar{c}_{2u} - \varphi_1 \bar{d}^2 = 0,86$$

4.15. Reaktivnost stupnja, ρ_{st} :

$$\rho_{st} = 1 - \frac{\bar{c}_2^2}{2\bar{L}_t} = 0,547$$

4.16. Pretpostavka hidrauličke iskoristivosti, η_h :

$$\eta_h = 0,835$$

4.17. Koeficijent izentropskog rada, \overline{L}_s :

$$\overline{L}_s = \eta_h \overline{L}_t = 0,718$$

4.18. Machov broj definiran preko kompresijskog omjera, M_p :

$$M_p = \sqrt{\frac{2}{\kappa_z - 1} (\varepsilon^{(\kappa_z - 1)/\kappa_z} - 1)} = 1,559$$

4.19. Obodna brzina na izlaznom promjeru rotora, u_2 :

$$u_2 = \frac{a_p/M_p}{\sqrt{2L_s}} = 442,39 \text{ m/s}$$

4.20. Machov broj definiran preko obodne brzine, M_u :

$$M_u = \frac{u_2}{a_p} = 1,3$$

4.21. Relativni Machov broj na ulazu u rotor, M_{w1} :

$$M_{w1} = M_u \overline{w}_1 k_0 = 0,901$$

4.22. Ako je $M_{w1} < 0.95$ proračun ide dalje. Ako je $M_{w1} > 0.95$ potrebna je korekcija \bar{d} na vrijednost \bar{d}' po jednadžbi:

$$\bar{d}' = \frac{0.9\bar{d}}{M_{w1}}$$

 \bar{d}' postaje novi \bar{d} te s njim treba ponoviti proračun od točke 4.7.

4.23. Koeficijent obodne brzine, λ_u :

$$\lambda_u = \frac{u_2}{a_{kr,p}} = 1,425$$

4.24. Korekcijski faktor s obzirom na Machov broj, K_M :

$$K_M = 1 + 0.25(M_u - 0.85) = 1.113$$

4.25. Relativni gubitak u rotoru, ζ_k :

$$\zeta_k = \frac{K_M}{2\bar{L}_t} (\xi_w \bar{w}_1^2 + \xi_s \bar{c}_1^2) = 0,0601$$

4.26. Iskoristivost rotora (u odnosu na stupanj), η_k :

$$\eta_k = 1 - \frac{\zeta_k}{\rho_{st}} = 0,89$$

4.27. Omjer zaustavne temperature na izlazu iz rotora T_{02} i početne temperature T_p :

$$\frac{T_{02}}{T_p} = 1 + (\kappa_z - 1)\bar{L}_t M_u^2 = 1,582$$

4.28. Koeficijent brzine na izlazu iz rotora, λ_2 :

$$\lambda_2 = \frac{\lambda_u \bar{c}_2}{\sqrt{T_{02}/T_p}} = 1,0004$$

4.29. Omjeri između statičke i zaustavne temperature, gustoće i tlaka na izlazu iz rotora, T_2/T_{02} , ρ_2/ρ_{02} i p_2/p_{02} :

$$\frac{T_2}{T_{02}} = 1 - \frac{\kappa_z - 1}{\kappa_z + 1} \lambda_2^2 = 0,8332$$
$$\frac{\rho_2}{\rho_{02}} = \left(\frac{T_2}{T_{02}}\right)^{\frac{1}{\kappa_z - 1}} = 0,6337$$
$$\frac{p_2}{P_{02}} = \left(\frac{T_2}{T_{02}}\right)^{\frac{\kappa_z}{\kappa_z - 1}} = 0,528$$

4.30. Omjeri statičke i izentropske temperature, tlaka i gustoće sa početnim vrijednostima temperature, tlaka i gustoće, T_2/T_p , T_{2s}/T_p , p_2/p_p i ρ_2/ρ_p :

$$\frac{T_2}{T_p} = \frac{T_2}{T_{02}} \cdot \frac{T_{02}}{T_p} = 1,3181$$
$$\frac{T_{2s}}{T_p} = 1 + (\kappa_z - 1)\rho_{st}\eta_k \bar{L}_t M_u^2 = 1,2831$$
$$\frac{p_2}{p_p} = \left(\frac{T_{2s}}{T_p}\right)^{\frac{\kappa_z}{\kappa_z - 1}} = 2,393$$
$$\frac{\rho_2}{\rho_p} = \frac{p_2}{p_p} : \frac{T_2}{T_o} = 1,8154$$

4.31. Statički tlak i gustoća na izlazu iz rotora, p_2 i ρ_2 :

$$p_2 = \frac{p_2}{p_p} p_p = 2,424$$
 bar
 $\rho_2 = \frac{\rho_2}{\rho_p} \rho_p = 2,2249 \text{ kg/m}^3$

4.32. Koeficijent suženja strujnog presjeka na ulazu u rotor, τ_1 :

$$\tau_1 = 1 - \frac{z_k (z_1/z_k) \bar{\delta}_1}{\pi \sin(\beta_{1l}) \bar{d}} = 0,9294$$

4.33. Koeficijent suženja strujnog presjeka na izlazu iz rotora, τ_2 :

$$\tau_2 = 1 - \frac{z_k \bar{\delta}_2}{\pi \sin \beta_{2l}} = 0,9643$$

4.34. Koeficijent brzine i normirana temperatura, tlak i gustoća zraka ispred rotora, $\lambda_1, \overline{T}_1$,

 $ar{p_1}$ i $ar{
ho_1}$:

$$\begin{split} \lambda_1 &= \lambda_u \bar{c}_1 = 0.4389 \\ \bar{T}_1 &= 1 - \frac{\kappa_z - 1}{\kappa_z + 1} \lambda_1^2 = 0.9679 \\ \bar{p}_1 &= \left[1 - \frac{\kappa_z - 1}{\kappa_z + 1} \lambda_1^2 (1 + \xi_s) \right]^{\frac{\kappa_z}{\kappa_z - 1}} = 0.8695 \\ \bar{\rho}_1 &= \frac{\bar{p}_1}{\bar{T}_1} = 0.8983 \end{split}$$

4.35. Gustoća zraka ispred rotora, ρ_1 :

$$\rho_1 = \bar{\rho}_1 \rho_p = 1,101 \text{ kg/m}^3$$

4.36. Koeficijent protoka, θ_1 :

$$\theta_1 = \frac{\pi}{4} \tau_1 k_0^2 (1 - \xi_k^2) \bar{c}_{1m} \bar{d}^2 n_{kol} = 0.0577$$

4.37. Vanjski promjer rotora, D:

$$D = \sqrt{\frac{\dot{m}}{\theta_1 u_2 \rho_1}} = 0,2809 \text{ m} = 280,9 \text{ mm}$$

4.38. Brzina vrtnje rotora, n:

$$n = \frac{u_2}{\pi D} = 501,23 \text{ okr/s} = 30073,94 \text{ okr/min}$$

4.39. Relativna i stvarna visina rotorskih lopatica na ulazu, \overline{b}_1 i b_1 :

$$\bar{b}_1 = \frac{\theta_1}{\pi \tau_1 \bar{c}_{1m} \bar{d}} = 0,1459$$

 $b_1 = \bar{b}_1 D = 0,04099 \text{ m} = 40,99 \text{ mm}$

4.40. Relativna i stvarna visina rotorskih lopatica na izlazu, \overline{b}_2 i b_2 :

$$\bar{b}_2 = \frac{\theta_1}{\pi \tau_2 \bar{c}_{2r}} \frac{\rho_1}{\rho_2} = 0,0472$$
$$b_2 = \bar{b}_2 D = 0,01325 \text{ m} = 13,25 \text{ mm}$$

4.41. Ulazni srednji promjer rotora, d:

$$d = dD = 0,12362 \text{ m} = 123,62 \text{ mm}$$

4.42. Ulazni periferni promjer, d_0 :

$$d_0 = k_0 d = 0,15942 \text{ m} = 159,42 \text{ mm}$$

4.43. Ulazni korijeni promjer, d_k :

$$d_k = \xi_k d_0 = 0,07174 \text{ m} = 71,74 \text{ mm}$$

4.44. Statička temperatura i viskoznost na izlazu iz rotora, T_2 i μ_2 ;

$$T_2 = \frac{T_2}{T_p} T_p = 379,62 \text{ K}$$
$$\mu_2 = \frac{6.6 \cdot 10^{-3}}{T_2 + 111} \left(\frac{T_2}{273}\right)^{\frac{3}{2}} = 2.21 \cdot 10^{-5} \text{ Pa} \cdot \text{s}$$

4.45. Granični Reynoldsov broj, Regr:

$$Re_{gr} = \frac{50D}{R_z} = 2,23 \cdot 10^6$$

4.46. Reynoldsov broj na izlazu iz rotora, Re_2 :

$$Re_2 = \frac{Du_2\rho_2}{\mu_2} = 12,5.10^6$$

Koeficijent otpora trenja diska, c_f :

Kako je $Re_2 > Re_{gr}$, to se koeficijent c_f , računa prema Re_{gr} , po jednadžbi:

$$c_f = 0,0089 R e_{gr}^{-0,2} = 4,78 \cdot 10^{-4}$$

4.47. Koeficijent gubitka na trenje diska, β_{td} :

$$\beta_{td} = k_{td}c_f = 9,57 \cdot 10^{-4}$$

4.48. Relativni gubitak rada na trenje diska, α_{td} :

$$\alpha_{td} = \frac{\beta_{td}}{\theta \bar{L}_t} \frac{\rho_2}{\rho_1} = 0,0389$$

4.49. Izentropska iskoristivost rotora, η_s :

$$\eta_s = \frac{\eta_h}{1 + \alpha_{ut} + \alpha_{td}} = 0,801$$

4.50. Omjer statičke temperature na kraju kompresije i početne, T_k/T_p :

$$\frac{T_k}{T_p} = 1 + (\kappa_z - 1)\frac{\bar{L}_s}{\eta_s}M_u^2 = 1,6163$$

4.51. Temperatura i gustoća na kraju kompresije, T_k i ρ_k :

$$T_k = \frac{T_k}{T_p} T_p = 465,5 \text{ K}$$
$$\rho_k = \frac{p_k}{T_k R} = 3,033 \text{ kg/m}^3$$

4.52. Gustoća zraka nakon difuzora (prva aproksimacija), ρ_4 :

$$\rho_4 = \frac{p_k}{RT_p(T_2/T_p)} = 3,099 \text{ kg/m}^3$$

4.53. Kut i normirana brzina toka na ulazu u bezlopatični dio kombiniranog difuzora α'_2 i \bar{c}'_2 :

$$\alpha'_{2} = \operatorname{arctg}\left(\frac{\operatorname{tg} \alpha_{2}}{K_{b}}\right) = 9,428^{\circ}$$
$$\bar{c}'_{2} = \frac{1}{\bar{d}_{2}} \cdot \sqrt{\frac{\bar{c}_{2r}^{2}}{K_{b}^{2}} + \bar{c}_{2u}^{2}} = 0,8467$$

4.54. Normirana brzina i koeficijent brzine toka na ulazu u lopatični dio kombiniranog difuzora, \bar{c}_3 i λ_3 :

$$\bar{c}_3 = \bar{c}_2' \frac{\bar{d}_2}{\bar{d}_3} = 0,8075$$

 $\lambda_3 = \frac{\lambda_2 \bar{c}_3}{\bar{c}_2} = 0,9146$

4.55. Normirana temperatura na ulazu u lopatični dio difuzora, T_3/T_{02} :

$$\frac{T_3}{T_{02}} = 1 - \frac{\kappa_z - 1}{\kappa_z + 1} \,\lambda_3^2 = 0,8606$$

4.56. Omjer statičke temperature na ulazu u lopatični dio difuzora i početne, T_3/T_p :

$$\frac{T_3}{T_p} = \frac{T_3}{T_{02}} \cdot \frac{T_{02}}{T_p} = 1,3615$$

4.57. Machov broj na ulazu u lopatični dio difuzora, M_3 :

$$M_3 = \frac{M_u \bar{c}_3}{\sqrt{T_3/T_p}} = 0.9$$

Kako je $M_3 < 0.95$ proračun se nastavlja dalje!

4.58. Normirana gustoća na ulazu u lopatični dio kombiniranog difuzora, ρ_3/ρ_{02} :

$$\frac{\rho_3}{\rho_{02}} = \left(\frac{T_3}{T_{02}}\right)^{\frac{1}{\kappa_z - 1}} = 0,6724$$

4.59. Omjer statičkih gustoća iza i ispred bezlopatičnog difuzora, ρ_3/ρ_2 :

$$\frac{\rho_3}{\rho_2} = \frac{\rho_3}{\rho_{02}} : \frac{\rho_2}{\rho_{02}} = 1,0611$$

4.60. Ulazni promjer, ulazni promjer lopatičnog dijela i izlazni promjer difuzora te pripadajuće širine difuzora, d_2 , d_3 , d_4 , b_3 i b_4 :

$$d_{2} = \bar{d}_{2}D = 0,2894 \text{ m} = 289,4 \text{ mm}$$

$$d_{3} = \bar{d}_{3}D = 0,3034 \text{ m} = 303,4 \text{ mm}$$

$$d_{4} = \bar{d}_{4}D = 0,3652 \text{ m} = 365,2 \text{ mm}$$

$$b_{3} = K_{b}b_{2} = 0,0185 \text{ m} = 18,5 \text{ mm}$$

$$b_{4} = b_{3}\frac{b_{4}}{b_{2}} = 0,026 \text{ m} = 26 \text{ mm}$$

4.61. Kut toka na ulazu u lopaični dio difuzora, α_3 :

$$\alpha_3 = \operatorname{arctg}\left(\frac{\operatorname{tg} \alpha_2}{K_b \frac{\rho_3}{\rho_2}}\right) = 8,707^\circ$$

4.62. Normirani gubitak rada u bezlopatičnom dijelu difuzora, $\overline{\delta \iota}_3$:

$$\overline{\delta}\iota_3 = \frac{\xi_{tr}}{4} \frac{(\bar{c}_2'^2 + \bar{c}_3^2)(\bar{d}_3 - \bar{d}_2)}{\bar{b}_2 K_b \sin\left(\frac{\alpha_2' + \alpha_3}{2}\right)} = 0,0123$$

4.63. Omjer statičkog tlaka i gustoće na izlazu iz bezlopatičnog dijela difuzora i zaustavnog taka odnosno zaustavne gustoće na izlazu iz rotora, te statičke gustoće iza i ispred bezlopatičnog dijela difuzora, p_3/p_{02} , ρ_3/ρ_{02} i ρ_3/ρ_2 :

$$\frac{p_3}{p_{02}} = \left[1 - \frac{\kappa_z - 1}{\kappa_z + 1} \lambda_3^2 \left(1 + \frac{2\overline{\delta}\iota_3}{\overline{c}_3^2}\right)\right]^{\frac{\kappa_z}{\kappa_z - 1}} = 0,5787$$
$$\frac{\rho_3}{\rho_{02}} = \frac{p_3}{p_{02}} : \frac{T_3}{T_{02}} = 0,6724$$
$$\frac{\rho_3}{\rho_2} = \frac{\rho_3}{\rho_{02}} : \frac{\rho_2}{\rho_{02}} = 1,0611 \text{ (utočnjena vrijednost)}$$

4.64. Utočnjena normirana brzina na ulazu u lopatični dio difuzora, \bar{c}_3 :

$$\bar{c}_3 = \frac{1}{\bar{d}_3} \sqrt{\frac{\bar{c}_{2r}^2}{K_b^2(\rho_3/\rho_2)^2} + \bar{c}_{2u}^2} = 0,8063$$

4.65. Koeficijent brzine na ulazu u lopatični dio difuzora, λ_3 :

$$\lambda_3 = \frac{\lambda_2 \bar{c}_3}{\bar{c}_2} = 0,9133$$

4.66. Omjer statičke temperature na ulazu u lopatični dio difuzora i zaustavne temperature na izlazu iz rotora, T_3/T_{02} :

$$\frac{T_3}{T_{02}} = 1 - \frac{\kappa_z - 1}{\kappa_z + 1}\lambda_3^2 = 0,861$$

4.67. Gustoća na ulazu u lopatični dio difuzora, ρ_3 :

$$\rho_3 = \frac{\rho_3}{\rho_2} \rho_2 = 2,361$$

4.68. Kut toka na izlazu iz lopatičnog dijela difuzora, α_4 :

$$\alpha_4 = \arcsin\left(\frac{d_3}{d_4}k_d\sin\alpha_3\right) = 19,09^\circ$$

4.69. Broj lopatica difuzora, z_d :

$$z_d = \left(\frac{l}{t}\right)_d \frac{2\pi \sin\left(\frac{\alpha_3 + \alpha_4}{2}\right)}{\ln\left(\frac{\bar{d}_4}{\bar{d}_3}\right)} = 17,91$$

 $z_{d} = 18$

4.70. Koeficijent suženja strujnog presjeka na ulazu u lopatični dio difuzora, τ_3 :

$$\tau_3 = 1 - \frac{z_d \bar{\delta}_3}{\pi \sin \alpha_3} = 0,8865$$

4.71. Visina lopatičnog dijela difuzora na ulazu i izlazu, a_3 i a_4 :

$$a_{3} = \frac{\pi d_{3} \sin \alpha_{3}}{z_{d}} = 0,008 \text{ m} = 8 \text{ mm}$$
$$a_{4} = \frac{\pi d_{4} \sin \alpha_{4}}{z_{d}} = 0,0208 \text{ m} = 20,8 \text{ mm}$$

4.72. Ekvivalentni promjeri ulaznog i izlaznog presjeka lopatičnog dijela difuzora, d_{e3} i d_{e4} :

$$d_{e3} = \frac{2a_3b_3}{a_3 + b_3} = 0,0112 \text{ m} = 11,2 \text{ mm}$$
$$d_{e4} = \frac{2a_4b_4}{a_4 + b_4} = 0,02313 \text{ m} = 23,13 \text{ mm}$$

4.73. Relativni srednji promjer i duljina lopatičnog dijela difuzora, \bar{d}_{sr} i l_d :

$$\bar{d}_{sr} = \frac{\bar{d}_3 + \bar{d}_4}{2} = 1,19$$
$$l_d = \left(\frac{l}{t}\right)_d \frac{\pi D}{z_d} \bar{d}_{sr} = 0,12837 \text{ mm} = 128,37 \text{ mm}$$

4.74. Koeficijent gubitaka trenja u lopatičnom dijelu difuzora, ξ_{4tr} :

$$\xi_{4tr} = \frac{2\xi_{tr}l_d}{k_d} \left(\frac{1}{d_{e3}} + \frac{1}{d_{e4}}\right) = 0,0982$$

4.75. Tangens kuta širenja lopatičnog dijela difuzora, $\theta_{sr}/2$:

$$\operatorname{tg}\left(\frac{\theta_{sr}}{2}\right) = \frac{\sqrt{a_4b_4} - \sqrt{a_3b_3}}{2l_d} = 0.0431$$
$$\frac{\theta_{sr}}{2} = 2.469^{\circ}$$

4.76. Koeficijent gubitaka zbog divergencije u lopatičnom dijelu difuzora, ξ_{4div} :

$$\xi_{4div} = C \left(1 - \frac{1}{k_d}\right)^2 \left(tg \left(\frac{\theta_{sr}}{2}\right) \right)^{1,25} = 0,0446$$

4.77. Ukupni koeficijent gubitaka i relativni gubitak rada u lopatičnom dijelu difuzora, ξ_4 i $\overline{\delta\iota}_4$:

$$\xi_4 = \xi_{4tr} + \xi_{4div} = 0,1428$$
$$\overline{\delta}\iota_4 = \frac{\xi_4 \overline{c}_3^2}{2\tau_3^2} = 0,0591$$

4.78. Relativni gubitak u difuzoru, ζ_d :

$$\zeta_d = \frac{\overline{\delta}\iota_3 + \overline{\delta}\iota_4}{\overline{L}_t} = 0,08301$$

4.79. Normirana brzina i koeficijent brzine na izlazu iz lopatičnog dijela difuzora, \bar{c}_4 i λ_4 :

$$\bar{c}_4 = \frac{\bar{c}_{2r}\rho_2}{\bar{d}_4 K_b \sin(\alpha_4) \,\rho_4 \frac{b_4}{b_3}} = 0,1724$$
$$\lambda_4 = \frac{\bar{c}_4}{\bar{c}_2} \lambda_2 = 0,1952$$

4.80. Normirana statička temperatura, tlak i gustoća na izlazu iz lopatičnog dijela difuzora s obzirom na iste zaustavne veličine iza rotora, T_4/T_{02} , p_4/p_{02} i ρ_4/ρ_{02} :

$$\frac{T_4}{T_{02}} = 1 - \frac{\kappa_z - 1}{\kappa_z + 1} \lambda_4^2 = 0,9936$$
$$\frac{p_4}{p_{02}} = \left\{ 1 - \frac{\kappa_z - 1}{\kappa_z + 1} \lambda_4^2 \left[1 + \frac{2(\overline{\delta}\iota_3 + \overline{\delta}\iota_4)}{\overline{c}_4^2} \right] \right\}^{\frac{\kappa_z}{\kappa_z - 1}} = 0,8767$$
$$\frac{\rho_4}{\rho_{02}} = \frac{p_4}{p_{02}} : \frac{T_4}{T_{02}} = 0,8823$$

4.81. Gustoća zraka na izlazu iz difuzora (utočnjena), ρ_4' :

$$\rho_4' = \left(\frac{\rho_4}{\rho_{02}} : \frac{\rho_2}{\rho_{02}}\right) \rho_2 = 3,098 \text{ kg/m}^3$$

Kako je $\left|\frac{\rho'_4 - \rho_4}{\rho'_4}\right| = \left|\frac{3,098 - 3,0987}{3,098}\right| = 0,000212 < 0,02$, pa proračun ide dalje, ako je veće, treba se vratiti na točku 4.80.

4.82. Statički tlak i temperatura zraka na izlazu iz difuzora, p_4 i T_4 :

$$p_4 = \left(\frac{p_4}{p_{02}} : \frac{p_2}{p_{02}}\right) p_2 = 4,0254 \text{ bar}$$
$$T_4 = \frac{T_4}{T_{02}} \cdot \frac{T_{02}}{T_p} T_F = 452,73 \text{ K}$$

4.83. Brzina na izlazu iz difuzora, c_4 :

$$c_4 = \frac{\dot{m}}{\pi d_4 b_4 \sin(\alpha_4) \rho_4} = 73,547 \text{ m/s}$$

4.84. Zaustavna temperatura i tlak na izlazu iz kompresora, T_{04} i p_{04} :

$$T_{04} = T_4 + \frac{c_4^2}{2R\frac{\kappa_z}{\kappa_z - 1}} = 455,42 \text{ K}$$
$$p_{04} = \frac{p_4}{\left(\frac{T_4}{T_{04}}\right)^{\frac{\kappa_z}{\kappa_z - 1}}} = 4,11 \text{ bar}$$

4.85. Relativni gubitak rada na izlazu iz kompresora zbog izlazne brzine, ζ_{iz} :

$$\zeta_{iz} = \frac{\xi_{iz}\bar{c}_4^2}{2\bar{L}_t} = 0,0086$$

4.86. Proračunska hidraulička iskoristivost, $\eta_{h,pr}$:

$$\eta_{h,pr} = 1 - \zeta_k - \zeta_d - \zeta_{iz} = 0,84821$$

 $|\eta_{h,pr} - \eta_h| = |0,84821 - 0,835| = 0,01321 < 0,02$, pa proračun nije potrebno ponavljati. U protivnom trebalo bi se vratiti na točku 4.16.!

4.87. Izentropska iskoristivost i snaga na vratilu kompresora, η_s i P_v :

$$\eta_s = \frac{\eta_{h,pr}}{1 + \alpha_{ut} + \alpha_{td}} = 0,801$$
$$P_v = \frac{\dot{m}\bar{L}_s u_2^2}{\eta_s} = 389657,2 \text{ W} = 389,6572 \text{ kW}$$

5. PRORAČUN KOMORE IZGARANJA

Tehnički zahtjevi na komoru izgaranja:

Statička temperatura zraka na ulazu u komoru izgaranja $T_z = T_4 = 452,73$ K
Statički tlak zraka na ulazu u komoru izgaranja $p_z = p_4 = 4,025$ bar
Zaustavna temperatura plinova izgaranja na izlazu iz komore izgaranja $T_{p0} = T_{03} = 1400$ K
Maseni protok zraka na ulazu u komoru izgaranja $\dot{m}_z = 2,22 \text{ kg/s}$
Maseni protok goriva na ulazu u komoru izgaranja $\dot{m}_g = 0.05 \text{ kg/s}$
Donja ogrjevna vrijednost goriva – kerozina $H_d = 42800 \text{ kJ/kg}$

Prihvaćeni polazni podaci za proračun:

Maseni udio ugljika u 100 kg kerozina $c = 86,3$ k	kg _c /100kg _g
Maseni udio vodika u 100 kg kerozina $h = 13,6$ k	kg _h /100kg _g
Maseni udio sumpora u 100 kg kerozina $s = 0,1$ kg	g _s /100kg _g
Iskoristivost komore izgaranja $\eta_{ki} = 0.97$	7 (0,97 do 0,98)
Promjer plamene cijevi $d_{pc} = 0.00$	66 m
Dužina plamene cijevi $I_{pc} = 0,17$	0
Ekvivalentni promjer plamene cijevi $(d_{pc})_e = 0$	0,066
Površina glavnog presjeka plamene cijevi $F_{pc} = 0,00$	9448 m ²
Radni volumen plamene cijevi $V_{pc} = 0.00$)6028 m ³
Površina unutarnje stijenke plamene cijevi $F_{pc}^{u} = 0.28$	33 m ²
Površina vanjske stijenke plamene cijevi $F_{pc}^{\nu} = 0.29$	93 m ²
Debljina stijenke plamene cijevi $\delta = 1,2 \text{ m}$	m
Pretičak zraka u području izgaranja $\alpha_g = 1,2$	(1,2 do 1,7)
Pretičak zraka uveden kroz čelno ustrojstvo gorionika $\alpha_{fr}=0,4$	(0,2 do 0,5)
Pretičak zraka u području miješanja $\alpha = 0.75$	(0,5 do 1,0)

Pretpostavljena temperatura unutarnje površine plamene cijevi
$T_{pc} = 1052 \text{ K}$ (973 do 1123 K)
Stupanj crnoće unutarnje površine plamene cijevi $\varepsilon_{st} = 0.89$ (0.8 do 1.0)
Uvjetni stupanj crnoće plamena $\varepsilon_8 = 0,085$ (0,07 do 0,10)
Koeficijent za izračunavanje temperature unutarnje stijenke plamene cijevi
$c = 0.5$ (0.5 do 0.8)
Efektivni stupanj crnoće između vanjske stijenke plamene cijevi i unutarnje stijenke kućišta
$\varepsilon_p = 0,690 (0,67 \text{ do } 0,71)$
Koeficijent za izračunavanje temperature unutarnje stijenke kućišta $c' = 0,2$ (0,05 do 0,20)
Koeficijent toplinske vodljivost materijala stijenke plamene cijevi
Specifični toplinski kapacitet plinova izgaranja kod temperature stijenke plamene cijevi
$(c_{pp})_{st} = 1,122 \text{ kJ/(kgK)}$
Dinamička viskoznost plinova izgaranja kod temperature stijenke plamene cijevi
$(\mu_p)_{st} = 4,28 \cdot 10^{-5} \text{ Pas}$
Srednji specifični toplinski kapacitet zraka za područje temperatura zraka T_z do T'_z
$c_{pz} = 1009.9 \text{ J/(kgK)}$
Koeficijent toplinske vodljivosti zraka pri temperaturi plamene cijevi
$\lambda_z = 0,06478 \text{ W/(mK)}$
Kinematička viskoznost zraka $\nu = 5,12 \cdot 10^{-5}$
Brzina zraka za hlađenje $v_z = 65 \text{ m/s}$ (60 do 100)

5.1. Toplinski proračun komore izgaranja - proračun procesa izgaranja:

5.1.1. Teoretska količina zraka potrebna za izgaranje 1 kg goriva, L_0 :

$$L_0 = \frac{O_{\min}}{0.232 \cdot 100} = \frac{1}{0.232 \cdot 100} \left(\frac{8}{3}c + 8h + s\right) = 14,614 \text{ kg}_z/\text{kg}_g$$

5.1.2. Maseni sastav produkata izgaranja uz teoretsku količinu zraka za izgaranje po 1 kg goriva, m_{CO_2} , m_{N_2} , m_{H_2O} i m_{SO_2} :

$$m_{\rm CO_2} = \frac{11}{3} \frac{c}{100} = 3,164 \text{ kg}_{\rm CO_2}/\text{kg}$$
$$m_{\rm N_2} = 0,79L_0 = 11,545 \text{ kg}_{\rm N_2}/\text{kg}$$
$$m_{\rm H_2O} = 9 \frac{h}{100} = 1,224 \text{ kg}_{\rm H_2O}/\text{kg}$$
$$m_{\rm SO_2} = 2 \frac{s}{100} = 0,002 \text{ kg}_{\rm SO_2}/\text{kg}$$

5.1.3. Ukupna količina produkata izgaranja uz teoretsku količinu zraka za izgaranje po 1 kg goriva, m_{pi} :

$$m_{\rm pi} = m_{\rm CO_2} + m_{\rm N_2} + m_{\rm H_2O} + m_{\rm SO_2} = 15,935 \text{ kg}_{\rm pi}/\text{kg}_{\rm g}$$

5.1.4. Maseni udjeli produkata izgaranja uz teoretsku količinu zraka za izgaranje po 1 kg goriva, r_{CO_2} , r_{N_2} , r_{H_2O} i r_{SO_2} :

$$r_{\rm CO_2} = \frac{m_{\rm CO_2}}{m_{\rm pi}} = 0,199 \,\rm kg_{\rm CO_2}/\rm kg_{pi}$$
$$r_{\rm N_2} = \frac{m_{\rm N_2}}{m_{pi}} = 0,724 \,\rm kg_{\rm N_2}/\rm kg_{pi}$$
$$r_{\rm H_2O} = \frac{m_{\rm H_2O}}{m_{pi}} = 0,077 \,\rm kg_{\rm H_2O}/\rm kg_{pi}$$
$$r_{\rm SO_2} = \frac{m_{\rm SO_2}}{m_{pi}} = 0,0001 \,\rm kg_{\rm SO_2}/\rm kg_{pi}$$

5.1.5. Srednji specifični toplinski kapaciteti pojedinih produkata izgaranja za područje temperatura 0°C – 1127°C ($\Delta T_{pi} = 1127$ K (°C)), $c_{pCO_2}, c_{pN_2}, c_{pH_2O}$ i c_{pSO_2} :

$$c_{pCO_2} = 1,142 \text{ kJ/(kgK)}$$

 $c_{pN_2} = 1,1293 \text{ kJ/(kgK)}$
 $c_{pH_2O} = 2,1851 \text{ kJ/(kgK)}$
 $c_{pSO_2} = 0,7927 \text{ kJ/(kgK)}$

5.1.6. Specifične entalpije pojedinih produkata izgaranja kod temperature plinova izgaranja, $h_{CO_2}, h_{N_2}, h_{H_2O}$ i h_{SO_2} :

$$h_{\rm CO_2} = c_{p\rm CO_2} \Delta T_{\rm pi} = 1287,034 \text{ kJ/kg}$$
$$h_{\rm N_2} = c_{p\rm N_2} \Delta T_{\rm pi} = 1272,721 \text{ kJ/kg}$$
$$h_{\rm H_2O} = c_{p\rm H_2O} \Delta T_{\rm pi} = 2462,608 \text{ kJ/kg}$$
$$h_{\rm SO_2} = c_{p\rm SO_2} \Delta T_{\rm pi} = 893,373 \text{ kJ/kg}$$

5.1.7. Specifična entalpija plinova izgaranja uz teoretsku količinu zraka potrebnu za izgaranje 1 kg goriva, h_{tpi} :

$$h_{\text{tpi}} = h_{\text{CO}_2} r_{\text{CO}_2} + h_{\text{N}_2} r_{\text{N}_2} + h_{\text{H}_2\text{O}} r_{\text{H}_2\text{O}} + h_{\text{SO}_2} r_{\text{SO}_2} = 1239,57 \text{ kJ/kg}$$

5.1.8. Specifični toplinski kapacitet i entalpija zraka za temperaturu na ulazu u komoru izgaranja ($\Delta T_z^{ul} = 180^{\circ}$ C), c_{pz}^{ul} i h_z^{ul} :

$$c_{pz}^{ul} = 1,0108 \text{ J/(kgK)}$$

 $h_z^{ul} = c_{pz}^{ul} \Delta T_z^{ul} = 181,944 \text{ kJ/kg}$

5.1.9. Specifični toplinski kapacitet i entalpija zraka za temperaturu zraka na izlazu iz komore izgaranja ($\Delta T_z^{iz} = 1127^{\circ}$ C), c_{pz}^{iz} i h_z^{iz} :

$$c_{pz}^{iz} = 1,1023 \text{ J/(kgK)}$$
$$h_z^{iz} = c_{pz}^{iz} \Delta T_z^{iz} = 1242,292 \text{ kJ/kg}$$

5.1.10. Specifični toplinski kapacitet i entalpija goriva za temperaturu goriva ($\Delta T_g = 15^{\circ}$ C),

$$c_{\rm g}$$
 i $h_{\rm g}$:
 $c_{\rm g} = 4,187(0,415 + 0,0006\Delta T_{\rm g}) = 1,7753 \text{ kJ/(kgK)}$
 $h_{\rm g} = c_{\rm g}\Delta T_{\rm g} = 26,629 \text{ kJ/kg}$

5.1.11. Ukupni pretičak zraka u komori izgaranja, α_u :

$$\alpha_u = \frac{H_d \eta_{ki} + h_g + L_0 h_z - (L_0 + 1) h_{\text{tpi}}}{L_0 (h_z - h_z^0)} = 2,475$$

5.1.12. Stvarna količina zraka, L_{st}:

$$L_{\rm st} = \alpha_u L_0 = 36,099 \, \rm kg_z/kg_g$$

5.1.13. Maseni sastav produkata izgaranja uz stvarnu količinu zraka za izgaranje po 1 kg goriva, $m'_{CO_2}, m'_{N_2}, m'_{H_2O}, m'_{SO_2}$ i m'_{O_2} :

$$m'_{CO_2} = m_{CO_2} = 3,164 \text{ kg}_{CO_2}/\text{kg}$$

$$m'_{N_2} = 0,79L_{\text{st}} = 11,545 \text{ kg}_{N_2}/\text{kg}$$

$$m'_{H_2O} = m_{H_2O} = 1,224 \text{ kg}_{H_2O}/\text{kg}$$

$$m'_{SO_2} = m_{SO_2} = 0,002 \text{ kg}_{SO_2}/\text{kg}$$

$$m'_{O_2} = 0,232(\alpha - 1)L_0 = 5,001 \text{ kg}_{O_2}/\text{kg}$$

5.1.14. Stvarna količina plinova izgaranja (uz pretičak zraka) po 1 kg goriva, $m'_{\rm pi}$:

$$m'_{\rm pi} = m'_{\rm CO_2} + m'_{\rm N_2} + m'_{\rm H_2O} + m'_{\rm SO_2} + m'_{\rm O_2} = 37,967 \ {\rm kg_{pi}/kg_g}$$

5.1.15. Maseni udjeli produkata izgaranja uz stvarnu količinu zraka po 1 kg goriva, $r'_{CO_2}, r'_{N_2}, r'_{H_2O}, r'_{SO_2}$ i r'_{O_2} :

$$r_{\rm CO_2}' = \frac{m_{\rm CO_2}'}{m_{\rm pi}'} = 0,0833 \text{ kg}_{\rm CO_2}/\text{kg}_{\rm pi}$$

$$r_{\rm N_2}' = \frac{m_{\rm N_2}'}{m_{\rm pi}'} = 0,7526 \text{ kg}_{\rm N_2}/\text{kg}_{\rm pi}$$

$$r_{\rm H_2O}' = \frac{m_{\rm H_2O}'}{m_{\rm pi}'} = 0,0322 \text{ kg}_{\rm H_2O}/\text{kg}_{\rm pi}$$

$$r_{\rm SO_2}' = \frac{m_{\rm SO_2}'}{m_{\rm pi}'} = 0,00005 \text{ kg}_{\rm SO_2}/\text{kg}_{\rm pi}$$

$$r_{\rm O_2}' = \frac{m_{\rm O_2}'}{m_{\rm pi}'} = 0,1317 \text{ kg}_{\rm O_2}/\text{kg}_{\rm pi}$$

5.2. Provjera dimenzija (toplinskog opterećenja) komore izgaranja usvojene geometrije:

5.2.1. Toplinsko opterećenje radnog volumena plamene cijevi, H:

$$H = \frac{3600\dot{m}_{\rm g}H_d\eta_{ki}}{V_{pc}p_z} = 3079,675 \text{ kJ/(m^3hPa)}$$

Za plamene cijevi mlaznih motora preporuča se toplinsko opterećenje u području od 1260 do 4190 kJ/(m³hPa), pa u tom smislu odabrana geometrija zadovoljava!

5.2.2. Maseni protok primarnog zraka, \dot{m}_{zl} :

$$\dot{m}_{zI} = \frac{\alpha_g}{\alpha_u} \dot{m}_z = 1,0181 \text{ kg/s}$$

5.2.3. Uvjetna brzina zraka u području izgaranja, w_q :

$$w_g = \frac{\dot{m}_{zI} v_z}{F_{pc}} = 34,76 \text{ m/s}$$

5.2.4. Omjer dužine i promjera plamene cijevi, l_{pc}/d_{pc} :

$$\frac{l_{pc}}{d_{pc}} = 2,576$$

Omjer dužine i promjera plamene cijevi l_{pc}/d_{pc} kod mlaznih motora preporuča se u području od 2 do 3.

5.3. Određivanje temperature stijenke plamene cijevi:

5.3.1. Stvarni stupanj crnoće stijenke plamene cijevi, ε'_{st} :

$$\varepsilon'_{st} = 0.5(1 + \varepsilon_{st}) = 0.945$$

5.3.2. Toplina koju plamen odaje plamenoj cijevi zračenjem, Q_{pz} :

$$Q_{pz} = 5,667 \cdot 10^{-3} \varepsilon'_{st} \varepsilon_g F^u_{pc} \left[\left(\frac{T_{gp}}{100} \right) \right)^4 - \left(\frac{T_{pc}}{100} \right)^4 \right] = 17,943 \text{ kW}$$

5.3.3. Srednja karakteristična temperatura plinsko-zračnog toka, T'_{gp} :

$$T'_{gp} = T_z + c(T_{gp} - T_z) = 1212,87 \text{ K}$$

5.3.4. Srednja razlika temperatura između plamena i plamene cijevi, ΔT_{pg} :

$$\Delta T_{pg} = T'_{gp} - T_{pc} = 139,87 \text{ K}$$

5.3.5. Koeficijent prijelaza topline s plina na stijenku plamene cijevi, α_p :

$$\alpha_p = 0,0206 (c_{pp})_{st} (\mu_p)_{st}^{0,18} \frac{\dot{m}_{ZI}^{0,82}}{(d_{pc})_e^{1,82}} \left(\frac{T'_{gp}}{T_{pc}}\right)^{0,35} = 567,497 \text{ W/(m^2 \text{K})}$$

5.3.6. Količina topline koju plamen odaje plamenoj cijevi konvekcijom, Q_{pk} :

$$Q_{pk} = \alpha_p F_{pc}^u \Delta T_{pg} = 25,8352 \text{ kW}$$

5.3.7. Temperatura do koje se zagrijava zrak za hlađenje, T'_{z} :

$$Q_{pz} + Q_{pk} = (\alpha_u - \alpha_g) L_0 \dot{m}_g c_{pz} (T'_z - T_z)$$
$$T'_z = 499,25 \text{ K}$$

5.3.8. Temperatura vanjske površine plamene cijevi, T'_{pc} :

$$T'_{pc} = T_{pc} - \frac{(Q_{pz} + Q_{pk})\delta}{\lambda_{pc}F^u_{pc}} = 1043,77 \text{ K}$$

5.3.9. Reynoldsov broj za strujanje rashladnog zraka između plamene cijevi i plašta (kućišta), *Re*:

$$Re = \frac{v_2 (d_{pe})_e}{v_z} = 83789,1$$

5.3.10. Nusseltova značajka, Nu:

$$Nu = 0,018Re^{0,8} = 156,251$$

5.3.11. Koeficijent prijelaza topline s plamene cijevi na zrak za hlađenje, α_z :

$$\alpha_z = Nu \frac{\lambda_z}{(d_{pc})_e} = 153,363 \text{ W/m}^2\text{K}$$

5.3.12. Srednja efektivna razlika temperatura između plamene cijevi i zraka za hlađenje, $\Delta T_{sr.t}$:

$$\Delta T_{sr.t} = \frac{T'_z - T_z}{2,3 \log\left(\frac{T'_{pc} - T_z}{T_{pc} - T'_z}\right)} = 695,28 \text{ K}$$

5.3.13. Toplina koju odaje plamena cijev konvekcijom stijenci kućišta, Q_{pck} :

$$Q_{pck} = \alpha_z F_{pc}^v \Delta T_{sr.t} = 31,243 \text{ kW}$$

5.3.14. Temperatura unutarnje površine stijenke kućišta, T_k :

$$T_k = T_z + c' (T'_{pc} - T_z) = 570,94 \text{ K}$$

5.3.15. Toplina koju odaje plamena cijev stijenci kućišta zračenjem, Q_{pcz} :

$$Q_{pcz} = 5,667 \cdot 10^{-3} \varepsilon_p F_{pc}^{\nu} \left[\left(\frac{T_{pc}'}{100} \right)^4 - \left(\frac{T_k}{100} \right)^4 \right] = 12,388 \text{ kW}$$

5.3.16. Provjera intenziteta hlađenja plamene cijevi:

Ako je zadovoljena relacija $Q_z + Q_{pk} \cong Q_{pck} + Q_{pcz}$

što u našem slučaju je, možemo prihvatiti određene temperature plamene cijevi i stijenke kućišta, kao i pretpostavljenu količinu zraka za izgaranje koja se uvodi u područje izgaranja te zraka koji se odvodi za hlađenje. Ako približna jednakost nije zadovoljena, potrebno je mijenjati ili temperaturu plamene cijevi ili brzinu zraka za hlađenje.

6. PRORAČUN PLINSKE TURBINE

Tehnički zahtjevi za turbinu:

Specifični rad turbine	$L_t = 173197 \text{ J/kg}$
Zaustavna temperatura na ulazu u turbinu	$T_{00} = 1400 \text{ K}$
Zaustavni tlak na ulazu u turbinu	$p_{00} = 3,809$ bar
Maseni protok plinova izgaranja	$\dot{m}_p = 2,27 \text{ kg/s}$

Prihvaćeni polazni podaci za proračun:

Izentropska iskoristivost turbine	$\eta_t = 0,86$
Koeficijent opterećenja u korijenu rotorskih lopatica	$\mu_k = 2,2$
Koeficijent brzine statorskih lopatica	φ = 0,95
Individualna plinska konstanta za plinove izgaranja	$R_p = 289 \text{ J/(kgK)}$
Specifični toplinski kapacitet plinova izgaranja	$c_{pp} = 1153 \text{ J/(kgK)}$
Izentropski eksponent za plinove izgaranja	κ _p = 1,333

6.1. Termodinamički i plinskodinamički proračun stupnja po srednjem promjeru:

Na slici 6.1. dan je uzdužni presjek turbinskog stupnja s osnovnim geometrijskim dimenzijama i karakterističnim proračunskim presjecima. Također, vrijednosti plinskodinamičkih funkcija uzete su (iz plinskodinamičkih tablica) sa slike 6.2., slike 6.3. i slike 6.4.

Slika 6.1. Uzdužni presjek kroz turbinski stupanj [15]

			1	1	1			
×	T (1)	p (1)	e (A)	q (X)	y (1)	/ (N)	1 (2)	.м
2				γ=1,33				
0,00	1,0000	1.0000	1,0000	0,0000	0,0000	1,0000	1,0000	0,0000
8.65	1,0000	0,9999	0,9999	0,0159	0,0159	1,0000	1,0000	0.0093
0.03	0,9999	0,9998	0,9999	0.0318	0,0318	1,0005	0,9990	0.0278
0.04	0.9998	0.9991	0,9993	0.0635	0.0636	1.0009	0.9982	0.0371
0,05	0,9997	0.9986	0,9990	0.0793	0.0795	1.0015	0,9972	0,0463
0,06	0,9995	0,9980	0,9985	0,0952	0,0954	1,0021	0,9959	0 0356
0.07	0.9993	0.9972	0,9979	0,1110	0,1113	,0028	0.9944	0.0649
0,08	0,9991	0,9964	0,9973	0,1267	0,1272	1,0037	0,9928	0 0834
0.10	0,9986	0.9944	0.9958	0 1425	0,1431	1.0057	0.9887	0.0927
ŏ,iĭ	0,9983	0.9932	0.9949	0,1738	0.1750	1.0069	0,9864	0,1020
0,12	0,9980	0,9918	0,9938	0,1894	0,1910	1,0081	0,9838	0,1113
0.13	0,9976	0,9904	0.9928	0,2052	0.2072	1,0095	0,9810	0,1205
0,14	0,9972	0,9889	0,9917	0.2205	0,2220	1,0111	0,9781	0,1299
0.15	0,9900	0.9872	0,9903	0,2360	0,2390	1 01/13	0.9715	0.1485
ŏ. 17	0,0059	0.9836	0.0877	0.2667	0.2712	1.0162	0,9679	0.1578
0,18	0,9954	0,9816	0,9862	0,2820	0,2873	1,0181	0,9642	0,1672
0,19	0,9949	0,9796	0,9846	0,2792	0,3034	0202	0,9602	0,1765
0.20	0,9943	0,9774	0,9830	0,3123	0,3195	1,0223	0,9561	0 1850
0.21	0.9938	0,9751	0.9812	0.3273	0,3357	0245	0,9516	0.2045
ŏ.25	0.9925	0.9702	0.9775	0.3571	0.3681	1.0292	0.9427	0,2139
0.24	0,9918	0,9675	0,9755	0,3719	0,3844	1,0317	0,9378	0,2233
0.25	0,9912	0,9648	0.9734	0,3866	0,4007	1.0343	0,9329	0.2327
0,26	0,9904	0,9619	0.9712	0.4011	0,4170	1.0369	0,9277	0.2420
0.27	0,9897	0.9590	0.9090	0,4130	0,4334	1,0350	0,9224	0.2515
0,28	0,9881	0.9529	0.9644	6.4443	0.4662	1.0455	0.9114	0.2703
0.30	0.9873	0.9496	0,9619	0,4584	0,4827	1.0485	0.9057	0.2797
0.31	0,9864	0.9463	0,9594	0,4724	0,4992	1,0516	0,8999	0,2892
0,32	0,9855	0,9428	0,9567	0,4863	0.5158	1,0547	0,8940	0,2985
0,33	0,9846	0,9393	0.9540	0,5001	0,5324	1,0579	0,8879	0,3081
0,34	0,9836	0,9356	0,9512	0.5137	0,5491	1,0012	0,8817	0.3170
0,35	0,9027	0,9319	0 9455	0.5407	0,5826	1 0680	0,0734	0.3266
0.32	0 9806	0.9241	0.9424	0.5539	0.5994	1.0714	0.8625	0.3462
0.38 I	0,9796	0,9201	0,9393	0,5670	0,6162	1.0750	0.8560	0,3557
0,39	0,9785	0,9159	0,9361	0,5799	0.6332	1,0785	0,8493	0,3653
0,40	0,9773	0,9118	0,9329	0,592B	0.6501	1,0822	0,8425	0,3749
0,41	0.9762	0.9075	0,9295	0.6055	0,6672	.0859	0.8357	0,3845
0,42	0,9/50	0,9030	0.9202	0.6303	0,0813	1,0896	0,8288	0,3941
0,43	0 9726	0,8965	0.9192	0 6425	0 7187	1 0072	0,0210	0,4037
0.45	0.9713	0.8893	0.9156	0.6545	0.7359	1,1010	0 8078	0.4230
0.46	0,0700	0,8850	0,9123	0,6666	0.7533	1,1055	0,8006	0.4305
0.47	0,9687	0.8797	0,9081	0,6780	0,7707	1,1088	0,7934	0,4424
0.48	0,9674	0.8749	0,9044	0,6896	0,7882	1,1128	0,7862	0,4522
0,49	0,9660	0,8699	0,9005	0,7609	0,8058	1,1167	0,7790	0.4619
0,50	0,9646	0,8648	0,8966	0,7121	0,8234	1.1207	0,7717	0,4717
0,51	0,9032	0,8590	0,8920	0,7230	0,8411	1,1246	0.7644	0,4815
1,52	0.0602	0.8401	0,0004	0 7445	0,0009	1,1287	0,7570	0,4913
1,53	0 0587	0 8436	0 8700	0 7549	0,0708	1,1327	0,7496	0,5011
),54 [0,9001 1	0,0400 1	0,0199.1	0,1040 1	0,0947	1,1365	0,7423	0.5110

Slika 6.2. Plinskodinamičke funkcije

0,55 0,56 0,57 0,58 0,59 0,60 0,61 0,62 0,63 0,64 0,65 0,66 0,66 0,66 0,66 0,66 0,66 0,66	0,9572 0,9556 0,9540 0,9524 0,9507 0,9490 0,9473 0,9456 0,9438 0,9420 0,9402 0,9383 0,9364 0,9345 0,9345 0,9326 0,9326 0,9326 0,9286 0,9286	0.8382 0.8327 0.8271 0.8214 0.8156 0.8098 0.8040 0.7980 0.7921 0.7860 0.7798 0.7798 0.7737 0.7695 0.7612 0.7548	0,8757 0,8714 0,8670 0,8625 0,8579 0,8533 0,8487 0,8439 0,8393 0,8344 0,8294 0,8294 0,8294 0,8246 0,8195	0,7651 0,7752 0,7850 0,7946 0,8040 0,8133 0,8224 0,8312 0,8399 0,8483 0,8564	0,9128 0,9309 0,9491 0,9674 0,9858 1,0043 1,0229 1,0416 1,0604	1,1406 1,1447 1,1487 1,1526 1,1565 1,1605 1,1615 1,1684 1,1724	0,7349 0,7275 0,7200 0,7126 0,7052 0,6978 0,6904 0,6930 0,6756	0,5208 0,5308 0,5407 0,5506 0,5506 0,5706 0,5706 0,5807 0,5907
0.56 0.57 0.58 0.57 0.58 0.60 0.62 0.63 0.64 0.65 0.66 0.65 0.66 0.65 0.66 0.67 0.71 0.72 0.73 0.74 0.75 0.77 0.78 0.77 0.78 0.79 0.81 0.82	0,95372 0,9536 0,9540 0,9524 0,9507 0,9490 0,9473 0,9456 0,9438 0,9420 0,9420 0,9420 0,9420 0,9420 0,9420 0,9383 0,9364 0,9345 0,9345 0,9326 0,9326 0,9326 0,9326 0,9326	0.83827 0.8271 0.8214 0.8156 0.8098 0.8040 0.7980 0.7921 0.7860 0.7798 0.7737 0.7695 0.7612 0.7548	0,8737 0,8714 0,8670 0,8579 0,8533 0,8487 0,8439 0,8393 0,8344 0,8294 0,8294 0,8246 0,8195	0,7752 0,7850 0,7946 0,8040 0,8133 0,8224 0,8312 0,8399 0,8483 0,8564	0,9309 0,9491 0,9674 0,9858 1,0043 1,0229 1,0416 1,0604	1,1447 1,1487 1,1526 1,1565 1,1605 1,1645 1,1684 1,1724	0,7275 0,7200 0,7126 0,7052 0,6978 0,6904 0,6930 0,6530	0,5308 0,5407 0,5506 0,5506 0,5506 0,5706 0,5807 0,5907
0,57 0,58 0,59 0,60 0,62 0,63 0,64 0,65 0,66 0,66 0,66 0,66 0,67 0,68 0,67 0,71 0,72 0,73 0,74 0,75 0,76 0,77 0,78 0,79 0,80	0,9540 0,9524 0,9507 0,9490 0,9473 0,9456 0,9438 0,9420 0,9420 0,9420 0,9420 0,9420 0,9420 0,9420 0,9383 0,9364 0,9345 0,9326 0,9326 0,9326 0,9326 0,9286 0,9286	0,83271 0,8214 0,8156 0,8098 0,8040 0,7980 0,7921 0,7860 0,7798 0,7737 0,7695 0,7612 0,7548	0,8670 0,8625 0,8579 0,8533 0,8487 0,8439 0,8393 0,8344 0,8294 0,8294 0,8246 0,8195	0,7850 0,7946 0,8040 0,8133 0,8224 0,8312 0,8399 0,8483 0,8564	0,9491 0,9674 0,9858 1,0043 1,0229 1,0416 1,0604	1,1487 1,1526 1,1565 1,1605 1,1645 1,1684 1,1724	0,7200 0,7126 0,7052 0,6978 0,6904 0,6930	0,5407 0,5506 0,5506 0,5706 0,5807 0,5907
0,58 0,59 0,60 0,62 0,63 0,64 0,65 0,66 0,66 0,66 0,67 0,68 0,67 0,70 0,71 0,72 0,73 0,74 0,75 0,76 0,77 0,78 0,79 0,80	0,9524 0,9507 0,9490 0,9473 0,9456 0,9438 0,9420 0,9420 0,9420 0,9420 0,9420 0,9438 0,9420 0,9438 0,9364 0,9364 0,9345 0,9326 0,9326 0,9306 0,9286 0,9286	0,8214 0,8156 0,8098 0,8040 0,7980 0,7921 0,7860 0,7798 0,7737 0,7695 0,7612 0,7548	0,8625 0,8579 0,8533 0,8487 0,8439 0,8393 0,8344 0,8294 0,8294 0,8246 0,8195	0,7946 0,8040 0,8133 0,8224 0,8312 0,8399 0,8483 0,8564	0,9674 0,9858 1,0043 1,0229 1,0416 1,0604	1,1526 1,1565 1,1605 1,1615 1,1684 1,1724	0,7126 0,7052 0,6978 0,6904 0,6930	0,5506 0,5506 0,5706 0,5807 0,5907
0,59 0,60 0,61 0,62 0,63 0,64 0,65 0,66 0,66 0,66 0,66 0,67 0,68 0,67 0,70 0,71 0,72 0,73 0,74 0,75 0,76 0,77 0,78 0,79 0,80	0,9507 0,9490 0,9473 0,9456 0,9438 0,9420 0,9402 0,9383 0,9364 0,9345 0,9326 0,9326 0,9326 0,9326 0,9326 0,9286 0,9286	0,8156 0,8098 0,8040 0,7980 0,7921 0,7860 0,7798 0,7737 0,7695 0,7612 0,7548	0,8579 0,8533 0,8487 0,8439 0,8393 0,8344 0,8294 0,8294 0,8246 0,8195	0,8040 0,8133 0,8224 0,8312 0,8399 0,8483 0,8564	0,9858 1,0043 1,0229 1,0416 1,0604	1,1565 1,1605 1,1645 1,1684 1,1724	0,7052 0,6978 0,6904 0,6930	0,5506 0,5706 0,5807 0,5907
0,60 0,61 0,62 0,63 0,64 0,65 0,66 0,66 0,67 0,68 0,69 0,70 0,71 0,72 0,73 0,74 0,75 0,75 0,76 0,77 0,78 0,79 0,80	0,9490 0,9473 0,9456 0,9438 0,9420 0,9402 0,9383 0,9364 0,9345 0,9326 0,9326 0,9326 0,9326 0,9326 0,9286 0,9286	0,8098 0,8040 0,7980 0,7921 0,7860 0,7798 0,7737 0,7693 0,7612 0,7548	0,8533 0,8487 0,8439 0,8393 0,8344 0,8294 0,8294 0,8246 0,8195	0,8133 0,8224 0,8312 0,8399 0,8483 0,8564	1,0043 1,0229 1,0416 1,0604	1.1605 1.1615 1.1684 1.1724	0.6978 0.6904 0.6930	0,5706 0,5807 0,5907
0,61 0,62 0,63 0,64 0,65 0,66 0,66 0,67 0,68 0,69 0,70 0,71 0,72 0,73 0,74 0,75 0,75 0,76 0,77 0,78 0,79 0,80	0,9473 0,9456 0,9438 0,9420 0,9402 0,9383 0,9364 0,9345 0,9326 0,9326 0,9326 0,9326 0,9326 0,9286 0,9286	0,8040 0,7980 0,7921 0,7860 0,7798 0,7737 0,7693 0,7612 0,7548	0,8487 0,8439 0,8393 0,8344 0,8294 0,8294 0,8246 0,8195	0.8224 0.8312 0.8399 0.8483 0.8564	1,0229	1,1615 1,1684 1,1724	0,6904	0,5807
0,62 0,63 0,64 0,65 0,66 0,67 0,68 0,69 0,70 0,71 0,72 0,73 0,74 0,75 0,76 0,77 0,78 0,79 0,80	0,9456 0,9438 0,9420 0,9383 0,9364 0,9345 0,9345 0,9326 0,9326 0,9326 0,9286 0,9286	0,7980 0,7921 0,7860 0,7798 0,7737 0,7695 0,7612 0,7548	0,8439 0,8393 0,8344 0,8294 0,8246 0,8195	0,8312 0,8399 0,8483 0,8564	1,0416	1,1684	0,6930	0,5907
0,63 0,64 0,65 0,66 0,67 0,68 0,69 0,70 0,71 0,72 0,73 0,74 0,75 0,75 0,76 0,77 0,78 0,79 0,80	0,9438 0,9420 0,9402 0,9383 0,9364 0,9345 0,9326 0,9326 0,9326 0,9286 0,9286	0.7921 0.7860 0.7798 0.7737 0.7695 0.7612 0.7548	0.8393 0.8344 0.8294 0.8246 0.8195	0,8399 0,8483 0,8564	1,0604	1,1724	0 6756	
0,64 0,65 0,66 0,67 0,68 0,69 0,70 0,71 0,72 0,73 0,74 0,75 0,75 0,76 0,77 0,78 0,79 0,80	0,9420 0,9402 0,9383 0,9364 0,9345 0,9326 0,9326 0,9306 0,9286 0,9266	0,7860 0,7798 0,7737 0,7693 0,7612 0,7548	0,8344 0,8294 0,8246 0,8195	0,8483 0,8564	1 0 70 3		0,0100	0,6008
0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.75 0.76 0.75 0.76 0.77 0.78 0.79 0.80 0.81	0,9402 0,9383 0,9364 0,9345 0,9326 0,9326 0,9306 0,9286 0,9266	0,7798 0,7737 0,7695 0,7612 0,7548	0,8294 0,8246 0,8195	0,8564	1,0792	1,1762	0,6683	0,6109
0,66 0,67 0,68 0,69 0,70 0,71 0,72 0,73 0,74 0,75 0,76 0,75 0,76 0,77 0,78 0,79 0,80 0,81	0,9383 0,9364 0,9345 0,9326 0,9306 0,9286 0,9266	0,7737 0,7695 0,7612 0,7548	0,8246 0,8195	0.0010	1,0982	1,1799	0,6609	0,6211
0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.75 0.76 0.75 0.76 0.77 0.78 0.79 0.80 0.81	0,9364 0,9345 0,9326 0,9306 0,9306 0,9286 0,9266	0,7693 0,7612 0,7548	0,8195	0.8645	1,1173	1,1838	0,6536	0,0313
0,68 0.69 0.70 0.71 0.72 0,73 0,74 0.75 0,76 0.75 0,76 0.76 0.77 0,78 0.79 0.80 0.81	0,9345 0,9326 0,9306 0,9286 0,9266	0,7612 0,7548		0.8722	1,1366	1,1874	0,6463	0,0413
0.69 0.70 0.71 0.72 0,73 0,74 0.75 0.76 0.76 0.76 0.77 0.78 0.79 0.80 0.81	0.9326 0.9306 0.9286 0.9266	0,7548	0,8145	0.8798	1,1559	1,1911	0,6395	0,0017
0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.76 0.76 0.77 0.78 0.79 0.80 0.81	0,9306 0,9286 0,9266	0 7:02	0.8094	0,8871	1,1753	1,1947	0,6318	0.0020
0,71 0,72 0,73 0,74 0,75 0,76 0,76 0,76 0,77 0,78 0,79 0,80 0,81	0,9286	0,748.3	0,8041	0,8941	1,1949	1,1981	0,6440	0 6826
0,72 0,73 0,74 0,75 0,76 0,76 0,77 0,78 0,79 0,80 0,81	0.9266	0,7419	0,7989	0,9011	1,2146	1.2017	0,6102	0 6930
0,73 0,74 0,75 0,76 0,76 0,77 0,78 0,79 0,80 0,81		0,7354	0.7937	0,9077	1,2343	1,2001	0,6031	0 7034
0,74 0,75 0,76 0,77 0,78 0,79 0,80 0,81	0,9245	0,7289	0,7884	0.9143	1,2543	1,2080	0,5061	0 7139
0,75 0,76 0,77 0,78 0,79 0,80 0,81	0,9224	0,7223	0,7830	0,9204	1,2/43	1,2110	0.5890	0.7243
0,76 0,77 0,78 0,79 0,80 0,81	0,9203	0,7157	0,7777	0,9265	1,2945	1 2189	0 5820	0.7348
0,77	0,9182	0,7090	0.7722	0,9322	1,3140	1 2912	0.5751	0.7454
0,78	0,9160	0,7023	0,7666	0.9377	1 3550	1 2241	0.5682	0.1561
0.79	0,9138	0,0955	0,7611	0,9430	1 3766	1 2270	0.5613	0.7666
0.80	0,9116	0,0887	0,7333	0.05%	1 3975	1,2298	0,5545	0,7772
0,01	0,9094	0,0819	0 7442	0 9575	1.4185	1,2324	0,5477	0,7880
	0 0048	0.6730	0.7384	0.9618	1,4397	1,2349	0,5410	0,7987
0,02	0 9024	0.6612	0.7326	0,9660	1,4610	1,2374	0,5313	0,8095
0.84	0,9001	0.6542	0,7268	0,9698	1,4825	1,2397	0,5277	0,8203
0.85	0.8977	0.6472	0,7210	0,9735	1,5042	1,2419	0,5211	0,8312
0.86	0.8953	0.6402	0,7151	0,9769	1.5260	1,2440	0,5146	0,8421
0.87	0.8928	0,6332	0,7092	0.9802	1,5479	1,2401	0,5082	0,8551
0.88	0.8903	0,6261	0,7032	0,9830	1.5701	1,24/8	0,5018	0,8011
0.89	0.8878	0.6191	0,6973	0,9859	1,3924	1,2497	0,4904	0 9867
0,90	0.8853	0,6120	0,6913	0,9883	1,0149	1 0505	0,4691	0 8074
0.91	0,8827	0,6048	0,6852	0,9904	1,03/0	1,2020	0,4029	0 0086
0,92	0,6801	0.5977	0.6791	0,9925	1,0000	1 2552	0 47.15	0 9198
0,93	0.8775	0,5906	0.6/30	0,9943	1,0000	1 2561	0 4645	0.9311
0,94	0,8749	0,5834	0.0009	0,9937	1 7332	1 2572	0.4584	0.9424
0,95	0,8722	0.5/03	0,0000	0 4981	1 7539	1 2577	0,4525	0,9538
0,96	0,3693	0,5091	0,6343	0,9980	1 7778	1 2583	0.4466	0,9653
0,97	0,8607	0,5019	0,6400	0 0005	1 8018	1.2586	0,4407	0,9768
0,98	0.8040	0,5347	0 6350	1,0000	1.8261	1,2591	0,4349	0,9884
0,99	0,8012	0.5404	0 6296	1.0000	1.8506	1,2391	0,4292	1,0000
,00	0.8555	0 3332	0.6233	1.0000	1.8754	1,2590	0,4235	1,0117
. 02	0 8527	0.5260	0.6169	0,9995	1,9003	1,2587	0,4179	1.0234
1.02	0 8497	0.5188	0.6105	0,9989	1,9255	1,2583	0,4123	1,0352
1,03	0 8468	0.5116	0.6042	0,9981	1,9509	1,2576	0,4068	1.0471
0.04	0 8439	0.5045	0.5979	0,0972	1,9766	1,2570	0,4014	1,0590
1.06	0.8409	0,4973	0.5914	0,9958	2,0025	1,2559	0,3960	1,0710
07	0.8379	0,4902	0,3850	0,9944	2,0286	1,2548	0,3906	1,0830

Slika 6.3. Nastavak plinskodinamičkih funkcija

_							1	1
X	T (2)	p (1)	• (2)	q (1)	y (1)	1 (2)	r (2)	м
1 00	0.000	0 1000	0 5706	0.0006	2 0550	1 2534	0.3854	1,0951
1,08	0,8348	0,4830	0,5/80	0,9980	2 0818	1,2520	0,3801	1,1073
1,09	0,0317	0,4/09	0,5/22	0,9907	2 1087	1,2503	0,3750	1,1196
	0,0200	0,4000	0,0000	0,9000	2 1350	1.2484	0,3896	1,1319
1 12	0,8203	0,4017	0,0090	0,9002	2 1635	1,2463	0,3648	1,1443
1 13	0,8102	0,4540	0,5320	0,9005	2 1913	1,2439	0,3598	1,156/
1 14	0 8150	0,44/5	0,5405	0.9000	2 2194	1.2415	0,3548	1,1693
1 15	0 8127	0 4335	0,5334	0 0744	2 2478	1.2388	0,3499	1,1819
1 16	0,8094	0,4265	0 5269	0 9709	2 2765	1,2359	0,3451	1,1940
1 17	0.8061	0,4195	0.5205	0 9674	2,3055	1,2330	0,3403	1,2073
1 18	0.8028	0.4126	0 5140	0 9634	2,3349	1,2296	0,3356	1,2202
1 19	0,7994	0.4057	0.5075	0 9593	2,3646	1,2261	0,3309	1,2331
20	0,7961	0.3986	0.5007	0 9545	2,3940	1,2218	0,3263	1,2401
1.21	0,7926	0.3920	0.4946	0 9506	2,4249	1,2186	0,3217	1,2592
1.22	0.7892	0.3852	0.4881	0.9459	2,4556	1,2146	0,3172	1,2/25
23	0,7857	0.3784	0.4816	0.9410	2,4867	1,2102	0,3127	1,2850
1.24	0,7822	0,3716	0,4751	0,9357	2,5181	1,2055	0,3083	1,2990
1,25	0,7787	0,3649	0,4686	0,0305	2,5500	1,2008	0,3939	1 2250
1,26	0,7752	0,3583	0,4622	0,9252	2,5821	1,1961	0,2996	1 3306
1,27	0,7716	0,3516	0,4557	0,9193	2,6147	1,1907	0,2953	1 2523
1,28	0,7680	0,3450	0,4493	0,9135	2,6477	1,1853	0,2911	1 3671
29	0,7643	0,3385	0,4429	0,9075	2,6811	1,1799	0,2869	1 3920
,30	0,7606	0,3320	0,4365	0,9014	2,7149	1,1741	0,2828	1 3950
1,31	0,7570	0,3255	0,4300	0,8949	2,7492	1,1080	0,2/0/	1 4091
1,32	0,7532	0,3191	0,4236	0,8883	2,7838	1,1010	0,2747	1,4234
1,33	0,7495	0,3128	0,4173	0,8810	2,8190	1,1000	0 2667	1,4377
1,34	0,7457	0,3065	0,4110	0,8/49	2,8005	1 1421	0 2629	1.4521
1,35	0,7419	0,3002	0,4040	0,8606	2 9271	1,1351	0.2590	1,4667
1,36	0,7380	0,2940	0,3920	0.8531	2,9642	1,1277	0,2552	1,4814
.3/	0,7303	0 2817	0.3857	0.8455	3,0017	1,1202	0,2515	1,4960
.33	0 7264	6 2757	0,3796	0,8381	3,0398	1,1129	0,2477	1,5110
1 40	0.7224	0,2697	0.3733	0,8303	3,0784	1,1051	0,2441	1,5290
41	0.7184	0.2637	0,3671	0,8221	3,1176	1,0968	0,2404	1,5412
42	0.7144	0,2578	0,3609	0,8140	3,1573	1,0885	0,2368	1,0004
1.43	0,7104	0,2520	0,3548	0,8060	3,1977	1,0803	0,2333	1,0/19
1.44	0,7063	0,2463	0,3487	0,7976	3,2386	1,0717	0,2298	1,08/0
1.45	0,7022	0,2406	0,3426	0,7891	3,2802	1,0629	0,2263	1,0031
1,46	0,6981	0,2349	0,3365	0,7805	3,3222	1,0539	0,2229	1,6140
1.47	0,6940	0,2294	0,3305	0,7718	3,3649	1,044/	0,2195	1 6510
1,48	0,6898	0,2238	0,3245	0,7629	3,4083	1,0000	0,2102	1 6672
1,49	0,6856	0,2184	0,3186	0,7540	3,4524	1,0256	0.2007	1 6836
1,50	0,6813	0,2138	0,3120	0 7357	3,4972	1,0160	0 2064	1,7002
1,51	0,6//1	0,2077	0,3007	0,7965	3,5420	0 9961	0.2032	1.7169
,52	0,6728	0,2024	0,0009	0,7172	3 6258	0.9858	0,2001	1,7338
,33	0,0085	0 1021	0.2803	0.7077	3.6836	0,0754	0,1970	1,7304
55	0.6697	0.1871	0,2836	0,6982	3,7321	0,9649	0,1939	1,7680
56	0 6553	0,1821	0,2779	0,6886	3,7813	0.9541	0,1909	1,7854
57	0.6509	0,1772	0.2722	0,6789	3,8316	0,9432	0,1879	1,8029
50	0.6420	0,1676	0,2610	0,6593	3,9345	0,9209	0,1820	1,8386
60	0.6374	0,1628	0,2554	0,6492	3,9874	0,9093	0,1791	1,8567
61	0.6329	0,1582	0,2500	0,6394	4,0410	0,8981	0,1762	1,8750
62	0,6283	0,1537	0,2446	0,6294	4,0957	0,8865	0,1734	1,8935
63	0,6237	0,1492	0,2392	0,6193	4,1514	0,8746	0,1706	1,9122
1,64	0,6191	0,1448	0,2338	0,0092	4,2080 1	0,8628	0,16/8	1.9311

Slika 6.4. Nastavak plinskodinamičkih funkcija

6.1.1. Zaustavna temperatura i tlak na izlazu iz turbine, T_{02} i p_{0z} :

$$T_{02} = T_{00} - \frac{L_t}{c_{pp}} = 1243,29 \text{ K}$$
$$p_{02} = p_{00} \left[1 - \frac{L_t}{c_{pp} T_{00} \eta_t} \right]^{\frac{\kappa_p}{\kappa_p - 1}} = 2,151 \text{ bar}$$

6.1.2. Obodna brzina na korijenom promjeru na izlazu iz rotorskih lopatica (odnosno stupnja), $u_{k,2}$:

$$u_{k,2} = \sqrt{\frac{L_t}{\mu_k}} = 280,58 \text{ m/s}$$

6.1.3. Korijeni promjer na izlazu iz rotorskih lopatica (odnosno stupnja), D_{k2} :

$$D_{k2} = \frac{60u_{k,2}}{\pi n} = 0,17819 \text{ m} = 178,19 \text{ mm}$$

6.1.4. Površina izlaznog presjeka rotorske rešetke (odnosno stupnja), F_2 :

Prihvaćajući Machov broj na izlazu iz turbine $M_{2c} = 0,52$, za koji je plinsko-dinamička funkcija protoka $q(\lambda_{2c}) = 0,765$ i izlazni kut toka $\alpha_2 = 80^\circ$, pa je površina izlaznog presjeka rotorske rešetke:

$$F_2 = \frac{\dot{m}_p \sqrt{T_{02}}}{0.0396q(\lambda_{2c})p_{02}\sin\alpha_2} = 0.0123 \text{ m}^2$$

6.1.5. Vršni promjer na izlazu iz rotorskih lopatica (odnosno stupnja), $D_{\nu 2}$:

$$D_{v2} = \sqrt{D_{k2}^2 + \frac{4F_2}{\pi}} = m = 0,21775 \text{ m} = 217,75 \text{ mm}$$

6.1.6. Srednji promjer izlaznog presjeka rotorskih lopatica, D_{sr2} :

$$D_{sr,2} = \frac{D_{v2} + D_{k2}}{2} = 0,198 \text{ m} = 198 \text{ mm}$$

6.1.7. Visina rotorskih lopatica na izlazu, h_2 :

$$h_2 = \frac{D_{\nu 2} - D_{k2}}{2} = 0,01978 \text{ m} = 19,78 \text{ mm}$$

6.1.8. Temperatura i apsolutna brzina plinova izgaranja na izlazu iz stupnja (odnosno rotorskih lopatica), T_2 i c_2 :

Za prihvaćeni Machov broj $M_{c2} = 0,52$ plinsko-dinamička funkcija brzine $\lambda_{2c} = 0,55$ i stoga je:

$$c_2 = \lambda_{2c} \sqrt{2 \frac{\kappa_p}{\kappa_p + 1} R_p T_{02}} = 353,35$$

6.1.9. Aksijalna komponenta apsolutne brzine na izlazu iz stupnja, c_{2a} :

$$c_{2a} = c_2 \sin \alpha_2 = 337,98 \text{ m/s}$$

6.1.10. Obodna komponenta apsolutne brzine na izlazu iz stupnja, c_{2u} :

$$c_{2u} = c_2 \cos \alpha_2 = 85,48 \text{ m/s}$$

6.1.11. Obodna brzina na srednjem promjeru na izlazu iz rotorskih lopatica (odnosno stupnja), $u_{sr,2}$:

$$u_{sr,2} = \frac{\pi D_{sr,2}n}{60} = 311,72 \text{ m/s}$$

6.1.12. Obodna komponenta relativne brzine na izlazu iz rotorskih lopatica, w_{2u} :

$$w_{2u} = c_{2u} + u_{sr,2} = 397,21 \text{ m/s}$$

6.1.13. Relativna brzina na izlazu iz rotorskih lopatica, w_2 :

$$w_2 = \sqrt{c_{2a}^2 + w_{2u}^2} = 524,71 \text{ m/s}$$

6.1.14. Ulazna visina rotorske lopatice (odnosno izlazna visina statorske lopatice), h_1 :

Odabrano: $h_1 = 0,018 \text{ m} = 18 \text{ mm}$

6.1.15. Srednji promjer na ulazu u rotorske lopatice, $D_{sr,1}$:

Ako se pretpostavi da je korijeni promjer $D_k = \text{konst.} = D_{k2} = 0,17819 \text{ m}$ tada vrijedi da je $D_{sr,1}$:

$$D_{sr,1} = D_k + h_1 = 0,19619 \text{ m}$$

6.1.16. Vršni promjer na ulazu u rotorske lopatice, D_{v1} :

$$D_{v1} = D_k + 2h_1 = 0,21419 \text{ m}$$

6.1.17. Površina ulaznog presjeka rotorskih lopatica (odnosno izlaznog presjeka statorskih lopatica), F_1 :

$$F_1 = \frac{\pi}{4} (D_{\nu 1}^2 - D_k^2) = 0.011094 \text{ m}^2$$

6.1.18. Obodna brzina na srednjem promjeru na ulazu u rotorske lopatice, $u_{sr,1}$:

$$u_{sr,1} = \frac{\pi D_{sr,1} n}{60} = 308,92 \text{ m/s}$$

6.1.19. Obodna komponenta apsolutne brzine na izlazu iz statorskih lopatica, c_{1u} :

$$c_{1u} = \frac{L_t - u_{sr,2}c_{2u}}{u_{sr,1}} = 474,39 \text{ m/s}$$

6.1.20. Apsolutna brzina i pripadajući kut na izlazu iz statorskih lopatica, c_1 i α_1 :

Ovdje je potrebno provesti itetrativni postupak, dok se ne dobije odstupanje manje od 1 % za λ_{1c} .

Pretpostavka od koje se polazi je $\lambda_{1c} = 0,83$. S tom vrijednošću sa slike 6.3. može se očitati $q(\lambda_{1c}) = 0,966$ i sa dijagrama na slici 6.5. moguće je očitati zavisnost $\sigma'_s = f(\lambda_{1c}, \varphi) = 0,9545$ te nadalje slijedi:

$$\alpha_1 = \arcsin(c/[\sigma'_s q(\lambda_{1c})])$$
,

gdje je

$$c = \frac{\dot{m}_p \sqrt{T_{00}}}{0.0396 F_1 p_{00}} = 0.5076$$
$$\lambda_{1c} = \frac{\lambda_{c1u}}{\cos \alpha_1},$$

gdje je

$$\lambda_{c1u} = \frac{c_{1u}}{a_{kr1}} = \frac{c_{1u}}{\sqrt{2\frac{\kappa_p}{\kappa_p + 1}R_pT_{00}}} = 0,6977$$

Iterativnim postupkom dobiva se da je za $\lambda_{1c} = 0,8357$ i $\alpha_1 = 33,4^\circ$.

Slika 6.5. Zavisnost $\sigma' = f(\lambda, \varphi)$

6.1.21. Apsolutna brzina na izlazu iz statorskih lopatica, c_1 :

$$a_{kr1} = \sqrt{2\frac{k_p}{k_p + 1}R_pT_{00}} = 679,96 \text{ m/s}$$
$$c_1 = \lambda_{1c}a_{kr1} = 568,23 \text{ m/s}$$

6.1.22. Aksijalna komponenta apsolutne brzina na izlazu iz statorskih lopatica, c_{1a} :

$$c_{1a} = c_1 \sin \alpha_1 = 312.8 \text{ m/s}$$

6.1.23. Relativna brana na ulazu u rotorske lopatice, w_1 :

$$w_1 = \sqrt{(c_{1u} - u_{sr,1})^2 + c_{1a}^2} = 353,87 \text{ m/s}$$

6.1.24. Statički tlak i temperatura na izlazu iz statorskih lopatica, p_1 i T_1 :

Iz plinskodinamičkih tablica za $\lambda_{1c} = 0,8357$ dobiva se $p(\lambda_{1c}) = 0,6542$, $T(\lambda_{1c}) = 0,9001$ i $M_{1c} = 0,8203$, te se iz dijagrama prikazanog na slici 6.5. može očitati $\sigma'_s = 0,952$.

$$p_1 = p_{00}\sigma'_s p(\lambda_{1c}) = 2,372$$
 bar
 $T_1 = T_{00}T(\lambda_{1c}) = 1260,14$ K

6.1.25. Kut relativne brzine na ulazu i izlazu iz rotorskih lopatica, β_1 i β_2 :

$$\beta_1 = \operatorname{arctg}\left(\frac{c_{1a}}{c_{1u} - u_{sr,1}}\right) = 62,123^{\circ}$$
$$\beta_2 = \operatorname{arctg}\left(\frac{c_{2a}}{c_{2u} - u_{sr,2}}\right) = 40,8^{\circ}$$

6.1.26. Koeficijent brzine za rotorsku rešetku, ψ :

Na temelju konfuzornosti rešetke $k = \frac{\sin \beta_1}{\sin \beta_2} = 1,35$ i kuta zakreta toka $\beta_1 + \beta_2 = 102,922^\circ$ iz dijagrama prikazanog na slici 6.6. koeficijent brzine za rotorsku rešetku iznosi $\psi = 0,9813$.

Slika 6.6. *Zavisnost koeficijenta brzine* ψ *o konfuzornosti rešetke k i kutu zakreta toka* ($\beta_1 + \beta_2$)

6.1.27. Koeficijent brzine za rotorsku rešetku uz uvažavanje gubitaka u radijalnom zazoru, ψ_{Σ} :

$$\psi_{\Sigma} = \sqrt{\psi^2 - \xi_{\delta}} = 0,9685$$

6.1.28. Specifični izentropski rad obavljen u rotorskim lopaticama, $L_{r,is}$:

$$L_{r,\text{is}} = \frac{1}{2} \left(\frac{w_2^2}{\psi_{\Sigma}^2} - w_1^2 + u_{\text{sr},2}^2 - u_{\text{sr},1}^2 \right) = 85,026 \text{ kJ/kg}$$

6.1.29. Statički tlak, temperatura i gustoća na izlazu iz rotorske rešetke, p_2 , T_2 i ρ_2 :

$$p_{2} = p_{1} \left(1 - \frac{L_{r,is}}{c_{pp}T_{1}} \right)^{\frac{\kappa_{p}}{\kappa_{p}+1}} = 1,864 \text{ bar}$$
$$T_{2} = T_{1} - \frac{w_{2}^{2} - w_{1}^{2}}{2c_{pp}} = 1195,07 \text{ K}$$
$$\rho_{2} = \frac{p_{2}}{R_{p}T_{2}} = 0,54 \text{ kg/m}^{3}$$

6.1.30. Korigirana aksijalna komponenta apsolutne brzine na izlazu iz rotora (odnosno stupnja), c_{2a} :

$$c_{2a} = \frac{\dot{m}_p}{F_2 \rho_2} = 342,03 \text{ m/s}$$

6.1.31. Korigirana apsolutna brzina na izlazu iz rotorskih lopatica (odnosno stupnja), c₂:

$$c_2 = \frac{c_{2a}}{\sin \alpha_2} = 352,5 \text{ m/s}$$

Kako je razlika između apsolutne brzine određene na početku i sada manja od 2 % $\left(\left|\frac{352,5-353,35}{352,5} \cdot 100\right| = 0,24\%\right)$ nije potrebno vršiti korekciju površine F_2 da bi se dobila nova vrijednost brzine u točki 6.1.31.

6.1.32. Korigirani apsolutni Machov broj na izlazu iz stupnja, M_2 :

$$M_2 = \frac{c_2}{\sqrt{\kappa_p R_p T_2}} = 0,52$$
6.1.33. Zaustavna temperatura i zaustavni tlak na izlazu iz turbinskog stupnja, T_{02} i p_{02} :

$$T_{02} = T_2 + \frac{c_2^2}{2c_{pp}} = 1248,93 \text{ K}$$
$$p_{02} = p_2 \left(\frac{T_{02}}{T_2}\right)^{\frac{\kappa_p}{\kappa_p - 1}} = 2,223 \text{ bar}$$

6.1.34. Visina statorskih lopatica na ulazu, h_0 :

Pretpostavlja se visina statorskih lopatica na ulazu $h_0 = 0,018 \text{ m} = 18 \text{ mm}.$

6.1.35. Vršni promjer statorskih lopatica na ulazu, D_{v0} :

Uz pretpostavku konstantnog korijenog promjera $D_k = 0,17819$ m,

$$D_{\nu 0} = D_k + 2h_0 = 0,21419 \text{ m}$$

6.1.36. Površina ulaznog presjeka statorskih lopatica, F_0 :

$$F_0 = \frac{\pi}{4} (D_{\nu 0}^2 - D_k^2) = 0,011094 \text{ m}^2 = F_1$$

6.1.37. Plinskodinamičke funkcije tlaka i temperature za ulazni presjek, $p(\lambda_0)$ i $T(\lambda_0)$:

$$q(\lambda_0) = \frac{\dot{m}_p \sqrt{T_{00}}}{0.0396 \, p_{00} F_0} = 0.5076$$

Na temelju $q(\lambda_0) = 0,5076$ iz plinskodinamičkih tablica slijedi $p(\lambda_0) = 0,9373$, $T(\lambda_0) = 0,984$, $\lambda_0 = 0,3355$ i Machov broj na ulazu $M_0 = 0,3133$.

6.1.38. Statički tlak i statička temperatura na ulazu u turbinski stupanj (odnosno statorsku rešetku), p_0 i T_0 :

$$p_0 = p_{00}p(\lambda_0) = 3,57$$
 bar
 $T_0 = T_{00}T(\lambda_0) = 1377,6$ K

6.1.39. Specifični izentropski rad turbinskog stupnja određen preko zaustavnih parametara,

 $L_{t,is0}$:

$$L_{t,is0} = \frac{\kappa_p}{\kappa_p - 1} R_p T_{00} \left[1 - \left(\frac{p_{02}}{p_{00}}\right)^{\frac{\kappa_p - 1}{\kappa_p}} \right] = 203810 \text{ J/kg}$$

6.1.40. Specifični izentropski rad turbinskog stupnja određen preko statičkih parametara, $L_{t,is}$:

$$L_{t,is} = \frac{\kappa_p}{\kappa_p - 1} R_p T_0 \left[1 - \left(\frac{p_2}{p_0}\right)^{\frac{\kappa_p - 1}{\kappa_p}} \right] = 238900,1 \text{ J/kg}$$

6.1.41. Reaktivnost turbinskog stupnja na srednjem promjeru, R_{sr} :

$$R_{sr} = \frac{L_{r,is}}{L_{t,is}} = 0,3568 = 35,68 \%$$

6.1.42. Izentropska iskoristivost turbine, $\eta_{t,is}$:

$$\eta_{t,is} = \frac{L_t}{L_{t,is0}} = 0,8498 \approx 85 \%$$

6.2. Određivanje parametara toka na unutarnjem i vanjskom promjeru:

Kod konstrukcija profila lopatica stupnja prihvaćena je promjena obodne komponente apsolutne brzine u aksijalnom zazoru između statorskih i rotorskih lopatica te na izlazu iz rotorskih lopatica prema zakonu konstantne cirkulacije (Γ = konst.): $c_{1u}r$ = konst. i $c_{2u}r$ = konst. Proračunske jednadžbe dane su niže, a sami rezultati proračuna su prikazani u tablici 6.1.

Simbol vodoravna crta "_" (engl. *low line*) predstavlja mjesto na kojem dolaze indeksi: *k* (korijeni), *sr* (srednji) i *v* (vršni) ovisno o kojem položaju se radi.

ZA STATORSKU REŠETKU:

6.2.1. Relativni polumjer, \bar{r}_{1} :

$$\bar{r}_{1} = \frac{D_{1}}{D_{sr,1}}$$

6.2.2. Obodna komponenta apsolutne brzine na izlazu iz statorske rešetke, $c_{1u,-}$:

$$c_{1u_{,-}} = \frac{c_{1u}}{\bar{r}_{1}}$$

6.2.3. Aksijalna komponenta apsolutne brzine na izlazu iz statorske rešetke, $c_{1a_{-}}$:

$$c_{1a,_} = \sqrt{(c_{1a}^2) + (c_{1u}^2)_{-}(1 - \varphi^2)\left(1 - \frac{1}{\bar{r}_{_1}^2}\right)}$$

6.2.4. Kut apsolutne brzine na izlazu iz statorske rešetke, α_{1} :

$$\alpha_{1_{-}} = \operatorname{arctg}\left(\frac{c_{1a,-}}{c_{1u,-}}\right)$$

6.2.5. Obodna brzina na ulazu u rotorsku rešetku, $u_{1_{-}}$:

$$u_{1_{-}} = u_{sr,1} \cdot \bar{r}_{1}$$

6.2.6. Kut relativne brzine na ulazu u rotorsku rešetku, β_{1} :

$$\beta_{1_{-}} = \arctan\left(\frac{c_{1a_{-}}}{c_{1u_{-}} - u_{1_{-}}}\right)$$

6.2.7. Relativna brzina na ulazu u rotorsku rešetku, $w_{1_}$:

$$w_{1_{-}} = \frac{c_{1a_{-}}}{\sin\beta_1}$$

6.2.8. Apsolutna brzina na izlazu iz statorske rešetke, c_{1} :

$$c_{1_{-}} = \sqrt{c_{1a_{,-}}^2 + c_{1u_{,-}}^2}$$

6.2.9. Statička temperatura na izlazu iz statorske rešetke ($T_{00} = T_{01}$), $T_{1_{-}}$:

$$T_{1_{-}} = T_{01} - \frac{c_{1_{-}}^2}{2c_{pp}}$$

6.2.10. Statički tlak na izlazu iz statorske rešetke ($p_{00} = p_{01}$), p_{1} :

$$p_{1_{-}} = p_{01} \left(1 - \frac{c_{1_{-}}^2}{\varphi^2 2 c_{pp} T_{01}} \right)^{\frac{\kappa_p}{\kappa_p - 1}}$$

6.2.11. Zaustavna temperatura na ulazu u rotorsku rešetku, $T_{01w,-}$:

$$T_{01w,_} = T_{1_} + \frac{w_{1_}^2}{2c_{pp}}$$

ZA ROTORSKU REŠETKU:

6.2.12. Relativni polumjer, \bar{r}_2 :

$$\bar{r}_{2} = \frac{D_{2}}{D_{sr,2}}$$

6.2.13. Obodna komponenta apsolutne brzine na izlazu iz stupnja, $c_{2u_{-}}$:

$$c_{2u,-} = \frac{c_{2u}}{\bar{r}_2}$$

6.2.14. Obodna brzina na izlazu iz rotorskih lopatica, u_2 :

$$u_{2_{-}} = u_{sr,2} \cdot \bar{r}_{2}$$

6.2.15. Aksijalna komponenta apsolutne brzine na izlazu iz stupnja, $c_{2a,-}$:

$$c_{2a,-} = \sqrt{c_{2a}^2 + (1 - \psi^2) \left[\left(1 - \bar{r}_{2}^2\right) u_{sr,2}^2 + \left(1 - \frac{1}{\bar{r}_{2}^2}\right) c_{2u}^2 \right] + (1 - \varphi^2) \psi^2 \left(1 - \frac{1}{\bar{r}_{2}^2}\right) c_{2u}^2}$$

6.2.16. Kut apsolutne brzine na izlazu iz turbinskog stupnja, α_2 :

$$\alpha_{2_{-}} = \arctan\left(\frac{c_{2a_{-}}}{c_{2u_{-}}}\right)$$

6.2.17. Kut relativne brzine na izlazu iz rotorske rešetke, β_2 :

$$\beta_{2_{-}} = \operatorname{arctg}\left(\frac{c_{2a_{-}}}{c_{2u_{-}} + u_{2_{-}}}\right)$$

6.2.18. Relativna brzina na izlazu iz rotorske rešetke, w_2 :

$$w_{2_{-}} = \frac{c_{2a_{,-}}}{\sin\beta_{2_{,-}}}$$

6.2.19. Apsolutna brzina na izlazu iz turbinskog stupnja, c_2 :

$$c_{2_{-}} = \sqrt{c_{2\alpha,-}^2 + c_{2u,-}^2}$$

6.2.20. Statička temperatura na izlazu iz turbinskog stupnja, T_{2} :

$$T_{2_{-}} = T_{02} - \frac{c_{2_{-}}^2}{2c_{pp}}$$

6.2.21. Statički tlak na izlazu iz turbinskog stupnja, $p_{2_}$:

$$p_{2_{-}} = p_{1_{-}} \left[1 - \frac{\left(\frac{W_{2_{-}}}{\psi_{\Sigma}}\right)^2 - w_{1_{-}}^2 + u_{2_{-}}^2 - u_{1_{-}}^2}{2c_{pp}T_{1_{-}}} \right]^{\frac{\kappa_p}{\kappa_p - 1}}$$

6.2.22. Specifični izentropski rad obavljen u rotorskim lopaticama, $L_{r,is,-}$:

$$L_{r,is,_} = \frac{1}{2} \left(\frac{w_{2_}^2}{\psi_{\Sigma}^2} - w_{1_}^2 + u_{2_}^2 - u_{1_}^2 \right)$$

6.2.23. Specifični izentropski rad turbinskog stupnja određen preko statičkih parametara, $L_{t,is,}$:

$$L_{t,is,_} = \frac{\kappa_p}{\kappa_p - 1} R_p T_0 \left[1 - \left(\frac{p_{2_}}{p_0}\right)^{\frac{\kappa_p - 1}{\kappa_p}} \right]$$

6.2.24. Reaktivnost turbinskog stupnja, R_{-} :

$$R_{-} = \frac{L_{r,is,-}}{L_{t,is,-}}$$

Veličina	Jedinica	Polo	žaj (korijen, sredina	i vrh)
\bar{r}_{1}	-	0,9083	1	1,0917
c _{1u,_}	m/s	522,31	474,39	434,52
c _{1a,_}	m/s	308,48	312,8	315,27
α1_	o	30,566°	33,4°	35,963°
<i>u</i>	m/s	280,58	308,92	337,27
β_{1}	o	51,918°	62,123°	72,856°
W1	m/s	391,91	353,87	329,93
<i>c</i> _{1_}	m/s	606,6	568,23	536,84
T	К	1240,47	1260,02	1275,05
$p_{1_{-}}$	bar	2,219	2,38	2,511
<i>T</i> _{01<i>w</i>,}	К	1307,06	1314,3	1322,24
\bar{r}_{2}	-	0,9001	1	1,0999
C _{2u,}	m/s	94,97	85,48	77,72
	m/s	280,58	311,72	342,87
C _{2a,}	m/s	342,7	342,03	341,17
α2_	0	74,51°	75,967°	77,167°
β2_	o	42,381°	40,731°	39,048°
W_2	m/s	508,41	524,17	541,56
C2_	m/s	355,61	352,55	349,91
T2_	К	1194,11	1195,05	1195,86
p	bar	1,864	1,872	1,873
L _{r,is,_}	J/kg	60995,9	84723,3	103821,9
L _{t,is,_}	J/kg	238846,7	237427,8	237225,9
R	-	0,2554	0,3568	0,4376

Tablica 6.1. Rezultati proračuna parametara toka ovisno o položaju

7. PRORAČUN KONSTRUKCIJE PROFILA PROTOČNOG DIJELA CENTRIFUGALNOG KOMPRESORA

7.1. Impeler

7.1.1. Ukupna širina impelera u aksijalnom smjeru, slika 7.1., B:

$$B = (0,3 \div 0,35)D_2 = 0,324 \cdot D_2 = 91 \text{ mm}$$

 $D_2 = 280,9 \text{ mm}$ - vanjski promjer impelera dobiven u termodinamičkom i plinskodinamičkom proračunu kompresora

Slika 7.1. Meridionalni presjek impelera centrifugalnog kompresora [15]

7.1.2. Širina impelera bez tzv. "rotirajućeg pretkola", slika 7.1., s₂:

$$s_2 = (0,15 \div 0,2)D_2 = 0,16 \cdot D_2 = 45 \text{ mm}$$

7.1.3. Širina tzv. "rotirajućeg pretkola", slika 7.1., s_1 :

 $s_1 = B - s_2 = 46 \text{ mm}$

7.1.4. Korijeni, srednji i vršni promjer na ulazu u "rotirajuće pretkolo" impelera (dobiveno u termodinamičkom i plinskodinamičkom proračunu turbokompresora), slika 7.1., d_{1k} , d_{1sr} i d_{1v} :

> $d_{1k} = 71,7 \text{ mm}$ $d_{1sr} = 123,6 \text{ mm}$ $d_{1v} = 159,4 \text{ mm}$

7.1.5. Širina lopatice tzv. "rotirajućeg pretkola" na ulazu (dobivena u termodinamičkom i plinskodinamičkom proračunu kompresora), slika 7.1., b_1 :

 $b_1 = 41 \text{ mm}$

7.1.6. Meridionalna brzina na ulazu u "rotirajuće pretkolo" impelera, c_{1m} :

Iz termodinamičkog i plinskodinamičkog proračuna kompresora slijedi,

$$c_{1m} = \bar{c}_{1m} u_2 = 136,3 \text{ m/s}$$

7.1.7. Brzina vrtnje impelera, *n*:

Iz termodinamičkog i plinskodinamičkog proračuna kompresora slijedi,

n = 30073,94 okr/min

7.1.8. Obodna brzina na korijenom, srednjem i vršnom promjeru na ulazu u "rotirajuće pretkolo" impelera, u_{1k} , u_{1sr} i u_{1v} :

$$u_{1k} = \frac{d_{1k}\pi n}{60} = 112,97 \text{ m/s}$$
$$u_{1sr} = \frac{d_{1sr}\pi n}{60} = 194,65 \text{ m/s}$$
$$u_{1v} = \frac{d_{1v}\pi n}{60} = 251,03 \text{ m/s}$$

7.1.9. Kut relativne brzine na korijenom, srednjem i vršnom promjeru na ulazu u "rotirajuće pretkolo" impelera, slika 7.2., β_{1k} , β_{1sr} i β_{1v} :

$$\beta_{1k} = \operatorname{arctg} \frac{c_{1m}}{u_{1k}} = 50,348^{\circ}$$
$$\beta_{1sr} = \operatorname{arctg} \frac{c_{1m}}{u_{1sr}} = 35^{\circ}$$

$$\beta_{1v} = \operatorname{arctg} \frac{c_{1m}}{u_{1v}} = 28,499^{\circ}$$

Slika 7.2. Parametri lopatice "rotirajućeg pretkola" čija je skeletnica kružni luk [15]

7.1.10. Broj lopatica "rotirajućeg pretkola", *z_k*:

Iz termodinamičkog i plinskodinamičkog proračunu kompresora slijedi,

 $z_k = 16$

7.1.11. Korak rešetke "rotirajućeg pretkola" mjeren na ulazu na korijenom, srednjem i vršnom promjeru, slika 7.2., t_{1k} , t_{1sr} i t_{1v} :

$$t_{1k} = \frac{d_{1k}\pi}{z_k} = 14,09 \text{ mm}$$
$$t_{1sr} = \frac{d_{1sr}\pi}{z_k} = 24,27 \text{ mm}$$
$$t_{1v} = \frac{d_{1v}\pi}{z_k} = 31,3 \text{ mm}$$

7.1.12. Kut zakreta toka u "rotirajućem pretkolu" na korijenom, srednjem i vršnom promjeru,

slika 7.2.,
$$\theta_k$$
, θ_{sr} i θ_v :

$$\theta_k = 90^\circ - \beta_{1k} = 39,652^\circ$$
$$\theta_{sr} = 90^\circ - \beta_{1sr} = 55^\circ$$
$$\theta_v = 90^\circ - \beta_{1v} = 61,501^\circ$$

7.1.13. Duljina tetive rešetke "rotirajućeg pretkola" na korijenom, srednjem i vršnom promjeru, slika 7.2., b_k , b_{sr} , i b_v :

$$b_k = \frac{s_1}{\cos\frac{\theta_k}{2}} = 48,98 \text{ mm}$$
$$b_{sr} = \frac{s_1}{\cos\frac{\theta_{sr}}{2}} = 51,94 \text{ mm}$$
$$b_v = \frac{s_1}{\cos\frac{\theta_v}{2}} = 53,61 \text{ mm}$$

7.1.14. Polumjer skeletnice lopatice "rotirajućeg pretkola" na korijenom, srednjem i vršnom promjeru, slika 7.2., R_k , R_{sr} i R_v :

$$R_{k} = \frac{b_{k}}{2 \cdot \sin \frac{\theta_{k}}{2}} = 43,24 \text{ mm}$$

$$R_{sr} = \frac{b_{sr}}{2 \cdot \sin \frac{\theta_{sr}}{2}} = 56,25 \text{ mm}$$

$$R_{v} = \frac{b_{v}}{2 \cdot \sin \frac{\theta_{v}}{2}} = 52,43 \text{ mm}$$

7.1.15. Gustoća rešetke "rotirajućeg pretkola" na korijenom, srednjem i vršnom promjeru, $b_k/t_{1k}, b_{sr}/t_{1sr}$ i b_v/t_{1v} :

$$b_k/t_{1k} = 3,477$$

 $b_{sr}/t_{1sr} = 2,14$
 $b_v/t_{1v} = 1,713$

7.1.16. Srednji eksponent politropske kompresije, n_k :

$$\frac{n_k}{n_k - 1} = \frac{\kappa_z}{\kappa_z - 1} \frac{\mu - \frac{\mu^2}{2} - \sum \bar{L}_{Rk}}{\mu - \frac{\mu^2}{2} + \alpha} \Rightarrow n_k = 1,474,$$

gdje su iz termodinamičkog i plinskodinamičkog proračuna kompresora:

$$\kappa_{z} = 1,4$$

$$\mu = 0,860$$

$$\beta = 2,5 (2,0 \div 3,0)$$

$$\xi_{2} = 0,125 (0,1 \div 0,15)$$

$$\alpha = \frac{\beta}{10^{3}} \frac{1}{\pi \frac{b_{2}}{D_{2}} \frac{c_{1m}}{u_{2}}} = 3,138$$

$$\sum L_{Rk} = \xi_{2} \frac{c_{1m}^{2}}{2} = 1161,1$$

$$\sum \bar{L}_{Rk} = \frac{\sum L_{Rk}}{u_{2}^{2}} = 0,0059$$

7.1.17. Relativni promjer glavine u presjeku k-k na izlazu iz "rotirajućeg pretkola", slika 7.1., \bar{d}_k :

$$\bar{d}_{k} = \sqrt{1 - \frac{4 \, \dot{m}_{z}}{\pi \, D_{1}^{2} \, w_{mk}}} = 0,491$$

$$D_{1} = d_{1v} = 159,4 \text{ mm}$$

$$\varepsilon = 1,075$$

$$w_{mk} = c_{1m}\varepsilon = 146,52 \text{ m/s}$$

$$u_{k} = u_{1sr} \frac{1 + \bar{d}_{k}}{1 + \bar{d}_{1}} = 201,53 \text{ m/s}$$

7.1.18. Stvarni promjer glavine u presjeku k-k na izlazu iz "rotirajućeg pretkola", slika 7.1.,

$$d_k$$

$$d_k = \bar{d}_k D_1 = 78,25 \text{ mm}$$

7.1.19. Širina lopatice impelera u presjeku k-k na izlazu iz "rotirajućeg pretkola", slika 7.1., b_k :

$$b_k = \frac{D_1}{2} (1 - \bar{d}_k) = 40,58 \text{ mm}$$

7.1.20. Kut nagiba unutarnje konture kanala "rotirajućeg pretkola" u meridionalnom presjeku, slika 7.1., ϑ_1 :

$$\vartheta_1 = \operatorname{arctg}\left(\frac{\underline{d_k - d_{1k}}}{s_1}\right) = 4,04^\circ$$

7.1.21. Polumjer unutarnje konture kanala impelera u meridionalnom presjeku, slika 7.1., R_{m0} :

$$R_{m_0} = \frac{D_2 \left[\kappa - \left(1 - \frac{D_v}{D_2} \right) \frac{\lg \vartheta_2}{2} - \frac{\Delta_2}{D_2} \right]}{1 - \sin \vartheta_1} = 42,27 \text{ mm},$$

gdje su:

$$\kappa = \frac{S_2}{D_2} = 0,16$$
$$\frac{D_v}{D_2} = 0,75$$
$$\vartheta_2 = 5^\circ$$
$$\frac{\Delta_2}{D_2} = 0,0092$$

7.1.22. Širina lopatice impelera na izlazu iz kompresora (iz termodinamičkog i plinskodinamičkog proračuna turbokompresora), slika 7.1., b_2 :

$$b_2 = 13,25 \text{ mm}$$

7.1.23. Određivanje vanjske konture kanala impelera u meridionalnom presjeku, R_{mk} :

Vanjska kontura kanala može se dobiti, provodeći niz pomoćnih kružnica, koje dodiruju unutarnju konturu, ali istovremeno i vanjsku kao što se vidi na slici 7.1. Ako se s D_i označi promjer, koji odgovara jednoj od dodirnih točaka, i s ϑ_i , kut između vertikale i pravca, koji tangira kružnicu s polumjerom R_{m_0} (ili pravocrtnim dijelom unutarnje strane diska, gdje je $\vartheta_i = \vartheta_2$). Kao širina kanala b_i , što je normala na srednju brzinu, može se u prvoj aproksimaciji uzeti promjer b_i pomoćne kružnice, koja je provedena kroz njenu točku dodira s unutarnjom konturom. Tada se promjer b_i pomoćne kružnice određuje iz jednadžbe

$$b_i = \sqrt{\left(\frac{D_i}{2\sin\vartheta_i}\right)^2 + \frac{\dot{m}}{\pi w_{mi}\rho_i\sin\vartheta_i}} - \frac{D_i}{2\sin\vartheta_i}$$

Kut ϑ_i određuje se grafički.

Kod tih je proračuna također svrsishodno uzeti brzinu $w_{mi} = c_{1a,sr}$ ili je mijenjati po linearnom zakonu od w_{1sr} na ulazu do (0,85 do 0,9) w_{1sr} na izlazu iz impelera. Gustoća ρ_i u prvoj aproksimaciji može se uzeti jednaka gustoći u središtu prethodne kružnice ili na srednjem promjeru izlaznog presjeka "rotirajućeg pretkola" (za prvu kružnicu). Nakon pronalaženja b_i sa vrijednošću ρ_i iz prve aproksimacije postaju poznati promjer d_i i obodna brzina u_i u središtu kružnice b_i ,

$$d_i = b_i$$
$$u_i = \frac{d_i \pi \cdot n}{60}$$

nakon čega se računa ponovno vrijednost ρ_i pomoću jednadžbi

$$T_{i} = T_{Lsr} + \frac{\kappa_{z} - 1}{\kappa_{z}R} \frac{w_{1sr}^{2} - w_{mi}^{2}}{2} + \frac{\kappa_{z} - 1}{\kappa_{z}R} \frac{u_{i}^{2} - u_{lsr}^{2}}{2}$$
$$\rho_{i} = \rho_{1sr} \left(\frac{T_{i}}{T_{1sr}}\right)^{\frac{1}{n_{k} - 1}}$$

i na kraju b_i u drugoj aproksimaciji, koja se može uzeti kao konačna.

Provodeći pravac i kružnicu (ili nekoliko kružnica), koji obavijaju pomoćne kružnice s promjerima d_i , dobiva se vanjska kontura.

7.2. Kombinirani difuzor

Lopatice lopatičnog dijela kombiniranog difuzora konstruirane su tako da im je središnja linja jedan kružni luk, slika 7.3.

Slika 7.3. Poprečni presjek kombiniranog difuzora [15]

7.2.1. Ulazni polumjer lopatičnog difuzora (slijedi iz termodinamičkog i plinskodinamičkog proračuna turbokompresora), slika 7.3., r_3 :

$$r_3 = \frac{d_3}{2} = 151,71 \text{ mm}$$

7.2.2. Izlazni polumjer lopatičnog difuzora (slijedi iz termodinamičkog i plinskodinamičkog proračuna), slika 7.3., r_4 :

$$r_4 = \frac{d_4}{2} = 182,61 \text{ mm}$$

7.2.3. Ulami kut lopatice lopatičnog difuzora (slijedi iz termodinamičkog i plinskodinamičkog proračuna), α₃:

$$\alpha_3 = 8,707^{\circ}$$

7.2.4. Izlazni kut lopatice lopatičnog difuzora (slijedi iz termodinamičkog i plinskodinamičkog proračuna), α_4 :

$$\alpha_4 = 19,086^{\circ}$$

7.2.5. Broj lopatica difuzora (slijedi iz termodinamičkog i plinskodinamičkog proračuna), z_d:

$$z_{d} = 18$$

7.2.6. Polumjer zakrivljenja središnje linije lopatice lopatičnog difuzora, slika 7.3., R_l:

$$R_l = \frac{r_4^2 - r_3^2}{2(r_4 \cos \alpha_4 - r_3 \cos \alpha_3)} = 228,44 \text{ mm}$$

7.2.7. Polumjer pomoćne kružnice, slika 7.3., r_0 :

$$r_0 = \sqrt{r_3^2 + R_l^2 - 2r_3R_l\cos\alpha_3} = 81,77 \text{ mm}$$

7.2.8. Kutno rastojanje između ulaznih bridova lopatica lopatičnog difuzora, slika 7.3., φ_d :

$$\varphi_d = \frac{360^\circ}{z_d} = 20^\circ$$

7.2.9. Oblikovanje lopatice lopatičnog difuzora:

Konveksna i konkavna strana lopatice se ocrtava tako da se oko središnje linije opišu koncentrične kružnice s polumjerima

$$R_{konveksna} = R_l + 0.5 \cdot \Delta = 229,44 \text{ mm}$$
$$R_{konkavna} = R_l - 0.5 \cdot \Delta = 227,44 \text{ mm}$$

gdje je Δ (slika 7.3.) – debljina lopatice koja se uzima približno do 2 mm.

8. PRORAČUN KONSTRUKCIJE PROFILA PROTOČNOG DIJELA AKSIJALNOG PLINSKO-TURBINSKOG STUPNJA

8.1. Statorska rešetka

1.) POLAZNI PODACI ZA KONSTRUKCIJU PROFILA STATORSKIH LOPATICA

Polazni podaci za konstrukciju profila lopatica dani su u tablici 8.1., a proizlaze iz aero-termodinamičkog proračuna stupnja:

	Polož	aj (korijen, sredina	i vrh)
Proračunski promjer, m	$D_{k1} = 0,17819$	$D_{sr1} = 0,19619$	$D_{v1} = 0,21419$
Brzina ispred statorskih lopatica, c_0 , m/s	432,51	432,51	432,51
Ulazni kut, α_0 , °	90	90	90
Brzina iza statorskih lopatica, c_1	606,6	568,23	536,84
Izlazni kut, α_1 , °	30,566	33,4	35,963
Kut zakreta toka, $\varepsilon = 180^{\circ} - (\alpha_0 + \alpha_1), ^{\circ}$	59,434	56,6	54,037
Statička temperatura na izlazu statorskih lopatica, T_1 , K	1240,47	1260,02	1275,05
Machov broj na izlazu iz rešetke, $M_{1c} = \frac{c_1}{\sqrt{\kappa_p R T_1}}$	0,567	0,508	0,471

Tablica 8.1. Polazni podaci za konstrukciju profila statorskih lopatica

II.) ODABIR OSNOVNIH PARAMETARA REŠETKE I PROFILA

8.1.1. Relativna debljina profila na korijenom promjeru u prvoj aproksimaciji, $\bar{c}_{max,k}$:

Odabrano: $\bar{c}_{max,k} = 22,5 \% = 0,225$.

8.1.2. Relativni korak rešetke u korijenom presjeku, $(t/b)_k$:

$$\left(\frac{t}{b}\right)_{k} = 0.55 \left[\frac{180}{180 - (\alpha_{0k} + \alpha_{1k})} \frac{\sin \alpha_{0k}}{\sin \alpha_{1k}}\right]^{\frac{1}{3}} \left(1 - \bar{c}_{max,k}\right) = 0.773$$

8.1.3. Odabir napadnih kutova na vršnom, srednjem i korijenom presjeku, i_v , i_{sr} i i_k :

Budući da se pretpostavlja da tok plinova izgaranja dolazi aksijalno iz komore izgaranja (bez vrtloga), prihvaća se: $i_v = i_{sr} = i_k = 0^\circ$.

8.1.4. Geometrijski ulazni kut profila lopatice na vršnom, srednjem i korijenom presjeku, $\alpha'_{0\nu}, \alpha'_{0sr}$ i α'_{0k} :

$$\alpha'_{0v} = \alpha_{0v} + i_v = 90^\circ$$
$$\alpha'_{0sr} = \alpha_{0sr} + i_{sr} = 90^\circ$$
$$\alpha'_{0k} = \alpha_{0k} + i_k = 90^\circ$$

8.1.5. Geometrijski izlazni kut profila lopatice na vršnom, srednjem i korijenom presjeku, $\alpha'_{1\nu}, \alpha'_{1sr}$ i α'_{1k} :

Geometrijski izlazni kut profila lopatice treba biti jednak kutu toka ili manji od njega za 1 do 1,5°. Prihvaćaju se vrijednosti geometrijskih izlaznih kutova profila lopatice manjima od kutova toka za 1°, pa stoga:

$$\alpha'_{1\nu} = \alpha_{1\nu} - 1^{\circ} = 34,963^{\circ}$$
$$\alpha'_{1sr} = \alpha_{1sr} - 1^{\circ} = 32,4^{\circ}$$
$$\alpha'_{1k} = \alpha_{1k} - 1^{\circ} = 29,566^{\circ}$$

8.1.6. Prema dijagramu, slika 8.1., $\Delta \alpha = f(M_{1c}, \alpha_1)$ na vršnom, srednjem i korijenom presjeku određuju se kutovi otklona toka na izlazu iz rešetke, $\Delta \alpha_v$, $\Delta \alpha_{sr}$ i $\Delta \alpha_k$:

$$\Delta \alpha_v = 3^{\circ}$$
$$\Delta \alpha_{sr} = 2,55^{\circ}$$
$$\Delta \alpha_k = 2^{\circ}$$

Slika 8.1. Zavisnost kuta otklona toka $\Delta \alpha (\Delta \beta) = \alpha_1 (\beta_2) - \alpha_{1r} (\beta_{2r}) o Machovom broju M_{1c} (M_{2w}) na izlazu iz rešetke s različitim kutovima <math>\alpha_{1r} (\beta_{2r})$

8.1.7. Izlazni kut rešetke na vršnom, srednjem i korijenom presjeku, $\alpha_{1r,v}$, $\alpha_{1r,sr}$ i $\alpha_{1r,k}$:

$$\alpha_{1r,v} = \alpha_{1v} - \Delta \alpha_v = 32,963^\circ$$
$$\alpha_{1r,sr} = \alpha_{1sr} - \Delta \alpha_{sr} = 30,85^\circ$$
$$\alpha_{1r,k} = \alpha_{1k} - \Delta \alpha_k = 28,566^\circ$$

8.1.8. Pretpostavka duljine tetive lopatice, b:

Prihvaća se lopatica s konstantnom duljinom tetive po visini uz $b/h_1 = 1$, odnosno $b = h_1 = 18$ mm.

8.1.9. Korak rešetke u korijenom presjeku, t_k :

$$t_k = b\left(\frac{t}{b}\right)_k = 13,91 \text{ mm}$$

8.1.10. Broj statorskih lopatica, z_s :

$$z_s = \frac{\pi D_{k1}}{t_k} = 40,25 \approx 41$$

8.1.11. Korigirani korak rešetke u korijenom presjeku, $t_{k,kor}$:

$$t_{k,kor} = \frac{\pi D_{k1}}{z_s} = 13,33 \text{ mm}$$

8.1.12. Korak rešetke na srednjem i vršnom promjeru, t_{sr} i t_v :

$$t_{sr} = t_{k,kor} \frac{D_{sr1}}{D_k} = 14,67 \text{ mm}$$

 $t_v = t_{k,kor} \frac{D_{v1}}{D_k} = 16,02 \text{ mm}$

8.1.13. Relativni korak rešetke na srednjem i vršnom promjeru, $(t/b)_{sr}$ i $(t/b)_{v}$:

$$\left(\frac{t}{b}\right)_{sr} = 0,815$$
$$\left(\frac{t}{b}\right)_{v} = 0,89$$

8.1.14. Širina grla rešetke na korijenom, srednjem i vršnom promjeru, a_k , a_{sr} i a_v :

$$a_k = t_{k,kor} \sin(\alpha_{1r,k}) = 6,37 \text{ mm}$$
$$a_{sr} = t_{sr} \sin(\alpha_{1r,sr}) = 7,53 \text{ mm}$$
$$a_v = t_v \sin(\alpha_{1r,v}) = 8,72 \text{ mm}$$

8.1.15. Relativna visina grla međulopatičnog kanala, h_1/a_{sr} ;

$$\frac{h_1}{a_{sr}} = 2,392$$

8.1.16. Kut srednje geometrijske brzine na korijenom, srednjem i vršnom promjeru, $\alpha_{m,k}$. $\alpha_{m,sr}$ i $\alpha_{m,v}$:

$$\alpha_{m,k} = \arctan\left(\frac{c_{0k}\sin(\alpha_{0k}) + c_{1k}\sin(\alpha_{1k})}{c_{1k}\cos(\alpha_{1k}) - c_{0k}\cos(\alpha_{0k})}\right) = 54,821^{\circ}$$
$$\alpha_{m,sr} = \arctan\left(\frac{c_{0sr}\sin(\alpha_{0sr}) + c_{1sr}\sin(\alpha_{1sr})}{c_{1sr}\cos(\alpha_{1sr}) - c_{0sr}\cos(\alpha_{0sr})}\right) = 57,524^{\circ}$$
$$\alpha_{m,v} = \arctan\left(\frac{c_{0v}\sin(\alpha_{0v}) + c_{1v}\sin(\alpha_{1v})}{c_{1v}\cos(\alpha_{1v}) - c_{0v}\cos(\alpha_{0v})}\right) = 59,84^{\circ}$$

8.1.17. Kut ugradnje profila na korijenom, srednjem i vršnom promjeru, $\alpha_{u,k}$, $\alpha_{u,sr}$ i $\alpha_{u,v}$: Ugradbeni je kut određivan po korelaciji $\alpha_u = 57,84 - 0,3929\alpha'_0 + 0,82221\alpha'_1$. pa stoga:

$$\alpha_{u,k} = 57,84 - 0,3929\alpha'_{0k} + 0,8221\alpha'_{1k} = 47,608^{\circ}$$

$$\alpha_{u,sr} = 57,84 - 0,3929\alpha'_{0sr} + 0,8221\alpha'_{1sr} = 49,937^{\circ}$$

$$\alpha_{u,v} = 57,84 - 0,3929\alpha'_{0v} + 0,8221\alpha'_{1v} = 52,044^{\circ}$$

8.1.18. Širina rešetke na korijenom, srednjem i vršnom promjeru, s_k , s_{sr} i s_v :

$$s_k = b \sin(\alpha_{u,k}) = 13,29 \text{ mm}$$
$$s_{sr} = b \sin(\alpha_{u,sr}) = 13,78 \text{ mm}$$
$$s_v = b \sin(\alpha_{u,v}) = 14,19 \text{ mm}$$

8.1.19. Relativne maksimalne debljine profila na vršnom, srednjem i korijenom promjeru, $\bar{c}_{max,v}$, $\bar{c}_{max,sr}$ i $\bar{c}_{max,k}$:

$$\bar{c}_{max,k} = \frac{c_{max,k}}{b} \le \frac{t_{k,kor} (1 - \sin(\alpha_{1r,k}))}{b} \le 0.38$$

Prihvaća se $\bar{c}_{max,k} = 0,225 = \bar{c}_{max,sr} = \bar{c}_{max,v}$.

8.1.20. Maksimalna debljina profila lopatice na korijenom, srednjem i vršnom promjeru,

 $C_{max,k,}, C_{max,sr}$ i $C_{max,v}$:

$$c_{mox,k} = \bar{c}_{max,k} \ b = 4,05 \text{ mm}$$
$$c_{max,sr} = \bar{c}_{max,sr} \ b = 4,05 \text{ mm}$$
$$c_{max,v} = \bar{c}_{max,v} \ b = 4,05 \text{ mm}$$

8.1.21. Polumjer zaobljenja prednjeg brida na korijenom, srednjem i vršnom promjeru,

 r_{0k} , r_{0sr} i r_{0v} :

Općenito,

$$r_0 = (0,025 \text{ do } 0,04)b \text{ ili } r_0 = (0,12 \text{ do } 0,15)c_{max}$$

U ovom slučaju je,

$$r_0 = 0.04b = 0.72 \text{ mm}$$
 ili $r_0 = 0.15c_{max} = 0.61 \text{ mm}$

Odabrano: $r_{0k} = r_{0sr} = r_{0v} = 0.7$ mm.

8.1.22. Kut zaobljenja prednjeg brida na korijenom, srednjem i vršnom promjeru, $\varphi_{0k}, \varphi_{0sr} i \varphi_{0v}$:

Općenito: $\phi_0 = 10 \text{ do } 30^\circ$.

Odabrano: $\varphi_{0k} = \varphi_{0sr} = \varphi_{0v} \coloneqq 25^{\circ}$.

8.1.23. Polumjer zaobljenja stražnjeg brida na korijenom, srednjem i vršnom promjeru, r_{1k}, r_{1sr} i r_{1v} :

Općenito:

$$r_1 = (0,015 \text{ do } 0,02)b \text{ ili } r_1 = (0,03 \text{ do } 0,16)c_{max}.$$

U ovom slučaju je,

$$r_1 = 0.0175b = 0.32 \text{ mm}$$
 ili $r_1 = 0.1c_{max} = 0.41 \text{ mm}$

Odabrano: $r_{1k} = r_{1sr} = r_{1v} = 0.3$ mm,

zbog tendencije da je razlika tlaka netom prije izlaznog brida što manja kako bi posljedično i vrtloženje bilo manje.

8.1.24. Kut zaobljenja stražnjeg brida na korijenom, srednjem i vršnom promjeru,

 $\varphi_{1k}, \varphi_{1sr}$ i φ_{1v} :

Općenito: φ_1 je do 6°

Odabrano: $\varphi_{1k} = \varphi_{1sr} = \varphi_{1v} = 4^{\circ}$.

8.1.25. Kut otklona izlaznog dijela leđa profila rešetke na korijenom, srednjem i vršnom promjeru, $\delta_{l,k}$, $\delta_{l,sr}$ i $\delta_{l,v}$:

Obično je $\delta_l = 8^\circ$ do 10° (maksimalno 15°).

Odabrano: $\delta_{l,k} = \delta_{l,sr} = \delta_{l,v} = 9^{\circ}$.

8.2. Rotorska rešetka

I.) POLAZNI PODACI ZA KONSTRUKCIJU PROFILA ROTORSKIH LOPATICA

Polazni podaci za konstrukciju profila lopatica dani su u tablici 8.2., a proizlaze iz aero-termodinamičkog proračuna stupnja:

	Polož	aj (korijen, sredina	i vrh)
Proračunski promjer, m	$D_{k2} = 0,17819$	$D_{sr2} = 0,19797$	$D_{v2} = 0,21775$
Relativna brzina ispred statorskih lopatica, w_1 , m/s	391,91	353,87	329,93
Ulazni kut toka, β_1 , °	51,918	62,123	72,856
Relativna brzina iza rotorskih lopatica, w_2 , m/s	508,41	524,17	541,56
Izlazni kut, β_2 , °	42,381	40,731	39,048
Kut zakreta toka, $\varepsilon_R = 180^\circ - (\beta_1 + \beta_2), \circ$	85,702	77,146	68,096
Statička temperatura na izlazu rotorskih lopatica, T_2 , K	1194,11	1195,05	1195,86
Machov broj na izlazu iz rešetke, $M_{2w} = \frac{w_2}{\sqrt{\kappa_p R T_2}}$	0,75	0,773	0,798

Tablica 8.2. Polazni podaci za konstrukciju profila rotorskih lopatica

II.) ODABIR OSNOVNIH PARAMETARA REŠETKE I PROFILA

8.2.1. Relativna debljina profila na korijenom promjeru u prvoj aproksimaciji, $c_{max,k}$:

Odabrano: $c_{max,k} = 18 \% = 0,18$.

8.2.2. Relativni korak rešetke u korijenom presjeku, $(t/b)_k$:

$$\left(\frac{t}{b}\right)_{k} = 0.55 \left[\frac{180}{180 - (\beta_{1k} + \beta_{2k})} \frac{\sin \beta_{1k}}{\sin \beta_{2k}}\right]^{\frac{1}{3}} \left(1 - \bar{c}_{max,k}\right) = 0.608$$

8.2.3. Odabir napadnih kutova na vršnom, srednjem i korijenom presjeku, i_v , i_{sr} , i i_k :

$$i_k = -6^\circ$$
$$i_{sr} = -1^\circ$$
$$i_v = 2^\circ$$

8.2.4. Geometrijski ulazni kut profila lopatice na vršnom, srednjem i korijenom presjeku, $\beta'_{1\nu}$, β'_{1sr} i β'_{1k} :

$$\beta'_{1v} = \beta_{1v} + i_v = 66,856^{\circ}$$
$$\beta'_{1sr} = \beta_{1sr} + i_{sr} = 61,123^{\circ}$$
$$\beta'_{1k} = \beta_{1k} + i_k = 53,918^{\circ}$$

8.2.5. Geometrijski izlazni kut profila lopatice na vršnom, srednjem i korijenom presjeku, β_{2v}, β_{2sr} i β_{2k} :

Geometrijski izlazni kut profila lopatice treba biti jednak kutu toka ili manji od njega za 1 do 1,5°. Prihvaćaju se vrijednosti geometrijskih izlaznih kutova profila lopatice manjima od kutova toka za 1°, pa stoga:

$$\beta'_{2v} = \beta_{2v} - 1^{\circ} = 38,048^{\circ}$$
$$\beta'_{2sr} = \beta_{2v} - 1^{\circ} = 39,731^{\circ}$$
$$\beta'_{2k} = \beta_{2k} - 1^{\circ} = 41,381^{\circ}$$

8.2.6. Prema dijagramu $\Delta\beta = f(M_{w2}, \beta_2)$, slika 8.1., na vršnom, srednjem i korijenom presjeku određuju se kutovi otklona toka na izlazu iz rešetke, $\Delta\beta_v, \Delta\beta_{sr}$ i $\Delta\beta_k$:

$$\Delta \beta_{v} = 1,45^{\circ}$$
$$\Delta \beta_{sr} = 2,05^{\circ}$$
$$\Delta \beta_{k} = 2,7^{\circ}$$

8.2.7. Izlazni kut rešetke na vršnom, srednjem i korijenom presjeku, $\beta_{2r,v}$, $\beta_{2r,sr}$ i $\beta_{2r,k}$:

$$\beta_{2r,v} = \beta_{2v} - \Delta\beta_v = 37,598^\circ$$
$$\beta_{2r,sr} = \beta_{2sr} - \Delta\beta_{sr} = 38,681^\circ$$
$$\beta_{2r,k} = \beta_{2k} - \Delta\beta_k = 39,681^\circ$$

8.2.8. Pretpostavka duljine tetive lopatice, b:

Prihvaća se lopatica s konstantnom duljinom tetive po visini lopatice, a vrijednost se određuje na korijenom promjeru iterativnim postupkom, gdje se malo razlikuje od širine:

$$b = s_k = 12,5 \text{ mm}$$

8.2.9. Korak rešetke u korijenom presjeku, t_k :

$$t_k = b\left(\frac{t}{b}\right)_k = 7,6 \text{ mm}$$

8.2.10. Broj rotorskih lopatica, z_R :

$$z_R = \frac{\pi D_{k2}}{t_k} = 73,633 \approx 74$$

8.2.11. Korigirani korak u korijenom presjeku rešetke, $t_{k,kor}$:

$$t_{k,kor} = \frac{\pi D_{k2}}{z_R} = 7,56 \text{ mm}$$

8.2.12. Korak rešetke na srednjem i vršnom promjeru, t_{sr} i t_v :

$$t_{sr} = t_{k,kor} \frac{D_{sr2}}{D_k} = 8,4 \text{ mm}$$
$$t_v = t_{k,kor} \frac{D_{v2}}{D_k} = 9,24 \text{ mm}$$

8.2.13. Relativni korak rešetke na srednjem i vršnom promjeru, $(t/b)_{sr}$ i $(t/b)_{v}$:

$$\left(\frac{t}{b}\right)_{sr} = 0,672$$
$$\left(\frac{t}{b}\right)_{v} = 0,74$$

8.2.14. Širina grla rešetke na korijenom, srednjem i vršnom promjeru, a_k , a_{sr} i a_v :

$$a_k = t_{k,kor} \sin \beta_{2r,k} = 4,83 \text{ mm}$$
$$a_{sr} = t_{sr} \sin \beta_{2r,sr} = 5,25 \text{ mm}$$
$$a_v = t_v \sin \beta_{2r,v} = 5,64 \text{ mm}$$

8.2.15. Relativna visina grla međulopatičnog kanala, h_2/a_{sr} :

$$\frac{h_2}{a_{sr}} = 3,765$$

8.2.16. Kut srednje geometrijske brzine na korijenom, srednjem i vršnom promjeru, $\beta_{m,k}$, $\beta_{m,sr}$ i $\beta_{m,v}$:

$$\beta_{m,k} = \arctan\left(\frac{w_{1k}\sin(\beta_{1k}) + w_{2k}\sin(\beta_{2k})}{w_{2k}\cos(\beta_{2k}) - w_{1k}\cos(\beta_{1k})}\right) = 78,387^{\circ}$$
$$\beta_{m,sr} = \arctan\left(\frac{w_{1sr}\sin(\beta_{1sr}) + w_{2sr}\sin(\beta_{2sr})}{w_{2sr}\cos(\beta_{2sr}) - w_{1sr}\cos(\beta_{1sr})}\right) = 70,511^{\circ}$$
$$\beta_{m,v} = \arctan\left(\frac{w_{1v}\sin(\beta_{1v}) + w_{2v}\sin(\beta_{2v})}{w_{2v}\cos(\beta_{2v}) - w_{1v}\cos(\beta_{1v})}\right) = 63,777^{\circ}$$

8.2.17. Kut ugradnje profila na korijenom, srednjem i vršnom promjeru, $\beta_{u,k}$, $\beta_{u,sr}$ i $\beta_{u,v}$:

$$\beta_{u,k} = \beta_{m,k} = 78,387^{\circ}$$
$$\beta_{u,sr} = \beta_{m,sr} = 70,511^{\circ}$$
$$\beta_{u,v} = \beta_{m,v} = 63,777^{\circ}$$

8.2.18. Širina rotorske rešetke na korijenom, srednjem i vršnom promjeru, s_k , s_{sr} i s_v :

$$s_k = b \sin \beta_{u,k} = 12,24 \text{ mm}$$

 $s_{sr} = b \sin \beta_{u,sr} = 11,78 \text{ mm}$
 $s_v = b \sin \beta_{u,v} = 11,21 \text{ mm}$

8.2.19. Relativne maksimalne debljine profila na vršnom, srednjem i korijenom promjeru, $\bar{c}_{max,v}, \bar{c}_{max,sr}$ i $\bar{c}_{max,k}$:

$$\bar{c}_{max,k} = \frac{c_{max,k}}{b} \le \frac{t_{k,kor} \left(1 - \sin(\beta_{2r,k})\right)}{b} \le 0.21$$

Prihvaća se: $\bar{c}_{max,k} = 0,21 = 21$ %;

$$\bar{c}_{max,v} = 0,06 = 6\%;$$

 $\bar{c}_{max,sr} = \frac{\bar{c}_{max,k} + \bar{c}_{max,v}}{2} = 0,135 = 13,5\%$

8.2.20. Maksimalna debljina profila lopatice na korijenom, srednjem i vršnom promjeru, $c_{max,k,r} c_{max,sr}$ i $c_{max,v}$:

$$c_{mox,k} = \bar{c}_{max,k} \ b = 2,63 \text{ mm}$$
$$c_{max,sr} = \bar{c}_{max,sr} \ b = 1,69 \text{ mm}$$
$$c_{max,v} = \bar{c}_{max,v} \ b = 0,758 \text{ mm}$$

8.2.21. Polumjer zaobljenja prednjeg brida na korijenom, srednjem i vršnom promjeru, r_{1k}, r_{1sr} i r_{1v} :

Općenito,

$$r_1 = (0,025 \text{ do } 0,04)b \text{ ili } r_1 = (0,12 \text{ do } 0,15)c_{max}.$$

U ovom slučaju,

$$r_1 = 0.04b = 0.5 \text{ mm ili } r_{1k} = 0.15c_{max,k} = 0.39 \text{ mm}$$

 $r_{1sr} = 0.15c_{max,sr} = 0.25 \text{ mm}$
 $r_{1v} = 0.15c_{max,v} = 0.11 \text{ mm}$

Odabrano

$$r_{1k} = 0.5 \text{ mm}$$

 $r_{1sr} = 0.4 \text{ mm}$
 $r_{1v} = 0.3 \text{ mm}$

8.2.22. Kut zaobljenja prednjeg brida na korijenom, srednjem i vršnom promjeru, $\varphi_{1k}, \varphi_{1sr} i \varphi_{1v}$:

Općenito: $\varphi_1 = 10 \text{ do } 30^\circ$.

Odabrano:

$$\varphi_{1k} = 24^{\circ}$$
$$\varphi_{1sr} = 16^{\circ}$$
$$\varphi_{1v} = 8^{\circ}$$

8.2.23. Polumjer zaobljenja stražnjeg brida na korijenom, srednjem i vršnom promjeru,

$$r_{2k}$$
, r_{2sr} i r_{2v} :

Općenito vrijedi,

$$r_2 = (0,015 \text{ do } 0,02)b \text{ ili } r_2 = (0,03 \text{ do } 0,16)c_{max}$$

a u ovom slučaju,

$$r_2 = 0.02b = 0.25 \text{ mm ili } r_{2k} = 0.12c_{\max,k} = 0.32 \text{ mm}$$

 $r_{2sr} = 0.1c_{\max,sr} = 0.12 \cdot 1.688 = 0.2 \text{ mm}$
 $r_{2v} = 0.1c_{\max,v} = 0.12 \cdot 0.750 = 0.09 \text{ mm}.$

Odabrano:

$$r_{2k} = 0,35 \text{ mm}$$

 $r_{2sr} = 0,3 \text{ mm}$
 $r_{2v} = 0,25 \text{ mm}$

8.2.24. Kut zaobljenja stražnjeg brida na korijenom, srednjem i vršnom promjeru,

$$\varphi_{2k}, \varphi_{2sr}$$
 i φ_{2v} :

Općenito: φ_2 je do 6°

Odabrano:

$$\varphi_{2k} = 6^{\circ}$$
$$\varphi_{2sr} = 5^{\circ}$$
$$\varphi_{2v} = 4^{\circ}$$

8.2.25. Kut otklona izlaznog dijela leđa profila rešetke na korijenom, srednjem i vršnom promjeru, $\delta_{l,k}$, $\delta_{l,sr}$ i $\delta_{l,v}$:

Obično je $\delta_l=8^\circ$ do 10° (maksimalno 15°).

Odabrano: $\delta_{l,k} = \delta_{l,sr} = \delta_{l,v} = 9^{\circ}$.

9. ZAKLJUČAK

Ovim radom prikazan je preliminarni proračun za turbomlazni motor TM 1600 N. Bitno je navesti da se ovaj turbomlazni motor uz dodatak niskotlačne turbine umjesto mlaznice može koristiti primjerice za generiranje električne energije u uvjetima kao što su ratni kada postoji opravdana mogućnost nedostatka električne energije koja se na ovaj način može nadomjestiti.

Također, ovim radom je prikazana metodologija proračunavanja turbomlaznog motora, uz naglasak da se proračun može primijeniti samo na turbomlazni motor koji ima istu strukturu (primjerice za slučaj aksijalnog kompresora potrebno je izmijeniti dio proračuna koji se odnosi na kompresor).

Preliminarni proračun predstavlja početak u razvoju turbomlaznog motora. Nakon proračuna moguće je prema izračunatim vrijednostima napraviti konstrukciju (*CAD* modele) pojedinih dijelova. Nakon toga se mogu provesti simulacije kao zadnji korak prije izrade i u slučaju da je navedena konstrukcija zadovoljavajuća može se krenuti u proces proizvodnje, a u protivnom je potrebno vratiti se na početak te u proračunu izvršiti određene modifikacije, kao i u konstrukciji te ponoviti postupak dok simulacija ne potvrdi valjanost modela.

Ujedno, konstrukcija pojedinih dijelova kao i provođenje *FEM* i *CFD* simulacija te projektiranje letjelice za ovu vrstu motora predstavlja mogućnost za nastavak rada u ovom području.

10. LITERATURA

- [1] Web stranica militaryfactory.com, <u>https://www.militaryfactory.com/aircraft/detail.php?aircraft_id=1755"%20\1%20"image</u> <u>s</u>, pristupljeno: 24.1.2023.
- [2] Valavanis, K.P.; Vachtsevanos, G.J. Handbook of Unmanned Aerial Vehicles; Springer: Dordrecht, The Netherlands, 2015
- [3] Semetkovsky; Primoco UAV 2. 2015. Available online: <u>https://commons.wikimedia.org/wiki/File:Primoco_UAV_2.jpg</u>, pristupljeno: 25.1.2023.
- KlausFoehl. Parrot Anafi Drone. 2018. Available online: <u>https://commons.wikimedia.org/wiki/File:Parrot_Anafi_Drone01_2018-07-19.jpg</u>, pristupljeno: 25.1.2023.
- [5] David, M. EADS Drone. 2005. Available online: <u>https://commons.wikimedia.org/wiki/File:EADS_drone_fh000011.jpg</u>, pristupljeno: 26.1.2023.
- [6] Princo85; Skyrunner 11000 UAV Blimp. 2012. Available online: <u>https://commons.wikimedia.org/wiki/File:SkyRUNNER_11000_UAV_Blimp.JPG</u>, pristupljeno: 26.1.2023.
- [7] MatejTU. DelFly Nimble. 2018. Available online: <u>https://commons.wikimedia.org/wiki/File:DelFly_Nimble.jpg</u>, pristupljeno: 28.1.2023.
- [8] Zhang, B.; Song, Z.; Zhao, F.; Liu, C. Overview of Propulsion Systems for Unmanned Aerial Vehicles. Energies 2022, 15, 455.
- [9] Web stranica kratosdefense.com, <u>https://www.kratosdefense.com/products/uav/air/turbines#Turbojet</u>, pristupljeno: 29.1.2023.
- [10] Web stranica rotax.com, <u>https://www.rotax.com/en/products/rotax-powertrains/details/rotax-582-ul.html</u>, pristupljeno: 29.1.2023.

- [11] Web stranica uasvision.com,, https://www.uasvision.com/2014/12/30/nasa-seed-funds-sr-72-hypersonic-uav/, pristupljeno: 29.1.2023.
- [12] Kong, X.; Zhang, Z.; Lu, J.; Li, J.; Yu, L. Review of electric power system of distributed electric propulsion aircraft. Acta Aeronaut. Astronaut. cos. 2018.
- [13] Web stranica launchpointeps.com, <u>https://launchpointeps.com/wp-</u> <u>content/uploads/2021/09/LP_DataSheetHPS400D091521.pdf</u>, pristupljeno: 30.1.2023.
- [14] Web stranica unmannedsystemstechnology.com, <u>https://www.unmannedsystemstechnology.com/company/cr-flight/</u>, pristupljeno: 31.1.2023.
- [15] Guzović, Z.: Termodinamički i plinskodinamički proračun turbomlaznog motora, Zagreb, 1996.
- [16] Jasak, H.: Mazni motori 1, Zagreb, 2014./2015.
- [17] Jasak, H.: Mazni motori 2, Zagreb, 2014./2015.
- [18] Guzović, Z.; Novko, I.: Podloge za pripremanja ispita iz kolegija Turbostrojevi 1
- [19] Virag, Z.; Šavar, M.; Džijan, I.: Mehanika fluida 1 predavanja, Zagreb, 2017.
- [20] Galović, A.: Termodinamika I, Zagreb, 2016.
- [21] Galović, A.: Termodinamika II, Zagreb, 2014.
- [22] Halasz, B.; Galović, A.; Boras I.: Toplinske tablice, Zagreb, 2015.
- [23] Mattingly, J. D.: Elements of Gas Turbine Propulsion, New Delhi, 1996.
- [24] Cohen, H.; Rogers, G. F. C.; Saravanamuttoo, H. I. H.: Gas turbine theory, Longman, London, 1972.

PRILOZI

I.

 MATLAB kod:
 TM1600N_tp.m

 Proracun_tk.m

 Proracun_ki.m

 Proracun_pt.m

 Konstrukcija_profila_protocnog_dijela_k.m

 Konstrukcija_profila_protocnog_dijela_t_rotor.m

 Konstrukcija_profila protocnog_dijela_t_stator.m

II. Tehnička dokumentacija

		15	10			1			18
·	Poz	. Naziv pozicije/sklopa	Kom.	Materij	al	Masa	Broj nacrta	a Forma	Napomena (Rev.)
	1	Kućište pumpi							
~ ~	2	Priključak odvoda goriva	а						
70	3	Pumpe za gorivo i ulje							
L	4	Difuzor							
	5	Odvod ulja za podmaziv							
/	6	Kućište motora							
	7	<u>Plašt komore izgaranja</u>							
	8	Plamena cijev		NIMONIC	86				
	9	Prestrujni kanal							
	11	Stator turbine							
	12	Rotor turbine		NIMONIC	86				
	13	Sklop inicijalnog paljenja	1						
	16	Mlaznica							
	17	Priključak dovoda goriv	a						
	18	Usisno kućište							
	19	Rotor kompresora		AlCu4Si	Mg				
	20	Sklop uljne brtve							
	21	Sklop prednjeg lezaja							
	22	2 Dovod ulja za podmaziv							
	23	Vratilo rotora turbine							
	24	Sklop stražnjeg ležaja							
	25	Sklop turbinske brtve							
	26	Sklop sapnice							
	27	Poklopac komore izgara	nja						
	28	Priključak oduška ulja							
	29	Izlazno kučište							

16

Broj naziva – code		Datum	l li	me i prezime	Potpis			
2	Projektirao	9.3.2023.	Sandro	o Ljutić			C	
	Razradio Crtao	9.3.2023.	3.2023. Sandro Ljutić				FSB	Zagreb
	Pregledao	14.3.2023	.3.2023 prof. Zvonimir Guzović		Studii zra		tudii zral	koplovstva
	Mentor		prof. Z	Zvonimir Guzović			·	· · F · · · · · · · -
ISO – tolerancije	Objekt:				Objekt broj:			
	Turbom	ılazni r	notc	or 1600 N	R. N. broj:			
	Napomena:	Napomena:				Smjer: Zrakoplovstvo		
	Materijal:			Masa:	DIPLOMS	ski r	AD	
	$\bigcirc \oplus$	⊢ Naziv:		Uzdužni pr	esiek		Pozicija:	Format: A1
	Mjerilo origin M1:1	ala			Listova: 3			
		Crtez	Crtež broj: SLJ_D_2023_01					List: 1
		() 1	0 20 30	40 50	60	70 80) 90 100

ø107

Δ

		\wedge							
7	8	9		10		11		12	
		14 Prikliu	čak dovoda ulia						
		15 Priklju	čak odvoda ulja			Irtež broi		Sirove dimenz	
		Poz. Broi naziva	Naziv dijela - code	Datum	Kom. Ime	Norma i prezime	Materijal Potpis	Proizvođač	Masa
			Projektir Razradio Crtao Pregleda	ao 9.3.2023. 9.3.2023. 9.3.2023. 9.3.2023. 9.3.2023. o 14.3.2023.	Sandro Lj Sandro Lj Sandro Lj prof. Zvor	jutić jutić jutić nimir Guzović	1	FSB Studij zrak	Zagreb coplovstv
		ISO - tole	Mentor erancije Objekt:		prot. Zvor	ıımır Guzović	Objekt broj:	l	
			Turb	omlazni r	notor	1600 N	R. N. broj:		Kes"-
			Napomer	a:	I		Smjer: Zrako	plovstvo	Коріја
			Materija	:	Ma	sa:	DIPLOM	SKI RAD	
			Mjerilo o	riginala Naziv:	Pog	gled slijev	va (B)	Pozicija:	Format: A2 Listova: 3

Listova: 3 M1:2 Crtež broj: SLJ_D_2023_02 List: 2 0 10 20 30 40 50 60 70 80 90 100

Δ

7	0	<u> </u>	I	10			11		12	
t	δ	9		10					12	
	13									
TOS 0	\mathbf{X}									
\times		(0)								
										ĸ
	• •									
		1111								
	#// <i>//</i> /									
		\sim								
		$\mathbf{\mathbf{Y}}$								
5000		1								
	-									
				aaniwa					1	
		10	<u>эктор arenaze</u> Sklop inicijalnoc	yonva j paljenja						
		30	Priključak oduš	ka drenaže			Crtož broj		Sinova dimanatir	
		Poz.	Naz	iv dijela	Datur	Kom.	Norma	Materijal	Proizvođač	Masa
		Вго	j naziva – code		varum	IM	e i prezime	l Pothis		

Projektirao9.3.2023. Sandro LjutićRazradio9.3.2023. Sandro LjutićCrtao9.3.2023. Sandro LjutićPregledao14.3.2023 prof. Zvonimir GuzovićMentorprof. Zvonimir Guzović FSB Zagreb Studij zrakoplovstva ISO – tolerancije Objekt: Objekt broj: Turbomlazni motor 1600 N R. N. broj: Smjer: Zrakoplovstvo Napomena: Kopija DIPLOMSKI RAD Masa: Materijal: $\bigcirc \bigcirc$ Naziv: Pozicija: Format: A2 Pogled zdesna (B1) Mjerilo originala Listova: 3 M1:2 Crtež broj: SLJ_D_2023_03 List: 3

80 90 100 10 20 30 40 50 60 70

 \sim