
Design parameter management in product
development process

Juranić, Jasmin

Doctoral thesis / Disertacija

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu,
Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:109167

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-19

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering
and Naval Architecture University of Zagreb

https://urn.nsk.hr/urn:nbn:hr:235:109167
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fsb.unizg.hr
https://repozitorij.fsb.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fsb:7204
https://dabar.srce.hr/islandora/object/fsb:7204

Faculty of Mechanical Engineering and Naval Architecture

Jasmin Juranić

DESIGN PARAMETER MANAGEMENT IN
PRODUCT DEVELOPMENT PROCESS

DOCTORAL DISSERTATION

Zagreb, 2021

Faculty of Mechanical Engineering and Naval Architecture

Jasmin Juranić

DESIGN PARAMETER MANAGEMENT IN
PRODUCT DEVELOPMENT PROCESS

DOCTORAL DISSERTATION

Supervisor:
Prof. Neven Pavković, PhD.

Zagreb, 2021

Fakultet strojarstva i brodogradnje

Jasmin Juranić

UPRAVLJANJE KONSTRUKCIJSKIM
PARAMETRIMA U PROCESU RAZVOJA

PROIZVODA

DOKTORSKI RAD

Mentor:
Prof. dr. sc. Neven Pavković

Zagreb, 2021

BIBLIOGRAPHY DATA

UDC: 658.5

Keywords: product development; engineering design process; design

parameters; coloured petri nets; computer supported

collaborative work; multiple domain matrix;

Scientific area: Technical Sciences

Scientific field: Mechanical Engineering

Institution: University of Zagreb

Faculty of Mechanical Engineering and Naval Architecture

Supervisor: Prof. Neven Pavković, PhD.

Number of pages: 149

Number of figures: 56

Number of tables: 17

Number of references: 114

Date of oral examination: 25.06.2021

Committee members: Prof. Nenad Bojčetić, PhD. (University of Zagreb, Croatia)

Prof. Mario Štorga, PhD. (University of Zagreb, Croatia)

Asst. Prof. Tomaž Savšek, PhD. (Faculty of Industrial

Engineering Novo Mesto, Slovenia)

Archive: University of Zagreb,

Faculty of Mechanical Engineering and Naval Architecture

II

ACKNOWLEDGEMENTS

First and foremost, I am extremely grateful to my supervisor, Prof. Neven Pavković for his

invaluable advices, continuous support, and patience during my PhD study. His immense

knowledge and plentiful experience have encouraged me in all the time of my academic

research. I would also like to thank the examiners, Prof. Nenad Bojčetić, Prof. Mario Štorga

and Asst. Prof. Tomaž Savšek for reviewing the thesis and providing insightful comments.

I would like to express gratitude to the colleagues at the Chair of design and product

development. Special thanks go to Dr.-Ing Thomas Naumann for providing the data used in this

study.

I would like to express my gratitude to my parents, brother and my wife. Without their

tremendous understanding and encouragement in the past few years, it would be impossible for

me to complete my study.

III

IV

CONTENTS

ABSTRACT ... VII

PROŠIRENI SAŽETAK .. IX

LIST OF FIGURES ... XIII

LIST OF TABLES .. XVI

LIST OF APPENDICES .. XVII

LIST OF ABBREVIATIONS AND SYMBOLS ... XVIII

1. INTRODUCTION .. 1

1.1. Research focus, aim, and hypothesis ... 1

1.2. Research methodology .. 5

1.3. Scientific contribution ... 8

1.4. Thesis structure .. 8

2. THEORETICAL BACKGROUND ... 11

2.1. Engineering design process ... 11

2.2. Design activities .. 12

2.2.1. Ontology of engineering design activities .. 12

2.3. Engineering design parameters .. 14

2.3.1. Real-time updating of information and workflows ... 15

2.4. Communication in the design process ... 17

2.4.1. Computer supported cooperative work ... 17

2.4.2. Critical situations in design team collaboration .. 18

2.4.3. Design review meetings .. 19

2.5. Iterations in the design process .. 20

2.6. Matrix based methods .. 22

2.6.1. Design/Dependency Structure Matrix ... 22

2.6.2. Multiple Domain Matrix ... 23

2.6.3. Matrix-based methods limitations... 25

2.7. Research gaps .. 27

3. ANALYSIS OF DESIGN PROCESS ACTIVITIES IN PARTNER COMPANY 30

3.1. Obtaining data for the analysis .. 30

3.2. Experimental dataset .. 32

3.3. Report analysis .. 35

V

3.3.1. Extraction of EDP types from meeting reports ... 37

3.3.2. Extraction of phrases that denote activities .. 40

3.3.3. Generalisation of recognised design activities .. 41

3.3.4. Tailored engineering design activities taxonomy ... 45

4. MODEL AND FRAMEWORK FOR ACTIVITY EXECUTION PROCESS 47

4.1. A roadmap of building the proposed framework ... 49

4.2. Obtaining input data without external sources .. 52

4.3. Obtaining input data using external sources .. 56

4.4. CPN colours in described CPN models ... 59

4.5. Executing a CPN model with external application .. 61

4.6. Activity list and instantiation of activities ... 62

4.7. Instantiation of CPN templates .. 65

4.8. Lifecycle of a CPN instance .. 67

4.9. Developed CPN model templates .. 71

4.9.1. The model for automatic parameter change .. 71

4.9.2. Model of negotiation on coupled parameters values .. 77

5. IMPLEMENTATION OF THE FRAMEWORK .. 83

5.1. Software components .. 87

5.1.1. Procedures that manage the whole solution .. 87

5.1.2. Procedures specific to each CPN model type ... 88

5.1.3. Procedures that manage activity list ... 88

5.1.4. Procedures for data transfer and communication with external data sources 90

5.1.5. Procedures that establish and support communication with CPN Tools 90

5.1.6. Procedures that enable a user to observe, check and visualize activity execution

progress ... 91

5.2. Implementation issues and challenges of CPN models ... 91

5.2.1. Interaction between user and CPN model ... 91

5.2.2. Support for additional activity types ... 92

5.2.3. Partial reuse of CPN model templates .. 92

5.2.4. Hierarchy of CPN model templates .. 92

6. FRAMEWORK VALIDATION .. 96

6.1. Validation of the framework based on CPN methodology .. 96

6.2. Case study of the application of CPN model for resolving coupled parameters 102

7. DISCUSSION .. 111

VI

7.1. Research contribution .. 111

7.2. Potentials of the proposed framework and model for executing EDA 116

8. CONCLUSION .. 120

8.1. Research summary ... 120

8.2. Research limitation .. 122

8.3. Future work .. 123

REFERENCES ... 125

APPENDICES .. 135

Appendix A: A literature review on Petri nets and their extensions 135

A.1. Petri Nets .. 135

A.1.1. Ordinary Petri Nets .. 135

A.1.2. Petri nets extensions ... 137

A.1.3. Coloured Petri Nets .. 140

A.1.4. Application of Petri Nets in engineering design .. 141

A.1.5. Roles of the Coloured Petri Nets in the proposed framework 143

Appendix B: Custom SML functions ... 144

Appendix C: Complete CPN models .. 145

Appendix C.1. CPN model for automatic parameter change .. 145

Appendix C.2. CPN model of negotiation on coupled parameters values 146

BIOGRAPHY ... 147

ŽIVOTOPIS ... 148

BIBLIOGRAPHY .. 149

VII

 ABSTRACT

Engineering designers in product development organisations face the increasing complexity of

engineering design activities. To accomplish the assigned activities, they reach for various tools

and methods in their daily work that support them in developing products, managing data and

communicating with other designers within a team or outside the team. Thus, design team

members need enhanced software support for design team collaboration, including the

management of design process dynamics, especially in critical situations.

The research reported in the thesis aims to improve a designer's working experience through

enhancements in computer supported collaborative work (CSCW). A more concrete research

aim has been formed as follows: to develop a model and software support that would enable

consistent updating and propagation of design information in teamwork in a manner that the

improvement does not require additional effort for engineering designers while performing

design activities.

The research has been conducted in line with Design Research Methodology stages and in such

a way is reported in this thesis. The literature review provided several major issues of current

techniques and support systems used in engineering design processes. The two most significant

for this work are that design activities are sometimes performed with outdated product

information and that critical situations burden the whole system, from a designer to

management. The research continued with the analysis of the empirical dataset. The dataset

consists of over 800 records that originate from meeting reports obtained from three long-

lasting product development projects in an automotive company. The analysis results have

shown what types of design activities are most frequent, what types are most critical and how

designers are dealing with design activities. Based on the recognised activity type, an

engineering design activities taxonomy has been proposed.

The next natural step in the research was to use the knowledge obtained from the previous phase

and propose a novel CSCW enhancement. The goal of the enhancement has been set to semi-

automatically execute defined engineering design activities and thus support engineering

designers in their work. The enhancement is based on Coloured Petri Nets modelling language

(CPN). One CPN model has been created for each engineering design activity type. CPN

models are executed as part of the proposed framework for semi-automated execution of

engineering design activities.

Abstract

VIII

The framework manages an activity life cycle and thus a CPN model life cycle, communication

with designers and all processes beneath the proposed enhancement.

The proposed framework and all belonging processes have been validated using two different

case studies. The case studies showed that the proposed enhancement has significant potential

to provide real-time updating and propagation of design information in teamwork. The main

contributions of the thesis are: 1. Definition of engineering design activity taxonomy, 2.

Proposal of the framework and process for semi-automatic execution of engineering design

activities, 3. CPN models that should enhance CSCW and design communication, and 4. MDM

modification for indicating necessary communication.

Keywords:

product development; engineering design process; design parameters; coloured petri nets;

computer supported collaborative work; multiple domain matrix;

IX

PROŠIRENI SAŽETAK

Timski rad je ključan, ali i neizbježan element tijekom razvoja kompleksnih proizvoda. Kako

bi timski rad bio efikasan, komunikacija između članova tima, ali i između timova mora biti

uvijek na visokoj razini promatrano s više aspekata. Nažalost, to u velikom broju slučajeva nije

moguće ostvariti, a potvrda za to pronađena je kroz diskusiju s razvojnim inženjerima u

automobilskoj industriji kao i tijekom pregleda znanstvene i stručne literature. Loše

organizirana i nepravodobna komunikacija često u praksi uzrokuje znatna kašnjenja i dodatne

troškove te umanjuje kvalitetu rješenja. Takvi problemi dolaze do izražaja tijekom procesa

rasuđivanja i donošenja odluka u dugotrajnim razvojnim projektima koji uključuju velike

distribuirane timove. Istraživanje je ostvareno u području koje se fokusira na probleme

upravljanja parametrima u procesu razvoja arhitekture vozila.

Cilj je istraživanja razviti model i računalnu podršku koji će omogućiti dosljedno ažuriranje i

propagiranje informacija u timskom radu na način da se ne ostvaruje dodatno opterećenje za

konstruktore. Ponavljajući uzorci komunikacijskih situacija i dijelova procesa konstruiranja

ekstrahirat će se iz analize procesiranja informacija te tokova informacija u kompleksnom

okruženju razvoja proizvoda.

Predloženim istraživanjem verificira se sljedeća hipoteza: Računalna realizacija i praktična

implementacija dosljednog dinamičkog ažuriranja i propagiranja informacija o konstrukcijskim

parametrima osnovni su preduvjet za razvoj modela djelomične automatizacije obrade i

transfera konstrukcijskih informacija, što bi značajno smanjilo broj nepotrebnih iteracija i

dodatne troškove u projektima.

Metodologija

Istraživanje je metodološki utemeljeno na općoj metodologiji istraživanja u znanosti o

konstruiranju te je provedeno u četiri osnovna koraka: preliminarno istraživanje (raščišćavanje

zahtjeva na istraživanje), pregled literature i analiza prikupljenog skupa podataka (deskriptivno

istraživanje I), razvoj modela i okvira za poluautomatsko izvršavanje konstrukcijskih aktivnosti

(preskriptivno istraživanje I), vrednovanje modela i razvijenih procesa za izvršavanje aktivnosti

(deskriptivno istraživanje II). Preliminarno istraživanje uključuje pregled postojeće znanstvene

i stručne literature unutar područja istraživanja s ciljem inicijalnog opisa postojeće situacije,

željenih doprinosa te definiranja osnovnih pretpostavki.

Prošireni sažetak

X

Pregledom literature dan je uvid na trenutna dostignuća na području procesa konstruiranja na

najvišoj razini, no pregled je uključivao i napretke na nižim razinama granularnosti kao što su

iteracije tijekom konstruiranja koje su sve prisutne u procesu konstruiranja, kritične situacije

koje se događaju tijekom razvoja proizvoda, mogućnosti koje pruža računalom podržan

kolaborativni rad te upravljanje konstrukcijskim parametrima. Nadalje, pregled je usmjeren ka

metodama na bazi matrica s obzirom da se one redovito upotrebljavaju tijekom razvoja

proizvoda te tijekom upravljanja konstrukcijskim parameterima. Predloženi okvir za

procesiranje konstrukcijskih aktivnosti u pozadini je temeljen na metodologiji Obojenih

Petrijevih mreža tako da su Petrijeve mreže kao i sva glavna proširenja metodologije detaljno

istraženi. Ishod ove faze istraživanja su formulirana istraživačka pitanja čime je usmjeren

daljnji tijek istraživanja. Kako bi se mogli ponuditi odgovori na istraživačka pitanja, bilo je

potrebno sakupiti te analizirati podatke iz industrijskog radnog okruženja. Prikupljeni podaci

pretežito su zapisnici s projektnih sastanaka održanih tijekom provedbe tri dugotrajna razvojna

projekta u automobilskoj industriji. Konstrukcijske aktivnosti prepoznate u zapisima okupljene

su u predloženu taksonomiju konstrukcijski aktivnosti koja je prilagođena aktivnostima tvrtke

u kojoj su podaci prikupljeni. Paralelno je razvijen model te procesi koji uz pomoć definiranih

modela konstrukcijskih aktivnosti (modeliranih pomoću Obojenih Petrijevih mreža)

podržavaju konstruktore tijekom razvojnih procesa. Model i pripadajući procesi evaluirani su

kroz dvije različite studije slučaja. Nakon studija slučaja dolazi se do rasprave o rezultatima,

doprinosima ovog rada te potencijalima predloženog rješenja.

Analiza prikupljenog seta podataka

Nakon izvršenog pregleda literature i definiranih istraživačkih pitanja, postalo je očito da

predloženo poboljšanje računalom podržanom timskog rade neće biti dovoljno efikasno ako se

ne posegne za podacima iz realnog okruženja koji će upotpuniti saznanja proizašla iz pregleda

literature. Podaci su prikupljeni u suradnji s istraživačkim odjelom partnerske tvrtke iz

automobilske industrije. S obzirom na pravila privatnosti i izrazito snažan sindikat, nije bilo

moguće prikupiti podatke o procesu konstruiranja koji nisu nastali tijekom formalne

komunikacije (npr. emailovi, razgovori među konstruktorima). Stoga, prikupljeni su zapisi

(izvješća) s formalnih projektnih sastanaka nastalih tijekom višemjesečnog procesa razvoja

vozila. Prikupljeni podaci sadrže preko 800 zapisa proizašlih iz tri različita razvojna projekta.

Prije analize podataka, podaci su anonimizirani. Izvješća sa sastanaka su strukturirani tekstualni

dokumenti koji sadrže osnovne podatke o održanom sastanku te detalje i prepisku diskusije za

svaku točku na dnevnom redu. Upravo te prepiske diskusije su se koristile kao ulazni podaci

Prošireni sažetak

XI

tijekom analize podataka. Prvi korak u analizi uključivao je pretraživanje podataka kako bi se

odredila učestalost ponavljanja pojmova koji se koriste tijekom razvoja proizvoda (npr.

parametar, udaljenost, masa, kut, visina, materijal). Drugi korak analize se odnosio na

prepoznavanje konstrukcijskih aktivnosti. Nakon prepoznavanja i generaliziranja aktivnosti,

one su bile osnovni elementi za definiranje taksonomije konstrukcijskih aktivnosti. Uz pomoć

elemenata taksonomije, skup podataka je ovaj put kodiran kako bi se odredila učestalost

pojavljivanja određenih konstrukcijskih aktivnosti i time definiralo koje vrste aktivnosti bi bilo

najvrjednije procesirati uz pomoć rješenja razvijenog u sklopu ovog rada.

Model unaprjeđenja računalne podrške konstruiranju

Podaci prikupljeni u tvrtki poslužili su kao temelj za koncipiranje modela za unaprjeđenja

računalne podrške tijekom izvršavanja konstrukcijskih zadataka. Temeljem spoznaja iz

pregledane literature i promatranih procesa u tvrtki napravljena je sinteza okvira za modeliranje

i praćenje izvršavanja timskih aktivnosti u složenim i dugotrajnim razvojnim projektima.

Tijekom ove faze istraživanja definirana je arhitektura predloženog sustava i detaljno je

razrađen permanentan ciklički proces koji primarno treba osigurati postavljene ciljeve

konzistentnog ažuriranja vrijednosti spregnutih parametara u timskom radu. Nastavno na

arhitekturu modela definirane su i detaljno opisane programske komponente razvijenog

sustava. Razmotreni su izazovi koji se mogu pojaviti pri gradnji pojedinačnih modela prema

predloženoj arhitekturi i metodologiji koja se temelji na Obojenim Petrijevim mrežama. U

sklopu razvoja modela i pripadajućih procesa, detaljno su opisana dva primjera CPN modela

konkretnih konstrukcijskih aktivnosti u timskom procesu upravljanja konstrukcijskim

parametrima.

Vrednovanje istraživanja

Vrednovanje predložene taksonomije konstrukcijskih aktivnosti, teoretskog okvira, razvijenih

procesa i modela Obojenih Petrijevih mreža provedeno je pomoću dvije studije slučaja. U prvoj

studiji slučaja korištene su konstrukcijske aktivnosti iz taksonomije kako bi se definirao mali

skup aktivnosti koji je procesiran pomoću predloženog rješenja. Izabrani su različiti tipovi

aktivnosti, te su za svaku aktivnost izabrane različite vrste parametara koje je potrebno

procesirati. Za svaku aktivnost definirano je procijenjeno vrijeme trajanja te su aktivnosti

simulirane kako bi se dobilo ukupno vrijeme trajanja aktivnosti i to za dva načina rada. Prvi

način je ustaljeni način na koji inženjeri izvršavaju aktivnosti, a drugi način koristeći model za

processiranje aktivnosti koji je predložen u ovom radu. U drugoj studiji slučaja analiziran je

kompleksan projekt razvijen od strane studenata. Ključni parametri izdvojeni su u matricu koja

Prošireni sažetak

XII

je pružila uvid u različite relacije između parametara te između parametara i konstruktora.

Fokus je bio postavljen na relacije spregnutih parametara te se je krenulo u smjeru

prepoznavanja potencijalnih situacija u kojima konstruktori moraju komunicirati kako bi mogli

odrediti vrijednosti spregnutih parametara. U sklopu ove studije slučaja predstavljena je i

modifikacija više-domenskih matrica koje se odnosi na prepoznavanje potencijalnih situacija

komuniciranja među konstruktorima. Prepoznate situacije procesirane su pomoću modela

Obojenih Petrijevih mreža.

Na temelju vrednovanja istraživanja naglašeno je nekoliko osnovnih aspekata znanstvenog

doprinosa. Prvi aspekt obuhvaća definiranje taksonomije konstrukcijskih aktivnosti. Nakon

analize prikupljenog skupa podataka, 26 konstrukcijskih aktivnosti je klasificirano na tri razine

hijerarhije. Glavni razlog definiranja taksonomije leži u potrebi se definiranjem aktivnosti na

najmanjoj razini granularnosti, na razini gdje se procesiraju konstrukcijski parametri. Tek na

takvoj razini granularnosti je moguće napraviti automatizirano izvršavanje aktivnosti koje je i

napravljeno pomoću modela Obojenih Petrijevih mreža. Drugi aspekt doprinosa očituje se u

prijedlogu modela i procesa za polu-automatsko izvršavanje konstrukcijskih aktivnosti. Novina

u tom pristupu je način procesiranja aktivnosti gdje se izvršavanje provodi u ciklusima te u

svakom ciklusu model aktivnosti se pokreće, učitava prethodno pohranjeno stanje, procesuira

se do točke u kojoj više nema dostupnih podataka, gdje se stanje ponovo pohranjuje kako bi se

procesiranje moglo nastaviti u sljedećem ciklusu. Treći aspekt doprinosa se nadovezuje na

prethodno spomenuti a to su modeli Obojenih Petrijevih mreža koji poboljšavaju mogućnosti

računalom podržanog timskog rada i timske komunikacije naročito vezane za rješavanje pitanja

spregnutih parametara. Modeli su definirani unaprijed te se oni koriste kao predlošci koji se

tijekom procesiranja popunjavaju s podacima specifičnim za svaku konkretnu konstrukcijsku

aktivnost. Kao zadnji glavni aspekt doprinosa navodi se modifikacija metode matričnog prikaza

relacija između parametara, arhitekture proizvoda i konstruktora. Modifikacija na originalan

način unapređuje planiranje projekta predviđanjem kritičnih komunikacijskih situacija.

Ključne riječi

razvoj proizvoda; proces konstruiranja; konstrukcijski parametri; obojene petrijeve mreže;

računalom podržan timski rad; više-domenska matrica;

XIII

LIST OF FIGURES

Figure 1.1. Thesis structure and corresponding stages of DRM ... 8

Figure 2.1. Three types of DSM dependency configurations ... 23

Figure 2.2. Multiple Domain Matrix with two domains: Activities and designers 24

Figure 3.1. Anonymised example of an agenda for a weekly meeting ... 33

Figure 3.2. General information of meeting reports from three projects: Facelift projects (FL_A and

FL_B) and module development project (ML_A) .. 36

Figure 3.3. Number of discussed topics per meeting for all three projects .. 39

Figure 3.4. Process of creating a list of generalised design activities and engineering design activities

taxonomy ... 40

Figure 3.5. Distribution of ten most frequently recognised activities from each project meeting 44

Figure 3.6. Taxonomy of engineering activities tailored to analysed projects 46

Figure 4.1. Schematic representation of relations between PDM, parameter database and CPN based

framework ... 48

Figure 4.2. Schematic representation of the framework based on CPN methodology. The left side is

an activity definition process. The right side is the activity execution process. 49

Figure 4.3. CPN model as a black box ... 53

Figure 4.4. CPN model - Get Parameter Value before execution (v1) ... 53

Figure 4.5. CPN model - Get Parameter Value after execution (v1) .. 55

Figure 4.6. CPN model - Get Parameter Value before execution (v2) ... 57

Figure 4.7. Activity list and parameter database as text documents ... 57

Figure 4.8. CPN model - Get Parameter Value in progress (v2) .. 58

Figure 4.9. CPN model - Get Parameter Value after execution (v2) .. 58

Figure 4.10. Flow diagram of CPN model execution using an external application 62

Figure 4.11. Activity instantiation process ... 65

Figure 4.12. CPN template (above) and CPN instance (below) ... 67

Figure 4.13. Lifecycle of basic and extended CPN instance .. 68

Figure 4.14. Events during Extended CPN model instance lifecycle ... 69

Figure 4.15. Processing of activity list ... 71

Figure 4.16. Sector of CPN model template needed for gathering parameter’s value and properties

from external sources .. 72

Figure 4.17. Sector of CPN model template that manages calculation of new parameter’s absolute

value .. 73

Figure 4.18. Sector of CPN model template responsible for checking if the new parameter value is in

allowed limits .. 74

XIV

Figure 4.19. Sector of CPN model template with two possible actions – sending a notification to a

responsible user and changing the parameter value in the database .. 75

Figure 4.20. Sector of CPN model template which informs users and asks for feedback if these

options are selected during activity instance definition .. 76

Figure 4.21. Sector of CPN model template which activates if preconditions for completing the

activity instance are fulfilled ... 77

Figure 4.22. Sector of CPN model template which collects all necessary information to prepare an

initial proposal for coupled parameter negotiation .. 78

Figure 4.23. Sector of CPN model template which prepares and sends the initial negotiation proposal

to all stakeholder ... 79

Figure 4.24. Sector of CPN model template which shows different paths that can be enabled based on

the token value in input CPN place ... 80

Figure 4.25. Sector of CPN model template that informs about completed activity instance and

completes the activity .. 81

Figure 5.1. Framework of the cyclic execution process of engineering design activities 83

Figure 5.2. Cyclic execution process of management of engineering design activities 86

Figure 5.3. CPN model example for calling Java function ... 89

Figure 5.4. Hierarchy example - two separate models ... 93

Figure 5.5. Hierarchy example - extended model .. 93

Figure 5.6. Schematic representation of hierarchy CPN model ... 94

Figure 5.7. Hierarchy example - top-level model ... 94

Figure 5.8. Hierarchy example - sub-model 1 .. 95

Figure 5.9. Hierarchy example - sub-model 2 .. 95

Figure 6.1. Model of negotiation process used in simulations ... 99

Figure 6.2. Duration of the first 1000 simulation ... 102

Figure 6.3. Number of simulations sorted by duration ... 102

Figure 6.4. 3D render of the developed virtual prototype of the submersible remotely operated device

for inspection of welds in a nuclear reactor pressure vessel used in the case study 104

Figure 6.5. Main product components defined during conceptual design and recognised coupled

dimensions ... 105

Figure 6.6. MDM with identified design parameters ... 106

Figure 6.7. Structure of MDM as the basis for management of c coupled parameters 107

Figure A.0.1. Ordinary PN: a) before firing b) after firing ... 136

Figure A.0.2. Generalized PN: a) before firing the transition b) after firing the transition 137

Figure A.0.3. Finite capacity PN: a) enabled b) not enabled because one of the places has full capacity

 ... 138

Figure A.0.4. Extended PN: a) enabled b) not enabled .. 138

XV

Figure A.0.5. Priority PN: a) before firing b) after firing ... 139

Figure A.0.6. Two states of a CPN model .. 141

XVI

LIST OF TABLES

Table 2.1. Time-space groupware matrix [17] ... 17

Table 2.2. Typical iteration process situations [50] .. 21

Table 2.3. Common DSM types ... 22

Table 3.1. Example of the coding process for EDP types .. 37

Table 3.2. Design parameter types ... 38

Table 3.3. Excerpt (10 of 835 records) from the spreadsheet with coded phrases that denote

engineering design activities ... 41

Table 3.4. Most frequently used generalised activities extracted from analysed reports 42

Table 3.5. Excerpt from the spreadsheet with assigned generalised engineering design activities for

each recognised activity in meetings’ topic discussions ... 42

Table 3.6. Reliability of the coded activities .. 43

Table 4.1. Example of the instantiation process ... 65

Table 6.1. Taxonomy entities used in the case study .. 97

Table 6.2. Activity instances used in the case study ... 97

Table 6.3. Duration estimations and iterations for negotiation process sub-activities 100

Table 6.4. Duration of simulated negotiation activities .. 101

Table 6.5. Categories (classes of relationships) used in the proposed MDM approach 108

Table 6.6. List of sequentially related parameters interactions .. 109

Table 6.7. List of coupled parameters interactions ... 109

XVII

LIST OF APPENDICES

Appendix A: A literature review on Petri nets and their extensions………..……………….……….136

Appendix B: Custom SML functions ……………………………………………………….……….145

Appendix C: Complete CPN models…………………………………………………….…………..146

Appendix C.1. CPN model for automatic parameter change ………………………………………..146

Appendix C.2. CPN model of negotiation on coupled parameters values ……………….………….147

XVIII

LIST OF ABBREVIATIONS AND

SYMBOLS

Abbreviations

API Application Programming Interface

CAD Computer Aided Design

CAE Computer Aided Engineering

CPN Coloured Petri Nets

CPN ML CPN Modelling Language

CSCD Computer Supported Collaborative Design

CSCW Computer Supported Collaborative Work

DRM Design Research Methodology

DMM Domain Mapping Matrices

DSM Design/Dependency Structure Matrix

EDA Engineering Design Activity

EDP Engineering Design Parameter

ERP Enterprise Resource Planning

FL_A Facelift project A

FL_B Facelift project B

IBIS Issue Based Information Systems

I/O Input/Output

MDM Multiple Domain Matrix

ML_A Module development project

NLP Natural Language Processing

PD Product Development

XIX

PDM Product Data Management

PLM Product Lifecycle Management

PN Petri Nets

RAPN Resource Aware Petri Nets

REST Representational State Transfer

RPV Reactor Pressure Vessel

SML Standard Meta Language

SQL Structured Query Language

WF-Net Workflow Net

Symbols

C(Pi) specified capacity of a PN place

mi A set of PN marking; the number of tokens in a place Pi

Pi a set of PN places

Ti a set of PN transitions

1

1. INTRODUCTION

The first chapter is an introductory chapter that provides a glance at topics such as motivation

for this work, research aims, hypothesis, and methodology used. At the end of this chapter, the

reader will be introduced to expected contributions, followed by the thesis structure.

1.1. Research focus, aim, and hypothesis

Managing product development processes is complex and challenging [1]. Researchers have

developed numerous process models to understand, improve, and support the product

development processes considering their particular characteristics. However, the complexity is

such that no single model can address all the issues [2]. Karniel and Reich [1] argue that

iterations in product development are considered a major source of increased product

development lead-time and cost. Their opinion is that simulating product development

processes using their specific contexts can provide project managers with decision-making

methods.

In literature, the product development process is usually composed of design activities. One of

the first classifications of activities in product design was proposed by Hubka and Eder. They

consider design activity as the level of abstraction that the rational cognitive activity in

designing can be decomposed into. In the literature, several authors contributed the

classification of the design activities [3] [4], [5],[6], [7].

Engineering parameters are an indispensable part of almost every engineering design activity.

Ropohl [8] defines engineering parameters as: “An Engineering Parameter represents any

characteristic of quality and relation which can specifically be described by a quantity. It

thereby explicitly carries the name of the describing characteristic and a quantity (numerical

value and optionally a unit).”

The motivation for this research came from discussions with the researchers from the research

and development department of a leading automotive company. Those discussions exposed the

increasing significance of issues and problems in design practice whose resolving require

improvements in synchronous design team communication. These claims are supported by the

literature [9], [10]. Such issues are of particular interest during decision-making processes in

long-lasting product development projects involving large distributed teams. One part of these

decision-making processes relates to the determination of engineering parameter values.

1. Introduction

2

Fernandes et al. [11] presented the study regarding the determination of design parameter values

during conceptual design of jet engine, identifying an iterative process in which parameter

values are changed within defined range that become narrower as a solution is reached.

Research in this PhD thesis continues and builds upon already established research in the field

that focuses on issues of engineering design parameter management in the process of

developing a vehicle architecture [12],[13],[14].

The main reasons to develop an approach that should support synchronous teamwork

communication on design parameters during product development are supported by the

following claims found in the literature but are also expressed during discussions with the

design engineers:

- Design activities are sometimes performed with outdated or wrong product data

(e.g., parameter values)

Having valid data with correct values is the most precious thing during any activity. If

data does not have the correct and newest value Flanagan [15], delays and re-execution

of an activity can be expected. The reasons for incorrect data can be numerous. Still,

most common are:

• Using outdated values for generating values of dependent parameters,

• Incorrect interpretation of context during the determination of parameter value,

• Making typos while rewriting a value from one place to another.

When the problem is caused by using wrong values, the source of the problem can be

found in the drawbacks of workflows in product life cycle management systems [1].

There is also another source of the problem, and systems themselves cannot be blamed

since it is more human nature [16]. Engineering designers do not update values in the

design support systems immediately after the values are changed, but with some delay

(they are using values locally). That delay can cause a problem if the value is not linked

with the original value and if it is used at some other place in the meantime.

- Critical situations burden the whole system, from a designer to a management

According to McMahon [17], critical situations in product development are typically

collaborative, where a choice is made, or the process takes a new direction on a

conceptual or embodiment design level. Badke-Shaub and Frankeneberger [18]

1. Introduction

3

distinguished designers’ daily work to routine work and critical situations. Routine work

is every work in which an engineering designer knows in advance what will be the result

after the activity is finished and uncertainties do not exist. On the other side, during

critical situations, designers determine “choice points” in the development process [18],

reflecting the outcomes of the whole project. The authors in their research found out

that in nine of ten critical situations, designers will contact their colleagues for advice.

Therefore, communication between team members has a huge role in resolving critical

situations. More about critical situations, how they arise, and how they are usually

resolved is described in Section 2.4.2. This research tends to resolve critical situations

by supporting communication between designers using Coloured Petri Net (CPN)

models, which partially automate identified design activities.

To get a better and more precise overview of the most significant problems and critical

situations in the discussed areas, it has been decided to perform a detailed analysis of reports

from weekly design team meetings. The analysis was conducted for three completed and

documented long-term development projects, which included 50 multidisciplinary teams of the

automotive company. The analysis of the projects itself was not sufficient to identify all critical

situations that might arise; hence discussions with researchers and engineering designers from

the R&D department were conducted.

The results of these analyses provided valuable insights and directions for establishing an

approach for developing improved and innovative features of the design support system that

should address drawbacks of current computer-supported collaborative work (CSCW)

methodologies and tools. Starting points for improvements of the current CSCW systems are

primarily based on McMahon's [17] extensive overview of state of art for supporting the design

actors.

As already stated, this research continues on the research in the field of design parameters

management, management of design activities, and design communication in critical situations.

During the initial discussion with the company, which provided data for the analysis, it was

decided to explore an approach based mainly on Petri nets (PN). Therefore, a great effort has

been invested in the research of PN and its extensions. Ordinary PN is a comprehensive

methodology, but it lacks some useful features (e.g., data types, manipulation of data values

[19], [20]), which are included in various extensions. Since there is no single tool that supports

all extensions (at least widely used extensions), the task was to find out which tool comprises

1. Introduction

4

as many as possible PN extensions that will cover most of the needs for the developed approach.

The suitability of Coloured Petri Nets (CPN) and a tool that supports that PN extension for this

approach has been presented in Juranic et al. [21] and Pavković et al. [22].

The data and information produced during design activities are used by and processed in several

design support and information systems (e.g., computer-aided design, enterprise resource

planning, product data management). Consequently, the same data is often used in several

different contexts, depending on the user’s role (e.g., engineering designer, project manager).

During discussions with engineering designers and researchers in the company, many

complained that they are burdened with a high percentage of administrative tasks and routine

tasks instead of creative ones. Škec [23] in his thesis showed that engineering designers have

less than 70 % of working time available for engineering design activities. One of the goals of

this research is to model and partially automate elements of design activities, including

information processing activities.

Based on the initial research, several questions were raised. These questions are afterwards

refined and shaped into research questions. The research questions are presented in Section 2.6,

after literature review and recognized research gaps. Each research question is described in

detail in that section, while this section will continue with research aims and proposed

hypothesis.

Research aims

The aim of the presented research is to develop a model and software support that would enable

consistent updating and propagation of design information in teamwork. It is essential that the

usage of the proposed model and software support do not require additional efforts for

engineering designers while performing design activities. Repetitive patterns of communication

situations and parts of the design process will be extracted by analysing information processing

and information flows in a complex product development process.

Hypothesis

The proposed research will verify the following hypothesis: Computer-based realisation and

practical implementation of consistent updating and propagation of information about design

parameter is the essential precondition for developing models of partial automatization of

design information processing and transfer which would significantly reduce the number of

unnecessary iterations and additional costs.

1. Introduction

5

1.2. Research methodology

Research in design science aims to formulate and evaluate models and theories on the

phenomenon of design and development of technical systems, based on which the strategies,

procedures, methods, techniques and tools are used to improve practical knowledge, project

management and education [24]. Modelling of the product development processes and their

implementation and simulation within teamwork is a very complex task that requires an

integration of multiple approaches and disciplines [1], especially in technical science and

management [25], [26], [27]. Above all, a systematic research methodology is needed.

The process of collaborative engineering design takes place in complex socio-technical context,

and often results in conflicts due to various combinations of technical and social factors. To

analyse the causes of such conflicts it is necessary to combine several deductive and inductive

research approaches. Finally, mathematical approaches together with computer science

knowledge have to be used during the model development to better understand, model and

foresee the dynamic nature of engineering design activities that deal with design parameters

within development processes and the aspects in the focus of proposed research.

In line with the current trend in design research area, this thesis will use the integrated research

methodology in the form of "analyse - evaluate - create - refine - validate". The research will

build on the state-of-the-art developments in the exploration of principles of organisational

information management. These principles will be enhanced with insights from modelling,

simulation and visualisation of the complex design activities to support the communication and

information processing in product development projects.

The research methodology consists of the following phases: preliminary research, data

gathering, model and simulation realization and evaluation. These phases are furthermore

elaborated through the adjustment of general research methodology in design science [24],

using the guidelines for research elaboration and the conduction of descriptive and prescriptive

studies.

1) Preliminary research: This stage starts with an overview of existing scientific and

expert literature within the research area to give an initial description of the existing

situation and desired results and to define basic assumptions. A literature review involves

the definition of literature sources, extraction and synthesis of data, and categorization of

publications [1], [25], [28], [29]. Preliminary research provides insight into existing

1. Introduction

6

product development process models. Particular interest is devoted to the context and

lower granularity levels of engineering design activities, to methods for modelling

engineering design parameter flows in teamwork and issues in team communication. In

the end, preliminary research should provide research goals, main research questions and

the hypothesis.

2) Data gathering: To get an overview of design parameter management during the design

activities, collection and analysis of meeting reports generated during the development

project have been conducted. Data has been gathered in an industrial environment with

empirical methods, observations, and the participation of the primary researcher in the

R&D department of an automotive company for a limited time. The goal of this phase is

a better understanding of lower granularity levels of activities in the development process

along with information processing and exchange for the cases that are unsatisfactorily

supported by literature data. Empirical methods involved extensive interviews with a

leader of the department that supports design engineering teams with new methods and

tools. Data gathering has to complement the reference model and ensure a better

understanding of the current industrial practice as a foundation for model realization.

3) Model development: The model realisation entails broadening the current knowledge

by synthesising data collected by literature review and empirical studies. Model

development has been conducted in two steps.

The first step is creating an initial model of information processing during design

activities (with the focus on design parameters). This step is based on literature review

and empirical studies, including interviews with employees of the R&D department in an

automotive company. The model creation will include information processing and

information flows using conventional methods for design activities management

depending on the organisational and project context.

The second step will extend and adapt the initial model to include consistent timely

updating and propagation of the design information. In such an approach, the model

elements will be expanded to the lowest level of granularity of design activities. Based

on the analysis of gathered data about engineering design activities, repetitive patterns

and situations as elements of design process activities will be extracted. The extraction

starts with an analysis of routine activities of design information processing with the focus

on coupled design parameter information flows [15] and especially on issues of

1. Introduction

7

information updating and information propagation [30]. For extracted elements of design

activities, modelling and visualisation of dynamics are conducted using Petri nets models

in the form of generic templates. This concept of CPN templates is based on the work of

Mulyar and van der Aalst [31], [19]. A similar approach to building CPN templates can

be found in the paper of Arena [32].

To complete the research's impact analysis, it is necessary to establish plans and methods

for model evaluation during both steps. The desired result of the second step is a set of

CPN model templates of selected communication situations and elements of design

activities focused on engineering design parameters. The implementation of the proposed

model should be able to manage and execute parts of the design activities with the aim of

gradual automatisation of recognised information processing and information transfer

activities. For the realisation of the proposed model, various variants and extensions of

Petri nets [30], [33], [34], [35] have been examined. Possible extensions which would

enable the implementation of design process knowledge capturing and storing will also

be considered.

4) Research evaluation: The evaluation has been conducted by validating and

implementing the proposed model based on the analysis of data gathered during real

development processes and by comparing the results with research aims. To further

expand the evaluation, it is necessary to analyse the development processes of

organisations in which the methods and the model might be implemented (with interviews

and with an overview of documentation, CAD and PDM data).

The influence of the model for processing design activities (based on CPN templates) on

reducing iterations and duration of activities in the process of design parameters

management is analysed. Based on the derived conclusions, theoretical and practical

contribution to scientific research are evaluated. Furthermore, the advantages and

disadvantages of the developed model and methods are pointed out. The outcome of this

phase includes proposals for necessary improvements, guidelines for the implementation

of simulation models within the real processes of planning and management of

development projects, and guidelines for further research based on the final findings and

conclusion.

1. Introduction

8

1.3. Scientific contribution

The expected contribution of this research, as part of the PhD thesis, is manifested through two

following aspects:

• Development of a model for processing design parameters that should enable consistent

dynamic updating and propagation of updated information within teamwork.

• Development of software support for partial automatisation of design parameter

management based on extraction, formalisation and modelling of templates of

situations which are often repeated in design team communication and coordination.

1.4. Thesis structure

The thesis is divided into eight topic-oriented chapters, which to some extent, follow the stages

described in the research methodology. The thesis structure is shown in Figure 0.1.

Figure 0.1. Thesis structure and corresponding stages of DRM

Chapter 1 starts with research motivation and emphasises focus points that drive the research.

Afterwards, research aims, hypothesis and the methodologies used to achieve expected

contribution are presented. This introductory chapter covers the outputs of the first stage of

DRM, the Research Clarification stage.

1. Introduction

9

Chapter 2 encompasses the literature review study and concludes with found research gaps. The

chapter is divided into several sections, where each of them presents insights into a specific

topic relevant to this work. The review process starts with papers related to the engineering

design process itself. Then, it continues to design activities and their classification as they are

the central part of the design process.

The literature review further focuses on managing design parameters since engineering

designers cope with them during each design activity, and they describe every product or part.

While working with parameters, engineering designers typically work in teams. Hence, the next

topic to explore is communication during the design process, especially communication about

design parameters.

The last part of the literature review is dedicated to Matrix-based methods since they are widely

used in industrial practice for some aspects of design parameter management.

After all relevant topics are covered, the chapter is concluded with recognised research gaps,

which ought to be filled with the contributions resulted from this research. The second chapter

as such follows the first part of the Descriptive Study I stage.

The other part of the Descriptive Study I is presented in Chapter 3. After the literature review,

the next endeavour was to analyse data provided by the company. The analysis of collected data

gave insights into engineering designer’ work and their communication during critical

situations. During the analysis, the focus was on the type and frequency of various design

activities conducted within analysed development projects. In order to develop a model for

automating routine tasks, knowing the activity type and frequency was not enough; it was

necessary to lower the granularity of analysed data. Therefore, besides activities, parameters,

relations between parameters and their values were extracted and analysed. The results

collected from this phase were used as a building material for the next phase.

Using obtained knowledge from Descriptive Study I, the development of a model for automated

execution of engineering design activities has begun. Chapter 4 covers several areas of the

model and framework development, from its core and theoretical basis, up to software

components described in Chapter 5, that were necessary to make it functional for validation

purposes. The framework is based on several CPN principles, so they are described, and it is

presented how they are incorporated and tailored for this specific purpose. The chapter ends

with a description of the CPN model templates developed during this research. From DRM’s

1. Introduction

10

perspective, Chapter 4 and Chapter 5 present the activities that are usually performed in

Prescriptive Study I.

The developed model for supporting engineering design activities and belonging CPN models

are evaluated and validated in Chapter 6. The evaluation is performed using two case studies

that differ in scope, duration, expected results, and how the projects are managed. The aim was

to use different case studies and therefore evaluate the framework in a broader scope, to find

out if the framework is scalable, robust enough and finally, if obtained results confirm or deny

hypothesis and do they provide answers to research questions raised in Chapter 2.

Chapter 7 discusses the developed framework and CPN models. This includes analysis of

strengths and possibilities allowed with these models, but also potential implications on

research and practice. Furthermore, the insights from the available literature have been used to

discuss presented results in the context of the research questions and present the potentials of

the proposed methodology and the framework as the final step in Descriptive Study II.

The final chapter, Chapter 8, concludes the research by reflecting on the proposed research

aims, main research hypothesis and expected contributions. Moreover, this chapter presents the

limitations identified by conducting the Prescriptive Study and provides directions for future

research that would contribute to the support for engineering designers regarding parameter

management during engineering design activities.

11

2.THEORETICAL BACKGROUND

This chapter coincides with the Descriptive Study I stage of DRM. It provides a literature

review on the most relevant topics for this research, including an overview of the engineering

design process on a macro level, management of design activities on a meso-level and design

parameters on a micro-level. A literature review of Petri Nets and existing extensions are

presented in appendix A as they are extensively used in the rest of the research. At the end of

this chapter, research gaps matching the introduced hypothesis are provided and briefly

discussed.

2.1. Engineering design process

A few decades ago, Eder [36] defined an engineering design process as follows: “Engineering

design is a process performed by humans aided by technical means through which information

in the form of requirements is converted into information in the form of descriptions of technical

systems, such that technical systems meet the needs of mankind.”

Starting from the end of engineering design definition, the term "technical system" is a synonym

for all manufactured artefacts, including technical products and processes. According to Hubka

and Eder [37], the technical system is the subject of the collection of activities performed by

engineers within the processes of engineering design, including generating, retrieving,

processing, and transmitting information about products. To make better products, services or

systems, it is required to use the best available processes [38].

Numerous research papers point out that the proper management of engineering design

processes can help with the generation of better final products but also help to avoid potentially

significant problems. Developing a complex product can involve thousands of experts over long

periods of time. To make that possible, decisions at the micro-level (design activities and their

context), meso-level (management of tasks during the progress), and macro-level (management

of projects) must be handled with special care [39]. Developing a complex product immediately

drag along a need to manage the complex dependency structures. The best example of that is

managing engineering designers in concurrent product development while they work in

geographically dispersed teams. Regardless of obstacles, they may face, the right deliverables

should be produced at the right time to avoid becoming starved for information or becoming

overwhelmed with urgent tasks.

2. Theoretical background

12

In the literature, the design process is usually represented as a series of stages in which each

stage will receive more concrete information about design resulting from the previous stage [2].

These stages are divided into the following main phases [40]:

• Planning and task clarification

• Conceptual design

• Embodiment design

• Detail design

After the requirements and are tasks defined and clarified, the conceptual design phase may

begin. In that phase, the overall layout of an artefact is established, and decisions made here

have a vast influence on the following phases and final design of the artefact [40]. Therefore, it

is to expect that information that will define the product’s function, and its initial shape will be

defined and managed mostly in this phase. In all the following phases, information from the

conceptual phase is further refined until the final design. According to the previous statement,

this research will focus on the conceptual design phase with the goal of supporting engineering

designers during the definition and management of product information.

Engineering design processes involve the effort of many people performing multiple and varied

activities in order to obtain a common goal, such as the development of a product [41].

Moreover, engineering design processes have multi-layered nature what makes managing the

processes more challenging [17]. On the top level, engineering design processes consist of

phases (stages) mentioned before, which are composed of milestones (work packages).

2.2. Design activities

2.2.1. Ontology of engineering design activities

In the beginning, philosophers and mathematicians gave much attention to ontology over

centuries, dealing with the conceptualisation of reality and, afterwards, the multiple perceptions

of the physical phenomenon. This has generated many papers in the field of knowledge

engineering and surrounding engineering domains that leverage knowledge and knowledge-

based techniques [42]. In the literature, one can identify two different strategies for developing

ontologies. These are the top-down and bottom-up strategies. The top-down strategy supports

a higher abstraction-level ontology development by emphasizing the underpinning theories or

philosophical stances/assumptions. On the other hand, the bottom-up strategy of ontology

2. Theoretical background

13

development attracts non-logicians and non-philosophers since bottom-up ontologies may

structure knowledge belonging to a specific domain. That development direction is represented

by domain ontologies, which describe concepts for a specific domain, and application

ontologies, which include concepts for a particular application. With the growing demand for

artificial intelligence-based techniques in engineering design, ontology also has a great role to

play, especially by coupling reasoning and learning capabilities [43].

Ahmed and Štorga [4] offered a general ontology for an engineering design that can be adjusted

to two different perspectives based on a particular need: to a practitioner’s one or researcher’s

one. The approaches for two independent research studies leading to the development of two

ontologies were examined: Engineering design integrated taxonomies [44] and Design ontology

[45].

Another approach is presented by Li et al. [46], where structured design rationale is retrieved

using ontology-aided indexing. Rockwell et al. [47] developed a decision support ontology to

enable decision-making within a collaborative design, which includes decision-related

information, such as the design issue, alternatives, evaluation, criteria, and preferences. Lim et

al. [47] compiled state-of-the-art ontology applications for design information and knowledge

management. They reported their findings from a number of perspectives that included

ontology engineering, major applications of ontology in design engineering, and the state of

ontology adoption in the industry. During the design process, in most cases, designers do not

have a common understanding of the design activities they perform [3]. After discovering that

issue, the authors performed a literature review which resulted in the identification and

classification of a generic set of design activities. Additionally, Sim and Duffy [3] presented a

set of consistent and coherent definition of these activities.

Their classification has three groups of activities:

1. Design definition activities (abstracting, associating, composing, decomposing,

defining, detailing, generating, standardising, structuring, synthesising)

2. Design evaluation activities (analysing, decision making, evaluation, modelling,

selecting, simulating, testing)

3. Design management activities (constraining, exploring, identifying, information

gathering, planning, prioritising, resolving, searching, selecting, scheduling)

Design definition activities cope with the complexity of the evolving design. They define design

from the very beginning until it has all the details required for production. The second group of

2. Theoretical background

14

activities, design evaluation activities, analyse and evaluate the feasibility of potential design

solutions. They are reducing design solution space by discarding infeasible solutions. The last

group, design management activities, manage the complexity of coordinating activities related

to an evolving design and its process. The design management activities are further classified

into activities that manage the evolution of a design problem into a design solution and activities

that manage the design process as the design evolves.

2.3. Engineering design parameters

In the conceptual, embodiment or detailing phase of product development, information on the

lowest level of granularity is a parameter, and it could be observed as one of the essential parts

of the process. Despite it is a building block of every product, when designers are asked how

they would define a parameter, numerous answers are received. It has a more concrete

definition in fields other than engineering. For example, Vajna [48] argued about the meanings

and interpretations of the term parameter in the context of Mathematics, Informatics and

Engineering. In the engineering field, Ropohl [8] propose the following definition of design

parameters:

“An Engineering Parameter represents any characteristic of quality and relation

which can specifically be described by a quantity. It thereby explicitly carries the

name of the describing characteristic and a quantity (numerical value and

optionally a unit).”

Management of parameters in a teamwork environment could be highly complicated, and it

could raise serious issues and increase lead time and expenses, especially if coordination and

communication about coupled parameters are not efficiently organised and supported by

existing software tools (Flanagan, Eckert, and Clarkson, 2003). Some researchers emphasise

that hype of increased modularisation and standardisation in the industry leads to enormous

complexity [49] of parameter management since components are used on various products, and

it is very difficult to cope with procedural complexity [14]. Although the research on those

issues started a few decades ago, they are present today as well [50], [51], [52].

Several leading PLM systems support the management of engineering or design parameters.

Mostly, they are oriented to tying them to requirements. If the value of a parameter is inside the

defined range, that implies that the requirement is fulfilled. PLM systems allow the definition

of several properties for parameters during their creation. These properties follow the research

2. Theoretical background

15

literature, which is reviewed in the scope of this research. The following list enumerates these

properties:

• Parameter name (must be unique)

• Parameter title

• Owner

• Description

• Priority

• Function

• Value (nominal, minimal, maximal or multiple discrete values)

A similar approach is developed from scratch by some researchers in the automotive industry

[12]. They developed an approach for parameter management that is based on system

engineering principles. The central part of this approach is a parameter repository that stores

parameters and all related properties, but also relations among these parameters [13]. To capture

the knowledge and parameter changes, researchers established a traceability mechanism that

follows a parameter from its creation. Nevertheless, this topic is to be explored further in order

to develop an approach that will be efficient enough to gain popularity among designers.

Otherwise, it will just be additional administrative work they are already overwhelmed with.

2.3.1. Real-time updating of information and workflows

Companies which operate in technical branch cope with very demanding market and

competition, in all possible ways. One way to improve productivity and effectiveness is by

using the product lifecycle management (PLM) systems. Among all mainstream areas that PLM

systems cover, e.g. System Engineering, Product Design, Manufacturing Process Management

or Product Data Management, PLM systems are capable of supporting team communication

and partially dynamic situations during the design process [1]. Such dynamic situations are of

particular interest during reasoning and decision-making processes in long-lasting product

development projects, especially if those projects involve large teams which do not work from

the same location [53].

Even though PLM systems support design process dynamics, some authors addressed the

drawbacks which could play a significant role in decision making during product development.

2. Theoretical background

16

For example, Karniel and Reich [1] questioned whether the services in PLM systems always

use updated product information in their operations. They wrote that even if users have instant

access to all information and information is consistently updated, that does not guarantee that

information will be used properly.

Research conducted in the automotive industry points out that PLM systems do not sufficiently

support communication among teams that collaborate on a project [16]. Additionally, some

authors [12], [13] highlight the ineffective exchange of information and knowledge between

team members. That issue especially comes to the fore in the case of low-granularity

engineering information, such as design parameters. The communication dynamics problem is

not a new research topic. As a matter of fact, it is continuously studied since the research of

Eckert and Stacey [9] and Eckert et al. [54].

Karniel and Reich [1] emphasised that information about changes should be flawlessly

integrated into the design process. Following that, Wynn et al. [55] stated that the propagation

of changes should be an integral part of dynamic process planning and execution. Integration

of changes in design is critical to deal more efficiently with the challenges in product

development process management [30]. Researchers argue that process management, which is

executed through embedded workflow tools, is incapable of integrating updated product

information into dynamic run-time operations. Many aspects of this problem were addressed in

a comprehensive systematic literature review of product development process modelling

methods [29], where more focus was given to static scheme processes, but according to Karniel

and Reich [1], [30] methods that tackle the demands of the dynamically evolving schemes of

product development processes are still missing.

Static workflows offer little flexibility for engineering design since they are designed prior to

the start of the design process. In the work of Rouibah and Caskey [55], the authors confirm

that such workflow systems could be observed as static. The same authors [56] described an

improvement in which the engineering workflow approach controls the early phases of product

design that is suitable for concurrent engineering’s dynamic and iterative processes. The

approach uses design parameters to reflect basic engineering decisions. Besides evident lack of

support for dynamics in workflows, Müller [57] concluded that conventional workflow

management systems do not provide sufficient flexibility to cope with the wide range of failure

situations that may occur during workflow execution. Some benefits could be achieved by

workflow monitoring which results in improvement or even avoidance of delays in industrial

2. Theoretical background

17

environments in a case where processes are carried out [34]. Lately, there are some

developments in the field of AI-driven workflows that would be self-evolving based on data

from previously executed workflows [58].

2.4. Communication in the design process

2.4.1. Computer supported cooperative work

The term computer supported cooperative work (CSCW) has been known for several decades,

and it became a design-oriented interdisciplinary academic field. Basically, CSCW goes

beyond developing the technology itself and explores how people work within teams and

organizations together with the impacts of technology on those processes. The most common

view of the CSCW is through the space-time matrix shown in Table 0.1. This matrix

differentiates groupware technologies in terms of their abilities to bridge time and to bridge

space. Group members may work together at the same time or work whenever they need to.

They may sit in a single room or be on different floors, buildings or continents [59].

Table 0.1. Time-space groupware matrix [17]

 Same time

Synchronous

Different time

Asynchronous

S
a
m

e
p

la
ce

 Face to face interactions

Electronic meeting rooms, group

decision support systems, …

Continuous task

Team rooms and collaborative

environments, …

D
if

fe
re

n
t

P
la

ce

Remote interactions

Video conferencing, shared desktop

and collaborative editing, …

Communication and coordination

Email, workflow management, message

and bulletin boards, …

When talking about product development today, almost every product, from its planning phase

to digital manufacturing, is created with the aid of computers. Additionally, products are

developed by teams that might work from distant locations, different time zones and always

require various skill sets. McMahon [17], in his overview of information technology which

supports engineering design, claims that computation approaches required during collaborative,

synchronous design, especially during critical situations, differ from approaches during

2. Theoretical background

18

individual work and more asynchronous modes of routine design. He defined synchronous

working as work where people interact in real-time such as in meeting, and asynchronous

working as independent work where the interaction is done by mail which matches the

description from Baecker et al. [59].

Brisco et al. [60] studied CSCW in the design domain called computer supported collaborative

design (CSCD). The aim was to develop a systematic method for engineering design teams to

evaluate and select the most suitable CSCD technologies. The authors compared technology

functionality and project requirements established in the peer-reviewed literature, which results

in 220 factors that influence successful CSCD.

2.4.2. Critical situations in design team collaboration

In the previous subsections, critical situations were brought up several times. This paragraph

will explain the situations and tasks that are considered “critical” in the context of this thesis.

A critical situation from the engineering design perspective can be defined as any situation that

impacts the direction or development of the design activity being undertaken [61]. What

designates one situation as critical is usually how much time is available to resolve it or how

many resources are allocated to resolve the specific critical situation. The lack of available time

could have many roots, from poorly planned activities to additional unexpected activities that

have a higher priority [54]. Critical situations can arise from unresolved conflicts as well. These

issues might significantly impact the quality of outputs, which are design solutions or project

outcomes in a broader scope. The primary causes of all these problems often occur during the

activity of information gathering if such information is not timely updated, it is unavailable, or

the designers are not even aware that particular information exists. In teamwork, critical

situations are not rare; on the contrary, they are quite common [9].

 According to McMahon [17], critical situations could be captured using two approaches. The

first approach is by capturing design rationale. The author clarifies that in recent years research

is focused on using graphical representation techniques like issue-based information systems

(IBIS). He also stated that the usage of such approaches had been well received in many

engineering companies. The other direction is capturing meetings using video and audio

techniques. Current research aims to the incorporation of automatic transcription of dialogue in

such meetings or by analysis of meeting reports. Conway and Ion [62] presented the

development of a system architecture designed to address the challenges associated with

creating accurate and reusable records of synchronous design activities. When dealing with

2. Theoretical background

19

large collaborative engineering design projects, success is denoted by the effective use and

understanding of working synchronously [63].

2.4.3. Design review meetings

Every project that is conducted by more than one person at some point demands parties to meet

and discuss the progress, problems and future steps of the project. The frequency and purpose

of the meetings may vary a lot and depend on the complexity of the project, how many

stakeholders are involved, and how teams and activities are organised. Here, the focus is on the

design review meeting, especially during the conceptual stage of long-lasting projects where

several teams are included, but many things are general and can be found in any kind of

meeting.

If implemented in the right way, design reviews enhance the potential for delivering a product

with the required quality, performance, safety and potential for reducing costs and delivery

times [64]. During design review meetings, the most common topics are usually clarifying

design assumptions, identifying design problems, and informing others about completed

activities [65].

Design review is defined as a cognitive process where information must be communicated to

stakeholders for efficient decisions [66]. Communication during the design process has a

significant role because it exchanges messages and carries ideas to people from different

disciplines. Review meeting belongs to the group of formal meetings, and it has a predefined

structure. Before the meeting, the agenda is sent to all stakeholders and after the meeting,

minutes are shared in order to have a written trail of discussion, decisions and requests.

Particularly for design review, key design decisions, design experiences and associated

rationale are very often made explicit. According to Huet et al. [67], the knowledge generated

during these meetings is very valuable and can be the key for the successful subsequent period.

Authors argue that it is critical to understand the process of information transaction process

during the meeting activity in order to build an effective knowledge-oriented recording strategy.

In that context, Juranić et al. [68] presented an extensive analysis of design meeting reports in

a large automotive company which includes both critical situations which had to be resolved

and routine design tasks. The authors gave insight and directions for reasoning needed to

improve the design team collaboration.

2. Theoretical background

20

2.5. Iterations in the design process

Design, development, and other projects inevitably involve iterations. When iterations are

mentioned, the first suggestion is increased duration and costs of a project, but iterations also

have positive effects such as enabling progressive generation of knowledge, enabling

concurrency and integrating necessary changes [38].

Piccolo et al. [69] analyse a socio-technical perspective on iteration in the design and

development process. They argue that, while many researchers consider design iteration from

either a technical perspective (e.g. dependencies among tasks) or a social perspective (e.g.

interactions among people), an approach considering both these domains together can yield

additional insight. They investigate the patterns of iteration in different design phases and use

regression analysis to test hypotheses about the relationship between iterations and network

characteristics of the interactions among documents, activities, and people.

The source of the need for the process of iteration in design may vary a lot, but it always comes

down to the situations where interrelationships are so complex that the desired solution cannot

be achieved in one step, and that information is frequently needed from a subsequent step [40].

In the planning phase, it could be due to disagreement or misunderstanding between client and

designer, legal obstacles, tailoring the cost estimate or something else. In the later phases,

iterations usually have a more technical nature and could have the following sources: iteration

to progress the design, iteration to correct problems or implement changes and iteration to

enable coordination within a process or between a process and its context [50]. On the other

hand, the iteration process can also have positive effects, including exploration of concepts,

finding and correcting flaws, and enabling development under complexity, uncertainty and

change [70]. The iterations which are interesting for this research are about defining values of

parameters.

During the planning stage, an initial product description is defined. Such a description specifies

only the key design parameters according to the customer’s requirements. It does not involve

most of the parameters, which will be progressively defined and adjusted as the work proceeds

during the other product development phases [68]. These parameters are often easy to

determine, but in many cases, parameters are coupled, which leads to the iteration processes.

Coupled parameters are not straightforward to calculate, and it is even more complicated if

parameters are not defined just by one designer. In many cases, coupled parameters originate

from different parts or assemblies which are designed by different designers. To make things

2. Theoretical background

21

more complicated, those designers do not need to be members of the same design team, from

the same location or even from the same company. Coupled parameters are parameters in which

the value of one parameter can not be defined if the value of the other parameter is not known.

At the same time, the value of the second parameter cannot be calculated if the value of the first

one is unknown. The situation is often resolved in the way that the value of any of these

parameters is assumed, then the value of the other is calculated, and the system is checked. If

the initial combination of the values is not satisfactory, the values are iteratively adjusted until

the result is good enough [40].

However, iteration can seem like an unfavourable process not just from the analytical point of

view but also from the project management perspective. In a perfect world, a person would start

working on the assigned task as soon as he or she is assigned, a work would be done in no time,

and the result would be sent without any delay. In the real world, in each of these steps, delays

occur. If this process should be done only once, that is not an issue, but sometimes, there might

be a need for many iterations until the process is finished. Hence, iterations are relatively big

generators of wasted time. One of the primary goals of this research is to explore how to reduce

the time needed for updating information, consequently reduce the delays and thus improve the

efficiency of the product development process. More about this topic will be discussed in the

following sections.

There has been comprehensive work done by Wynn et al. [50], writing a review paper about

iterations in design processes. They classified iteration processes depending on the situations

when they occur. Some of them which highly affect this research will be extracted here. Wynn

et al. recognised the following types of iteration in the paper of Jun and Suh [71]:

Table 0.2. Typical iteration process situations [50]

Negotiation iteration

“activities exchange design information with each other bi-

directionally for obtaining a desirable design solution” ...

“usually arises because of the coupled nature of product design”

Feedback iteration

“a manager usually identifies target conformance specifications

and the acceptable level of design outputs, and reviews design

outputs before they are released for wider use”

Engineering change

iteration

“During the PD, design outputs are frequently changed due to

technical problems”

Refinement iteration
“due to uncertainty and complexity, a design must be iteratively

refined until acceptable”

2. Theoretical background

22

2.6. Matrix based methods

Matrix-based methods are widely used not only in engineering but in all other branches of

science. Their widespread usage stems from its characteristic that data is represented as a matrix

and it is easy to have a good overview over data and relations. Due to its popularity, matrix-

based methods reached a high maturity level [28]. In engineering companies, they are regularly

used in everyday design practice when there is a need to deal with any kind of complexity.

Using these methods, users identify and visualize relationships and dependencies between

various objects.

In this research, two matrix-based methods will be described in the following subsections. They

are design structure matrix and multiple domain matrix.

2.6.1. Design/Dependency Structure Matrix

A design structure matrix is a square matrix that represents relations between elements in a

system that is being designed and analysed. Depending on the usage, various different DSM

types can be modelled. However, there are four common types according to the literature review

of Browning [72]. The author classified DSM in the following types:

Table 0.3. Common DSM types

DSM data type Representation

Component-based Component relationships

People-based Organizational unit relationships

Activity-based Activity output/input relationships

Parameter-based Design parameter relationships

In most cases, relations (dependencies) between elements are binary, which means that a matrix

is populated only with zeros and ones. In some cases, it is useful to assign weights to

dependencies. Such a DSM is called numerical DSM. Additionally, a column next to elements

could be added to assign a weight of an element. If we observe a DSM with only two elements

shown in Figure 0.2, several configurations of dependencies exist:

• Parallel – Elements do not interact with each other

2. Theoretical background

23

• Sequential – One element has an influence on another element in a uni-directional

manner. For example, the value of design parameter B is selected based on the design

parameter A. In the activity DSM, activity A should be performed before activity B.

• Coupled – Element A influences B and element B influences A at the same time

Figure 0.2. Three types of DSM dependency configurations

Besides its numerous benefits, DSM method has one significant disadvantage. Using DSM, it

is not possible to show relations between elements of more than one domain, e.g. how people

are related to parameters or which parameter is relevant for a specific activity. To resolve that

issue, DSM has been extended to Domain Mapping Matrices (DMM) [73]. A DMM has two

different types of elements on each axis, and the relation in this matrix is a dependency between

two domains. For example, it is possible to map people to activities they are responsible for in

a project. Since DMM map two domains and each domain could contain a different number of

elements, it does not have to be a square matrix. Due to the practical limitation of DMM and

the importance of modelling, both inter-domain and intra-domain dependencies simultaneously

multidomain matrices have been developed.

2.6.2. Multiple Domain Matrix

A multiple domain matrix (MDM) is similar to DSM and DMM, but it consists of different

domains where elements are explicitly distinguished and distributed in distinct contiguous

regions [49]. It can be perceived as a collection of smaller domain-specific DSMs (sub-domains

on MDM’s leading diagonal) and other matrices (DMMs) placed outside the leading diagonal,

which represents elements across domains. An example shown in Figure 0.3 shows a matrix

with two different domains: Activities and design engineers. The first sub-domain on the

leading diagonal represents relations between activities, while the second sub-domain shows

2. Theoretical background

24

relations among design engineers. In the example, designer 1 is a team leader and while the

other designers are team member, which can be read from the relations in the second sub-

domain. The left DMM in Figure 0.3 shows which designer is responsible for which activity.

MDM method allows representation of relationships between elements in a compact and

analytically suitable format that is useful to state the structure of interdependencies [28]. In

comparison to DSM method, modelling with multiple domains have a useful advantage because

a dependency between elements in any domain may be inferred as long as these elements have

a dependency with a common element in another domain [49].

In the paper of De Lessio et al. [74], the authors combined MDM method with a survey tool to

explore a company’s planning system. Their approach helped with the identification of

opportunities for planning system improvement. The approach could also help to avoid

problems with overlooking key issues and dependencies between elements.

Figure 0.3. Multiple Domain Matrix with two domains: Activities and designers

To meet market demands, designers often reach for novel and creative solutions for a product

which are already on the market. These modifications are usually called engineering design

changes. According to Siddharth and Sarkar [75], design changes have cascading effects on the

other components that share interfaces and interact using the material, energy and information

flow. The authors proposed a framework that could reduce the impact of engineering change

2. Theoretical background

25

on redesigning the product. The framework is, in essence, a multiple-domain matrix where the

knowledge of relationships among the product and manufacturing parameters are stored. The

authors applied an indirect change propagation method to identify the list of parameters that get

affected by a design change.

Matrix methods are used in the project management field, although they should get even more

consideration, according to Vallath Ramachandran [76]. The authors studied dozens of journal

papers while focusing on interdependencies between the product itself, development process,

organizational structure, tools, technologies and project goals. The authors concluded that

matrix methods had been used as a tool to enable critical path calculation in project

management. Also, methods provide better visualization of interdependencies within the

individual domains as well as across multiple domains.

2.6.3. Matrix-based methods limitations

Matrix-based methods are characterised as mainly static. Although numerous methods of

processing matrix data exist (e.g. clustering, partitioning, alignment), data itself remain the

same (but could change a position in the matrix), or in other words, data is not updated

continuously during the design process.

For most use cases, this characteristic does not present any obstacle. For example, if a team

leader wants to know in which sequence project activities will be executed, a simple static

matrix will provide satisfactory result during the whole development process. Contrary to static

cases, in many product development activities, an evident need to trace and manage several

aspects of design process dynamics exists.

Product development projects with a wider scope and higher complexity are usually divided

into subsystems (or hierarchy of tasks) and require collocated or distributed teamwork. In such

projects, particular tasks are allocated to different team members. This way of product

decomposition and task allocation unavoidably entails solutions with a set of design parameters

that are coupled among two or even more designers. That means that either those team members

have to establish a hierarchy of responsibility or sequence for the determination of parameter

values during design iterations or, more frequent, that they have to intensively and timely

communicate and negotiate about the coupled values among them. Besides coordination issues,

Karniel and Reich [1] stress that timed (as soon as the change occurs) informing of all other

team members with new values of the parameter and, if possible, reasoning behind the change

2. Theoretical background

26

is essential. In the work of Juranić et al. [68], the authors presented a framework for modelling

the patterns of engineering design collaboration activities based on Coloured Petri Nets. The

presented approach upgrades the static representation of design parameter relations with the

management of design iterations’ dynamics in which the values of multi-dependent parameters

are frequently changed by different design team members.

Toepfer and Naumann [12] discuss the static behaviour of MDM and DSM as one of the major

obstacles for usage in everyday practice. Their development of a design parameter management

system is an example of an effort to fully manage design parameter iterations. Such an approach

shows that the initial recording of design parameter relationships should be upgraded by using

the methods and tools to manage the iterative determination and especially the timely design

team coordination on values of coupled parameters.

Based on the initial representation of the designer-component relationships, Sosa (2008)

developed a model that predicts the interactions of the designers around the interfaces of the

individual product components. His work is oriented to software development, so it does not

focus on parameters but seeks to help project managers to encourage timely communication of

team members. In a very similar way, the approach proposed as a validation case in this PhD

thesis extracts design parameters coupled between multiple designers, which automatically

implies the need for their communication. The presented methodology aims to partially

automate the communication and negotiation process within the design team in the iterative

coordination of the coupled parameters values.

Several authors studied the relation between MDM and processes and how to model the process

to be suitable for analysis by matrix-based methods [16]. Their conclusion is that future research

should be oriented to how to make intuitive interaction between such models and how to extend

MDM, which is oriented to the analysis of the structure to a methodology that encompasses all

aspects of managing a complex process structure.

An interesting approach is proposed by Kreimeyer et al. [77] to combine the analytical

advantage of matrix-based methods with modelling capabilities of graphical notation to model

process flows. For graphical notations, Event-driven Process Chains were used, and MDM as

a matrix-based method. Similar to this approach, Juranić et al. [78] presented a contribution to

CSCD technologies combining MDM with graphical and programming features of CPN.

2. Theoretical background

27

2.7. Research gaps

The literature review on engineering design processes and design parameter management in the

context of product development has facilitated the identification and formulation of the main

research gaps.

The gaps particularly concern the lack of sufficient support for timely information transfer

between stakeholders, delayed communication about engineering objects and, according to

reviewed literature, issues that could emerge from static behaviour of matrix-based methods.

Additional focus was given to the PN method and its extensions as a possible method to bridge

research gaps and mentioned concerns. All literature review and the following research

questions are oriented to contribute to the improvement of design parameters management.

The research gaps are briefly discussed in this section and summarised in the form of research

questions. Research questions are discussed and answered in the conclusion chapter, but they

are also preliminary addressed in subsequent sections of the thesis. Next to each research

question, the chapter where it is preliminarily addressed is indicated.

Several authors emphasized the importance of critical situations in product development and

how they are managed throughout the process. Besides critical situations, researchers argue

about routine tasks that are straightforward, and in many cases, designers are accomplishing

them with ease, especially in the development of a product where the structure is completely

known, for example, in the development of product variants. Critical situations often arise if

coupled parameters are not timely updated among design engineers. Between parameters exist

relations which can be represented as design parameter network. It is also usual that engineers

work on coupled parameters, but they are not aware of their relation. This research will give an

overview of all these situations, both critical and routine. One of the research contributions is

to manage these situations in a semi-automatic way, especially routine tasks. Hence, the first

research question is formulated as follows:

RQ1 What are the most frequent activities and critical situations that may arise due

to relations between design parameters during the product development

process?

2. Theoretical background

28

Literature review and analysis of the experimental dataset showed that information about

engineering design activities that exist in written form provides an adequate source for this

research. Some key decisions might be found in emails but also in meeting reports which are

shared among all stakeholders. Managers are using this information to create new activities

which have to be accomplished. Analysis of frequent activities which appear during product

development could be categorized further depending on the type of activity. A similar approach

was proposed by Sim and Duffy [3], where they identified and classified a generic set of design

activities. This set of activities will serve as a basis for the activity groups in this research. The

question that arises in this context is:

RQ2 What are favourable approaches and directions to improve CSCW for

engineering design activities that are identified in the analysed dataset?

This research extends existing research on methods and tools for supporting team

communication in the dynamic and iterative process of defining and resolving values for a set

of coupled design parameters. In the previous section, an overview of coupled parameters and

how they could be resolved using DSM and MDM techniques was given. The conducted

literature review showed that parameters are generally resolved only on the static level and by

no means on the dynamic level. This research will provide an approach to combine such

methods with CPN in order to support the management of parameters in a more dynamic

manner. An additional concern that will be investigated is about advantages and obstacles

which could arise in the approach where MDM is combined with CPN. Consequently, the main

question here is:

RQ3 How to apply MDM to identify parameters coupled between several designers

in teamwork based design, because in such situations, it is expected that the

application of developed models could bring the most benefits?

This research is aiming to help engineers in several aspects of information management during

the design process. Hence, permanent attention in this research should be paid to ensure that all

team members always have all the necessary up-to-date information in every situation and

especially critical ones. The aim is to avoid misunderstandings, delays and additional

2. Theoretical background

29

unnecessary iterations, which often happens during teamwork because of untimely or missing

communication. Many papers present examples of these problems in industry practice [79], [9],

[15]. Such problems are often the result of insufficient or inadequate implementation of

complexity management methods. Hence, this research explores an approach of using

generalised activity patterns to build improved and more robust design support systems. The

research question which addresses this issue is formulated as:

RQ4 What are the benefits of applying the proposed CPN based framework for

supporting engineering design activities?

30

3. ANALYSIS OF DESIGN PROCESS

ACTIVITIES IN PARTNER COMPANY

This chapter provides a supplementary matter which could not be found in the literature. Even

though the first part of the descriptive study provided some valuable conclusions about state of

the art in the observed research field and that the literature review yielded the research gaps

and research questions, the contribution this research provides is hidden in data collected in

an industrial working environment.

3.1. Obtaining data for the analysis

Data obtaining and the analyses were performed during an internship that took place in the IT

research department of the partner company. A team in which the research was conducted is

responsible for supporting engineers in their daily work by creating new methods and

continuously enhancing the existing ones.

The company is using an in-house developed PDM system which is constantly being improved.

The researchers in the company are developing a system called parameter database [13] which

would enable management of engineering design parameters (EDPs), including their definition,

linkage to CAD data, traceability of values changes and connecting them into a network of

parameters. Parameters in the network are related via active chains [12], which provide an

overview of dependencies for each parameter. Toepfer and Naumann [80] argue that

complexity in product development can be handled with the help of such a system (parameter

database) in a way that it provides a process-supporting benefit for designers instead of causing

additional work.

Although parameter management supports engineering designers mainly in their product

development activities, EDPs are an indispensable element of all other activities during product

development (e.g. communication, reports).

To find out what are the parameters that are most often discussed (and within which activities)

during weekly design meetings meeting reports from three projects (see Section 3.2) have been

obtained from the company and analysed.

3. Analysis of design process activities in partner company

31

In the first analysis of meeting reports, EDPs were coded and afterwards classified (Section

3.3.1). During the second analysis, design activities have been extracted from meeting reports

(Section 3.3.2) to get a list of design activities that can be generalised. These generalised

activities have been further used for coding activities in meeting reports. Finally, the activities

have been categorised into engineering design activities taxonomy (Section 3.3.4). The

proposed taxonomy is not definite since it contains only the activities that have been extracted

from meeting reports.

When planning the engineering design activities analysis, it was initially decided to gather data

from different sources and to determine later what source provides data that best fits the purpose

of the research. Therefore, several approaches were pursued:

• Direct communication with design engineers (e.g. interviews)

• Going through the records of informal communication (e.g. emails)

• Analysing the formal communication records (e.g. meeting minutes)

Using the first approach, the most detailed information was obtained. Although this approach

provides detailed information, it was abandoned very quickly since each engineer needs to

prepare for the interview and to spend time during the interview. That was not acceptable for

the company. The second approach was abandoned before it actually started due to company

regulations. The company does not allow collecting communication records among designers,

which are done via email, even for research purposes. Therefore, it has been decided to continue

only with the third approach; meeting reports which are written based on meeting minutes from

formal weekly design team meetings. In the company, that type of communication is the main

formal communication channel among designers and project managers. Later in this chapter is

described what data were obtained, how it was analysed and what results were achieved.

Parallel to the data analysis, it has been decided to develop the approach based on Petri Nets. It

was necessary to explore if PN methodology is applicable for such a task. Based on the

conducted research, it was decided to proceed with the Coloured Petri Net extension since it

has features that match well with the whole approach. During the third internship, the main

focus was on developing a software solution that will connect CPN models to the testing version

of the parameter database, ERP database and CAD system. The solution is fully described in

Chapter 4 of this thesis.

3. Analysis of design process activities in partner company

32

3.2. Experimental dataset

To get a better understanding of current practices in the industry and to identify the most

significant problems and critical situations in the previously discussed context, a

comprehensive analysis of the three already completed and documented, long-term, large

development projects in the partner company were conducted. This section presents the

structure of the analysed data sets, the methodology applied for data analysis, and the obtained

results.

Unfortunately, the obtained data originates only from one source (meeting reports) and this type

of more general data about a specific task or issue with fewer details than what could be

obtained from emails. On the other hand, meeting reports are way better structured than regular

emails and therefore much easier to analyse. Meeting reports do not contain irrelevant

information that employees usually exchange in their everyday communication over email,

calls or via some other channel.

The meeting reports used in this research are from the projects conducted in the conceptual

phase. In such meetings, only configurations, key dimensions and decisions about the project

are discussed. The meetings are usually held on a weekly basis, with some exceptions during

holidays or vacations. Participants who attend weekly meetings are employees leading the

project, representatives of each team involved in the project, and depending on topics discussed,

employees that are experts for such topics. The whole process is the same as any other regular

meeting and consists of several main parts: Preparing an agenda, conducting a meeting, and

writing a meeting report.

The agenda is prepared continuously, starting from the last meeting held until the beginning of

the next meeting for which the agenda is prepared. Before the meeting starts, the agenda has to

be sent to all participants and others who are interested in the topics discussed at the meeting.

The agenda is formatted as a textual document (Figure 0.4) with defined general information

about the planned meeting and a list of topics that will be discussed during the meeting. The

agenda document consists of general information about the specific meeting (e.g. date, location,

participants) and a list of topics to be discussed.

3. Analysis of design process activities in partner company

33

Figure 0.4. Anonymised example of an agenda for a weekly meeting

At the meeting, attendees discuss the topics and present their ideas, thoughts and doubts about

the current state and potential solutions. Usually, various techniques are used to support the

communication, like presentations, spreadsheets, sketches and drawings or even live demo in

CAD software for more complex issues or ideas. During the meeting, one person writes notes.

After the meeting, the note-taker writes the meeting report based on the notes he or she took

during the meeting. The meeting report has a predefined structure to ensure the uniformity of

the reports throughout the entire company, but in essence, it is a simple text document

consisting of the following main parts:

• General information about the meeting held (location, date, time, project, etc.)

• A list of employees who attended the meeting and their signatures

• A table with specific meeting information. The table structure is as follows:

3. Analysis of design process activities in partner company

34

• Topic number in agenda

• Committee in charge of the topic

• One of three predefined topic types (information, decision or request)

• Subject (usually a component of subassembly, e.g. Headlights, front parking

sensors, 360° camera)

• Sub subject (if subject must be further divided into sub-subjects)

• Current status / Next steps (summary of discussions on the topic)

• Team responsible for the topic (if the type is decision or request)

• Deadline (if defined)

• Status (whether the topic is closed or still opened)

The completed report is then sent to all stakeholders. In addition to captured discussions under

the field “current status / next steps”, the field in the report also contains issues, tasks, and

activities that have to be allocated to particular employees.

Immediately after one meeting is completed, the plans for the next meeting of the same group

begin. The plan is manifested through writing the agenda for the next meeting. This process

includes proposing new issues and topics as well as reporting on the progress of issues that have

been reported in previous meetings. Planning of the next meeting is completed just before the

meeting starts because the agenda is shared with all stakeholders. All stakeholders can

contribute to items on the agenda for the next meeting. The described process is a weekly cycle

of data capturing and processing that is necessary for monitoring and managing projects.

In this research, meeting reports from three different projects have been analysed. They are all

written in the German language, but excerpts shown in this research are translated into English

for easier understanding. The analysis of data has been done in German without translating it

to English to omit any differences in the meaning of phrases. All three projects are product

development projects in the automotive company. Two of them are projects where the goal was

to define all significant changes, key dimensions and new features for a facelift (mid-

generational freshen up) of a vehicle (projects named “FL_A” and “FL_B”). The third project

was about developing a new module for a new car platform (project named “ML_A”).

3. Analysis of design process activities in partner company

35

These three projects differentiate in several ways: project type, scope, people involved in the

projects, their expertise, knowledge level, etc. The details about projects are given in the

following section. It was expected that, although relatively small, such a diverse range of

analysed projects would provide a broader exploration area and applicable conclusions.

3.3. Report analysis

To maintain privacy and to secure the leakage of confidential information, all meeting reports

were pseudonymised prior to any analysis. This procedure was applied to project names, car

models, key dimensions, actual names of employees, names of teams and names of committees

that appear in meeting reports. The process has been accomplished simply by using a “replace

string” command. A minor issue appeared during the pseudonymisation of employees’ names

because some surnames are exactly the same as regular nouns for some components which

appear throughout the reports. Therefore, all replaced words were afterwards checked manually

to ensure that only the right words were pseudonymised without any loss of sentences’ meaning.

Each meeting report is written in one document (one report per meeting). To make the analysis

easier, all meeting reports were combined into one spreadsheet in a way that one topic discussed

at the meeting is represented as one row in the spreadsheet. Moreover, two additional columns

were added, one to show to which project the topic belongs and the second one, which shows

the date when that topic was discussed. All the other columns remained the same. To better

understand the extent and the content of the dataset, a basic analysis was conducted, which is

presented in Figure 0.5.

45

20

33

Meeting reports in project

FL_A FL_B ML_A

560

148 127104
48

116

0

100

200

300

400

500

600

FL_A FL_B ML_A

Number of topics in project

Topics Unique topics

3. Analysis of design process activities in partner company

36

Figure 0.5. General information of meeting reports from three projects: Facelift projects

(FL_A and FL_B) and module development project (ML_A)

All three projects were long-lasting, which means that they lasted from 7 to 17 months, with

numerous experts and teams included. In total, 98 meeting reports with 835 discussed topics

among 329 participants have been analysed. It has to be noticed that the number of words per

topic varies substantially, which of course, depends on the person who has written the notes.

This factor undoubtedly has a partial impact on the results of this research. The same data

structuring in every report ensures that the dataset is uniform and that common mechanisms for

the analysis of the whole data set are applicable. To continue with the more complex processing

methods, data from the spreadsheet has been transferred to an SQL database with the same

structure as the spreadsheet. The database has been normalised to enable the building of

complex queries.

16258
2005

9475

Total number of words in

project reports

FL_A FL_B ML_A

26

11
70

Words per topic (median value)

FL_A FL_B ML_A

74

43

35

Number of teams involved

FL_A FL_B ML_A

156

80

93

Number of participants

FL_A FL_B ML_A

3. Analysis of design process activities in partner company

37

After the initial structuring and normalisation of data, it was analysed in two directions. In the

first one, it has been searched for the design parameters (Section 3.3.1) that attendees discussed

about and in the second one, it has been searched for the engineering design activities (Section

3.3.2) that had been performed on extracted design parameters.

3.3.1. Extraction of EDP types from meeting reports

Obtained meeting reports are from technical meetings, as noted in the previous section.

Therefore, it is evident that in many topics, EDPs could be found.

In this analysis, the objective was to make a list of EDPs that are mentioned in the reports.

Specific information about a parameter (e.g. parameter value, relation to other parameters or

belonging component) is not in focus; only the type of EDP is required to define a list of EDP

types that can be found in meeting reports.

In the paper of Štorga et al. [45], the authors extended the definition and categorisation of the

term “Attribute” from Suggested Upper Merged Ontology using background theories of Hubka

and Eder [37]. Štorga et al. categorised Design Attributes, and that categorisation is used for

extraction of EDPs by coding meeting reports. Meeting reports were coded by the primary

researcher and a trained coder to calculate the intra-rater reliability. The first (primary) coded all

topic in meeting reports, while the second (reliability) coder coded 50 % of all topics in meeting

reports. Each parameter has been coded for each topic in the meeting reports (excerpt shown in

Table 0.4). If there was more than one parameter for one meeting topics, codes were

distinguished by colour (first parameter – red, second – blue, third – green). If it was possible,

a coder put additional designation for each parameter (e.g. angle, position, distance).

Table 0.4. Example of the coding process for EDP types

Topic Subtopic Current status / Next steps Code 1 Code 2 Code 3

Front grille Control lever

Options to get more cooling air below are:

- angle of approach (5° downwards)

- bench up (10mm)

Dimension

(angle)

Dimension

(position)
-

Rear lid -

- Employee 173 informs the group that the specification

"Installation space requirement" agreed in CW 06 for the

C-channel distance to the bending beam must be

adjusted. Default old 20mm / new 37mm.

Dimension

(distance)
- -

Cockpit

Bar for head

unit

installation

Two aluminum decors are currently planned for Variant 2.

Final determination by Team 31 has not yet been made.

Material - -

Time

scheduling
NBR Testing

A special meeting for "Results of NBR testing" must be

organized.

Participants: Employee 16, Exmployee 85, Employee 128,

Employee 38

- - -

3. Analysis of design process activities in partner company

38

The list of parameters that have been coded along with the number of occurrences and Cohen’s

Kappa number is shown in Table 0.5.

Table 0.5. Design parameter types

EDP Type Example Quantity Coder

reliability

Position Position 289 0,99

Dimension Area 61 0,98

Dimension Distance 50 0,97

Dimension Clearance 41 0,98

Dimension Angle 28 0,99

Dimension Measure 26 0,96

Dimension Height 21 0,99

Tolerance Tolerance 20 0,98

Dimension Width 19 0,99

Dimension Displacement 18 0,97

Material Material 4 0,97

The results show that position (of components) is the most frequently mentioned EDP in the

reports. During the coding, it was noticed that a type of design parameters and topics discussed

during a meeting significantly differ based on the stage in which a project currently is. Since

these meetings were from the conceptual stage of product development, it might be expected

that participants often discuss the arrangements of new or modified components of a vehicle

and they do not go into the depth of technical issues. All the other types of design parameters

were mentioned in every 20th meeting topic (on average). The situation probably would be very

different if project review meetings of the later development phase were analysed.

Figure 0.6 shows how many topics were discussed at each project meeting for all three projects.

In the graphs, “W1” means the first week since the project had started. If some week is omitted

in the figure, it means that data for that week was not available, and in most cases, it assumes

that the meeting had not been held in that week. The second and third projects have a relatively

small number of average topics per meeting. Hence, it is hard to argue about the trends that are

happening during those projects. Interesting insights can be seen in the number of topics over

time for project FL_A.

3. Analysis of design process activities in partner company

39

On average, there were about 12 topics per meeting in FL_A project, but there were some

exceptions though. A smaller number of topics in meetings (e.g. project week 20, 23 or 47)

were discussed during some national holidays (e.g. Christmas and Easter) and during summer

(many employees are on vacation). Besides a few drops in topics, there were two pikes as well,

in 49th and 55th week. The reasoning behind these numbers lies in the fact that the project

deadline was coming, and many issues were still unresolved, which had to be discussed.

Figure 0.6. Number of discussed topics per meeting for all three projects

0

5

10

15

20

25

30

35

40

45

W
1

W
4

W
9

W
1

1

W
1
3

W
1

5

W
1

9

W
2

0

W
2

2

W
2
5

W
2

7

W
3

0

W
3

2

W
3

6

W
4
0

W
4

2

W
4

4

W
4

6

W
4

9

W
5
2

W
5

5

W
5

7

W
6

1

N
u

m
b

er
 o

f
to

p
ic

s

Weeks

Project: FL_A - Number of topics per meeting

0

5

10

15

20

25

W
1

W
4

W
6

W
9

W
1

2

W
1

3

W
1

7

W
1

8

W
1
9

W
2

0

W
2

1

W
2

2

W
2

3

W
2

4

W
2

7

W
2

8

W
3

1

N
u

m
b

er
 o

f
to

p
ic

s

Weeks

Project: FL_B - Number of topics per meeting

0

2

4

6

8

W
1

W
5

W
7

W
9

W
1

0

W
1
1

W
1
4

W
1
5

W
1
6

W
1
7

W
1
8

W
2
6

W
2
9

W
3
1

W
3
3

W
3

8

W
3
9

W
4
3

W
4
4

W
4
5

W
4
6

W
4
7

W
4
8

W
4
9

W
5
0

W
5
1

W
5
5

W
5
6

W
6
0

W
6
5

W
7
1

N
u

m
b
er

 o
f

to
p

ic
s

Weeks

Project: ML_A - Number of topics per meeting

3. Analysis of design process activities in partner company

40

3.3.2. Extraction of phrases that denote activities

After creating the list of EDPs from meeting reports (Table 0.5), the analysis continued with

the extraction of phrases related to the common engineering design activities (EDA) in which

EDPs are present. This was the initial step for the creation of a list of generalised design

activities, which is a requirement for the proposal of a tailored engineering design activities

taxonomy described in the last subsection of this chapter. For the easier following of the next

several subsections, the complete process is shown in Figure 0.7.

Figure 0.7. Process of creating a list of generalised design activities and engineering design

activities taxonomy

Reports that were used for coding in the first step are used in this analysis as well. Since the

summary of the topic’s discussion is written in the conversational language, one activity might

be denoted by several similar phrases. Additionally, it was unknown which particular activities

appear in the reports. Hence, it was decided to proceed with the extraction of phrases that

denotes those activities. Table 0.6 shows the extraction process on the small excerpt taken from

the analysed spreadsheet. The activity phrases were highlighted by changing the font colour for

each phrase that denotes activity. Each activity type is coloured in a different colour, while the

similar phrases that denote the same activity type have the same font colour.

3. Analysis of design process activities in partner company

41

Table 0.6. Excerpt (10 of 835 records) from the spreadsheet with coded phrases that denote

engineering design activities

3.3.3. Generalisation of recognised design activities

In order to make a structure of EDA that appear in the reports, the recognised activities were

generalised (e.g. “schedule a meeting” and “need to define an appointment” are the same

activities), and a list of generalised engineering design activities has been created. The most

frequently mentioned activities are listed in the first column of Table 0.7.

In the next step, generalised activities listed in Table 0.7 were used as a coding scheme to code

topics in the analysed spreadsheet. The coding was firstly done by the primary researcher, and

the results were validated by a reliability coder who coded 50 % of meeting report topics. For

each recognised activity in the topics, a matching code is added next to the summary of the

topic’s description column. The excerpt of the coding process is shown in Table 0.8. To depict

which code is assigned to which part of the text, the text is coloured. The first code has red font

colour, the second code has blue, and the third has green font colour.

Topic Subtopic Topic description Deadline
Responsible

Team

Responsible

Person

Requirements
Constraints on

design concepts

The specifications for creating design concept for

#COMPONENT# are already in #PDM# archived.
#DATE#

#TEAM52

#TEAM19

#PERSON55

#PERSON26

Requirements
Specifications of

front sensors

CAD models of #COMPONENT# including #COMPONENT# have

to be stored in the #PDM#. Position is analogous to

#COMPONENT#.

#DATE# #TEAM52 #PERSON74

Status

Status report of

the display

integration

An appointment to discuss the #COMPONENT# should be this

week. The requirements are to be agreed and in #PDM#

archived under name #NAME#.

#DATE#
#TEAM52

#TEAM19

#PERSON55

#PERSON121

Rating Rear section

#PERSON34 presents the package of #COMPONENT# based on

CAD data to the #GROUP#. #COMPONENT# name is in collision

with #PDM_NUMBER#.

#DATE# #TEAM52 #PERSON34

Rating Rear section

Additional meeting should be organised by #TEAM52. The topic

is integration of suitable #COMPONENT#. #TEAM16 and

#TEAM35 have to be invited. Y-position is defined at the last

meeting. The specification is to be saved in #PDM#.

#DATE# #TEAM52 #PERSON34

Trunk lid

Requirements of the #COMPONENT# has to be resolved

between #DEPARTMENT# and #DEPARTMENT#. Afterwards, it

should be archived in #PDM#.

#DATE#

#TEAM52

#TEAM37

#TEAM17

#PERSON124

#PERSON19

#PERSON10

Requirements
Specifications of

front sensors

The currently planned #COMPONENT# in #COMPONENT# makes

an alternative item of #COMPONENT# necessary. Position the

#COMPONENT# (analog to #PROJECT4) right to the emblem has

to be stored in #PDM# .

#DATE#
#TEAM52

#TEAM34

#PERSON74

#PERSON108

Requirements
Specifications of

front sensors

A default interface transition #COMPONENT# / #COMPONENT#

Y0 should be in #PDM# archived.
#DATE#

#TEAM52

#TEAM34

#PERSON74

#PERSON108

Scanning Rear section
The #COMPONENT# from #PROJECT2 / #PROJECT3 will be used

in #PROJECT1. Position it and save in #PDM#.
#DATE# #TEAM52 #PERSON34

Status Headlights

An interim headlights report with newly established

#COMPONENT# is presented to #GROUP# by #PERSON50 (see

presentation documents). The headlight #COMPONENT# has to

be adapted. Store headlight with optimized #COMPONENT# in

#PDM#.

#DATE#

#TEAM36

#TEAM39

#TEAM45

#TEAM52

#PERSON108

#PERSON50

#PERSON116

#PERSON74

3. Analysis of design process activities in partner company

42

Table 0.7. Most frequently used generalised activities extracted from analysed reports

Activity No. of recognised

occurrences

Informing 266

Assigning 92

Scheduling meeting 92

Presenting 58

Transferring to PDM 40

Evaluating 14

Making decision 14

Resolving 10

Transferring from PDM 9

Checking 6

Table 0.8. Excerpt from the spreadsheet with assigned generalised engineering design

activities for each recognised activity in meetings’ topic discussions

Topic Subtopic Topic description Code 1 Code 2 Code 3

Requirements
Constraints on

design concepts

The specifications for creating design concept for

#COMPONENT# are already in #PDM# archived.
Informing

Requirements
Specifications of

front sensors

CAD models of #COMPONENT# including #COMPONENT# have

to be stored in the #PDM#. Position is analogous to

#COMPONENT#.

Transfer to

PDM

Status

Status report of

the display

integration

An appointment to discuss the #COMPONENT# should be this

week. The requirements are to be agreed and in #PDM#

archived under name #NAME#.

Scheduling

meeting
Assigning

Transfer

to PDM

Rating Rear section

#PERSON34 presents the package of #COMPONENT# based on

CAD data to the #GROUP#. #COMPONENT# name is in collision

with #PDM_NUMBER#.

Presenting Resoving

Rating Rear section

Additional meeting should be organised by #TEAM52. The topic

is integration of suitable #COMPONENT#. #TEAM16 and

#TEAM35 have to be invited. Y-position is defined at the last

meeting. The specification is to be saved in #PDM#.

Scheduling

meeting
Informing

Transfer

to PDM

Trunk lid

Requirements of the #COMPONENT# has to be resolved

between #DEPARTMENT# and #DEPARTMENT#. Afterwards, it

should be archived in #PDM#.

Making

decision

Transfer

to PDM

Requirements
Specifications of

front sensors

The currently planned #COMPONENT# in #COMPONENT# makes

an alternative item of #COMPONENT# necessary. Position the

#COMPONENT# (analog to #PROJECT4) right to the emblem has

to be stored in #PDM# .

Assigning
Transfer

to PDM

Requirements
Specifications of

front sensors

A default interface transition #COMPONENT# / #COMPONENT#

Y0 should be in #PDM# archived.

Transfer to

PDM

Scanning Rear section
The #COMPONENT# from #PROJECT2 / #PROJECT3 will be used

in #PROJECT1. Position it and save in #PDM#.
Assigning

Transfer

to PDM

Status Headlights

An interim headlights report with newly established

#COMPONENT# is presented to #GROUP# by #PERSON50 (see

presentation documents). The headlight #COMPONENT# has to

be adapted. Store headlight with optimized #COMPONENT# in

#PDM#.

Presenting Assigning
Transfer

to PDM

3. Analysis of design process activities in partner company

43

Table 0.9 present the inter-rater reliability of coded engineering design activities. Reliability

values have been calculated using Cohen’s kappa index.

Table 0.9. Reliability of the coded activities

Code Coders

reliability

Informing 0,93

Assigning 0,89

Scheduling meeting 0,95

Presenting 0,93

Transferring to PDM 0,95

Evaluating 0,82

Making decision 0,79

Resolving 0,84

Transferring from PDM 0,94

Checking 0,87

At least one generalised activity had been assigned to each topic, but many topics have more

than one. Graphs in Figure 0.5 show that for the ML_A project, each summary of the topic’s

description has 70 words on average, which is more than one sentence and, in most cases, the

whole paragraph. Therefore, such topics have 4 or 5 assigned activities.

Based on the assigned generalised activities, the number of occurrences for each activity type

has been calculated. In Table 0.7, the right column presents how many times was each activity

type mentioned in the spreadsheet. The described process has been carried out for all 835 topics

from all three projects. The result is shown in Table 0.7. Activities that appeared only a few

times are not presented in the table.

Informing activity is the most recognised activity and can be found in every third topic.

Informing activities have a broad granularity spectre regarding the topic that was used in such

activities. For this research, the most important informing activities are those in which a topic

is presenting changes of parameters and their properties. But, in the reports, the most common

informing activities are those when someone wanted to inform others about the results of

previous discussions (e.g. from another meeting and usually from a meeting which is not

organised by this group). Such informing activities stop immediately after someone finishes the

3. Analysis of design process activities in partner company

44

speech, and they are not in the main focus of this thesis. Discussions (about the parameters)

that are in the thesis focus are parts of the other activities (e.g. assigning, resolving, transferring,

evaluating, requesting)

The second most common activity that might be found in the reports is assigning activity. This

activity type is very meaningful for this research since, in the scope of that activity, someone

has got a new task that should be completed in (near) future. The same is valid for scheduling

activities; they plan the spin-offs of regular meetings. New agenda, invitations, scheduling and

discussions will emerge from these activities. Similar is with the other activities, some of them

finish immediately, and some are the basis for new activity.

In Figure 0.8, the ten most frequently occurring activities in project FL_A are shown. As stated

before, the curve of activities and discussions have peaked a few weeks before the project

deadline. This implies that both analysis and design support conceptualisation should be further

focused on this period, as the majority of critical situations will emerge, and consequently,

design team communication will be most intensive.

Figure 0.8. Distribution of ten most frequently recognised activities from each project

meeting

3. Analysis of design process activities in partner company

45

3.3.4. Tailored engineering design activities taxonomy

Based on the analysis that has been conducted, some meaningful conclusions may be drawn.

Several generalised activities occur significantly more frequently compared to others. Table 0.7

shows the number of repetitions of EDAs recognised and extracted in the first iteration of the

analysis. In the following iterations, granulation was refined, and a hierarchy of activities

relying on the design activity ontology of Sim and Duffy [3] has been created. The taxonomy

developed in this research mostly coincides with the ontology of Sim and Duffy, but there are

some other activities that are specific to this type of industry and specific for the projects being

analysed. The proposed taxonomy is shown in Figure 0.9.

Activities at the lowest level of the hierarchy mostly corresponded with the initial generalised

activities obtained in the first iteration of the report analysis. The initial generalised activity list

was formed by scanning and examining project reports and by extracting the most repetitive

terms that denote EDAs in the reports. The described process could be traced from Table 0.6

(highlighted notions in the third column), then to Table 0.7 (most frequent activities that have

been generalised), Table 0.8 (columns with assigned generalised activities) and finally to Figure

0.9 (defined taxonomy entities).

The taxonomy has three major groups of activities, depending on the data flow. The outcome

of the approach used for data analysis is a dataflow oriented taxonomy of engineering design

activities that are defined in analysed meeting reports. The first group in the taxonomy are

activities for which currently undetermined data values have to be obtained. They are grouped

under assigning activity. In such an activity, a task will be assigned to a responsible person or

group of people. These activities usually start after the meeting and might last longer than the

time between two meetings. The second group are reporting activities. These activities start and

finish at the meeting, but they are often prepared before the actual meeting. This group is

divided into activities of informing meeting attendees about the findings and new data and into

presenting the reasoning behind the new information.

3. Analysis of design process activities in partner company

46

Figure 0.9. Taxonomy of engineering activities tailored to analysed projects

The third group of activities are requesting activities. Requested information might be a general

one (e.g. Is a supplier ready to deliver a component?) or a more specific one, like requesting

testing of some component or solution. The third subgroup is requesting information from PDM

since not all employees have access to all information, and someone has to forward the

requested information.

This research benefits most from the first and the third group of activities since they are most

eligible to automate them. In the following section, the process of how these activities could be

automated and thus support the design engineers is described.

47

4. MODEL AND FRAMEWORK FOR

ACTIVITY EXECUTION PROCESS

After the first three chapters in which the hypothesis was defined, research gaps found, along

with methods and solutions that served as the basis for the proposed CSCW enhancement, it is

time to present the systematic development of the framework for implementing solutions for

automated execution of engineering design activities. This phase follows the Prescriptive Study

stage of DRM, which is the next natural step. The phase started with the initial development of

the framework to see if the proposed enhancement is feasible and afterwards was fully defined

and described in this chapter. After a brief introduction of this phase, the first several sections

present the potentials for developing CPN templates for recognised activity types. The chapter

continues with a description of one activity instance and CPN model instance, presents the final

framework, explains the framework’s interfaces and concludes with CPN model templates for

various activity types.

The partner company use an in-house developed PDM system. Besides mainstream design

support systems (e.g. CAD, CAE, PDM), the company is developing an approach based on a

database solution that allows the management of parameters relevant for the development

process. Toepfer and Naumann [12] argue that a parameter generally describes a characteristic

variable of a system element or an element relation that can possess multiple instances in

different product variants. Parameter database allows users (in this case, engineering designers)

to define new parameters, edit existing parameter values, and link parameters with 3D models.

Parameter database has a different role in data management compared to the common usage of

design support systems. The developed concept of parameter management enriches the PDM

with additional information about parameters. Details about the parameter management

approach and parameter database are given in the work of Toepfer and Naumann [12], [13],

[14].

Figure 0.10 shows basic relations and data transfers between PDM, parameter database and the

proposed framework. Management of engineering design activities is based on weekly

meetings held in the product development department. During those meetings, engineering

designers discuss and define new activities that have to be accomplished until the next meeting.

4. Model and framework for activity execution process

48

These activities often demand changes in parameters’ values. All activities that are recognised

during the analysis of the meeting reports are included in the taxonomy defined in Section 3.3.4.

Based on the activities that are defined during the meeting, the framework that has been

developed in this research continuously checks changes of parameter’s values in the parameter

database (Figure 0.10). Based on such changes and related activities, the framework initiates

timely communication between team members in situations when that is needed (e.g. two

engineers work with parameters that are coupled) or semi-automatically solve simple situations

using embedded algorithms in the framework which will be described in Chapter 5. Continuous

checking of changes on parameters is realised by periodic checking (“listening”) if a parameter

value is changed.

Figure 0.10. Schematic representation of relations between PDM, parameter database and

CPN based framework

This chapter covers the development of a framework that supports the execution of engineering

design activities defined and allocated at weekly meetings. The framework works with all

activities that have been presented in the taxonomy of design activities from Chapter 3. The

framework uses CPN modelled activity templates specific to each activity type (and

consequently taxonomy entity). For each template, is defined what data is expected on the input

side, what will happen during the execution of that specific activity, and where will newly

created data be stored. The templates are designed as general as possible to cover a wide range

of possible combinations of input and output data, but at the same time, they are specific enough

to be able to accomplish the activity successfully.

4. Model and framework for activity execution process

49

4.1. A roadmap of building the proposed framework

The first section in Chapter 4 provides an overview of all topics that are discussed throughout

this chapter. The proposed framework uses activity templates to support the execution of

engineering design activities. A template is structured as a regular CPN model, and it is valid

only for one activity type. They are called templates because they do not possess any tokens

(more information about CPN models and tokens can be found in Appendix A) until the

template is not assigned to a specific activity instance which has to be processed. At that

moment, the template is filled with specific tokens (tokens are data (e.g. parameter value)

carriers through the CPN model) which are relevant only for that specific activity instance. The

structure of the CPN template can be imagined as a “smart” activity workflow. It is necessary

to create a template for each activity type that is desired to be supported by the proposed

framework. In this work, only a few CPN templates will be presented and described since their

structure highly depends on the need and current procedures of a company where this

framework is planned to be implemented. In the framework scheme, which is shown in Figure

0.11, templates are located in a storage called “CPN based activity templates”.

Figure 0.11. Schematic representation of the framework based on CPN methodology. The left

side is an activity definition process. The right side is the activity execution process.

Processing of an activity instance can be accomplished in a single cycle, or it can be

automatically stopped at some point (e.g. due to missing data) and afterwards continued once

the missing data becomes available. Activities whose processing has started but is not

4. Model and framework for activity execution process

50

completed are stored, and that storage is shown in Figure 4.2 labelled as “CPN activity

instances”.

After a meeting, a meeting report is shared with all other participants. Besides the report, after

the meeting, a list of activities that have to be accomplished is created. The activity list acts as

an input node of the proposed framework. It is a buffer in which activity instances are stored

while they wait for the execution. The left part of Figure 0.11 shows a process that repeats for

every meeting. After writing a meeting report and writing down all the activities, the process

on the left side is completed, and the activity execution process on the right side starts. This

process is continuous as long as there are activities on the list that are not completed. It should

be highlighted that meetings are only one of the possible activity sources, but this research will

cover only this source of the activities. For example, the other source could be activity defined

in a conversation between a project leader and an engineer. In that case, the project leader would

insert a new activity instance on the activity list.

Process of activity execution (right part of the figure) is a continuous process that runs as long

as at least one activity exists in the activity list. The activities are executed in the sequence in

which they appear in the list. If an activity is not completed after the first execution, it will be

executed again during the next cycle of the activity list processing. Why is sequential processing

of the activity instances list selected for the framework, and how activity instance execution

and re-execution are realised will be further described in the CPN instance lifecycle section.

An activity might be completed in a few hours (e.g. changing dimension in the 3D model), up

to several weeks (e.g. negotiation about coupled parameters), maybe even months. When a CPN

model is instantiated, its progress and latest status are stored. Storing the model gives a user a

clear image of which part of the specific activity instance is already finished, what data is

missing and what are the next steps to finish the activity.

To be able to work correctly, the framework requires a connection to data sources, depending

on the activity type that is processed. At least, it should have a connection to the employee

database for most activities, with relations to teams, work and interest groups. Furthermore, it

should have a connection to the design parameter database and PDM. Section 4.4 describes

how a CPN model can be connected to external sources. Connection to a particular database

requires a bidirectional link with the database, and establishing such a connection is part of the

implementation process, which is specific for each database.

4. Model and framework for activity execution process

51

Up to this point, the framework is described in a manner to give a reader a basic overview of

how it works and what are its main components. The following subsections are oriented to the

gradual development of a CPN model template using a simple generic activity and starting from

basic CPN model building blocks up to the CPN models, which are used as templates in the

framework.

After the description of CPN templates development, the presentation will continue with a

detailed explanation of the activity list, instantiation of activities, the lifecycle of an activity

instance and how all of these elements are combined into a framework for supporting the

execution of engineering design activities. The last part of the chapter is dedicated to the

description of the CPN model templates for actual activity types. The CPN templates which are

presented here are for two different activity types, which are entities of engineering design

activities taxonomy from Chapter 3:

1. Automatic parameter change

One example of such activity can be found in meeting reports as follows: “Position of a parking

sensor should be 1 mm higher in Z direction.” It is known who is responsible for the component

that has to be changed, and at the meeting is defined which component has to be changed, what

parameter has to be changed and what is the new value of the parameter. Such an activity can

be fully supported by the developed framework since all required data for accomplishing the

activity are known at the moment of activity definition.

The same activity type can be defined slightly differently: “Position of a parking sensor should

be at 63 mm from the ground”. In this case, the parameter is the same, and the final value is the

same, but it is defined as an absolute value, while in the first example, it is defined as an

incremental value that depends on the current value. Therefore, the CPN template should be

flexible enough and calculate such changes in order to store the correct value.

The third example of the same activity type is the following: “for racing vehicle variant, tailpipe

must be made out of titanium.” Now, there is no geometrical parameter, but the material of the

component has to be changed.

In all these examples, the CPN template is the same; only the input and output data are different.

As an input, the template needs a component name, parameter name and the new value of the

parameter. This activity type has been chosen to show the possible flexibility of CPN templates.

Another reason is that this activity type can be accomplished without user (engineering

4. Model and framework for activity execution process

52

designer) interaction and in one processing cycle (does not need to be stopped and processed

again), while this is not a case with the following activity type.

2. Negotiation about coupled parameters

Usually, the purpose of negotiating is to reach an agreement that will result in mutual benefits.

Each party tries to come to an agreement that will serve its own interests. The same is with a

negotiation about coupled parameters. During product design, there are many situations where

two or more parameters are interdependent, and at the same time, more than one designer is

responsible for them. In such a situation, they must negotiate and find a common compromise

solution. CPN based model cannot resolve such a problem automatically, but it can timely

initiate and support communication between designers. The model of negotiation activity used

in this research is based on the negotiation process presented by Yang et al. [81] and a detailed

negotiation model defined by Khosravifar [82]. The model of such a complex activity must be

divided into smaller sub-activities such as: informing parties about changes in the process,

collecting relevant parameters or inviting additional party into the process.

Such a complex CPN template represents the activity in which more than one user is required,

the activity cannot be completed in one processing cycle, and the activity cannot be completed

without the user’s interaction.

To get a better overview of the rest of the chapter, the following roadmap connects covered

topics with sections for easier following:

• Gradual development of CPN model templates using a simple generic activity, starting

from basic CPN model building blocks. Partial models show several types of obtaining

input data (Sections 4.2 to 4.5),

• Definition of the activity list, how are activities instantiated from items in the list, the

definition of activity instance and its lifecycle (Sections 4.6 to 4.8),

• Presentation and explanation of developed CPN model templates (Section 4.12)

4.2. Obtaining input data without external sources

Depending on an activity type, processing of a CPN model will require input data. The

collection of data is explained in Section 4.4. After the execution, new or changed data will be

generated and stored. The process on the highest level, where the CPN model is represented

just as a black box, is shown in Figure 0.12.

4. Model and framework for activity execution process

53

Figure 0.12. CPN model as a black box

The proposed framework has been developed gradually from simple models to a network of

models, and it will be presented here in the same manner:

• In the first phase of CPN models development, input data is given directly in a CPN

model before the execution (Figure 0.13 and Figure 0.14).

• In subsequent phases, a CPN model gathers input data from external sources and stores

new data to them as well (Figure 0.15).

• In the last phase, the java application is a core that connects external sources and all

CPN models to create a process for automating activities from the taxonomy presented

in Figure 0.9.

A CPN model (Figure 0.13), which is used to describe gradual model development, is a model

for obtaining parameter values and properties from a parameter database. In the first phase, the

model will not read the value from the parameter database. However, the value (input data) will

be given manually directly in the CPN model.

Figure 0.13. CPN model - Get Parameter Value before execution (v1)

Basically, this model has similar functionalities as the example model given in Appendix

A.1.3., but this one is tailored to the activity for which it is developed. The model has six CPN

4. Model and framework for activity execution process

54

places and one transition. All places have the same logic, but they are distinguished by colour

based on the function they perform. Green place T1 is a conditional place, and it has just one

token with the value “true”. After the function is executed, it will consume that token and the

transition will not be available for execution to the end of the process. This place gives a user

information if the transition has been already executed, and by observing the status of this place,

the progress of the model can be traced. There are three places with a blue border called

“Parameter UUID”, “Activity ID”, and “Parameter value”. Those are input places, which are

all required in order for the transition to becoming available. In this version of the model, tokens

for places has been given manually and have the following values: “Parameter1234”,

“Activity1”, and “23,3 mm”. The input places are connected with double arrows, which means

that when the transition is fired, it will consume tokens from all input places and put the same

token back to the input place. This is needed in order to keep values of parameter names and

activity names, so a person who is observing the activity can easily see what the model instance

is about. Model instances will be described in a later section. After the transition is fired, it will

also put a token in the purple place D1. That is a status place that shows the user that the

transition has been executed and completed. Then, what is the difference between places T1

and D1? While executing a transition that needs to use external processes, it might happen that

some glitch will appear, and that transition will not be executed to its end. Therefore, if a token

from T1 is consumed, it means that the transition has been fired (but not necessarily

successfully completed), but when a token in place D1 is put, the transition is successfully

completed. Finally, the place with the red border is a resulting output place, where the token

which carries the result of the transition will be stored.

In this example, all tokens in inputs places are available before the transition is fired. During

firing, the transition will execute the code which has been defined during the development of

the CPN model. This particular transition will create a string consisting of the values of tokens

in input places. In this example, that will be “Activity1; Parameter1234;23,3 mm”. The result

is shown in Figure 0.14.

4. Model and framework for activity execution process

55

Figure 0.14. CPN model - Get Parameter Value after execution (v1)

After the execution, the transition still has tokens with parameter and activity on the input side,

but the condition token is missing. Therefore, the transition is not available for firing anymore.

In place D1, one token exists (its value is not important), which means that the transition has

been successfully executed. This example has no practical significance in the current form, but

it serves as an excellent basis for the understanding of further models.

To better understand CPN models in the following sections, more details about CPN elements

that are used in the thesis have to be provided. The main difference from general CPN models

is in colours used for CPN places, transitions and arrows. Every CPN place with at least one

token in a current marking has a small circle with green background and a number inside

somewhere near the place. The number designates how many tokens are in the place. On the

right side of a circle with a green background is a rectangle with a green background. In that

rectangle, all tokens with their values can be found. The number represents how many tokens

of a specific value are in the current marking and what is the value of that token. All other

circles or ellipses represent CPN places. The border and background colour of these circles are

just for a more straightforward distinction between elements and do not affect anything else.

Similarly, all rectangles and squares that do not have green background colour are CPN

transitions. Again, the border and background colour are just for the visualization. Some

transitions might have a thick green border. This border designates that the transition is enabled

and ready to be fired. At one moment, more than one transition can be enabled.

4. Model and framework for activity execution process

56

A black text that is usually placed near the right bottom corner of a transition is a custom

function that will be executed when the transition is fired. These functions are written in the

SML programming language, the language which is behind the CPN.

The direction of an arrow shows the way in which tokens will be transferred, or in other words,

arrows show if a CPN place is an input or an output place of a connected transition. The colour

of the arrow does not affect anything.

4.3. Obtaining input data using external sources

The model from Figure 0.14 has been enriched in the way that values of tokens in input places

are read from a simple external textual document. Such a model is the next phase in developing

a CPN model template, and it is shown in Figure 0.15. There is an important difference in

elements between these models, so it would be valuable to go through this model thoroughly.

In the beginning, the model has one transition that can be fired, which reads a list of activities

and a parameter database. In this scenario, both external sources are textual documents shown

in Figure 0.16. The transition has an embedded custom function for reading textual documents,

which will be executed during firing, and as a result, the function will create a tuple of lists of

strings where one string is one line in a text document. The results (the tuple of lists) will be

divided and stored in two places, where one place is “PL_ActivityList”, which will store a list

of activities, and the second one is “PL_ParameterDBase”, in which a list of parameters is

stored. Both places have custom CPN colour (data type) LS (List of Strings). The result of the

current model status is shown in Figure 0.17.

4. Model and framework for activity execution process

57

Figure 0.15. CPN model - Get Parameter Value before execution (v2)

Figure 0.16. Activity list and parameter database as text documents

Immediately after firing the first transition, the second one will have tokens in all input places

and therefore, it will be enabled for firing. The transition is called “TR_GetPValue”, and it has

four input places and two output places. The Input place (“T2”) and output place (“D2”) are

placed only to give the user feedback about the model execution progress. This transition has

three activities that should accomplish the following (Figure 0.17):

1. Get an activity ID which is defined by the user just after the model is instantiated (from

the blue place),

2. Find parameter related to that activity ID (from “PL_ActivityList” place),

3. Find the value of the related parameter (from “PL_ParameterDBase” place) and finally

4. Copy the parameter value to the output place “PL_ParameterValue”

4. Model and framework for activity execution process

58

To make these activities accomplished, the transition has a custom function called

“readparameter”. The result after the firing is shown in Figure 0.18. Since all transitions are

fired, and there are no enabled transitions, the model execution has finished.

Figure 0.17. CPN model - Get Parameter Value in progress (v2)

Figure 0.18. CPN model - Get Parameter Value after execution (v2)

Custom functions in CPN are written in SML, which is a functional programming language.

The last model has three functions that enable it to work properly. Function “readlist” reads

textual documents and, from one row in the file, creates one item in a list. It has one parameter

(string data type) that should be given and which is a path to a document. As results, it gives

back a list of strings.

4. Model and framework for activity execution process

59

The second function used in the model is “readdatabase”. When this function is called, two

parameters must be given (both are strings). One is the path to the parameter database file, and

the other is the full path to the activity list file. The function will call the function “readlist” two

times, one for each document, and it will forward the path to that function. Afterwards, it will

combine two lists of strings (parameter list and activity list) into a tuple. One might ask, how is

then tuple divided, and a proper list is sent to proper CPN place? Arrows in CPN do not just

show in which direction tokens go, but they show which variable is carried by the token and

can even extract or filter data from a token. In Figure 0.17, between the first transition and

places, “PL_ActivityList” and “PL_ParameterDBase” are arrows with an inscription above

them (#1 databasetuple and #2 databasetuple). These inscriptions will extract data from the

tuple, which is generated in the transition. The number designates which part of the tuple is

extracted and passed to which place.

The third function is called “readparameter” and it has three input parameters: activity ID

(string data type), parameters with their values (list of strings) and activities with parameters

(list of strings). What the function does, is described in the paragraph where the second

transition was explained. All three functions are shown in Appendix A.

4.4. CPN colours in described CPN models

One CPN element that was not tackled until now is the CPN colour. Hence, the concept of

colours will be presented in this section. It is necessary to come back a bit and start from tokens

in general PN. Tokens are the only live thing in CPN models; they move from a place to a place

and show the progress in the model as well as the results of transitions. While they were just

black dots in PN, in CPN tokens, they are data carriers.

The first task when one starts building a CPN model is to declare colour sets. After that, a colour

set must be assigned to each place. Regarding colour sets, several rules must be followed:

• A place can have only one colour set,

• The colour set cannot be changed during the simulation,

• One colour set can be assigned to more than one place,

• Input and output places of a transition do not have to have the same colour set, and

• A place can receive a token only if the token has the same data type as place’s colour

set.

4. Model and framework for activity execution process

60

According to the last rule, a transition should change the input data type to fit the output place’s

colour set. If the data type is the same, it can just perform the requested action on the data. CPN

supports some of the regular data types (e.g. Boolean, integer, large, real, string, etc.). Besides

regular types, it allows the declaration of compound colour sets using previously declared

regular colour sets. Compound colour sets are the following:

• Product,

• Record,

• List,

• Union,

• Subset, and

• Alias.

After the declaration of colour sets, variables that will be used in the model can be declared.

The variable must have a unique name and one of the colour sets must be assigned to it.

Variables are used in functions and as inscriptions above arrows.

The first model, shown in Figure 0.13, is using two colour sets: Boolean and string. That is

depicted by “BOOL” or “S” in the right bottom corner of each place. This model uses several

variables as well: condition (bool), status (bool), input1 (string), input2 (string), input3 (string),

and output1 (string). The function is consuming three input tokens (all are string type), performs

an action on them and sends new data to the output place. The data type remains the same.

The second model, shown in Figure 0.15, in addition to the two already mentioned colour sets,

has one compound colour set. It is called a list of strings and can store strings in a list. These

lists are used in functions to go through them and find the required string (e.g. search for a

parameter in the parameter list). With colour set and variables, this phase of developing the

CPN model template is completely described. The following paragraph goes beyond the core

of CPN and allows control of the CPN model using external process.

4. Model and framework for activity execution process

61

4.5. Executing a CPN model with external application

This is the key phase for this research since it will connect many pieces into one final solution.

Instantiating, controlling and monitoring CPN models using external processes give a

tremendous opportunity to automate some (especially routine) activities in product

development.

The model explained in this phase will be the same model from the Figure 0.18 described in

Section 4.3. The main difference is that in past examples (Figure 0.13 and Figure 0.15), a user

had to interact with CPN models using CPN Tools and thus fire the desired CPN transition.

This way of executing activities is not preferred because this framework is intended to work

with many CPN templates, activity instances and users. The ultimate goal is to move

engineering designers from interacting directly with the CPN model and CPN Tools and that is

why there is a need to control and execute CPN model via a custom program application.

In the example described in this section, the user will still interact with the CPN model in the

way that the user will change a token value in the place with the blue border called “Activity

ID”. After that, the external process (started by the user from the custom application) will start

executing the CPN model by automatically firing enabled transitions (instead of the user who

had to click an enabled transition in the previous phase (Figure 0.15).

Although CPN Tools is a mature environment for designing and simulating CPN models, it has

some limitations as well. It does not fully support connecting CPN models with an external

application (e.g. to fire a transition inside a CPN model). Thankfully, Westergaard and

Kristensen [83] developed Access/CPN framework, which extends CPN Tools capabilities and

thus allows the integration of CPN Tools functions into external applications. The Access/CPN

framework is developed in Java and provides an object-oriented representation of CPN models,

an instrument to load models created using CPN Tools and an interface to the CPN simulator.

More details about the framework will not be covered here since it is well described in the paper

[83].

In this example, functions from Access/CPN are used to control and execute CPN models. They

are called from custom java application developed during this research to run a specific CPN

model. Java application is a main connection point in the framework. It reads the activity list

and takes activity instances one by one. Then it takes the corresponding CPN model template

and fills it with data defined in the activity instance. It also controls the execution of CPN

4. Model and framework for activity execution process

62

models using functions from Access/CPN. Finally, CPN model generates new data and

forwards it to Java application which then communicate with data sources to store the data.

Figure 0.19 shows a flow diagram of executing the CPN model using an external application.

After the application is started, it will create a link between java application and CPN Tools.

This step is done by calling a function from Access/CPN libraries. After CPN Tools is started,

it will open a model whose path is defined already in the program code. Therefore, it is defined

that the user should provide the value for one variable of string type, which will be used to

create a token in CPN place called “Activity ID”. The created token has the value which

corresponds to the values of the variable. The variable that the user should provide is an activity

ID for which he or she needs the parameter name and value. That place has a blue border in

Figure 0.18.

Figure 0.19. Flow diagram of CPN model execution using an external application

The next step in the program code is to loop through the CPN transitions and check if any

transition is enabled. If there is at least one transition ready to be fired, another function from

Access/CPN will be called to fire the first enabled transition. The loop counter will be reset

after the transition is fired since one transition could be fired more than once. Hence, the loop

will start again and go through transitions until there is no enabled transition. After the loop

finishes, the application will give the user the value of the parameter, which will be pulled from

a token in CPN place “PL_ParameterValue” (Figure 0.18). The java application for this

example does not have any graphic user interface since its purpose is just to establish

bidirectional data transfer between CPN models and java application.

4.6. Activity list and instantiation of activities

This section provides more details about the activity list that is created after the meeting (Figure

0.11). Meeting report analysis is used to recognise activities discussed and defined at the

meeting. During the definition of activities to have to be done in the next period, a person who

4. Model and framework for activity execution process

63

is defining the activity actually instantiates the design taxonomy entity and assigns values to

taxonomy entity attributes.

The newly created activity instance is stored in the activity list (including specific data for the

instance) and is ready to be processed using the CPN models. Before processing, data for the

instance is obtained from the activity list, required tokens in the CPN model are created, and

the data is assigned to the tokens. This process is shown in Figure 0.11. To better explain how

this list is created, it is useful to go back to the project review meetings. At the end of the design

project review meeting, the note-taker checks, completes and verifies the report. The report is

then sent to all participants, stored, and analysed to extract activities.

In this research, two ways to process the meeting reports and extract the activities are proposed:

1. Extraction done by a person reading the meeting report

2. Extraction from a tailored meeting report done by software procedure

The first method is already described in Section 3.3. It is a basic method and not software

supported in which a user must extract an activity and values from a text or, in the best case,

from one sentence. The method is slow, but it has high accuracy, and it is resistant to some

grammatical errors in the text. It is also suitable for research purposes, but in practice, too much

time would be spent on that simple activity, especially if the number of meeting and projects

within the company is substantial.

The accuracy of activity extraction was mentioned, and there is a good reason for that. One can

imagine a case where the system would automatically change some dimension of a component,

but it recognised a wrong component to be changed. Or if the recognised activity is to schedule

a new meeting, but the system recognised the wrong date or not all participants are invited. If

someone has to check if each activity is correctly recognised, it is a huge time waste for the

company.

The second method can be seen as a combination of the two previously mentioned methods. If

the current report has a more advanced and improved (tailored) structure, it could be easily

analysed automatically. Instead of just writing unstructured text in the current status column

(see Table 0.6), which already contains all information, it is proposed that this column is divided

into several columns, as follows:

• Activity type (based on the taxonomy entities)

4. Model and framework for activity execution process

64

• Additional columns depending on selected activity (design parameters, stakeholders,

documents)

• Details (which are not required for activity execution but describes the activity)

To explore issues about the faster generation of meeting reports and thus activity list, a simple

test was conducted. In his master’s thesis, Breški [84] proposed an application to create meeting

reports even during a meeting (nowadays, note-taker just write minutes and then rewrites the

report). When creating a new item for meeting minute, a note-taker should choose the type of

meeting topic to fill in (e.g. scheduling meeting, discussion, presentation, assignment). By

selecting the topic, a dynamic user interface shows only relevant input fields for the selected

topic that are ought to be filled. These predefined input fields help the user with writing the

report, but what is more important is that structured input eases the analysis of the report

afterwards. Besides predefined input fields, the user can add additional fields based on a

specific need. The application is simple to use and allows users to write the report faster and

with fewer mistakes than using the conventional method. The drawback of the application is

that a user needs some time to learn how to use all its functions efficiently. Despite its fast

learning curve, users often refuse to gain new knowledge if they have an option to choose

whether they will stick with an old solution or switch to a new one. Using a structured meeting

report created with the application mentioned above, the process of recognising and extracting

activities could be automatized since it has more fields that could be automatically recognized.

That way, analysis is less prone to errors and higher accuracy can be achieved.

However, the way how the activity list is created is not in the focus and scope of this thesis.

The activity list is a buffer in which activity instances are stored are wait for execution. The

framework developed and presented in this research requires an activity list as a source of

activities that have to be processed. In Figure 0.11, the left side of the figure is about analysing

a meeting and preparing the activity list, while the right side is an explanation of how this list

is processed, which is in the main focus for the rest of the research.

Instantiation of activity entity from the taxonomy is the first instantiation step and it is done

during an activity definition. The instantiation process is shown in Figure 0.20. During the first

step, a person who prepares activities for the activity list instantiates the activity from taxonomy

and assigns values from the meeting report to the activity instance. This is a necessary step in

order to do the second instantiation step, which is described in the next section.

4. Model and framework for activity execution process

65

Figure 0.20. Activity instantiation process

A scenario of a two-step activity instantiation process is shown in Table 0.10. In the scenario,

seven activity instances have been recognised in a meeting report. Three instances have activity

type “Store to PDM” while the other four are of type “Change parameter value”. Each activity

instance of the same activity type has to accomplish the same task (e.g. Change parameter

value), but the task will be done on different parameters. Activity type corresponds to the same

entity in the taxonomy.

Table 0.10. Example of the instantiation process

After the instantiation of activities, activity instances are stored to activity list, where they wait

their turn to be processed.

4.7. Instantiation of CPN templates

After an element of taxonomy is instantiated (the first step; activity instance is created), the

second instantiation step (CPN model instance is created) has to be performed. For each

taxonomy entity, there is one corresponding CPN template. In this step, the CPN model is

instantiated from a corresponding CPN model template. This step is shown in the right part of

Figure 0.20. At this moment, an analogy with object-oriented programming (OOP) can be

drawn. In such an analogy, a CPN model template can be considered a class in OOP, whereas

the CPN model instance corresponds to an object of the particular class. The result of the

4. Model and framework for activity execution process

66

second step instantiation is a CPN model instance that should be executed to complete the

activity.

A CPN model template is a CPN model whose function is analogous to the concept of class in

object-oriented programming. Therefore, all CPN model templates are developed previously to

instantiation. Attributes of the specific design activity type are embedded in the corresponding

CPN model. In most cases, the attributes are design parameters, but they could be any kind of

data. During development, the structure and behaviour of a CPN model are entirely defined. At

that point, the template does not have any tokens, only CPN places, transitions and functions.

This means that places, transitions, and arcs will be identical to the matching CPN model

template in all instances of a particular design activity type. Tokens will be generated during

the first execution of the CPN model instance, and they will receive the initial values, which

are known at the moment of execution. As required values become available during execution,

they will be instantly mapped to tokens in the corresponding CPN place. Consequently, each

instance of a CPN model will significantly differ in the quantity and values of tokens. The

second instantiation step is done automatically by the application that is one of the elements of

the developed solution. As soon as the activity instance is processed for the first time after it is

added to the activity list, the proposed process will create a new CPN model instance for that

activity and forward it for processing. In the context of the proposed framework, the position

of tokens in a CPN model presents the current phase or state of the data processing during the

design activity. The ability to assign values to tokens is manifested as a key advantage of CPNs.

This ability is one of the key features upon which the whole proposal is built.

The example of the second instantiation step is shown in Table 0.10. It can be noticed that each

taxonomy element has a specific CPN template (first and third column). Again, similar to the

first step, one CPN template might have several instances, one for each activity of the same

type in the activity list. Instances have specific parameter values which are relevant for that

specific instance.

Figure 0.21 shows the difference between a simple CPN model template and a corresponding

CPN model instance.

After finishing the second instantiation step, the new instance of the CPN model is ready to be

processed to fulfil the functions and realise the features defined in the template. For the

proposed approach, it can be considered that the CPN models actually represent the modelling

of relations, semantics, and logic as the next required step in the definition of an engineering

4. Model and framework for activity execution process

67

design activities ontology. In this phase of the research, only the proposed taxonomy has been

used. The approach can be further extended in terms of ontology definition, which is out of the

thesis scope.

Figure 0.21. CPN template (above) and CPN instance (below)

4.8. Lifecycle of a CPN instance

The previous section presented CPN templates and their instances, while this one is oriented to

the lifecycle of CPN instances. Firstly, the lifecycle of one CPN instance will be described and

afterwards, its behaviour during the activity list processing will be explained.

The lifecycle process implies that each instance can switch between active and inactive periods.

Following that rule, two types of CPN instance lifecycles might occur. The lifecycle types are

shown in Figure 0.22.

The lifecycle starts with the instantiation of a CPN model from an activity instance and the

corresponding CPN model template. The instantiation occurs when a user adds the activity

instance to the activity list. Activities in the list are executed in the order in which they are

added to the list. After the last activity on the list is executed, a new processing cycle will begin

again from the first activity on the list. In this cycle, activities that were completed during the

first cycle are removed from the list. Activities that were not completed will be processed again,

along with new activities added in the meantime.

4. Model and framework for activity execution process

68

Figure 0.22. Lifecycle of basic and extended CPN instance

When the CPN instance is run for the first time, it will become active. The model will run until

it comes to one of two possible states:

- All transitions are fired, and the model goes in the completed state,

- The process comes to the state where there are no tokens to fire the next transition. In

that state, the execution process is not completed, and the instance goes in an inactive

period.

Therefore, CPN models instance lifecycle might have at least three states (instantiation, active

period, completed state). Consequently, two different lifecycles can be differentiated: A

lifecycle with a single active period and a lifecycle with multiple active periods, which could

switch between inactive and active periods. CPN instance always has an odd number of periods.

Suppose there are more than three periods; after an active period goes an inactive period, then

an active period once again. To sum up, after the instantiation period always comes an active

period, after the active period, two possible paths exist, a completed state or an inactive period.

After the inactive period always comes the active period.

Lifecycle with a single active period – A basic CPN instance lifecycle which must have all

the required input information available before the processing even starts because it will fire all

transition in only one active period. When processing is completed, the instance will receive

the ‘completed’ status, and it will not be further processed.

Lifecycle with multiple active periods – If an instance does not have all of the input

information available at the beginning, it is necessary to extend the lifecycle through several

4. Model and framework for activity execution process

69

active-inactive periods. During each active period, the processing will be stopped at a particular

place in the CPN model when there are no enabled CPN transitions. The current state of the

CPN model instance will be stored, the instance will be terminated, and it will switch to an

inactive period. After new data becomes available (that is always checked in the next cycle of

the activity list processing), it will be activated again, and the processing will continue. If the

processing comes to an end in the second cycle, the instance will become completed, or in the

other case, it becomes inactive again until the next activation.

Processing of an activity instance begins with an instantiation of the matching CPN model

template. After the model instance is instantiated, during the active period, the system that

manages the execution of the CPN instances will try to collect all the data required by the

instance through I/O interfaces. After data (partial or all) are obtained, the CPN instance will

be executed. The execution is part of one active period. After the execution, newly calculated

data values will be stored again through I/O interfaces. The state of the CPN instance is entirely

determined by the values of tokens in each CPN place. This process is represented by the graph

with a timeline in Figure 0.23. To continue the execution in the next iteration, it is necessary to

store the state of the CPN instance. Such an approach also ensures full traceability of events

during design activity. The inactive period bridges the two iterations of the same activity

instance. This period is shown in Figure 0.24 as the time between the two-time steps for the

same activity instance. It is the time needed to process all other activity instances in one cycle

through the activity list.

Figure 0.23. Events during Extended CPN model instance lifecycle

At the beginning of each iteration, the system reads the state of the CPN model so it can

continue from where it stopped in the last iteration and collect new values from the required

4. Model and framework for activity execution process

70

data set. During the waiting period, the values of some data may change or be determined for

the first time. Any changes in the data set will cause propagation during the execution of the

CPN model instance. After processing, the system will store new values again and save the

newest state of the CPN model instance. In any iteration, propagation through the CPN instance

could be partial, which means that only some transitions were fired. When all transitions are

fired, the CPN model instance execution process is completed, and the matching activity

instance status is changed to ‘completed’, which means that the process for this activity instance

is stopped.

The activity list is dynamic, which means that new activity instances could be added to the list

at any moment. Adding new instances to the list and as well as removing items when they are

completed affect the length of the list. Since an activity instance could be added at any time to

the list, it can be assumed that one cycle through the activity list could last forever. In a real

working environment, that will never happen. It is assumed that project meetings are held once

a week, and only a small number of activities are defined at one meeting. Hence, it is not

expected that new items will be added to the activity list frequently compared to the duration

of one activity list processing cycle. One cycle through the activity list is the time needed to

process all activity instances just once. The exact time cannot be known since the number of

total activity instances and the number of instances that will be processed (only ones with new

data which was not available in the last cycle) vary from cycle to cycle significantly. One

activity list processing cycle consists of a series of discrete intervals, whereby only one activity

instance is processed in each interval. The duration of one interval is the same as the duration

of the lifecycle with a single active period or the same as one active period in the instances in

the CPN model instances that have a lifecycle with multiple active periods.

After the end of this section, a reader might ask why all instances are not processed

simultaneously and why is inactive period needed at all? It is to expect that in a company, only

one system that manages all activity instances exists. Therefore, it has to process a considerable

number of activities. Each CPN model which is executed consumes computer resources, and it

is realistic that the system would run out of memory. One solution to solve this problem is to

execute CPN model instances sequentially, one after the other. The main drawback in that

approach is that the CPN model instance execution will not continue as soon as new data

becomes available. There is always a time gap from the moment when data become available

until a particular CPN model instance gets its turn to rerun the execution. Another issue with

4. Model and framework for activity execution process

71

this approach is that it is slower since the system needs some time (a matter of seconds) to store

the CPN model instance after each processing and load the other one.

Figure 0.24. Processing of activity list

4.9. Developed CPN model templates

In this section, the CPN model templates will be shown and described to show the extensiveness

of the CPN model templates and the possibilities that the approach can provide. These templates

are presented to show a broad spectre of functionalities that are integrated into other CPN model

templates. The complete models are shown in Appendix B, while here they will be described

gradually, sector by sector.

4.9.1. The model for automatic parameter change

During the meeting reports analysis, it was noticed that often some parameter value has to be

changed. Since the projects were in the early development stage, it can be considered that there

are in the concept development phase of the design process. In that stage, the general

arrangement of components is made. At a meeting, a participant might ask to move a component

5 mm to the front of a vehicle. Or to position the component at 23 mm on z-axis instead of 20

mm, what was the state before. Or the third example, the view angle range has to be changed

in the parameter database. Using the traditional design approach, someone has to save the

current work, close it and open the assembly to change the specific parameter value. With the

implementation of the proposed framework, the design approach could be changed and would

work as follows: An activity to change a value should be defined, afterwards it would be

4. Model and framework for activity execution process

72

automatically processed, and the values would be changed. Activity definition does not demand

an additional effort since it could be defined along with writing the meeting report. The

complete CPN model template for changing parameter value is shown in Appendix B.1, while

here, each sector of the model will be separately described.

The first task in each design activity model is to gather all available data needed for model

processing. Some of the data is needed later in the model, and it is gathered at that point. Each

model sector has conditional places called “T” and status “D” places shown in Figure 0.25.

These places are previously described in Section 4.2. Blue places are places for which tokens

are determined using values that come from external sources. Green places are places for which

tokens are defined inside the CPN model, and they do not have any contact with the external

environment. The same is with green CPN transitions (green rectangles), they will execute the

custom function written inside the model and do not have a link with Java code. On the other

side are red transitions and places that generate, transfer and contain tokens that will trigger a

call of Java function and provide input parameters for a called function. For the specific CPN

model template (sector shown in Figure 0.25), the parameter for which the value change is

needed is defined in the activity list. That parameter name is forwarded to the CPN model

during the first execution of the CPN model instance. Based on the parameter and activity ID,

the red transition generates a token and sends it to the red place. After that step, a java function

is called, and it will get the existing parameter value and its properties which are stored in the

parameter database.

Figure 0.25. Sector of CPN model template needed for gathering parameter’s value and

properties from external sources

After the parameter’s value and relevant properties are loaded into the CPN model, the

processing can begin. The first task is to determine if the parameter’s value written in the

meeting report is an absolute or incremental value. That property is already defined in the

4. Model and framework for activity execution process

73

activity instance, but the value has to be adjusted based on it. The value in the parameter

database is an absolute value, and if the value in the activity instance is defined as incremental

(e.g. move a component for 5 mm), then the absolute value has to be calculated. This process

is done using the model sector shown in Figure 0.26. Since it is a simple equation, it can be

calculated directly in the CPN model. The outcome is a new absolute parameter value which is

then sent for further processing. In the model, tokens are data carriers, as described in the

previous chapters.

Figure 0.26. Sector of CPN model template that manages calculation of new parameter’s

absolute value

Now, when new the value is known, the model checks if this value falls inside the boundaries

defined for that parameter. The lowest and highest allowed values are defined in the parameter

database for every parameter where that is possible. Based on the limits, the transition will

decide if value change is valid or not. If the parameter value range is not defined, the model

will just continue with the value change. Described part of the process is defined in the model

sector presented in Figure 0.27. Limits are pulled from the external source while the calculation

is done inside the model. The transition’s and places’ colours match their types described

before.

4. Model and framework for activity execution process

74

Figure 0.27. Sector of CPN model template responsible for checking if the new parameter

value is in allowed limits

After the transition “check limits” is completed, two outcomes are possible. The first outcome

is that the value fits in the defined range, while the opposite is when the value is outside the

range. If the value is outside the range, the notification will be sent to the person responsible

for that specific activity instance. Model elements required for sending a notification to the

responsible person are shown in the upper part of Figure 0.28.

4. Model and framework for activity execution process

75

Figure 0.28. Sector of CPN model template with two possible actions – sending a notification

to a responsible user and changing the parameter value in the database

In this example, the notification with the necessary information is sent as an email to a user.

The mandatory information is the activity ID and the issue which has to be checked. Sending

an email is the only one example of how the user can be notified. There are other ways to send

the notification, which could be easily implemented into this approach. After the responsible

person checks the issue, the activity instance can be restarted and processed one more time.

Before that, of course, the issue has to be resolved. Notifying process consists of a part inside

the CPN model that defines for which activity the notification is sent, to whom, about which

4. Model and framework for activity execution process

76

parameter and the message for the user. This information is then forwarded to Java function,

which will notify the user based on the inputs from the CPN model. The system works in the

way that this same Java function can be called from any CPN model instance, which has the

same transition and output place to call Java function properly. Using this principle, the number

of needed Java functions is reduced to a minimum – consequently, the building of new CPN

models becomes easier using such building blocks.

The lower part of the model in Figure 0.28 becomes active if a new parameter value is between

the lower and upper limit. The transition and its output place will prepare data to call Java

function, which will start the process of value change in the parameter database. After the

parameter is changed in the database, the model continues with two optional functions, a

function that informs stakeholders that the activity is completed and a function to ask the

responsible user to check if the completed activity yielded the required results (Figure 0.29).

The options can be selected during the definition of the activity instance. If any of these options

are selected, the transition “TFunction_InformCompleted” is enabled.

Figure 0.29. Sector of CPN model template which informs users and asks for feedback if

these options are selected during activity instance definition

After the transition is fired, the corresponding Java function is called. This Java function will

call another function depending on which option is selected, one for sending the notification

that the task is completed and the one to ask the user for feedback. After the function is

completed, the last function in the model, “TFunction_CompleteTask”, is left for firing (Figure

0.30). If the feedback option is not selected, this transition is fired immediately after informing

4. Model and framework for activity execution process

77

users about task completion is done (if that option is selected) or after the transition that changed

the value in the parameter database. If the feedback option is selected, the processing of this

activity instance will be terminated since the feedback will not be provided immediately but

after some time. The CPN model instance is stopped here, which ends the processing cycle for

that instance. In the meantime, in each processing cycle, before the feedback is provided, the

model will check if the feedback is provided. If it is, the last transition will be fired, and the

processing of this CPN model and activity instance will be fully completed. If the feedback is

not provided, the model will be terminated again, and it will continue to check for the feedback

in each subsequent processing cycle.

Figure 0.30. Sector of CPN model template which activates if preconditions for completing

the activity instance are fulfilled

4.9.2. Model of negotiation on coupled parameters values

The second model presented in this chapter is a model to support negotiation about coupled

parameters. It is an activity type that can be found as part of “resolving” group of activities in

the design activity taxonomy. The model is based on Khosravifar’s [82] negotiation model and

adjusted for this specific activity type. The coupled parameters that should be negotiated in

such activity type have to be defined during activity definition. Also, similar to the previously

described activity, it should be defined if someone has to give feedback after the activity

instance is completed and if one or more users should be informed about the activity outcomes.

During the first processing cycle of this activity type, the CPN model gathers all properties of

processed coupled parameters with the help of Java functions. This and other CPN transitions

that will be described in the following paragraphs are shown in Figure 0.31, while the complete

model is shown in Appendix B.2. Besides parameters’ values, the model gathers responsible

4. Model and framework for activity execution process

78

users for the parameters (primarily the designer who defined the parameter) and a designer with

a decision-making role who will confirm the result after negotiation or step into the

communication if the parties cannot find a mutual solution.

Figure 0.31. Sector of CPN model template which collects all necessary information to

prepare an initial proposal for coupled parameter negotiation

According to Toepfer et al. [80], commonly used coupled parameters on many occasions have

defined Solutions spaces with most often only two dimensions. Still, there are some with more

than five dimensions. Such solution spaces provide great help during the negotiation process

since the defined solution space opt-out the results which are not feasible and reduce the number

of iterations. Therefore, it is easier to find a common agreement if there are already defined

value limits for each parameter. The CPN model will always try to find the already defined

solutions spaces and include the results (limits of parameters values) in the process. All gathered

data is merged and processed to prepare an initial proposal for the negotiation. The proposal is

sent to all stakeholders and the current proposal version is stored in CPN place “Sent Proposals”

4. Model and framework for activity execution process

79

shown in Figure 0.32. At this point, processing in the first cycle stops since now stakeholders

should give their feedback on the automatically proposed solution.

Figure 0.32. Sector of CPN model template which prepares and sends the initial negotiation

proposal to all stakeholder

After the feedback is received, in the next processing cycle, the proposal is evaluated and based

on the evaluation, the process can continue in three different directions (Figure 0.33). The

parties might oppose the proposal they received, and they can propose different values for the

solution. Based on these values, a revised proposal is generated and sent one more time to all

stakeholders. In the CPN model, after the revised proposal is generated, the token will be put

in CPN place “Proposals”, and CPN transition “TFunction_SendProposal” will be enabled

again. This transition does not have a conditional place since it can be fired more than one time.

The status place exists and it counts how many times the transition has been fired. The status

place has a bool data type, and it means that tokens can have values “true” or “false”. If the

transition is fired twice, the status place will have two tokens with the value “true”. The same

is with all other transitions that do not have a condition place but have a status place.

The second direction that comes after the proposal evaluation occurs in the case when an

additional person should be included (e.g. another specialist, team leader, supplier). The CPN

4. Model and framework for activity execution process

80

model will call Java function that will include a specific person in all further communication.

The process will continue by sending a revised proposal to all stakeholders.

The third direction is enabled when all stakeholders are satisfied with the values, and the

negotiation process came to its end. Now, the person who will make a final decision is invited

to check the final proposal or to decide about the values if, after several iterations, stakeholders

did not find a common solution.

Figure 0.33. Sector of CPN model template which shows different paths that can be enabled

based on the token value in input CPN place

The activity is now processed in each cycle, but no transitions are fired until the decision-maker

confirms the results of the negotiation. After the results are confirmed, a part of the model for

informing stakeholders about completed activity instance and for completing the activity is

enabled and executed. Again like in the first CPN model template, based on the options that are

selected during the activity definition, the model will call Java functions with different sets of

parameters. If the model in Figure 0.34 is compared to models in Figure 0.29 and Figure 0.30,

it can be seen that these models have the same CPN transition and places. Moreover, firing

4. Model and framework for activity execution process

81

those transition call the same Java functions but with different parameters. That is an example

of how building blocks work in the CPN model templates.

Figure 0.34. Sector of CPN model template that informs about completed activity instance

and completes the activity

In this model, there are several CPN places that have a blue label “Fusion” in the place’s bottom

left corner. This label means that there are one or more same CPN places, which means they

have the same data type and they tokens. For example, if a token is added to place “Activity

ID” the token is visible also in “F1 Activity ID” and “F2 Activity ID” places which are fusion

places of “Activity ID” place. If a token is consumed from one place, the token is removed from

all fusion places. Fusion places are used in complex CPN model to avoid drawing arrows from

one side of the model to the other side, which improves model clearness and readability.

The presented model on several places waits for users to take the next step. After that step is

made, the model continues with the execution in the next processing cycle. In the negotiation

4. Model and framework for activity execution process

82

process, it is expected that more than one iteration will be needed until all stakeholders agree

on the values they are discussing. Taking this fact into consideration, the time to complete this

activity might vary from a few hours to even a few months. During all this time, the activity

instance is processed in every cycle, but no transitions are fired. Moreover, all this time, the

activity instance exists in the activity list. On the other hand, in the first CPN model template,

which changes a parameter value in the database, and if no feedback is needed, the activity

instance can be completed in a matter of seconds.

83

5. IMPLEMENTATION OF THE

FRAMEWORK

Based on the findings derived from the preliminary framework definition described in Section

4.1., an extended and improved framework was developed and presented in this section. Based

on this framework, the system which manages activity instances, CPN model templates and

CPN model instances were created. After the description of the framework, a cyclic process

that process the activity instances will be presented.

The final framework that manages the cyclic execution process of engineering design activities

has several main components necessary to fulfil the demanded functions. These components

are shown in Figure 0.35. The first component is the one that manages the activity list. Its

primary function is to create a corresponding CPN model instance for a new activity instance.

Additional functions are: Updating the status of the activity instance based on the changes in

the CPN model instance and providing the data from the activity list that are important for

executing the CPN model instance.

Figure 0.35. Framework of the cyclic execution process of engineering design activities

The second main component is the one that manages all processes in and around CPN models,

mostly through communication with the CPN Tool application. The main function of the CPN

model manager component is to create a CPN model instance in coordination with the activity

list communicator. This manager component is responsible for CPN model templates,

especially for their creation and editing.

5. Implementation of the framework

84

The same component checks which activity instance is the next on the list for executing and if

there is new data available for the specific CPN model instance. Gathering new data is the task

of the I/O data interfaces component.

CPN model manager component also reads the last saved state of the specific CPN model

instance before it is executed and stores a new state after the execution is completed. The

component provides support for the visualisation of a CPN model instance if a user wants to

verify the state of the specific instance or to find out what values are used in previously fired

CPN transitions. Using this component, the user can check where a delay in execution might

occur (e.g. what data is missing, who did not update the data).

The framework processes the activity instances in the sequence in which they appear in the

activity list. The list is prepared based on a weekly meeting of project teams. How the list is

created is not important for the framework; it expects the structured activity list as an input

resource. The activity list can be updated at any time and it does not affect the functioning of

the other processes. The processes run continuously, assuming that most updates of the activity

list will be conducted after the weekly project meetings.

Software components of the proposed framework have been developed in Java programming

language because that is the best option for solving data transfers and connection between CPN

Tools which manages CPN models and procedures developed as I/O data interfaces to data

sources (e.g. PDM, parameter database).

The cyclic execution process (Figure 0.36), which runs based on the described framework,

fulfils the following functions in one processing cycle:

• Parses the activity list and takes the next uncompleted activity instance for the

processing,

• Recognises the type of activity instance based on the taxonomy,

• Opens the last stored version of the CPN model instance. The system stores all versions

of each instance. If the instance was never processed, it would create a new CPN model

instance.

• Collects all required and available data based on the current progress of the currently

processed instance. Data is collected through I/O interfaces connected to the system,

and in the next step, data is assigned to corresponding tokens in the CPN model. The

structure of a CPN template defines from which source data should be collected.

5. Implementation of the framework

85

• If there is an enabled transition in the current active instance, the system fires it. If there

are no enabled transitions, the system stores this instance and goes for the next activity

on the list.

• If any transition is fired, the system stores the status and newly created values and

checks if there is another enabled transition. If there is any, it will be fired. If there is

none, the system will check if there is new available data to be assigned to the tokens.

In the case of new data, the enabled transition would be fired and in case of no new

data, the instance would be stored, and this cycle would be finished.

One of the important features of the developed processing algorithm is that when a CPN model

instance finishes the execution, its state is saved at the end of its processing cycle. In the next

cycle, the saved state of the instance is loaded and executed again. Such a solution, which

divides and runs the whole process in discrete steps, was chosen because a larger number of

simultaneously active CPN models, which are relatively complex, would require excessive

computer resources.

5. Implementation of the framework

86

Figure 0.36. Cyclic execution process of management of engineering design activities

5. Implementation of the framework

87

5.1. Software components

The software components and the process algorithm of the framework are developed in Java

programming language. In designed solution is designed that all processes regarding the

activity list, activity instances and CPN model instances work continuously on a server-side.

On the other hand, each user can access a web-based application to give instructions (based on

his or her role) that will run processes on the server-side. This section will provide details about

the software components that are needed for the realisation of such a solution concept.

The complete software solution consists of the following main components:

1. Procedures that manage processes at the level of the whole solution

2. Procedures specific to each CPN model type

3. Procedures that manage the activity list

4. Procedures that establish and support communication with CPN Tools

5. Procedures that enable communication with databases (e.g. PDM, parameter database,

ERP)

6. Procedures that enable a user to observe, check and visualise the activity execution

progress

5.1.1. Procedures that manage the whole solution

The software solution consists of two main components: The front-end user application and

processes that run on a server. The user application is a web-based application where the user

can log in, check the progress of activity instances depending on the user’s role (e.g. engineer,

team leader, project leader), add new activity instance on the activity list, manage the activity

list, visualise CPN model instance or receive notification from a CPN model instance. Since

the application is web-based, it should not be demanding to implement it into the existing

company’s intranet portal.

The main processes which are the core of this framework run on the server-side, and there are

several reasons for that decision:

4. All databases needed for this solution run on the server-side,

• More than one user has access to the specific CPN model instance,

5. Implementation of the framework

88

• All processes run in real-time,

• CPN Tools application requires a lot of random-access memory for executing complex

CPN models, and

• It should be easier to install and maintain the solution.

The next several subsections are devoted to software components that run on the server-side

and which are required to run the proposed solution.

5.1.2. Procedures specific to each CPN model type

During the previous sections, it has been shown that each CPN model is used for a specific

purpose. That purpose is defined by the structure of a CPN model template using sets of CPN

transitions and places that function as an extended process workflow. In order to distinguish

these models from simple workflows, for each transition, the user is able to define a custom

function that enhances the features of the CPN model. These user-defined functions are built-

in in the CPN model, and they are defined already in CPN model templates. To write user-

defined functions, a functional programming language called SML is used. These functions

change data provided through tokens on the input side (input CPN place) of a transition and

provide results on the output side of the same transition. If a transition demands data that is not

already in the CPN model, it can be accessed using Java connector and procedures defined in

Java environment. These procedures have access to I/O interfaces and can pull and push data

to databases using APIs (Application Programming Interface).

If a CPN model needs data from external sources, the CPN model will have a transition that

will put a token in the corresponding output CPN place after firing. The token’s value consists

of the name of the Java function that should be called and the input parameter for that function.

If the function completes successfully, it will place a token in the corresponding place in the

CPN model. The example of such a CPN model segment is shown in Figure 0.37.

5.1.3. Procedures that manage activity list

The activity list is a very important component of the system. For the purpose of this research,

the activity list is modelled and recorded as a spreadsheet with a defined structure. It is a

component necessary at the beginning and also at the end of each CPN model instance

processing cycle. Besides these functions, it is needed to store new activities that emerged in

the meantime after the processing has started.

5. Implementation of the framework

89

Figure 0.37. CPN model example for calling Java function

The main functions of the activity list will be described in the following paragraphs, while less

important utility functions (such as copy, edit and delete) that are not relevant for the research

are omitted from the further description.

Adding new activities to the list:

When a user wants to add an additional activity instance on the list, the user will fill out a form

in the application for defining a new activity instance. In the case of automatic recognition and

processing of meeting reports, this step could be automated as well. Each activity type has

common fields that are the same for all activity types and fields that are specific for the selected

activity type. The application checks if the data in the form is valid and runs the procedures that

will add a new activity to the list. The newly added activity gets the status that it is not processed

yet.

Processing of an activity instance:

In each processing cycle, the system checks the list and takes the next activity that is not

processed in the current cycle through the list. To find out which processing direction to pursue,

the system checks the status of the activity instance. If the instance was completed in the past

cycles (and due to any reason was not removed from the list), it skips this instance and takes

another one. If the status indicates that the instance is not completed, the system continues with

processing. After processing, the system changes the status of the instance in the list depending

on the processing outcome.

5. Implementation of the framework

90

Visualisation of an activity instance:

A user can on-demand check the progress of a particular activity instance. The activity list

stores links to every activity instance version created after each processing cycle and thus

ensures full traceability. After the instance and version are selected, the system opens the CPN

model instance version in CPN Tools allowing the user to observe the state of each CPN

transition, place and tokens at the end of the selected processing cycle (end of the active period

according to Figure 0.24).

5.1.4. Procedures for data transfer and communication with external data

sources

CPN model instances, as well as the other components of software solution, have to establish

bidirectional data transfer with external data sources in order to run the whole process properly.

These sources can be various, from collections of CAD parts, assemblies and configurations

(e.g. PDM) to users, teams and interested groups (e.g. ERP). Each CPN model type uses some

of these sources for its work. Models can use just one or maybe all of the available data sources.

Which of them will they use is defined in the CPN model template. The CPN model itself can

not access those sources, but it can demand information from them. After the demand is

established, the procedures written in Java will take this demand and make a query to get

information from the specific source. Since this research is created in a limited environment,

most of the sources are modelled as excel spreadsheets and textual documents. To confirm that

a connection to the real databases is feasible, a testing copy of a parameter database has been

created, and a bidirectional connection between the database and the solution was established.

Besides connections to data sources, the developed solution has an option to access email

services and calendars in order to send necessary notifications to users (e.g. to schedule an

appointment, to notify about activity changes).

5.1.5. Procedures that establish and support communication with CPN Tools

CPN Tools is an application used to create CPN model templates and execute CPN model

instances. The developed solution stores all versions of instances after each CPN model

processing, and therefore, full traceability can be realised. Any version of an instance can be

checked, restored and visualised. CPN Tools is a 3rd party application whose user interface is

developed using Java programming language, but the mathematical core of Coloured Petri Nets

is still based on SML programming language.

5. Implementation of the framework

91

Along with CPN Tools, their developers created Access CPN, a collection of procedures that

enable connection from any other application to CPN Tools. This connection allows creating

of CPN models, editing, simulating and visualisation. Basically, any function inside CPN Tools

can be activated through Access CPN. Therefore, a connection to CPN Tools was not developed

in the scope of this research. On the contrary, already developed procedures are included and

enriched in this solution.

When a CPN model instance has to be executed, a proxy will be created to run the CPN Tools

process. After the cycle shown in Figure 0.36 is completed for one instance, the application will

order CPN Tools to close the current CPN model instance and to wait until the next cycle

begins.

5.1.6. Procedures that enable a user to observe, check and visualize activity

execution progress

In the previous subsections, visualization of activity instances and their versions were

introduced. After a user selects the activity instance and its version, the CPN model instance

opens in the CPN Tools application. Using this functionality, the user is able to check the

progress of the activity instance. If some instance is stuck or is inactive for a long time due to

missing data, the user can easily check which data is missing and thus speed up the whole

process. Also, in some cases, it can be needed that the user should decide in which direction the

CPN model will continue. Another reason for using this function can be for knowledge

capturing since values in all input and output places will stay written in the CPN model, and

thus, it is easy to go back in time to verify and examine the past decisions.

5.2. Implementation issues and challenges of CPN models

5.2.1. Interaction between user and CPN model

Some CPN models for particular kinds of design activities demand user interaction. When such

kind of model is started and until the user does not provide information, CPN models instance

will undergo eventless cycles. In these cycles, the instance is started, the system checks if there

is new data, but since there is not, the instance will be terminated. The possibility of interaction

with the user is not directly within CPN model instance. The user usually even does not see the

CPN model instance. The needed information usually can be found in external data sources.

Therefore, in most cases, the user will actually change a value in an application he is using (e.g.

CAD, CAE, process planner) and that value will be stored in some database. In the next

5. Implementation of the framework

92

processing cycle, the CPN model instance will check that database and pull the value it needs

to continue executing the CPN model instance.

5.2.2. Support for additional activity types

The solution developed in the scope of this research does not support all activity types defined

in the developed taxonomy Figure 0.9. Moreover, there is a great possibility that a new activity

type will be added to the design activity taxonomy in future research. For those future activities,

there are no existing CPN model templates. Therefore, a user is able to create new CPN model

templates for additional activity types. But it is not enough to solely develop a new CPN model

template since all of them require procedures that are specific to each activity type. This process

can be simplified by using building blocks, which are further described in the next subsections.

5.2.3. Partial reuse of CPN model templates

If there is a demand for a new CPN model template, it can be created easily using the parts of

already existing templates. Templates created in this research are modelled in the way that each

functional part of one template is grouped together and has connections to the other group in

the same model. That way, groups are separated and can be easily copied to some other CPN

model. Those groups can be seen as building blocks.

One might ask what is then happening with customized functions that are specific to each CPN

model type? As long as the name of the transition, which has an underlying user-defined

function, remains the same, there will be no problems.

5.2.4. Hierarchy of CPN model templates

To further contribute to the concept of building blocks, another useful feature of CPN

methodology is a hierarchy of CPN models. Each functional group can be defined as one sub-

model on the lower level of the hierarchy. Sub-models are then physically separated from the

main model, and their further usage is even simpler.

Here is presented one simple example of calculating two related functions to explain better the

hierarchy and reuse of CPN model templates. One task is to sum up two integer number. The

other task is to multiply the result from the first task with the third number.

Here is a solution with two separated CPN models. Model A, a solution for the first task and

model B for the second task. After the first task is completed, the user should write a value for

5. Implementation of the framework

93

number A from the result of the first task in the second task. Both CPN models are shown in

the next figure. The same result with less effort for the user can be made with one extended

CPN model. The model is shown in Figure 0.39. The user should give three numbers as input

values and run the simulation to get the result.

Figure 0.38. Hierarchy example - two separate models

Figure 0.39. Hierarchy example - extended model

The extended model is coloured to distinguish two models from the first solution visually. The

blue part of the model is part to summarise two numbers, while the red part is to multiply two

numbers. Pink place in-between is a connection between these two parts. This place is the

output place for the first part of the model and the input place for the second part of the model.

This example will be further extended with one CPN model with a hierarchy feature. It may

seem more complex to create, but reuse of a sub-model in some other CPN model could spare

effort later during modelling.

Figure 0.40 shows a schematic representation of the hierarchy model. In the top-level model,

transitions that represent sub-models are placed. Each of them must have at least one input

place and one output place. In this example, each model for summarisation has two input places

and one output place. Sub-model 1 as input places has “Input place A” and “Input place B”.

The place named “connector” is the output place for this sub-model. The same place is also an

5. Implementation of the framework

94

input place for sub-model 2. The other input place for this sub-model is “Input place C”. Output

place of the second sub-model is the place named “Result”. Each sub-model is then modelled

as a separate CPN model. The general reason to use hierarchy is to make the CPN model easier

to follow and understand by dividing it into smaller parts. In this research, sub-models are also

used as building blocks during the creation of new CPN model templates. It is important that a

sub-model always has exactly the same number and type of input and output places.

Figure 0.40. Schematic representation of hierarchy CPN model

The following figure shows a top-level model of the hierarchy example. It can be noticed that

the model is slightly changed in comparison with the model in Figure 0.39. Transition on top-

level are representations of sub-models, and they are shown as rectangles with double border.

Above the border is the name of the corresponding sub-model.

Figure 0.41. Hierarchy example - top-level model

Each sub-model is now a separate CPN model on the lower level. To make the example a bit

more complex, each sub-model now has an additional “dummy” place and transition. These

5. Implementation of the framework

95

places are here to emphasise the difference between sub-model and representation of sub-

models on top-level. Sub-models can be much more complex than in this example, which can

be seen in developed CPN model templates. Figure 0.42 and Figure 0.43 are the sub-models of

the hierarchy example in Figure 0.41. Each sub-model has special places which are connectors

to the top-level model. These places are ovals (or circles) with a double border and a note below,

which designates if the place is an input place or an output place for that sub-model. Connectors

do not have to have the same name in the sub-model and top-level model, which is also visible

in the figures.

Figure 0.42. Hierarchy example - sub-model 1

Figure 0.43. Hierarchy example - sub-model 2

96

6. FRAMEWORK VALIDATION

To confirm that hypothesis defined after the preliminary literature review is valid and to check

if all assumptions were correct, the validation of the proposed CSCW enhancement should be

performed. The chapter also provides insights into the applicability and usefulness of the

developed enhancement, which correlates with the Descriptive Study II stage of DRM. The

validation has been carried out on two case studies. The projects used in the case studies have

a different scope but also differ in their characteristics which are described in the following

sections.

6.1. Validation of the framework based on CPN methodology

The purpose of this section is to present the results of a case study that has been designed to

validate the proposed CSCW enhancement, including the developed framework and associated

cyclic process for engineering design activity execution. This case study gives the answer to

whether the proposed framework based on the elements of the taxonomy of engineering design

activities can work with CPN methodology to semi-automate design activities. Within this case

study, it will be confirmed if usage of the presented CSCW enhancement supports design

engineers and to what extent. Time spent for the execution of activities that are commonly

conducted during product development (such as negotiation about parameters, change of

parameter value, informing about change that has been made) will be compared with the time

needed to execute the same activities using the proposed enhancement.

In Section 4.9 could be noticed that CPN templates consist of certain parts that are the same for

all other CPN models. For example, all CPN templates contain a part that will conclude the

activity instance once it is executed. Therefore, this case study includes three different activity

types (consequently also three different CPN templates) that are part of the design activity

taxonomy defined in this research. The activity types (taxonomy entities) are listed in Table

0.11. To identify these entities later in tables, the taxonomy entity ID column is added in the

table.

6. Framework validation

97

Table 0.11. Taxonomy entities used in the case study

Taxonomy

entity ID

Name of taxonomy entity Number of

instances used

1 Automatic parameter change 3

2 Parameter value change

confirmation

3

3 Coupled parameter negotiation 1

A wide range of activity instances can be encompassed under certain activity type. For example,

value change activity might or might not demand feedback after the value is changed, or value

that has to be changed might represent weight, measure, distance or colour.

In this case study, for each activity type, several activity instances (Table 0.12) are selected for

the simulation. All activities originate from the meeting reports that have been analysed in this

research. These activities are selected since they possess characteristics that represent an

overview of characteristics included in almost all other activity instances. The following

characteristics from a processing perspective can be found in selected activity instances:

• Instance can be completed in one processing cycle,

• Instance can undergo more than one processing cycle where some cycles are eventless

(no transitions are fired)

• Instance has fully automated execution (no user interaction needed)

• Instance interacts with one user

• Instance interacts with many users

• Instance deals with numeric and non-numeric token values

Table 0.12. Activity instances used in the case study

Activity

instance

Description

1 Automatic parameter change

It is necessary to change the value of parameter ‘Component2_Length1’ to value

68,3 mm. The change has to be checked by user Designer13. The notification

should be sent to Designer5, Designer8, and Designer14.

2 Coupled parameter negotiation

6. Framework validation

98

The negotiation process for the following parameters should be managed: Value

of parameter ‘P1’ of Designer1, value of ‘P2’ of Designer2, and value of ‘P3’ of

Designer3.

3 Parameter value change confirmation

Designer9 has to change parameter ‘Component7_Length6’. The actual value is

745 mm. The change has to be checked by Designer16. The notification in not

needed.

4 Automatic parameter change

It is necessary to increase the value of parameter ‘Component3_Target_Weight’

for 40 grams. The change does not need checking. The notification in not

needed.

5 Parameter value change confirmation

Designer11 has to change parameter ‘Component1_Maturity_Status’. The actual

value is ‘In work’. The change does not need checking. The notification should

be sent to Designer7 and Designer8.

6 Automatic parameter change

It is necessary to reduce the value of parameter ‘Component6_Hole3_Diameter’

for 2 mm. The change does not need checking. The notification in not needed.

7 Parameter value change confirmation

Designer9 has to change parameter ‘Component7_Angle3’. The actual value is

32 degrees. The change has to be checked by Designer3. The notification should

be sent to Designer12 and Designer15.

The negotiation activity used in this research is based on the negotiation process presented by

Yang et al. [81] and a detailed negotiation model defined by Khosravifar [82]. The model which

has been used for this case study is shown in Figure 0.44. The model consists of three parts,

sub-activities related to activities that have to be completed prior to negotiation, activities that

are part of the negotiation process, and finally, activities that will be conducted after the

negotiation is completed.

6. Framework validation

99

Figure 0.44. Model of negotiation process used in simulations

It can be noticed that some sub-activities can be conducted more than one time. How many

times will they be conducted in unknown and is really case dependent. Therefore, during this

case study, the number of iterations was estimated, and the iteration range was defined. In Table

0.13, in columns “executions min” and “executions max”, the range of iterations is shown.

Depending on the sub-activity, it can be performed ones, more than one time or even not once.

If performing an activity points back to the activity that already has been performed, all

following sub-activities along the chain will also be performed.

Generally, in this case study, each activity instance has been dissolved into smaller sub-

activities, and for each sub-activity time needed for execution was estimated. Since sub-

activities of activity instances that are of the same type might demand different time for the

execution, time ranges were estimated and defined. For each sub-activity is then calculated the

mean value of execution time and standard deviation. Table 0.13 shows mean values and

standard deviation of execution time for sub-activities in negotiation activity. Times in the table

are unitless since absolute values are highly dependent on the specific activity instance. Hence,

the results will show the relative differences between the two ways of performing the activities.

At the beginning of this section was mentioned that in the case study, the time needed for an

activity execution using the established way of performing such activities will be compared

with the time spent on activities using the proposed CSCW enhancement. Therefore, Table 0.13

shows estimated times for each sub-activity and for performing the activity by the traditional

way (column “duration traditional”) as well as using the support of CPN models (column

“duration new”).

6. Framework validation

100

Table 0.13. Duration estimations and iterations for negotiation process sub-activities

No

Sub-activity

E
x
ec

u
ti

o
n

s
m

in

E
x
ec

u
ti

o
n

s
m

a
x

 Duration

traditional

Duration

new

M
ea

n

S
ta

n
d

a
rd

d
ev

ia
ti

o
n

M
ea

n

S
ta

n
d

a
rd

d
ev

ia
ti

o
n

1 Problem identification 1 1 2 1 2 1

2 Available information collection 1 1 35 10 20 7

3 Sending proposal to negotiators 1 11 7 1,5 0 0

4 Evaluation of proposal 1 11 70 20 50 15

5 Proposal revision 0 6 120 30 100 25

6 Final decision 1 1 40 10 30 7

7 Informing involved parties 1 1 7 1,5 0 0

8 Adding additional negotiator 0 4 10 2 1,5 1

There is a slight difference in times depending on the way of performing activities, but usually,

times for sub-activities performed using enhanced CSCW are shorter. The reason is found in

the fact that CPN supports performing the activities, and some steps inside each sub-activity

can be accomplished by the system alone. Anyway, since the developed enhancement does not

complete the whole negotiation activity fully automatically, some “manual” work is still

needed, and therefore, the time for performing activities cannot be zero. On the other hand,

some sub-activities can be fully supported by the system (such as informing stakeholders about

completed activity, collecting all relevant documents that are required, storing values generated

during the activity execution).

Between every two sub-activities exists a time that is not written in the table (e.g. time between

the moment the proposal is sent and the moment when the evaluation of the proposal by a user

is started). Generally, that time is a period between the end of the current sub-activity and the

start of the next sub-activity. In this case study, it is defined as a waiting period. The waiting

period can last from few seconds up to several days, and it quite often exceeds the time required

for performing an activity. Moreover, the waiting period is present in both ways of performing

the activities mentioned above. Therefore, the waiting period is not included in the simulations.

6. Framework validation

101

After the times for performing and iterations were defined, 10 000 simulations have been

executed. A normal distribution has been used to define how many iterations will be used in

each simulation and how long will each sub-activity in each iteration take.

The results (Table 0.14) show that using the existing way of performing activities in average

462 time units with a standard deviation of 255 time units is needed to complete a task.

Table 0.14. Duration of simulated negotiation activities

Duration traditional Duration new Improvement

Mean

value

Standard

deviation

Mean

value

Standard

deviation

Mean

value

Standard

deviation

462 255 323 194 31 % 13 %

The deviation is rather significant, but it was expected since the negotiation process is not a

straightforward activity and the time to complete the task greatly depends on how many parties

are involved and how many iterations are required. Results after simulating CPN supported

performing of activities were slightly better. The mean value for performing the negotiation

process was 323 time units, while standard deviations were 194 time units. If the results of

simulation with CPN supported performing is compared with the results received from the

existing way of performing the same activities, it can be seen that performing activities using

CSCW enhancement developed within this research needs 30 % fewer time units for observed

activity type.

Figure 0.45 shows the duration of each of the first 1000 simulations of activities performed

using the common way. It can be noticed that duration jumps from around 100 time units up to

around 1650 time units. The results are expected since there is a minimum amount of time

needed to perform an activity even if there are no iterations, and all sub-activities are performed

as efficiently as possible. On the other side, if the number of sub-activities iterations is high,

the duration of the simulation rises rapidly. Finally, Figure 0.46 shows the simulations sorted

by duration range. Again, there is a small number of simulations that lasted from 0-100 time

units, while one peak exists on 150-200 time units range. Despite that peak, the mean value is

higher, and it is 462 time units.

6. Framework validation

102

Figure 0.45. Duration of the first 1000 simulation

Figure 0.46. Number of simulations sorted by duration

6.2. Case study of the application of CPN model for resolving

coupled parameters

Research in partner company has been conducted to get a broader image of the development

process in the automotive industry, complex processes and activity management in large teams.

This case tends to analyse part of the design process on the lower level, focusing only on

communication and negotiation activity about coupled values of engineering design

parameters. The second case study is designed to extract parameters from a design and explore

a product’s development in detail, which was not possible for the products in the automotive

company.

Due to the confidentiality of data, it was not possible to conduct such a study in the partner

company. As already stated, only meeting reports were available, while for this case study, a

0

200

400

600

800

1000

1200

1400

1600

1800

1
2
7

5
3

7
9

1
0
5

1
3
1

1
5
7

1
8
3

2
0
9

2
3
5

2
6
1

2
8
7

3
1
3

3
3
9

3
6
5

3
9
1

4
1
7

4
4
3

4
6
9

4
9
5

5
2
1

5
4
7

5
7
3

5
9
9

6
2
5

6
5
1

6
7
7

7
0
3

7
2
9

7
5
5

7
8
1

8
0
7

8
3
3

8
5
9

8
8
5

9
1
1

9
3
7

9
6
3

9
8
9

T
im

e
u

n
it

s

Simulation

0
200
400
600
800

1000
1200
1400

0
-5

0

5
1
-1

0
0

1
0
1
-1

5
0

1
5
1
-2

0
0

2
0
1
-2

5
0

2
5
1
-3

0
0

3
0
1
-3

5
0

3
5
1
-4

0
0

4
0
1
-4

5
0

4
5
1
-5

0
0

5
0
1
-5

5
0

5
5
1
-6

0
0

6
0
1
-6

5
0

6
5
1
-7

0
0

7
0
1
-7

5
0

7
5
1
-8

0
0

8
0
1
-8

5
0

8
5
1
-9

0
0

9
0
1
-9

5
0

9
5
1
-1

0
0
0

1
0
0
1
-1

0
5
0

1
0
5
1
-1

1
0
0

1
1
0
1
-1

1
5
0

1
1
5
1
-1

2
0
0

1
2
0
1
-1

2
5
0

1
2
5
1
-1

3
0
0

1
3
0
1
-1

3
5
0

1
3
5
1
-1

4
0
0

1
4
0
1
-1

4
5
0

1
4
5
1
-1

5
0
0

1
5
0
1
-1

5
5
0

1
5
5
1
-1

6
0
0

1
6
0
1
-1

6
5
0

1
6
5
1
-1

7
0
0

N
u

m
b
er

 o
f

si
m

u
la

ti
o
n

s

Duration of simulation

6. Framework validation

103

student project is used where a complete design of the product is available along with records

from the beginning of the product development (e.g. product specification, concepts).

In this case study environment is different compared to an automotive company. The aim is to

apply a modified MDM method to extract coupled parameters among designers. Afterwards,

potential communication situations are extracted and used to test the CPN model for resolving

coupled parameters in teamwork. In the partner company, parameter management is conducted

in a different way, using active chains. Toepfer [12,13] stated that active chains are simple

aggregations of parameters that can be created without restrictions by stakeholders to monitor

parameters of interest. Active chains function as an intermediator of information between

stakeholders and their models of a distributed development process and allow for traceability

among engineering object.

This project was a part of a multinational student project, and its goal has been defined as a

development of a submersible remotely operated device for inspection of welds in a nuclear

reactor pressure vessel (RPV). The welds in the RPV have to be periodically examined in order

to find if micro-cracks have appeared and/or propagated. Inspection is being done with non-

destructive testing methods such as ultrasound or eddy current testing.

The industrial partner is renowned for technological and service excellence in the nuclear

industry, providing systems for nuclear power plant examination and repair services, supported

by intensive research and development programmes. The following list of most challenging

requirements illustrate the project complexity:

1. The device should be able to move through the water inside the RPV in all directions

and rotate about the vertical axis

2. Near-neutral buoyancy should be achieved

3. Linear velocity in all direction should be at least 100 mm/s, as well as scanning speed

4. Scanning should be made simultaneously along vertical and horizontal axes

5. The device could be fixed anywhere inside the vessel

6. Two driven axes are needed for surface scanning - one scanning axis and one

incremental axis -increment should be 10 mm, the scanning area is 300 mm wide along

the weld.

6. Framework validation

104

After the completion of the conceptual design phase and at the beginning of embodiment

design, the device has been divided into five main subsystems:

1. Vertical rail

2. Horizontal rail

3. Chassis

4. Scanning module

5. Fixation module

The described project was simplified for the purpose of this case study. It is defined that each

subsystem has been developed by only one designer. Product’s subsystems fulfil different

functions, but they share many sets of coupled design parameters that are multi-dependent.

Figure 0.47 shows a rendering of the 3D model of the developed prototype.

Figure 0.47. 3D render of the developed virtual prototype of the submersible remotely

operated device for inspection of welds in a nuclear reactor pressure vessel used in the case

study

Figure 0.48 shows the conceptual representation of basic system components. In this figure, the

most important dimensions for the case study are shown. Each of these dimensions depends on

and affect some other dimensions. Therefore, they can be seen as coupled parameters. Coupled

parameter relations can be found in the places where two or more components are joined to the

chassis. Several coupled parameters are not shown in the figure. Two of them are total mass

6. Framework validation

105

and volume of parts, and the others are from the components that are necessary to accomplish

the requirement for near-neutral buoyancy.

Figure 0.48. Main product components defined during conceptual design and recognised

coupled dimensions

The first task in this case study was to identify all crucial design parameter for each subsystem

and record them in MDM shown in Figure 0.49. In the matrix, parameters are grouped based

on division to subsystems and designers who designed each subsystem described in previous

paragraphs.

In the paper of Juranić et al. (2020), the authors proposed a novel way of structuring the MDM

in which they differentiate relations between coupled parameters into four categories. The

relations are grouped depending on three rules:

• how many parameters are correlated,

• how many designers are involved, and

• how many designers must share the same parameter

6. Framework validation

106

Using the developed framework and the cyclic process of activity instances execution, in this

case study, the aim is to support the resolution of coupled parameters during embodiment and

detail design of products in which coupled parameters among designers are inevitable. The

process comprises three phases described in the following subsections. The methodology is

focused on predicting and timely inducing and supporting necessary communication

interactions between design team members. Based on the already mentioned assumption for the

studied process that each subsystem is being designed by only one designer, the number of

possible combinations of parameters structured in MDM is reduced.

Figure 0.49. MDM with identified design parameters

To explain the structure of MDM, which has been used to extract coupled parameter (Figure

0.49), a simple hypothetical affiliation matrix (Figure 0.50) shows an organizational structure

where three designers are developing a product consisting of three subassemblies is presented.

That matrix is a general representation of MDM with three domains - designers, subassemblies,

and parameters. It captures how the designers are affiliated with the design of each of the

product subassemblies. While the focus is on designers and parameters, direct relations between

subassemblies are not of special interest since they are contained within the parameter DSM

through merging of two affiliations: designer – subassembly and subassembly – parameter.

The MDM with a generally known structure presented in Figure 0.50 is restructured as shown

in the matrix in Figure 0.49. Given the assumption that one designer is in charge of only one

subassembly, the matrix in Figure 0.49 has been simplified to DSM of parameters (the bottom

right sector in Figure 0.50). However, there is still one important difference comparing to the

6. Framework validation

107

"ordinary" parameter-based DSM: for each parameter, it is recorded to which subassembly and

to which designer it belongs.

Benefits for using the MDM described in Juranić et al. (2020) and showed in Figure 0.49 is in

sectors that simultaneously show the affiliation of the parameters both to subassemblies and

designers, together with the dependency relations between parameters. Such a structure allows

distinguishing the mode and the complexity degree of coupled relations between individual

parameters, which is denoted by letters A, B, C and D. This is an extension with respect to the

ordinary DSM, which shows only the existence of a relation between parameters. Such an

extension enables the indication and development of different ways and channels of

communication between designers when resolving coupled parameters.

Figure 0.50. Structure of MDM as the basis for management of c coupled parameters

The process briefly described in previous paragraphs starts after the completion of the

conceptual phase. At that moment, all key dimensions and other parameters are known, and

their management can begin. The first step is to extract all parameters from the design, fill the

parameter sector in MDM and afterwards the other sectors as well. After the MDM is filled, the

“ordinary” marks are applied to the relations of the parameters. With known relations between

parameters, the analysis can be conducted. After the analysis on parameter MDM was

conducted, several types of relations between parameters were noticed, and they were

categorised. The next step was to replace ordinary relation marks in MDM with categorised

relations using categories shown in Table 0.15. Figure 0.49 shows the state of the MDM for the

industrial example after categorising and marking the relationships between parameters. To

make the figure readable, a segment for three of in total five subassemblies is shown.

6. Framework validation

108

Table 0.15. Categories (classes of relationships) used in the proposed MDM approach

Category Description

A
Parameters that could be calculated sequentially and are managed by only one

designer.

B

Parameters which are coupled, but again, only one designer is responsible for

them (here is important to notice that such relations do not require interactions

between different designers)

C

Parameters from different subassemblies, which are related (interdependent)

but could be determined sequentially. The communication process about those

parameters is not complex since a second designer should just wait for the

value of the parameter from the first designer. In such cases, the most common

communication is about why the value is not known yet, and when it will

become available.

D

Parameters from different subassemblies which are coupled. Coupled means

that the value of one parameter could not be calculated without the value of the

second one, while at the same moment, the second value could not be known if

the first value is unknown. If these parameters originate from different

subassemblies, designers ought to collaborate, usually to negotiate during

several iterations to find the compromise solution.

E

Multiple coupled parameters – when values of several parameters (more than

two) must be shared between two or more designers. This kind of relationship

has not been found for the observed product, but such situations might occur.

The MDM with categorized relations is the basis for the further step in which the necessary

interactions between the designers should be anticipated in order to timely initiate, stimulate

and support their communication. The first two categories of relations (category A and B) are

not relevant in this case study since they denote relations of the parameters which are important

only to one designer (they are relations from the same subassembly), and the communication

support is not necessary. Therefore, the focus is on the categories C, D and E, which are

relations that should be resolved among two or more designers. The process continues with

creating a list of interaction about sequential parameter determination based on category C

relations. The list is shown in

6. Framework validation

109

Table 0.16. The full list comprises 73 possible interactions in category C, but the list presented

here is shorted since the aim is to show what information is relevant for each communication

category.

Table 0.16. List of sequentially related parameters interactions

No. Category Request by Dependent

parameter

value

Requested

from

Known

parameter

value

Status

1 C Designer 1 S1 P7 Designer 2 S2 P2 Completed

2 C Designer 1 S1 P4 Designer 3 S3 P1 Completed

3 C Designer 3 S3 P4 Designer 1 S1 P5 Completed

4 C Designer 4 S4 P4 Designer 2 S2 P3 Not started

…

The same process has been done for interactions based on the coupled parameters (category D).

The shortened list with possible interactions is shown in Table 0.17.

Table 0.17. List of coupled parameters interactions

No. Category Designer A Designer B Parameter A Parameter B Status

1 D Designer 2 Designer 4 S2 P3 S4 P1 Not started

2 D Designer 2 Designer 4 S2 P3 S4 P4 In progress

3 D Designer 3 Designer 4 S3 P3 S4 P1 Completed

…

The third phase, which has been done in this case study, is to use the lists created in the previous

phase and use them as an input for instantiating the appropriate CPN model templates. In the

first case study, the cyclic process of execution activity instances dealt with activities that

originated from meeting reports. Those activities are instantiated from taxonomy entities, and

for each of them, an activity instance was created in the activity list. In this case study, two

described types of interactions were used as activity types. From these activity types, activity

instances were created and based on them, corresponding CPN model templates were

6. Framework validation

110

instantiated and CPN model instances were created. The rest of the process for cyclic execution

of activity instances remains the same as described in previous sections and used in the first

case study.

During the research, it has been noticed that coupled parameters are most valuable to manage,

but at the same time, their management is the most complex. Therefore, in this research, an

modification of MDM is created. The foci of validation in this case study were to confirm that

the CPN model created to support a negotiation process of coupled parameters fulfils the

required function on the example of complex design products developed in teamwork.

111

7. DISCUSSION

The seventh chapter discusses the results of the validating process reported in the previous

chapter. The primary aim of this discussion is to address the research questions, emphasise the

research contributions and to present the potentials of the proposed methodology and the

framework as the final step in Descriptive Study II.

7.1. Research contribution

The scientific contribution of this research from the design research perspective is manifested

through the CSCW enhancement reported in this thesis. The main aspects of contributions are:

- Engineering design activity taxonomy

The first contribution of this research concerns analysis of the obtained dataset and the creation

of the taxonomy of engineering design activities which consists of 26 activities classified in

three levels of hierarchy. The proposed tailored taxonomy presented in this research has three

main groups on the highest level, based on the direction of data flow: Assigning (requesting

new data by assigning the task to someone), Reporting (sharing existing information with

someone) and Requesting (requesting information from someone). Some activities from the

lower level were reused from existing taxonomies and ontologies that are classifying EDA.

Wasiak et al. [85] analysed information that can be found in engineering emails. They proposed

a grouping of information transactions (e.g. informing, clarifying, confirming, requesting

information, evaluating) that are fully aligned with the activities found in meeting reports in the

partner company. Since Wasiak et al. were primarily focused on communication processes

among engineers, their classification does not entirely fit the proposed taxonomy in this

research since this research aims to support engineering by semi-automating the EDA.

Taxonomy for mechanical engineering defined by Ullman [6], which is a basis for classification

of mechanical design, covers only the classification of PD on the process level (e.g. conceptual

design, parametric design, routine design) what makes it impractical for usage in this research.

Ostergaard and Summers [7] proposed a taxonomy that includes top-level attributes of team

composition, communication, distribution, design approach, information, and nature of the

problem during collaborative design. The collaborative design factors organized in their

taxonomy provides a description of collaborative design situations on the highest level.

7. Discussion

112

Those situations are too general to use them to define templates for the execution of design

activities.

Sim and Duffy [3] developed an extensive design activity ontology, which matches the EDA

that is found during the analysis of the meeting reports. Despite that their ontology mainly fits

the activities from meeting reports, Sim and Duffy’s ontology is still not defined on the lowest

level of granularity which is the reason why the activities classification from that ontology

cannot be fully reused. The statement which supports that decision can be found in the paper of

Kumar and Mocko [86]. Kumar and Mocko analysed the ontology proposed by Sim and Duffy

[3] using four case studies and concluded the following: (1) the knowledge flow between

activities are insufficient for modelling complex design processes, (2) activities can be further

decomposed into constitutive activities and (3) the predefined relationships between activities

must be refined.

In this research, the tailored engineering design taxonomy has been defined based on the

activities found in meeting reports. Each working environment has its own specialities, which

make the definition of complete and universal taxonomy of engineering design activities on the

lowest granularity level almost impossible. Only on the lowest level of granularity, semi-

automatic execution of the activities can achieve proper functionality using the CPN model

templates. Lowering the granularity, a number of options that have to be taken into account are

smaller, the models are less error-prone, and consequently, the models can achieve a higher

level of automation. For example, the model for parameter change presented in Section 4.9.1

can work fully automatically, while the negotiation model cannot be completed if users do not

make certain decisions during the execution.

- Proposal of the process for semi-automatic execution of engineering design

activities

The developed process for execution of EDA, which is a central part of that framework for

supporting the execution of EDA, is considered the second contribution of this work. The

framework encompasses several modules that are necessary for the proper execution of CPN

models. It processes the activity list, establishes data transfers and manages CPN based activity

templates via CPN Tools software. The CPN Tools is required for designing of CPN model

templates, their execution, simulation and visualization. Using the CPN Tools, a user can

observe the current status of CPN model instances but also make decisions for further execution

of CPN instance.

7. Discussion

113

Developing CPN models template for EDA is on the trail of Mulyar and van der Aalst’s work

[19], [31], where they developed CPN models (they are calling them activity patterns) which

act as templates for simulating activities in information technology. The difference is in the

way how tokens are generated. Since they dealt with activities simulations, they assigned tokens

manually in CPN models for each simulation, while in this research, the framework is

responsible for assigning the tokens which values are obtained from external sources (e.g.

parameter database).

Arena and Kiritsis [32] proposed ontology-driven instantiation of PN manufacturing process

models. As the title of their proposal declares, the authors created ontology for one case study

for an automated assembly system. One of the classes is called “activity”, which comprises

operations that automated assembly station can perform. The authors then used that ontology

class to instantiate different PN model depending on the required operation. A similar principle

is designed in this research as described in Section 4.7. EDA from engineering design activity

taxonomy is instantiated each time the framework needs to process the activity which has not

been processed yet. The instantiation process of the activities is described in Section 4.6.

The process for execution of activities described in Chapter 5 represents a novel approach in

using CPN methodology. CPN methodology is a common tool for modelling, simulating and

visualization of systems, but in this research, its main purpose is to manage the execution of

EDA. Nonetheless, its original purpose is still preserved. It is used for modelling of EDA

templates, used for simulation of activities, and it enables visualisation of the current state of

processing the EDA. The novelty can be seen in the way how CPN models are processed. The

process works in execution cycles, and in each cycle, the following steps will be conducted:

1. Re-execution of the CPN model instance (last saved state is restored)

2. Checking if new data become available in the meantime (since the instance execution

was terminated in the last processing cycle)

3. Processing of CPN model from where it stopped in the last cycle

4. Finishing the execution (activity is completed) or termination until the next cycle (data

for processing is missing)

After each cycle, all information about the CPN instance is stored in order to continue the

execution in the next cycle. That means that the quantity and values of all tokens for every CPN

7. Discussion

114

place in the model have to be stored. How does the model know where to continue? If the model

is not complete (part of the model that completes the activity was not executed), new data is

awaited. When data become available, one of the CPN transitions will become available for

firing, and the model execution will continue.

- CPN models that enhance CSCW and design communication

The framework and the process for execution would not work without the CPN models.

Therefore, they are considered as the second contribution. CPN model themselves are

commonly used in practice for modelling, simulation and visualisation of the various processes

[87],[88]. Using them for semi-automatically execution of engineering design activities as they

are designed in this thesis was not found in the available literature. The opposite case is with

models that support communication, which is observed in the existing literature and tailored

for the purpose of this research. It is already stated that the negotiation model is based on the

PN model of Khosravifar [82]. The useful CPN models were found in the paper of Mulyar and

van der Aalst [31] in which authors proposed 34 CPN models for activities in Information

technology branch (e.g. database manager, log manager, data merge, synchronous transfer).

These CPN models provided a basis for development of the models for data transfer used in

this research.

Differently from other contributors to the field of CPN models, functions inside CPN models

are virtually grouped what make their reusing in other CPN models available. The naming of

the transitions and places is defined in the way that they can unambiguously communicate with

external functions that are specific for each functional group. Execution of CPN model instance

in different execution cycles is enabled using condition and status places, giving a user a clear

picture of what part of the instance has been executed already and what is still left to be

executed.

In Chapter 6, the validation of the framework and the model for processing has been conducted.

Different activities have been simulated to give the answer to research question 4. Required

times for conducting each sub-activity in these activities has been estimated, and the simulation

was conducted. Two ways of conducting the activities were simulated; the first one is the

common way engineering designers are doing nowadays, and the second way is by using the

proposed framework for supporting the execution of EDAs. The results on 10 000 simulations

show that the time for executing the activity using the proposed framework can be reduced by

31 % (standard deviation is 13 %) compared to the common way. That improvement has been

7. Discussion

115

seen in the reduced number of iterations by automating some sub-activities (e.g. informing

participants about change, automatic value collection), but it is also dependent on the activity

type that has been executing.

- MDM modification for indicating necessary communication

The third contribution concerns a proposal for restructuring the Multiple Domain Matrix

(MDM) methodology to extract potential and necessary communication activities based on the

extraction of coupled parameters among multiple designers. Even though MDM is widely used

to show relations between elements from different domains, in this research MDM is used to

extract potential communication situations about coupled parameter values. Using MDM,

relations between parameters were extracted and classified into four distinctive classes. The

research further focused only on two classes: Interdependent parameter values that can be

defined sequentially and coupled parameter values. These relations define the type of

communication situation that will take place during value determination.

If parameters’ values can be determined sequentially, the CPN model informs the owner of the

subsequent parameter about updated value as soon as it becomes available, thus helping with

the issue of dynamic updating and propagation of design information. In a case of relation that

denotes coupled parameters, the CPN model supports the negotiation process among all

stakeholders and enables transparent and traceable value determination. Given that MDM is

considered as static in the literature [89], [75] and this is generally cited as a major obstacle to

its wider use in practice, this contribution can be a step towards linking MDM and dynamic

situations.

A similar methodology is proposed by Karniel and Reich [33] by presenting formal definitions

of the DSM method used for process planning and a formal conversion of a DSM-based plan

to a DSM-net process model. To conclude, the contribution of this thesis reflects in a novel

approach to predicting, classifying and managing communication patterns that are necessary

during teamwork coordination on critical interfaces between product components developed by

different team members.

7. Discussion

116

7.2. Potentials of the proposed framework and model for

executing EDA

The first research question seeks to answer which are the most frequent sequences of activities

and critical situations that may arise due to relations between engineering design parameters

during the product development process. The answer is provided in Chapter 3 after the

extensive analysis of meeting reports from three long-term development projects. The question

is looking for the answer regarding two topics: “most frequent activities” and “critical

situations”. Both of them are preferred in front of the other activities when discussing the

benefits of their semi-automatic execution process. Most frequent activities are on the top of

the priority list because of their number of occurrences. If those activities could be automated,

a lot of effort can be saved. On the other side, there are activities derived from critical situations.

Automating or just supporting such activities can help users to solve the critical situation with

fewer iterations and in less time, which has been seen in simulations results during validation.

Supporting all the other activities could improve the working experience as well, but not as

much as supporting frequent and critical activities.

The aim of the research reported in this thesis is to enhance CSCW by the semi-automation

execution of frequent activities and activities that deal with a critical situation, such as

negotiation about the coupled parameters values. After building the taxonomy, the research

focused on developing separate CPN models that could help accomplish the research goals.

Based on CPN use cases found in the literature [31], [82], [90], [88] and results from initial

trials, the CPN methodology has proven to be a promising approach for solving the problem.

To process activity using CPN models, the CPN model needs data to work with. Data has to be

collected from various sources, and if that process is not automated, such a contribution to the

CSCW would probably consume more time for CPN model definition than it could be saved

by automatic processing of an activity. In order to bring such a contribution to the next level

and to provide an answer to the second research question, the framework and process for semi-

automated processing of engineering design activities have been developed. The framework

uses pre-defined activities in the form of an activity list. Each activity on the list is unique, and

the execution process for it has to be specific. Based on the activity type, a CPN model is

instantiated from the collection of CPN model templates, and the CPN model is automatically

filled with data required for its execution. The activity could be processed fully automatically

or partially if the processed activity has to include interaction with users. The author considers

7. Discussion

117

linking activities instances, CPN templates and belonging processes as parts of the proposed

framework as a favourable approach for CSCW enhancement based on the elements of the

taxonomy of engineering design activities.

The proposed framework is validated using two case studies. In the second case study, the

parameters were extracted from the 3D model assembly and they were arranged into DSM. The

relations were added to find out in which order the parameter values have to be calculated.

Knowing only the relations between parameter was not enough. Therefore, DSM has been

switched with the modified MDM. Important relations for this research are relations between

two or more parameters where each of the parameters has a different responsible designer. In

such a case, communication is inevitable. The modified MDM presented in Section 6.2. is

considered as a novel approach for the extraction of potential communication situations among

designers. From the relations defined in MDM, engineering design activities were extracted,

and they have been used as activity instances in the activity list. This case study showed that

activities could originate from different sources if they were defined in the way that the CPN

model template can use the defined activity to execute the CPN model. Moreover, the case

study presented an approach in which MDM representing product structure and design process

architecture is combined with the proposed framework to contribute to the CSCW

enhancement. The approach provides the answer to the third research question.

It is expected that using this approach, some misunderstandings, delays and additional

unnecessary iterations which often happen in practice due to untimely or missing

communication could be avoided. Examples found in the literature [91], [9], [15] showing that

in teamwork, designers are often unaware of the connections between parameters and

consequently the need for timely communication.

Brisco et al. [60] presented 220 factors that influence successful CSCW. They summarised

categorised factors into 19 statements that represent CSCW requirements. If the presented

research is analysed and compared to Brisco et al. [60], the author believes that potentials of

contributions in this thesis could correspond with at least the following three statements:

1. "Supports communication through synchronous and asynchronous multi-threaded and

multi-channel software for prompt discussion in a way which supports the context of

the message."

7. Discussion

118

2. "Allows for greater productivity through fast objective focused communication,

organisation of work and a greater quantity of output to promote collaboration

readiness, reflection and reduced rework time."

3. "Encourages a shared understanding by defining and framing conversations within a

common context which makes it easy to understand information, clarify meaning and

reduce miscommunications."

In the light of the last research question raised, the following paragraphs tackle the benefits and

advantages of the proposed CSCW enhancement that is based on the CPN methodology. Many

benefits have been already stated in the previous chapters, while in this section, they are

summarised, and additional usage examples from other authors are presented. In addition to

other features, the CPN methodology enables the conceptualisation of rules and relationships

and is therefore suitable for formalising knowledge [20]. CPN methodology showed great

potential as one of the possible solutions for issues recognised in CSCW and design

communication. Its potential in projects with a strong emphasis on safety and efficiency can be

found in papers on using Petri Nets for formal modelling and simulation of train control systems

[92] and various military applications [93], [94].

The author argues that the proposed framework demands additional work regarding

implementation (e.g. connection to all required systems in a company) in a real working

environment. The great advantages of CPN models are their dynamic behaviour (it can run

automatically, but a user can take control of execution at any moment and thus change the

processing path) and good process visualisation capabilities.

Work that needs to be carried out in order to implement any design method to the industry is

discussed by Wallace [95]. Wallace stated that design methods are frequently embodied as

software tools. Designers in the industry spend a considerable amount of their working days on

the computer using both dedicated design and analysis tools as well as a bunch of office tools.

These software tools have been written by large teams of professional programmers and are

powerful, robust and have sophisticated interfaces. It is not the main task of academic

researchers to write software code, even if they are competent at it. They may need to code their

proposed methods in order to test them, but the resulting software is not likely to be

sophisticated, robust or user-friendly by modern standards. There is often a considerable gap

between the prototype software tools produced by individual researchers and the software that

companies are prepared to install on their IT systems.

7. Discussion

119

In his book, Birkhofer [96] emphasises that industry only reluctantly adapts design

methodological models and methods. Despite the high number of graduates with Design

Methodology knowledge, researchers and practitioners conclude that methodical development

is only used partially in industry and, even then, only in a rather simple, rudimentary form (e.g.

simple creativity techniques). Considering the issue mentioned by Birkhofer, the author argues

that the implementation process of the proposed solution is extremely complex since it involves

changes in current methods and tools, connections with data sources, and finally, supporting

users to use the proposed solution. The implementation process should be gradual and long-

lasting since it requires significant additional effort from the design teams. In the beginning,

only necessary processes have to be established, and simple activity types should be

incorporated. Lately, more complex activities could be added. This process would also require

further parallel research work to refine and upgrade the proposed framework concept and

elements.

120

8. CONCLUSION

The research reported in this thesis confirms the hypothesis. The research covered

multidisciplinary topics which are outstandingly complex for implementation in practice.

Nevertheless, based on the arguments discussed and the conducted analysis, it can be concluded

that the proposed methodology certainly has potential for CSCW enhancement. The ultimate

goal is still far, and to reach it, the limitations presented in the next section have to be tackled,

and the proposals for future work have to be considered.

8.1. Research summary

The research reported in the thesis tends to improve designer’s working experience through

CSCW enhancements. In order to achieve this, a more concrete research aim has been defined:

To develop methods and tools that would enable consistent dynamic updating and propagation

of design information in teamwork in a manner that will not generate additional tasks for

designers. The basis for developing the proposed method were analyses of repetitive patterns

of communication situations and parts of the design process found in a complex product

development environment.

State-of-the-art tools used in the PD processes already enables updating and propagation of

design information. Therefore, is this research trying to solve a problem for which a solution

already exists? The simple answer is no. The more extensive answer highlights two very

important words in the research aim: “consistent dynamic”. During the literature review, on

several occasions, it was quite obvious that tools and methods currently used during the PD

have their issues. One of them is that sometimes correct information is not available at the

required moment. In their work, several authors [1], [13] claim that a significant delay might

arise from the moment in which a parameter gets its updated and currently correct value to the

moment until that the value becomes available for others to use it. The reasons for that issue

were described in Chapter 2. Through the rest of the chapters, the author presented his vision

for improving the mentioned issue, embodiment of the vision and its validation.

Prior to any development, a comprehensive literature review has been conducted. The literature

review has been divided into two main fields: literature needed to understand better the defined

problem being solved and the literature needed to develop a solution for the problem.

8. Conclusion

121

The reviewed literature comprises the field of engineering design processes on the top level,but

also includes details on the lower level of granularity such as iterations that are omnipresent in

PD, critical situations that arise during PD, Computer supported collaborative work and on the

lowest level of granularity, design parameters. The literature review further provides insights

into topics of matrix-based methods since they are extensively used in PD [28] and into topics

of natural language processing. The theoretical framework defined in this research uses Petri

Nets as its core, so a great effort has been invested in the overview of Petri Net methodology

and its all main extensions. The literature review reported in Chapter 2 formulated research

gaps and research questions that directed the development of the research.

Additionally to the theoretical background, it has been reached for data from the real

environment that will support theoretical background and, at the same time, provide a basis for

the development of the framework. In Chapter 3, an experimental dataset analysed in this

research has been presented. Along with the dataset, it has been reported how the data has been

obtained and what steps have been conducted during the data analysis. The results derived from

data analysis together with the design activity ontology of Sim and Duffy [3] were prerequisites

for developing an engineering design activity taxonomy tailored to the activities that could be

found in the PD processes of the partner company.

The prescriptive part of the research has been presented in Chapter 4. This is the central part of

the research in which gained knowledge and data from the descriptive study have been used to

develop a solution that should confirm or deny the research hypothesis. The proposed solution

for CSCW enhancement is based on the framework developed and presented in Chapter 4. The

framework runs a continuous cyclic process for the semi-automatic execution of selected

engineering design activities using the CPN methodology and custom functions written

specifically for each activity type. The first section in Chapter 4 provides an overview of the

execution process of the activities and introduces the reader with a roadmap of how the CSCW

enhancement has been developed. Several subsequent sections present a different way how a

CPN model can be designed (from simple to complex) and describe the main elements of CPN

models, which are mandatory to understand the models presented at the end of the chapter. In

the same chapter, an activity list has been defined, and it is described how activities are

instantiated and how they are changed during their lifecycle. Section 4.10 presents the final

framework for CSCW enhancement and associated process for execution of engineering design

activities. The chapter continues with a description of software components that support the

8. Conclusion

122

normal work of the execution process. Chapter 4 concludes with a detailed explanation of each

segment of two different CPN model templates. These segments also represent all potentials

that can be achieved using such CPN models as templates for the execution of engineering

design activities in the scope of the proposed framework.

After the CSCW enhancement has been developed, it was validated through two case studies.

The validation process was reported in Chapter 5. Two different projects have been used to

validate the framework’s ability to work in a different working environment. In the first case

study, several activities that had been recognised in the experimental dataset were processed

using the execution process and corresponding CPN model templates. In the second case study,

an MDM matrix was used to recognise and mark out possible critical communication situations

in order to create activity instances based on such situations. The aim of these activities is to

support engineers during the negotiations about design parameter values.

Finally, this chapter summarises the research reported in this thesis. After the executive

summary, research contributions will be pointed out as well as research limitations. The chapter

concludes with the proposals for future work that would enhance the proposed framework and

process for the execution of engineering design activities.

8.2. Research limitations

Research limitations are primarily related to the quality and quantity of the empirical dataset.

The examined dataset comprised three projects, of which two are the projects for making

facelift changes on vehicles only on a conceptual level. In contrast, the third analysed project

was a conceptual design for a vehicle architecture module. The input data has greatly defined

the direction of the research, but also it put some constraints on the research. In order to make

the CSCW enhancement more comprehensive, additional projects should be analysed.

Moreover, not only more projects but also different types of projects should be analysed. The

recognised activity types are extracted from a conceptual design project, while more and

different kind of activities might be found in embodiment or detail design projects. Using such

projects, the taxonomy would be extended, and new types of CPN model templates would be

needed. While developing the framework, this factor has been taken into account. Therefore,

the core of the CSCW enhancement would remain the same - only new activity types would

have to be defined and templates designed.

8. Conclusion

123

Quality of data had a significant impact on dataset analysis. Data is obtained from meeting

reports that were written by several note-takers. Each person has a unique style of writing notes,

and on many occasions, typos and grammatical errors were found. In the German language,

many surnames of designers are the same as vehicle components. All of those are a barrier for

accurate data analysis.

The proposed enhancement could bring many benefits, which are discussed in the previous

chapter, but all benefits could be better recognized in large companies on large projects than in

smaller companies. Moreover, it is difficult to conduct a framework validation and testing of

the solution on a project with a small scope due to a limited number of designers and activities

that can arise. The enhancement uses CPN models that have to be defined and built before any

usage. Hence, if the activity would occur only a few times in long time periods, it is not

beneficial to develop an additional CPN model for such an activity type. The proposed CSCW

enhancement could reach its maximal potential on projects where the emphasis is on variant

development such as vehicle development since activity types remain the same for all projects;

only the parameter values would change.

Regarding CPN models and their execution process, the main drawback of the current solution

is that the execution of a CPN model instance will not continue as soon as the new data becomes

available. It will be executed only in the next processing cycle. Therefore, there is always a

time gap from the moment when data become available until a particular CPN model instance

gets its turn to rerun the execution.

It is important to highlight that this CSCW enhancement has been developed in a limited testing

environment. In the partner company where the analysis has been conducted, a large number

of projects and tasks are conducted simultaneously.

8.3. Future work

Besides the additional work required to address the research limitations, there also exist several

possible directions for further developments and research extensions.

Using the proposed CSCW enhancement, the activity instances have to be defined by a person

who will recognise them in meeting reports or define them in some other way. This step could

be brought to the next level by implementing a software solution such as one proposed by

Breški [84], which would support a user in the definition of the activities.

8. Conclusion

124

During the analysis of activities, it has been noticed that particular activities always come in

the same sequence (e.g. make a change → store change; schedule an additional meeting →

inform about the discussion on the next regular meeting). Such activity sequences could be then

processed as one set of activities and therefore make the activity processing more efficient.

Another improvement could be made by enhancing the execution process of the activity list in

which more than one activity could be processed at once. That way, the time to process all

activity instances in one processing cycle would be reduced.

Regarding CPN models, additional logic could be implemented, which would capture and

analyse all past decisions made during the activity execution, and therefore help a user during

execution of the future activities of the same type to choose the best direction for finishing the

activity instance.

Finally, further research could be directed toward a gradual introduction of artificial intelligence

methods to simulate a semi-intelligent behaviour if some simple and routine sequences of

reasoning are executed in automatic CPN simulation mode. This should be the groundwork for

introducing ‘smart’ engineering design support.

REFERENCES

[1] Karniel A, Reich Y. Managing the Dynamics of New Product Development Processes.

London: Springer London; 2011. https://doi.org/10.1007/978-0-85729-570-5.

[2] Wynn DC, Clarkson PJ. Process models in design and development. Res Eng Des

2017;29:161–202. https://doi.org/10.1007/s00163-017-0262-7.

[3] Sim SK, Duffy AHB. Towards an ontology of generic engineering design activities.

Res Eng Des 2003;14:200–23. https://doi.org/10.1007/s00163-003-0037-1.

[4] Ahmed S, Štorga M. Merged ontology for engineering design: Contrasting empirical

and theoretical approaches to develop engineering ontologies. Artif Intell Eng Des

Anal Manuf 2009;23:391–407. https://doi.org/10.1017/S0890060409000146.

[5] Boes S, Batliner M, Stücheli M, Meboldt M. A Taxonomy of Testing Activities in

Product Development. 2017.

[6] Ullman DG. A taxonomy for mechanical design. Res Eng Des 1992;3:179–89.

https://doi.org/10.1007/BF01580519.

[7] Ostergaard KJ, Summers JD. A Taxonomy for Collaborative Design. Vol. 2 29th Des.

Autom. Conf. Parts A B, ASMEDC; 2003, p. 755–64.

https://doi.org/10.1115/DETC2003/DAC-48781.

[8] Ropohl G. Allgemeine Technologie : eine Systemtheorie der Technik. 3., überarb.

Aufl. Universitätsverlag Karlsruhe; 2009. https://doi.org/10.5445/KSP/1000011529.

[9] Eckert C, Stacey M. Dimensions of communication in design. Proc. 13th Int. Conf.

Eng. Des. Des. Manag. – Process Inf. Issues, Glasgow, UK: 2001, p. 473–80.

[10] Gopsill JA, McAlpine HC, Hicks BJ. Supporting engineering design communication

using a custom-built social media tool - PartBook. Adv Eng Informatics 2015;29:523–

48. https://doi.org/10.1016/j.aei.2015.04.008.

[11] Fernandes J, Henriques E, Silva A, Moss MA. A method for imprecision management

in complex product development. Res Eng Des 2014;25:309–24.

https://doi.org/10.1007/s00163-014-0178-4.

[12] Toepfer F, Naumann T. Management of vehicle architecture parameters. In:

Marjanovic D, Storga M, Pavkovic N, Bojcetic N, Skec S, editors. Proc. Des. 2016,

14th Int. Des. Conf., Design Society, Glasgow, UK; 2016, p. 1679–88.

[13] Toepfer F, Naumann T. Parameter Management, a Novel Approach in Systems

Engineering. In: Chakrabarti A, Chakrabarti D, editors. Res. into Des. Communities,

References

126

Vol. 1 Proc. ICoRD 2017, Singapore: Springer Singapore; 2017, p. 383–95.

https://doi.org/10.1007/978-981-10-3518-0_34.

[14] Toepfer F, Naumann T. Towards cross-linked development of highly complex

products. In: Maier A, Škec S, Kim H, Kokkolaras M, Oehmen J, Fadel G, et al.,

editors. Proc. 21st Int. Conf. Eng. Des. (ICED 17), vol. 2, THE UNIVERSITY OF

BRITISH COLUMBIA, VANCOUVER, CANADA; 2017, p. 279–88.

[15] Flanagan TL, Eckert CM, Clarkson PJ. Parameter trails 2003:1–10.

[16] Königs SF. Konzeption und Realisierung einer Methode zur templategestützten

Systementwicklung 2014. https://doi.org/10.14279/depositonce-3475.

[17] McMahon C. Design Informatics: Supporting Engineering Design Processes with

Information Technology. J INDIAN Inst Sci 2015;95:365–78.

[18] Badke-Schaub P, Frankenberger E. Design Representations in Critical Situations of

Product Development. Des. Represent., London: Springer London; 2004, p. 105–26.

https://doi.org/10.1007/978-1-85233-863-3_5.

[19] Mulyar NA, Van Der Aalst WMP. Towards a pattern language for colored petri nets.

In: Kurt J, editor. roceedings Sixth Work. Pract. Use Coloured Petri Nets CPN Tools

(CPN 2005), Aarhus, Denmark: University of Aarhus; 2005, p. 39–48.

[20] Jensen K, Kristensen LM. Coloured Petri Nets. vol. 1. Berlin, Heidelberg: Springer

Berlin Heidelberg; 2009. https://doi.org/10.1007/b95112.

[21] Juranic J, Pavkovic N, Naumann T, Marjanovic D. Modelling the design parameters

dynamics with Petri Nets. In: Maier A, Škec S, Kim H, Kokkolaras M, Oehmen J,

Fadel G, et al., editors. Proc. 21st Int. Conf. Eng. Des., vol. 2, THE UNIVERSITY OF

BRITISH COLUMBIA, VANCOUVER, CANADA; 2017, p. 91–100.

[22] Pavković N, Vlah L, Juranić J, Kuzmić N. Coloured Petri Nets model of designers

collaboration in iterative resolving of coupled design parameters. Proc. 15th Int. Des.

Conf. Des. 2018, 417–428. Dubrovnik, Croat. May 21–24, 2018, p. 417–28.

https://doi.org/10.21278/idc.2018.0182.

[23] Škec S. Nematerijalni indikatori u razvoju tehničkih sustava. Faculty of Mechanical

Engineering and Naval Architecture Zagreb, University of Zagreb, 2015.

[24] Blessing LTM, Chakrabarti A. DRM, a Design Research Methodology. London:

Springer London; 2009. https://doi.org/10.1007/978-1-84882-587-1.

[25] Wynn DC, Kreimeyer M, Clarkson PJ, Lindemann U. Dependency modelling in

complex system design. J Eng Des 2012;23:718–21.

References

127

https://doi.org/10.1080/09544828.2012.714530.

[26] van der Hoorn B. Discussing project status with the project-space model: An action

research study. Int J Proj Manag 2016;34:1638–57.

https://doi.org/10.1016/j.ijproman.2016.09.001.

[27] Shapiro D, Hamraz B, Sommer AF, Clarkson PJ. Investigating the impact of changes

in iteration-likelihoods on design process performance. Concurr Eng 2015;23:250–64.

https://doi.org/10.1177/1063293X15588202.

[28] Browning TR. Design Structure Matrix Extensions and Innovations: A Survey and

New Opportunities. IEEE Trans Eng Manag 2016;63:27–52.

https://doi.org/10.1109/TEM.2015.2491283.

[29] Amigo CR, Iritani DR, Rozenfeld H, Ometto A. Product Development Process

Modeling: State of the Art and Classification. In: Abramovici M, Stark R, editors.

Smart Prod. Eng., Springer Berlin Heidelberg; 2013, p. 169–79.

https://doi.org/10.1007/978-3-642-30817-8_17.

[30] Karniel A, Reich Y. Multi-level modelling and simulation of new product development

processes. J Eng Des 2013;24:185–210.

https://doi.org/10.1080/09544828.2012.720015.

[31] Mulyar NA, Van Der Aalst WMP. Patterns in Colored Petri Nets. BETA Work. Pap.

Ser., Eindhoven: Eindhoven University of Technology; 2005.

[32] Arena D, Kiritsis D. A Methodological Framework for Ontology-Driven Instantiation

of Petri Net Manufacturing Process Models. 14th IFIP Int. Conf. PLM 2017, 2017, p.

557–67. https://doi.org/10.1007/978-3-319-72905-3_49.

[33] Karniel A, Reich Y. Formalizing a Workflow-Net Implementation of Design-Structure-

Matrix-Based Process Planning for New Product Development. IEEE Trans Syst Man,

Cybern - Part A Syst Humans 2011;41:476–91.

https://doi.org/10.1109/TSMCA.2010.2091954.

[34] Pla A, Gay P, Meléndez J, López B. Petri net-based process monitoring: A workflow

management system for process modelling and monitoring. J Intell Manuf

2014;25:539–54. https://doi.org/10.1007/s10845-012-0704-z.

[35] Lenka A. A Review of Petri Net Modeling of Dynamical Systems. Indian J Comput Sci

Eng 2012;3:605–22.

[36] Eder WE. Information Systems for Designers. Int. Conf. Eng. Des., 1989.

[37] Hubka V, Eder WE. Theory of Technical Systems. Berlin, Heidelberg: Springer Berlin

References

128

Heidelberg; 1988. https://doi.org/10.1007/978-3-642-52121-8.

[38] Wynn DC, Eckert CM, Clarkson PJ. Research into the design and development

process: some themes and an overview of the special issue. Res Eng Des 2019;30:157–

60. https://doi.org/10.1007/s00163-019-00315-7.

[39] Wynn DC, Clarkson PJ. Process models in design and development. Res Eng Des

2018;29:161–202. https://doi.org/10.1007/s00163-017-0262-7.

[40] Pahl G, Beitz W, Feldhusen J, Grote K-H. Engineering Design. London: Springer

London; 2007. https://doi.org/10.1007/978-1-84628-319-2.

[41] Urlich KT, Eppinger SD, Yang MC. Product Design and Development. 7th ed.

McGraw-Hill Education; 2020.

[42] Demoly F, Kim K-Y, Horváth I. Ontological engineering for supporting semantic

reasoning in design: deriving models based on ontologies for supporting engineering

design. J Eng Des 2019;30:405–16. https://doi.org/10.1080/09544828.2019.1633626.

[43] Baclawski K, Bennett M, Berg-Cross G, Fritzsche D, Schneider T, Sharma R, et al.

Ontology Summit 2017 communiqué – AI, learning, reasoning and ontologies. Appl

Ontol 2018;13:3–18. https://doi.org/10.3233/AO-170191.

[44] Ahmed S. Encouraging reuse of design knowledge: a method to index knowledge. Des

Stud 2005;26:565–92. https://doi.org/10.1016/j.destud.2005.02.005.

[45] Štorga M, Andreasen MM, Marjanović D. The design ontology: foundation for the

design knowledge exchange and management. J Eng Des 2010;21:427–54.

https://doi.org/10.1080/09544820802322557.

[46] Li L, Qin F, Gao S, Liu Y. An approach for design rationale retrieval using ontology-

aided indexing. J Eng Des 2014;25:259–79.

https://doi.org/10.1080/09544828.2014.969690.

[47] Lim SCJ, Liu Y, Yong C. No Title. Proc. 20th Int. Conf. Eng. Des. (ICED15). Milan,

Italy, July 27–30, 2015, p. 267–76.

[48] Vajna S. Integrated Design Engineering. Springer; 2014.

[49] Lindemann U, Maurer M, Braun T. Structural Complexity Management. Berlin,

Heidelberg: Springer Berlin Heidelberg; 2009. https://doi.org/10.1007/978-3-540-

87889-6.

[50] Wynn DC, Eckert CM. Perspectives on iteration in design and development. Res Eng

Des 2016;28:153–84. https://doi.org/10.1007/s00163-016-0226-3.

[51] Clarkson PJ, Simons C, Eckert C. Predicting Change Propagation in Complex Design.

References

129

J Mech Des 2004;126:788. https://doi.org/10.1115/1.1765117.

[52] Eckert CM, Clarkson PJ. Planning development processes for complex products. Res

Eng Des 2010;21:153–71. https://doi.org/10.1007/s00163-009-0079-0.

[53] Maier AM, Kreimeyer M, Lindemann U, Clarkson PJ. Reflecting communication: a

key factor for successful collaboration between embodiment design and simulation. J

Eng Des 2009;20:265–87. https://doi.org/10.1080/09544820701864402.

[54] Eckert C, Clarkson J, Stacey M. Information flow in engineering companies: Problems

and their causes. Int Conf Eng Des 2001:43–50.

[55] Rouibah K, Caskey K. A workflow system for the management of inter-company

collaborative engineering processes. J Eng Des 2003;14:273–93.

https://doi.org/10.1080/0954482031000091059.

[56] Rouibah K, Caskey KR. Change management in concurrent engineering from a

parameter perspective. Comput Ind 2003;50:15–34. https://doi.org/10.1016/S0166-

3615(02)00138-0.

[57] Müller R. Event-Oriented Dynamic Adaptation of Workflows: Model, Architecture and

Implementation. University of Leipzig, Germany, 2002.

[58] Colson E. What AI-driven decision making looks like. Harv Bus Rev 2019.

https://hbr.org/2019/07/what-ai-driven-decision-making-looks-like#comment-section.

[59] Baecker RM, Grudin J, Greeberg S, Buxton W. Readings in Human-Computer

Interaction : Toward the Year 2000. Morgan Kaufmann; 1995.

[60] Brisco R, Whitfield RI, Grierson H. A novel systematic method to evaluate computer-

supported collaborative design technologies. Res Eng Des 2019;31:53–81.

https://doi.org/10.1007/s00163-019-00323-7.

[61] Badke-Schaub P, Frankenberger E. Analysis of design projects. Des Stud

1999;20:465–80. https://doi.org/10.1016/S0142-694X(99)00017-4.

[62] Conway AP, Ion WJ. Enhancing the design dialogue: an architecture to document

engineering design activities. J Eng Des 2013;24:140–64.

https://doi.org/10.1080/09544828.2012.690859.

[63] Conway AP, Giess MD, Lynn A, Ding L, Goh YM, McMahon CA, et al. Holistic

Engineering Design: A Combined Synchronous and Asynchronous Approach. Vol. 3

28th Comput. Inf. Eng. Conf. Parts A B, ASME; 2008, p. 1227–36.

https://doi.org/10.1115/DETC2008-49340.

[64] Wolfartsberger J. Analyzing the potential of Virtual Reality for engineering design

References

130

review. Autom Constr 2019;104:27–37. https://doi.org/10.1016/j.autcon.2019.03.018.

[65] Freeman IJ, Salmon JL, Coburn JQ. CAD Integration in Virtual Reality Design

Reviews for Improved Engineering Model Interaction. Vol. 11 Syst. Des. Complex.,

American Society of Mechanical Engineers; 2016.

https://doi.org/10.1115/IMECE2016-66948.

[66] Noel F, Nguyen A, Ba N, Sadeghi S. Qualitative comparison of 2D and 3D perception

for information sharing dedicated to manufactured product design. 2012 IEEE 3rd Int.

Conf. Cogn. Infocommunications, IEEE; 2012, p. 261–5.

https://doi.org/10.1109/CogInfoCom.2012.6421991.

[67] Huet G, Culley SJ, McMahon CA, Fortin C. Making sense of engineering design

review activities. Artif Intell Eng Des Anal Manuf 2007;21:243.

https://doi.org/10.1017/S0890060407000261.

[68] Juranić J, Pavković N, Naumann T, Toepfer F. Patterns of engineering design

collaboration and reasoning activities modelled with Coloured Petri Nets. J Eng Des

2019;30:563–98. https://doi.org/10.1080/09544828.2019.1630803.

[69] Piccolo SA, Maier AM, Lehmann S, McMahon CA. Iterations as the result of social

and technical factors: empirical evidence from a large-scale design project. Res Eng

Des 2019;30:251–70. https://doi.org/10.1007/s00163-018-0301-z.

[70] Le HN. A transformation-based model integration framework to support iteration

management in engineering design. University of Cambridge, 2013.

[71] Jun H-B, Suh H-W. A Modeling Framework for Product Development Process

Considering its Characteristics. IEEE Trans Eng Manag 2008;55:103–19.

https://doi.org/10.1109/TEM.2007.912808.

[72] Browning TR. Applying the design structure matrix to system decomposition and

integration problems: a review and new directions. IEEE Trans Eng Manag

2001;48:292–306. https://doi.org/10.1109/17.946528.

[73] Danilovic M, Browning TR. Managing complex product development projects with

design structure matrices and domain mapping matrices. Int J Proj Manag

2007;25:300–14. https://doi.org/10.1016/j.ijproman.2006.11.003.

[74] De Lessio MP, Wynn DC, Clarkson PJ. Modelling the planning system in design and

development. Res Eng Des 2019;30:227–49. https://doi.org/10.1007/s00163-017-0272-

5.

[75] Siddharth L, Sarkar P. A Multiple-Domain Matrix Support to Capture Rationale for

References

131

Engineering Design Changes. J Comput Inf Sci Eng 2018;18.

https://doi.org/10.1115/1.4039850.

[76] Vallath Ramachandran V. Managing the Interdependencies in Complex Development

Projects with Matrix-Based Methods. Proc. 21st Int. DSM Conf., The Design Society;

2019, p. 101–8. https://doi.org/10.35199/dsm2019.14.

[77] Kreimeyer M, Braun S, Guertler M, Lindemann U. Extending multiple domain

matrices to allow for the modeling of boolean operators in process models. DS 58-1

Proc. ICED 09, 17th Int. Conf. Eng. Des. Vol. 1, Des. Process. Palo Alto, CA, USA,

24.-27.08.2009, 2009, p. 1–12.

[78] Juranić J, Pavković N, Jurinić D. Management of design iterations on coupled

parameters in design teamwork using multiple domain matrix and Coloured petri nets.

Proc Des Soc Des Conf 2020;1:617–26. https://doi.org/10.1017/dsd.2020.264.

[79] Clarkson PJ, Hamilton JR. “Signposting”, a parameter-driven task-based model of the

design process. Res Eng Des - Theory, Appl Concurr Eng 2000;12:18–38.

https://doi.org/10.1007/s001630050021.

[80] Toepfer F, Naumann T, Anderer J, Vajna S. Integrating the knowledge about

functional interdependencies into a parameter management approach, 2018, p. 477–86.

https://doi.org/10.21278/idc.2018.0222.

[81] Yang C, Yang R, Xu T, Li Y. Negotiation model and tactics of manufacturing

enterprise supply chain based on multi-agent. Adv Mech Eng

2018;10:168781401878362. https://doi.org/10.1177/1687814018783625.

[82] Khosravifar S. Modeling Multi Agent Communication Activities with Petri Nets. Int J

Inf Educ Technol 2013;3:310–4. https://doi.org/10.7763/IJIET.2013.V3.287.

[83] Westergaard M, Kristensen LM. The Access/CPN Framework: A Tool for Interacting

with the CPN Tools Simulator, 2009, p. 313–22. https://doi.org/10.1007/978-3-642-

02424-5_19.

[84] Breški T. Software support for preparing reports from the project team meeting.

University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture,

2018.

[85] Wasiak J, Hicks B, Newnes L, Dong A, Burrow L. Understanding engineering email:

the development of a taxonomy for identifying and classifying engineering work. Res

Eng Des 2010;21:43–64. https://doi.org/10.1007/s00163-009-0075-4.

[86] Kumar P, Mocko G. Modeling and Analysis of an Ontology of Engineering Design

References

132

Activities Using the Design Structure Matrix. Vol. 3 19th Int. Conf. Des. Theory

Methodol. 1st Int. Conf. Micro- Nanosyst. 9th Int. Conf. Adv. Veh. Tire Technol. Parts

A B, ASMEDC; 2007, p. 559–71. https://doi.org/10.1115/DETC2007-35634.

[87] Sheng J, Prescott D. A coloured Petri net framework for modelling aircraft fleet

maintenance. Reliab Eng Syst Saf 2019;189:67–88.

https://doi.org/10.1016/j.ress.2019.04.004.

[88] Brant-Ribeiro T, Araújo RD, Mendonça IE, Soares MS, Cattelan RG. Interactive web

interfaces modeling, simulation and analysis using Colored Petri Nets. Softw Syst

Model 2019;18:721–37. https://doi.org/10.1007/s10270-017-0593-x.

[89] Yang Q, Kherbachi S, Hong YS, Shan C. Identifying and managing coordination

complexity in global product development project. Int J Proj Manag 2015;33:1464–75.

https://doi.org/10.1016/j.ijproman.2015.06.011.

[90] van der Aalst WMP, Stahl C, Westergaard M. Strategies for Modeling Complex

Processes Using Colored Petri Nets. In: Jensen K, van der Aalst W, Balbo G, Koutny

M, Wolf K, editors. Trans. Petri Nets Other Model. Concurr., 2013, p. 6–55.

https://doi.org/10.1007/978-3-642-38143-0_2.

[91] Clarkson PJ, Hamilton JR. “Signposting”, A Parameter-driven Task-based Model of

the Design Process. Res Eng Des 2000;12:18–38.

https://doi.org/10.1007/s001630050021.

[92] Durmus MS, Takai S. Modeling Moving-Block Railway Systems: A Generalized

Batches Petri Net Approach. SICE J Control Meas Syst Integr 2013;6:403–10.

https://doi.org/10.9746/jcmsi.6.403.

[93] Yu Y, Zhao Z, Lv Y, Guo H. Research on Missile Attack and Defense Modeling of

High-level Missile Based on Discrete Event. Proc. 2017 5th Int. Conf. Front. Manuf.

Sci. Meas. Technol. (FMSMT 2017), Paris, France: Atlantis Press; 2017.

https://doi.org/10.2991/fmsmt-17.2017.242.

[94] Wang Z, Song JH, Zhu XD. Research for Model Based on Petri Nets about

Maintenance and Support of Military Aviation Equipment. Appl Mech Mater

2013;347–350:2968–72. https://doi.org/10.4028/www.scientific.net/AMM.347-

350.2968.

[95] Wallace K. Transferring Design Methods into Practice. Futur. Des. Methodol.,

London: Springer London; 2011, p. 239–48. https://doi.org/10.1007/978-0-85729-615-

3_21.

References

133

[96] Birkhofer H. Summary - General Reflections on Design Methodology. Futur. Des.

Methodol., London: Springer London; 2011, p. 285–90. https://doi.org/10.1007/978-0-

85729-615-3_25.

[97] Petri CA. Kommunikation mit Automaten. Universität Hamburg, 1962.

[98] Reisig W. Petri Nets: An introduciton. Springer, Berlin, Heidelberg; 1985.

https://doi.org/https://doi.org/10.1007/978-3-642-69968-9.

[99] Jensen K, Rozenberg G. High-level Petri Nets: Theory and Application. 1st ed.

Springer-Verlag Berlin Heidelberg; 1991. https://doi.org/10.1007/978-3-642-84524-6.

[100] Huber P, Jensen K, Shapiro RM. Hierarchies in Coloured Petri Nets. High-level Petri

Nets, Berlin, Heidelberg: Springer Berlin Heidelberg; 1991, p. 215–43.

https://doi.org/10.1007/978-3-642-84524-6_7.

[101] Agha GA, Cindio FD, Rozenberg G. Concurrent Object-Oriented Programming and

Petri Nets: Advances in Petri Nets. 1st ed. Springer-Verlag Berlin Heidelberg; 2001.

https://doi.org/10.1007/3-540-45397-0.

[102] Diallo O, Rodrigues JJPC, Sene M. Performances evaluation and Petri nets. Model.

Simul. Comput. Networks Syst., Elsevier; 2015, p. 313–55.

https://doi.org/10.1016/B978-0-12-800887-4.00011-0.

[103] Merlin PM. A study of the recoverability of computing systems. University of

California, Irvine, 1974.

[104] Ramachandani C. Analysis of asynchronous concurrent systems by timed Petri nets.

201 Vassar Street, W59-200 Cambridge, MA, United States: 1974.

[105] Sifakis J. Use of Petri Nets for Performance Evaluation. Meas. Model. Eval. Comput.

Syst. Proc. Third Int. Symp., BonBad Godesberg, Germany, October 3-5; 1977, p. 75–

93.

[106] Walter B. Transaktionsorientierte Recovery-Konzepte für verteilte Datenbanksysteme.

University of Stuttgart, Germany, 1982.

[107] Popova-Zeugmann L. Time and Petri Nets. Berlin, Heidelberg: Springer Berlin

Heidelberg; 2013. https://doi.org/10.1007/978-3-642-41115-1.

[108] Jensen K, Kristensen LM, Wells L. Coloured Petri Nets and CPN Tools for modelling

and validation of concurrent systems. Int J Softw Tools Technol Transf 2007;9:213–54.

https://doi.org/10.1007/s10009-007-0038-x.

[109] Gkolfi A, Din CC, Johnsen EB, Kristensen LM, Steffen M, Yu IC. Translating active

objects into colored Petri nets for communication analysis. Sci Comput Program

References

134

2019;181:1–26. https://doi.org/10.1016/j.scico.2019.04.002.

[110] McMahon CA, Xianyi M. A network approach to parametric design integration. Res

Eng Des 1996;8:14–31. https://doi.org/10.1007/BF01616554.

[111] Horvath I, Vergeest J, van Der Vegte W. Modeling design processes and designer

decisions with advanced petri-nets. In: Lehoczky L, Kalmar L, editors. Int. Comput.

Sci. Conf., Miskolc: University of Miskolc; 2000, p. 81–90.

https://doi.org/10.1.1.142.4701.

[112] Karniel A, Reich Y. Formalizing a Workflow-Net Implementation of Design-Structure-

Matrix-Based Process Planning for New Product Development. IEEE Trans Syst Man,

Cybern - Part A Syst Humans 2011;41:476–91.

https://doi.org/10.1109/TSMCA.2010.2091954.

[113] Topic G, Jevtic D, Kunstic M. Petri Net-Based Simulation and Analysis of the

Software Development Process. Knowledge-Based Intell. Inf. Eng. Syst., Berlin,

Heidelberg: Springer Berlin Heidelberg; 2008, p. 418–25. https://doi.org/10.1007/978-

3-540-85565-1_52.

[114] Topic G, Jevtic D. Modelling, simulation and resource optimisation of complex

development project by fusion of multiple-domain matrix and coloured Petri nets

methods. Int J Simul Process Model 2019;14:51–63.

https://doi.org/10.1504/IJSPM.2019.097713.

135

APPENDICES

Appendix A: A literature review on Petri nets and their

extensions

A.1. Petri Nets

Petri Net (PN) is a mathematical modelling language for the representation of discrete event

dynamic systems introduced by Carl Petri in the early ’60s [97]. Over the years, it has evolved

through four distinguishable generations:

6. Low-level PN – used for modelling system control [98]

7. High-level PN – describing both control and system data [99]

8. Hierarchical PN – introduced abstracted system structures [100]

9. Object-oriented PN – support for modern system-oriented approaches [101]

Further development of the language was not stopped there; contrary, it has got many

extensions, of which some are used in this research. Even decades later, researchers [102] claim

that PNs are a tremendously important mathematical and graphical tool in modelling discrete

events systems, which are characterised as distributed, concurrent, synchronous or

asynchronous, parallel, nondeterministic and stochastic. An additional advantage of the tool is

its performance analysis of a modelled system. Its graphical component allows the user to

model a system and visualise its behaviours using a bipartite directed graph. The following sub-

sections give an overview of ordinary PN, extensions used in this research and application of

PN in the product design area.

A.1.1. Ordinary Petri Nets

An ordinary PN is a PN that comprises only the basics concepts. However, it provides the

optimum way to explain the basic components and most important properties, which are crucial

for the latter understanding of PN models. Typical PN has two different types of nodes called

places and transitions. Places are represented by circles, while rectangles represent transitions.

Appendices

136

These two nodes are connected via directed arcs which connect either a place to a transition or

a transition to a place. In order to exist, a network must have a finite and not zero number of

places and transitions. The following figure shows an example of a basic PN in two different

states before firing the transition T1 and afterwards.

Figure A.1. Ordinary PN: a) before firing b) after firing

A set of places of a PN is called P and a set of transitions is T. In Figure A.1, P and T represent

two vectors, P = {P1, P2, P3, P4, P5} and T = {T1}. Places P1 and P2 are input places because

directed arcs connect those places to the transition T1. In similar way places P3, P4, P5 are output

places of the transition T1.

Each place in a network contains a positive or zero number of marks (black dots) or tokens.

The number of tokens in a place Pi is called marking mi. For the example above (before firing),

the net marking is a vector m = (2, 1, 0, 0, 0). The marking defines the state of the system

represented by PN. The marking is not fixed; after each firing of a transition, the system

evolves, and the marking changes accordingly. In the right part of the example above, the

marking is m = (1, 0, 1, 1, 1).

System evolution is represented by firing an activity. Firing is an event of a token withdrawal

from each of the input places of transition Tj and the addition of a token to each of the output

places of transition Tj. A transition can only be fired if each of the input places contains at least

one token. A transition that is available to be fired is called enabled transition. For the example

in Figure A.1, the transition on the left figure is fireable or enabled, while on the right figure,

the transition is not enabled since not all input places have a token. Ordinary PNs transitions do

not have a duration, tokens from all input places are consumed in the same moment, and tokens

in output places are immediately produced.

Although ordinary PNs are extensively used in practice, they revealed two significant

drawbacks [20] which have to be surpassed for this research:

Appendices

137

• The concept of data does not exist → the models often become excessively big because

all data manipulation has to be represented directly in the network structure (i.e., using

places, transitions, and black dots), and

• The hierarchy concept does not exist → it is not possible to build a large model using

a set of separate sub-models with well-defined interfaces.

The development of high-level Petri Nets eliminates these two serious problems (Jensen and

Kristensen, 2009).

A.1.2. Petri nets extensions

During firing a transition, only one token from each input place is consumed, but in most cases,

the transition process needs to be further extended. In that manner, weights could be assigned

to each directed arc. This kind of PN is called Generalized Petri Net. If Figure A.1 is changed

in the way that the arc between P1 and T1 has weight 2 and all other arcs (whose weight is not

explicitly denoted) have weight 1, transition T1 will be enabled only if the number of tokens in

place P1 is equal or greater to the weight of the arc that connects them (is this example number

of tokens should be 2 or more). When the transition is fired, the weight of the input arc will

define how many tokens will be removed from the input place. Evidently, firing the transition

will add a certain number of tokens in the output place, depending on the weight of the output

arc. Generalized PN before and after firing is shown in Figure A.2.

Figure A.2. Generalized PN: a) before firing the transition b) after firing the transition

The second beneficial type of PN is Finite Capacity PN (Figure A.3), in which all places have

specified capacity. A transition is enabled and could be fired only if the firing of that transition

will result in producing a less or equal number of tokens that remain to fill the capacity of the

output place. The model which is enabled is presented in Figure A.3a, while the model in Figure

A.3b is not enabled since the place P4 has the maximum number of tokens.

Appendices

138

Figure A.3. Finite capacity PN: a) enabled b) not enabled because one of the places has full

capacity

Among all extensions, there is one called Extended PN. An advantage for that type of PN is

that it has an additional type of directed arcs called inhibitor arc. Inhibitor arc is always directed

from a place Pi to a transition Tj, which implies that the place Pi could only serve as input place.

Instead of an arrow on one or both ends, it has a small circle on the end, which connects to a

transition. A transition that has an input place connected with inhibitor arc must have an

additional regular input place. The cause can be found in an inhibitor arc behaviour. For

example, if place P2 in Figure A.4 is connected with inhibitor arc to T1, transition T1 will be

enabled only if P2 does not contain any token and all other input places contain at least one

token (Figure A.4b).

Figure A.4. Extended PN: a) enabled b) not enabled

When simulating PN, a common issue is that more than one transition is enabled at the same

moment. Although firing a transition takes no time, it is important to give priority to one

transition to fire it before the other enabled transitions. Hence, Priority PN will come in handy

in such situations. This type of net includes a PN and a partial order relation on the net

transitions. The order relation will determine which transition has a firing priority if they are

Appendices

139

enabled at the same moment. The priority is defined as an integer number that is positioned

under the corresponding transition. The transition with the highest priority is one with the

lowest priority number, which can be seen in Figure A.5.

Figure A.5. Priority PN: a) before firing b) after firing

All ordinary PN are by default autonomous. It is already mentioned that a transition does not

have a duration, and it is fired as soon as all input places have at least one token. From a practical

standpoint, it is important to control firing with some external processes. Hence, Non-

autonomous PN will provide such enhancement. When it comes to the time property of PN,

there exist several branches. If a transition cannot fire immediately after being enabled, these

time-dependent nets are called Time PN [103]. These nets should be distinguished from Timed

PN [104], which fire as soon as they are enabled, but the event of firing has a duration. PN with

an indication of time in places [105] has a rule that a token must remain in the place for at

least specified time units before it can be consumed. The last group of PN with time is PN with

time-dependent arcs [106]. The token is consumed as soon as there are enough tokens to fire

the transition. But, between consuming tokens and firing, the transition is a time gap defined

on the input arc. In the last decades, all kinds of combinations of time-dependent PN are

developed by Popova-Zeugmann.

Continuous PN expanded ordinary PN in the way that number of tokens is no longer integer

number only but could be any positive real number. This property enables PN to model a system

that could consist of continuous instead of only discrete events. In most cases, the system is not

always or only continuous. Such a combination of discrete and continuous events is modelled

with PN known as Hybrid PN.

In the field of system, modelling models became rather large and often hard to comprehend. In

large models, many details are shown at one time and a user can easily lose the overview of the

Appendices

140

model. When simulating and analysing these models, it is hard to follow what are the next

possible options (enabled transitions) or even what is the current status of the model.

To overcome this problem, Huber et al. [100] introduced a method to dissolve a model created

in one layer into several sub-models. Hierarchical PN use hierarchy to reduce the complexity

of a large model, which helps to focus on sub-models or a small part of a system. Each sub-

model could be modelled as a well-defined component and used at multiple locations in the

same system.

The next and final extension, which will be briefly described in this thesis, is Coloured PN. The

list of PN extensions does not end there, nor all properties and characteristics were mentioned,

but the reader will get an overview of the PN types used in this research.

A.1.3. Coloured Petri Nets

Coloured PN (also called CP-nets or CPN) is one of the most well-known extensions of high-

level PN. CPN as an extension comprises all the other extensions described in Section 0 without

compromising qualities of ordinary PN. Besides these extensions, its most valuable

characteristics is a concept of data transfers within a modelled system. Additionally, it

incorporates functional programming language CPN ML, based on Standard Modelling

Language. According to Jensen et al. [108], CPN modelling language is a general-purpose

language aimed towards modelling a broad class of concurrent systems. The main difference

from the other extensions is that tokens in CPN are not black dots anymore, but they have

attached a data value to them. The data value, referred to as colour, describes the properties of

the object modelled by the token [20]. A simple CPN is shown in Figure A.6. This net consists

of two input places and one output place. One of the input places has tokens that could carry

only integer data type while the other has real (float) data type. The output place could receive

only a token that carries data with real type. Each input place has only one token, while the

output place does not have any tokens. Since all input places have at least one token, the

transition is enabled and could be fired. In CPN, a transition is not just a simple event of

consuming and producing tokens. On the contrary, it could execute custom-written functions.

In this example, the transition will summarize values from input tokens, and the result of the

function will be represented as a new token in the output place. CPN supports all standard data

types, although additional custom data types could be defined. The great advantage is the ability

to connect a transition to external processes and functions which are not executed within the

CPN model. For this research, CPN Tools (www.cpntools.org) software was used to create

Appendices

141

high-level PN. It is a toolset that provides support for the modelling, analysis, and simulation

of all PN extensions [108].

Figure A.6. Two states of a CPN model

Distinctive areas of CPN application are simulations of communication protocols, data

networks, business processes, production systems, and other similar areas [87,109]. Interactive

simulation allows users to look at different outcomes and check whether the model works as

expected [88].

A.1.4. Application of Petri Nets in engineering design

Soon after high-level PN had been developed, several authors introduced proposals for using

PN to support the design process from various viewpoints. The development of high-level PN

eliminated some of their pristine drawbacks, and nowadays, they are accepted as one of the

most adequate and sound languages for the description and analysis of synchronisation,

communication, and resource sharing between concurrent processes [20] in many fields.

McMahon and Xianyi [110] presented a method for the integration of multiple computing

processes to solve a parametric design problem using PN. They consider PN places to represent

data states in the design process. Places may represent geometrical model, material properties

or mathematical model, and tokens indicate that the relevant information is available for further

processing. A transition represents a design activity that could be carried out using data stored

in input places. It should be emphasised that the data type in these tokens is not a standard data

type but a geometrical model or a document with material properties. A few years later, Horvath

et al. [111] claimed that in the design process, the designer’s decisions strongly influence the

process itself as well as a designed artefact. Due to inherited complexity, authors applied

advanced PN as a means of modelling design processes together with the decision patterns of

designers. The results proved their fundamental hypothesis that the decision mechanisms

behind design processes can be adequately represented in terms of predefined abstract activity

patterns, which can be clearly represented using advanced Petri Nets.

Appendices

142

Karniel and Reich [30] presented a multi-level approach that combines a design structure matrix

(DSM) with Petri Nets to simulate product development processes. In the research, authors

defined a new type of PN which they call Workflow Net (WF-Net). Based on their previous

work [112], the authors constructed DSM, reordered it, then defined design process matrix and

finally integrated static process planning (design process matrix) with PN to simulate the

development process. The authors emphasized a property of PN, which could be considered as

a drawback in some situations, but for this research, it is not pertinent. Typical PN is predefined,

and its static process scheme does not change during utilization. Their solution to this problem

is the dependency structure matrix net which has a dynamically evolving structure.

It is widely known that workflows are used for describing the order of execution and

dependencies between activities of various processes. Pla et al. [34] claim that workflow

monitoring could help to improve and avoid delays in environments where concurrent processes

are carried out. As the main issue of the standard workflows, they mention the lack of resource

availability monitoring. This issue authors have surpassed with resource-aware Petri nets

(RAPN). Using RAPN, the authors created a workflow management system that monitors the

execution of workflows and detects possible delays.

In the design process, a great amount of time is devoted to communication. More about the

communication process in engineering design is given in Section 2.4. Several authors suggested

various approaches for the development and usage of generic templates of communication

processes. Khosravifar [82] proposed PN based models for different types of communication

such as negotiation, persuasion, defence locution and information seeking process. These

models are represented as templates created using PN, which facilitate the specification of

communication activities in a multi-agent environment.

Topic et al. [113] have explored improvements, which can be achieved by applying PN to the

modelling, simulation, and analysis of the software development process. Topic and Jevtic

[114] developed a procedure for the dynamic management of complex project systems. They

combined a multiple-domain matrix with CPN. Their focus was on how to convert MDM

matrix, which includes complex relations between resources and activities, to the CPN model,

where MDM matrix is expanded by capabilities of the dynamic system description available in

CPN methodology.

Appendices

143

A.1.5. Roles of the Coloured Petri Nets in the proposed framework

The development of high-level PN removed some of their initial drawbacks. For example, CPN

includes and unites concepts of data structures, hierarchy, and time. Therefore, it has been used

in modelling, simulating, and controlling discrete event dynamic systems. Still, it has also been

successfully applied in many engineering design case studies, which were reported in the

previous section. The approaches from these studies were used as starting points during the

process of development of theoretical and software framework in this research. The aim is to

apply the CPN methodology to some selected areas of design process modelling. Rather than

modelling the whole process on higher abstract levels, the focus is primarily on the process of

design communication, especially regarding issues of design team communication about design

parameters.

Product development is a complex process, and modelling complex processes in terms of CPN

is a nontrivial task. However, such a task could be decomposed into recurring modelling

problems that can be solved by applying design patterns [90]. In this research, a similar pattern-

based approach was applied after distinguishing and extracting repetitive patterns in the design

process from several complex product development processes. Additionally to design patterns,

generic templates of communication processes are recognized, similar to ones developed by

Khosravifar [82] and Mulyar and Van Der Aalst [19], [31].

The following features, which are already incorporated in CPN are necessary for the approach

developed and applied in this research:

• the ability to communicate with external sources and services,

• the ability to execute predefined decision-making and consequently immediately

activate appropriate procedures, and

• the ability to visualise the current process state using the positions of the tokens and

their values and to trace the process by storing all the data values and CPN model states.

Appendices

144

Appendix B: Custom SML functions

A custom function written in SML language embedded in a CPN model. The function “readlist”

reads textual documents and from each row in the file, creates one item in a list. The function

is described in detail in Section 4.3.

Custom function written in SML language embedded in a CPN model. The function

“readdatabase” is described in Section 4.3.

Custom function written in SML language embedded in a CPN model. The function

“readparameter” is described in Section 4.3.

Appendices

145

Appendix C: Complete CPN models

In this appendix, complete CPN models presented in Section 4.9. are shown.

Appendix C.1. CPN model for automatic parameter change

Appendices

146

Appendix C.2. CPN model of negotiation on coupled parameters values

147

BIOGRAPHY

Jasmin Juranić was born in Bjelovar, Croatia, in 1990. He attended Technical School Bjelovar,

and during his high school education, he was four times the national champion in vocational

schools competitions in the field of mechanical engineering. In 2007 he participated in the

world competition of knowledge and skills “WorldSkills 2007” in Japan, in the field of

CAD/CAM where he won “Best of Nation” medal.

In 2009 he enrolled in the study of Mechanical Engineering at the Faculty of Mechanical

Engineering and Naval Architecture, University of Zagreb (UNIZG-FSB). In 2013, he gained

a bachelor’s degree and a year later, a master’s degree (cum laude) in mechanical engineering,

specialising in Product Design and Development.

After graduation, he worked as technical support for 3D modelling software Catia and

SolidWorks at CADCAM Design Center company. In 2015 he applied for the position at the

Chair of Design and Product Development at UNIZG-FSB as a Research Assistant. In parallel,

he started his PhD study in the field of Theory of Structures. He visited the research department

of Daimler AG as a PhD intern three times throughout his doctoral research.

Besides the scientific work, he assists in teaching in courses such as European Product Global

Realisation, Computer Aided Design, Programming and algorithms and Advanced Engineering

Informatics. Before his research assistant position at FMENA he worked as an external assistant

lecturer where he held tutorials on Machine Elements.

He is a member of the Design Society. Since 2016 he actively participates in the organisation

of the DESIGN conference, a biennial event that regularly attracts more than 250 experts from

more than 30 countries around the world.

148

ŽIVOTOPIS

Jasmin Juranić rođen je u Bjelovaru 1990. godine. Pohađao je Tehničku školu Bjelovar te je

tijekom srednjoškolskog obrazovanja četiri puta bio državni prvak na natjecanjima strukovnih

škola u području strojarstva. 2007. godine sudjelovao je na svjetskom natjecanju znanja i

vještina „WorldSkills 2007“ u Japanu, u području CAD/CAM. Na natjecanju je osvojio nagradu

„Best of Nation“.

2009. godine upisuje studij strojarstva na Fakultetu strojarstva i brodogradnje, Sveučilišta u

Zagrebu (UNIZG-FSB). 2013. godine završava preddiplomski studij, a godinu dana kasnije

stekao je zvanje magistra inženjera strojarstva (cum laude) na usmjerenju Konstruiranje i razvoj

proizvoda.

Nakon studija bio je zaposlen u tvrtki CADCAM Design Center na mjestu tehničke podrške za

softvere za 3D modeliranje Catia i SolidWorks. 2015. godine prijavio se je za mjesto asistenta

na Katedri za konstruiranje i razvoj proizvoda na Sveučilištu u Zagrebu. Paralelno je upisao i

doktorski studij, smjer Teorija konstruiranja. Tijekom doktorskog studija tri puta je posjetio

istraživački odjel tvrtke Daimler AG u Njemačkoj.

Uz znanstveni rad, pomaže u izvođenju nastave na kolegijima, European Product Global

Realisation, Konstruiranje pomoću računala, Programiranje i algoritmi te Napredna inženjerska

informatika. Prije nego se zaposlio na mjestu asistenta, u nastavi je sudjelovao kao vanjski

suradnik na kolegiju Elementi konstrukcija.

Član je zajednice Design Society. Od 2016. godine aktivno sudjeluje u organizaciji

međunarodne DESIGN konferencije, koja svake dvije godine privlači više od 250 stručnjaka iz

više od 30 zemalja iz cijelog svijeta.

149

BIBLIOGRAPHY

Journal paper:

Juranić, J., Pavković, N., Naumann, T., Toepfer, N. (2019) Patterns of engineering design

collaboration and reasoning activities modelled with Coloured Petri Nets. Journal of

engineering design, 30(10-12), 563-598. https://doi:10.1080/09544828.2019.1630803

Conference papers:

Juranić, J., Pavković, N., Jurinić, D. (2020) Management of design iterations on coupled

parameters in design teamwork using multiple domain matrix and Coloured petri nets. In:

Proceedings of the 16th International Design Conference (DESIGN 2020), Cambridge

University Press, (pp. 617-626). https://doi:10.1017/dsd.2020.264

Pavković, N., Vlah, L., Juranić, J., Kuzmić, N. (2018) Coloured Petri Nets model of designers

collaboration in iterative resolving of coupled design parameters. In: Proceedings of the

15th International Design Conference (DESIGN 2018), Dubrovnik, Croatia, 21-

24.05.2018. (pp. 417-428). https://doi:10.21278/idc.2018.0182

Juranić, J., Pavković, N., Naumann, T., Marjanović, D. (2017) Modelling the design parameters

dynamics with Petri nets. In: Proceedings of the 21st International Conference on

Engineering Design (ICED 17), Vancouver, Canada, 21-25.08. 2017. (pp. 91-100).

Juranić, J., Marjanović, D., Pavković, N. Risks in product development: Advancements in

recent years. In: Proceedings of the 14th International Design Conference (DESIGN

2016), Cavtat, Croatia, 16-19.05.2018. (pp. 251-260).

	01_naslovne
	20210525_Doktorat 2021_v6

