Termodinamički model generatora pare na biomasu u Glini

Vrbanac, Lorena

Undergraduate thesis / Završni rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:618943

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-07

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Lorena Vrbanac

Zagreb, 2021.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentor:

Student:

Doc. dr. sc. Mislav Čehil dipl. ing.

Lorena Vrbanac

Zagreb, 2021.

Izjavljujem da sam ovaj rad izradila samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru dr. sc. Mislavu Čehilu na pruženoj pomoći, potpori i vremenu tijekom izrade ovog završnog rada.

Posebno i neizmjerno se zahvaljujem svojim roditeljima, sestri i baki na pruženoj potpori tijekom cijelog tijeka dosadašnjeg života i obrazovanja.

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje Datum Prilog Klasa: 602 - 04 / 21 - 6 / 1 Ur.broj: 15 - 1703 - 21 -

Mat. br.: 0035208825

ZAVRŠNI ZADATAK

Naslov rada na hrvatskom jeziku: Naslov rada na engleskom jeziku: Opis zadatka:

Lorena Vrbanac

U sklopu drvnoprerađivačke industrije u Glini nalazi se kogeneracija na biomasu. Toplina dobivena u kogeneraciji dijelom se koristi za potrebe prerade drveta, a dijelom za grijanje ustanova u gradu Glini. Proizvedena električna energija pokriva vlastite potrebe pogona, a višak se predaje u električnu mrežu.

U radu je potrebno:

Student:

- 1. Napraviti termodinamički model generatora pare koji će obuhvatiti sve izmjenjivače unutar generatora pare.
- 2. Prikazati temperaturne profile vode i dimnih plinova na granicama izmjenjivača, termodinamičku iskoristivost generatora pare te izmijenjene toplinske tokove na izmjenjivačima pri različitim opterećenjima generatora pare.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

30. studenoga 2020.

Zadatak zadao:

Datum predaje rada: **1. rok:** 18 veljače 2021. **2. rok (izvanredni):** 5. srpnja 2021. **3. rok:** 23. rujna 2021.

Predviđeni datumi obrane:

rok: 22.2. - 26.2.2021.
 rok (izvanredni): 9.7.2021.
 rok: 27.9. - 1.10.2021.

Predsjednik Povjerenstva:

Prof. dr. sc. Vladimir Soldo

Doc. dr. sc. Mislav Čehil

SADRŽAJ

SADRŽAJ	1
POPIS SLIKA	2
POPIS TABLICA	3
POPIS OZNAKA	4
SAŽETAK	5
SUMMARY	6
1. UVOD	7
1.1. Klasifikacija generatora pare	8
1.2. Goriva	9
1.3. Izgaranje krutih goriva	9
1.4. Površine izmjene topline	10
1.4.1. Ložište	10
1.4.2. Pregrijači pare	10
1.4.3. Ekonomajzerske površine	11
1.4.4. Isparıvač	11
2. VBA – VISUAL BASIC FOR APPLICATIONS	12
3. OPIS GENERATORA PARE BE-TO GLINA	13
3.1. Opis kotlovskog postrojenja	13
4. MATEMATIČKI MODEL	16
4.1. Shema generatora pare	16
4.2. Proračun modela	18
4.3. Dobiveni rezultati u ovisnosti o opterećenju generatora pare	25
4.3.1. Opterećenje generatora pare 40% (28 t/h)	26
4.3.2. Opterećenje generatora pare 50% (35 t/h)	27
4.3.3. Opterećenje generatora pare 60% (42 t/h)	28
4.3.4. Opterećenje generatora pare 70% (49 t/h)	29
4.3.5. Opterećenje generatora pare 80% (56 t/h)	30
4.3.6. Opterećenje generatora pare 90% (63 t/h)	31
4.3.7. Opterećenje generatora pare 100% (70 t/h)	32
4.4. Usporedba dobivenih rezultata u ovisnosti o opterećenjima generatora pare	33
4.4.1. Maseni protok goriva u ovisnosti o opterećenju	33
4.4.2. Maseni protok napojne vode za ubrizgavanje u ovisnosti o opterećenju	34
4.4.3. Izmijeni toplinski tok u ložištu u ovisnosti o opterećenju	35
4.4.4. T-Q dijagram generatora pare za opterećenje od 100% (70 t/h)	36
4.4.5. Usporedba temperatura dimnih plinova na izlazu iz generatora pare u ovisnos	sti o
opterećenju	37
4.4.6. Usporedba iskoristivosti generatora pare u ovisnosti o opterećenju	38
5. ZAKLJUČAK	39
LITERATURA	40
PRILOZI	41
Fakultet strojarstva i brodogradnje	1

POPIS SLIKA

Slika 1	BE-TO Glina	.7
Slika 2	Shema generatora pare	16
Slika 3	Usporedba masenih tokova goriva u ovisnosti o opterećenju	33
Slika 4	Usporedba masenih tokova napojne vode za ubrizgavanje u ovisnosti o opterećenju	34
Slika 5	Usporedba izmijenjenih toplinskih tokova u ložištu u ovisnosti o opterećenju	35
Slika 6	T-Q dijagram za opterećenje od 100%	36
Slika 7	Usporedba temperatura dimnih plinova na izlazu iz generatora pare u ovisnosti o	
	opterećenju	37
Slika 8	Usporedba iskoristivosti u ovisnosti o opterećenju	38

POPIS TABLICA

Tablica 1 Izmijenjeni toplinski tokovi, entalpije i temperature vode/pare na izmjenjivačima opterećenje 28 t/h	za .26
Tablica 2 Temperature i protoci dimnih plinova za opterećenje 28 t/h	.26
Tablica 3 Ostali rezultati za opterećenje 28 t/h	.26
Tablica 4 Izmijenjeni toplinski tokovi, entalpije i temperature vode/pare na izmjenjivačima	za
opterećenje 35 t/h	. 27
Tablica 5 Temperature i protoci dimnih plinova za opterećenje 35 t/h	. 27
Tablica 6 Ostali rezultati za opterećenje 35 t/h	. 27
Tablica 7 Izmijenjeni toplinski tokovi, entalpije i temperature vode/pare na izmjenjivačima	ı za
opterećenje 42 t/h	. 28
Tablica 8 Temperature i protoci dimnih plinova za opterećenje 42 t/h	. 28
Tablica 9 Ostali rezultati za opterećenje 42 t/h	. 28
Tablica 10 Izmijenjeni toplinski tokovi, entalpije i temperature vode/pare na izmjenjivačima	a
za opterećenje 49 t/h	. 29
Tablica 11 Temperature i protoci dimnih plinova za opterećenje 49 t/h	. 29
Tablica 12 Ostali rezultati za opterećenje 49 t/h	. 29
Tablica 13 Izmijenjeni toplinski tokovi, entalpije i temperature vode/pare na izmjenjivačima	а
za opterećenje 56 t/h	. 30
Tablica 14 Temperature i protoci dimnih plinova za opterećenje 56 t/h	. 30
Tablica 15 Ostali rezultati za opterećenje 56 t/h	. 30
Tablica 16 Izmijenjeni toplinski tokovi, entalpije i temperature vode/pare na izmjenjivačima za opterećenje 63 t/h	a . 31
Tablica 17 Temperature i protoci dimnih plinova za opterećenje 63 t/h	. 31
Tablica 18 Ostali rezultati za opterećenje 63 t/h	. 31
Tablica 19 Izmijenjeni toplinski tokovi, entalpije i temperature vode/pare na izmjenjivačima	а
za opterećenje 70 t/h	. 32
Tablica 20 Temperature i protoci dimnih plinova za opterećenje 70 t/h	. 32
Tablica 21 Ostali rezultati za opterećenje 70 t/h	. 32

POPIS OZNAKA

Oznaka	Jedinica	Opis
Q	[kW]	izmijenjena toplina
Hd	[kJ/kg]	ogrjevna vrijednost
$m_{w/p}$	[kg/s]	maseni protok vode/pare
m_{dp}	[kg/s]	maseni protok dimnih plinova
<i>m</i> _{unw}	[kg/s]	maseni protok napojne vode za ubrizgavanje
m_g	[kg/s]	maseni protok goriva
T_{wu}	[°C]	temperatura vode/pare na ulazu
T_{wi}	[°C]	temperatura vode/pare na izlazu
h_{wu}	[kJ/kg]	specifična entalpija vode/pare na ulazu
h_{wi}	[kJ/kg]	specifična entalpija vode/pare na izlazu
p_{wu}	[bar]	tlak vode/pare na ulazu
p_{wi}	[bar]	tlak vode/pare na izlazu
T_{dpu}	[°C]	temperatura dimnih plinova na ulazu
T_{dpi}	[°C]	temperatura dimnih plinova na izlazu
Vzr	[m ³]	volumen zraka
A	[m ²]	površina
h_{dp}	[kJ/kg]	entalpija dimnih plinova
m _{zr}	[kg/s]	maseni protok zraka
$ ho_{zr}$	[kg/m3]	gustoća zraka

Svrha završnog rada bila je izraditi matematički model generatora pare postrojenja BE-TO Glina. Model je sastavljen u programu Microsoft Excel Visual Basic for Applications.

Pomoću tehničke dokumentacije i podataka o procesima i parametrima postrojenja dobivenih od BE-TO Glina te kontinuiranih uputa od strane mentora, izrađen je matematički model navedenog generatora pare. Matematičkim modelom su opisane izmjenjivačke površine, protoci medija i dimnih plinova te njihove međusobne izmjene topline. Pomoću dobivenih podataka pridonijelo se boljem sveobuhvatnom razumijevanju rada generatora pare.

Model je također prilagođen dobivenim mjerenim podacima kako bi što točnije opisivao rad generatora pare i njegovih procesa.

Ključne riječi: matematički model, Visual Basic for Application, generator pare

The purpose of this paper was to make a mathematical model of the steam generator of the BE-TO Glina plant. The model was compiled using the computer program Microsoft Excel Visual Basic for Applications.

With the help of technical documentation and data on the processes and parameters of the plant obtained from BE-TO Glina and continuous instructions from the mentor, a mathematical model of the said steam generator was made. The mathematical model described the exchange surfaces, the flows of media and flue gases and their mutual heat exchange. The obtained data contributed to a better comprehensive understanding of the operation of the steam generator and its processes.

The model was also adapted to the obtained measured data in order to describe the operation of the steam generator and its processes as accurately as possible.

Key words: mathematical model, Visual Basic for Application, steam generator

U ovom poglavlju će biti navedene općenite stvari o generatorima pare, vrstama, podijeli i njegovim dijelovima. Također će podaci biti povezani sa generatorom pare BE-TO Glina i njegovim strojnim dijelovima. Navedeni podaci će poslužiti boljem razumijevanju teme i proračuna završnog rada.

Djelatnost i proizvodni program BE-TO Glina

Bioelektrana-toplana Glina smještena je u Sisačko-moslavačkoj županiji. Jedna je od glavnih industrija grada Gline te je zbog svoje povezanosti sa Drvnim centrom Glina smještena u marginalnom dijelu grada na adresi Ulica žrtava domovinskog rata 71. BE-TO Glina je kogeneracijsko postrojenje koje se sastoji od dvije termoelektrane. Radnici ih zovu "Mala" i "Velika". "Mala" je napravljena 2014. godine primarno zbog velike potrošnje energije Drvnog centra Glina u svrhu sušenja klada drveta u sušarama. Pilana ima 8 sušara koje danas opskrbljuju isključivo njihove termoelektrane. Drvni centar Glina se tijekom godina proširio na 36 ha prostora i nalazi se na 80000 kvadratnih metara objekata. "Velika" je slijedila "Malu" u proširenju poduzeća i većom potražnjom za energijom te je izgrađena 2017. godine. Na slici 1 je prikazana "Mala" termoelektrana u Glini.

Slika 1 BE-TO Glina

1.1. Klasifikacija generatora pare

Generatori pare se mogu klasificirati po različitim kriterijima. Ovdje će biti prikazan jedan od osnovnih načina [1].

Generatori pare dijele se na:

- 1. čelični generatori pare,
 - 1.1. vatrocijevni generatori pare,
 - 1.2. vodocijevni generatori pare,
 - 1.2.1. horizontalni s ravnim cijevima,
 - 1.2.2. vertikalni sa savinutim cijevima,
 - 1.2.2.1. generatori pare sa prirodnom cirkulacijom,
 - 1.2.2.2. generatori pare sa prisilnom cirkulacijom,
 - 1.3. generatori pare sa bubnjem,
 - 1.4. protočni generatori pare,
- 2. lijevani generatori pare,
- 3. generatori pare posebne namjene,
- 4. nuklearni generatori [1].

Proračun i model generatora pare u ovom završnom radu opisan je za čelični vodocijevni vertikalni generator pare s jednim bubnjem i izgaranjem u sloju.

Kod vodocijevnih generatora pare voda i para se nalaze s unutarnje strane cijevi. Dimni plinovi im sa vanjske strane cijevi predaju toplinu. Visoki tlakovi koji su karakteristični za takve generatore pare značajno poskupljuju izvedbu bubnja. Zbog toga je broj bubnjeva smanjen kao i njihov promjer [1].

S obzirom da je cirkulacija prirodna, voda cirkulira zbog razlike u gustoćama vode u silaznim cijevima koje spajaju bubanj s donjim kolektorima i vodeno-parne smijese u isparivačkim cijevima [1].

Goriva su oblici energije u kojima je pohranjena kemijska ili nuklearna energija. Prilikom oslobađanja energije unutar goriva povećava se unutarnja energija radne tvari koja se koristi za dobivanje rada ili toplinske energije. Konvencionalna goriva su fosilna goriva: ugljen, nafta i zemni plin [1].

Goriva se dijele na:

1. kruta goriva,

2. tekuća goriva,

3. plinovita goriva.

Sječka pripada skupini krutih goriva.

1.3. Izgaranje krutih goriva

Izgaranje krutog goriva odvija se u nizu etapa. U prvoj fazi dolazi do toplinske pripreme goriva u kojoj se gorivo suši. Ta faza se u ovom postrojenju obavlja u sušarama. U procesu izgaranja u ložištu bitno je omogućiti maksimalni kontakt goriva i zraka kako bi izgaranje bilo što potpunije. Ovaj proces je heterogen pošto se gorivo i kisik nalaze u različitim agregatnim stanjima [1].

Kruta goriva mogu izgarati u prostoru ili u sloju. U ovom slučaju gorivo izgara u sloju na vibrirajućim rostovima unutar ložišta. Pri izgaranju u sloju gorivo leži na rešetki i propuhuje se zrakom. Brzina strujanja zraka i dimnih plinova kroz sloj mora imati takve parametre da ne kompromitira strukturu sloja. Temperatura paljenja drveta je 220 – 300 °C [1].

Tok izgaranja podijeljen je u 5 intervala [1].

- Neposredno nakon paljenja goriva postoji pretičak zraka. Gorivo se pali zračenjem topline od plamena i dimnih plinova unutar ložišta. Površina goriva nije u potpunosti zahvaćena plamenom.
- 2. U ovom intervalu nestaje pretičak zraka i gornji se slojevi potpuno isplinjuju. Zbog izgaranja goriva smanjuje se otpor strujanja zraka kroz sloj goriva na rešetki.
- 3. Rasplinjuje se ostatak čestica goriva, a udio ugljikovog dioksida u dimnim plinovima se naglo povećava.

- 4. Potpuno se isplinuo ostatak goriva u krutim česticama. Udio ugljikovog dioksida u dimnim plinovima pada. Pošto je dovod zraka veći od potrebnog teoretskog, nastaje pretičak zraka.
- 5. Konačno dogorijevanje goriva. Smanjen dovod zraka [1].

1.4. Površine izmjene topline

U ovom podnaslovu će biti opisana konstrukcija i funkcija izmjenjivača.

1.4.1. Ložište

Osnovna funkcija ložišta je odvijanje izgaranja goriva. Njihova podjela se vrši prema vrsti i načinu izgaranja. Isključivo kruto gorivo može izgarati u sloju. Takvo izgaranje se vrši na rešetci koja se kreće kroz podnožje ložišta. Zrak potreban prilikom izgaranja se upuhuje kroz rešetku. Krute čestice miruju u odnosu na rešetku [1].

Zadaća ložišta je osigurati optimalne uvijete izgaranja koji su sljedeći:

- 1. ostvariti što potpunije izgaranje s minimalnim koeficijentom pretička zraka,
- 2. pružiti što manje zašljakivanje ložišta i izmjenjivačkih površina,
- 3. osigurati odgovarajuću proizvodnju pare za unesenu količinu goriva,
- 4. zajamčiti veliku sigurnost u radu,
- 5. omogućiti lako i jednostavno opsluživanje,
- 6. stvoriti uvijete za brzo reguliranje opterećenja u širokim granicama [1].

1.4.2. Pregrijači pare

Funkcija pregrijača pare je pregrijati paru kako bi se povećala efikasnost kružnog ciklusa. Pregrijači također osiguravaju da para ne sadrži kapljice vode. Takva para je puno manje erozivna i korozivna. Izlazna para mora sadržavati manje od 15% vlage kako ne bi došlo do intenzivne erozije i korozije lopatica turbine. Toplina dimnih plinova pregrijačima se predaje konvekcijom, zračenjem ili kombinacijom [1]. U postrojenju BE-TO Glina izvedeni su konvektivni pregrijači. Postavljeni su u struju dimnih plinova na način da su cijevi zaklonjene od direktnog zračenja plamena iz ložišta.

1.4.3. Ekonomajzerske površine

Ekonomajzerske površine su zagrijači napojne vode i zagrijači zraka. U postrojenju opisanom u ovom radu upotrjebljeni su samo kao zagrijači napojne vode. Ekonomajzeri se ugrađuju u izlaznom dijelu generatora pare te snižavaju izlaznu temperaturu dimnih plinova. Time predgrijavaju napojnu vodu prije ulaska u kotao. Smanjenje izlazne temperature dimnih plinova za 15-20 °C poboljšava stupanj iskoristivosti generatora pare za 1%. Kod današnjih generatora pare izlazne temperature dimnih plinova iznose 130-150 °C [1].

Postoje više faktora koji utječu na izlaznu temperaturu dimnih plinova. Neki od njih su sljedeći:

- 1. količina topline koja se može izmijeniti u generatoru pare,
- 2. ulazna temperatura napojne vode i zraka,
- 3. rosište dimnih plinova,
- 4. cijena uređaja [1].

Također korištenje ekonomajzerskih površina sa sobom donosi i sljedeće probleme:

- 1. kako bi se smanjila niskotemperaturna korozija potrebna je recirkulacija na dovodu vode i zraka,
- 2. povećano onečišćenje,
- 3. potrebni su ventilatori,
- 4. potrebna je veća pažnja i skuplje održavanje [1].

S obzirom da u ovom postrojenju nema zagrijača zraka, zagrijači vode su zadnje izmjenjivačke površine generatora pare. Voda se u njima zagrijava ispod temperature zasićenja što sprječava pojavu pare koja može uzrokovati kavitaciju i oštećenja.

1.4.4. Isparivač

Isparivač je snop isparivačkih cijevi u kojima se vrši proces isparavanja vode. Prijelaz topline se vrši zračenjem i konvekcijom [1].

2. VBA – VISUAL BASIC FOR APPLICATIONS

Visual Basic je programski jezik čiji je temelj jedan od najpopularnijih programskih jezika BASIC. Nadogradnja BASIC koja je vidljiva u VBA su poboljšane i proširene mogućnosti te nova koncepcija s grafičkim sučeljem [3].

Visual Basic for Applications je posebna verzija Visual Basica koju sadrži Excel.

VBA je složeni programski kod koji se može snimiti pomoću makro aplikacije u Excelu ili se može ručno napisati u VB Editoru. VBA makro kod sastoji se od procedura koje čine cjelinu te koje se sastoje od niza naredbenih linija koje formiraju naredbu ili radnju. VBA makro kodovi su pohranjeni u Excel radnoj bilježnici koja sadržava više modula. VBA makro kodovi se mogu pisati direktno u radni list ili u modulima. VBA programski kod je smješten u dokumentu u kodnim modulima, modulima klasa te korisničkim formama. Procedure se nalaze unutar kodnog modula. Klasa modula sadrži definicije definiranih klasa. Korisnička forma je prozor na kojem se nalaze razne korisničke kontrole [3].

VBA programski kod se unosi u obliku procedure. Se dijele na subprocedure i funkcije. Subprocedure predstavljaju skup VBA naredbu kojima se izvršava određeni zadatak te one ne vraćaju nikakav rezultat. Funkcija također izvršava određeni zadatak, ali i vraća rezultat. Postoje još i procedure svojstava koje služe pri definiranju svojstva [3].

3. OPIS GENERATORA PARE BE-TO GLINA

3.1. Opis kotlovskog postrojenja

Generator pare koji je u funkciji u BE-TO Glina je čelični vodocijevni vertikalni generator pare s jednim bubnjem i izgaranjem u sloju. TTK Karlovac je 2014. godine proizveo elektranu, a ugradnju i radove je izveo Đuro Đaković TEP.

Gorivo

U opisanom postrojenju je korišteno kruto gorivo, sječka. Sječka je otpadni materijal drvne industrije. Dobavljena je od pilane koja je vezana za postrojenje i koja koristi toplinsku energiju dobivenu od BE-TO Glina u sušarama.

Dobava goriva u spremnik

Dobava goriva sastoji se od deponija biomase koji je pokretan hidrauličkim agregatom, trakastog transportera biomase koji je pokretan elektromotorom, laganog transportera goriva i spremnika biomase.

Ložište

Ložište generatora pare sastoji se od 3 rosta. Na dnu svakog rosta su termometri. Ložište radi u 6 režima. R0 ugašeno ložište, R2 propuhivanje ložišta, R3 punjenje ložišta biomasom, R4 zagrijavanje ložišta, R5 normalni pogon, R6 minimalno održavanje ložišta [2].

1. Režim R0 ugašeno ložište- COLD STOP

U slučaju da bilo koji od uvjeta pravilnog funkcioniranja ložišta nije ispunjen, sustav automatski prelazi u režim R0. Radi se o najvažnijim uvjetima vezanih za sigurnost ljudi i kotlovskog postrojenja (tlak u kotlu, temperatura pregrijane pare, razina vode u bubnju,...). U režim R0 može se prijeći iz bilo kojeg drugog režima. Prelaskom u režim R0 zaustavlja se dobava goriva u ložištu, aktivira se sigurnosni isklop primarnog i sekundarnog ventilatora, pogoni koji ostaju uključeni su ventilator dimnih plinova, napojna pumpa i pumpa za hlađenje [2].

2. Režim R2 propuhivanje ložišta

Ovaj se režim upotrebljava prije paljenja vatre u ložištu čime se osigurava da u ložištu ne bude potencijalno eksplozivnih plinova. Propuhivanje ložišta počinje pokretanjem ventilatora dimnih plinova. Nakon što podtlak u ložištu dosegne zadanu vrijednost. Propuhivanje ložišta traje 25 minuta [2].

3. Režim R3 punjenje ložišta biomasom

Ovaj se režim uključuje nakon uspješnog propuhivanja ložišta. Zadatak ovog režima je rasporediti gorivo po rešetkama ložišta da se dobije sloj minimalne debljine dovoljne za uspješnu potpalu. Ako je u ložištu prilikom potpale prevelika količina goriva može se dogoditi da vatra na početku bude prejaka zbog čega se može oštetiti šamot [2].

4. Režim R4 zagrijavanje ložišta

Prelaskom u ovaj režim započinje linearno podizanje snage ložišta od početne minimalne snage. Pri ovom režimu su uključeni ventilator dimnih plinova, napojna pumpa, dobava goriva, rešetke ložišta i rešetke otpepeljavanja, primarni i sekundarni ventilator te sustav otpepeljavanja [2].

5. Režim R5 normalni pogon

Ovaj režim se najviše upotrebljava. Pogoni koji su uključeni u ovom režimu su ventilator dimnih plinova, napojna pumpa za hlađenje otpepeljavanjem, dobava goriva, rešetke ložišta i rešetke otpepeljavanja, primarni i sekundarni ventilator te sustav otpepeljavanja [2].

6. Režim R6 zaustavljanje ložišta- HOT STOP

Dok traje režim R6 mogući su jedino radni režimi koji ne zahtijevaju doziranje goriva. Snaga ložišta se trenutno smanjuje na pola vrijednosti snage prije prelaska u režim R6. Snaga se dalje linearno smanjuje prema nuli. Pogoni koji ostaju uključeni su ventilator dimnih plinova, napojna pumpa, pumpa za hlađenje otpepeljavanja, dobava goriva u ložište, rešetke ložišta i rešetke otpepeljavanja, primarni 1, 2 i sekundarni ventilator te sustav otpepeljavanja [2].

Ovaj proračun je proveden za rad ložišta u režimu 5 (normalni pogon).

Pregrijači pare

U funkciji su tri pregrijača pare, pregrijač 1 (PR1), pregrijač 2 (PR2) i pregrijač 3 (PR3). Nakon pregrijača 2 (PR2) ubrizgava se napojna voda u struju pregrijane pare. Time se regulira temperatura izlazne pare. Prijelaz topline se poboljšava s povećanjem opterećenja.

Ekonomajzerske površine

U BE-TO Glina ekonomajzerske površine su po konstrukciji odvojeni paketi. Smješteni su u konvektivnom kanalu generatora pare i izlazni im je kolektor spojen na bubanj. U ovom postrojenju postavljeno je pet ekonomajzerskih površina koje su podijeljene u tri sustava. Ekonomajzer 1 (EKO1) koji se sastoji od ekonomajzerskih površina 1/1 (EKO1/1) i ¹/₂ (EKO1/2), ekonomajzer 2 (EKO2) koji se sastoji od ekonomajzerskih površina 2/1 (EKO2/1) i 2/2 (EKO2/2) te od ekonomajzera 3 (EKO3).

Izmjenjivačke površine

Ekonomajzer 1 (EKO1)	1613	m^2
Ekonomajzer 2 (EKO2)	1613	m^2
Ekonomajzer 3 (EKO3)	700	m^2
Isparivač u ložištu	600	m^2
Pregrijač 1 (PR1)	513	m ²
Pregrijač 2 (PR2)	410	m ²
Pregrijač 3 (PR3)	300	m^2

Radne karakteristike

Maksimalna proizvodnja pare	70 t/h
Minimalna proizvodnja pare	30 t/h
Tlak pare na izlazu	75 bar
Temperatura pare na izlazu	469 º C
Temperatura napojne vode	140 º C
Pretičak zraka λ	1,05

4. MATEMATIČKI MODEL

4.1. Shema generatora pare

Slika 2 Shema generatora pare

Na slici 2 je vidljiva shema generatora pare te podjela na 7 zona dimnih plinova i zone izmjene topline između dimnih plinova i vode/pare.

Zone dimnih plinova:

- 1. Ložište
- 2. Pregrijač 3 (PR3)
- 3. Pregrijač 2 (PR2)
- 4. Pregrijač 1 (PR1)
- 5. Ekonomajzer 3 (EKO3)
- 6. Ekonomajzer 2 (EKO2/2, EKO2/1)
- 7. Ekonomajzer 1 (EKO1/2, EKO1/1)

Izmjenjivači topline:

- 1. Ekonomajzer 1 (EKO1)
- 2. Ekonomajzer 2 (EKO2)
- 3. Ekonomajzer 3 (EKO3)
- 4. Isparivač
- 5. Pregrijač 1 (PR1)
- 6. Pregrijač 2 (PR2)
- 7. Pregrijač 3 (PR3)

Parametri koji se reguliraju:

- 1. Proizvodnja pare
- 2. Maseni protok goriva
- 3. Maseni protok napojne vode

Dobiveni parametri na osnovi proračuna:

- 1. Temperature, entalpije i tlakove vode /pare na granicama izmjenjivača
- 2. Temperature dimnih plinova na granicama izmjenjivača
- 3. Maseni protok dimnih plinova
- 4. Maseni protok vode/pare
- 5. Izmijenjeni toplinski tokovi na izmjenjivačima
- 6. Iskoristivost generatora pare

4.2. Proračun modela

Program modela je konstruiran na način da iterativnim postupkom dolazi do rezultata.

U VBA modelu su korištene termodinamičke tablice preko čijih funkcija su dobivene entalpije i temperature dimnih plinova i vode/pare.

Korištene funkcije su sljedeće:

- 1. TempGas(h)
- 2. EntGas(T)
- 3. VodaX(Ntab, p, X)
- 4. Voda(Ntab, p, T)
- 5. Zas(Izas, p)

Funkcija TempGas računa temperaturu dimnih plinova u funkciji entalpije.

Funkcija EntGas računa entalpiju dimnih plinova u funkciji temperature.

Funkcija VodaX računa temperaturu kao funkciju tlaka i entalpije ili entropije. O kojoj veličini je riječ ukazuje vrijednost Ntab. Ntab može biti 1 ili 3 za vodu ili 11 i 13 za pregrijanu paru.

Funkcija Voda računa toplinska svojstva vode ili vodene pare. Ovom funkcijom se mogu izračunati entalpija, gustoća, entropija, dinamički viskozitet, toplinska vodljivost i Prandtlov broj vode ili pregrijane pare. Argumenti funkcije su Ntab, tlak i temperatura.

Bilance modela

Proračun sadrži masene i energetske bilance te funkcije iz termodinamičkih tablica. Ovdje će biti navedene jednadžbe korištene prilikom izračuna entalpija i temperatura dimnih plinova i vode/pare te izmijenjenih toplinskih tokova na izmjenjivačima.

Jednadžbe korištene tijekom proračuna ložišta su sljedeće:

1. Masena bilanca dimnih plinova:

$$m_{zr} = V_{zr} * \rho_{zr} * m_g \tag{1}$$

$$m_{dp} = m_{zr} + m_g \tag{2}$$

2. Početna entalpija dimnih plinova:

$$h_{dp1} = m_g * \left(\frac{Hd}{m_{dp}}\right) \tag{3}$$

3. Energetske bilance na strani vode/pare i dimnih plinova:

$$Q_{isp} = K_{isp} * A_{ISP} * \left(\left(\frac{T_{dp2} + 273, 15}{100} \right)^4 - \left(\frac{T_{w5} + 50 + 273, 15}{100} \right)^4 \right)$$
(4)

$$Q_{isp1} = m_{dp} * (h_{dp1} - h_{dp2})$$
(5)

 T_{dp2} predstavlja temperaturu dimnih plinova na izlazu iz ložišta, T_{w5} temperaturu vode/pare na izlazu iz isparivača. Vrijednosti h_{dp1} i h_{dp2} predstavljaju početnu entalpiju dimnih plinova i entalpiju dimnih plinova na izlazu iz ložišta.

Jednadžbe korištene tijekom proračuna pregrijača su sljedeće:

1. Energetske bilance na strani dimnih plinova i vode/pare:

$$Q_{pr3} = m_{dp} * (h_{dp2} - h_{dp3}) * eta_{zr}$$
(6)

$$Q_{pr3} = m_p * (h_{w9} - h_{w8}) \tag{7}$$

$$Q_{pr3} = k_{pr} * A_{PR3} * dtm \tag{8}$$

$$dt_m = (dt_1 - dt_2) / Log(dt_1/dt_2)$$
(9)

$$dt_1 = Tdp_2 - Tw_9 \tag{10}$$

$$dt_2 = Tdp_3 - Tw_8 \tag{11}$$

 Q_{pr3} predstavlja izmijenjeni toplinski tok na pregrijaču 3, h_{dp2} entalpiju dimnih plinova na ulazu u pregrijač 3, h_{dp3} entalpiju dimnih plinova na izlazu iz pregrijača 3, h_{w9} entalpiju pare na izlazu iz pregrijača 3, h_{w8} entalpiju pare na ulazu u pregrijač 3, A_{PR3} površinu pregrijača. dt_m predstavlja srednju logaritamsku razliku temperatura u pregrijaču 3. dt_1 je razlika temperature pare i dimnih plinova na ulazu u pregrijač 3, a dt_2 razlika temperature pare i dimnih plinova na izlazu iz pregrijača 3. 1. Energetske bilance na strani dimnih plinova i vode/pare:

$$Q_{pr2} = m_{dp} * (h_{dp3} - h_{dp4}) * eta_{zr}$$
(12)

$$Q_{pr2} = m_{nw} * (h_{w7} - h_{w6}) \tag{13}$$

$$Q_{pr2} = k_{pr} * A_{PR2} * dtm \tag{14}$$

$$dt_m = (dt_1 - dt_2) / Log(dt_1/dt_2)$$
(15)

$$dt_1 = Tdp_3 - Tw_7 \tag{16}$$

$$dt_2 = Tdp_4 - Tw_6 \tag{17}$$

 Q_{pr2} predstavlja izmijenjeni toplinski tok na pregrijaču 2, h_{dp3} entalpiju dimnih plinova na ulazu u pregrijač 2, h_{dp4} entalpiju dimnih plinova na izlazu iz pregrijača 2, h_{w7} entalpiju pare na izlazu iz pregrijača 2, h_{w6} entalpiju pare na ulazu u pregrijač 2, A_{PR2} površinu pregrijača. dt_m predstavlja srednju logaritamsku razliku temperatura u pregrijaču 2. dt_1 je razlika temperature pare i dimnih plinova na ulazu u pregrijač 2, a dt_2 razlika temperature pare i dimnih plinova na izlazu iz pregrijača 2.

2. Masena bilanca na strani vode:

$$m_{unw} = \frac{(h_{w8}*m_p - h_{w7}*m_p)}{(h_{wnw} - h_{w7})}$$
(18)

$$m_{nw} = m_p - m_{unw} \tag{19}$$

Masena bilanca je primijenjena zbog ubrizgavanja napojne vode između pregrijača 3 i pregrijača 2 u svrhu hlađenja pare. U jednadžbama parametar m_{unw} predstavlja maseni protok *Fakultet strojarstva i brodogradnje* 21

ubrizgane napojne vode, h_{w8} entalpiju pare nakon ubrizgavanja napojne vode, h_{w7} entalpiju pare na izlazu iz pregrijača 2, m_p maseni protok pare i m_{nw} maseni protok napojne vode.

Pregrijač 1

1. Energetske bilance na strani dimnih plinova i vode/pare:

$$Q_{pr1} = m_{dp} * (h_{dp4} - h_{dp5}) * eta_{zr}$$
(20)

$$Q_{pr1} = m_{nw} * (h_{w6} - h_{w5}) \tag{21}$$

$$Q_{pr1} = k_{pr} * A_{PR1} * dtm \tag{22}$$

$$dt_m = (dt_1 - dt_2) / Log(dt_1/dt_2)$$
(23)

$$dt_1 = Tdp_4 - Tw_6 \tag{24}$$

$$dt_2 = Tdp_5 - Tw_5 \tag{25}$$

 Q_{prl} predstavlja izmijenjeni toplinski tok na pregrijaču 1, h_{dp4} entalpiju dimnih plinova na ulazu u pregrijač 1, h_{dp5} entalpiju dimnih plinova na izlazu iz pregrijača 1, h_{w6} entalpiju pare na izlazu iz pregrijača 1, h_{w5} entalpiju pare na ulazu u pregrijač 1, A_{PR1} površinu pregrijača. dt_m predstavlja srednju logaritamsku razliku temperatura u pregrijaču 1. dt_1 je razlika temperature pare i dimnih plinova na ulazu u pregrijač 1, a dt_2 razlika temperature pare i dimnih plinova na izlazu iz pregrijača 1. 1. Energetske bilance na strani dimnih plinova i vode/pare:

$$Q_{eko3} = m_{dp} * (h_{dp5} - h_{dp6}) * eta_{zr}$$
(26)

$$Q_{eko3} = m_{nw} * (h_{w4} - h_{w3}) \tag{27}$$

$$Q_{eko3} = k_{pr} * A_{EKO3} * dtm$$
⁽²⁸⁾

$$dt_m = (dt_1 - dt_2) / Log(dt_1/dt_2)$$
(29)

$$dt_1 = Tdp_5 - Tw_4 \tag{30}$$

$$dt_2 = Tdp_6 - Tw_3 \tag{31}$$

 Q_{eko3} predstavlja izmijenjeni toplinski tok na ekonomajzeru 3, h_{dp5} entalpiju dimnih plinova na ulazu u ekonomajzer 3, h_{dp6} entalpiju dimnih plinova na izlazu iz ekonomajzera 3, h_{w4} entalpiju vode na izlazu iz ekonomajzera 3, h_{w3} entalpiju vode na ulazu u ekonomajzer 3, A_{EKO3} površinu ekonomajzera. dt_m predstavlja srednju logaritamsku razliku temperatura u ekonomajzeru 3. dt_1 je razlika temperature pare i dimnih plinova na ulazu u ekonomajzera 3, a dt_2 razlika temperature pare i dimnih plinova na izlazu iz ekonomajzera 3.

1. Energetske bilance na strani dimnih plinova i vode/pare:

$$Q_{eko2} = m_{dp} * (h_{dp6} - h_{dp7}) * eta_{zr}$$
(32)

$$Q_{eko2} = m_{nw} * (h_{w3} - h_{w2}) \tag{33}$$

$$Q_{eko2} = k_{pr} * A_{EKO2} * dtm \tag{34}$$

$$dt_m = (dt_1 - dt_2) / Log(dt_1/dt_2)$$
(35)

$$dt_1 = Tdp_6 - Tw_3 \tag{36}$$

$$dt_2 = Tdp_7 - Tw_2 \tag{37}$$

 Q_{eko2} predstavlja izmijenjeni toplinski tok na ekonomajzeru 2, h_{dp6} entalpiju dimnih plinova na ulazu u ekonomajzer 2, h_{dp7} entalpiju dimnih plinova na izlazu iz ekonomajzera 2, h_{w3} entalpiju vode na izlazu iz ekonomajzera 2, h_{w2} entalpiju vode na ulazu u ekonomajzer 2, A_{EKO2} površinu ekonomajzera. dt_m predstavlja srednju logaritamsku razliku temperatura u ekonomajzeru 2. dt_1 je razlika temperature pare i dimnih plinova na ulazu u ekonomajzera 2, a dt_2 razlika temperature pare i dimnih plinova na izlazu iz ekonomajzera 2.

Energetske bilance na strani dimnih plinova i vode/pare:

$$Q_{eko1} = m_{dp} * (h_{dp7} - h_{dp8}) * eta_{zr}$$
(38)

$$Q_{eko1} = m_{nw} * (h_{w2} - h_{w1}) \tag{39}$$

$$Q_{eko1} = k_{pr} * A_{EKO1} * dtm \tag{40}$$

$$dt_m = (dt_1 - dt_2) / Log(dt_1/dt_2)$$
(41)

$$dt_1 = Tdp_7 - Tw_2 \tag{42}$$

$$dt_2 = Tdp_8 - Tw_1 \tag{43}$$

 Q_{eko1} predstavlja izmijenjeni toplinski tok na ekonomajzeru 1, h_{dp7} entalpiju dimnih plinova na ulazu u ekonomajzer 1, h_{dp8} entalpiju dimnih plinova na izlazu iz ekonomajzera 1, h_{w2} entalpiju vode na izlazu iz ekonomajzera 1, h_{w1} entalpiju vode na ulazu u ekonomajzer 1, A_{EKO1} površinu ekonomajzera. dt_m predstavlja srednju logaritamsku razliku temperatura u ekonomajzeru 1. dt_1 je razlika temperature pare i dimnih plinova na izlazu iz ekonomajzera 1.

4.3. Dobiveni rezultati u ovisnosti o opterećenju generatora pare

Rezultati su prikazani u ovisnosti o opterećenju generatora pare od minimalnog opterećenja (40%) do maksimalnog opterećenja (100%). U ovom poglavlju će biti prikazani dobiveni rezultati za izmijenjene toplinske tokove, entalpije i temperature dimnih plinova i vode/pare, masene tokove goriva, dimnih plinova i napojne vode te dobivenu iskoristivost.

4.3.1. Opterećenje generatora pare 40% (28 t/h)

	POVRŠINE NA STRANI VODE/PARE								
	Α	Q	$m_{w/p}$	T_{wu}	T_{wi}	h_{wu}	h_{wi}	p_{wu}	p_{wi}
	[m2]	[kW]	[kg/s]	[°C]	[°C]	[kJ/kg]	[kJ/kg]	[bar]	[bar]
EKO 1	1613	340,19	7,647	140	157,76	569,4	670,69	79	78,7
EKO 2	1613	774, 86	7,647	157,76	180,94	670,69	772,01	78,7	78,2
EKO 3	700	3986, 74	7,647	180,94	290,37	772,01	1293,3	78,2	76,5
ISP	600	41806, 4	7,647	290,37	290,37	1293,3	2856,77	76,5	76,5
PR 1	513	3212,64	7,647	290,37	413,2	2856,77	3186,52	76,5	75,8
PR 2	410	2521, 85	7,647	413,2	544,92	3186,52	3512,29	75,8	75,2
PR 3	300	4699, 85	7,778	290,38	469	2724,58	3328,85	75,7	75

Tablica 1 Izmijenjeni toplinski tokovi, entalpije i temperature vode/pare na izmjenjivačima za opterećenje 28 t/h

Tablica 2	Temperature	i protoci	dimnih	plinova za	opterećenje	28 t/h
-----------	-------------	-----------	--------	------------	-------------	--------

POVRŠINE NA STRANI DIMNIH PLINOVA										
A [m2] mdp[kg/s] Tdpu [°C] Tdpi [°C]										
ložište	1000	24,464	1719,27	898,91						
PR3	300	24,464	898,91	626,17						
PR2	410	24,464	626,17	440,97						
PR1	513	24,464	440,97	329,7						
EKO3	700	24,464	329,7	186,63						
EKO2	1613	24,464	186,63	157,94						
EKO 1	1613	24,464	157,94	145,34						

Tablica 3	Ostali	rezultati	za opte	rećenje	28 t/h
-----------	--------	-----------	---------	---------	--------

OSTALI REZULTATI					
Iskoristivost [%]	89,12				
Maseni protok goriva m_g [kg/s]	3,2415				

Tablica 1 prikazuje dobivene rezultate za vodu i paru pri minimalnom opterećenju od 28 t/h. Tablica 2 prikazuje dobivene rezultate istog opterećenja na strani dimnih plinova te su iskoristivost i maseni protok goriva prikazani u Tablici 3.

4.3.2. Opterećenje generatora pare 50% (35 t/h)

	POVRŠINE NA STRANI VODE/PARE									
	Α	Q	$m_{w/p}$	T_{wu}	T_{wi}	h_{wu}	h_{wi}	p_{wu}	p_{wi}	
	[m2]	[kW]	[kg/s]	[°C]	[°C]	[kJ/kg]	[kJ/kg]	[bar]	[bar]	
EKO 1	1613	572,7	9,572	140	163,4	584,17	695,533	80,4	79,7	
EKO 2	1613	1065,9	9,572	163,4	188,9	695,53	806,894	79,7	78,9	
EKO 3	700	4656	9,572	188,9	290,3	806,89	1293,30	78,9	78,2	
ISP	600	46352,7	9,572	290,3	290,3	1293,30	2856,77	78,2	78,2	
PR 1	513	3410	9,572	290,3	393,1	2856,77	3132,17	78,2	77,1	
PR 2	410	2636	9,572	393,1	500,8	3132,17	3406,66	77,1	75,4	
PR 3	300	4871,3	9,722	303,3	469	2827,79	3328,84	75,7	75	

Tablica 4 Izmijenjeni toplinski tokovi, entalpije i temperature vode/pare na izmjenjivačima za opterećenje 35 t/h

Taduca 5 Temperature i protoci almnin pilnova za opterecenje 55 l	33 t/n
---	--------

	POVRŠINE NA STRANI DIMNIH PLINOVA					
	$A [m^2]$	$m_{dp}[kg/s]$	T_{dpu} [°C]	T_{dpi} [°C]		
ložište	1000	27,124	1719,27	927,43		
PR3	300	27,124	927,43	636,33		
PR2	410	27,124	636,33	456,32		
PR1	513	27,124	456,32	350,25		
EKO3	700	27,124	350,25	200,5		
EKO2	1613	27,124	200,5	164,91		
EKO 1	1613	27,124	164,91	145,78		

OSTALI REZULTATI				
Iskoristivost [%]	89,10			
Maseni protok goriva m_g [kg/s]	3,594			

Tablica 4 prikazuje dobivene rezultate za vodu i paru pri opterećenju od 35 t/h. Tablica 5 prikazuje dobivene rezultate istog opterećenja na strani dimnih plinova te su iskoristivost i maseni protok goriva prikazani u Tablici 6.

4.3.3. Opterećenje generatora pare 60% (42 t/h)

	POVRŠINE NA STRANI VODE/PARE								
	Α	Q	$m_{w/p}$	T_{wu}	T_{wi}	h_{wu}	h_{wi}	p_{wu}	p_{wi}
	[m2]	[kW]	[kg/s]	[°C]	[°C]	[kJ/kg]	[kJ/kg]	[bar]	[bar]
EKO 1	1613	939,47	11,496	140	168,8	595,86	719,26	82,7	81,8
EKO 2	1613	1418,69	11,496	168,8	197,1	719,26	842,66	81,8	81,1
EKO 3	700	5180,9	11,496	197,1	290,3	842,66	1293,3	81,1	79,2
ISP	600	50879,8	11,496	290,3	290,3	1293,3	2856,77	79,2	78,8
PR 1	513	3577,17	11,496	290,3	379,6	2856,77	3094,33	78,8	78,1
PR 2	410	2731,24	11,496	379,6	471,5	3094,33	3335,15	78,1	76,2
PR 3	300	5028,63	11,666	320	469	2897,82	3328,84	76,4	75

Tablica 7 Izmijenjeni toplinski tokovi, entalpije i temperature vode/pare na izmjenjivačima za opterećenje 42 t/h

Tablica 8 Temperature i protoci dimnih plinova za opterećenje 42 t/h

POVRŠINE NA STRANI DIMNIH PLINOVA					
	$A [m^2]$	$m_{dp}[kg/s]$	T_{dpu} [°C]	T_{dpi} [°C]	
ložište	1000	29,773	1719,27	954,05	
PR3	300	29,773	954,05	745,01	
PR2	410	29,773	745,01	569,78	
PR1	513	29,773	569,78	408,84	
EKO3	700	29,773	408,84	217,57	
EKO2	1613	29,773	217,57	174,89	
EKO 1	1613	29,773	174,89	146,3	

Tablica 9 Ostali rezultati za opterećenje 42 t/h

OSTALI REZULTATI				
Iskoristivost [%]	89,08			
Maseni protok goriva m_g [kg/s]	3,945			

Tablica 7 prikazuje dobivene rezultate za vodu i paru pri opterećenju od 42 t/h. Tablica 8 prikazuje dobivene rezultate istog opterećenja na strani dimnih plinova te su iskoristivost i maseni protok goriva prikazani u Tablici 9.

4.3.4. Opterećenje generatora pare 70% (49 t/h)

	POVRŠINE NA STRANI VODE/PARE								
	Α	Q	$m_{w/p}$	T_{wu}	T_{wi}	h_{wu}	h_{wi}	p_{wu}	p_{wi}
	[m2]	[kW]	[kg/s]	[°C]	[°C]	[kJ/kg]	[kJ/kg]	[bar]	[bar]
EKO 1	1613	1421,3	13,66	140	172,9	598,16	737,22	86,6	84,7
EKO 2	1613	1899,5	13,66	172,9	204,6	737,22	876,28	84,7	82,3
EKO 3	700	5696,5	13,66	204,6	290,3	876,28	1293,3	82,3	81,2
ISP	600	56361,26	13,66	290,3	290,3	1293,3	2856,77	81,2	81,2
PR 1	513	3749	13,66	290,3	369,1	2856,77	3063,76	81,2	78,5
PR 2	410	2827,4	13,66	369,1	448,8	3063,76	3278,71	78,5	75,6
PR 3	300	5203,9	13,88	335	469	2953,92	3328,84	76,1	75

Tablica 10 Izmijenjeni toplinski tokovi, entalpije i temperature vode/pare na izmjenjivačima za opterećenje 49 t/h

Tablica 11	Temperature i	protoci dimn	ih plinova za	opterećenje 49 t/h
------------	---------------	--------------	---------------	--------------------

	POVRŠINE NA STRANI DIMNIH PLINOVA					
	$A [m^2]$	$m_{dp}[kg/s]$	T_{dpu} [°C]	T_{dpi} [°C]		
ložište	1000	32,98	1719,27	984,23		
PR3	300	32,98	984,23	754,02		
PR2	410	32,98	754,02	584,05		
PR1	513	32,98	584,05	409,02		
EKO3	700	32,98	409,02	239,49		
EKO2	1613	32,98	239,49	188,42		
EKO 1	1613	32,98	188,42	149,37		

Tablica 12	Ostali	rezultati	za	opterećenje	49	t/h
------------	--------	-----------	----	-------------	-----------	-----

OSTALI REZULTATI				
Iskoristivost [%]	88,95			
Maseni protok goriva m_g [kg/s]	4,37			

Tablica 10 prikazuje dobivene rezultate za vodu i paru pri opterećenju od 49 t/h. Tablica 11 prikazuje dobivene rezultate istog opterećenja na strani dimnih plinova te su iskoristivost i maseni protok goriva prikazani u Tablici 12.

4.3.5. Opterećenje generatora pare 80% (56 t/h)

POVRŠINE NA STRANI VODE/PARE									
	Α	Q	$m_{w/p}$	T_{wu}	T_{wi}	h_{wu}	h_{wi}	p_{wu}	p_{wi}
	[m2]	[kW]	[kg/s]	[°C]	[°C]	[kJ/kg]	[kJ/kg]	[bar]	[bar]
EKO 1	1613	1833,2	15,325	140	175,3	597,52	747,76	89,6	87,4
EKO 2	1613	2302,53	15,325	175,3	209,4	747,76	898	87,4	85,2
EKO 3	700	6058,2	15,325	209,4	290,3	898	1293,3	86,2	82,9
ISP	600	61004,3	15,325	290,3	290,3	1293,3	2856,77	82,9	82,9
PR 1	513	3873,97	15,325	290,3	363,2	2856,77	3045,79	82,9	77,8
PR 2	410	2896,88	15,325	363,2	436,1	3045,79	3246,25	77,8	75,3
PR 3	300	5340,9	15,555	344,2	469	2985,50	3328,84	76,2	75

Tablica 13 Izmijenjeni toplinski tokovi, entalpije i temperature vode/pare na izmjenjivačima za opterećenje 56 t/h

Tablica 14	Temperature	i protoci	dimnih	plinova	za opter	ećenje	56 t/	h
------------	-------------	-----------	--------	---------	----------	--------	-------	---

POVRŠINE NA STRANI DIMNIH PLINOVA										
	$A [m2] \qquad m_{dp}[kg/s] \qquad T_{dpu} [^{\circ}C] \qquad T_{dpi} [^{\circ}C]$									
ložište	1000	35,698	1719,27	988,18						
PR3	300	35,698	988,18	760,65						
PR2	410	35,698	760,65	594,68						
PR1	513	35,698	594,68	404,23						
EKO3	700	35,698	404,23	257,92						
EKO2	1613	35,698	257,92	201,09						
EKO 1	1613	35,698	201,09	154,59						

Tablica 15 Ostali rezultati za opterećenje 56 t/h

OSTALI R	EZULTATI
Iskoristivost [%]	88,73
Maseni protok goriva m_g [kg/s]	4,73

Tablica 13 prikazuje dobivene rezultate za vodu i paru pri opterećenju od 56 t/h. Tablica 14 prikazuje dobivene rezultate istog opterećenja na strani dimnih plinova te su iskoristivost i maseni protok goriva prikazani u Tablici 15.

4.3.6. Opterećenje generatora pare 90% (63 t/h)

POVRŠINE NA STRANI VODE/PARE									
	Α	Q	$m_{w/p}$	T_{wu}	T_{wi}	h_{wu}	h_{wi}	p_{wu}	p_{wi}
	[m2]	[kW]	[kg/s]	[°C]	[°C]	[kJ/kg]	[kJ/kg]	[bar]	[bar]
EKO 1	1613	2350,41	17,245	140	177,4	594,26	756,725	91,5	88,3
EKO 2	1613	2801,66	17,245	177,4	214	756,72	919,188	88,3	86,2
EKO 3	700	6451,65	17,245	214	290,3	919,18	1293,3	86,2	79,1
ISP	600	67066,2	17,245	290,3	290,3	1293,3	2856,77	79,1	79,1
PR 1	513	4012,76	17,245	290,3	357,8	2856,77	3029,27	79,1	77,9
PR 2	410	2974,74	17,245	357,8	424,6	3029,27	3217	77,9	75,8
PR 3	300	5505,46	17,5	353,1	469	3014,25	3328,8	76,1	75

Tablica 16 Izmijenjeni toplinski tokovi, entalpije i temperature vode/pare na izmjenjivačima za opterećenje 63 t/h

Tablica 17	Temperature	i protoci	dimnih	plinova z	a optereće	enje 63	3 t/h
------------	-------------	-----------	--------	-----------	------------	---------	-------

POVRŠINE NA STRANI DIMNIH PLINOVA										
	$A [m2] \qquad m_{dp}[kg/s] \qquad T_{dpu} [^{\circ}C] \qquad T_{dpi} [^{\circ}C]$									
ložište	1000	39,245	1719,27	937,35						
PR3	300	39,245	937,35	868,22						
PR2	410	39,245	868,22	686,73						
PR1	513	39,245	686,73	421,69						
EKO3	700	39,245	421,69	281,06						
EKO2	1613	39,245	281,06	218,16						
EKO 1	1613	39,245	218,16	172,36						

Tablica 18	ostali	rezultati z	a opterećen	ije (63 i	t/h
------------	--------	-------------	-------------	-------	------	-----

OSTALI R	EZULTATI
Iskoristivost [%]	88,32
Maseni protok goriva m_g [kg/s]	5,2

Tablica 16 prikazuje dobivene rezultate za vodu i paru pri opterećenju od 63 t/h. Tablica 17 prikazuje dobivene rezultate istog opterećenja na strani dimnih plinova te su iskoristivost i maseni protok goriva prikazani u Tablici 18.

4.3.7. Opterećenje generatora pare 100% (70 t/h)

	POVRŠINE NA STRANI VODE/PARE									
	Α	Q	$m_{w/p}$	T_{wu}	T_{wi}	h_{wu}	h_{wi}	p_{wu}	p_{wi}	
	[m2]	[kW]	[kg/s]	[°C]	[°C]	[kJ/kg]	[kJ/kg]	[bar]	[bar]	
EKO 1	1613	2836,67	19,144	140	180	598,13	768,2	93,4	90,2	
EKO 2	1613	3255,95	19,124	180	218,2	768,2	938,276	90,2	87,7	
EKO 3	700	6796,82	19,124	218,2	290,3	938,27	1293,3	87,7	85,3	
ISP	600	73386,03	19,124	290,3	290,3	1293,3	2856,77	85,3	85,3	
PR 1	513	4134,8	19,124	290,3	353,5	2856,77	3015,75	85,3	80,9	
PR 2	410	3043,67	19,124	353,5	415,8	3015,75	3193,59	80,9	76,7	
PR 3	300	5663,73	19,444	360,5	469	3037,57	3328,84	76,9	75	

Tablica 19 Izmijenjeni toplinski tokovi, entalpije i temperature vode/pare na izmjenjivačima za opterećenje 70 t/h

Tablica 20	Temperature	i protoci	dimnih	plinova	za opter	ećenje	70	t/h
------------	-------------	-----------	--------	---------	----------	--------	----	-----

POVRŠINE NA STRANI DIMNIH PLINOVA									
	$A [m2] \qquad m_{dp}[kg/s] \qquad T_{dpu} [^{\circ}C] \qquad T_{dpi} [^{\circ}C]$								
ložište	1000	42,943	1719,15	675,58					
PR3	300	42,943	675,58	586,51					
PR2	410	42,943	586,51	529,7					
PR1	513	42,943	529,7	453,52					
EKO3	700	42,943	453,52	338,64					
EKO2	1613	42,943	338,64	264,42					
EKO 1	1613	42,943	264,42	197,48					

Tablica 21	Ostali	rezultati z	za opterećer	ije	70 i	t/h
------------	--------	-------------	--------------	-----	------	-----

OSTALI REZULTATI			
Iskoristivost [%]	87,76		
Maseni protok goriva m_g [kg/s]	5,69		

Tablica 19 prikazuje dobivene rezultate za vodu i paru pri opterećenju od 70 t/h. Tablica 20 prikazuje dobivene rezultate istog opterećenja na strani dimnih plinova te su iskoristivost i maseni protok goriva prikazani u Tablici 21.

4.4. Usporedba dobivenih rezultata u ovisnosti o opterećenjima generatora pare

Nakon provedene analize generatora pare za različita opterećenja, odnosno različite zahtijevane masene protoke proizvedene pare, slijedi usporedba dobivenih rezultata.

Grafički su prikazane usporedbe sljedećih vrijednosti:

- 1. maseni protok goriva,
- 2. maseni protok vode za ubrizgavanje,
- 3. izmijenjeni toplinski tok u ložištu,
- 4. T-Q dijagram vode/pare i dimnih plinova,
- 5. temperature dimnih plinova na izlazu,
- 6. iskoristivost generatora pare.

4.4.1. Maseni protok goriva u ovisnosti o opterećenju

Slika 3 Usporedba masenih tokova goriva u ovisnosti o opterećenju

Slika 3 prikazuje očekivane rezultate usporedbe protoka goriva i opterećenja. Većim opterećenjem sustav zahtjeva i veću potrošnju goriva.

4.4.2. Maseni protok napojne vode za ubrizgavanje u ovisnosti o opterećenju

Slika 4 Usporedba masenih tokova napojne vode za ubrizgavanje u ovisnosti o opterećenju

Iz slike 4 je jasno vidljivo da sa porastom opterećenja generatora pare sustav zahtjeva veći maseni protok vode za ubrizgavanje koja svježu pare dovodi na željene vrijednosti zahtijevanih parametara.

4.4.3. Izmijenjeni toplinski tok u ložištu u ovisnosti o opterećenju

Slika 5 Usporedba izmijenjenih toplinskih tokova u ložištu u ovisnosti o opterećenju

Slika 5 prikazuje očekivanu pretpostavku da će izmijenjeni toplinski tok u ložištu, kao i maseni protok goriva i napojne vode za ubrizgavanje, rasti sa opterećenjem generatora pare.

4.4.4. T-Q dijagram generatora pare za opterećenje od 100% (70 t/h)

Slika 6 T-Q dijagram za opterećenje od 100%

Na slici 6 su vidljive promjene temperatura dimnih plinova i vode/pare. Plava linija predstavlja vodu/paru dok narančasta linija predstavlja dimne plinove. Vidljivo je da je najveći pad temperature dimnih plinova prisutan tijekom isparavanja vode u isparivaču u ložištu gdje se predaje najveći toplinski tok od dimnih plinova prema vodi.

Slika 7 Usporedba temperatura dimnih plinova na izlazu iz generatora pare u ovisnosti o opterećenju

Povećanjem opterećenja povećava se protok dimnih plinova kroz sustav. Uzevši u obzir da su izmjenjivačke površine konstantne očekivano je da će se veća količina dimnih plinova pri većim opterećenjima slabije ohladiti te će izlazna temperatura biti veća. Slika 7 upravo prikazuje takvo stanje gdje je jasno vidljiv blagi porast izlazne temperature dimnih plinova pri nižim opterećenjima i zamjetniji porast pri višim opterećenjima.

4.4.6. Usporedba iskoristivosti generatora pare u ovisnosti o opterećenju

Slika 8 Usporedba iskoristivosti u ovisnosti o opterećenju

Povećanjem opterećenja očekivano će pasti iskoristivost generatora pare zbog povećane izlazne temperature dimnih plinova. Slika 8 prikazuje pad iskoristivosti povećanjem opterećenja gdje je zamjetniji pad pri većim opterećenjima što je sukladno i rezultatima prikazanima u slici 7 gdje je vidljiv zamjetniji porast izlazne temperature dimnih plinova pri većim opterećenjima generatora pare. Ukupna razlika iskoristivosti je 1,33%.

Svrha ovog zadatka bila je napraviti što točniji matematički model realnog postrojenja BE-TO Glina u Microsoft Excel VBA te napraviti usporedbe izračunatih parametara u ovisnosti o različitim opterećenjima.

U ovom radu su tablično i grafički prikazani svi parametri potrebni za osnovno razumijevanje sustava na temelju kojih se može doći do smislenih zaključaka o efikasnosti i načinu rada opisanog generatora pare.

Dakako u obzir se mora uzeti činjenica da je model pojednostavljen, ali može se zaključiti da model daje točne i relevantne podatke o postrojenju.

LITERATURA

- [1] Generatori pare-predavanja (interna skripta, FSB)
- [2] Pogonski propisi, Tvornica turbine Karlovac, 2014.
- [3] http://marjan.fesb.hr/~bblag/publications/books/Excel_VBA_manual.pdf
- [4] "Matematički model NPG Rafinerija Sisak" model ustupljen od strane mentora

I. CD-R disc