Model relativne brzine strujanja oko lopatice plimne turbine

Bašić, Ivan

Undergraduate thesis / Završni rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:077975

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-04-02

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Ivan Bašić

Zagreb, 2022.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentori:

Student:

Izv. prof. dr. sc. Ivan Ćatipović

Ivan Bašić

Zagreb, 2022.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu. Zahvaljujem mentoru Izv. prof. dr. sc. Ivan Ćatipović na strpljenju, pomoći, susretljivosti, savjetima te prenesenom znanju prilikom izrade ovog rada

Ivan Bašić

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za završne i diplomske ispite studija brodogradnje

Sveučilište u Zagrebu		
Fakultet strojarstva i brodogradnje		
Datum	Prilog	
Klasa: 602 – 04 / 22 – 6 / 1		
Ur.broj: 15 - 1703 - 22 -		

ZAVRŠNI ZADATAK

Student: Ivan Bašić

JMBAG: 0035208638

Naslov rada na Model relativne brzine strujanja oko lopatica plimne turbine hrvatskom jeziku:

Naslov rada na engleskom jeziku:

A model of the relative flow velocity around a tidal turbine blade

Opis zadatka:

Energija plime i oseke jedan je od obnovljivih izvora energije koje se posljednje vrijeme sve više koristi. Navedena energija ne zagađuje okoliš te se lakše može previdjeti njezin budući potencijal u odnosnu na ostale izvore obnovljivih energija dobivenih iz vjetra i valova.

U završnom radu potrebno je razviti matematički model koji će proračunavati relativni brzinu strujanja morske vode u odnosu na brzinu gibanja lopatica plimne turbine. U obzir treba uzeti profil morske struje te utjecaj nalaznih valova. Zanemariti komponentu strujanja koje generirana lopatica svojim prolaskom kroz morsku vodu.

U radu je potrebno:

- 1. Napraviti pregled literature vezane za plimne turbine i postojeće modela strujanja.
- 2. Definirati brzine morske struje.
- 3. Definirati strujanje morske vode uslijed nalaznih valova, na temelju potencijalne teorije.
- 4. Definirati brzinu gibanja zadane točke na lopatici plimne turbine.
- 5. Definirati model relativnog strujanja morske vode na lopatici plimne turbine.
- 6. Primijeniti razvijeni model na reprezentativnoj plimnoj turbini.
- 7. Na sistematičan način prikazati dobivene rezultate.

U radu treba navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

30.11.2021.

Zadatak zadao:

Izv. prof. dr. sc. Ivan Ćatipović

Calipenic

Datum predaje rada:

1. rok: 24. 2. 2022. 2. rok (izvanredni): 6. 7. 2022. 3. rok: 22. 9. 2022.

Predviđeni datumi obrane:

1. rok: 28. 2. - 4. 3. 2022. 2. rok (izvanredni): 8. 7. 2022. 3. rok: 26. 9. - 30. 9. 2022. Predsjednik Povjerenstva:

Izv. prof. dr. sc. Ivan Ćatipović

Cal purc

Sadržaj

POPIS SLIKA	6
POPIS OZNAKA	11
SAŽETAK	12
SUMMAYR	13
1. Uvod	14
2. Energija plime i oseke	15
2.1 Plima i oseka	16
2.2 Tehnologija plimnih turbini	17
3. Teorija	21
3.1 Pojava plime i oseke	21
3.2.1 Ravninski harmonijski val	23
3.2.2 Potencijalna teorija	25
3.2.3 Profil strujanja mora	30
3.3.1 Sile i bezdimenzionalni parametri	31
3.3.2 Zastoj	32
3.3.3 Gubitak usljed vrtloga na kraju lopatice	32
3.4 Metoda impulsa elementa lopatice	33
3.4.1 Teorija aktuatora diska	34
3.4.2 Rotacijski disk	36
3.4.3 Teorija kriški BET	37
4. Proračun i prikaz rezultata	40
4.1 Model strujanja za različte kuteve strujanja	43
4.1.1 Prikaz rezultata za nailazni kut $\beta = 0^{\circ}$	44
4.1.1.1. Brzine točke P uslijed rotacije turbine	44
4.1.1.2. Brzine strujanja u točki P uslijed morske struje	45
4.1.1.3. Brzine strujanja u točki P uslijed nailaznog vala	46
4.1.1.4. Rezultantna brzina na poziciji točke P	47
4.1.1.5 Rezultantne brzine u koordinatnom sustavu lopatice	48
4.1.2 Prikaz rezultata za nailazni kut $\beta = 22.5^{\circ}$	49
4.1.2.1. Brzine točke P uslijed rotaicje turbine	49
4.1.2.2. Brzine strujanja u točki P uslijed morske struje	50
4.1.2.3. Brzine strujanja u točki P uslijed nailaznog vala	51
4.1.2.4. Rezultantna brzina na poziciji točke P	52
4.1.2.5 Rezultantne brzine u koordinatnom sustavu lopatice	53
4.1.3 Prikaz rezultata za nailazni kut $\beta = 90^{\circ}$	54
4.1.3.1. Brzine točke P uslijed rotacIje turbine	54
4.1.3.3. Brzine strujanja u točki P uslijed nailaznog vala	56
4.1.3.4. Rezultantna brzina na poziciji točke P	57
4.1.3.5 Rezultanta brzine u koordinatnom sustavu lopatice	58
4.1.4 Prikaz rezultata za nailazni kut $\beta = 135^{\circ}$	59
4.1.4.1. Brzine točke P uslijed rotacije turbine	59
4.1.4.2. Brzine strujanja u točki P uslijed morske struje	60
4.1.4.3. Brzine strujanja u točki P uslijed nailaznog vala	61
4.1.4.4. Rezultante brzina na poziciji točke P	62
4.1.5 Prikaz rezultata za nailazni kut $\beta = 180^{\circ}$	64
4.1.5.1. Brzine točke P uslijed rotacije turbine	64
4.1.5.2. Brzine strujanja u točki P uslijed morske struj	65
4.1.5.3. Brzine strujanja u točki P uslijed nailaznog vala	66

4.1.5.4. Rezultantna brzina na poziciji točke P	67	
4.1.5.5 Rezultanta brzine u koordinatnom sustavu lopatice	68	
4.1.6 Prikaz rezultata za nailazni kut $\beta = 270^{\circ}$	69	
4.1.6.1. Brzine točke P uslijed rotacije turbine	69	
4.1.6.2. Brzine strujanja u točki P uslijed morske struje	70	
4.1.6.3. Brzine strujanja u točki P uslijed nailaznog vala	71	
4.1.6.4. Rezultanta brzina na poziciji točke P	72	
4.1.6.5 Rezultanta brzine u koordinatnom sustavu lopatice	73	
4.2 Prikaz rezultata za različite kutove nailaska valova	74	
4.2.1 Prikaz rezultata sila i momenata za nailazni kut $\beta = 0^{\circ}$	75	
4.2.2 Prikaz rezultata sila i momenata za nailazni kut β =22.5 °	76	
4.2.3 Prikaz rezultata sila i momenta za nailazni kut $\beta = 90^{\circ}$	77	
4.2.4 Prikaz rezultata sila i momenta za nailazni kut $\beta = 135^{\circ}$	78	
4.2.5 Prikaz rezultata sila i momenata za nailazni kut $\beta = 180^{\circ}$	79	
4.2.6 Prikaz rezultata sila i momenta za nailazni kut $\beta = 270^{\circ}$	80	
4.4 Usporedba rezultata	81	
5. Zaključak		82
Dodatak A		83
Dodatak B		86
Dodatak C		96
Dodatak D		99
LITERATURA	10	00

POPIS SLIKA

Slika 1. Prikaz uzroka plime i oseke	16
Slika 2.DeltaStream plimna turbina	
Slika 3. Evopod plimna turbina	18
Slika 4. Turbina slobodnog protoka	18
Slika 5. Gorlov spiralna plimna turbina	19
Slika 6. Turbina plime i oseke lunarne energije	19
Slika 7. Neptun plimna turbina	19
Slika 8. SeaGen plimna turbina	20
Slika 9. TidEl plimna turbina	20
Slika 10. Harmonijski val	
Slika 11. Venturijeva cijev	26
Slika 12. Presjek lopatice turbine	31
Slika 13. Zastoj	32
Slika 14. Gubitak uslijed vrtloga na kraju lopatice	33
Slika 15. Kontrolni volumen diska	
Slika 16. Element lopatice duljine dr	37
Slika 17: Marintek 1MW plimna turbina	40
Slika 18. Dijagram toka za proračun	41
Slika 19: Izrazi za brzine	
Slika 20. Skica plimne turbine u radnim uvjetima	
Slika 21. Komponenta brzine X usljed rotacije	
Slika 22. Komponenta brzine Y usljed rotacije	
Slika 23. Komponenta brzine Z usljed rotacije	
Slika 24. Komponeta brzine X usljed morske struje	
Slika 25. Komponeta brzine Y usljed morske struje	45
Slika 26. Komponeta brzine X usljed nailaznog vala	46
Slika 27. Komponenta brzine Y uslijed nailaznog vala	46
Slika 28: Komponenta brzine Z uslijed nailaznog vala	
Slika 29: Komponeta X rezultantne brzine	47
Slika 30: Komponenta Y rezultatne brzine	
Slika 31: Komponenta Z rezultante brzine	47
Slika 32. Kompontea X rezultante brzine u K.S. lopatice	
Slika 33. Komponetna Y rezultante brzine u K.S. lopatice	

Slika 34. Komponenta Z rezultante brzine u K.S. lopatice	
Slika 35. Komponeta brzine X usljed rotacije	
Slika 36. Komponeta brzine Y usljed rotacije	
Slika 37. Komponenta brzine Z uslijed rotacije	
Slika 38. Komponenta brzine X uslijed morske struje	
Slika 39. Komponenta brzine Y uslijed morske struje	
Slika 41. Komponenta brzine X uslijed nailaznog vala	
Slika 40: Komponenta brzine Y uslijed nailaznog vala	51
Slika 42. Komponenta brzine Z uslijed nailaznog vala	
Slika 43. Komponenta X rezultanta brzine	
Slika 44. Komponenta Y rezultanta brzine	
Slika 45. Komponenta Z rezultanta brzine	
Slika 46. Komponenta X rezultante brzine u K.S. lopatice	53
Slika 47. Komponenta Y rezultante brzine u K.S. lopatice	
Slika 48. Komponenta Z rezultante brzine u K.S. lopatice	
Slika 49. Komponenta brzine X uslijed rotacije	54
Slika 50. Komponenta brzine Y uslijed rotacije	54
Slika 51. Komponenta brzine Z uslijed rotacije	54
Slika 52. Komponenta brzine X uslijed morske struje	55
Slika 53. Komponenta brzine Y uslijed morske struje	55
Slika 54. Komponenta brzine Y uslijed nailaznog vala	56
Slika 55. Komponenta brzine X uslijed nailaznog vala	
Slika 56. Komponenta brzine Z uslijed nailaznog vala	
Slika 58. Komponenta X rezultanta brzine	
Slika 57. Komponenta Y rezultante brzine	
Slika 59. Komponenta Z rezultante brzine	
Slika 61. Komponentna Y rezultante brzine K.S. lopatice	
Slika 60. Komponenta X rezultante brzine u K.S. u lopatice	
Slika 62. Komponenta Z rezultante brzine u K.S. lopatice	
Slika 64. Komponenta brzine X uslijed rotacije	
Slika 63. Komponentne brzine Y uslijed rotacije	
Slika 65. Komponenta brzine Z uslijed rotacije	
Slika 66. Komponenta X brzine uslijed morske struje	
Slika 67. Komponenta Y brzine uslijed morske struje	60
Slika 69. Komponenta X brzine uslijed nailaznog vala	61

Slika 68. Komponentna Y brzine uslijed nailaznog vala	61
Slika 70. Komponenta Z brzine uslijed nailaznog vala	61
Slika 72. Komponentna X rezultante brzine	
Slika 71. Komponentna Y rezultanta brzine	
Slika 73. Komponenta Z rezultanta brzine	
Slika 74. Komponenta X rezultanta brzine u K.S. lopatice	
Slika 75. Komponenta Y rezultanta brzine u K.S. lopatice	
Slika 76. Komponenta Z rezultanta brzine u K.S. lopatice	
Slika 78. Komponenta Y brzine uslijed rotacije	
Slika 77. Komponenta X brzine uslijed rotacije	64
Slika 79. Komponenta Z brzine uslijed rotacije	
Slika 80. Komponenta Z brzine uslijed rotacije	
Slika 81. Komponenta Y uslijed morske struje	65
Slika 83. Komponenta X brzine uslijed nailaznog vala	
Slika 82. Komponenta Y brzine uslijed nailaznog vala	66
Slika 84. Komponenta Z uslijed nailaznog vala	66
Slika 86. Komponenta X rezultanta brzine	67
Slika 85. Komponenta Y rezultante brzine	
Slika 87. Komponenta Z rezultanta brzine	
Slika 89. Komponenta X rezultanta brzine u K.S. lopatice	
Slika 88. Komponenta Y rezultanta brzine u K.S. lopatice	
Slika 90. Komponenta Z rezultata brzine u K.S. lopatice	
Slika 91. Komponenta X brzine uslijed rotacije	69
Slika 92. Komponenta Y brzine uslijed rotacije	69
Slika 93. Komponenta Z brzine uslijed rotacije	69
Slika 94. Komponenta X brzine uslijed morske struje	
Slika 95. Komponente Y brzine uslijed morske struje	
Slika 96. Komponenta X brzine uslijed nailaznog vala	71
Slika 97. Komponenta Y brzine uslijed nailanzog vala	71
Slika 98. Komponenta Z brzine uslijed nailaznog vala	71
Slika 99. Komponenta X rezultanta brzine	72
Slika 100. Komponenta Y rezultanta brzine	
Slika 101. Komponenta Z rezultanta brzine	
Slika 102. Komponenta Y rezultanta brzine u K.S. lopatice	
Slika 103. Komponenta Z rezultanta brzine u K.S. lopatice	

Slika 104. Komponenta X rezultanta brzine u K.S. lopatice	73
Slika 105. Komponentne brzine koje djeluju na lopaticu	74
Slika 106. Prikaz sila koje djeluju na lopaticu	75
Slika 107. Prikaz momenata koje djeluju na lopaticu	75
Slika 108. Prikaz sila koje djeluju na lopaticu	76
Slika 109. Prikaz momenata koje djeluju na lopaticu	76
Slika 110. Prikaz sila koje djeluju na lopaticu	76
Slika 111. Prikaz momenata koje djeluju na lopaticu	77
Slika 112. Prikaz sila koje djeluju na lopaticu	77
Slika 113. Prikaz momenata koje djeluju na lopaticu	77
Slika 114. Prikaz sila koje djeluju na lopaticu	78
Slika 115. Prikaz momenata koje djeluju na lopaticu	78
Slika 116. Prikaz sila koje djeluju na lopaticu	79
Slika 117. Prikaz momenata koje djeluju na lopaticu	79
Slika 118. Prikaz sila koje djeluju na lopaticu	80
Slika 119. Prikaz momenata koje djeluju na lopaticu	80

POPIS TABLICA

Tablica	1.	Usporedba rezultat	83	3
---------	----	--------------------	----	---

POPIS OZNAKA

Oznaka	Jedinica	Opis
Т	Ν	Potisna sila
Μ	Nm	Moment
a	-	Indukcijski koeficjent
a'	-	Rotacijski koeficjent
F	-	Gubitak usljed vrtloga na kraju lopatice
F_L	Ν	Sila uzgona
F_{D}	Ν	Sila trenja
C _D	-	Koeficjent otpora
C_L	-	Koeficjent uzgona
U	m/s	Brzina fluida
\mathbf{U}_{∞}	m/s	Brzna fluida dovoljno daleko iza presjeka
U_{W}	m/s	Brzina mora
р	Pa	Talk
\mathbf{p}_{d}^{+}	Pa	Talk ispred diska
p_d	Pa	Tlak iz diska
Φ	-	Potencijal brzine
ρ	kg/m ³	gustoća
Re	-	Reynoldsev broj
ω_{val}	rad/s	Frekvencija vala
Ui	m/s	Amplituda brzine vode
Hi	m	Amplituda visine vode
Fg	Ν	Gravitacijska sila između dva tijela
Ca	-	Koeficjent aksijalne sile
Cr	-	Koeficjent rotacijske sile
Т	S	Period
t	S	Vrijeme
А	m^2	Površina diska

SAŽETAK

Ovaj rad se bavi problematikom modela strujanja morske vode (struje) i morskih valova, koje nastrujavaju na podvodnu turbinu ili *HATT (eng. horizal axil tidal turbine, tj. plimna turbina horizontalne osi)*.

Valovi koji nastrujavaju na turbinu mogu dolaziti pod različitim kutovima u odnosu na plimnu turbinu, čime se mijenja slika strujanja i relativna brzina nastrujavanja na lopaticu plimne turbine. Nadalje to mijenja C_L koeficijent uzgona i C_D koeficijent otpora.

Za svaki kut kojim val upada na plimnu turbinu mijenja se relativna brzina, time je odziv lopatica drugačiji, mijenja se raspodjela sila i momenata uzduž lopatice plimne turbine.

Ključne riječi: Obnovljivi izvori energije, BEMT, Linearna teorija vala, Potencijalna teorija, Harmonijski ravninski val, HATT

SUMMAYR

This paper deals with the problem of the model of sea current and incident sea waves, as an inflow on the underwater turbine or HATT (horizontal axil tidal turbine), of the horizontal axis).

The waves encountr the turbine at a different angles, thous changing the flow pattern and the relative flow rate to the tidal turbine blade. Furthermore th flow changes the C_L buoyancy coefficient and the C_D drag coefficient.

For each angle at which the wave enters the tidal turbine, the relative speed changes are developed, thus the blade response is different so, the distribution of forces and moments along the tidal turbine blade changes.

Keywords: Renewable energy sources, BEMT, Linear wave theory, Potential theory, Harmonic plane wave,

1. Uvod

Globalne energetske potrebe prvenstveno osiguravaju izgaranje fosilnih goriva. U 2007. godini globalni udio energije iz fosilnih goriva činila su 88% ukupne potrošnje primarne energije. Potrošnja primarne energije sastoji se od 35.6% nafte, 23.8% prirodnog plina, 28.6% ugljena, 5.6% nuklearne i 6.4% hidroelektrične energije (Fergal O Rourke). Budući da su tehnologije obnovljivih izvora energije autonomne i ne zagađuju okoliš, mogu se nositi i s jednim i s drugim. Mora se uzeti u obzir i sigurnost opskrbe i pitanja okoliša. Na razvoj tehnologija obnovljivih izvora energije uvelike se utječe energetskom politikom. Tehnologije energije sunca i vjetra su u posljednje vrijeme zadobili najveću pozornost i posljedično je znatno razvio. Glavni nedostatak većine obnovljivih energetskih tehnologija su njihova povremena dostupnost i varijacije u energetskom intenzitetu. Energija plime i oseke nudi ogroman i pouzdan izvor energije. Trenutno, iskorištavanje energije plime i oseke iz dizanja i padanja plima iskorištava se u komercijalnim plimnim branama. Nedavni napori da se iskoristi ovaj predvidljivi izvor energije, usmjereni su prema kinetičkoj energiji u protoku plime i oseke. Ova metoda ekstrakcije energije je otprilike petnaest godina iza industrije tehnologije vjetra. Tehnologijom energije plime i oseke može imati koristi od napretka i razvoja u inženjerstvu i znanosti. Koncentracije ugljičnog dioksida u atmosferi danas je viša nego u bilo kojem trenutku u posljednjih 500 000 godina, ovaj globalni problem poznat budući da efekt staklenika uzrokuje dramatične klimatske promjene i, neizbježno, porast razine mora. U 150 godina od industrijske revolucije, atmosferske koncentracije CO2 porasle su jednako kao i prethodnih 20 000 godina (NOAA 2004) (Zhang, Moreau, & M). Obzirom na današnje stanje svijeta, povećanjem stakleničkih plinova i učestalo korištenje fosilnih goriva dovelo je do faze gdje je potreba za obnovljivim izvorima energije (OIE) sve veća. Postoje različite vrste OIE: hidroenergija, solarna energija, energija vjetra, energija biomase, geotermalna energija i energija oceana. Pod energiju oceana smatra se još i termalna energija, gradijent slanosti, energija plime i oseke i kinetička energija valova. Međutim, glavni nedostatak tih tehnologija OIE je njihova nepredvidljivost i karakteristike nepravilnosti. Plima i oseka uzrokuju dva učinka iz kojih se može izvući energija. Raspon između plime i oseke dovodi do razlike u razini mora, ova potencijalna energija se može iskoristiti. Varijacije gravitacijskog polja uzrokuje protok mase kroz oceane, protok se kreće određenim brzinama (R.H Charlier). Postoje više metoda kojima se može izvući kinetička energija iz plime i oseke. Za svaku metodu nužni su dobri podaci o području di bi se postavljale plimne turbine. Predviđanje od plime i oseke je precizan i pouzdan. Energija plime i oseke ima veliki

potencijal u cijelom svijetu, ali industrija plimnih turbina nije dovoljno razvijena s tehnologijom kao vjetroturbine, u gama fazi razvijanja, ali u novije vrijeme industrija plimnih turbina doživjela je značajan razvoj.Ovaj rad se bavi energijom plime i oseke tj. pretvaranje kinetičke i potencijalne energije, strujanja mora kod utjecaja valova pod različitih nailaznim kutovima u mehaničku energiju. U ovom radu ćemo prikazati primjenu matematičkog modela za dobivanje relativne brzine koja nailazi na lopaticu plimne turbine da bi mogli dobiti različite slučajeve opterećenja na lopaticama. Model strujanja je kombinacija morske struje i valova pri različitim kutovima nailaska.

2. Energija plime i oseke

Slika 1. Prikaz uzroka plime i oseke

Energija plime i oseke je energija raspršena plimnim kretanjima, koja proizlazi izravno iz gravitacijskih i centrifugalnih sila između zemlje, mjeseca i sunca. Plima je redoviti porast i pad površine oceana zbog gravitacijske sile sunca i mjesec na zemlji i centrifugalnu silu koju proizvodi rotacija zemlje i mjeseca jedan oko drugog. Gravitacijska sila mjeseca, budući da je bliža zemlji, iznosi 2.2 puta veća od gravitacijske sile sunca. Fenomen plime i oseke javlja se dva puta svaka 24 h 50 min i 28 s. Izbočenje vode nastaje gravitacijskim povlačenjem mjesec, koji je veći na strani zemlje koja je bliža mjesecu. Paralelno, rotacija sustava zemlja - mjesec, stvarajući centrifugalnu silu, uzrokuje još jedno izbočenje vode na strani zemlje najdalje od mjeseca. Kad kopnena masa u ravnini s ovim sustavom zemlja -mjesec, voda koja se nalazi oko kopna je u plimi. Nasuprot tome, kada je kopnena masa okomita na ravninu zemlje - mjeseca, voda oko kopna je u vrijeme oseke. Stoga, svaka kopnena masa izložena je sa dvjema plimama i dvije oseke tijekom svakog razdoblja rotacije zemlje. Budući da se mjesec okreće oko zemlje, vrijeme plime i oseke u bilo kojoj točki na zemlji će varirati, do te

promjene dolazi dva puta u 24 sata i 50 minuta, odnosno plima i oseka se u jednom danu dva puta, otprilike svakih 12 sati i 25 minuta. Veličine plime i oseke variraju između proljetne i neap plime. Proljetne plime nastaju kada se sunce i mjesec poravnaju sa zemljom, bilo da se vuče na istoj strani zemlje ili na suprotnim stranama, što rezultira vrlo visokim proljetnim plimama. Neap plime nastaju kada su sunce i mjesec na 90° jedan prema drugom, što rezultira niskim osekama (R.H Charlier). Plimne struje su prisutne u obalnim područjima i mjestimično gdje morske struje utječu da voda teče kroz uske kanale. Struje teku u dva smjera; struja koja se kreće u smjeru obale poznata je kao poplavna struja i struja koja se udaljava od obale poznata je kao struja oseke. Brzina nulte struje odnosi se na period mirovanja, koji nastaje između poplavne i oseke struje. Maksimalna brzina se događa na pola puta između razdoblja mirovanja. Ove varijacije porasta i pad mogu se iskoristiti za proizvodnju električne energije.

2.1 Plima i oseka

Plima i oseka su morske mijene koju uzrokuju naizmjenično spuštanje i dizanje razine mora nastalo pod utjecajem gravitacijske sile od strane mjeseca i sunca u odnosu na zemlju. Plima i oseka uzrokuju dva učinka iz kojih se može izvući energija. Raspon plime i oseke dovodi do razlike u razini mora. Ova potencijalna energija koja je uzrokovana varijacijom gravitacijskog polja, uzrokuje protok vodene mase kroz oceane, koja se može iskoristiti. Protok se kreće određenim brzinama i kinetička energija iz plime može se ekspolatirati. Energija plime i oseke je dokazana metoda pretvorbe energije. Oceani mora i rijeka su protoci velikih volumena vode. Ta se pojava najčešće primjećuje u pličinama gdje postoje prirodna suženja na kojima se brzina vode značajno povećava. Procjena područja u Europi s jakim plimnim strujama ima ukupni energetski potencijal od oko 105 TWh/godišnje. Ovaj područja su uglavnom u Ujedinjenom Kraljevstvu (50 TWh /godišnje) i Francuskoj (44 TWh / godišnje). Globalni potencijal plimne energije iznosi oko 5 do 10 puta veći od europskog potencijala (Zhang, Moreau, & M). Režim plimnog strujanja je kompliciran s nizom čimbenika koji rezultiraju protok koji nije konstantan i ima neujednačeni profil brzine koji uključuje različite skale turbulencije. Neki doprinosi promjenjivom protoku na plimnim mjestima uključuje lokalnu batimetriju, hrapavost morskog dna i turbulencija koju generiraju vjetar i valovi

2.2 Tehnologija plimnih turbini

Energija plime i oseke se može eksploatirati na dva načina: pomoću plimnih brana ili plimnih turbina. Princip rada plimnih brana slična je principu rada hidroelektrana. Plimne brane pretvaraju potencijalnu energiju plime i oseke. Plimne brane su obično sagrađena preko uvala, estuarija ili ušća koja ima plimni raspon veći od 5m. Proizvodnja električne energije koristi iste principe kao i hidroelektrane, samo što se protok može vršiti u oba smjera. Tipična plimna brana sastoji se od turbine, ustava (sluice), nasipa i brodske predvodnice. Turbine koje se koriste mogu biti jednosmjerne ili dvosmjerne. Plimne brane se mogu podijeliti na sustave s jednim slivom i dva sliva. Princip rada plimnih turbina slična je tehnologiji za pretvorbu energije vjetra uz nekoliko razlika. Važno je znati da voda pod istim uvjetima kao zrak ima oko 800 puta veću gustoću od zraka, time nije potreba ista brzina strujanja kao kod vjetra da bi se postigla ista snaga, budući da se plimne turbine nalaze pod vodom lopatice pline turbine su izložene većim utjecajem sila i momenata u odnosu na lopatice vjetro turbine. Vrste plimnih turbina su horizontalna aksijalna plimna turbina, gdje se lopatice turbine rotiraju oko horizontalne ravnine koja je paralelna sa smjerom strujanja vode - mora i vertikalno aksijalne plimne turbine, gdje se lopatice plimne turbine okreću oko vertikalne ravnine koja je okomita na smjer strujanja vode - mora. U svom najjednostavnijem obliku plimna turbina sastoji se od lopatica postavljenih na rotor, reduktora i generator (Fergal O Rourke). Hidrodinamički učinak vode koja teče kroz lopatice uzrokuje rotaciju rotora, okrećući tako generator na koji je rotor povezan preko reduktora. Reduktor se koristi za pretvaranje brzine vrtnje osovine rotora u željenu izlaznu brzinu osovine generatora. Stvorena električna energija se prenosi putem kabela do potrošača. Ova tri dijela su montirana na potpornu konstrukciju koja je dimenzionirana da izdrži velika opterećenja okoliša. (Fergal O Rourke) Postoje tri opcije montiranja potpore prilikom instalacije plimne turbine.

Prva: poznata je kao gravitacija struktura koja se sastoji od velike mase betona i čelika pričvršćenih na dno konstrukcije radi postizanja stabilnosti.

Druga: opcija poznata kao konstrukcija koja je pričvršćen za morsko dno pomoću jedne ili više čeličnih ili betonskih greda.

Treća: opcija je poznata kao plutajuća struktura. Plutajuća struktura se obično usidri za morsko dno pomoću lanaca ili žice. Turbina je u ovom slučaju je učvršćen za plutajući objekt, strujanje na turbinu je horizontalno.

Uređaj DeltaStream Turbine razvila je tvrtka pod nazivom Tidal Energy Ltd u Ujedinjenom

Slika 2.DeltaStream plimna turbina

Kraljevstvu. Uređaj snage 1,2 MW sastoji se od tri plimne turbine s tri lopatice, horizontalne osi, svaka promjera 15 m, montirane na trokutastom okviru, stvarajući nisko težište radi stabilnosti konstrukcije. Ovaj uređaj tek treba proći testiranje, nakon čega puna proizvodnja planirana je za ljeto 2009.godine. (Fergal O Rourke)

Evopod plimna turbina je razvila tvrtka Ocean Flow Energy Ltd. Sa sjedištem u Ujedinjenom Kraljevstvu. Uređaj je plutajuća konstrukcija s pet lopatica horizontalne osi koja je sidrena uz morsko dno. Sustav sidrenja dopušta uređaju za održavanje optimalnog smjera u plimni tok. Model u mjerilu 1/10 trenutno se testira u Strangford Loughu u Sjevernoj Irskoj. (Fergal O Rourke)

ood plimna turbina

Slika 4. Turbina slobodnog protoka

Turbine slobodnog protoka razvijala je Verdant Power Ltd. sa sjedištem u SAD-u i Kanadi. Turbina s tri lopatice vodoravne osi promjera od 4,68 m. Prototip se testira u East Riveru u New Yorku, koji proizvodi 1 MW h električne energije dnevno. Krajem 2008. godine Verdant Power Ltd. je dobio ugovor od 1,15 milijuna dolara od Sustainablea Development Technology Kanada za razvoj prve faze. (Fergal O Rourke)

Projekt energije rijeke Cornwall Ontario je Gorlovska spiralna turbina sa okomitom osovinom plimne struje. Temelji se na vjetrenjači Darrieus koncept. Razvila ga je tvrtka pod nazivom GCK Technology Inc. sa sjedištem u SAD-u. Gorlov spiralna turbina koristi tri uvijene oštrice u obliku spirale.Taj princip se pokazao učinkovitim za smanjivanjem vibracija. Maketa promjera 1m bila je izgrađen i počela je sa testiranjem 10. srpnja 2002. godine (Fergal O Rourke)

Slika 5. Gorlov spiralna plimna turbina

Slika 6. Turbina plime i oseke lunarne

Turbina plime i oseke lunarne energije je plimna turbina horizontalne osi i razvijena je od tvrtke Lunar Energy Ltd. sa sjedištem u Velikoj Britaniji. Struktura se sastoji od gravitacijske baza, dvosmjerna turbina od 1 MW promjera 11,5 m, kanal dužine 19,2 m i promjera 15 m, hidraulički motor i generator. Ova plimna turbina je u fazi razvoja i do danas ništa nije izgrađeno. Kanal je prokopan kako bi se maksimiziralo zvlačenje energije iz tekućeg protoka

vode. Lunar Energy Ltd. nedavno je dogovorio ugovor vrijedan 500 milijuna funti za instaliranje 300 tidal strujne turbine kod obale Koreje. (Fergal O Rourke)

Uređaj za plimnu struju Neptun razvila je tvrtka Aquamarine Power Ltd. sa sjedištem u

uređaja. (Fergal O Rourke)

Velikoj Britaniji. Uređaj ima generator snage 2,4 MW. Sastoji se od dvostrukih turbina s tri lopatice, horizontalne osi, postavljenih na potpornu strukturu. Uređaj generira električnu energiju i u periodima oseke Akvamarin Power Ltd. planira testirati uređaj u sljedeće tri godine na EMEC-u. To je objavljeno 12. siječnja 2009. godine. ABB doo, grupa za automatizaciju, će pustiti u rad električni sustav

Slika 8. SeaGen plimna turbina

SeaGen turbina s plimskom strujom od 1,2 MW, razvijena sa strane Marine Current Turbines Ltd. sa sjedištem u Velikoj Britaniji, nakon uspješne instalacija uređaja od 300 kW pod nazivom Seaflow uz obalu Devona u UK 1993. godine. Probni model SeaGen-a instaliran i priključen na mrežu u svibnju 2008. godine u Strangford Loughu, Sjeverna Irska. Tehnologija se sastoji od para rotora s dvije lopatice vodoravne osi, promjera 16 m, rotor je spojen na mjenjač koji povećava

brzinu vrtnje osovina za pogon generatora. Lopatice rotora su kontrolirane nagibom kako bi se omogućio rad i u periodima oseke. Kontrola protoka također se koristi kao mehanizam za kočenje kako bi se olakšali zahtjevi za održavanjem rotora. 18. siječnja 2009. ovaj uređaj uspješno radi punom snagom (1,2 MW) (Fergal O Rourke).

Slika 9. TidEl plimna turbina

TidEl stream generator. Koncept TidEl Stream Generator razvio je SMD Hydrovision Ltd. sa sjedištem u Ujedinjeno Kraljevstvo. Sustav TidEl sastoji se od dva suprotno rotirajuća 500 kW rotora koji su promjera 15 m. Tvrtka je uspješno testirala, a model uređaja u mjerilu 1/10. Kompletan sklop je plutajući i sidrena je lancima za morsko dno. Sustav sidrenja omogućuje turbinama da se vrlo lako poravnaju sa smjerom toka plimne struje. Najpoželjnija područja za eksploaticju energije plime i oseke općenito su mjesta

gdje se javljaju uski tjesnaci kopnene mase ili su u blizini rtova gdje su velike plimne struje mogu razviti. Lokacije glavnih plimnih struja: Arktički ocean, Engleski kanal, Irsko more, Skagerrak–Kattegat, Hebridi, Meksički zaljev, Zaljev Svetog Lovre, Zaljev Fundy, Amazon, Rio de la Plata, Magellanov tjesnac, Gibraltar, Messina, Sicilija i Bospor (Fergal O Rourke)

3. Teorija

3.1 Pojava plime i oseke

Newton je ustanovio da teorija gravitacijska sila između dviju masa ovisi o umnošku od dvije mase, m_1 i m_2 , i kvadrata njihovog razdvajanja, R:

$$F_g = \frac{G \cdot m_1 \cdot m_2}{R^2} [N] \tag{1}$$

gdje je *G* univerzalna gravitacijska konstanta, $G = 6,67300 \cdot 10 - 11 \text{ kg/m}^3 \text{s}^2$ mjesec je glavno tijelo koje stvara plimu. Mjesec i zemlja imaju a zajedničko središte mase. Budući da je zemlja veća i masivnija od mjeseca ovo središte se nalazi unutar zemlje. Kad bi oba planeta imala jednaku veličinu i masa, središte mase bilo bi u točki na pola puta između njih. Sustav zemljinog mjeseca rotira oko njihovog zajedničkog središta. Princip plimne analize je da se oscilacije mogu razbiti u skup jednostavnih sinusoida, od kojih svaka predstavlja plimni sastav. Svaki sastavni dio je definiran svojim razdobljem u solarnim satima, T_{plima} ili kutnom brzinom, $\omega_{plima} = 360^{\circ}/T_{plima}$. (Zhang, Moreau, & M) Amplituda i faza svake komponente moraju biti definirani. Parcijalne plime i oseke, od kojih svaka odgovara jednom plimnom režimu, jest sažeto i predstavljeno sljedećim jednadžbama:

$$H = \sum H_i \cdot \cos\left(\omega_{plima,i} \cdot t + p_i\right)[m]$$
⁽²⁾

$$U = \sum U_i \cdot \cos\left(\omega_{plima,i} \cdot t + p_i\right) \left[\frac{m}{s}\right]$$
(3)

Amplituda je razina vode H_i , i brzina vode U_i , kutna brzina ω_{plima} , vrijeme u satima t i p_i je faza pomak svake komponente plime u stupnjevima. Razina vode i brzina imaju fazu pomak od 90° što znači da je brzina nula na prijelazu između plime i oseke. (Zhang, Moreau, & M) Za predviđanje plime i oseke na određenom mjestu učinak svih varijabli treba procijeniti i sažeti.

3.2 Teorija linearnog vala

Gravitacijski valovi nastaju zbog pomaka čestica fluida iz njihovog ravnotežnog položaja (mirne slobodne površine). U mnogočemu su ti valovi analogni titranju mase na opruzi ako zamislimo gibanje čestice fluida samo u vertikalnom smjeru i zanemarimo stvarno kružno gibanje koje se događa u valu. Čestica izdignuta iznad slobodne površine dobila je kinetičku energiju da bi prevalila put od ravnotežnog položaja (opruga u kojoj nema sile) do ekstremnog položaja iznad ili ispod slobodne površine (u opruzi postoji sila). U toj točki vertikalnog gibanja, čestica ima maksimalnu potencijalnu energiju dok je kinetička energija jednaka nuli. Zbog sadržane potencijalne energije, čestica se kreće gibati prema ravnotežnom položaju (u slučaju čestice iznad ravnotežnog položaja to se događa zbog gravitacije, a u slučaju čestice ispod ravnotežnog položaja zbog hidrostatskog tlaka). Prolazeći kroz ravnotežni položaj, čestica ga zbog inercije premašuje te se titranje nastavlja. Takve oscilacije slobodne površine (mase na opruzi) mogle bi se nastaviti u beskonačnost. Međutim, realni fluid je viskozan, zbog čega dolazi do gubitka energije na trenje među česticama pa val zamire nakon nekog vremena. Gravitacijski valovi nastaju djelovanjem vjetra, uronjenog tijela, potresa, kao plimni valovi, kao unutrašnji valovi nastali između područja fluida različitih gustoća i sl. Kapilarni valovi nastaju zbog površinske napetosti fluida. Također mogu biti uzrokovani vjetrom i uronjenim tijelom te se mogu pojaviti zajedno sa gravitacijskim valovima. Ovakav tip valova daje slobodnoj površini namreškani izgled.

Elastični valovi nastaju zbog stlačivosti fluida, npr. zvučni valovi u zraku. U okvirima pomorstvenosti proučavaju se samo gravitacijski valovi. Valovi površine mora su inherentno nelinearni. Visina i dužina vala nije konstantan i varirat će u vremenu i mjestu. S teorijom linearnih valova možemo opisati temeljnu teoriju oceanskih površinskih valova. Opisuje širenje pravilni gravitacijski valovi na površini tekućine, u ovom slučaju na površini oceana (Jasna Prpič-Oršić). Mora se pretpostaviti da je tok dvodimenzionalan i da valovi putuju unutra x-smjera, okomito na ravninu rotora. Gravitacijski valovi se mogu podijeliti na tri podvrste valova:

- *plimni valovi* nastaju zbog gravitacijskog privlačenja sunca i mjeseca.
- seizmički valovi (tsunami) nastaju zbog pomaka morskog dna zbog potresa ili erupcije vulkana.
- vjetrovni valovi nastaju na morskoj površini zbog djelovanja vjetra.

U inženjerskoj praksi proučavaju se samo vjetrovni valovi. Plimni valovi nemaju utjecaj na plovidbu broda, a seizmički valovi su rijetki i na otvorenom moru nemaju izraženu visinu.

Budući da vjetar može mijenjati smjer puhanja ili može puhati na već uzburkanu slobodnu površinu (mrtvo more), slika valova na moru u pravilu jest vrlo složena.

Stoga se stanje na morskoj površini simulira pomoću principa superpozicije, gdje se slike valova različitih visina i frekvencija "preklope" i daju složenu sliku koja je bliža stvarnoj.

Alat pomoću kojega se analiziraju superponirane pojave ovoga tipa naziva se spektralna analiza. Ta je teorija nadalje primijenjena pri dobivanju kinetičkih i dinamičkih značajki dvodimenzijalnih površinskih valova i omogućuje fizikalna svojstava i zakonitosti gibanja izdvojenog vala. Linearna teorija radi svoje jednostavnosti mnogo lakše primjenjuje od teorije velikih amplituda, a njenom se primjenom za većinu problema još uvijek dobiju prihvatljivi rezultati.

3.2.1 Ravninski harmonijski val

Harmonijski val je val kojemu se svojstva periodički ponavljaju u vremenu i prostoru. Ako val napreduje (promatramo li izdvojeni brijeg ili dol) nazivamo ga progresivnim valom. Ako je slika vala jednaka u svim presječenim ravninama okomitim na smjer kretanja vala, takav val nazivamo i ravninskim valom (Jasna Prpič-Oršić).

Slika 10. Harmonijski val

Najvažnija svojstva i značajke harmonijskog progresivnog ravninskog vala su:

- Ishodište koordinatnog sustava smješteno je na mirnu slobodnu površinu; os x je usporedna sa smjerom kretanja vala, a os z usmjerena okomito na mirnu slobodnu površinu prema gore.
- Valni brijeg je najviša točka vala.
- Valni dol je najniža točka vala.
- h dubina vode. Mjeri se od dna do mirne slobodne površine. Uvijek je pozitivna vrijednost. Za dno vrijedi z = -h.
- > ζ_a –valna amplituda. Udaljenost od mirne slobodne površine do valnog brijega ili dola.
- → H valna visina. Udaljenost od valnog brijega do valnog dola. Kod valova opisanih harmonijskim funkcijama vrijedi: $H = 2 \zeta_a$
- > λ valna duljina. Horizontalna udaljenost između dva susjedna brijega ili dola.
- T valni period. Vrijeme potrebno da nakon prolaska jednog valnog brijega ili dola naiđe sljedeći valni brijeg ili dol.
- > H/λ strmina vala. Računa se kao omjer visine vala i valne duljine.

Sinusna funkcija definira pravilni val, prema teoriji linearnih valova, nadmorska visina η , a val koji putuje u x-smjeru je:

$$\eta(x,t) = a \cdot \sin\left(\left(\frac{2\pi}{\lambda}\right) \cdot x - \left(\frac{2\pi}{T_{wave}}\right) \cdot t\right)[m]$$
(4)

Imajte na umu da je a ovdje amplituda vala, definirana u metrima, i da je polovica visine vala, $a = 2H_{val}$, λ je valna duljina u metrima, a T_{val} njegov period u sekundi.

Valni broj *k*, definiran je:
$$k = \frac{2\pi}{\lambda} \left[\frac{rad}{m} \right]$$
(5)

Kutna frekvencija vala ω_{val} definirana je: $\omega_{val} = \frac{2\pi}{T_{val}} \left[\frac{rad}{s} \right]$ (6)

3.2.2 Potencijalna teorija

Teorija potencijalnog strujanja najvažnija je teorija u dinamici fluida i pronalazi široku primjenu. Par primjera di se potencijalna teorija može koristit za opisivanje strujanja oko hidroprofila i u teoriji valova. Postoji analogija s elektromagnetizmom budući da potencijalna teorija proizlazi iz Maxwellovih jednadžbi. Strujanje u potencijalnoj teoriji definirano je preko potencijala brzine. Potencijal brzine Φ je skalarno polje definirano u svakoj točki prostora - vremena, pa možemo pisati:

$$\phi = \phi(x, y, z; t) \tag{7}$$

gdje su x, y, z prostorne koordinate, a t vrijeme. Potencijal brzine je matematička veličina i ne možemo ju mjeriti. Analogna je električnom potencijalu u elektrostatici. Ono što možemo mjeriti u strujanju nekog fluida je brzina. Brzina v je vektorsko polje definirano u svakoj točki prostora - vremena. Vektor brzine v u svakoj točki definiran je sa tri prostorne komponente, odnosno tri vektora usmjerena prema koordinatnim osima (Jasna Prpič-Oršić)

$$v = v_x + v_y + v_z = v_x i + v_y j + v_z k \tag{8}$$

pri čemu su v_x , v_y i v_z vektori brzine u smjeru koordinatnih osi, v_x , v_y i v_z njihovi moduli, a i, j, kjedinični vektori u smjeru koordinatnih osi. Vektor v_x je definiran kao parcijalna derivacija potencijala brzine u smijeru osi x. To znači da razlika potencijala brzine, odnosno promjena potencijala brzine od jedne točke u prostoru do druge rezultira pojavom brzine. Ukupni vektor brzine definiran je kao vektorski zbroj parcijalnih derivacija potencijala brzine po tri prostorne varijable:

$$v = v_{x}i + v_{y}j + v_{z}k = \frac{\partial \phi(x, y, z; t)}{\partial x}i + \frac{\partial \phi(x, y, z; t)}{\partial y}j + \frac{\partial \phi(x, y, z; t)}{\partial z}k$$
(9)

Ovaj izraz možemo zapisati i na slijedeći način:

$$v = \frac{\partial \phi(x, y, z; t)}{\partial x} i + \frac{\partial \phi(x, y, z; t)}{\partial y} j + \frac{\partial \phi(x, y, z; t)}{\partial z} k = \nabla \phi(x, y, z; t) = grad\phi$$
(10)

Dobiveni izraz izriče da je brzina gradijent potencijala brzine. Gradijent je vektor usmjerene derivacije, a usmjeren je u smjeru najvećeg prirasta funkcije u toj točki. To govori da će fluid u nekoj proizvoljnoj točki prostora T(x,y,z;t) strujati u smjeru gradijenta potencijala brzine, odnosno u smjeru najvećeg prirasta potencijala brzine. Na taj način možemo lako definirati polje strujanja u cijelom prostoru proučavanja uz uvjet poznavanja funkcije potencijala brzine. U realnim slučajevima, potencijal brzine ne može se mjeriti, pa je funkcija potencijala brzine nepoznata. Potencijalna teorija primjenjuje se uz nekoliko pretpostavki. Gustoća fluida ρ je konstantna te se fluid smatra nestlačivim. Zanemarena je viskoznost fluida, a samim time zanemarena je i pojava turbulencije u strujanju. Polje brzina smatra se bezvrtložnim. Pretpostavka o nestlačivom fluidu omogućava pojednostavljenu formulaciju jednadžbe kontinuiteta. Jednadžba kontinuiteta govori da je protok mase kroz pojedine kontrolne površine okomite na smjer vektora brzine jednak. Jednostavan primjer primjene jednadžbe kontinuiteta je pri izračunavanju brzina strujanja u cijevima različitih presjeka (uz pretpostavku konstantnog profila brzine po presjeku cijevi). Jedan takav slučaj je Venturijeva cijev. (Jasna Prpič-Oršić)

nestlačivi fluid

Slika 11. Venturijeva cijev

Maseni protok na presjeku 1 možemo izraziti kao:

$$Q_1 = \frac{m}{t} = \frac{\rho \cdot V}{t} = \frac{\rho \cdot S_1 \cdot l}{t} = \rho \cdot S_1 \cdot v_1 \left[\frac{m^3}{s}\right]$$
(10)

Pri čemu je m masa fluida koja prolazi kroz kontrolnu površinu S_l u vremenu t, ρ gustoća fluida, l duljina cilindričnog volumena, a v_l brzina strujanja fluida na presjeku S_l .

Postavljajući jednadžbu kontinuiteta za dva različita presjeka, dobije se veza između brzina v_1 i v_2 . Volumen fluida koji protiče u vremenu nije ništa drugo do brzine pomicanja površine presjeka. Volumen mora ostati jednak. Što znači da će se smanjivanjem površine brzina povećati. Zamislimo li strujanje fluida koje opisuje neko vektorsko polje u trodimenzionalnom prostoru, jednadžbu kontinuiteta formuliramo na sljedeći način:

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$
(11)

pri čemu je "prvi član" prirast brzine Vx po koordinati a "drugi član" i "treći član" analogno tome prirasti odgovarajućih brzina po koordinati y i z.Ako je prirast brzine protoka mase po nekoj koordinati pozitivan (npr. masa sve brže teče u smjeru x), po nekoj drugoj koordinati prirast brzine protoka mora biti negativan (masa koja sve više teče u smjeru x, sve manje teče u smjeru npr. y) jer kroz difenrencijalni volumen konstantne veličine uvijek može teći samo konstantna količina nestlačivog fluida. Ova jednadžba govori da je prirast protoka mase unutar diferencijalnog volumena dx dy dz jednak nuli, što možemo interpretirati kao nemogućnost stvaranja viška ili manjka mase u bilo kojem djelu prostora. Budući da za nestlačivi fluid ne možemo govoriti o stvaranju viška ili manjka mase unutar konstantnog volumena, te fenomene objašnjavamo pomoću izvora i ponora. Ako iz diferencijalnog volumena ističe više fluida nego što ga utječe (manjak fluida u diferencijalnom volumenu) možemo govoriti o postojanju izvora unutar diferencijalnog volumena. Ako iz diferencijalnog volumena ističe manje fluida nego što ga utječe (višak fluida u diferencijalnom volumenu), govorimo o postojanju ponora. Jednadžba kontinuiteta govori da unutar bilo kojeg djela prostora ne postoje ni izvori ni ponori. Veličina koja opisuje izvornost polja unutar nekog djela prostora naziva se divergencija. Ako je divergencija pozitivna, unutar tog djela prostora postoji izvor, a ako je negativna, ponor. Divergencija vektorskog polja v računa se kao:

div
$$(v) = \nabla \cdot v = \left(\frac{\partial}{\partial x}i, \frac{\partial}{\partial y}j, \frac{\partial}{\partial z}k\right) \cdot \left(v_x i, v_y j, v_z k\right) = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$
(12)

pri čemu je:

$$i \cdot i = |i| \cdot |i| \cdot \cos(\varphi) = 1 \cdot 1 \cdot \cos(\varphi) = 1 \tag{13}$$

Vektorsko polje u kojem ne postoje ni izvori ni ponori naziva se solenoidalno ili bezizvorno polje. Bezvrtložnost polja brzina možemo izraziti kao: rot $v = \nabla \otimes v = 0$ (14)

Što možemo raspisati kao :

$$\nabla \otimes v = \frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z} = \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right) i + \left(\frac{\partial v_z}{\partial x} - \frac{\partial v_x}{\partial z}\right) j + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) k$$

$$v_x \quad v_y \quad v_z$$
(15)

U bezvrtložnom polju brzina, nepostoji prirast brzine okomit na smjer vektora brzine (dv_x/dy) je prirast brzine okomit na smjer vektora brzine jer je v_x usmjeren u smjeru x a promjena se dešava po u smjeru y) u bilo kojoj točki. Bezvrtložno polje naziva se i potencijalnim, a vektorsko polje koje je i bezizvorno i bezvrtložno naziva se Laplaceovo polje. Zbog uvjeta da polje brzina u potencijalnoj teoriji mora biti Laplaceovo polje, jednadžba kontinuiteta naziva se i Laplaceovom jednadžbom

$$\operatorname{div}(v) = \nabla \cdot v = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = \Delta \phi$$
(16)

Uz jednadžbu kontinuiteta, Eulerova i Bernoullijeva jednadžba temeljne su jednadžbe u linearnoj teoriji valova. Eulerova jednadžba zapravo je Drugi Newtonov zakon primijenjen na neviskozne nestlačive fluide i glasi:

$$\nabla p = \rho \frac{Dv}{Dt} \tag{17}$$

pri čemu je *Dv/Dt* operator materijalne derivacije (koliko se neko svojstvo fluida mijenja kroz materijalni volumen)

$$\frac{Dv}{Dt} = \frac{Dv_x}{Dt} + \frac{Dv_y}{Dt} + \frac{Dv_z}{Dt}$$
(18)

$$\frac{Dv_x}{Dt} = \frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z}$$
(19)

gdje je dv_x/dt promjena brzine v_x u vremenu, $v_x dv_x/dx$ umnožak brzine v_x i promjene brzine v_x po x, a $v_y dv_x/dy$ akceleracija koja doprinosi promjeni smjera mase koja se kreće brzinom v_y . Ova komponenta "skreće" masu oko osi z (u smjeru x; dv_x/dy). Analogno tome može se protumačiti i član $v_z dv_x/dz$. Eulerova jednadžba izriče da je promjena brzine u vremenu unutar materijalnog volumena jednaka gradijentu tlaka (promjeni tlaka) i da se dešava u smjeru najveće promjene tlaka. Tlak koji djeluje na površinu diferencijalnog volumena je sila koja uzrokuje promjenu brzine (akceleraciju) mase koja se giba (fluid koji struji) u smjeru najveće promjene tlaka (u tom smjeru djeluje sila) Bernoullijeva jednadžba predstavlja zakon očuvanja energije strujanja fluida po jedinici mase fluida i za nestacionarna strujanja pišemo ju u obliku

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{1}{2} v^2 + \frac{p}{\rho} + g \cdot z = C(t)$$
⁽²⁰⁾

gdje je z geodetska visina, a g ubrzanje zemljine sile teže.

U potencijalnoj teoriji valova, potencijal brzine mora zadovoljiti četiri uvjeta.

 Jednadžba kontinuiteta (Laplaceova jednadžba) koja kaže da je polje strujanja solenoidalno (nema izvora ni ponora).

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = \Delta \phi = 0$$
(21)

Rubni uvjet nepromočivosti dna, definiran kao nepostojanje brzine okomite na dno za čestice na samom dnu (z = -d).

$$w = v_z = \frac{\partial \phi}{\partial z} = 0 \tag{22}$$

3. Dinamički rubni uvjet na slobodnoj površini koji kaže da je tlak na valovitoj slobodnoj površini jednak atmosferskom ($z = \zeta$)

$$\frac{\partial \phi}{\partial t} + g\zeta = 0 \tag{23}$$

4. Kinematički rubni uvjet na slobodnoj površini koji izriče da je vertikalna komponenta brzine slobodne površine jednaka vertikalnoj komponenti brzine čestice fluida na slobodnoj površini ($z = \zeta$).

$$\frac{dz}{dt} = \frac{\partial \zeta}{\partial t} = \frac{\partial \phi}{\partial z}$$
(24)

Zadovoljenjem svih navedenih uvjeta moguće je formulirati izraz za potencijal brzine strujanja u ravninskog vala koji za ograničenu vodu glasi:

$$\phi(x,z;t) = \frac{\zeta_a g \cdot \cosh[k \cdot (d+z)]}{\omega \cdot \cosh(k \cdot d)} \sin(kx - \omega t)$$
(25)

gdje je:

- ζ_a valna amplituda
- ω valna frekvencija
- z vertikalna koordinata
- d dubina vode
- k valna amplituda

Za duboku vodu ($d \rightarrow +\infty$), potencijal brzine poprima oblik

$$\phi(x, y; t) = \frac{(\zeta_a g)}{\omega} e^{kz} \sin(kx - \omega t)$$
(26)

3.2.3 Profil strujanja mora

Čestice tekućine kreću se po orbitama. Orbite su zatvorene krivulje, u plitkoj su vodi eliptični, a u dubokoj vodi kružni. Dok val širi čestica tekućina samo oscilira oko svoje prosječne pozicije. Ispod vrha vala kretanje vode je s valom i ispod kroz to je protiv vala (Hadžić & Marijo Tomić).

3.3 Teorija lopatice hidrokrila

Poprečni presjek lopatice turbine je oblikovan kao hidrokrilo. Tok se susreće sa prednji rubom lopatice. Napadni kut α , je kut između relativnog tok W i linije tetive. Tetiva je ravna linija koja povezuje vodeći i stražnji rub aeroprofila i ima duljinu *Lc*. Središnjica nagiba nalazi se na pola puta između gornje i donje površine aeroprofila. Debljina je udaljenost između gornje i donje površine, okomito na liniju tetive (Saeterstad). Prikazano na *slici 12*..

Slika 12. Presjek lopatice turbine

3.3.1 Sile i bezdimenzionalni parametri

U je brzina vrtnje lopatice turbine, definirana kao $U = \omega t \cdot r$, gdje je ωt kutna brzina turbine, a r je položaj uzduž lopatice. V je neometan protok i W je relativni protok. Tok je podijeljen u dva odvojena toka preko hidrokrila. Brzina strujanja raste preko konveksne strane aeroprofila što rezultira manji pritisak u odnosu na konkavnu stranu. Gornja strana hidroglisera je usisna strana, a donja strana je tlačna strana. Razlika u tlaku između usisna i tlačna strana aeroprofila stvara silu uzgona, F_L , okomitu na relativni tok. Trenje između strujanja i površine aeroprofila je glavni razlog za silu otpora, F_D , silu koja je paralelna strujanju. Veličina sile uzgona i sile otpora variraju s napadnim kutom, α . Zakretni moment elementa oštrice M_0 , djelovat će duž linije središnice na udaljenosti L_{4c} od prednjeg ruba, paralelno na brzinu rotacije oštrice. Sila potiska, T_0 , okomita je na brzina rotacije. Sile koje djeluju na element lopatice. Najvažniji parametar za karakterizaciju stanja protoka tekućine je Reynoldsov broj. Postoje značajne razlike u ponašanju hidroglisera kod različitih Reynoldsovih brojeva. Reynoldsov broj proje definiran:

$$Re = \frac{L_c W}{v}$$
(27)

gdje je W relativni protok, Lc duljina tetive i kinematička viskoznost je $v = \mu/\rho \ [m/s^2]$, μ je dinamička viskoznost, a ρ gustoća. Bezdimenzionalno podizanje definiran je koeficijent sile

$$C_L = \frac{F_L}{\frac{1}{2}\rho W^2 L_c dr}$$

(28)

gdje je dr dubina aeroprofila, a F_L sila uzgona. Slično povlačenje koeficijent je definiran:

$$C_D = \frac{F_D}{\frac{1}{2}\rho W^2 L_c dr}$$

(29)

gdje je F_D sila otpora. Koeficijenti sila su funkcije Reynoldsovih broj. Otpor se povećava sa smanjenjem Reynoldsovog broja, a uzgona raste sa povećanje Reynoldsovog broja. Debela hidrokrila obično imaju veći otpor od tankih hidrokrila kada je debljina simetrična u odnosu na liniju nagiba ima vrlo malo utječe na silu uzgona jer utječe na raspodjelu tlaka simetrično (Saeterstad) (Tony Burton).

3.3.2 Zastoj

Sila uzgona je obično mnogo veća od sile otpora. Koeficijent uzgona raste linearno s povećanjem napadnog kuta, ali u stvarnim slučajevima veliki kut napada će rezultirati odvajanjem toka od površine hidrokrila. Ovaj efekt se naziva zastoj. (Tony Burton) Zastoj počinje od zadnjeg ruba. U stajaćim regijama, strujnice više neće pratiti hidroprofil. To će uzrokovati turbulencije, povratni tok, smanjenjem brzina, viši tlak i smanjeno je podizanje hidrokrila.Prikazano na *slici 4*..

Slika 13. Zastoj

3.3.3 Gubitak usljed vrtloga na kraju lopatice

Generiranje uzgona na lopaticama ovisi o stvaranju razlike tlaka između gornje i donje površine. Na vrhu krila tok će iscuriti iz visokog do područja niskog tlaka oko oštrice. To stvara dva efekta. Uzgon se smanjuje i ide na nulu na vrhu i rotacijskom toku koji zahtijeva energetsku volju stvaraju vrtloge na vrhu što je gubitak za moment. Među metodama koje su stvorene za uključivanje učinka gubitka vrha u izračune je metoda koju je izradio Prandtl najjednostavniji. (Saeterstad) Ispravak faktor *F*, funkcija je broja lopatica, kuta relativnog vjetra i položaja na oštrici. Ovaj čimbenik će utjecati na okretni moment i potisak na turbinu. *F* uvijek je između 0 i 1 i karakterizira smanjenje sila duž polumjera

$$F = \frac{2}{\pi} \cos^{-1} \left(\exp \left(- \left(\frac{(B/2) * (1 - (r/R))}{(r/R) * \sin(\phi)} \right) \right) \right)$$

[30]

Ovdje je *B* broj lopatica, ϕ je kut relativnog vjetra, *R* je polumjer turbina, a *r* je položaj duž lopatice.

Slika 14. Gubitak uslijed vrtloga na kraju lopatice

3.4 Metoda impulsa elementa lopatice

Teorija se temelji na objašnjenju energije vjetra i analizi i dizajnu lopatice vjetroagregata. Metoda impulsa elementa lopatice može se koristiti za projektiranje lopatica turbine i za izračunavanje sile koje djeluju na rotor turbine vodoravne osi. Teorija se sastoji od teorije impulsa i teorije elemenata lopatice. Teorija impulsa se odnosi na analizu sila u kontrolnom volumenu koje djeluju na turbinu na temelju konzervacije impulsa. Analiza kontrolnog volumena daje informacije o tome koliko energije se može izvući iz toka, ali ne govori kako se to radi. Teorija elemenata lopatice odnosi se na analizu sila između tekućine i lopatica rotora zbog razlike tlaka u lopatici. Teorija impulsa elemenata lopatice se temelji na pretpostavci stacionarnog stanja, jednolikog profila brzine strujanja vjetra, konstantnom strujanju u radijalnom smjeru lopatice, svaki element je neovisna o drugima i oštrice su ravne, ne savijaju se. Metoda je pojednostavljeni pristup i ove pretpostavke nisu točne za realne turbine, ali može biti od pomoći predvidjeti i steći dobar dojam o karakteristikama turbine. Ova metoda se u osnovi koristi za vjetroturbine, ali je također primjenjiv na plimne turbine. Energija vjetra je u kretanju zrak., za plimne turbine brzina je važan faktor, ali mora biti povezan s drugim parametrima, kao što su interakcija s valovima, ciklus plime i oseke, turbulencija i pobude iz tornja i uzvodnih turbina. U ovom radu dinamika sile koje djeluju na lopatice plimne turbine izračunavaju se pomoću metode impulsa elementa lopatice (Prucell) (Sorensen) (Saeterstad) (Tony Burton)

3.4.1 Teorija aktuatora diska

Aktuatorski disk je model preko kojeg prikazujemo pretvorbu kinetičke energije u mehaničku energiju. Uzvodno do diska nailazna struja ima manju poprečnu površinu, dok nizvodno dolazi do povećanja navedene površine. Širenje mlaznica je zato što maseni protok mora biti jednak. Protočna masa zraka koja prolazi kroz zadatu površinu poprečnog presjeka cijevi ima mjernu jedinicu [kg/s], definicija ρAU gdje je ρ gustoća mora, A površina poprečnog presjeka, dok je U brzina strujanja. Protočna masa mora u bilo kojem trenutku u bilo kojoj nivo plohi, mora biti jednaka.

$$\rho A_{\infty} U_{\infty} = \rho A_d U_d = \rho A_W U_W \left[\frac{kg}{s} \right]$$
(31)

Simbol beskonačnosti ∞ označava uvjete koje se nalaze uzvodno dovoljno daleko ispred diska, d označava uvijete koji se nalaza na disku i w označava uvijete nizvodno dovoljno daleko iza diska.

Rotacija u diska izaziva promjenu brzine koja mora biti postavljena na brzinu slobodnog dostrujavanja. Komponeta dostrujavanja na disku daje $-aU_{\infty}$, gdje je *a* faktor indukcije ili faktor dotoka. Izraz brzine na disku izgledao bi ovako:
$$U_d = U_\infty (1 - a) [m/s] \tag{32}$$

Zrak koji prolazi kroz disk prolazi kroz ukupnu promjenu brzine U_{∞} - U_a i brzinu promjene impulsa koja je jednaka ukupnoj promjeni brzine masenog protoka. Mjera promjene impulsa = $(U_{\infty}-U_w)\rho A_d U_d [N]$

sila koja uzrokuje promjenu impusla dolazi od razlike tlakova uzduž aktuator diska jer strujna cijev je kompletno okružena zrakom i atmosferskim tlakom, rezultat toga je nula neto sila

$$(p_d^{+i} + p_d^{-i}) = (U_{\infty} + U_W) \rho A_d U_{\infty} (1-a) [Pa]$$
(33)

da bi dobili razliku tlakova p^+_d - p^-_d , primjenjuje se Bernulijeva jednadžba odvojeno za uzvodne i nizvodne dijelove protočne cijevi, radimo odvojene jednadžbe jer ukupna energija je različita za uzvodno i nizvodno. Bernulijava jednadžba govori da u stabilnim uvjetima ukupna energija u protoku koja obuhvaća kinetičku energiju, energiju statičkog tlaka i potencijalna energija ostaje konstanta. Bernulijeva jednadžba za jedinicu volumena zraka

$$\frac{1}{2}\rho U^2 + p + \rho gh = const.$$
(34)

Bernulijeva jednadžba za uzvodno stanje:

$$\frac{1}{2}\rho_{\infty}U_{\infty}^{2} + \rho_{\infty}gh_{\infty} = \frac{1}{2}\rho_{d}U_{d}^{2} + p_{d} + \rho_{d}gh_{d}$$
(35)

pod pretpostavkom da je gustoća jednaka i da nema razlike u visini, Bernulijeva jednadžba poprima ovaj oblik:

$$\frac{1}{2}\rho U_{\infty}^{2} + p_{\infty} = \frac{1}{2}\rho U_{d}^{2} + p_{d}^{+ii}$$
(36)

Slika 15. Kontrolni volumen diska

Bernulijeva jednadžba za nizvodno stanje, koristimo iste pretpostavke kao i za uzvodno stanje:

$$\frac{1}{2}\rho U_{w}^{2} + p_{\infty} = \frac{1}{2}\rho U_{d}^{2} + p_{d}^{-}$$
(37)

Oduzimanjem jednadžbi dobivamo izraz koji prikazuje razliku tlakova

$$p_{d}^{+i} + p_{d}^{-i} \frac{1}{2} \rho \left(U_{\infty}^{2} - U_{w}^{2} \right)$$
(38)

Uvrštavanjem jednadžbe [38] u [32] dobivamo:

$$\frac{1}{2}\rho\left(U_{\infty}^{2}-U_{W}^{2}\right)A_{d}=\left(U_{\infty}-U_{W}\right)\rho A_{d}U_{\infty}(1-a)$$
(39)

sređivanjem izraza dobivamo izraz koji nam pokazuje odnos nizvodnu brzinu i brzinu dostrujavanja

$$U_{W} = (1 - 2a) U_{\infty} \left[\frac{m}{s} \right]$$
(40)

Aerodinamička sila uzgona djeluje na elemente polumjera r i duljine δr nekoliko lopatica rotora turbine, odgovorne su za promjenu brzine aksijalnog i kutnog gibanja cijelog zraka koji prolazi kroz prstenasti impuls od elemenata lopatice. Sila koja djeluje elemente, uzrokovana je padom tlaka koja je povezana sa vrtložnim tragom iz turbine. Kako ne postoji rotacija protok koji se približava rotoru smanjenim tlakom na donjoj strani turbine uzrokovan rotacijom uzbude, pojavljuje se kao stepenasti pad tlaka baš poput onoga koji uzrokuje promjenu aksijalnog impulsa. (Saeterstad) (Sorensen) (Tony Burton)

3.4.2 Rotacijski disk

U teoriji diska aktuatorskog pretpostavljalo se da struja nema rotaciju. Teorija diska aktuatora proširena je na teoriju rotacijskog diska. U ovoj analizi rotor stvara kutni zamah. Rotacija fluida je u suprotnom smjeru od rotoacije rotora. Rotirajuća turbina se tretira kao rotirajuća disk i lopatice se neće se tretirati pojedinačno. (Sorensen) Rotacijska indukcija je a izvor gubitka energije i izvlačenje energije rotorom je manje nego uzbudnom bez rotacije. Brzinu rotacije protoka induciraju lopatice. (Tony Burton) A faktor indukcije rotacije treba definirati:

$$a' = \frac{\Omega}{2\omega} \tag{41}$$

gdje je Ω kutna brzina vezena za struju, a ω kutna brzina rotacije turbine. Faktor rotacijske indukcije sličan je aksijalnom faktor indukcije, ali ovdje se brzina povećava preko turbine i moramo dodati induciranu brzinu jer imamo ubrzanje. Brzina rotacije oštrice označit će se sa U i tok u. Tangencijalna brzina nije konstantna duž oštrica i može se izraziti na polumjeru r kao U= ω ·r. Brzina strujanja neposredno prije lopatica je u₂ = 0. Brzina odmah nakon lopatica je definirana u₃ = 2·a₀·U. Prosječna brzina u₂ i u₃, u, je:

$$u = \frac{1}{2} (u_2 + u_3) = a'(\omega r) \left[\frac{m}{s}\right]$$
(42)

Ukupna brzina rotacije koju oštrice doživljavaju pri danom polumjeru, r, je:

$$U_2 = U + u = (1 + a')(\omega r) \left[\frac{m}{s}\right]$$
(43)

Sada imamo kompletan model za tok oko turbine, model buđenja, opisuje tok uzvodno i nizvodno od turbine, gdje je V brzina neporemećeni tok i U je brzina rotacije.

3.4.3 Teorija kriški BET

Za ovu metodu potrebno je napraviti sljedeće pretpostavke: nema interakcije između elemenata i sile su određene karakteristikama uzgona i otpora.

Teorija je opisana za beskonačno dugo krilo s elementima oštrice dužine dr. Lopatice su podijeljene na N sekcija, a brzine na jedan element oštrice izražen s obzirom na a, a_0 i V₁.

Sila podizanja i otpora može spojiti u rezultantnu silu, F_R. Sile uzgona i otpora su izvedene iz jednadžba:

$$dF_L = \rho \cdot W^2 \cdot C_L \cdot L_c dr[N]$$
(44)

$$dF_D = \rho \cdot W^2 C_D L_c dr[N] \tag{45}$$

 ϕ je kut strujanja, kut između relativne brzine strujanja i ravnine oštrica se okreće unutra, $\phi = \theta + \alpha$, gdje je θ kut zavoja, a α upadni kut. Geometrija oštrice daje sljedeće izraze za potisak i zakretni moment na jednom elementu oštrice.

$$T' = F_L \cos(\phi) + F_D \sin(\phi) [N]$$
(46)

$$M' = F_L \sin(\phi) - F_D \cos(\phi) [Nm]$$
(47)

Slika 16. Element lopatice duljine dr

Sile na rotor debljine dr, sa Z brojem lopatica su:

$$dT = C_a \frac{1}{2} \rho W^2 L_c dr Z[N]$$
⁽⁴⁸⁾

$$dM = C_r \frac{1}{2} \rho W^2 L_c dr Z[Nm]$$
⁽⁴⁹⁾

gdje su Ca i Cr koeficijent aksijalne i rotacijske sile:

$$C_a = C_L \cos(\phi) + C_D \sin(\phi) \tag{50}$$

$$C_r = C_L \sin(\phi) + C_D \cos(\phi) \tag{51}$$

Izražavanjem relativne brzine, W, s obzirom na a, a0 i V1 umetanjem ovoga u novi izrazi za dT i dM su:

(52)

$$T = C_{a} \frac{1}{2} \rho \left(\frac{V_{1}^{2} (1-a)^{2}}{\sin(\phi)^{2}} \right) L_{c} dr Z[N]$$

$$M = C_{r} \frac{1}{2} \rho \left(\frac{V_{1} (1-a)}{\sin(\phi)} \right) \frac{r \omega (1+a')}{\cos(\phi)} L_{c} dr Z[Nm]$$

(53)

Za izračunavanje ukupnih sila na turbinu sile se moraju sumirati cijela lopatica:

$$T = \int dT = \sum T_i[N] \tag{54}$$

$$M = \int dM \cdot r = \sum M_i \cdot r_i [Nm]$$
⁽⁵⁵⁾

Geometrija lopatice je u ovom projektu već poznata i s ovim jednadžbama može se izračunati potisak i zakretni moment na lopatici plimne turbine. U ovoj teoriji uniformni profil brzine preko rotora turbine koristi se za proračun sila. Ovo nije slučaj za pravu turbinu. Promjena brzine preko rotora turbine mora uzeti u obzir pri proračunu dinamičkih opterećenja. Pretpostavlja se da se sile na elementu lopatice mogu izračunati pomoću dvodimenzionalnih

karakteristika aeroprofila koristeći upadni kut određen iz upadna rezultirajuće brzine u ravnini presjeka elementa; brzina komponenta u smjeru raspona se zanemaruje. Trodimenzionalni učinci su također zanemarivi. Komponente brzine u radijalnom položaju na lopatice izražene u smislu brzine strujanja, faktori protoka i brzina rotacije rotora će odrediti upadni kut. Posjedovanje informacija o tome kako koeficijenti karakteristika aeroprofila C_D i C_L variraju ovisno o kutu napada, sile na lopaticama se mogu se odrediti vrijednosti *a* i *a*`. Uzmimo u obzir turbinu sa *N* lopatica radijusa vrha *R*, svaka s tetivom *c* i postavljenim kutom izmjeren između linije nultog podizanja aeroprofila i ravnine diska. Duljina profila i kut vitoperenosti mogu varirati duž raspona oštrice. Lopatice rotirajući kutnom brzinom i neka je brzina vjetra U_I . Tangencijalna brzina *r* elementa lopatice u kombinaciji sa tangencijalnom brzinom uzbude $a\Omega r$ znači da neto tangencijalna brzina protoka koju doživljava element oštrice je (1 + a) Ωr . (Saeterstad) (Sorensen) (Tony Burton) (Prucell)

4. Proračun i prikaz rezultata

Proračun je rađen za plimu turbinu *Marintek 1MW* sa geometrijom lopatice koje je promjenjiva po duljini navedeno u *dodatku A*, bezdimenzijskim koeficjentima C_D i C_L za profile *S816re123*, *S825re194*, *S826 12%re191 i S826 14%re198* navedeno u dodatku B. Zadanim bezdimenzijskim koeficjentima *a* indukcije i *a'* rotacije za elemenate prikazano u *dodatku C*.Ulazni podaci za morske struje i valova u *dodataku D*.

ka 17: Marintek 1MW plimna turbina

U dijagramu toka je objašnjen proračun. Iz ulaznih podataka dobivamo komponete brzina za morske valove, morske struje i brzinu rotacije točke na lopatici. Vektorskom analizom dobivamo rezlutantu brzinu koju smo podjelili na komponente *x*,*y*,*z*. Za BEMT proračun nam je potrebna *x* i *y* komponenta strujanja. Za koeficjente uzgona i trenja potreban kut α koji se mjenja po duljini lopatice. Kada imamo $C_L i C_D$ ulazimo u izraze (44) i (45) zatim rotacijom ko0rdinatog sustava dobivamo sile i momente. Numeričkom integracijom izraz (54) i (55) dobivamo silu potiska i moment

Slika 18. Dijagram toka za proračun

Slika 19: Izrazi

$$w_{x} = a \omega \cos(\beta) \frac{\cosh[k(d+z)]}{\cosh(kd)} \cos[k\cos(\beta)x_{p} + k\sin(\beta) * y_{p} - \omega t]$$

$$W$$

$$w_{y} = a \omega \sin(\beta) \frac{\cosh[k(d+z)]}{\sinh(kd)} \cos[k\cos(\beta)x_{p} + k\sin(\beta) * y_{p} - \omega t]$$

$$w_{z} = a \omega \frac{\sinh[k(d+z)]}{\sinh(kd)} \sin[k\cos(\beta)x_{p} + k\sin(\beta) * y_{p} - \omega t]$$

$$\mathbf{U} \qquad \qquad \mathbf{U}_{x} = -s \,\omega \left(\zeta_{ox} \sin \left(\omega \, t + \vartheta_{0} \right) + \eta_{ox} \cos \left(\omega \, t + \vartheta_{0} \right) \right)$$
$$\mathbf{U} \qquad \qquad \mathbf{U}_{y} = -s \,\omega \left(\zeta_{oy} \sin \left(\omega \, t + \vartheta_{0} \right) + \eta_{oy} \cos \left(\omega \, t + \vartheta_{0} \right) \right)$$
$$\mathbf{U}_{z} = -s \,\omega \left(\zeta_{oz} \sin \left(\omega \, t + \vartheta_{0} \right) + \eta_{oz} \cos \left(\omega \, t + \vartheta_{0} \right) \right)$$

4.1 Model strujanja za različte kuteve strujanja

4.2

Prikaz rezultata brzina od pojedinih komponenti od morskih valova i struje također sa brzinama usljed rotacije turbine, koje su dobiveni sa izrazima iz slike 19. i ulaznim podacima u dodatku D. (Ivan Čatipović & Frederic Dias)

Slika 20. Skica plimne turbine u radnim uvjetima

4.1.1 Prikaz rezultata za nailazni kut $\beta = 0^{\circ}$

Slike 22.-34. prikazuju komponete brzina za nailazni kut β =0. Za ovaj kut nailaska smo dobili najveće sile što time rezultira i najvećom relativnom brzinom.

4.1.1.1. Brzine točke P uslijed rotacije turbine

Komponenta brzina y i z osciliraju između od 7.8 m/s do -7.8 m/s, što predstavlja rotaciju i periodičnu promjenu brzine u ovisnosti o vremenu. Brzine su periodične i oscilirajuće

Slika 21. Komponenta brzine X usljed rotacije

Slika 22. Komponenta brzine Y usljed rotacije

Slika 23. Komponenta brzine Z usljed rotacije

4.1.1.2. Brzine strujanja u točki P uslijed morske struje

Grafovi prikazuju morske struju koja je konstanta za ovaj slučaj 2.5 m/s odgovara oceanskoj struji

Slika 24. Komponeta brzine X usljed morske struje

Slika 25. Komponeta brzine Y usljed morske struje

4.1.1.3. Brzine strujanja u točki P uslijed nailaznog vala

Slika 26. Komponeta brzine X usljed nailaznog vala

Slika 27. Komponenta brzine Y uslijed nailaznog vala

Slika 28: Komponenta brzine Z uslijed nailaznog vala

Vidimo brzine po *x*, *y*, *z* uslijed nailaznog vala. Primjećujemo kao su brzine manje u odnosul na brzine uslijed rotacije, to je zbog toga jer val gubi svoju brzinu u ovisnosti sa dubinom. Brzine su periodične i za *x* između 1 m/s i -1 m/s dok je za Z između 0.8 m/s i -0.8 m/s.

4.1.1.4. Rezultantna brzina na poziciji točke P

Slika 29: Komponeta X rezultantne brzine

Slika 30: Komponenta Y rezultatne brzine

Slika 31: Komponenta Z rezultante brzine

Vidimo rezultante brzine na poziciji točke P, brzine su periodične. Za komponentu x oscilira između 1.7 m/s i 3.5 m/s, za y između 6m/s i -6 m/s i za z između 6.6 m/s i -8 m/s.

4.1.1.5 Rezultante brzine u koordinatnom sustavu lopatice

Slika 32. Kompontea X rezultante brzine u K.S. lopatice

Slika 33. Komponetna Y rezultante brzine u K.S. lopatice

Slika 34. Komponenta Z rezultante brzine u K.S. lopatice

Ove brzine koristimo u proračunu za BEMT, koristimo komponente x i y preslikavamo na koordinatni sustav lopatice. Brzine su periodične koje osciliraju između maksimalnih i minimalnih brzina. Za komponentu *x* brzine osciliraju između 1.6 m/s i 3.6 m/s, dok za y između 8.3 m/s i 6.9 m/s

4.1.2 Prikaz rezultata za nailazni kut $\beta = 22.5^{\circ}$

Slike 35.-48. prikazuju komponente brzina za nailazni kut β =22.5,

4.1.2.1. Brzine točke P uslijed rotacije turbine

Slika 35. Komponeta brzine X usljed rotacije

Slika 37. Komponenta brzine Z uslijed rotacije

Komponenta brzina y i z osciliraju između od 7.8 m/s do -7.8 m/s, što predstavlja rotaciju i periodičnu promjenu brzine u ovisnosti o vremenu. Brzine su periodične i oscilirajuće.

4.1.2.2. Brzine strujanja u točki P uslijed morske struje

Grafovi prikazuju morske struju koja je konstanta za ovaj slučaj 2.5 m/s odgovara oceanskoj struji

Slika 38. Komponenta brzine X uslijed morske struje

Slika 39. Komponenta brzine Y uslijed morske struje

4.1.2.3. Brzine strujanja u točki P uslijed nailaznog vala

Slika 41. Komponenta brzine X uslijed nailaznog vala

Slika 40: Komponenta brzine Y uslijed nailaznog vala

Slika 42. Komponenta brzine Z uslijed nailaznog vala

Vidimo brzine po *x*, *y*, *z* uslijed nailaznog vala. Primjećujemo kao su brzine manje u odnosul na brzine uslijed rotacije, to je zbog toga jer val gubi svoju brzinu u ovisnosti sa dubinom. Brzine su periodične i za *x* između 1 m/s i -1m/s, za *y* između 2 m/s i -2m/s, dok je za Z između 1 m/s i -1 m/s.

4.1.2.4. Rezultantna brzina na poziciji točke P

Slika 43. Komponenta X rezultanta brzine

Slika 44. Komponenta Y rezultanta brzine

Slika 45. Komponenta Z rezultanta brzine

Vidimo rezultante brzine na poziciji točke P, brzine su periodične i oscilirajuće. Za komponentu x oscilira između 1.4 m/s i 3.5 m/s, za y između 7 m/s i -7 m/s i za z između 6.6 m/s i -8 m/s.

4.1.2.5 Rezultantne brzine u koordinatnom sustavu lopatice

Slika 46. Komponenta X rezultante brzine u K.S. lopatice

Slika 47. Komponenta Y rezultante brzine u K.S. lopatice

Slika 48. Komponenta Z rezultante brzine u K.S. lopatice

Ove brzine koristimo u proračunu za BEMT, koristimo komponente x i y preslikavamo na koordinatni sustav lopatice. Brzine su periodične koje osciliraju između maksimalnih i minimalnih brzina. Za komponentu x brzine osciliraju između 1.4 m/s i 3.6 m/s, dok za y između 8.3 m/s i 6.7 m/s

4.1.3 Prikaz rezultata za nailazni kut $\beta = 90^{\circ}$

slike 49.-62. prikazuju komponete brzina za nailazni kut β =90

4.1.3.1. Brzine točke P uslijed rotacIje turbine

Slika 49. Komponenta brzine X uslijed rotacije

Slika 50. Komponenta brzine Y uslijed rotacije

Slika 51. Komponenta brzine Z uslijed rotacije

Komponenta brzina y i z osciliraju između od 7.8 m/s do -7.8 m/s, što predstavlja rotaciju i periodičnu promjenu brzine u ovisnosti o vremenu.

4.1.3.2. Brzine strujanja u točki P uslijed morske struje

Slika 52. Komponenta brzine X uslijed morske struje

Slika 53. Komponenta brzine Y uslijed morske struje

Grafovi prikazuju morske struju koja je konstanta za ovaj slučaj 2.5 m/s odgovara oceanskoj struji.

4.1.3.3. Brzine strujanja u točki P uslijed nailaznog vala

Slika 55. Komponenta brzine X uslijed nailaznog vala

Slika 54. Komponenta brzine Y uslijed nailaznog vala

Slika 56. Komponenta brzine Z uslijed nailaznog vala

Vidimo brzine po *x, y, z* uslijed nailaznog vala. Primjećujemo kao su brzine manje u odnosu na brzine uslijed rotacije, to je zbog toga jer val gubi svoju brzinu u ovisnosti sa dubinom. Brzine su periodične i za *y* između 4.5 m/s i -4.5 m/s dok je za Z između 1 m/s i -1 m/s.

4.1.3.4. Rezultantna brzina na poziciji točke P

Slika 58. Komponenta X rezultanta brzine

Slika 57. Komponenta Y rezultante brzine

Slika 59. Komponenta Z rezultante brzine

Vidimo rezultante brzine na poziciji točke P, brzine su periodične. Za komponentu x oscilira oko 2.5 m/s, za y između 8m/s i -8 m/s i za z između 7.6 m/s i -8 m/s.

4.1.3.5 Rezultanta brzine u koordinatnom sustavu lopatice

Slika 60. Komponenta X rezultante brzine u K.S. u lopatice

Slika 61. Komponentna Y rezultante brzine K.S. lopatice

Slika 62. Komponenta Z rezultante brzine u K.S. lopatice

Ove brzine koristimo u proračunu za BEMT, koristimo komponente x i y preslikavamo na koordinatni sustav lopatice. Brzine su periodične koje osciliraju između maksimalnih i minimalnih brzina. Za komponentu x brzine oscilira oko 2.5 m/s, dok za y između 8.5 m/s i 6.2 m/s

ux, m/s

0

-0.5

0

4.1.4 Prikaz rezultata za nailazni kut $\beta = 135^{\circ}$

slike 63.-76. prikazuju komponete brzina za nailazni kut β =135,

20

4.1.4.1. Brzine točke P uslijed rotacije turbine

Slika 64. Komponenta brzine X uslijed rotacije

5

10 t, s 15

Slika 63. Komponentne brzine Y uslijed rotacije

Slika 65. Komponenta brzine Z uslijed rotacije

Komponenta brzina y i z osciliraju između od 7.8 m/s do -7.8 m/s, što predstavlja rotaciju i periodičnu promjenu brzine u ovisnosti o vremenu.

4.1.4.2. Brzine strujanja u točki P uslijed morske struje

Slika 66. Komponenta X brzine uslijed morske struje

Slika 67. Komponenta Y brzine uslijed morske struje

Grafovi prikazuju morske struju koja je konstanta za ovaj slučaj 2.5 m/s odgovara oceanskoj struji.

4.1.4.3. Brzine strujanja u točki P uslijed nailaznog vala

Slika 69. Komponenta X brzine uslijed nailaznog vala

Slika 68. Komponentna Y brzine uslijed nailaznog vala

Slika 70. Komponenta Z brzine uslijed nailaznog vala

Vidimo brzine po *x*, *y*, *z* uslijed nailaznog vala. Primjećujemo kao su brzine manje u odnosul na brzine uslijed rotacije, to je zbog toga jer val gubi svoju brzinu u ovisnosti sa dubinom. Brzine su periodične i za *x* između 0.8 m/s i -0.8 m/s dok je za z između 1 m/s i -1 m/s. Komponenta y također je porasla i oscilira između 3 m/s i -3 m/s.

4.1.4.4. Rezultante brzina na poziciji točke P

Slika 72. Komponentna X rezultante brzine

Slika 71. Komponentna Y rezultanta brzine

20

Slika 73. Komponenta Z rezultanta brzine

Vidimo rezultante brzine na poziciji točke P, brzine su periodične. Za komponentu x oscilira između 1.8 m/s i 3.2 m/s, za y između 8 m/s i -6 m/s i za z između 6.6 m/s i -8 m/s.

4.1.4.5 Rezultantne brzine u koordinatnom sustavu lopatice

Slika 74. Komponenta X rezultanta brzine u K.S. lopatice

Slika 75. Komponenta Y rezultanta brzine u K.S. lopatice

Slika 76. Komponenta Z rezultanta brzine u K.S. lopatice

Ove brzine koristimo u proračunu za BEMT, koristimo komponente x i y preslikavamo na koordinatni sustav lopatice. Brzine su periodične koje osciliraju između maksimalnih i minimalnih brzina. Za komponentu *x* brzine osciliraju između 1.8 m/s i 3.2 m/s, dok za y između 8.4 m/s i 6.6 m/s

4.1.5 Prikaz rezultata za nailazni kut $\beta = 180^{\circ}$

slike 77.-90. prikazuju komponete brzina za nailazni kut β =180

4.1.5.1. Brzine točke P uslijed rotacije turbine

Komponenta brzina y i z osciliraju između od 7.8 m/s do -7.8 m/s, što predstavlja rotaciju i

Slika 77. Komponenta X brzine uslijed rotacije

Slika 78. Komponenta Y brzine uslijed rotacije

periodičnu promjenu brzine u ovisnosti o vremenu. Brzine su periodične i osciliraju.

Slika 79. Komponenta Z brzine uslijed rotacije

4.1.5.2. Brzine strujanja u točki P uslijed morske struj

Slika 80. Komponenta Z brzine uslijed rotacije

Slika 81. Komponenta Y uslijed morske struje

Grafovi prikazuju morske struju koja je konstanta za ovaj slučaj 2.5 m/s odgovara oceanskoj struji

4.1.5.3. Brzine strujanja u točki P uslijed nailaznog vala

Slika 83. Komponenta X brzine uslijed nailaznog vala

Slika 82. Komponenta Y brzine uslijed nailaznog vala

Slika 84. Komponenta Z uslijed nailaznog vala

Vidimo brzine po *x*, *y*, *z* uslijed nailaznog vala. Primjećujemo kao su brzine manje u odnosul na brzine uslijed rotacije, to je zbog toga jer val gubi svoju brzinu u ovisnosti sa dubinom. Brzine su periodične i za *x* između 1 m/s i -1 m/s dok je za Z između 0.8 m/s i -0.8 m/s.

4.1.5.4. Rezultantna brzina na poziciji točke P

Slika 86. Komponenta X rezultanta brzine

Slika 85. Komponenta Y rezultante brzine

Slika 87. Komponenta Z rezultanta brzine

Vidimo rezultante brzine na poziciji točke P, brzine su periodične. Za komponentu x oscilira između 1.7 m/s i 3.5 m/s, za y između 6m/s i -6 m/s i za z između 6.6 m/s i -8 m/s.

4.1.5.5 Rezultanta brzine u koordinatnom sustavu lopatice

Slika 89. Komponenta X rezultanta brzine u K.S. lopatice

Slika 88. Komponenta Y rezultanta brzine u K.S. lopatice

Slika 90. Komponenta Z rezultata brzine u K.S. lopatice

Ove brzine koristimo u proračunu za BEMT, koristimo komponente x i y preslikavamo na koordinatni sustav lopatice. Brzine su periodične koje osciliraju između maksimalnih i minimalnih brzina. Za komponentu *x* brzine osciliraju između 1.5 m/s i 3.6 m/s, dok za y između 8.3 m/s i 6.7 m/s

4.1.6 Prikaz rezultata za nailazni kut $\beta = 270^{\circ}$

slike 91.-103. prikazuju komponete brzina za nailazni kut β =270.

4.1.6.1. Brzine točke P uslijed rotacije turbine

Slika 91. Komponenta X brzine uslijed rotacije

Slika 92. Komponenta Y brzine uslijed rotacije

Slika 93. Komponenta Z brzine uslijed rotacije

Komponenta brzina y i z osciliraju između od 7.8 m/s do -7.8 m/s, što predstavlja rotaciju i periodičnu promjenu brzine u ovisnosti o vremenu. Brzine su periodične i osciliraju

4.1.6.2. Brzine strujanja u točki P uslijed morske struje

Slika 94. Komponenta X brzine uslijed morske struje

Slika 95. Komponente Y brzine uslijed morske struje

Grafovi prikazuju morske struju koja je konstanta za ovaj slučaj 2.5 m/s odgovara oceanskoj struji.

4.1.6.3. Brzine strujanja u točki P uslijed nailaznog vala

Slika 96. Komponenta X brzine uslijed nailaznog vala

Slika 97. Komponenta Y brzine uslijed nailanzog vala

Slika 98. Komponenta Z brzine uslijed nailaznog vala

Vidimo brzine po *x, y, z* uslijed nailaznog vala. Primjećujemo kao su brzine manje u odnosul na brzine uslijed rotacije, to je zbog toga jer val gubi svoju brzinu u ovisnosti sa dubinom. Brzine su periodične i osciliraju. Za y između 4 m/s i -4 m/s dok je za Z između 0.75 m/s i - 0.8 m/s.

4.1.6.4. Rezultanta brzina na poziciji točke P

Slika 99. Komponenta X rezultanta brzine

Slika 100. Komponenta Y rezultanta brzine

Slika 101. Komponenta Z rezultanta brzine

Vidimo rezultante brzine na poziciji točke P, brzine su periodične. Za komponentu x oscilira oko obrzine 2.5 m/s, za y između 6m/s i -6 m/s i za z između 8 m/s i -8 m/s.

4.1.6.5 Rezultanta brzine u koordinatnom sustavu lopatice

Slika 104. Komponenta X rezultanta brzine u K.S. lopatice

Slika 102. Komponenta Y rezultanta brzine u K.S. lopatice

Slika 103. Komponenta Z rezultanta brzine u K.S. lopatice

Ove brzine koristimo u proračunu za BEMT, koristimo komponente x i y preslikavamo na koordinatni sustav lopatice. Brzine su periodične koje osciliraju između maksimalnih i minimalnih brzina. Za komponentu x brzine osciliraju oko 2.5 m/s, dok za y između 8.6 m/s i 6.9 m/s

4.2 Prikaz rezultata za različite kutove nailaska valova

Slika 105. Komponentne brzine koje djeluju na lopaticu

Na slici 105 (Ivan Čatipović & Frederic Dias) je prikazan poprečni koordinatni sustav preko kojeg po duljini lopatice rastavljamo vektro relativne brzine koju smo dobili modelom strujanja navedenim u dijahramu. Za svaki kut kojim val nailazi na lopatice mjenjat će se reltavina brzina a samim time sile i momenti. U dodatku C su prikazani indukcijski i rotacijski koeficjenti koji su potrebni da bi dobili rješenje

4.2.1 Prikaz rezultata sila i momenata za nailazni kut $\beta=0^\circ$

Slika 106. Prikaz sila koje djeluju na lopaticu

Slika 107. Prikaz momenata koje djeluju na lopaticu

Primjećujemo da su sile i momenti periodični i oscilatorni. Ponašaju se u skladu sa nailaznim valovima

4.2.2 Prikaz rezultata sila i momenata za nailazni kut β =22.5 °

Slika 109. Prikaz momenata koje djeluju na lopaticu

Primjećujemo da su sile i momenti periodični i oscilatorni. Ponašaju se u skladu sa nalaznim valovima

4.2.3 Prikaz rezultata sila i momenta za nailazni kut $\beta=90^\circ$

Slika 110. Prikaz sila koje djeluju na lopaticu

Slika 111. Prikaz momenata koje djeluju na lopaticu

Primjećujemo da su sile i momenti periodični i oscilatorni. Ponašaju se u skladu sa nailaznim valovima.

4.2.4 Prikaz rezultata sila i momenta za nailazni kut $\beta=135^\circ$

Slika 112. Prikaz sila koje djeluju na lopaticu

Slika 113. Prikaz momenata koje djeluju na lopaticu

Primjećujemo da su sile i momenti periodični i oscilatorni. Ponašaju se u skladu sa nalaznima valovima

4.2.5 Prikaz rezultata sila i momenata za nailazni kut β =180 °

Slika 115. Prikaz momenata koje djeluju na lopaticu

Primjećujemo da su sile i momenti periodični i oscilatorni. Ponašaju se u skladu sa nailaznim valovima

4.2.6 Prikaz rezultata sila i momenta za nailazni kut $\beta = 270^{\circ}$

Slika 117. Prikaz momenata koje djeluju na lopaticu

Primjećujemo da su sile i momenti periodični i oscilatorni. Ponašaju se u skladu sa nailaznim valovima

β [°]	F _{max} [kN]	Q _{max} [kNm]	F _{min} [kN]	Q _{min} [kNm]	F _{sred} [kN]	Q _{sred} [kNm]
0	525.661	505.305	263.656	87.414	399.333	286.849
22.5	505.557	516.646	250.128	34.054	392.651	280.854
45	525.661	505.305	263.656	87.414	399.333	286.849
90	500.728	303.708	312.897	263.580	407.832	292.723
135	476.465	406.855	335.528	71.720	395.602	280.374
180	494.676	491.420	260.805	14.707	389.376	276.629
270	500.798	303.707	312.991	263.622	408.908	292.945

4.4 Usporedba rezultata

Tablica 1. Usporedba rezultata

Ovdje možemo zaključiti da valovi sa ulaznim kutem 0° uzrokuju najveća opterećenja koja djeluju po lopatici, dok valovi koji nailaze iz turbine daju najmanja

5. Zaključak

Komponete rezultantne brzine strujanja se mjenjaju sa promjenom nailaznog kuta valova time se mjenja i funkcija koja opisuje komponente brzina. Sile i momenti koji djeluju na lopatice turbine su fukncija kuta upada koji utječe na relativnu brzinu. Iz usporedbe rezultata vidi se da su najveće sile koje djeluju na lopaticu su pod upadnim kutem od 0° dok najveći momenti pod upadnim kutem od 22.5°.

Da bi model strujanja bio potpun potrebno je uzeti u obzir naizmjenične valove pod različitim upadnim kutevima, utjecaj plime i oseke i povezati naizmjenične valove sa spektrima valova.

Dodatak A

Geometrija lopatica

1	r/R	r	Lc	Twist
2	0.1045	1.047789	0.801712	6.45
3	0.1135	1.138029	0.8	6.45
4	0.1225	1.228269	0.801515	6.45
5	0.1315	1.318509	0.805665	6.45
6	0.1405	1.408749	0.811859	6.45
7	0.1495	1.498989	0.829465	6.45
8	0.1585	1.58923	0.863243	6.45
9	0.1675	1.67947	0.905688	6.45
10	0.1765	1.76971	0.967965	6.45
11	0.1855	1.85995	1.051239	6.45
12	0.1945	1.95019	1.133005	6.45
13	0.2035	2.04043	1.218836	6.45
14	0.2125	2.130671	1.312101	6.45
15	0.2215	2.220911	1.386989	6.45
16	0.2305	2.311151	1.417688	6.45
17	0.2395	2.401391	1.415969	6.432942
18	0.2485	2.491631	1.41102	6.383865
19	0.2575	2.581871	1.403155	6.305919
20	0.2665	2.672112	1.392686	6.202253
21	0.2755	2.762352	1.379929	6.076015
22	0.2845	2.852592	1.365195	5.930353
23	0.2935	2.942832	1.348798	5.768417
24	0.3025	3.033072	1.331051	5.593355
25	0.3115	3.123312	1.312268	5.408315
26	0.3205	3.213553	1.292762	5.216447
27	0.3295	3.303793	1.272847	5.020898
28	0.3385	3.394033	1.252836	4.824818
29	0.3475	3.484273	1.233042	4.631355
30	0.3565	3.574513	1.213778	4.443658
31	0.3655	3.664753	1.195358	4.264875
32	0.3745	3.754994	1.178096	4.098156
33	0.3835	3.845234	1.162304	3.946648
34	0.3925	3.935474	1.147202	3.80155
35	0.4015	4.025714	1.131823	3.652333
36	0.4105	4.115954	1.116202	3.499557
37	0.4195	4.206195	1.100376	3.343781
38	0.4285	4.296435	1.08438	3.185564
39	0.4375	4.386675	1.068247	3.025466
40	0.4465	4.476915	1.052015	2.864046
41	0.4555	4.567155	1.035719	2.701864
42	0.4645	4.657395	1.019393	2.539477
43	0.4735	4.747636	1.003073	2.377447
44	0.4825	4.837876	0.986794	2.216332
45	0.4915	4.928116	0.970592	2.056692
46	0.5005	5.018356	0.954502	1.899085

17	0 5005	5 109506	0.029550	1 744072
4/	0.5095	5.108390	0.938339	1.744072
48	0.5185	5.198830	0.922799	1.392211
49 50	0.5275	5.289077	0.90/25/	1.444062
50	0.5365	5.3/931/	0.891968	1.300184
51	0.5455	5.469557	0.8/6968	1.16113/
52	0.5545	5.559797	0.862292	1.02/4/9
53	0.5635	5.650037	0.847975	0.89977
54	0.5725	5.740277	0.834053	0.77857
55	0.5815	5.830518	0.82056	0.664438
56	0.5905	5.920758	0.807533	0.557932
57	0.5995	6.010998	0.795006	0.459613
58	0.6085	6.101238	0.783016	0.37004
59	0.6175	6.191478	0.771596	0.289771
60	0.6265	6.281718	0.760783	0.219367
61	0.6355	6.371959	0.750364	0.155819
62	0.6445	6.462199	0.740106	0.095601
63	0.6535	6.552439	0.730016	0.038499
64	0.6625	6.642679	0.720098	-0.015703
65	0.6715	6.732919	0.710359	-0.067223
66	0.6805	6.823159	0.700804	-0.116275
67	0.6895	6.9134	0.691439	-0.163076
68	0.6985	7.00364	0.682268	-0.207841
69	0.7075	7.09388	0.673299	-0.250787
70	0.7165	7.18412	0.664536	-0.292129
71	0.7255	7.27436	0.655986	-0.332083
72	0.7345	7.3646	0.647653	-0.370866
73	0.7435	7.454841	0.639543	-0.408692
74	0.7525	7.545081	0.631662	-0.445778
75	0.7615	7.635321	0.624017	-0.482341
76	0.7705	7.725561	0.616611	-0.518595
77	0.7795	7.815801	0.609451	-0.554757
78	0.7885	7.906041	0.602543	-0.591042
79	0.7975	7.996282	0.595892	-0.627667
80	0.8065	8.086522	0.589503	-0.664848
81	0.8155	8.176762	0.583383	-0.702800
82	0.8245	8.267002	0.577537	-0.741739
83	0.8335	8.357242	0.571971	-0.781882
84	0.8425	8.447482	0.566982	-0.821894
85	0.8515	8 537723	0 562743	-0.860533
86	0.8605	8 627963	0.559068	-0.898147
87	0.8695	8 718203	0.555773	-0.935084
88	0.8785	8 808443	0.552673	-0.971693
89	0.8875	8 898683	0.549583	-1.008325
0) 0)	0.8965	8 988973	0.546319	-1.045326
01	0.0005	0.070164	0.540517	-1.093047
91 02	0.9033	9.079104	0.542095	-1 121826
72 02	0.9143	7.107404 0.250644	0.330327	1.121000
73 01	0.9233	7.237044 0.210001	0.333029	1.102042
7 4 05	0.9323	7.347004 0 110101	0.52/010	1.204014
93 06	0.9413	9.440124	0.320909	-1.248100
90	0.9303	9.330364	0.31080/	-1.293964

97	0.9595	9.620605	0.496029	-1.347726
98	0.9685	9.710845	0.477302	-1.401424
99	0.9775	9.801085	0.455355	-1.455094
100	0.9865	9.891325	0.430917	-1.506773
101	0.9955	9.981565	0.39639	-1.555776
102	1	10.026685	0.39639	-1.555776

Dodatak B

S816re123			
1	α	C_L	C_D
2	-180.000000	0	0.01
3	-170.000000	0.144917	0.033587
4	-160.000000	0.289835	0.149546
5	-150.000000	0.434752	0.327236
6	-140.000000	0.57967	0.54527
7	-130.000000	0.530353	0.777409
8	-120.000000	0.441879	0.995729
9	-110.000000	0.316122	1.173983
10	-100.000000	0.163503	1.290766
11	-90.000000	-0.000000	1.332094
12	-80.000000	-0.163503	1.290766
13	-70.000000	-0.316122	1.173983
14	-60.000000	-0.441879	0.995729
15	-50.000000	-0.530353	0.777409
16	-40.000000	-0.579670	0.54527
17	-30.000000	-0.375783	0.335677
18	-25.000	-0.3912	0.23088
19	-24.000	-0.3809	0.22445
20	-23.000	-0.3683	0.21629
21	-22.000	-0.3245	0.19613
22	-21.000	-0.2997	0.18571
23	-20.000	-0.2786	0.17572
24	-19.000	-0.2739	0.16848
25	-18.000	-0.4142	0.1914
26	-17.000	-0.4110	0.17845
27	-16.000	-0.3830	0.16185
28	-15.000	-0.3655	0.14858
29	-14.000	-0.3898	0.12854
30	-13.000	-0.4786	0.10859
31	-12.000	-0.5748	0.09641
32	-11.000	-0.5786	0.07275
33	-10.000	-0.5545	0.05857
34	-9.000	-0.4311	0.04064
35	-8.000	-0.1830	0.03656
36	-7.000	-0.0932	0.03853
37	-6.000	-0.1452	0.02912
38	-5.000	-0.2426	0.02107
39	-4.000	0.2637	0.05063
40	-3.000	0.2533	0.04609
41	-2.000	0.1335	0.03589
42	-1.000	0.1579	0.03063
43	0	0.2244	0.0295
44	1	0.27	0.0315
45	2	0.2954	0.03473
46	3	0.3422	0.03801

5	0.3903	0.04838
6	0.4638	0.05131
7	0.559	0.05305
8	0.6803	0.05253
9	0.8192	0.04609
11	0.9618	0.04019
12	0.933	0.05098
13	0.9571	0.0582
14	0.9994	0.0635
15	1.0547	0.07068
16	1.0687	0.08433
17	1.0255	0.10486
18	0.9135	0.1415
19	0.8111	0.19576
20	0.5957	0.20183
21	0.5962	0.21831
22	0.6345	0.23707
23	0.6405	0.25184
24	0.6778	0.27249
25	0.6801	0.28677
26	0.6966	0.30362
27	0.717	0.32018
28	0.7433	0.34319
29	0.7473	0.35723
30	0.7601	0.37463
31	0.7733	0.3921
32	0.7859	0.40931
34	0.8083	0.44917
35	0.8128	0.46534
36	0.8171	0.48111
37	0.8221	0.4979
38	0.8254	0.51418
39	0.8274	0.53009
40	0.8281	0.54527
50	0.757647	0.777409
60	0.631255	0.995729
70	0.451604	1.173983
80	0.233576	1.290766
90	0	1.332094
100	-0.163503	1.290766
110	-0.316122	1.173983
120	-0.441879	0.995729
130	-0.530353	0.777409
140	-0.579670	0.54527
150	-0.434752	0.327236
160	-0.289835	0.149546
170	-0.144917	0.033587
180	0	0.01
	5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 34 35 36 37 38 39 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

S825re194

1	α	C_L	C_D
2	-180.000000	0	0.01
3	-170.000000	0.268143	0.01
4	-160.000000	0.536286	0.045836
5	-150.000000	0.80443	0.231657
6	-140.000000	1.072573	0.460725
7	-130.000000	0.838074	0.706468
8	-120.000000	0.606576	0.940546
9	-110.000000	0.387145	1.136236
10	-100.000000	0.180972	1.271601
11	-90.000000	-0.000000	1.332094
12	-80,000000	-0.180972	1 271601
13	-70,000000	-0.387145	1 136236
14	-60.000000	-0.606576	0.940546
15	-50,000000	-0.838074	0 706468
16	-49 500000	-0.850179	0.694223
17	-47 500000	-0.899377	0.64502
18	-47.000000	-0.911895	0.632681
10	-46 500000	-0.924511	0.620334
20	-46.000000	-0.937230	0.020334
20	-45 500000	-0.950059	0.007983
21	-45 000000	-0.963005	0.593031
22	-44 500000	-0.976073	0.570938
23	-44.000000	-0.989271	0.578605
27	-43 500000	-1.002606	0.536005
25	-43 000000	-1.002000	0.533982
20	-42 500000	-1.020721	0.555762
28	-40 500000	-1.029721	0.3217
20	-40.000000	-0.587300	0.30712
30	-39 500	-0 5833	0.39163
31	-39,000	-0 5789	0.37103
31	-38 500	-0.5743	0.38004
32	-38,000	-0 5694	0.37455
33	-37500	-0 5643	0.37433
34	37.300	-0.5588	0.30072
35	-36 500	-0.5530	0.30270
30	-36,000	-0.5330	0.35004
20	-35 500	-0.5412	0.33092
30	-34.500	-0.5280	0.34318
39 40	-34.300 -34.000	-0.5289	0.35295
40	-34.000	-0.3217	0.32/13 0.22154
41	-33.300	-0.3140	0.32134
42	-33.000	-0.3073	0.310
43	-32.300	-0.3001	0.31041
44	-32.000	-0.4926	0.30484
45	-31.300	-0.4850	0.29929
40	-31.000	-0.4//4	0.293/3
4/	-30.300	-0.4698	0.28828
48	-30.000	-0.4632	0.28521
49	-29.500	-0.45/1	0.27843
50	-29.000	-0.4316	0.27393

51	-28.000	-0.4348	0.26241
52	-27.500	-0.4271	0.25774
53	-27.000	-0.4200	0.25327
54	-26.500	-0.4131	0.24882
55	-26.000	-0.4062	0.24434
56	-25.500	-0.3994	0.23983
57	-25.000	-0.3928	0.23528
58	-24.500	-0.6316	0.28434
59	-24.000	-0.6189	0.2791
60	-23.500	-0.6063	0.27363
61	-23.000	-0.5944	0.268
62	-22.500	-0.5864	0.26316
63	-22.000	-0.5798	0.25856
64	-21.500	-0.5601	0.25012
65	-21.000	-0.5456	0.24493
66	-20.500	-0.5327	0.23959
67	-20.000	-0.5208	0.23378
68	-19500	-0.5151	0 22784
69	-19,000	-0.5113	0.22707
70	-18500	-0.5017	0.22207
70	-18,000	-0.4812	0.21407
71	-17500	-0.4682	0.200
72	-17,000	-0.4578	0.20249
7 <i>5</i> 7 <i>4</i>	-16500	-0.4495	0.12042
74 75	-16,000	-0.4518	0.18712
75	-15 500	-0.4513	0.10212 0.17/1/
70	-15,000	-0.4466	0.17414
79	-14 500	-0.4222	0.10314
70	-14.000	-0.4248	0.15366
/ <i>9</i> 80	-12500	-0.4240	0.13300
0U 91	-13.300	-0.4219	0.14029
81 82	-13.000	-0.4238	0.13774
82 82	-12.300	-0.4505	0.12/80
83	-12.000	-0.3396	0.08301
84	-11.500	-0.6039	0.0/48/
85	-11.000	-0.6461	0.06579
86	-10.500	-0.68/2	0.05/89
8/	-10.000	-0./295	0.0509/
88	-9.500	-0.7538	0.04704
89	-9.000	-0.7533	0.04317
90	-8.500	-0.6994	0.04004
91	-8.000	-0.6423	0.03826
92	-7.500	-0.5841	0.03717
93	-7.000	-0.5212	0.03518
94	-6.500	-0.4560	0.03146
95	-6.000	-0.3492	0.02241
96	-5.500	-0.2398	0.02031
97	-5.000	-0.1860	0.02371
98	-4.500	-0.1323	0.02644
99	-4.000	-0.0895	0.03074
100	-3.500	-0.0180	0.02909

101	-3.000	0.0563	0.02758
102	-2.500	0.1416	0.02384
103	-2.000	0.2354	0.02109
104	-1.500	0.339	0.01912
105	-1.000	0.4313	0.01773
106	-0.500	0.5069	0.01685
107	0	0.5697	0.01647
108	0.5	0.6254	0.0164
109	1	0.6822	0.01642
110	1.5	0.7374	0.01645
111	2	0.794	0.0165
112	2.5	0.8519	0.01659
113	3	0.9087	0.01671
114	3.5	0.9638	0.01698
115	4	1.0196	0.01732
116	4.5	1.0742	0.01761
117	5	1.1251	0.0178
118	5.5	1.174	0.01806
119	6	1 2222	0.01836
120	6.5	1 2687	0.01867
120	0.5 7	1 311	0.01895
121	75	1 35	0.01937
122	8	1 3826	0.01987
123	85	1.3020	0.02066
121	9	1 4045	0.022000
125	95	1 4067	0.0226
120	10	1 4103	0.02867
127	10 5	1 4152	0.03195
120	11	1 4191	0.03563
130	11 5	1 4198	0.03505
130	12	1.4158	0.04005
131	12 5	1 4163	0.05099
132	12.5	1 4148	0.05726
133	13 5	1 4083	0.05720
134	13.5	1.4005	0.0040
136	14 5	1 4065	0.07906
130	15	1.4062	0.07500
138	15 5	1.4002	0.00057
130	16.5	1 3002	0.07477
140	10.5	1.3902	0.12017
140	175	1.3802	0.12017
141	17.5	1.3792	0.12902
142	10	1.3000	0.14004
145	10.5	1.3301	0.15240
144	19	1.3419	0.105
145	19.5	1.3243	0.1/091
140	20 20 5	1.20/	0.199/3
14/ 140	20.3	1.1/90 1.1007	0.23014
140	∠1 22.5	1.102/	0.2/118
149	22.3	1.2195	0.30/10
130	23	1.220/	0.31334

151	23.5	1.2407	0.32234
152	24	1.2555	0.32836
153	24.5	1.271	0.3338
154	25	1.2908	0.34245
155	25.5	1.3016	0.34853
156	26	1.3099	0.35323
157	26.5	1.3229	0.35916
158	27	1.3361	0.36435
159	27.5	1.3491	0.36906
160	28	1.3618	0.37335
161	28.5	1.3773	0.38052
162	29.2	1 3859	0 38409
163	29 5	1 397	0.38883
164	30	1 4086	0.39364
165	30.5	1 4195	0.39803
166	31	1 4299	0.40207
167	31 5	1.4299	0.40207
168	31.5	1.4504	0.40307
160	32 5	1.4580	0.41600
170	32.5	1.4673	0.41030
170	33 5	1.4075	0.41939
171	24	1.4704	0.42908
172	34	1.4033	0.42000
173	34.5	1.4934	0.43213
174	33 35 5	1.5000	0.45594
175	35.5	1.3073	0.43904
170	30 26 5	1.5156	0.44515
1//	30.3 27	1.5197	0.44033
1/8	5/ 275	1.5248	0.449/
1/9	37.3 29	1.5291	0.45282
180	38	1.535/	0.45847
181	39	1.5416	0.46383
182	39.5	1.5451	0.466/4
183	40	1.5484	0.469/1
184	40.5	1.5514	0.4/285
185	50	1.19/249	0.706468
186	60	0.866537	0.940546
187	70	0.553064	1.136236
188	80	0.258531	1.271601
189	90	0	1.332094
190	100	-0.180972	1.271601
191	110	-0.387145	1.136236
192	120	-0.606576	0.940546
193	130	-0.838074	0.706468
194	140	-1.072573	0.460725
195	150	-0.804430	0.231657
196	160	-0.536286	0.045836
197	170	-0.268143	0.01
198	180	0	0.01

S826 12% re191

1	α	C_L	C_D
2	-180.000000	0	0.080142
3	-170.000000	0.172038	0.119092
4	-160.000000	0.344077	0.231134
5	-150.000000	0.516115	0.402428
6	-140.000000	0.663584	0.611781
7	-130.000000	0.57993	0.833219
8	-120.000000	0.468413	1.039141
9	-110.000000	0.327565	1.203679
10	-100.000000	0.166318	1.305843
11	-90.000000	-0.000000	1.332094
12	-80.000000	-0.166318	1.305843
13	-70.000000	-0.327565	1.203679
14	-60.000000	-0.468413	1.039141
15	-50.000000	-0.579930	0.833219
16	-40.000000	-0.663584	0.611781
17	-30,000000	-0.425610	0 368219
18	-25,0000000	-0.413300	0.24509
19	$-24\ 000$	-0.3929	0.23523
20	-23,000	-0.3735	0.225225
20	-22,000	-0.3539	0.22034
21	-21,000	-0.3307	0.21001
22	-20,000	-0.3093	0.10782
23	-19 000	-0.2884	0.19702
24	-18 000	-0.2706	0.18707
25	-17000	-0.2616	0.17626
20	-16,000	-0.2320	0.17020
27	-15 000	-0.2158	0.10401
20	-14 000	-0.2042	0.13091
29	-12 000	-0.1006	0.14/40
21	13.000	-0.1700	0.1330
22	-11 000	-0.1585	0.12332
32 22	-11.000	-0.1383	0.11000
33 24	-10.000	-0.1433	0.09030
34 25	-9.000	-0.134/	0.0/831
35	-8.000	-0.2061	0.06862
36	-/.000	-0.185/	0.05245
3/	-6.000	-0.1124	0.03836
38	-5.000	0.0095	0.02388
39	-4.000	0.1216	0.01905
40	-2.000	0.369	0.01583
41	-1.000	0.4801	0.01601
42	0	0.5895	0.01632
43	1	0.6974	0.01674
44	2	0.8033	0.01726
45	3	0.9074	0.01791
46	4	1.0085	0.01868
47	5	1.1064	0.01963
48	6	1.1998	0.02079
49	7	1.285	0.02225
50	8	1.3486	0.02512

51	9	1.3727	0.03116
52	10	1.3879	0.03889
53	11	1.4005	0.04853
54	12	1.4205	0.06016
55	13	1.3991	0.07656
56	14	1.3335	0.10088
57	15	1.2565	0.13423
58	16	1.1969	0.17642
59	17	1.1704	0.22425
60	20	0.8948	0.26707
61	21	0.9023	0.28372
62	22	0.9126	0.30038
63	23	0.9148	0.3192
64	24	0.9242	0.33505
65	25	0.931	0.35156
66	26	0.9406	0.37101
67	27	0.9479	0.38771
68	28	0.9539	0.40588
69	29	0.9606	0.42438
70	31	0.9663	0.45684
71	32	0.9703	0.47437
72	33	0.9721	0.49312
73	34	0.9719	0.50953
74	35	0.9717	0.52596
75	36	0.9689	0.54252
76	37	0.9661	0.55752
77	39	0.9585	0.58985
78	40	0.947978	0.611781
79	50	0.828471	0.833219
80	60	0.669161	1.039141
81	70	0.46795	1.203679
82	80	0.237596	1.305843
83	90	0	1.332094
84	100	-0.166318	1.305843
85	110	-0.327565	1.203679
86	120	-0.468413	1.039141
87	130	-0.579930	0.833219
88	140	-0.663584	0.611781
89	150	-0.516115	0.402428
90	160	-0.344077	0.231134
91	170	-0.172038	0.119092
92	180	0	0.080142
S826 14% re	198	0	0.0001.2
1	a	СL	C D
2	-180 000000	0	0 133157
3	-170.000000	0.3082	0.171301
4	-160.000000	0.6164	0.280952
5	-150.000000	0.610538	0.44834
6	-140.000000	0.584994	0.652393
7	-130.000000	0.533499	0.867296

8	-120.000000	0.443562	1.065649
9	-110.000000	0.316848	1.221811
10	-100.000000	0.163682	1.315049
11	-90.000000	-0.000000	1.332094
12	-80.000000	-0.163682	1.315049
13	-70.000000	-0.316848	1.221811
14	-60.000000	-0.443562	1.065649
15	-50.000000	-0.533499	0.867296
16	-40.000000	-0.584994	0.652393
17	-30.000000	-0.610538	0.44834
18	-25.000000	-0.625070	0.358601
19	-24.000000	-0.629318	0.342019
20	-23.000000	-0.634309	0.325943
20	-22,000000	-0.640209	0.310394
22	-21,000000	-0.647220	0 29539
23	-20,000	-0.3233	0 19509
23	-19000	-0.3014	0.1827
25	-18 000	-0.2853	0.17435
25	-17000	-0.2723	0.16632
20	-16000	-0.2622	0.1583
27	-15,000	-0.2622	0.15228
20	-13,000	-0.2003	0.13220
30	-12000	-0.2545	0.13507
31	-11 000	-0.2773	0.12017
32	-10,000	-0.2410	0.00888
32	-8.000	-0.3632	0.0700
34	-5,000	-0.0814	0.07017
35	-4.000	0.0814	0.02017
36	-3 000	0.0842	0.01439
30	3.000	0.2374	0.0137
20	2.000	0.3900	0.01331
30 20	-1.000	0.5505	0.01319
<i>39</i> <i>4</i> 0	1	0.0407	0.01351
40	1	0.702	0.01304
41	2	0.0704	0.01409
42	5	0.9830	0.01402
43	4	1.095	0.01515
44	5	1.1934	0.01558
43	0	1.28/5	0.01601
40	/	1.3003	0.01657
4/	8	1.3901	0.01923
48	9	1.393	0.02452
49	10	1.4007	0.03012
50	11	1.4104	0.03829
51	12	1.415	0.04858
32 52	14	1.4101	0.0/548
55	15	1.394	0.09312
54 55	10	1.5/64	0.11268
33 50	1/	1.3408	0.13/0
56	18	1.2866	0.1/126
57	19	1.2054	0.22458

58	20	1.1907	0.26878
59	21	0.9246	0.29539
60	30	0.872197	0.44834
61	40	0.835706	0.652393
62	50	0.762141	0.867296
63	60	0.63366	1.065649
64	70	0.452641	1.221811
65	80	0.233831	1.315049
66	90	0	1.332094
67	100	-0.163682	1.315049
68	110	-0.316848	1.221811
69	120	-0.443562	1.065649
70	130	-0.533499	0.867296
71	140	-0.584994	0.652393
72	150	-0.610538	0.44834
73	160	-0.616400	0.280952
74	170	-0.308200	0.171301
75	180	0	0.133157

Dodatak C

	а	a'
1	0.3087	0.3223
2	0.0464	-0.0430
3	0.0438	-0.0363
4	0.0418	-0.0283
5	0.0404	-0.0204
6	0.0402	-0.0153
7	0.0416	-0.0134
8	0.0437	-0.0123
9	0.0468	-0.0115
10	0.0511	-0.0100
11	0.0557	-0.0078
12	0.0608	-0.0055
13	0.1119	0.0063
14	0.1642	0.0191
15	0.2085	0.0304
16	0.2384	0.0379
17	0.2552	0.0409
18	0.2624	0.0404
19	0.2675	0.039
20	0.2721	0.0376
21	0.276	0.0362
22	0.2518	0.0355
23	0.2565	0.0341
24	0.2608	0.0326
25	0.2645	0.0313
26	0.2902	0.0295
27	0.2923	0.0283
28	0.2941	0.0271
29	0.2958	0.026
30	0.2975	0.025
31	0.2992	0.024
32	0.301	0.0231
33	0.3028	0.0222
34	0.3044	0.0214
35	0.3059	0.0206
36	0.3073	0.0199
37	0.3085	0.0192
38	0.3097	0.0185
39	0.3107	0.0178
40	0.3117	0.0172
41	0.3126	0.0166
42	0.3135	0.016
43	0.3144	0.0155
44	0.3153	0.0145
45	0.3162	0.0145
46	0.31/4	0.0142

47	0.3186	0.0138
48	0.3196	0.0134
49	0.3206	0.0131
50	0.3216	0.0127
51	0.3225	0.0124
52	0.3233	0.0121
53	0.3242	0.0118
54	0.325	0.0115
55	0.3259	0.0112
56	0.3269	0.011
57	0.3279	0.0107
58	0.329	0.0105
59	0.3302	0.0103
60	0.3314	0.0101
61	0.3327	0.0099
62	0.334	0.0097
63	0.3353	0.0095
6 <u>4</u>	0.3367	0.0094
65	0.3382	0.0092
66	0.3397	0.0091
67	0.3413	0.0091
68	0.3429	0.0089
69	0.3447	0.0088
70	0.3466	0.0000
70	0.3486	0.0086
71	0.3508	0.0085
72	0.3531	0.0005
7 <i>5</i> 7 <i>4</i>	0.354	0.0003
75	0.354	0.0083
76	0.356	0.0082
70	0.3573	0.008
78	0.3587	0.0079
70	0.3507	0.0078
7 <i>9</i> 80	0.3003	0.0077
0U Q1	0.3021	0.0070
01	0.3042	0.0073
02 92	0.3003	0.0074
03	0.3093	0.0074
04 05	0.3723	0.0074
83	0.3762	0.0074
80	0.3803	0.0074
8/	0.3849	0.0074
88	0.39	0.0075
89	0.3955	0.00/5
90	0.4016	0.0077
91	0.4067	0.0076
92	0.4123	0.0077
93	0.4187	0.0077
94	0.4263	0.0078
95	0.435	0.0079
96	0.4452	0.0082

97	0.4586	0.0086
98	0.4784	0.0094
99	0.5121	0.0112
100	0.5875	0.0174

Dodatak D

Ω	1.667	rad/s	kutna brzina strujanja
θο	1.570796327	rad	početni kut rotacije
h ox	0		jedinični vektor
h oy	1		jedinični vektor
h oz	0		jedinični vektor
z ox	0		jedinični vektor
z oy	0		jedinični vektor
Z OZ	1		jedinični vektor
xh	0	m	
vh	0	m	
zh	-18.5	m	pozicija x osi turbine
а	4.2		1 0
d	36	m	dubina
g	9.81	m/s2	gravitacijska konstanta
k	0.074799	rad/m	valni broj
ω	0.8526970871	rad/s	frekvencija vala
β	0-360	0	nailazni kut vala
γ	0	0	nailazni kut morske struje
α	0		profil brzine morske struje
ρ	1025	<u>kg/m3</u>	gustoća mora

LITERATURA

[1] State of the Art in Tidal Current Energy Extracting Technologies; Jian Zhang, Luc Moreau, Mohamed Machmoum

[2] Dimensioning Loads for a Tidal Turbine, Marie Lunde Sæterstad

[3] Wind energy handbook; Tony Burton, David Sharpe, Nick Jenkins, Ervin Bossanyl

[4] General Momentum thepry for Horizontal Axis Wind Trubines; Jens Norkaer Sorensen

[5] BEMT applied to horizontal axis wind turbines; Thomas R. Purcell

[6] Harmonic loading for horizontal tidal turbines due to non-uniform stream profile; Neven Hadžić, Marijo Tomić, Ivo Senjanović

[7] Computational model of simultaneous wave and sea current loads on tidal turbines; Ivan Ćatipović,Neven Hadžić, Frederic Dias, Hrvoje Kozmar

[8] Tidal energy update 2009

[10] Ocean Energy Tide and Tidal power, R.H Charlier, C.W. Finkl

[11] Electrical Design for Ocean Wave and Tidal Energy Systems, Ray Alcorn and Dara O'Sullivan

[12] Pomorstvenost plovnih objekata, Jasna Prpić-Oršić, Većeslav Čorić

[13] https://www.wikipedia.org/

[14] Wind energy explained J.F. Manwell