Nikolić, Matteo Ivan

Undergraduate thesis / Završni rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:639284

Rights / Prava: <u>Attribution-NonCommercial-NoDerivatives 4.0 International/Imenovanje-</u> Nekomercijalno-Bez prerada 4.0 međunarodna

Download date / Datum preuzimanja: 2025-04-03

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Matteo Ivan Nikolić

Zagreb, 2021.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentor:

Student:

Prof. dr. sc. Neven Pavković

Matteo Ivan Nikolić

Zagreb, 2021.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se svom mentoru, prof. dr. sc. Nevenu Pavkoviću, na korisnim savjetima i pruženoj pomoći tokom izrade ovog završnog rada.

Zahvaljujem se svojoj obitelji na potpori, financijskoj podršci i razumijevanju tokom trajanja preddiplomskog studija.

Zahvaljujem se prijateljima i kolegama s fakulteta na pomoći i savjetima kojima su mi olakšali studiranje.

Matteo Ivan Nikolić

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za završne ispite studija strojarstva za smjerove:

procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveučilište	u Zagrebu	
Fakultet strojarstva i brodogradnje		
Datum	Prilog	
Klasa: 602 - 04 / 21 - 6 / 1		
Ur.broj: 15 - 1703 - 21 -		

Mat. br.: 0035208045

ZAVRŠNI ZADATAK

Student:	Matteo Ivan Nikolic
Naslov rada na hrvatskom jeziku:	Traktorski priključak za trešnju stabla
Naslov rada na engleskom jeziku:	Tractor mounted tree shaker

Opis zadatka:

Koncipirati i konstruirati uređaj za trešnju plodova sa stabla (npr. masline, šljive i sl.). Uređaj treba izvesti kao traktorski priključak te koristiti pogon od kardanskog vratila traktora i/ili traktorske hidraulike. Pri koncipiranju treba voditi računa o tome da se vibracije uređaja (koliko je moguće) ne prenose na traktor. Također posebnu pažnju treba posvetiti sigurnosti rukovatelja priključkom.

U radu treba:

- analizirati postojeće uređaje na tržištu, način priključka na traktor i parametre traktorskog pogona;
- koncipirati više varijanti rješenja, usporediti ih i vrednovanjem odabrati najpovoljnije;
- odabrano projektno rješenje uređaja razraditi s potrebnim proračunima nestandardnih dijelova;
- izraditi računalni model uređaja i tehničku dokumentaciju u 3D CAD sustavu.

....

Pri konstrukcijskoj razradi obratiti pozornost na tehnologično oblikovanje dijelova. Analizirati kritična mjesta. Opseg konstrukcijske razrade, modeliranja i izrade tehničke dokumentacije dogovoriti tijekom izrade rada.

U radu navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

30. studenoga 2020.

Zadatak zadao:

Prof. dr. sc. Neven Pavković

Datum predaje rada: **1. rok:** 18 veljače 2021. **2. rok (izvanredni):** 5. srpnja 2021. **3. rok:** 23. rujna 2021. Predviđeni datumi obrane: **1. rok:** 22.2. – 26.2.2021. **2. rok (izvanredni):** 9.7.2021. **3. rok:** 27.9. – 1.10.2021.

Predsjednik Povjerenstva:

N Solop

Prof. dr. sc. Vladimir Soldo

SADRŽAJ

SADRŽAJI
POPIS SLIKA III
POPIS TABLICAV
POPIS TEHNIČKE DOKUMENTACIJE
POPIS OZNAKA
SAŽETAKX
SUMMARYXI
1. UVOD
 1.1. Voćarstvo
2. ANALIZA POSTOJEĆIH RJEŠENJA
2.1. Pregled patenata 5 2.1.1. US3121304 – Tree shaker [1] 5 2.1.2. US3494654 – Tree shaking apparatus [2] 6
 2.1.3. EP2625948A1 – Shaking device [3]
2.2.1. AMB Rousset VHD [5] 10 2.2.2. Jagoda JPS Pestka [6] 11 2.2.3. Karmasz OPEN 1 [7] 12 2.2.4. LIPCO HSA-10 [8] 13 2.3. Zaključak analize tržišta i smjer razvoja proizvoda 14
3. KARAKTERISTIKE TRAKTORA 15 3.1. Mogućnosti priključivanja na traktor 15 3.1.1. Stražnji priključak u 3 točke 15 3.1.2. Kuka 17 3.2. Izlazno vratilo traktora 17
3.3. Parametri traktora za pogon stroja
4.1. Osnovna funkcijska struktura
5. MORFOLOŠKA MATRICA 22
 6. GENERIRANJE KONCEPATA
6.1.1.Kućište tresača – koncept A

6.4. Koncept 3	36
6.5. Vrednovanje koncepata	39
7. DETALJNA RAZRADA ODABRANOG KONCEPTA 4	41
7.1. Detaljna razrada tresača	41
7.1.1. Detaljna razrada kućišta tresača	12
7.1.1.1. Proračun zupčanog para kućišta tresača4	15
7.1.1.2. Proračun remenskog prijenosa kućišta tresača	15
7.1.1.3. Provjera čvrstoće vratila i osovine kućišta tresača	16
7.1.2. Odabir spojke kućišta tresača4	19
7.1.3. Odabir hidromotora kućišta tresača5	50
7.1.4. Odabir hidrauličkog cilindra hvataljke tresača5	51
7.2. Proračun zavarenih spojeva nosive konstrukcije	53
7.2.1. Zavar ušice nosača tresača 5	53
7.2.2. Zavari na mjestima spajanja stroja na traktor5	54
7.2.2.1. Proračun zavara ušice gornje točke trospojne veze stroja	55
7.2.2.2. Proračun zavara svornjaka donje točke trospojne veze stroja 5	57
7.3. Provjera bočnog tlaka pera na gonjenom dijelu spojke 5	58
8. OPIS KONSTRUKCIJE STROJA	59
9. ZAKLJUČAK	54
LITERATURA	55
PRILOZI	56

POPIS SLIKA

Slika 1.	Voćnjak	2
Slika 2.	Strojna berba trešenjem stabla	3
Slika 3.	US3121304 – Prikaz uređaja za trešenje stabla	5
Slika 4.	US3121304 – Prikaz vibracijskog mehanizma	6
Slika 5.	US3494654 – Ruka tresača stabla	6
Slika 6.	US3494654 – Stezaljke s gumenim jastučićem	7
Slika 7.	EP2625948A1 – Opis uređaja za trešnju grana stabla	7
Slika 8.	EP2625948A1 – Prikaz klipnog mehanizma tresača	8
Slika 9.	US5595054 – Uređaj za trešenje stabla	8
Slika 10.	US5595054 – Sklop za stvaranje vibracije tresača	9
Slika 11.	Tresač stabla AMB Rousset VHD	10
Slika 12.	Tresač stabla Jagoda JPS Pestka	11
Slika 13.	Tresač stabla Karmasz OPEN 1	12
Slika 14.	Tresač stabla LIPCO HSA-10	13
Slika 15.	Stražnji priključak u 3 točke	15
Slika 16.	Dimenzije priključka u tri točke prema ISO 730-1	16
Slika 17.	Kuka na traktoru	17
Slika 18.	Kardanski zglob	17
Slika 19.	Izlazno vratilo traktora	18
Slika 20.	Traktor New Holland T4N [9]	19
Slika 21.	Osnovna funkcijska struktura	20
Slika 22.	Parcijalna funkcija P1	20
Slika 23.	Parcijalna funkcija P2	21
Slika 24.	Koncept A – horizontalni presiek kućišta tresača	26
Slika 25.	Koncept A – presiek A-A	26
Slika 26.	Koncept A – pozicije utega i smjer djelovanja sila	27
Slika 27.	Koncept B – vertikalni presiek kućišta tresača	28
Slika 28.	Koncept B – presiek A-A	29
Slika 29.	Koncept B – pozicije utega i smjer djelovanja sila	29
Slika 30.	Koncept 1 – nacrt	32
Slika 31.	Koncept 1 – tlocrt	32
Slika 32	Koncept 1 – bokocrt	33
Slika 33.	Koncept 2 – nacrt	35
Slika 34.	Koncept 2 – tlocrt	35
Slika 35	Koncept 2 – bokocrt	36
Slika 36	Koncept 2 – nacrt	38
Slika 37	Koncept 3 – tlocrt	38
Slika 38	Koncept 3 – hokocrt	39
Slika 39	Izometrijski prikaz kućišta tresača	41
Slika 40	Graf spektra centrifugalne sile utega	42
Slika 41	Oblik ekscentričnog utega tresača	43
Slika 47	Zupčanici kućišta tresača u zahvatu	45
Slika 43	Prikaz geometrije remenskog prijenosa kućišta tresača	46
Slika 44	Onterećenje reducirano na osi vratila i osovine kućišta tresača	46
Slika 45	Rezultati proračuna čvrstoće vratila kućišta tresača	47
Slika 46	Onterećenje osovine kućišta tresača	τ/ 48
Slika 17	Snoika kućišta tresača KTR ROTEX GS 28	1 0 50
Slika 47.	Karakteristike hidromotora kućišta tregača	51
511Ka 40.	ואמומגנטווטווטוטומ געטוטומ ווטאלעמ	51

Matteo Ivan Nikolić Završni rad Slika 49. Slika 50. Slika 51. Slika 52. Slika 53. Slika 54. Opterećenje i geometrija zavara u osloncu B......57 Slika 55. Slika 56. Slika 57. Slika 58. Slika 59. Slika 60. Slika 61. Slika 62. Slika 63.

POPIS TABLICA

Tablica 1.	Tehničke karakteristike tresača AMB Rousset VHD	. 10
Tablica 2.	Tehničke karakteristike tresača Jagoda JPS Pestka	. 11
Tablica 3.	Tehničke karakteristike tresača Karmasz OPEN 1	. 12
Tablica 4.	Tehničke karakteristike tresača LIPCO HSA-10	. 13
Tablica 5.	Standardne dimenzije priključka u tri točke	. 16
Tablica 6.	Dimenzije izlaznog vratila prema kategoriji traktora	. 18
Tablica 7.	Tehničke karakteristike traktora New Holland T4.80N	. 19
Tablica 8.	Morfološka matrica	. 22
Tablica 9.	Odabir funkcijskih rješenja za Koncept 1	. 30
Tablica 10.	Odabir funkcijskih rješenja za Koncept 2	. 33
Tablica 11.	Odabir funkcijskih rješenja za Koncept 3	. 36
Tablica 12.	Vrednovanje koncepata	.40
Tablica 13.	Karakteristike cilindra hvataljke tresača	. 52

Završni rad

POPIS TEHNIČKE DOKUMENTACIJE

MIN-ZR-00-00-00	Traktorski priključak za trešnju stabla
MIN-ZR-01-00-00	Tresač
MIN-ZR-01-01-00	Kućište tresača
MIN-ZR-01-01-01	Vratilo tresača
MIN-ZR-01-01-02	Osovina tresača
MIN-ZR-01-01-03	Gonjeni zupčanik
MIN-ZR-02-01-00	Nosivi okvir stroja

POPIS OZNAKA

LATINIČNE OZNAKE

Oznaka	Jedinica	Opis
$a_{\rm s}$	mm	Osni razmak vratila i osovine
$A_{z,A}$	mm^2	Površina zavara ušice oslonca A
$A_{z,As}$	mm^2	Površina zavara ušice oslonca A opterećena smično
$A_{z,B}$	mm^2	Površina zavara svornjaka oslonca B
$A_{z,Bs}$	mm^2	Površina zavara svornjaka oslonca B opterećena smično
A _{z,us}	mm^2	Površina zavara ušice opterećena smično
b_1	-	Faktor veličine strojnog dijela
b_2	-	Faktor kvalitete obrade površine
$b_{ m p}$	mm	Širina pera
d_1	mm	Promjer osovine na presjeku 1-1
$D_{\mathbf{k}}$	mm	Promjer klipa cilindra
f	Hz	Frekvencija vibracija tresača
$h_{ m p}$	mm	Visina pera
F_{Ah}	Ν	Horizontalna sila u osloncu A
F_{Av}	Ν	Vertikalna sila u osloncu A
F_{B}	Ν	Rezultantna sila u osloncu B
F_{Bh}	Ν	Horizontalna sila u osloncu B
$F_{\rm Bv}$	Ν	Vertikalna sila u osloncu B
F_{Ch}	Ν	Horizontalna sila u osloncu C osovine
F_{Cv}	Ν	Vertikalna sila u osloncu C osovine
$F_{\rm Dh}$	Ν	Horizontalna sila u osloncu D osovine
$F_{\rm Dv}$	Ν	Vertikalna sila u osloncu D osovine
$F_{\rm gt}$	Ν	Rezultantna sila u gornjoj točki trospojne veze stroja
F_{h1}	Ν	Horizontalna sila na osovini
F_{h2}	Ν	Horizontalna sila na osovini
$F_{\rm ht}$	Ν	Sila hvataljke tresača
F _c	Ν	Centrifugalna sila rotirajućeg utega
$F_{\rm o}$	Ν	Obodna sila na vratilu koju prenosi pero
F_{oZ}	Ν	Obodna sila na zupčaniku
F_{R}	Ν	Radijalna sila na remenici
F_{rZ}	Ν	Radijalna sila na zupčaniku
F_{tZ}	Ν	Tangencijalna sila na zupčaniku
$F_{\rm u}$	Ν	Sila na ušici nosača tresača
F_{v1}	Ν	Vertikalna sila na osovini
F_{v2}	Ν	Vertikalna sila na osovini
Gs	kg	Težina stroja

Fakultet strojarstva i brodogradnje

$I_{y,A}$	mm^4	Moment tromosti zavara ušice oslonca A
$I_{\rm B}$	mm^4	Moment tromosti zavara svornjaka oslonca B
$J_{\rm R}$	$kg \cdot m^2$	Moment tromosti remenice
$J_{\rm red}$	kg·m ²	Moment tromosti sustava reduciran na vratilo spojke
$J_{\rm u}$	$kg \cdot m^2$	Moment tromosti utega
$J_{\rm Z}$	$kg \cdot m^2$	Moment tromosti zupčanika
$l_{ m p}$	mm	Duljina pera
l_{t}	mm	Nosiva duljina pera
$m_{ m R}$	kg	Masa remenice
$m_{ m s}$	kg	Masa stroja
$m_{ m t}$	kg	Masa tresača s okvirom i ovjesnim elementom
$m_{ m u}$	kg	Masa utega
$m_{ m Z}$	kg	Masa zupčanika
M_{f1}	Nmm	Moment savijanja u presjeku 1-1 osovine
$M_{f,A}$	Nmm	Moment savijanja zavara ušice oslonca A
$M_{f,\mathrm{B}}$	Nmm	Moment savijanja zavara svornjaka oslonca B
$n_{ m u}$	okr/min	Brzina vrtnje utega
p	bar	Maksimalni tlak u cilindru
$p_{ m b}$	N/mm ²	Bočni tlak pera
$p_{ m dop}$	N/mm ²	Dopušteni bočni tlak pera
$p_{ m stv}$	bar	Stvarni tlak u cilindru
$r_{ m u}$	m	Udaljenost centra mase utega od osi rotacije
$S_{\rm post,1}$	-	Postojeća sigurnost u presjeku 1-1 osovine
$S_{\rm potr}$	-	Potrebna sigurnost
T_{ϵ}	Nm	Moment potreban za ubrzanje gibajućih masa sustava
$T_{\varepsilon,u}$	Nm	Moment potreban za ubrzanje utega
$T_{\rm pr}$	Nm	Proračunski moment na spojci
$t_{\rm ub}$	S	Vrijeme ubrzanja utega
W_1	mm ³	Aksijalni moment otpora presjeka 1-1 osovine
$W_{y,A}$	mm ³	Moment otpora zavara ušice oslonca A
W_{B}	mm ³	Moment otpora zavara svornjaka oslonca B

GRČKE OZNAKE

Oznaka	Jedinica	Opis
$eta_{ m kf}$	-	Efektivni faktora zareznog djelovanja kod savijanja
${\mathcal E}_0$	rad/s^2	Kutno ubrzanje vratila spojke
ε_u	rad/s^2	Kutno ubrzanje utega
$\sigma_{ m dop,z}$	N/mm ²	Dopušteno naprezanje u zavarima konstrukcije stroja
$\sigma_{\!f1}$	N/mm ²	Normalno naprezanje na presjeku 1-1 pri savojnom opt.
$\sigma_{\!f,\mathrm{A}}$	N/mm ²	Savojno naprezanje zavara ušice oslonca A

Fakultet strojarstva i brodogradnje

$\sigma_{\!f,\mathrm{B}}$	N/mm ²	Savojno naprezanje zavara svornjaka oslonca B
$\sigma_{\!f\mathrm{DN}}$	N/mm ²	Trajna dinamička čvrstoća kod savijanja
$\sigma_{ m red,A}$	N/mm ²	Reducirano naprezanje zavara ušice oslonca A
$\sigma_{ m red,B}$	N/mm ²	Reducirano naprezanje zavara svornjaka oslonca B
$\sigma_{ m uk,A}$	N/mm ²	Ukupno normalno naprezanje zavara ušice oslonca A
$\sigma_{v,\mathrm{A}}$	N/mm ²	Vlačno naprezanje zavara ušice oslonca A
$ au_{z,A}$	N/mm ²	Smično naprezanje u zavaru ušice oslonca A
$ au_{ m z,B}$	N/mm ²	Smično naprezanje u zavaru svornjaka oslonca B
$ au_{ m z,u}$	N/mm ²	Smično naprezanje u zavaru ušice nosača tresača
arphi	-	Faktor udara
ω_u	rad/s	Kutna brzina utega

Ovim završnim radom prikazan je proces razvoja i konstruiranja traktorskog priključka za trešnju stabla s vlastitim hidrauličkim sustavom.

Potrebu za ovakvim strojem imaju poljoprivredna gospodarstva s velikim nasadima voćnjaka bobičastog voća koja žele ubrzati proces berbe, smanjiti njene troškove te smanjiti napor radnika tokom berbe.

Analizom tržišta pronađena su postojeća rješenja traktorskog priključka za trešnju stabla. Nakon izrade funkcijske strukture stroja i morfološke matrice, napravljena su tri koncepta ovakvog stroja. Ocjenjivanjem koncepata odabran je jedan koncept koji će se detaljno konstrukcijski razraditi. Za odabrani koncept napravljen je odabir standardnih komponenti, proračun nestandardnih dijelova te proračun kritičnih mjesta na konstrukciji stroja. Računalni model izrađen je u programskom paketu Solidworks te je nakon toga izrađena tehnička dokumentacija.

Ključne riječi: traktor, traktorski priključak, trešnja stabla, voćnjak, berba

This bachelor thesis presents the process of development and design of a tree shaking tractor attachment with its own hydraulic system.

The need for such a machine exists in the agricultural holdings with large plantations of berry orchards who want to speed up the harvesting process, reduce its costs and reduce workers' efforts during harvest.

Through market analysis, existing solutions of the tractor attachment for tree shaking were found. After making the functional structure of the machine and morphological matrix, three concepts of this machine were made. The concept evaluation selected one concept that will be developed in detail. Selection of standard components, calculation of non-standard parts and calculation of critical locations on machine structure was made for the selected concept. The computer model was made in Solidworks software package and after that technical drawings were made.

Key words: tractor, tractor attachment, tree shaking, orchard, harvesting

1. UVOD

1.1. Voćarstvo

Voćarstvo je grana poljoprivrede koja se bavi uzgojem voćaka te proizvodnjom i doradbom (čuvanjem i pripremom za tržište) voća. To je primijenjena agrobiološka znanstvena disciplina koja proučava biološke, ekološke, tehničke i ekonomske aspekte proizvodnje voća. Republika Hrvatska je zemlja s vrlo dugom tradicijom u proizvodnji voća. Razvoju voćarstva u Hrvatskoj pridonijeli su i Hrvatsko-slavonsko gospodarsko društvo i gospodarsko-šumarsko učilište u Križevcima otvoreno 1860. U Kutjevu se 1896/97. počelo s podizanjem voćarskih plantaža. Do 1906. bilo je posađeno ukupno 247 306 stabala voćaka. Uzimajući u obzir prirodne faktore, Republika Hrvatska ima iznimno povoljne uvjete za proizvodnju raznovrsnog voća. U mediteranskoj i umjereno kontinentalnoj klimatskoj zoni moguć je uzgoj od suptropskoga do kontinentalnog voća (od limuna do zimskih sorti jabuka i krušaka). Do 1990. voćarstvo je razvijano na nižim ravničarskim položajima, gdje su se mogle zaokružiti veće površine, ali ti položaji nisu bili dovoljno prikladni za stabilnu voćarsku proizvodnju. Od 1995. voćarstvo doživljava brz uspon, a novi se voćnjaci podižu na ekološki prikladnim položajima, uglavnom na obiteljskim gospodarstvima. Državni poticaji za unaprjeđenje voćarstva utjecali su na uvođenje novih tehnologija, sorti i sustava uzgoja. Najviše površina koje su korištene u 2017. godini za proizvodnju voća otpada na proizvodnju jabuka (17,2 %), šljiva je na drugom mjestu (15,5 %), zatim orah (19,7 %), lješnjak (13,6 %) i mandarina (7,1%).

Osnovni cilj suvremene voćarske proizvodnje je da se uz najkraće moguće vrijeme i uz najmanje troškove proizvodnje ostvare najveći prihodi kvalitetnog voća. Zahvaljujući usavršavanju tehnologije skladištenja i prerade voća, boljim prometnim vezama i organizaciji opskrbe tržišta, na raspolaganju se ima uvijek svježe voće i dobre prerađevine tijekom cijele godine.

Voćnjak je tradicionalni oblik voćarstva. U njemu rastu visoka stabla različite dobi i različitih vrsta. Obično se održavaju bez korištenja umjetnih zaštitnih sredstava ili umjetnih gnojiva. Plantaže voća su monokulture jedne vrste voća uz primjenu sredstava za zaštitu voća. Voćnjaci s tradicionalnim visokim stablima zahtijevaju mnogo više rada od plantaže s nisko rastućim stablima.

Slika 1. Voćnjak

1.2. Berba šljiva i višanja

Plodovi šljive upotrebljavaju se za potrošnju u svježem stanju i za preradu, pa se prema tome razlikuje vrijeme i način berbe. Sve rane sorte upotrebljavaju se kao stolno voće, dok se jesenske sorte uglavnom upotrebljavaju za preradu. Za potrošnju u svježem stanju berba se obavlja nešto prije potpune zrelosti i bere se ručno. Berba plodova za preradu obavlja se mehanizirano kada su plodovi potpuno zreli, jer plodovi jedino na grani mogu dobiti sve potrebne sadržaje (šećer, mirisne i druge suhe tvari). Plodovi višnje nemaju sposobnost dozrijevanja nakon berbe, zato je vrlo bitno odrediti vrijeme berbe. Ukoliko se berba obavi prerano ili prekasno, to može utjecati na kvalitetu ploda, a samim time i na ekonomsku dobit.

Berba je najzahtjevniji posao u nasadima šljive i višnje. Naime, ako se berba obavlja ručno, što je kod nas najčešće slučaj, od ukupnog prihoda više od 30% otpada na trošak ručne berbe koja je vrlo skupa uzevši u obzir dio prihoda namijenjen isplati radnika.

Upravo iz tog razloga u voćarstvo se uvode strojevi i oprema koji omogućuju:

- modernizaciju tehnologije proizvodnje
- povećanje produktivnosti utrošenog rada
- zamjenu napornog fizičkog rada radnika
- bolju konkurentnost na tržištu

Proizvodnost se značajno povećala primjenom strojeva za trešenje stabla jer bi ručno branje i sakupljanje ploda s tla bilo prezahtjevno i zamorno, pogotovo u voćnjacima velike površine na kojem se nalazi i do nekoliko stotina stabala. Trešenje stabla se obavlja vrlo kratko (oko 5 sekundi jednom do tri puta), a za otresanje jednog stabla i premještanje stroja na iduće stablo je potrebno 1-2 minute. Učinak stroja je od 30 do 40 stabala po satu, ovisno o ostaloj opremi koja se koristi u berbi, na primjer cerade za skupljanje ploda koji pada sa stabla i strojevi za čišćenje ploda od primjesa (lišća, grančica) koji su s plodom pali sa stabla, a ovisi i o broju radnika.

Slika 2. Strojna berba trešenjem stabla

1.3. Opis stroja i zahtjevi kupaca

Strojevi za otresanje ploda sa stabla mogu biti izvedeni kao traktorski priključci ili to mogu biti samostalni strojevi koji imaju vlastiti pogonski uređaj, no u ovom radu naglasak je na izvedbi stroja za otresanje ploda sa stabla kao traktorskog priključka. Kao traktorski priključak, stroj za pogon može koristiti izlazno vratilo traktora i traktorsku hidrauliku. Stroj može biti izveden kao nošeni, polunošeni ili vučeni traktorski priključak.

Korisnici ovakvih strojeva su najčešće članovi obiteljskih poljoprivrednih gospodarstava ili radnici u većim poduzećima. Ciljana skupina korisnika i kupaca uređaja, kojeg će se razraditi u ovom radu, su obiteljska gospodarstva koja sezonski zapošljavaju radnike za obavljanje berbe višanja i šljiva te im je cilj ubrzati proces branja i povećati produktivnost radnika.

Analizom korisnika strojeva za otresanje ploda sa stabla kao i potencijalnih kupaca stroja na području Požeške kotline, proizašli su sljedeći zahtjevi:

- niska cijena
- jednostavno priključivanje na traktor
- jednostavno održavanje
- mala masa
- sigurnost u radu
- manje oštećivanje stabla
- jednostavno upravljanje

2. ANALIZA POSTOJEĆIH RJEŠENJA

2.1. Pregled patenata

Pregled patenata usmjeren je na rješenja koja dijelom ili u potpunosti odgovaraju danom zadatku i koja će pomoći da se jasnije odredi smjer izrade stroja koji se traži u zadatku. Naglasak kod istraživanja patenata je proučavanje načina na koji stroj proizvodi vibracije koje se prenose na stablo i kako stroj prihvaća stablo, po mogućnosti bez oštećivanja stabla.

2.1.1. US3121304 – Tree shaker [1]

Ovim patentom opisan je uređaj za trešenje stabla koji se može priključiti na stroj za hvatanje ploda koji pada sa stabla i on ne zahtjeva vlastiti pogonski uređaj. Cilj ovog izuma je da takav stroj bude vrlo fleksibilan za manipuliranje, da operater uređaja može precizno regulirati jačinu vibracija i da operater bez velikog umaranja uređajem može upravljati dulji vremenski period. Na slici 3. prikazan je patent takvog uređaja, a na slici se vide okvir vibracijskog mehanizma (24), dohvatni štap tresača (26), nepomični (28) i pomični dio (29) hvataljke stabla. Pomični dio hvataljke se pomiče hidrauličkim cilindrom koji je smješten unutar dohvatnog štapa tresača, a gdje su vodovi tog hidrauličkog cilindra (36, 37) prikazani jednim dijelom.

Slika 3. US3121304 – Prikaz uređaja za trešenje stabla

Nadalje, na slici 4. prikazan je mehanizam uređaja kojim se stvaraju vibracije za trešenje stabla. Za okvir vibracijskog mehanizma pričvršćen je hidraulički motor (71) koji prenosi snagu na vratilo (72) na koje su uklinjeni zupčanik (82) i remenica (81). Na taj način, uteg koji je vezan za zupčanik (84) rotira u obrnutom smjeru od utega koji je vezan za remenicu (83), ali istom kutnom brzinom kako bi centrifugalne sile rotirajućih utega djelovale u samo jednom pravcu ruke tresača (97), dok bi se u ostalim pravcima velikim dijelom poništavale i tako se dobiju vibracije tresača koje djeluju u željenom smjeru.

Fakultet strojarstva i brodogradnje

Slika 4. US3121304 – Prikaz vibracijskog mehanizma

2.1.2. US3494654 – Tree shaking apparatus [2]

Općeniti cilj ovog patenta je da se prikaže poboljšani tresač stabala s posebnim naglaskom na prevenciji oštećivanja stabla trganjem njegove kore, prikazan na slici 5. Također se želi prikazati uređaj koji pruža kontroliranu uporabu tresenja tako da se hvataljkom stablo obuhvati na što većoj površini kako bi se bolje prenijele sile s tresača na stablo.

Slika 5. US3494654 – Ruka tresača stabla

Tresač radi na principu stvaranja inercijskih sila na stablo pomoću rotirajućih ekscentričnih utega (76, 78) koji rotiraju u obrnutom smjeru jedan naspram drugog. Stablo se steže pomičnom hvataljkom (92) koja je spojena na hidraulički cilindar (100). Dio tresača koji stvara vibracije (60) je povezan na nosivi dio ruke pomoću vijaka (64) preko prigušnih elemenata (58) koji prigušuju vibracije koje se prenose na ostatak stroja. Na slici 6. detaljnije su prikazani elementi stezaljke i gumenih jastučića koji su pričvršćeni na stezaljke. Jastučić je pričvršćen na ravnu ploču stezaljke (106) te se na njemu nalazi slobodno pokretna guma niskog koeficijenta trenja

Fakultet strojarstva i brodogradnje

(138) koja sprječava da se drvo ošteti ako se stezaljke tokom trešenja pomiču gore-dolje po stablu.

Slika 6. US3494654 – Stezaljke s gumenim jastučićem

2.1.3. EP2625948A1 – Shaking device [3]

Uređaj opisan ovim patentom, a prikazan na slici 7., zapravo je ručno nošeni uređaj kojim se tresu grane stabla te je naglasak pri razmatranju ovog patenta zapravo na mehanizmu kojim se postiže oscilirajuće gibanje ruke tresača i samim time vibriranje grane stabla.

Slika 7. EP2625948A1 – Opis uređaja za trešnju grana stabla

Motor (3) pokreće zupčanik (5) koji je uparen sa zupčanikom prvog stupnja prijenosa (7) koji je koncentrično učvršćen na radilicu (11) na kojoj je pričvršćena klipnjača (13). Klipnjača je povezana sa štapom (17) na kojem se nalazi hvataljka (49) koja se giba naizmjenično određenom amplitudom uzduž longitudinalne osi štapa A koja se sječe s osi vrtnje zupčanika prvog stupnja.

Slika 8. EP2625948A1 – Prikaz klipnog mehanizma tresača

Na slici 8. prikazan je klipni mehanizam tresača te je strelicama prikazan smjer djelovanja centrifugalnih sila prilikom rotiranja utega (23, 25) učvršćenih na zupčanike. Pošto se zupčanici vrte u obrnutim smjerovima jednakom brzinom vrtnje, inercijske sile u smjeru okomitom na smjer gibanja štapa (17) se uglavnom poništavaju, a pridodaju se djelovanju sile na osi štapa u oba smjera.

2.1.4. US5595054 – Mechanical tree shaker for fruit harvesting [4]

Uređaj prikazan na slici 9. za trešenje stabla koristi linearne vibracije. Sastoji se od sklopa u kojem se proizvode vibracije (1), sklopa s oprugama (2), sklopa za prijenos vibracija (3) te sklopa hvataljki (4). Prijenos snage do sklopa za vibraciju moguć je mehaničkim, hidrauličkim ili pneumatskim sustavom spojenim na izlazno vratilo traktora ili nekog drugog pogonskog uređaja na kojeg se priključi tresač. Snaga se prenosi na jedan rotirajući uteg (6) koji je zupčanim parom prijenosnog omjera 1 (7) spojen na drugi rotirajući uteg, kako je vidljivo na slici 10.

Slika 10. US5595054 – Sklop za stvaranje vibracije tresača

Na taj način, centrifugalne sile rotirajućih utega tresu stablo u željenom smjeru vibracija, dok se centrifugalne sile okomite na smjer vibracija poništavaju. Intenzitet vibracija ovisi o masi rotirajućih utega kao i o njihovoj brzini vrtnje, tj. frekvenciji vibracija.

2.2. Analiza tršišta

Analizu postojećih proizvoda na tržištu usmjerit ćemo na strojeve izvedene kao traktorske priključke koji karakteristikama što bolje odgovaraju zahtjevima kupaca. Tvrtke koje u svom proizvodnom asortimanu imaju ovakve proizvode, često imaju i kompleksnije strojeve koji su skuplji i ne odgovaraju zahtjevu kupaca da stroj ima relativno nisku cijenu i da je manje mase pa njih nećemo uzeti u obzir u ovoj analizi. Vođeni danim zahtjevima kupaca, nailazimo na sljedeće postojeće proizvode na tržištu.

2.2.1. AMB Rousset VHD [5]

Tresač VHD pripada jeftinijem rangu tresača tvrtke AMB Rousset, s time da postoji nekoliko inačica ovog stroja, a razlikuju se u stupnju automatizacije rada stroja. Zahvaljujući maloj amplitudi vibracija, tresač je pogodan i za tresenje manjih stabala. Spajanje i odspajanje stroja s traktora je relativno brzo. Broj stabala koje tresač može otresti po satu je do 75. Hvataljka tresača koja proizvodi vibracije nije čvrsto spojena s nosivim dijelom stroja te se tako vibracije velikim dijelom prigušuju i ne prenose na traktor. Koristi se za tresenje stabala čije deblo je visoko od 0,5 m do 2,2 m i čiji promjer iznosi najviše 600 mm.

Dužina	3 m
Širina	1,7 m
Visina	1,15 m
Masa	660 kg
Pogon stroja	Izlazno vratilo traktora
Minimalna snaga traktora	60 KS
Cijena	-

Tablica 1. Tehničke karakteristike tresača AMB Rousset VHD

Slika 11. Tresač stabla AMB Rousset VHD

2.2.2. Jagoda JPS Pestka [6]

Tresač Pestka na traktor se spaja preko standardnog spoja u tri točke. Za svoj rad koristi hidraulički sustav traktora čiji je protok ulja minimalno 18 l/min. Jačina vibracija tresača ovisi o masi rotirajućih utega te se može prilagoditi tako da se promjene utezi. Konzola na kojoj je ovješen tresač može se teleskopski produljiti s 1,2 m na 2 m tako da je lakše raditi u voćnjacima s različitim razmakom između redova. S ovim tresačem može se tresti stabla koja se nalaze i s lijeve i s desne strane traktora jer tresač slobodno rotira oko točke ovješenja na konzoli. Koristi se za stabla čiji se promjer kreće između 50 i 200 mm te čija je minimalna visina debla 0,6 m. Najveća pritisna sila hvataljke podešava se ventilom za ograničavanje tlaka koji ne dopušta da hvataljka stisne deblo više nego je to potrebno.

Duljina	3250 mm
Širina	900 mm
Visina	1620 mm
Masa	220 kg
Pogon stroja	Hidraulika traktora
Cijena	-

Tablica 2. Tehničke karakteristike tresača Jagoda JPS Pestka

Slika 12. Tresač stabla Jagoda JPS Pestka

2.2.3. Karmasz OPEN 1 [7]

Tresač OPEN 1 na traktor se spaja preko standardnog spoja u tri točke. Za svoj rad koristi izlazno vratilo traktora kojim se pokreće hidraulička pumpa tresača koji ima vlastiti hidraulički sustav sa spremnikom ulja. Tresač je ovješen na konzoli koja se može rotirati u obje strane i tako olakšati pozicioniranje hvataljke tresača na stablo. Vibracije tresača prigušuju se tako što je on ovješen na prigušnom elementu. Visina debla koje se prihvaća hvataljkom mora biti minimalno 0,6 m.

Duljina	4330 mm
Širina	830 mm
Visina	1700 mm
Masa	280 kg
Cijena	-

Tablica 3. Tehničke karakteristike tresača Karmasz OPEN 1

Slika 13. Tresač stabla Karmasz OPEN 1

2.2.4. LIPCO HSA-10 [8]

Tresač HSA-10 na traktor se spaja preko standardnog spoja u tri točke. Stroj za pogon svoje hidrauličke pumpe koristi izlazno vratilo traktora. Dizajniran je tako da pomoću teleskopski produljive ruke može dosegnuti i visoka stabla ili grane na velikoj visini, tj. na udaljenosti do 5,6 m od traktora. Hvataljka tresača ima mogućnost prihvatiti stabla čije deblo ili grane imaju promjer od 80 do 450 mm. Vibracije se s tresača u manjoj mjeri prenose na ostatak stroja i traktor jer je tresač ovješen na lanac.

Duljina	3400 mm
Širina	1600 mm
Visina	1700 mm
Masa	660 kg
Minimalna snaga traktora	55 KS
Cijena	-

Tablica 4. Tehničke karakteristike tresača LIPCO HSA-10

Slika 14. Tresač stabla LIPCO HSA-10

2.3. Zaključak analize tržišta i smjer razvoja proizvoda

Analiza postojećih proizvoda na tržištu pokazala je da na tržištu prevladavaju izvedbe tresača koje su izvedene kao nošeni traktorski priključak pogonjen traktorskom hidraulikom ili izlaznim vratilom traktora. Ovakvi strojevi moderniziraju proces branja sitnog koštičavog voća i ostalih vrsta voća namijenjenih za industrijsku preradu te povećavaju produktivnost u berbi voćnjaka velikih površina.

Smjer razvoja proizvoda vodit će se prema tome da se stroju, što je moguće više, snizi cijena na tržištu, a to za sobom nosi eventualno uskraćivanje neke od funkcija koju imaju navedeni strojevi iz analize tržišta, kako bi se smanjio broj komponenti. Funkcije koje stroj neće sam moći obaviti, morat će biti napravljene od strane radnika pa će na taj način biti potrebna nekolicina radnika više kako bi se obavila berba, za razliku od broja radnika potrebnih za berbu uz pomoć kompleksnijeg stroja, no taj broj će biti sveden na minimum. Težit će se tome da se stroj izvede kao nošeni priključak pa je poželjno da bude što manje mase. Hidraulički sustav stroja može se izvesti kao samostalan sustav čija je hidraulička pumpa pogonjena izlaznim vratilom traktora ili na način da se priključi na hidraulički sustav traktora pomoću stražnjih hidrauličkih izvoda. U ovom radu ću se usmjeriti na razvoj stroja koji ima vlastiti hidraulički sustav kako taj sustav ne bi uvelike ovisio o mogućnostima traktora, već da ga je samo potrebno pogoniti izlaznim vratilom traktora, što proširuje opseg traktora koji taj stroj mogu pokretati. Također, na tržištu su prisutni uređaji koji na stablo prenose vibracije različitih intenziteta, tj namijenjeni su za trešenje stabala različitog promjera. U ovom radu fokus će biti na konstrukciji stroja kojim se tresu stabla u mlađim voćnjacima, odnosno stabla nešto manjeg promjera, okvirno do 250 mm.

3. KARAKTERISTIKE TRAKTORA

Traktor je motorno vozilo konstruirano da vuče, potiskuje ili nosi izmjenjiva oruđa, odnosno da služi za pogon takvih oruđa ili za vuču priključnih vozila. Najzastupljeniji je stroj u poljoprivredi zbog velikog broja dostupnih priključaka pa i time zbog velikog broja radnji koje može obavljati. Prema namjeni se mogu podijeliti na šumarske, poljske i voćarsko-vinogradarske. Karakterizira ga velika vučna snaga, velika nosivost na stražnjim polugama i veliki okretni moment na izlaznom vratilu.

3.1. Mogućnosti priključivanja na traktor

Na traktoru se nalaze priključci koji mogu biti smješteni na stražnjoj strani traktora i/ili prednjoj strani traktora, ovisno o njegovim karakteristikama i mogućnostima. U ovom radu naglasak će biti na izvedbi stroja koji se na traktor priključuje s njegove stražnje strane, a u nastavku su prikazane vrste stražnjih priključaka na traktoru.

3.1.1. Stražnji priključak u 3 točke

Ovakav sustav za spajanje je standardiziran prema normi ISO 730-1. Služi za priključivanje nošenih i polunošenih strojeva. Gornja poluga s navojem služi za reguliranje nagibnog kuta priključenog stroja. Donje točke spajanja predstavljaju spoj s donjim polugama koje su hidraulički upravljane, što omogućuje podizanje priključenog stroja s tla ili potiskivanje priključenog stroja u tlo za vrijeme njegova rada. Na idućoj slici su prikazane dimenzije koje karakteriziraju trospojni priključak, a nadalje su u tablici navedene standardne dimenzije ovisne o kategoriji priključka na traktoru.

Slika 16. Dimenzije priključka u tri točke prema ISO 730-1

Kategorija	Standardne dimenzije trospojnog priključka [mm]								
	$\emptyset D_1$	$\emptyset D_2$	min $\emptyset d_1$	min $\emptyset d_2$	b_1	b_3	b_5	<i>h</i> ±1,5	<i>l</i> ±1,5
1	19	22	12	12	52	49	65	460	683
2	25,5	28	12	12	52	49	65	610	825
3	32	36,6	12	17	52	52	72,5	685	965
4	45	50,8	17	17	65	68	69,5	1100	1166,5

Tablica 5. Standardne dimenzije priključka u tri točke

3.1.2. Kuka

Kuka predstavlja najjednostavniji i široko rasprostranjeni način spajanja priključnih strojeva na traktor. Prednost joj je jednostavnost i to što se priključni stroj ne mora cijelo vrijeme nalaziti u liniji traktora, a što je bitno kod dugačkih traktorskih priključaka. Koristi se isključivo za vuču priključnih strojeva.

Slika 17. Kuka na traktoru

3.2. Izlazno vratilo traktora

Traktor na priključne strojeve prijenos snage vrši preko izlaznog vratila. Između izlaznog vratila na traktoru i ulaznog vratila na priključnom stroju nalazi se zglobna spojka s dva kardanska zgloba (kardanski prijenos). Takav način prijenosa snage koristi se kada vratila nisu kolinearna ili na istoj visini.

Slika 18. Kardanski zglob

Kad je priključni stroj povezan na izlazno vratilo traktora preko kardanskog vratila, moguće je prenositi moment na priključak pod kutom od 25°, ali je dopušten rad i pod većim kutovima uz smanjenje radnog opterećenja, tj smanjenje momenta koji se prenosi na priključak. Većina traktora ima standardnu brzinu vrtnje izlaznog vratila namještenu na 540 okr/min i 1000 okr/min kao dodatnu opciju. To treba uzeti u obzir kod odabira brzine vrtnje vratila na priključnom stroju. Prema standardu, smjer vrtnje izlaznog vratila je u smjeru kazaljke na satu kada se gleda od završetka vratila prema traktoru.

Slika 19. Izlazno vratilo traktora

Dimenzije izlaznog vratila, visina na kojoj se nalazi i broj okretaja izlaznog vratila standardizirani su normom ISO 500-3, prema kojoj postoje 4 tipa izlaznog vratila. Visina izlaznih vratila varira od 530 do 910 mm od tla.

Tip izlaznog vratila	Promjer izlaznog vratila	Broj utora na vratilu	Brzina vrtnje izlaznog vratila	Maksimalna snaga traktora	Maksimalni okretni moment
1	35 mm	6	540 min ⁻¹	60 kW	1060 Nm
2	35 mm	21	1000 min ⁻¹	92 kW	860 Nm
3	45 mm	20	1000 min ⁻¹	115 kW	1100 Nm
4	57,5 mm	22	1000 min ⁻¹	450 kW	4300 Nm

Tablica 6. Dimenzije izlaznog vratila prema kategoriji traktora

3.3. Parametri traktora za pogon stroja

Kao primjer traktora koji će biti korišten za pogon stroja uzet ćemo voćarskovinogradarsku vrstu traktora koja se koristi za obavljanje poslova u voćnjacima, a obiteljska gospodarstva koja imaju voćnjake, često imaju i vinograde u kojima je ovakav traktor također pogodan za obavljanje raznih poslova. Traktor koji ćemo koristiti za očitavanje potrebnih podataka, kao što su snaga traktora i brzina vrtnje izlaznog vratila, je New Holland T4.80N.

Slika 20. Traktor New Holland T4N [9]

Tablica 7.	Tehničke	karakteristike	traktora N	New Hol	land T4.80N
------------	----------	----------------	------------	---------	-------------

Snaga	55 kW		
Brzina vrtnje izlaznog vratila	540 okr/min		
Podizna sila straga	2600 kg		
Kapacitet pumpe	64 l/min		
Kategorija priključka u 3 točke	1 i 2		

4. FUNKCIJSKA DEKOMPOZICIJA

Funkcijski prikaz uređaja izrađen je prema zahtjevima i smjernicama koje su određene u prethodnom dijelu rada. Funkcijska struktura prikazana je Osnovnom funkcijskom strukturom u poglavlju 4.1. radi jednostavnosti i preglednosti, a njene parcijalne funkcije, označene slovom 'P' su prikazane u narednim poglavljima.

4.1. Osnovna funkcijska struktura

Slika 21. Osnovna funkcijska struktura

4.2. Parcijalna funkcija P1

4.3. Parcijalna funkcija P2

Slika 23. Parcijalna funkcija P2

U idućem poglavlju će se u morfološkoj matrici prikazati neki od mogućih načina izvršavanja svake pojedine funkcije označene slovom F na slikama 21., 22. i 23. Naglasak će biti na tome da je rješenje za ispunjenje svake funkcije što jednostavnije i pristupačnije cijenom, a nastojat će se, gdje god je moguće, koristiti standardne proizvode i komponente. Moguće je da su u funkcijskoj strukturi izostavljene neke funkcije, koje su sporednog tipa, a koje će se pojaviti kao potrebne funkcije stroja prilikom izrade koncepata kao dodatak i nadopuna definiranim funkcijama.

5. MORFOLOŠKA MATRICA

U ovom poglavlju bit će prikazana neka od mogućih rješenja za ispunjavanje pojedine funkcije iz prethodnog poglavlja, a naglasak će biti na jednostavnim i cijenom pristupačnim rješenjima, koja će u cjelini tvoriti uređaj koji je relativno jednostavan za korištenje i čija cijena odgovara zahtjevima potencijalnih kupaca ovakvog uređaja.

F1	Dovod mehaničke energije uključiti/isključiti	Preko komandi na traktoru			
F2	Mehaničku energiju prihvatiti	Kardansko vratilo			
F3	Mehaničku energiju u hidrauličku energiju pretvoriti	Hidraulička pumpa			
F4	Hidrauličku energiju voditi	Hidrauličke cijevi Metalne cijevi			
F5	Preopterećenje hidrauličkog sustava spriječiti	Hidraulički sigurnosni ventil Direct Operated Relief Valve Pocoel Soma Punger Funger Pesue Ad, Honde			

Tablica 8. Morfološka matrica

			Regulacijski ventil			
F6	Hidrauličku energiju regulirati					
F7	Hidrauličkom energijom upravljati	Razvodnik				
F8	Stablo s plodom prihvatiti	Zatezni remen	Hidraulička čeljust	Lanac		
F9	Pritisnu silu na stablo ostvariti	Zatezanje remena	Hidrauličkim cilindrom	Zatezanje lanca		
F10	Hidrauličku energiju u mehaničku energiju pretvoriti	Hidromotor				
F11	Mehaničku energiju u vibracijsko gibanje pretvoriti		Rotiracija utega na vratilu disk	-		
F12	Vibracijsko gibanje na stablo prenijeti	K	onstrukcija krutog čeličnog šta	pa		

F13	Pritisnu silu sa stabla ukloniti	Popuštanje zateznog remena	Popuštar hidraulič	ije pritiska u kom cilindru	Popuštanje lanca
F14	Vibracije tresača prigušiti	Gumeni umetci	Hidraulič •	ki prigušivač	Prigušivač vibracija
F15	Stroj na traktor priključiti	Trospojna veza			Kuka
F16	Stroj na priključenoj poziciji osigurati	Matica		kočnik	Osigurač

6. GENERIRANJE KONCEPATA

Prema načinima ispunjavanja pojedinih funkcija koje su prikazane u prethodnom poglavlju u Tablici 8. napravljena su tri koncepcijska rješenja. Koncepti su izrađeni tako da imaju funkcionalnog smisla, ali da su dovoljno različiti prema načinima ispunjavanja pojedinih traženih funkcija kako bi se mogli ocijeniti i kako bi se mogao odabrati najbolji koncept koji će se detaljno konstrukcijski razraditi. Najveće razlike među konceptima bit će u obliku nosivog okvira i tresača, kao i u načinu na koji je tresač povezan s nosivim okvirom. U idućem poglavlju razradit će se koncepti za način ispunjavanja funkcije pretvaranja mehaničke energije u vibracijsko gibanje, a koji će biti iskorišteni kao rješenje funkcije F11 u konceptu cjelokupnog stroja.

6.1. Rješenje funkcije F11 - Mehaničku energiju u vibracijsko gibanje pretvoriti

Najbitnija funkcija ovog stroja je pretvaranje mehaničke energije u vibracijsko gibanje, tj. stvaranje inercijskih sila na stablo pomoću rotirajućih utega. U ovom radu koristit će se princip rotacije utega s ekscentrično postavljenim centrom mase koji svojom rotacijom, određenom kutnom brzinom, proizvodi centrifugalne sile, određene frekvencije, koje se prenose na stablo. Cilj je proizvesti oscilacijsko gibanje u pravcu koji siječe vertikalnu os stabla ili možemo reći da se proizvede gibanje 'naprijed-nazad' u smjeru stabla. Samim tim cilj je u što većoj mjeri poništiti gibanja tresača u ostalim smjerovima. Gibanja i inercijskih sila u smjeru paralelnom s osi rotacije utega ne bi trebalo biti, no moguće je da se dogode takva gibanja radi reakcije stabla, ali takvo gibanje nema velikog utjecaja na stroj. Kako bi se postiglo da inercijske sile tresača na stablo djeluju u željenom smjeru, tresač se mora sastojati od dva utega koji se rotiraju u obrnutim smjerovima. Razlog tome je upravo poništenje centrifugalnih sila utega u ostalim smjerovima koji nisu okomiti na vertikalnu os stabla jer bi jedan rotirajući uteg proizvodio centrifugalnu silu u svim smjerovima okomitim na os rotacije. Bitno je naglasiti da se oba utega moraju okretati istom kutnom brzinom i biti jednake mase i dimenzija. Na slici 10. prikazan je smjer djelovanja centrifugalnih sila utega koji se u tom trenutku nalaze jedan nasuprot drugome i u tom smjeru se centrifugalne sile poništavaju, a prikazan je i željeni smjer vibracijskog gibanja. Kao rješenje ove funkcije pretvaranja mehaničke energije u vibracijsko gibanje, napravit ću dva koncepta koje ću iskoristiti kao rješenja za funkciju F11 u konceptima cjelokupnog stroja te se na tim konceptima neće detaljno prikazivati rješenje ove funkcije. U razradi odabranog koncepta cjelokupnog stroja, detaljnije će se opisati potrebne veličine, dimenzije i sile za stvaranje vibracijskog gibanja, odnosno razradit će se sklop kućišta tresača.

6.1.1. Kućište tresača – koncept A

Na slikama 24. i 25. prikazan je presjek kućišta tresača za koncept A. Ravninu presjeka na slici 24. ćemo smatrati kao horizontalnu ravninu, a ravninu presjeka na slici 25. kao vertikalnu ravninu. U nastavku su opisane komponente kućišta i način rada ovakvog koncepta.

Slika 24. Koncept A – horizontalni presjek kućišta tresača

Slika 25. Koncept A – presjek A-A

U kućištu tresača (1) nalaze se pogonsko vratilo (2), pogonski zupčanik (3), pogonska remenica (4), gonjeni zupčanik (5), gonjena remenica (6), fiksna osovina (7), ekscentrični utezi (8), ležajevi (9), fiksni oslonci rukavca osovine (10), a kućište se spaja na dohvatni štap tresača (11). Na pogonskom vratilu, pogonjenog hidromotorom, nalaze se pogonski zupčanik i pogonska remenica koji su na vratilo spojeni perom. Gonjena remenica i gonjeni zupčanik uležišteni su na fiksnu osovinu paralelnu s pogonskim vratilom. Takvim razmještajem elemenata omogućuje

se da se iz jednog smjera vrtnje pogonskog vratila dobiju dva različita smjera vrtnje gonjenog zupčanika i gonjene remenice, a gdje se gonjena remenica vrti u istom smjeru kao pogonsko vratilo, dok se gonjeni zupčanik vrti u obrnutom smjeru od smjera vrtnje pogonskog vratila. Na glavine gonjene remenice i gonjenog zupčanika precizno su vijcima pričvršćeni utezi čije je težište ekscentrično smješteno u odnosu na os njihove rotacije. Utezi su oblikovani kao diskovi u obliku slova V, sa zaobljenim krajevima, te su pričvršćeni na glavine gonjene remenice i gonjenog zupčanika s unutarnje strane, tj. strani bliže središtu kućišta. Na taj način utezi su smješteni vrlo blizu jedan drugome, tj. blizu vertikalnoj ravnini koja prolazi središtem kućišta. Ta vertikalna ravnina koja prolazi središtem kućišta okomita je na osi pogonskog vratila i fiksne osovine te prolazi središtem dohvatnog štapa tresača. Razlog takvog smještaja utega je taj da oni preko dohvatnog štapa tresača što učinkovitije prenose sile na stablo u pravcu središnje osi dohvatnog štapa tresača. Kako utezi rotiraju u obrnutim smjerovima, mogu se naći u 4 pozicije koje su bitne za ovakav koncept, a to je prikazano slikom 26.

Učinak ovakvih cikličkih izmjena pozicija utega je taj da se tresač pomiče prema naprijed, tj. prema stablu kada se pozicije utega nađu na poziciji 1 i skroz do pozicije 2, a kada se pozicije utega nađu na poziciji 3 onda se tresač pomiče prema natrag, tj. pomiče se od stabla skroz do pozicije 4. Rezultat toga je brzo naizmjenično uzdužno gibanje tresača sa zanemarivim gibanjem u lateralnom smjeru jer se centrifugalne sile u pozicijama 2 i 4 poništavaju. Veličina centrifugalne sile i brzina naizmjeničnog uzdužnog kretanja tresača je funkcija kutne brzine utega. Kućište tresača i dohvatni štap tresača čvrsto su vezani i gibaju se kao jedno tijelo.

6.1.2. Kućište tresača – koncept B

Na slikama 27. i 28 prikazano je kućište tresača za koncept B. Na slici 28. prikazan je presjek kućišta A-A, a na kojem su dodatno prikazani i zupčanici koji ne pripadaju presjeku. U nastavku su opisane komponente kućišta i način rada ovakvog koncepta.

Slika 27. Koncept B – vertikalni presjek kućišta tresača

Kućište tresača (1) se sastoji od pogonskog vratila (2), pogonskog zupčanika (3), gonjenog vratila (4), gonjenog zupčanika (5), ekscentričnih utega (6), ležajeva (7), a na kućište je čvrsto vezan dohvatni štap tresača (8).

Na pogonskom vratilu, pogonjenog hidromotorom, nalazi se ekscentrični uteg koji rotira u smjeru pogonskog vratila. Na pogonskom vratilu nalazi se pogonski zupčanik. Na gonjenom vratilu nalazi se gonjeni zupčanik te je gonjeno vratilo pogonjeno zupčanim parom prijenosnog omjera jedan, kako bi imalo istu kutnu brzinu kao i pogonsko vratilo. Na gonjenom vratilu nalazi se drugi ekscentrični uteg koji rotira u smjeru suprotnom od smjera rotacije ekscentričnog utega na pogonskom vratilu, ali rotiraju istom kutnom brzinom, čiju sinkronizaciju kutnih brzina omogućuje zupčani prijenos. Kako osi vratila ne bi morale biti na velikoj udaljenosti jedna od druge, da se zadovolji zračnost između ekscentričnih utega kad su okrenuti jedan prema drugome, u koncept se stavlja jedno moguće rješenje tog problema. Utezi svakako moraju biti iste mase i geometrije, a pošto utege možemo zamisliti kao diskove određene debljine, onda se ti diskovi mogu razložiti na više diskova manjih debljina. Tako će se jedan uteg rastaviti na dva manja utega iste geometrije i pola početne debljine. Tako rastavljeni utezi na pogonskom vratilu pomaknut će se za jednaku udaljenost od središta vratila, dok će na gonjenom vratilu uteg ostati točno na sredini udaljenosti između oslonaca vratila.

Takav raspored utega može se vidjeti na slici 27., kao što se može vidjeti i pozicija utega zakrenutih za 180° u odnosu na početnu poziciju, a prikazana je isprekidanom linijom.

Na slici 28. vidi se oblik kućišta okomit na osi vratila, a vidi se i pozicija dohvatnog štapa tresača (8). Osi vratila na kojima se nalaze utezi jednako su udaljene od središnje ravnine kućišta, tj. od središnje linije dohvatnog štapa tresača. Isprekidanom kružnicom polumjera istog kao polumjer vanjske strane utega opisane su kružnice po kojoj se kreću utezi i vidimo kako se one sijeku zbog razdvajanja utega na jednom vratilu i smanjivanju udaljenosti osi vratila, no uteg na jednom vratilu ne sudara se s drugim vratilom.

Na slici 29. možemo vidjeti četiri pozicije utega koje su važne za princip rada ovakvog tresača. Kad se utezi nađu na poziciji 1, rezultanta njihovih inercijskih sila ima najveći iznos i djeluje prema stablu, tj. gura stablo prema naprijed. Rezultanta centrifugalnih sila nakon toga još uvijek djeluje prema stablu, ali joj se smanjuje iznos skroz dok se utezi ne nađu u poziciji 2 gdje je rezultanta centrifugalnih sila jednaka nuli. Također istim principom rezultanta centrifugalnih sila utega djeluje u smjeru od stabla od pozicije 2 do pozicije 4, tj. vuče stablo prema natrag. Na poziciji 4 rezultanta centrifugalnih sila utega jednaka je nuli i nakon te pozicije opet mijenja smjer prema stablu. Kao i u konceptu A, veličina centrifugalne sile i brzina naizmjeničnog uzdužnog kretanja tresača je funkcija kutne brzine utega.

6.2. Koncept 1

U tablici 9. prikazan je odabir funkcijskih rješenja za Koncept 1 prema kojima će se napraviti skice koncepta i one će poslužiti za vrednovanje i daljnju razradu ukoliko se ovaj koncept ocijeni kao najbolje rješenje.

Broj funkcije	FUNKCIJA	RJEŠENJE
F1	Dovod mehaničke energije rotacije uključiti/isključiti	Preko komandi na traktoru
F2	Mehaničku energiju prihvatiti	Kardansko vratilo
F3	Mehaničku energiju u hidrauličku energiju pretvoriti	Hidraulička pumpa
F4	Hidrauličku energiju voditi	Metalne cijevi
F5	Preopterećenje hidrauličkog sustava spriječiti	Hidraulički sigurnosni ventil
F6	Hidrauličku energiju regulirati	Regulacijski ventil
F7	Hidrauličkom energijom upravljati	Razvodnik
F8	Stablo s plodom prihvatiti	Zatezni remen
F9	Pritisnu silu na stablo ostvariti	Zatezanje remena

Tablica 9. Odabir funkcijskih rješenja za Koncept 1

Završni rad

F10	Hidrauličku energiju u mehaničku energiju pretvoriti	Hidromotor
F11	Mehaničku energiju u vibracijsko gibanje pretvoriti	Koncept A
F12	Vibracijsko gibanje na stablo prenijeti	Konstrukcija krutog čeličnog štapa
F13	Pritisnu silu sa stabla ukloniti	Otpuštanje remena
F14	Vibracije tresača prigušiti	Gumeni umetci
F15	Stroj na traktor priključiti	Trospojna veza
F16	Stroj na priključenoj poziciji osigurati	Matica

Koncept 1 prikazan je skicama na slikama 30., 31. i 32. Koncept 1 prikazuje stroj koji se na traktor priključuje pomoću trospojne veze. Za rad ga je potrebno priključiti na izlazno vratilo traktora pomoću kardanskog vratila kako bi se pokretala hidraulička pumpa koja stvara potreban tlak u hidrauličkom krugu stroja. Hidraulička pumpa šalje ulje iz spremnika u razvodnik kojim se upravlja radom hidromotora tresača. Kako ne bi došlo do preopterećenja hidrauličkog sustava, u hidraulički krug stavlja se sigurnosni ventil koji u slučaju previsokog tlaka šalje ulje nazad u spremnik i rasterećuje komponente koje se nalaze dalje u hidrauličkom krugu. Za kućište tresača odabran je koncept A. Tresač je preko lanca ovješen na nosaču tresača, a sastoji se od kućišta, ruke i hvataljke. U ovom konceptu je pokazan slučaj smanjenja broja komponenti radi smanjenja cijene stroja te se tako umjesto hidrauličkog cilindra za stvaranje pritiska na stablo koristi zatezni remen koji se mora zategnuti ručno za svako stablo. Lanci na kojima je ovješen tresač na nosaču tresača na svojim krajevima imaju gumene umetke kako bi se smanjilo prenošenje nepoželjnih vibracija na ostatak stroja i na traktor. Nosač tresača se može okretati oko zgloba na nosivom okviru, a tresač se može okretati oko osi lanca na kojem je ovješen te se tako dobiva veća mogućnost prilagodbe zahvata stabala pri njihovim različitim udaljenostima od traktora. Regulacija protoka ulja kroz hidromotor obavlja se regulacijskim ventilom te se tako namješta željena brzina vrtnje hidromotora kako bi se namjestila željena frekvencija vibracija tresača.

Slika 30. Koncept 1 – nacrt

Slika 32. Koncept 1 – bokocrt

6.3. Koncept 2

U tablici 10. prikazan je odabir funkcijskih rješenja za Koncept 2 prema kojima će se napraviti skice koncepta i one će poslužiti za vrednovanje i daljnju razradu ukoliko se ovaj koncept ocijeni kao najbolje rješenje.

	r	r
Broj funkcije	FUNKCIJA	RJEŠENJE
F1	Dovod mehaničke energije rotacije uključiti/	Preko komandi na traktoru
F2	Mehaničku energiju prihvatiti	Kardansko vratilo
F3	Mehaničku energiju u hidrauličku energiju pretvoriti	Hidraulička pumpa
F4	Hidrauličku energiju voditi	Hidrauličke cijevi
F5	Preopterećenje hidrauličkog sustava spriječiti	Hidraulički sigurnosni ventil
F6	Hidrauličku energiju regulirati	Regulacijski ventil

Tablica 10.Odabir funkcijskih rješenja za Koncept 2

Završni rad

F7	Hidrauličkom energijom upravljati	Razvodnik	
F8	Stablo s plodom prihvatiti	Hidraulička čeljust	
F9	Pritisnu silu na stablo ostvariti	Hidrauličkim cilindrom	
F10	Hidrauličku energiju u mehaničku energiju pretvoriti	Hidromotor	
F11	Mehaničku energiju u vibracijsko gibanje pretvoriti	Koncept B	
F12	Vibracijsko gibanje na stablo prenijeti	Konstrukcija krutog čeličnog štapa	
F13	Pritisnu silu sa stabla ukloniti	Smanjenje pritiska u hidrauličkom cilindru	
F14	Vibracije tresača prigušiti	Hidraulički prigušivač	
F15	Stroj na traktor priključiti	Trospojna veza	
F16	Stroj na priključenoj poziciji osigurati	Matica	

Koncept 2 prikazan je skicama na slikama 33., 34. i 35. Stroj koji je prikazan konceptom 2 priključuje se na traktor pomoću trospojne veze. Slično kao na konceptu 1, stroj se sastoji od vlastitog hidrauličkog kruga, no za pritezanje stabla koristi hidraulički cilindar koji pomiče čeljust tresača, a cilindar i pomični dio hvataljke integrirani su u kućište tresača. Samim time puno brže se obavlja pritezanje stabla. Stroj nema puno mogućnosti za pomicanje u vertikalnom smjeru i za zakretanje oko vertikalne osi te se time gubi na brzini namještanja položaja u kojem je moguće pritegnuti stablo jer to onda mora precizno obaviti vozač traktora. Na nosivi okvir stroja je vezan nosač tresača. Za kućište tresača odabran je koncept B. Kućište tresača zglobno je ovješeno na nosač kako bi uvijek bilo u horizontalnom položaju, a također taj zglob doprinosi prigušenju vibracija tresača prema traktoru jer se na njemu nalaze prigušni gumeni elementi. Kućište je na nosač ovješeno preko prigušnih elemenata kako bi se u što većoj mjeri smanjilo prenošenje vibracija na ostatak stroja i traktor. Na čeljustima tresača nalaze se gumeni umetci koji uvelike smanjuju oštećenje kore stabla i povećavaju površinu preko koje se prenose vibracije tresača na stablo.

Slika 34. Koncept 2 – tlocrt

Slika 35. Koncept 2 – bokocrt

6.4. Koncept 3

U tablici 11. prikazan je odabir funkcijskih rješenja za Koncept 3 prema kojima će se napraviti skice koncepta i one će poslužiti za vrednovanje i daljnju razradu ukoliko se ovaj koncept vrednuje kao najbolje rješenje.

Broj funkcije	FUNKCIJA	RJEŠENJE
F1	Dovod mehaničke energije rotacije uključiti/isključiti	Preko komandi na traktoru
F2	Mehaničku energiju prihvatiti	Kardansko vratilo
F3	Mehaničku energiju u hidrauličku energiju pretvoriti	Hidraulička pumpa
F4	Hidrauličku energiju voditi	Hidrauličke cijevi
F5	Preopterećenje hidrauličkog sustava spriječiti	Hidraulički sigurnosni ventil
F6	Hidrauličku energiju regulirati	Regulacijski ventil
F7	Hidrauličkom energijom upravljati	Razvodnik

Tablica 11.Odabir funkcijskih rješenja za Koncept 3

Završni rad

F8 Stablo s plodom prihvatiti		Hidraulička čeljust
F9	Pritisnu silu na stablo ostvariti	Hidrauličkim cilindrom
F10	Hidrauličku energiju u mehaničku energiju pretvoriti	Hidromotor
F11	Mehaničku energiju u vibracijsko gibanje pretvoriti	Koncept A
F12	Vibracijsko gibanje na stablo prenijeti	Konstrukcija krutog čeličnog štapa
F13	Pritisnu silu sa stabla ukloniti	Smanjenje pritiska u hidrauličkom cilindru
F14	Vibracije tresača prigušiti	Prigušivač vibracija
F15	Stroj na traktor priključiti	Trospojna veza
F16	Stroj na priključenoj poziciji osigurati	Osigurač

Koncept 3 prikazan je skicama na slikama 36., 37. i 38. Ovim konceptom uzelo se u obzir karakteristike iz prva dva koncepta koje poboljšavaju izvođenje funkcija i ubrzavaju proces za koji je taj stroj namijenjen. Stroj se na traktor priključuje pomoću trospojne veze. Kardanskim vratilom spaja se izlazno vratilo traktora s vratilom hidrauličke pumpe koja stvara potreban tlak u hidrauličkom krugu stroja. Pumpa crpi ulje iz spremnika koji se nalazi na nosivom okviru stroja te ga šalje do razvodnika na kojem se upravlja s tokom ulja u cilindar i hidromotor. Između pumpe i razvodnika nalazi se sigurnosni ventil koji sprječava preopterećenje hidrauličkog kruga tako da šalje ulje nazad u spremnik ako dođe do prekoračenja pretpostavljenog tlaka u hidrauličkom krugu. Regulacijskim ventilom namješta se brzina izvlačenja klipa cilindra. Sigurnosnim ventilom se također ograničava tlak koji je moguće postići u hidrauličkom cilindru te se tako omogućuje manje oštećivanje stabla. Manjem oštećenju kore stabla također doprinose gumeni umetci na čeljustima tresača koji također povećavaju površinu na kojoj se prihvaća stablo i tako se bolje prenose vibracije s tresača na stablo. Prigušni element na kojem je ovješen tresač doprinosi smanjenju prenošenja vibracija na ostatak stroja i na traktor. Za tresač se uzelo rješenje koncepta A. Nosač tresača je moguće rotirati oko zgloba na nosivom okviru te se tresač može rotirati oko osi na kojoj je ovješen na nosaču tresača. Time se postiže bolje prilagođavanje položaju za zahvaćanje stabla ako se traktor nađe na drukčijim udaljenostima od stabla.

Slika 36. Koncept 3 – nacrt

Slika 37. Koncept 3 – tlocrt

Slika 38. Koncept 3 – bokocrt

6.5. Vrednovanje koncepata

Nakon generiranja koncepata cilj je odabrati najbolje rješenje koje će se detaljno konstrukcijski razraditi. Kako bi se odabrao najbolji koncept, definirani su kriteriji vrednovanja, a za svaki kriterij će koncepti dobiti ocjenu koja pokazuje koliko dobro pojedini koncept ispunjava određeni kriterij. Vrednovanje će se napraviti metodom težinskih faktora. Koeficijenti težinskih faktora dodijeljeni su svakom kriteriju, a zbroj svih težinskih faktora jednak je jedinici. Raspon ocjena za vrednovanje kriterija ide od 1 do 10, gdje je pritom 1 najniža ocjena, a 10 najviša.

Matteo Ivan Nikolić

		Koncept 1		Koncept 2		Koncept 3	
Kriterij vrednovanja	Težinski faktor	Ocjena		Ocjena		Ocjena	
Brzina otresanja stabla	0,16	2	0,32	6	0,96	9	1,44
Oštećivanje stabla	0,11	4	0,44	7	0,77	8	0,88
Položaj stabla	0,13	9	1,17	3	0,39	9	1,17
Reguliranje vibracija	0,09	8	0,72	8	0,72	7	0,63
Jednostavnost upravljanja	0,10	7	0,70	8	0,80	5	0,50
Prigušivanje vibracija	0,12	7	0,84	5	0,60	8	0,96
Pouzdanost	0,11	6	0,66	7	0,77	5	0,55
Masa	0,09	6	0,54	8	0,72	5	0,45
Cijena	0,09	8	0,72	6	0,54	5	0,45
Σ			6,11		6,27		7,03
	Rang	3	.	2) 1•	1	.•

Tablica 12.Vrednovanje koncepata

U vrednovanju koncepata u tablici 12., najbolje je ocijenjen koncept 3. Prema tome, za daljnju razradu stroja koristit će se rješenja iz koncepta 3, a za razradu kućišta tresača koristit će se koncept A.

7. DETALJNA RAZRADA ODABRANOG KONCEPTA

Detaljna razrada će biti napravljena za odabrani koncept 3 i odabrani koncept A koji je sadržan u konceptu 3. Pošto je funkcija koncepta A glavna stavka ovakvog stroja, započet će se s razradom koncepta A. Nakon toga će biti odabrane standardne komponente hidrauličkog kruga stroja te će biti proračunata kritična mjesta na nosivoj konstrukciji stroja.

7.1. Detaljna razrada tresača

Kako bi mogli krenuti u razradu tresača, potrebno je poznavati određene veličine koje su bitne za rad ovakvog uređaja, a to su frekvencija proizvedenih vibracija i inercijska sila koju utezi moraju proizvesti svojom rotacijom. Prema istraživanjima provedenim na ovu temu, [10] i [11], utvrđeno je kako je za različite promjere i vrste stabala potrebna različita frekvencija vibracija kao i veličina centrifugalne sile koja se mora prenijeti na stablo. Samim time teško je jednim ovakvim strojem pokriti velike razlike u promjerima i vrstama stabala na kojima se stroj može koristiti. No, u istraživanju [10] trešenja stabla višnje promjera do 220 mm, dobivene su neke vrijednosti potrebne frekvencije vibracija tresača i potrebnih inercijskih sila kojima se dobiva zadovoljavajući postotak otresenog ploda. U ovom radu naglasak je na stroju kojim se trese mlađa stabla nešto manjeg promjera, okvirno oko spomenutih 220 mm, te će se pritom koristiti podaci iz navedenog istraživanja, a koji su potrebni za dimenzioniranje elemenata kućišta. Na slici 39. su u izometriji prikazani elementi kućišta tresača prema konceptu A.

Slika 39. Izometrijski prikaz kućišta tresača

7.1.1. Detaljna razrada kućišta tresača

Podaci, prema [10], s kojima se kreće u razradu kućišta su sljedeći:

f = 20 Hz – frekvencija vibracija tresača,

 $F_{\rm c} = 5000 \text{ N} - \text{centrifugalna sila utega.}$

Na slici 40. prikazan je graf spektra centrifugalne sile utega u smjeru y-osi i z-osi koje bi proizvodio uteg svojom rotacijom. Pri tome nisu u obzir uzete težine elemenata na vratilu i osovini te obodne sile u smjeru z-osi, tako da je graf pojednostavljen i njime je u obzir uzeta samo centrifugalna sila utega.

centrifugalna sila u smjeru y-osi, N

Slika 40. Graf spektra centrifugalne sile utega

Iz poznatog podatka o potrebnoj frekvenciji vibracija tresača dobivamo brzinu vrtnje utega:

$$n_{\rm u} = \frac{30 \cdot \omega_{\rm u}}{\pi},\tag{7.1}$$

gdje je:

$$\omega_{\rm u} = 2 \cdot \pi \cdot f = 2 \cdot \pi \cdot 20 = 125,66 \, \text{rad/s},\tag{7.2}$$

pa slijedi:

$$n_{\rm u} = \frac{30 \cdot 2 \cdot \pi \cdot f}{\pi} = 30 \cdot 2 \cdot 20 = 1200 \frac{\rm okr}{\rm min} \,. \tag{7.3}$$

Kako bi izračunali potrebnu centrifugalnu silu koju proizvodi uteg tresača, potrebni su nam podaci o masi utega, udaljenosti centra mase od osi rotacije utega te kutna brzina utega. Poznat nam je iznos kutne brzine utega i centrifugalna sila utega, gdje se ona računa kako slijedi [13]:

$$F_{\rm c} = m_{\rm u} \cdot r_{\rm u} \cdot \omega_{\rm u}^2, \tag{7.4}$$

gdje su:

 $m_{\rm u}$ – masa utega [kg],

 $r_{\rm u}$ – udaljenost centra mase utega od osi rotacije [m].

 $\omega_{\rm u}$ – kutna brzina utega [rad/s].

Masu utega i udaljenost centra mase utega od osi rotacije dobilo se oblikovanjem utega u CAD sustavu, a oblik utega prikazan je na slici 41.

Slika 41. Oblik ekscentričnog utega tresača

Očitani su sljedeći podaci za uteg:

$$m_{\rm u} = 5$$
 kg,

$$r_{\rm u} = 0,065 \, {\rm m}$$

Iz navedenoga, dobivamo iznos centrifugalne sile jednog utega pri konstantnoj kutnoj brzini:

$$F_c = 5 \cdot 0,065 \cdot 125,66^2 = 5132 \text{ N.}$$
(7.5)

Dobiveni iznos centrifugalne sile je zadovoljavajući te se nastavlja s razradom elemenata za prijenos snage, a to su zupčanici i zupčasti remen. Nakon toga slijedi kontrola vratila, osovine, ležaja, pera, odabir spojke.

Ulaznim okretnim momentom na gonjenom dijelu spojke potrebno je pokrenuti utege na brzinu vrtnje od 1200 okr/min u kratkom vremenu. Najveći izvor opterećenja predstavljaju momenti tromosti utega, dok momenti tromosti zupčanika, remenica i vratila nisu toliko velikog iznosa u usporedbi s momentom tromosti utega. Smjernica za daljnju razradu elemenata kućišta je moment tromosti utega oko njegove osi rotacije pomoću kojega će se izračunati okretni moment koji moraju prenijeti zupčanici i remenice. Na taj moment pridodat će se gubici u ležajevima, na zupčanicima i remenicama. Odabirom zupčanika i remenica dobit će se iznosi radijalnih i tangencijalnih sila koje djeluju na vratilo, a koje će služiti za provjeru čvrstoće vratila i osovine. Moment potreban za ubrzanje gibajućih masa sustava reduciran na gonjeni dio spojke računa se sljedećim izrazom:

$$T_{\varepsilon} = J_{\rm red} \cdot \varepsilon_0, \tag{7.6}$$

gdje su:

 J_{red} – moment tromosti sustava reduciran na vratilo spojke [kg·m²],

 ε_0 – kutno ubrzanje vratila spojke [rad/s²].

Moment tromosti utega je očitan u 3D CAD sustavu i iznosi:

$$J_{\rm u} = 0.6 \text{ kg} \cdot \text{m}^2.$$

Vrijeme potrebno za ubrzanje utega na potrebnu brzinu vrtnje:

$$t_{\rm ub} = 2 \, \rm s$$
,

pa prema tome dobivamo kutno ubrzanje utega:

$$\varepsilon_{\rm u} = \varepsilon_0 = \frac{\omega_{\rm u}}{t_{\rm ub}} = \frac{125,66}{2} = 62,83 \text{ rad/s}^2.$$
 (7.7)

Iz toga slijedi moment potreban za ubrzanje utega:

$$T_{\varepsilon,\mathrm{u}} = 0.6 \cdot 62.83 = 37.7 \,\mathrm{Nm}.$$
 (7.8)

Dobiveni moment se mora prenijeti preko zupčanika za ubrzanje jednog utega te se isti toliki moment mora prenijeti preko zupčastog remena za ubrzanje drugog utega. Ovom momentu trebamo pridodati gubitke zupčanog i remenskog prijenosa snage, momenta za ubrzanje zupčanika i remenica te gubitaka u ležajevima. Moment potreban za ubrzanje (ili usporenje) masa T_{ε} u sustavu se javlja samo prilikom ubrzavanja ili usporavanja masa odnosno kada je kutno ubrzanje $\varepsilon \neq 0$ [15]. Za potrebe izračuna zupčanog i remenskog prijenosa, dobiveni potrebni moment za ubrzanje utega povećat ćemo za 20% te time idemo na stranu sigurnosti, stoga slijedi moment za proračun elemenata za prijenos snage:

 $T_{\rm pr} = 45 \, {\rm Nm}.$

Prema geometriji utega, odabran je standardni osni razmak osi vratila i osovine prema [14], koji omogućuje nesmetan prolaz utega pri njegovoj rotaciji:

 $a_{\rm s} = 160 \text{ mm} - \text{osni}$ razmak vratila i osovine.

Iz podataka o proračunskom momentu i osnom razmaku vratila i osovine, dobivamo približan iznos tangencijalne sile koja djeluje na zupčanike:

$$F_{\rm t,z} = \frac{2 \cdot T_{\rm pr}}{a_{\rm s}} = \frac{2 \cdot 45}{0.16} = 563 \text{ N.}$$
 (7.9)

7.1.1.1. Proračun zupčanog para kućišta tresača

Pomoću softverskog paketa Kisssoft, dobiveni su podaci proračuna zupčanog para kućišta tresača. U prilogu II nalazi se potpuni izvještaj proračuna, dok će ovdje biti nabrojani podaci potrebni za daljnju razradu:

 $F_{oZ} = 563 \text{ N} - \text{obodna sila na zupčaniku},$

 $F_{\rm rZ} = 205 \text{ N} - \text{radijalna sila na zupčaniku,}$

 $m_{\rm Z} = 4,6$ kg – masa zupčanika,

 $J_{\rm Z} = 0,0148 \, {\rm kg} \cdot {\rm m}^2 - {\rm moment tromosti zupčanika}.$

Na slici 42. prikazana je linija zahvata (isprekidana linija) zupčanika tresača, a gdje je plavom linijom prikazan pogonski zupčanik Z1 i zelenom linijom gonjeni zupčanik Z2, prema [14].

Slika 42. Zupčanici kućišta tresača u zahvatu

7.1.1.2. Proračun remenskog prijenosa kućišta tresača

Pomoću ContiTech sučelja [16], za poznate podatke brzine vrtnje remenica, momenta koji remen mora prenijeti te udaljenosti osi vrtnje remenica, dobiveni su podaci o remenskom prijenosu. U prilogu III nalazi se izvještaj proračuna remenskog prijenosa. Podaci potrebni za daljnji proračun su sljedeći:

 $F_{\rm R} = 1205 \text{ N} - \text{radijalna sila na remenici,}$

 $m_{\rm R} = 2 \text{ kg} - \text{masa remenice},$

 $J_{\rm R} = 0,0027 \text{ kg} \cdot \text{m}^2 - \text{moment tromosti remenice.}$

Na slici 43. prikazana je geometrija remenskog prijenosa kućišta tresača.

Slika 43. Prikaz geometrije remenskog prijenosa kućišta tresača

7.1.1.3. Provjera čvrstoće vratila i osovine kućišta tresača

Provjera čvrstoće vratila kućišta tresača provedena je u softverskom paketu Kisssoft prema zadanom opterećenju navedenom u prethodnim poglavljima. Izvještaj proračuna vratila nalazi se u prilogu IV. Na slici 44. je u izometriji prikazano opterećenje, reducirano na osi vratila i osovine kućišta, prema kojem će se izvršiti provjera njihove čvrstoće.

Slika 44. Opterećenje reducirano na osi vratila i osovine kućišta tresača

Na slici 45. prikazan je izvadak iz proračuna čvrstoće vratila koji se tiče dobivene sigurnosti vratila. Vidimo da vratilo zadovoljava proračun čvrstoće i potrebnu sigurnost na kritičnim presjecima.

Res	ults				
max	imum deflection	41.81 µm			
max	imum equivalent stress			67.75 N/mm ²	
minimum bearing rating life				24612.16 h	
mini	mum static bearing safety			7.84	
mini	mum fatigue safety			3.03	
mini	mum static safety			2.22	
	Safeties		Results [%]		
	Fatigue	static	Fatigue		static
A	3.26	2.39	271.68		198.90
В	3.03	2.22	252.47		184.92
C	3.92	3.94	326.89		328.47
D	4.76	5.84	396.80		486.51
E	5.93	9.00	494.16		749.62
F	4.56	7.60	379.91		633.06
Results		SO	Lnh		
Lijevi ležaj			10.84	65005 h	
Desi	ni ležaj		7.84	24612 h	

Slika 45. Rezultati proračuna čvrstoće vratila kućišta tresača

U nastavku će biti napravljena provjera čvrstoće osovine kućišta tresača.

Na slici 46. prikazano je opterećenje na osovinu. Osim težina elemenata, sile koje djeluju na osovinu su rezultat inercijskih sila utega te radijalnih i obodnih sila na gonjeni zupčanik i remenicu. Na dva lijeva ležaja (B=15 mm) nalazi se uteg pričvršćen na glavinu gonjenog zupčanika, a na desna dva ležaja (B=15 mm) nalazi se uteg pričvršćen na glavinu gonjene remenice pa sile F_{v1} , F_{h1} , F_{v2} i F_{h2} , prikazane na slici 46., računamo kako slijedi:

$$F_{\rm v1} = \frac{G_{\rm z2} + G_{\rm u} + F_{\rm oZ}}{2} = \frac{50 + 50 + 570}{2} = 335 \text{ N},\tag{7.10}$$

$$F_{\rm h1} = \frac{F_{\rm c} + F_{\rm rZ}}{2} = \frac{5135 + 205}{2} = 2670 \,\rm N.$$
 (7.11)

$$F_{\rm v2} = \frac{G_{\rm R} + G_{\rm u}}{2} = \frac{50 + 50}{2} = 50 \,\,{\rm N}.$$
 (7.12)

$$F_{\rm h2} = \frac{F_{\rm c} - F_{\rm R}}{2} = \frac{5135 - 1205}{2} = 1965 \,\rm N.$$
 (7.13)

$$\sum M_{\rm Dv} = 0; \tag{7.14}$$

$$F_{\rm Cv} = \frac{F_{\rm v1} \cdot (136+185) + F_{\rm v2} \cdot (87+38)}{224} = \frac{335 \cdot (136+185) + 50 \cdot (87+38)}{224} = 508 \,\,\rm N. \tag{7.15}$$

$$\sum F_{\rm z} = 0; \tag{7.16}$$

$$F_{\rm Dv} = 2 \cdot F_{\rm v1} + 2 \cdot F_{\rm v2} - F_{\rm Cv} = 2 \cdot 335 + 2 \cdot 50 - 508 = 262 \text{ N.}$$
(7.17)

$$\sum M_{\rm Dh} = 0; \tag{7.18}$$

$$F_{\rm Ch} = \frac{F_{\rm h1} \cdot (136 + 185) + F_{\rm h2} \cdot (87 + 38)}{224} = \frac{2670 \cdot (136 + 185) + 1965 \cdot (87 + 38)}{224} = 4923 \,\,\text{N}.$$
 (7.19)

$$\sum F_{\rm y} = 0; \tag{7.20}$$

$$F_{\rm Dv} = 2 \cdot F_{\rm h1} + 2 \cdot F_{\rm h2} - F_{\rm Ch} = 2 \cdot 2670 + 2 \cdot 1965 - 4923 = 4347 \,\,\text{N}. \tag{7.21}$$

Čvrstoću ćemo provjeriti za presjek 1-1, pa slijedi:

$$M_{f1} = \sqrt{M_{1v}^{2} + M_{1h}^{2}},$$
(7.22)

$$M_{1v} = F_{Cv} \cdot 96 - F_{v1} \cdot (57 + 8) = 508 \cdot 96 - 335 \cdot (57 + 8) = 26993 \text{ Nmm},$$
(7.23)

$$M_{1h} = F_{Ch} \cdot 96 - F_{h1} \cdot (57 + 8) = 4923 \cdot 96 - 2670 \cdot (57 + 8) = 299058 \text{ Nmm}, \quad (7.24)$$

$$M_{f1} = \sqrt{26993^2 + 299058^2} = 300274 \text{ Nmm.}$$
(7.25)

$$\sigma_{f1} = \frac{M_{f1}}{W_1},\tag{7.26}$$

$$W_1 = \frac{\pi \cdot d_1^3}{32} = \frac{\pi \cdot 40^3}{32} = 6283,2 \text{ mm}^3,$$
 (7.27)

$$\sigma_{f1} = \frac{300274}{6283,2} = 47,8 \text{ N/mm}^2. \tag{7.28}$$

Postojeća sigurnost u kritičnom presjeku mora biti veća od ili jednaka potrebnoj sigurnosti, a izražava se na sljedeći način:

$$S_{\text{post},1} = \frac{b_1 \cdot b_2 \cdot \sigma_{f\text{DN}}}{\varphi \cdot \beta_{\text{kf}} \cdot \sigma_{f1}} \ge S_{\text{potr}}.$$
(7.29)

Očitani podaci:

 $b_1 = 0.85 - \text{prema [18]}, \text{ za } \emptyset 40,$

 $b_2 = 0.98 - \text{prema [18]}, \text{ za } R_z = 1.6 \ \mu\text{m i } R_m = 600 \ \text{N/mm}^2 \ (\emptyset 45 \ \text{h6}),$

 $\sigma_{fDN} = 300 \text{ N/mm}^2 - \text{prema [18]}$, za materijal osovine St 60-2, za naizmjenično opterećenje $\varphi = 1, 2 - \text{prema [18]}$, za lagani utjecaj udaraca,

$$S_{\text{potr}} = 2 - \text{prema [18]},$$

$$\beta_{\text{kf}} = 1 + c_1 \cdot (\beta_{kf2} - 1),$$

$$c_1 = 0,3 - \text{prema [18]}, \text{ za } D/d = 1,1$$

$$\beta_{\text{kf2}} = 1,8 - \text{prema [18]}, \text{ za } R_{\text{m}} = 600 \text{ N/mm}^2 \text{ i } \varphi/d = 0,05,$$

(7.30)

$$\beta_{\rm kf} = 1 + 0.3 \cdot (1.8 - 1) = 1.24, \tag{7.31}$$

pa slijedi:

$$S_{\text{post}} = \frac{0.85 \cdot 0.98 \cdot 300}{1.2 \cdot 1.24 \cdot 47.8} = 3.5 \ge S_{\text{potr}} = 2.$$
 (7.32)

Iz izraza (7.32) vidimo da osovina ZADOVOLJAVA.

7.1.2. Odabir spojke kućišta tresača

Za odabir spojke kućišta tresača potrebno je poznavati moment koji spojka treba prenijeti s vratila hidromotora na vratilo kućišta tresača. Taj moment se sastoji najvećim dijelom od momenta tromosti svih gibajućih dijelova u kućištu. Poznati su nam momenti tromosti zupčanika, remenica i utega:

 $J_{\rm Z} = 0.0148 \, {\rm kg} \cdot {\rm m}^2$ – moment tromosti zupčanika,

 $J_{\rm R} = 0,0027 \text{ kg} \cdot \text{m}^2 - \text{moment tromosti remenice},$

 $J_{\rm u} = 0.6 \, \rm kg \cdot m^2 - \rm moment \, tromosti \, utega,$

dok ćemo moment tromosti vratila i gubitke u prijenosu snage pribrojiti prilikom uvećanja momenta kojeg spojka mora prenijeti. Pošto se elementi rotiraju istom kutnom brzinom, momente tromosti možemo jednostavno zbrojiti u moment tromosti reduciran na spojku:

$$J_{\text{red}} = 2 \cdot J_{\text{Z}} + 2 \cdot J_{\text{R}} + 2 \cdot J_{\text{u}} = 2 \cdot 0,0148 + 2 \cdot 0,0027 + 2 \cdot 0,6 = 1,235 \text{ kg} \cdot \text{m}^2.$$
 (7.33)

Moment na spojci dobivamo iz izraza (7.6), a uvećat ćemo ga za 15% kako bi ubrojili gubitke u ležajevima, zupčanom i remenskom prijenosu:

$$T_{\varepsilon} = 1,2 \cdot J_{\text{red}} \cdot \varepsilon_0 = 1,15 \cdot 1,235 \cdot 62,83 = 89,2 \text{ Nm.}$$
 (7.34)

Prema traženom momentu, odabrana je spojka ROTEX GS 28, proizvođača KTR [19], a njene karakteristike prikazane su na slici 47.

ROTEX® GS 28 Compact hub with keyway							
Technical data							
Type driving side:	Compact hub with keyway	Type driven side:	Compact hub with keyway				
Nominal torque T _{KN} :	160 Nm	Max. allowed torque T _{Kmax} :	320 Nm				
MMax. speed n _{max.} :	8800 1/min						
Max. bore driving:	35 mm	Max. bore driven:	35 mm				
Weight overall:	0.36 kg						
Displacements:	Axial K _a = 1.5 / -0.7 mm	Radial K _r = 0.11 mm	Angular K_w = 0.9°				
Properties							
Torsionally flexible Compact ATEX conform	 Backlash-free Single-cardanic Damping vibrations 	 Maintenance-free High power density Lightweight 	Puncture-proofAxial plug-in				

Slika 47. Spojka kućišta tresača KTR ROTEX GS 28

7.1.3. Odabir hidromotora kućišta tresača

Za odabir hidromotora ćemo iskoristiti podatak o momentu na spojci te brzinu vrtnje vratila spojke, a oni iznose:

 $T_{\varepsilon} = 89,2$ Nm – moment na vratilu spojke,

 $n_{\rm u} = n_{\rm s} = 1200$ okr/min – brzina vrtnje vratila spojke.

Odabiremo hidromotor *KM2/32M2LAY004DL1*, proizvođača *Kracht* [20], a njegove karakteristike prikazane su na slici 48..

Characteristic Curves for KM 2/32 ... 4.L.

Characteristic values applicable to viscosity ν = 34 mm²/s \cdot Dispersion of the speed values n = ± 75 1/min Dispersion of the torque output M = ± 5.5 Nm at Δp = constant and Q = constant

Slika 48. Karakteristike hidromotora kućišta tresača

7.1.4. Odabir hidrauličkog cilindra hvataljke tresača

Za odabir hidrauličkog cilindra potreban nam je iznos sile kojom hvataljka djeluje na stablo. Za taj podatak uzet ćemo sljedeći pretpostavljeni iznos sile:

 $F_{\rm ht} = 5000 \text{ N} - \text{sila hvataljke tresača.}$

Promjer klipa cilindra D_k se izračunava prema sljedećem izrazu, gdje nisu uračunati gubitci:

$$D_{\rm k} = \sqrt{\frac{4 \cdot F_{\rm ht}}{p \cdot \pi}},\tag{7.35}$$

gdje je:

p = 180 bar – okvirni maksimalni tlak koji se javlja u cilindru pri izvlačenju klipa, određen iz analize tržišta.

Uvrštavanjem poznatih vrijednosti u izraz (7.35) dobije se:

$$D_{\rm k} = \sqrt{\frac{4 \cdot 5000}{180 \cdot \pi}} = 0,01881 \,\mathrm{m} = 18,81 \,\mathrm{mm}.$$
 (7.36)

Na temelju dobivenog promjera klipa i operativnog tlaka, odabiremo hidraulički cilindar s jednosmjernim djelovanjem.

Odabran je hidraulički cilindar *CDM1MP3/25/18/250A2X/B11CKUMWW*, proizvođača *Bosch Rexroth* [21], a prikazan je na slici 48.

Slika 49. Hidraulički cilindar hvataljke tresača

U tablici 13. su prikazane osnovne značajke odabranog cilindra.

Tablica 13.	Karakteristike cilindra	a hvataljke tresača
-------------	-------------------------	---------------------

Unutarnji promjer cilindra D_k	25 mm
Način rada	Jednoradni
Promjer klipnjače d_k	18 mm
Hod klipnjače $H_{\mathbf{k}}$	250 mm
Preporučeno ulje za rad cilindra	HL, HLP

Stvarni radni tlak u cilindru izračunava se sljedećim izrazom:

$$p_{\rm stv} = \frac{4 \cdot F_{\rm ht}}{D_{\rm k}^2 \cdot \pi} = \frac{4 \cdot 5000}{25^2 \cdot \pi} = 10,186 \text{ N/mm}^2 = 101,86 \text{ bar.}$$
 (7.37)

Slijedi:

$$p_{\rm stv} = 101,86 \text{ bar} (7.38)$$

Odabrani cilindar ZADOVOLJAVA.

U ovom poglavlju bit će proračunati zavari na nosivoj konstrukciji stroja. Materijal zavara nosive konstrukcije je S235JRG2 i zavari su opterećeni jednosmjernim promjenjivim opterećenjem tako da će imati jednake karakteristike dopuštenih naprezanja. Za dani materijal i vrstu opterećenja zavara, očitavamo dopušteno naprezanje zavara, prema tablici 1.11. iz [22]:

$$\sigma_{\rm dop,z} = 70 \text{ N/mm}^2. \tag{7.39}$$

7.2.1. Zavar ušice nosača tresača

Tresač je preko ušica i svornjaka zglobno ovješen na gredu nosača tresača. Sila koja djeluje na ušice je ukupna težina tresača, okvira tresača i prigušnog ovjesnog elementa. Ukupna masa prethodno spomenutih ovješenih dijelova iznosi 110 kg pa slijedi iznos sile koji djeluje na ušice:

 $F_{\rm u} = m_{\rm t} \cdot g = 110 \cdot 9,81 = 1080 \,\,{\rm N}.\tag{7.40}$

Na slici 50. prikazan je način opterećenja ušica nosača tresača.

Slika 50. Opterećenje na ušice nosača tresača

Opterećenje se raspodjeljuje na dvije ušice pa ćemo za proračun zavara jedne ušice uzeti pola iznosa opterećenja iz izraza (7.40). Na slici 51. prikazan je proračunski presjek zavara ušice. Kutni zavar ušice paralelan sa smjerom opterećenja je opterećen na smik i preuzima najveći dio opterećenja te za proračun zavara nećemo uzeti u obzir površine zavara okomitih na smjer opterećenja, koji uglavnom služe kao brtveni zavari.

Slika 51. Proračunski presjek zavara ušice

Površina zavara ušice koja je opterećena smično, iznosi:

$$A_{\rm z,us} = 2 \cdot 38 \cdot 4 = 304 \text{ mm}^2. \tag{7.41}$$

Iz dobivenih vrijednosti u prethodnim izrazima, dobivamo iznos smičnog opterećenja u zavaru:

$$\tau_{z,u} = \frac{F_u}{A_{z,u}} = \frac{540}{304} = 1.8 \text{ N/mm}^2.$$
 (7.42)

Usporedimo li vrijednosti iz izraza (7.39) i (7.42):

$$\tau_{z,u} = 1.8 \frac{N}{mm^2} < \sigma_{dop,z} = 70 \frac{N}{mm^2},$$
 (7.43)

vidimo da zavar ušice ZADOVOLJAVA.

7.2.2. Zavari na mjestima spajanja stroja na traktor

Slika 52. Opterećenje oslonaca trospojne veze stroja

Na slici 52. prikazano je opterećenje trospojne veze stroja s traktorom. Pomoću softverskog paketa Solidworks dobivena je masa cjelokupnog stroja te udaljenost težišta stroja od trospojne veze na kojem djeluje težina cjelokupnog stroja. Iznosi dimenzija sa slike 52. su sljedeći:

 $x_{\rm ts} = 800 \text{ mm} - \text{udaljenost}$ težišta stroja na osi x,

 $y_{\rm ts} = 610 \text{ mm} - \text{udaljenost gornje i donje točke trospojne veze stroja.}$

Masa stroja iznosi 170 kg bez nekih hidrauličnih komponenti potrebnih za rad uređaja, koje nisu prikazane u ovom radu, kao i bez mase ulja u spremniku. Pretpostavit ćemo da ukupna masa ostalih hidrauličkih komponenti iznosi 50 kg, a masa ulja u spremniku 30 kg. Iz toga dobivamo da je ukupna masa stroja 250 kg, pa slijedi iznos težine stroja:

$$G_{\rm s} = m_{\rm s} \cdot g = 250 \cdot 9,81 = 2453 \,\rm N.$$
 (7.44)

Iz slike 52. odredit će se iznosi reakcijskih sila na trospojnoj vezi stroja:

$$\sum M_{\rm B} = 0; \tag{7.45}$$

$$F_{\rm Ah} = \frac{G_{\rm s} \cdot x_{\rm ts}}{y_{\rm ts}} = \frac{2453 \cdot 800}{610} = 3218 \text{ N.}$$
(7.46)

$$\sum F_x = 0; \tag{7.47}$$

$$F_{\rm Bh} = \frac{F_{\rm Ah}}{2} = \frac{3217}{2} = 1609 \,\,\mathrm{N}.$$
 (7.48)

$$F_{\rm gt} = \frac{F_{\rm Ah}}{\cos(30^\circ)} = \frac{3218}{\cos(30^\circ)} = 3716 \,\mathrm{N}.$$
 (7.49)

$$F_{\rm Av} = F_{\rm gt} \cdot \sin(30^\circ) = 3716 \cdot \sin(30^\circ) = 1858 \,\mathrm{N}.$$
 (7.50)

$$\sum F_y = 0; \tag{7.51}$$

$$F_{\rm Bv} = \frac{F_{\rm Av} + G_{\rm s}}{2} = \frac{1858 + 2453}{2} = 2156 \,\rm N.$$
 (7.52)

$$F_{\rm B} = \sqrt{F_{\rm Bh}^2 + F_{\rm Bv}^2} = \sqrt{1609^2 + 2156^2} = 2690 \,\mathrm{N}.$$
 (7.53)

Dobivene iznose sila u osloncima A i B koristit ćemo za proračun zavara ušica u osloncu A te za proračun zavara svornjaka u osloncu B, u narednim poglavljima.

7.2.2.1. Proračun zavara ušice gornje točke trospojne veze stroja

Zavar ušice gornje točke trospojne veze opterećen je na smik i savijanje jer sila kojom poteznica traktora djeluje na gornju točku trospojne veze sigurno nije okomita na ravninu zavara ušice. Stoga je pretpostavljeno da sila poteznice traktora djeluje pod kutem od 30° od osi x, kako je prikazano na slici 52., kako bi se dobile horizontalna i vertikalna komponenta sile koja djeluje na ušicu. Geometrija ušice gornje točke trospojne veze prikazana je na slici 53.

Završni rad

Slika 53. Opterećenje i geometrija zavara ušice u osloncu A

Ukupna površina zavara iznosi:

$$A_{z,A} = 20 \cdot 60 - 10 \cdot 50 = 700 \text{ mm}^2, \tag{7.54}$$

a površina zavara opterećena na smik iznosi:

$$A_{\rm z,As} = 2 \cdot 60 \cdot 5 = 600 \,\,{\rm mm}^2. \tag{7.55}$$

Moment tromosti presjeka zavara iznosi:

$$I_{y,A} = \frac{20 \cdot 60^3 - 10 \cdot 50^3}{12} = 255833 \text{ mm}^4, \tag{7.56}$$

pa iz toga slijedi moment otpora presjeka zavara:

$$W_{y,A} = \frac{I_{y,A}}{35} = \frac{255833}{30} = 8527,8 \text{ mm}^3.$$
 (7.57)

Moment savijanja u presjeku zavara iznosi:

$$M_{f,A} = F_{Av} \cdot 30 = 1858 \cdot 30 = 55740$$
 Nmm. (7.58)

Naprezanje uslijed savijanja, uslijed vlaka te ukupno normalno naprezanje iznose:

$$\sigma_{f,A} = \frac{M_{f,A}}{W_{y,A}} = \frac{55740}{8527,8} = 6,5 \text{ N/mm}^2, \tag{7.59}$$

$$\sigma_{\nu,\mathrm{A}} = \frac{F_{\mathrm{Ah}}}{A_{\mathrm{z,A}}} = \frac{3210}{700} = 4,6 \,\mathrm{N/mm^2},\tag{7.60}$$

$$\sigma_{uk,A} = \sigma_{f,A} + \sigma_{v,A} = 6.5 + 4.6 = 11.1 \text{ N/mm}^2.$$
(7.61)

Posmično naprezanje u zavaru ima sljedeći iznos:

$$\tau_{z,A} = \frac{F_{Av}}{A_{z,As}} = \frac{1858}{600} = 3,1 \text{ N/mm}^2.$$
 (7.62)

Reducirano naprezanje u zavaru iznosi:

$$\sigma_{red,A} = \sqrt{\sigma_{uk,A}^2 + 3 \cdot \tau_{z,A}^2} = \sqrt{11,1^2 + 3 \cdot 3,1^2} = 12,3 \text{ N/mm}^2 \le \sigma_{dop,z}.$$
(7.63)

Zavar ZADOVOLJAVA.
7.2.2.2. Proračun zavara svornjaka donje točke trospojne veze stroja

Zavar svornjaka donje točke trospojne veze opterećen je na smik i savijanje silom F_B čiji je iznos izračunat u izrazu (7.53), a sila F_B djeluje na kraku od 50 mm. Na slici 54. prikazani su opterećenje svornjaka i proračunski presjek zavara svornjaka.

Ukupna površina zavara iznosi:

$$A_{\rm z,B} = \frac{(50^2 - 40^2) \cdot \pi}{4} = 706,9 \,\,\rm{mm^2},\tag{7.64}$$

a površina zavara opterećena na smik iznosi:

$$A_{\rm z,Bs} = \frac{A_{\rm z,B}}{2} = \frac{706,9}{2} = 353,4 \text{ mm}^2.$$
 (7.65)

Moment tromosti presjeka zavara iznosi:

$$I_{\rm B} = \frac{(25^4 - 20^4) \cdot \pi}{4} = 181132 \text{ mm}^4, \tag{7.66}$$

pa iz toga slijedi moment otpora presjeka zavara:

$$W_{\rm B} = \frac{I_{\rm B}}{25} = \frac{181132}{25} = 7245 \text{ mm}^3.$$
 (7.67)

Moment savijanja u presjeku zavara iznosi:

$$M_{f,B} = F_B \cdot 50 = 2690 \cdot 50 = 134500$$
 Nmm. (7.68)

Naprezanje uslijed savijanja iznosi:

$$\sigma_{f,B} = \frac{M_{f,B}}{W_B} = \frac{134500}{7245} = 18,6 \text{ N/mm}^2, \tag{7.69}$$

Posmično naprezanje u zavaru ima sljedeći iznos:

$$\tau_{z,B} = \frac{F_B}{A_{z,Bs}} = \frac{2690}{353.4} = 7.6 \text{ N/mm}^2.$$
 (7.70)

Fakultet strojarstva i brodogradnje

Reducirano naprezanje u zavaru iznosi:

$$\sigma_{red,B} = \sqrt{\sigma_{f,B}^2 + 3 \cdot \tau_{z,B}^2} = \sqrt{18,6^2 + 3 \cdot 7,6^2} = 22,8 \text{ N/mm}^2 \le \sigma_{dop,z}.$$
(7.71)

Zavar ZADOVOLJAVA.

7.3. Provjera bočnog tlaka pera na gonjenom dijelu spojke

Snaga se sa spojke na vratilo tresača prenosi oblikom, tj. perom. Vratilo na mjestu spajanja sa spojkom ima promjer 28 mm, pa prema tablici 2.10. iz [22] slijede dimenzije pera: $h_p = 7 \text{ mm} - \text{visina pera za vratilo promjera 30 mm},$

 $l_{\rm p} = 28 \ {\rm mm} - {\rm odabrana} \ {\rm duljina} \ {\rm pera}.$

Nosiva duljina pera l_t iznosi:

$$l_{\rm t} = l_{\rm p} - b_{\rm p} = 28 - 8 = 20 \,\,{\rm mm},$$
(7.72)

gdje je:

 $b_{\rm p} = 8 \, {\rm mm} - {\rm \check{s}irina} \, {\rm pera.}$

Obodna sila na vratilu iznosi:

$$F_{\rm o} = \frac{T_{\varepsilon}}{d/2} = \frac{89.2 \cdot 10^3}{14} = 6372 \text{ N.}$$
 (7.73)

Bočni tlak računamo pomoću sljedećeg izraza:

$$p_{\rm b} = \frac{F_{\rm o}}{0.5 \cdot h_{\rm p} \cdot l_{\rm t}} = \frac{6372}{0.5 \cdot 7 \cdot 20} = 91 \text{ N/mm}^2.$$
 (7.74)

Dopušteni bočni tlak prema tablici 2.9. iz [21], iznosi:

$$p_{\rm dop} = 100 \,\rm N/mm^2.$$
 (7.75)

Usporedbom vrijednosti iz izraza (7.74) i (7.75):

$$p_{\rm b} = 91 \frac{\rm N}{\rm mm^2} < p_{\rm dop} = 100 \frac{\rm N}{\rm mm^{2'}}$$
 (7.76)

Vidimo da pero ZADOVOLJAVA.

8. OPIS KONSTRUKCIJE STROJA

U ovom poglavlju bit će prikazan izrađeni 3D CAD model traktorskog priključka koji je proizašao iz prethodnog poglavlja u kojemu je opisana konstrukcijska razrada, a model je izrađen u programskom paketu Solidworks.

Na slici 55. prikazan je 3D CAD model stroja u izometriji.

Slika 55. 3D CAD model stroja u izomteriji

Stroj se na traktor spaja pomoću standardnog priključka u tri točke (trospojna veza). Sklop koji se spaja na traktor je nosivi okvir na kojemu se nalaze ostali elementi stroja. Na vrh nosivog okvira zglobno je povezan konzolni nosač na kojemu je ovješen tresač. Na taj način konzolni nosač se pomoću zglobne veze zakreće oko nosivog okvira u oba smjera i može pokriti luk od skoro 180°. Također se i tresač, koji je ovješen na kraju konzolnog nosača, može zakretati u oba smjera oko vertikalne osi ovjesnog elementa tresača, praktički za puni krug. Te dvije mogućnosti rotacije sklopa tresača olakšavaju pozicioniranje hvataljke tresača na stablo ovisno o udaljenosti traktora od stabla.

Fakultet strojarstva i brodogradnje

Slika 57. Tlocrtni prikaz stroja

Na slikama 56. i 57. prikazani su nacrt i tlocrt stroja koji se nalazi položaju za transport. Idućim slikama će se prikazati neke od mogućih pozicija tresača, gdje je nosivi okvir fiksan.

Slika 59. Pozicija 2 sklopa tresača

Na slikama 58. i 59. vidimo da tresač može tresti stabla koja se nalaze s obje strane traktora, a prikazane su proizvoljne pozicije tresača. Na taj način, operater stroja može vrlo lako pozicionirati hvataljke tresača na stablo. U nastavku je prikazan detalj hvataljke tresača.

Slika 60. Detalj hvataljke tresača

Hvataljka tresača se sastoji od fiksnog i pomičnog dijela. Fiksni dio hvataljke je zavaren na dohvatni štap tresača, a pomični dio hvataljke nalazi se unutar dohvatnog štapa i zglobno je vezan za hidraulički cilindar koji hvataljku pomiče i preko nje stvara pritisak na stablo. Na hvataljkama se nalaze izmjenjive gumene podloške koje osiguravaju da se stablo u što manjoj mjeri ošteti prilikom trešnje. Na vanjskom dijelu podloške nalazi se dodatan gumeni plašt, a između njega i podloške se nalazi podmazujuće sredstvo koje umanjuje prenošenje sila na stablo u vertikalnom smjeru kako bi se što manje oštetila kora stabla. U nastavku će biti prikazano kućište tresača bez poklopca.

Slika 61. Detalj kućišta tresača

Na slici 61. prikazano je kućište tresača u kojemu se nalazi sklop koji proizvodi vibracije, na način opisan u poglavlju 6.1.1. Kućište je izrađeno zavarivanjem čeličnih limova. Na kućište su vijčano spojena ležajna mjesta vratila na kojem se nalaze pogonski zupčanik i pogonska remenica. S vanjske strane kućišta nalazi se nosač hidromotora unutar kojeg se nalazi spojka koja prenosi snagu s vratila hidromotora na vratilo kućišta tresača. Utezi koji proizvode vibracije su uležišteni na fiksnoj osovini te se rotiraju u obrnutim smjerovima. Uteg koji se

nalazi na gonjenom zupčaniku se rotira u obrnutom smjeru od rotacije pogonskog vratila, a uteg koji se nalazi na gonjenoj remenici se rotira u istom smjeru kao i pogonsko vratilo. Detaljniji razlog takvog načina rotacije utega je opisan u poglavlju 6.1.1.

Na slici 62. prikazan je pogled na stroj gdje je vidljiva trospojna veza pomoću koje se stroj priključuje na traktor, a na slici 63. je vidljiv prikaz stroja priključenog na traktor.

Slika 62. Trospojna veza na stroju

Slika 63. Stroj priključen na traktor

9. ZAKLJUČAK

Završnim radom prikazani su razvoj i konstrukcijska razrada traktorskog priključka za trešnju stabla. U analizi tržišta pronađeni su postojeći strojevi iste namjene od kojih postoji mnogo vrsta i oblika strojeva, ovisno o tome kakva stabla je potrebno tresti. Na temelju analize tržišta je odlučeno da će se u ovom radu razraditi stroj kojim se trese stabla u mlađim voćnjacima višnje i šljive te su prema tome dobivene odrađene dimenzije stroja potrebne za daljnju razradu. Nakon analize tržišta izrađene su funkcijska struktura stroja i morfološka matrica, koje su bile potrebne u idućem koraku u kojem su izrađena 3 koncepta takvog stroja. Nakon izrade koncepata se izvršilo njihovo vrednovanje kojim je odlučeno da će se ići u konstrukcijsku razradu koncepta 3, a također i koncepta A koji je u njemu sadržan.

U konstrukcijskoj razradi su se pomoću poznatih podataka dobile dimenzije, sile i opterećenje koje taj stroj mora podnijeti te su se prema tome proračunale komponente stroja i odabrane su standardne komponente. Uz konstrukcijsku razradu u kojoj se vršio proračun komponenata se također radilo na izradi 3D modela stroja. Na taj način se iterativnim postupkom istovremenog proračunavanja komponenti i njihovog 3D modeliranja došlo do optimalne konstrukcije stroja koja je prikazana u prethodnom poglavlju. Na temelju 3D modela je izrađena tehnička dokumentacija stroja.

Za daljnji razvoj stroja može se raditi na smanjenju mase komponenti gdje je to moguće, kao i na smanjenju dimenzija koje nisu propisane kao standardne. Također, bilo bi potrebno razraditi i odabrati komponente hidrauličkog kruga stroja, koje nisu pokrivene ovim radom.

LITERATURA

- [1] https://patents.google.com/patent/US3121304A/
- [2] https://patents.google.com/patent/US3494654A/
- [3] <u>https://patents.google.com/patent/EP2625948A1/</u>
- [4] https://patents.google.com/patent/US5595054A/
- [5] https://www.amb-rousset.com/en/produit/economical-hydraulic-shakers-range/
- [6] http://www.jagoda.com.pl/portfolio-view/fruit-shaker-pestka/
- [7] <u>https://karmasz.pl/oferta/maszyny-sadownicze/otrzasarka-owocow-otw-1/</u>
- [8] https://www.lipco.com/en/product/hydraulic-shaker-hsa-10-for-trunk-or-branches/
- [9] <u>http://www.newholland.hr/traktori/t4-fnv/</u>
- [10] Zhou, J.: Vibratory harvesting technology research for fresh market sweet cherry, Washington, 2014.
- [11] Snell, L. D.: Force and moment analysis of stacked counter rotating eccentric mass tree shaker energy-wheel system, Iowa, 2008.
- [12] Coppock, G. E.: Design and development of a tree-shaker harvest system for citrus fruit
- [13] Jecić, S.: Mehanika II kinematika i dinamika, Zagreb, 1989.
- [14] Oberšmit, E.: Ozubljenja i zupčanici, Zagreb, 1982.
- [15] Vučković, K.: Spojke podloge uz predavanja, Zagreb, 2020.
- [16] https://www.conti-professional.com/index.html
- [17] Vučković, K.: Vratila podloge uz predavanja, Zagreb, 2020.
- [18] Vučković, K.: Osovine podloge uz predavanja, Zagreb, 2020.
- [19] https://otools.ktr.com/otools/index_EN.html?domain=ktr
- [20] https://www.kracht.eu/en/hydraulics/km/
- [21] <u>https://www.boschrexroth.com/en/xc/product-groups/industrial-hydraulics/cylinders</u>
- [22] Decker, K. H.: Elementi strojeva, Tehnička knjiga Zagreb, 2006.
- [23] Kraut, B.: Strojarski priručnik, Tehnička knjiga Zagreb, 1970.
- [24] Herold, Z.: Računalna i inženjerska grafika, Zagreb, 2003.

PRILOZI

- I. CD-R disc
- II. Izvješće proračuna zupčanika tresača
- III. Izvješće proračuna remena tresača
- IV. Izvješće proračuna vratila tresača
- V. Izvješće provjere ležaja osovine tresača
- VI. Tehnička dokumentacija

KISSsoft – stud	ent license (not for commerc	- KISSsoft Release ial use)	2020 В ———	
Name : Changed by:	Žavršni rad - Zupčani prijer Matteo Ivan Nikolić	file — Fi	at: 21:00:12	

Calculation of a spur-toothed cylindrical gear pair

Drawing or article number:	
Gear 1:	0.000.0
Gear 2:	0.000.0

Load spectrum

Own Input Number of bins in the load spectrum: 2 Reference gear:Gear 1 Application factor, KA: 1.00

Bin	Frequency	Power	Speed	Torque	Coefficients						
No.		[kW]	[1/min]	[Nm]	Kv	$K_{H\beta}$	$K_{F\beta}$	$K_{H\alpha}$	Kγ	Y _{M1}	Y _{M2}
	[%]										
1	70.0000	5.6549	1200.0	45.0000	1.000	1.837	1.607	1.304	1.000	1.000	1.000
2	30.0000	3.1416	1200.0	25.0000	1.000	2.515	2.053	1.304	1.000	1.000	1.000

Numbers of load cycles

Bin	Frequency	Load cycles, gear 1	Load cycles, gear 2
No.	[%]	[-]	[-]
1	70.00000	75600000	75600000
2	30.00000	32400000	32400000
SUM	1 00.0000	108000000	108000000

S-N curve (Woehler line) in the long life domain according:

according to standard

Notice:

Calculation-method according to:

- ISO 6336-6 / DIN3990-6

During the calculation all the load factors (ISO 6336/DIN 3990: Kv, KH β , KF β ; AGMA 2001: Kv, Km, ..)

for each load spectrum bin are calculated separately.

Notice:

Calculation with methods ISO 6336 and AGMA 2001 results in a reduction of resistance in the domain of fatigue resistance (from circa 10[^]7 to 10[^]10 cycles).

The lifetime calculation takes this into account (also with the S-N curve (Woehler Curve) of the Miner type).

Results

5.721	5.721
1.138	1.138
	5.721 1.138

Analysis of critical elements in load spectrum: See section 10

Only as information: Calculation with reference power

Calculation method

ISO 6336:2019

		Gear 1 -	Gear 2	2
Power (kW)	[P]		5.6549	
Speed (1/min)	[n]	1200.0	1200.0	
Torque (Nm)	[T]	45.0	45.0	
Application factor	[KA]		1.00	
Required service life (h)	[H]	150	00.00	
Gear driving (+) / driven (-)		+	-	
Working flank gear 1:	Right flank			
Gear 1 direction of rotation:	Clo	ockwise		

Tooth geometry and material

Geometry calculation according to

ISO 21771:2007

	Gear 1	Gear 2	
Center distance (mm) [a]	160.	000	
Center distance tolerance ISO 286:20	ISO 286:2010 Measure js7		
Normal module (mm) [mn]	3.	0000	
Normal pressure angle (°) [αn]	20.	0000	
Helix angle at reference circle (°) [β]	0.	0000	
Number of teeth [z]	53	53	
Facewidth (mm) [b]	30.00	30.00	
Hand of gear Spur gear			
Accuracy grade [Q-ISO 132	8:1995] 8	8	
Inner diameter (mm) [di]	0.00	0.00	
Inner diameter of gear rim (mm) [dbi]	0.00	0.00	

Material

Gear1

C45 (1), Through hardened steel, unalloyed, through hardene	d
ISO 6336-5 Figure 5/6 (MQ)	

Gear2

C45 (1), Through hardened steel, unalloyed, through hardened ISO 6336-5 Figure 5/6 (MQ)

		Gear 1	Gear 2
Surface hardness		HBW 186	HBW 186
Material treatment according to ISO 6336:2006 Norm	al, life factors Z	INT and YNT	>=0.85
Fatigue strength. tooth root stress (N/mm ²)	[σFlim]	210.00	210.00
Fatigue strength for Hertzian pressure (N/mm ²)	[σHlim]	540.00	540.00
Tensile strength (N/mm ²)	[σB]	700.00	700.00
Yield point (N/mm ²)	[σS]	490.00	490.00
Young's modulus (N/mm²)	[E]	206000 206	6000
Poisson's ratio	[v]	0.300	0.300
Roughness average value DS, flank (µm)	[RAH]	1.05	1.05
Roughness average value DS, root (µm)	[RAF]	3.00	3.00
Mean roughness height, Rz, flank (µm)	[RZH]	8.00	8.00
Mean roughness height, Rz, root (µm)	[RZF]	20.00	20.00

Gear reference profile			
1:			
Reference profile	1.25 / 0.38 / 1.0 🛙	SO 53:1998 Pro	ofil A
Dedendum coefficient	[hfP*]	1.250	
Root radius factor	[pfP*]	0.380	(pfPmax*=0.472)
Addendum coefficient	[haP*]	1.000	
Tip radius factor	[paP*]	0.000	
Protuberance height coefficient	[hprP*]	0.000	
Protuberance angle	[aprP]	0.000	
Tip form height coefficient	[hFaP*]	0.000	
Ramp angle	[aKP]	0.000	
	not topping		
Gear reference profile			

2:

Reference profile

1.25 / 0.38 / 1.0 ISO 53:1998 Profil A

Dedendum coefficient Root radius factor Addendum coefficient Tip radius factor Protuberance height coefficient Protuberance angle Tip form height coefficient Ramp angle	[hfP*] [ρfP*] [haP*] [ρaP*] [hprP*] [αρrΡ] [hFaP*] [αΚΡ] not topping	1.250 0.380 (pfPmax*=0.472) 1.000 0.000 0.000 0.000 0.000 0.000
Information on final machining		
Dedendum reference profile Tooth root radius Refer. profile Addendum Reference profile Protuberance height coefficient Protuberance angle (°) Tip form height coefficient Ramp angle (°)	[hfP*] [ρfP*] [haP*] [hprP*] [αprP] [hFaP*] [αKP]	$\begin{array}{rrrr} 1.250 & 1.250 \\ 0.380 & 0.380 \\ 1.000 & 1.000 \\ 0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.000 & 0.000 \\ 0.000 & 0.000 \end{array}$
Type of profile modification: Tip relief by running in (μm)	none (only running [Ca L/R]	g-in) 10.7 /10.7 10.7 /10.7
Lubrication type Type of grease Lubricant base Base oil nominal kinematic viscosity at 40°C (mm²/s) Base oil nominal kinematic viscosity at 100°C (mm²/s) FZG-Test A/8.3/90 Specific density at 15°C (kg/dm³) Grease temperature (°C)	Grease lubrication UNIGEAR LA 02 Mineral-oil base (v40) s) [v1 step [F [ρ] [TS]	120.00 00] 10.00 ZGtestA] 0 0.900 70.000
Gear pair		
Overall transmission ratio Gear ratio Transverse module (mm) Transverse pressure angle (°) Working pressure angle (°) Working pressure angle at normal section (°) Helix angle at operating pitch circle (°) Base helix angle (°) Reference center distance (mm)	[itot] [u] [mt] [αt] [αwt] [αwt.e/i] [βw] [βb] [ad]	-1.000 1.000 3.000 20.000 20.962 20.980 / 20.943 20.962 0.000 0.000 159.000
Pitch on reference circle (mm) Base pitch (mm) Transverse pitch on contact-path (mm)	[pt] [pbt] [pet]	9.425 8.856 8.856
Sum of profile shift coefficients	[Σxi]	0.3411
Transverse contact ratio Transverse contact ratio with allowances Overlap ratio Total contact ratio Total contact ratio with allowances	[εα] [εα.e/m/i] [εβ] [εγ] [εγ.e/m/i]	1.699 1.705 / 1.697 /1.690 0.000 1.699 1.705 / 1.697 /1.690
Length of path of contact (mm)	[ga, e/i]	15.043 (15.099 / 14.965)
Length T1-A (mm) Length T1-B (mm) Length T1-C (mm) Length T1-D (mm) Length T1-E (mm)	[T1A] [T1B] [T1C] [T1D] [T1E]	21.098 (21.042 / 21.165) 27.285 (27.285 / 27.273) 28.620 (28.592 / 28.647) 29.954 (29.898 / 30.022) 36.141 (36.141 / 36.130)
Length T2-A (mm) Length T2-B (mm) Length T2-C (mm) Length T2-D (mm) Length T2-E (mm)	[T2A] [T2B] [T2C] [T2D] [T2E]	36.141 (36.141 / 36.130) 29.954 (29.898 / 30.022) 28.620 (28.592 / 28.647) 27.285 (27.285 / 27.273) 21.098 (21.042 / 21.165)

Length T1-T2 (mm)	[T1T2]	57.239 (57.183 / 57.295)
Minimal length of contact line (mm)	[Lmin]	30.000
Gear 1		
Profile shift coefficient Tooth thickness, arc, in module	[x] [sn*]	0.1705 1.6949
Tip alteration (mm) Reference diameter (mm)	[k*mn] [d]	-0.023 159.000
Base diameter (mm)	[db]	149.411
lip diameter (mm) (mm)	[da] [da.e/i]	165.977 165.977 / 165.967
Tip diameter allowances (mm) Tip form diameter (mm)	[Ada.e/i] [dFa]	0.000 / -0.010 165.977
(mm) Root diameter (mm)	[dFa.e/I] [df]	165.977 / 165.967 152.523
Generating Profile shift coefficient	[xE.e/i]	0.1270/ 0.1041
Generated root diameter with xE (mm)	[df.e/i]	152.262 / 152.125
(mm)	[dF1] [dFf.e/i]	154.434 / 154.333
Involute length (mm)	[l_dFa-l_dFf]	6.088
Addendum, $m_n(h_{aP}*+x+k)$ (mm)	[ha] [ha o/i]	3.489
Dedendum (mm)	[hf=mn*(hfP*-x)]	3.238
(mm)	[hf.e/i]	3.369 / 3.438
Tooth height (mm)	[h] [==]	6.727
Normal tooth thickness at tip circle (mm)	[21] [san]	2.272
(mm) ´	[san.e/i]	2.178 / 2.121
Normal tooth thickness at tip form circle (mm)	[sFan] [aFan o/i]	2.272
Normal space width at root circle (mm)	[efn]	2.318
(mm)	[efn.e/i]	2.353 / 2.372
Gear 2		
Profile shift coefficient	[x]	0.1705
Tooth thickness, arc, in module	[sn*]	1.6949
Tip alteration (mm)	[k*mn]	-0.023
Reference diameter (mm)	[d]	159.000
Base diameter (mm)	[db]	149.411
(mm)	[da] [da.e/i]	165.977 / 165.967
Tip diameter allowances (mm)	[Ada.e/i]	0.000 / -0.010
Tip form diameter (mm)	[dFa]	165.977
(mm) Root diameter (mm)	[dFa.e/ı] [df]	165.977 / 165.967 152 523
Generating Profile shift coefficient	[xE.e/i]	0.1270/ 0.1041
Generated root diameter with xE (mm)	[df.e/i]	152.262 / 152.125
Root form diameter (mm)	[dFf] [dFf o/i]	154.629
Involute length (mm)	[l dFa-l dFf]	6.088
Addendum, $m_n(h_{aP}*+x+k)$ (mm)	[ha]	3.489
(mm)	[ha.e/i]	3.489 / 3.484
(mm)	[hf=mn*(nfP*-x)]	3.238 3.369 / 3.438
Tooth height (mm)	[h]	6.727
Virtual gear no. of teeth	[zn]	53.000
Normal tooth thickness at tip circle (mm)	[san] [san e/i]	2.272 2.178 / .2.121
Normal tooth thickness at tip form circle (mm)	[sFan]	2.272
(mm)	[sFan.e/i]	2.178 / 2.121
Normal space width at root circle (mm) (mm)	[etn] [efn.e/i]	2.318 2.353 / 2.372
·····/	F	·····

Gear specific pair data Gear pair 1, Gear 1

Operating pitch diameter (mm) (mm)	[dw] [dw.e/i]	160.000 160.020 / 159.980
Active tip diameter (mm)	[dNa]	165.977
(mm)	[dNa.e/i]	165.977 / 165.967
Theoretical tip clearance (mm)	[C]	0.750
Effective tip clearance (mm)	[c.e/i]	0.974 / 0.860
Active root diameter (mm)	[dNf]	155.255
(mm)	[dNf.e/i]	155.292 / 155.225
Reserve (dNf-dFf)/2 (mm)	[cF.e/i]	0.479 / 0.395
Max. sliding velocity at tip (m/s)	[vga]	1.890
Specific sliding at the tip	[ζa]	0.416
Specific sliding at the root	[ζf]	-0.713
Mean specific sliding	[ζm]	0.416
Sliding factor on tip	[Kga]	0.188
Sliding factor on root	[Kgf]	-0.188
Roll angle at dFa (°)	[ξdFa.e/i]	27.719 / 27.710
Roll angle to dNa (°)	[ξdNa.e/i]	27.719 / 27.710
Roll angle to dNf (°)	[ξdNf.e/i]	16.233 / 16.138
Roll angle at dFf (°)	[ξdFf.e/i]	14.982 / 14.828
Diameter of single contact point B (mm)	[d-B]	159.065 (159.065 / 159.057)
Diameter of single contact point D (mm)	[d-D]	160.974 (160.933 / 161.024)
Addendum contact ratio	[٤]	0.849 (0.852 / 0.845)

Gear specific pair data Gear pair 1, Gear 2

Operating pitch diameter (mm)	[dw]	160.000
(mm)	[dw.e/i]	160.020 / 159.980
Active tip diameter (mm)	[dNa]	165.977
(mm)	[dNa.e/i]	165.977 / 165.967
Theoretical tip clearance (mm)	[c]	0.750
Effective tip clearance (mm)	[c.e/i]	0.974 / 0.860
Active root diameter (mm)	[dNf]	155.255
(mm)	[dNf.e/i]	155.292 / 155.225
Reserve (dNf-dFf)/2 (mm)	[cF.e/i]	0.479 / 0.395
Max. sliding velocity at tip (m/s)	[vga]	1.890
Specific sliding at the tip	[ζa]	0.416
Specific sliding at the root	[ζf]	-0.713
Mean specific sliding	[ζm]	0.416
Sliding factor on tip	[Kga]	0.188
Sliding factor on root	[Kgf]	-0.188
Roll angle at dFa (°)	[ξdFa.e/i]	27.719 / 27.710
Roll angle to dNa (°)	[ξdNa.e/i]	27.719 / 27.710
Roll angle to dNf (°)	[ξdNf.e/i]	16.233 / 16.138
Roll angle at dFf (°)	[ξdFf.e/i]	14.982 / 14.828
Diameter of single contact point B (mm)	[d-B]	160.974 (160.933 / 161.024)
Diameter of single contact point D (mm)	[d-D]	159.065 (159.065 / 159.057)
Addendum contact ratio	[3]	0.849 (0.852 / 0.845)

General influence factors

		Gear 1 Gear 2
Nominal circum. force at pitch circle (N)	[Ft]	568.7
Axial force (N)	[Fa]	0.0
Radial force (N)	[Fr]	204.6
Normal force (N)	[Fnorm]	749.9
Nominal circumferential force per mm (N/mm)	[w]	31.45
Only as information: Forces at operating pitch circle	:	
Nominal circumferential force (N)	[Ftw]	563.2
Axial force (N)	[Faw]	0.0
Radial force (N)	[Frw]	205.1
Circumferential speed reference circle (m/s)	[v]	9.99
Circumferential speed operating pitch circle (m/s)	[v(dw)]	10.05
Running-in value (µm)	[yp]	5.0
Running-in value (µm)	[yf]	5.6
Correction factor	[CM]	0.800
Gear blank factor	[CR]	1.000
Basic rack factor	[CBS]	0.975

Material coefficient Singular tooth stiffness (N/mm/µm) Meshing stiffness (N/mm/µm) Reduced mass (kg/mm) Resonance speed (min-1) Running-in value (µm) Bearing distance I of pinion shaft (mm) Distance s of pinion shaft (mm) Outside diameter of pinion shaft (mm) Load in accordance with Figure 13, ISO 6336-1:2006 0:a), 1:b), 2:c), 3:d), 4:e)	[E/Est] [c'α] [cγα] [mRed] [nE1] [yα] [l] [s] [dsh] δ [-]	$\begin{array}{c} 1.000\\ 11.089\\ 16.900\\ 14.365\\ 0.04429\\ 3519\\ 5.0\\ 60.000\\ 6.000\\ 30.000\\ 4\end{array}$
Coefficient K' according to Figure 13, ISO 6336-1:20	06 [K']	-1.00
Without stiffening		0.07
from deformation (active) (µm)	[Fβy] [fab*D1]	3.67
for $(um) = 0.28$ P1= 1.00 fH25 $(um) = -6.5$		0.20
The set for the set of the set o	0	
Position of contact pattern:	favorable	
from production tolerances (um)	[fma*B2]	25.46
B2=		20.40
1 00		
Tooth trace deviation theoretical (um)	[Fßx]	9.00
Running-in value (um)	[vβ]	5.33
· · · · · · · · · · · · · · · · · · ·	1761	
User specified factor Kv:		
Dynamic factor	[Kv]	1.000
Face load factor - flank	[ΚΗβ]	1.837
- Tooth root	[KFβ]	1.607
- Scuffing	[ΚΒβ]	1.837
Transverse load factor - flank	[ΚΗα]	1.304
- Tooth root	[KFa]	1.446
- Scuffing	[ΚΒα]	1.446
g	[=]	

Tooth root load capacity

Calculation of Tooth form coefficients according method: B

Calculation of rooth form coefficients according in	stribu. D		
		Gear 1	Gear 2
Calculated with generating profile shift coefficient	[xE.i]	0.1041	0.1041
Tooth form factor	[YF]	1.27	1.27
Stress correction factor	[YS]	2.12	2.12
Load application angle (°)	[aFen]	20.34	20.34
Load distribution influence factor	[fɛ]	1.	000
Load application diameter (mm)	[d _{en}]	160.974	160.974
Bending moment arm (mm)	[hF]	3.09	3.09
Tooth thickness at root (mm)	[sFn]	6.62	6.62
Tooth root radius (mm)	[pF]	1.45	1.45
Bending moment arm (-)	[hF/mn]	1.031	1.031
Tooth thickness at root (-)	[sFn/mn]	2.208	2.208
Tooth root radius (-)	[pF/mn]	0.484	0.484
Calculation cross section diameter (mm)	[d _{sFn}]	153.302	153.302
Tangents on calculation cross section (°)	[asFn]	30.000	30.000
Notch parameter	[qs]	2.283	2.283
Helix angle factor	[Υβ]	1.	000
Deep tooth factor	[YDT]	1.	000
Gear rim factor	[YB]	1.00	1.00
Effective facewidth (mm)	[beff]	30.00	30.00
Nominal stress at tooth root (N/mm ²)	[σF0]	28.17	28.17
Tooth root stress (N/mm ²)	[σF]	65.46	65.46
Permissible bending stress at root of Test-gear			
Notch sensitivity factor	[YdrelT]	0.994	0.994
Surface factor	[YRrelT]	0.957	0.957
Size factor, tooth root	[YX]	1.000	1.000
Finite life factor	[YNT]	0.931	0.931
Y _{drelT} *Y _{RrelT} *Y _X *Y _{NT}		0.885	0.885
Alternating handing factor maan atraas influence	acticiant		

Alternating bending factor, mean stress influence coefficient

	[YM]	1.000	1.000
Stress correction factor	[Yst]	2.	00
Yst*σFlim (N/mm²)	[σFE]	420.00	420.00
Permissible tooth root stress σFG/SFmin (N/mm ²)	[σFP]	265.57	265.57
Limit strength tooth root (N/mm ²)	[σFG]	371.80	371.80
Required safety	[SFmin]	1.40	1.40

Flank safety

		Gear 1	Gear 2
Zone factor	[ZH]	2.	431
Elasticity factor (√N/mm²)	[ZE]	189.	812
Contact ratio factor	[Zε]	0.	876
Helix angle factor	[Zβ]	1.	000
Effective facewidth (mm)	[beff]	30.	00
Nominal contact stress (N/mm ²)	[σH0]	254.	24
Contact stress at operating pitch circle (N/mm ²)	[σHw]	393.	47
Single tooth contact factor	[ZB,ZD]	1.00	1.00
Contact stress (N/mm ²)	[σHB, σHD]	393.90	393.90
Lubrication factor for NL	[ZL]	0.957	0.957
Speed factor for NL	[ZV]	1.000	1.000
Roughness factor for NL	[ZR]	0.879	0.879
Material hardening factor for NL	[ZW]	1.000	1.000
Finite life factor	[ZNT]	0.977	0.977
	[ZL*ZV*ZR*ZNT]	0.821	0.821
Limited pitting is permitted: No			
Size factor (flank)	[ZX]	1.000	1.000
Permissible contact stress, σHG/SHmin (N/mm ²)	[σHP]	443.37	443.37
Pitting stress limit (N/mm ²)	[σHG]	443.37	443.37
Required safety	[SHmin]	1.00	1.00

Micropitting according to

ISO/TS 6336-22:2018

Calculation has not been carried out, lubricant: Load stage micropitting test not known

Scuffing load capacity

Calculation method according to

ISO/TS 6336-20/21:2017

The calculation of the scuffing load capacity is not intended for greases. For greases, the FZGtestA FZG test stage is only estimated. The calculation can only be used as an imprecise indication!

Helical load factor for scuffing Lubrication coefficient for lubrication type	[KBγ] [XS]		1.000 1.200
Scutting test and load stage	[FZGtest] U		1 000
Relative stand factor			1.000
Relative structural factor, scutting			1.000
Thermal contact factor (N/mm/s^.5/K)	[BM]	13.780	13.780
Relevant tip relief (µm)	[Ca]	10.70	10.70
Optimal tip relief (µm)	[Ceff]		2.84
Ca taken as optimal in the calculation (0=no, 1=yes)		0	0
Effective facewidth (mm)	[beff]	3	0.000
Applicable circumferential force/facewidth (N/mm)	[wBt]	83.555	
KBy = 1.000, wBt*KBy = 83.555			
Angle factor	[Χαβ]		0.000
ε1: 0.849, ε2: 0.849			
Flash temperature-criteria			
Lubricant factor	[XL]		0.000
Tooth mass temperature (°C)	[θMi]		0.00
θ Mi = θ oil + XS*0.47*Xmp* θ flm			
Average flash temperature	(°C)	[θflm]	0.00
Scuffing temperature (°C)	[0 S]		0.00

Γ coordinates (point of highest temperature) [Γ .A]= -0.263 [Γ .E]= 0.263	[[]		0.000		
Highest contact temp. (°C)	[0B]		0.00		
Approach factor	[XJ]		0.000		
Load sharing factor	[XF]		0.000		
Dynamic viscosity (mPa*s)	[ŋM]		0.00	(70.0	°C)
Coefficient of friction	[µm]		0.000		
Integral temperature-criteria					
Lubricant factor	[XL]		1.000		
Tooth mass temperature (°C)	[0MC]		0.00		
θMC = θoil + XS*0.70*θflaint					
Mean flash temperature	(°C)	[0flaint]	0.00		
Integral scuffing temperature (°C)	[0Sint]		0.00		
Running-in factor, well run in	[XE]		0.000		
Contact ratio factor	[Xɛ]		0.000		
Mean coefficient of friction	[µ _m]		0.000		
Geometry factor	[XBE]		0.000		
Meshing factor	[XQ]		0.000		
Tip relief factor	[XCa]		0.000		
Integral tooth flank temperature (°C)	[θint]		0.00		

Measurements for tooth thickness

	-	Gear 1	Gear 2	
Tooth thickness tolerance		DIN 3967 cd2	5 DIN 3967 cd25	
Tooth thickness allowance (normal section) (mm)	[As.e/i]	-0.095 /	-0.145-0.095 /	-0.145
Number of teeth spanned	[k]	7.000	7.000	
Base tangent length (no backlash) (mm)	[Wk]	60.143	60.143	
Base tangent length with allowance (mm)	[Wk.e/i]	60.054 /	60.007 60.054 /	60.007
(mm)	[ΔWk.e/i]	-0.089 /	-0.136 -0.089 /	-0.136
Diameter of measuring circle (mm)	[dMWk.m]	161.020	161.020	
Theoretical diameter of ball/pin (mm)	[DM]	5.149	5.149	
Effective diameter of ball/pin (mm)	[DMeff]	5.250	5.250	
Radial single-ball measurement backlash free (mm)	[MrK]	83.724	83.724	
Radial single-ball measurement (mm)	[MrK.e/i]	83.609 /	83.548 83.609 /	83.548
Diameter of measuring circle (mm)	[dMMr.m]	159.958	159.958	
Diametral measurement over two balls without cleara	ance (mm)[Md	IK] 167.377	167.377	
Diametral two ball measure (mm)	[MdK.e/i]	167.147 /	167.025167.147 /	167.025
Diametral measurement over pins without clearance	(mm) [MdR]	167.377	167.377	
Measurement over pins according to DIN 3960 (mm)	[MdR.e/i]	167.147 /	167.025167.147 /	167.025
Measurement over 3 pins, axial, according to AGMA	2002 (mm)			
	[dk3A.e/i]	167.147 /	167.025167.147 /	167.025
Dimensions over 3 pins without clearance (mm)	[Md3R]	167.306	167.306	
Measurement over 3 pins with allowance (mm)	[Md3R.e/i]	167.076 /	166.954167.076 /	166.954
Chordal tooth thickness (no backlash) (mm)	[sc]	5.084	5.084	
Normal chordal tooth thickness with allowance (mm)	[sc.e/i]	4.990 /	4.941 4.990 /	4.941
Reference chordal height from da.m (mm)	[ha]	3.527	3.527	
Tooth thickness, arc (mm)	[sn]	5.085	5.085	
(mm)	[sn.e/i]	4.990 /	4.940 4.990 /	4.940
Backlash free center distance (mm)	[aControl.e/i]	159.749 /	159.616	
Backlash free center distance, allowances (mm)	[jta]	-0.251 /	-0.384	
dNf.i with aControl (mm)	[dNf0.i]	154.681	154.681	
Reserve (dNf0.i-dFf.e)/2 (mm)	[cF0.i]	0.123	0.123	
Tip clearance (mm)	[c0.i(aContro	l)] 0.496	0.496	
Center distance allowances (mm)	[Aa.e/i]	0.020 /	-0.020	
Circumferential backlash from Aa (mm)	[jtw_Aa.e/i]	0.015 /	-0.015	
Radial backlash (mm)	[jrw.e/i]	0.404 /	0.231	
Circumferential backlash (transverse section) (mm)	[jtw.e/i]	0.307 /	0.176	
Normal backlash (mm) Torsional angle on input with output fixed:	[jn.e/i]	0.286 /	0.165	
Total torsional angle (°)	[j.tSys]	0.2200/	0.1260	

Toothing tolerances

			Gear 1	Gear 2	
According to ISO 1328-1:1995, ISO 1328-2:1997					
Accuracy grade	[Q]		8	8	
Single pitch deviation (µm)	[fptT]		18.00	18.00	
Base circle pitch deviation (µm)	[fpbT]		16.90	16.90	
Sector pitch deviation over k/8 pitches (µm)	[Fpk/8T]		35.00	35.00	
Profile form deviation (µm)	[ffɑT]		19.00	19.00	
Profile slope deviation (µm)	[fHaT]		16.00	16.00	
Total profile deviation (µm)	[FaT]		25.00	25.00	
Helix form deviation (µm)	[ffβT]		18.00	18.00	
Helix slope deviation (µm)	[fHβT]		18.00	18.00	
Total helix deviation (µm)	[FβT]		25.00	25.00	
Total cumulative pitch deviation (µm)	[FpT]		70.00	70.00	
Runout (µm)	[FrT]		56.00	56.00	
Single flank composite, total (µm)	[FisT]		108.00	108.00	
Single flank composite, tooth-to-tooth	(µm)	[fisT]	37.00	37.00	
Radial composite, total (µm)	[FidT]		86.00	86.00	
Radial composite, tooth-to-tooth (µm)	[fidT]		29.00	29.00	
FidT (Fi"), fidT (fi") according to ISO 1328:1997 calc	ulated with	the geo	ometric m	ean values for n	nn and d

Axis alignment tolerances (recommendation acc. to ISO TR 10064-3:1996, Quality)

	8				
Maximum value for deviation error of axis (µm)	[fΣβ]	25.00	(Fβ=	25.00)
Maximum value for inclination error of axes (µm)	[fΣδ]	50.00			

Modifying and defining the tooth form

Data for the tooth form calculation :

Data not available.

Please run the calculation in the "Tooth form" tab and open the main report again.

Supplementary data

Maximal possible center distance (eps_a=1.0) Mass (kg)	[aMAX] [m]	162.31 4.679	6 4.679			
Total mass (kg)	[mGes]	9.35	8			
Moment of inertia for system, relative to the input:						
calculation without consideration of the exact tooth	shape					
Single gears, (da+df)/2di (kg*m²)	[J]	0.01483	0.01483			
System (da+df)/2di (kg*m²)	[J]	0.02	966			
Torsional stiffness at driving gear with fixed driven ge	ear:					
Torsional stiffness (MNm/rad)	[cr]	2.39	0			
Torsion when subjected to nominal torque (°)	[δcr]	0.00	2			
Mean coefficient of friction (as defined in Niemann)	[µ _m]	0.04	5			
Wear sliding coef. by Niemann	[ζw]	0.70)7			
Loss factor	[HV]	0.08	8			
Gear power loss (kW)	[PVZ]	0.03	57			
Meshing efficiency (%)	[ŋz]	99.60	3			
Sound pressure level according to Masuda, without	Sound pressure level according to Masuda, without contact analysis					
	[dB(A)]	57.0				

Service life, damage

Calculation with load spectrum Required safety for tooth root Required safety for tooth flank	[SFmin] [SHmin]		1.40 1.00
Service life (calculated with required safeties): System service life (h)	[Hatt]	10 ⁻	1491
Tooth root service life (h) Tooth flank service life (h) Note: The entry 1e+006 h means that the Service life	[HFatt] [HHatt] è > 1,000,000 h.	1e+06 1.	1e+06 015e+05 1.015e+05

Damage calculated on the basis of the required service life[H] (1500.0 h)

No. 1	F1% 0.0000	F2% 0.0000	H1% 1.4780	H2% 1.4780			
2	0.0000	0.0000	0.0000	0.0000			
Σ	0.0000	0.0000	1.4780	1.4780			
Dam	age calcula	ated on ba	sis of syste	em service life	[H	att] (101490.7	h)
No.	F1%	F2%	H1%	H2%			
1	0.0000	0.0000	100.0000	100.0000			
2	0.0000	0.0000	0.0000	0.0000			
Σ	0.0000	0.0000	100.0000	100.0000			
Dam	age calcula	ated on ba	sis of indiv	idual service lif	e HF	att & HHatt	
	HFatt1	HFatt2	HHat	t1 HHatt2			
(h)	1e+06	1e	+06	1.015e+0)5	1.015e+05	
No.	F1%	F2%	H1%	H2%			
1	0.00	0.00	100.00	100.00			
2	0.00	0.00	0.00	0.00			
Σ	0.00	0.00	100.00	100.00			

Most critical duty cycle elements for Scoring (SB, Sint), Tooth Flank Fracture (SFF), hardened layer (SEHT) and Micropitting (Slam)

Gear		р	Teq			KA	
1	Tooth root	6.225	45.0	KA,F	1	1.000	
1	Tooth flank	6.611	45.0	KA,H	1	1.000	
2	Tooth root	6.225	45.0	KA,F	2	1.000	
2	Tooth flank	6.611	45.0	KA,H	2	1.000	
Applica	ation factor, ISO 633	6-6 A.3	[KAmax] [KA,Fma] ax / KA,Hmax	1 1.00(ھ)	.000)/	1.000
	ition factor, ISO 633		[KAmax [KA,Fma] ax / KA,Hma>	1 1.000[1	.000	1.000
Applica Classif	ition factor, ISO 633	6-6 A.3 to F.E.M., Editie	[KAmax] [KA,Fma on 1.001, 1998 [km]] ax / KA,Hmax	1 1.000[} ۲	.000	1.000
Applica Classif Spectru Spectru	ition factor, ISO 633 fication according um factor um class	6-6 A.3 to F.E.M., Editio	[KAmax] [KA,Fma on 1.001, 1998 [km] [L]] ax / KA,Hma>	1 (]1.00(0 4	.000) / .737	1.000
Applica Classif Spectru Spectru Applica	fication factor, ISO 633 fication according um factor um class ition class, predefine	6-6 A.3 to F.E.M., Editi e	[KAmax] [KA,Fma on 1.001, 1998 [km] [L] [T]] ax / KA,Hma>	1 (]1.00((4 3	.000)/ .737	1.000
Classif Spectru Spectru Applica Machin	fication factor, ISO 633 fication according um factor um class ition class, predefined le class, predefined	6-6 A.3 to F.E.M., Edition ed service life service life	[KAmax] [KA,Fma on 1.001, 1998 [km] [L] [T] [M]] ax / KA,Hma>	1 (]1.00(4 3 5	.000)/ .737	1.000
Applica Classif Spectru Spectru Applica Machin Applica	fication according um factor um class ition class, predefined ition class, achievab	6-6 A.3 to F.E.M., Edition ed service life service life ole service life	[KAmax] [KA,Fma on 1.001, 1998 [km] [L] [T] [M] [T]] ax / KA,Hma>	1 (]1.000 4 3 5 9	.000	1.000

- Specifications with [.e/i] imply: Maximum [e] and minimum value [i] for Taking all tolerances into account
 - Specifications with [.m] imply: Mean value within tolerance
- For the backlash tolerance, the center distance tolerances and the tooth thickness allowance
- are taken into account.
- The maximum and minimum clearance according to
- the largest or smallest allowances are defined ...

The calculation is performed for the operating pitch circle.

- Details of calculation method:
- cγ according to Method B
- KH β and KF β according to Method C
- fma according to Equation 64, fsh according to 57/58, F β x according to 52/53/54 KHa, KFa according to Method B

- The logarithmically interpolated value taken from the values for the fatigue strength and the static strength, based on the number of load cycles, is used for coefficients ZL, ZV, ZR, ZW, ZX, YdreIT, YRreIT and YX..

End of Report

lines: 703

Završni rad | FSB CONTI-HTD-640-8M-30-Synchroforce CXP

Contact Person: Matteo Ivan Nikolic Company: FSB

Belt / Systemdata

Profile	PROF	[-]	HTD
Pitch	t	[mm]	8
Length	Lw	[mm]	640
Number of belt teeth	z	[-]	80
Calculated belt width	B _{err}	[mm]	19.67
Chosen belt width	B _{aus}	[mm]	30
Engine efficiency	η	[%]	100
Test force	Fe	[N]	-

Initial load factor	К1	[-]	1
Initial service factor	К2	[-]	1.29
Calculated total service factor	C0 _{err}	[-]	2.73
Required total service factor	$\rm C0_{gef}$	[-]	1.70
Length factor	C5	[-]	0.89
Belt speed	v	[m/s]	6.40
Overall power rating of the system	Pr _{gesamt}	[kW]	16.41
Axis distance	а	[mm]	160
Indentation depth	Те	[mm]	-

Important note: Please use HTD sprockets in accordance to ContiTech profile requirement to achieve a maximum service life

The content of this publication is not legally binding and is provided as information only. The trademarks displayed in this publication are the property of Continental AG and/or its affiliates. Copyright © 2015 ContiTech AG. All rights reserved. For complete information go to: www.contitech.de/discl_en

Završni rad | FSB CONTI-HTD-640-8M-30-Synchroforce CXP

Geometrydata Pulleys						
#	Outer diameter da [mm]	Pitch Diameter dw [mm]	Number of belt teeth z [-]	X-Coord. x [mm]	Y-Coord. y [mm]	
0	100.49	101.86	40	0	0	
1	100.49	101.86	40	160	0	

Ge	Geometrydata System						
#	Arc of contact BETA [°]	Number of teeth in mesh ze [-]	Teeth in mesh factor C1 [-]	Rotational Speed n [1/min]	Transmission ratio i [-]		
0	180	20	1	1200	1		
1	180	20	1	1200	1		

Pow	Power data pulleys						
#	Power P [kW]	Torque M [Nm]	Peripheral force Fu [N]	Static bearing force FL _{stat} [N]	Dynamic bearing force at calculated working condition FL _{dyn} [N]		
0	6	47.75	938	1206	1203		
1	6	47.75	938	1206	1203		

Str	Strand data					
#	Free strand length Lf [mm]	Static strand tension Mounting with retensioning F _{stat} [N]	Static strand tension Mounting without retensioning F _{stat_{mon} [N]}			
0	160	603	784			
1	160	603	784			

The content of this publication is not legally binding and is provided as information only. The trademarks displayed in this publication are the property of Continental AG and/or its affiliates. Copyright © 2015 ContiTech AG. All rights reserved. For complete information go to: www.contitech.de/discl_en

	KI	SSsoft Release	2020 B ———	
KISSsoft – student license (not for commercial use)				
		—— File ——		
Name :	Završni rad Vratilo			
Changed by:	Matteo Ivan Nikolić	on: 29.01.2021	at: 20:31:55	

Analysis of shafts, axle and beams

Input data

Coordinate system shaft:	see picture W-002	2
Label	Vratilo	
Drawing		0.000
Longth (mm)		0.000
Eengun (mm)	1	200.00
Direction of rotation:	ا	200.00
Direction of rotation.	CIOCKWISE	
Material	S235J2 (St37.3 N)
Young's modulus (N/mm²)	206	000.000
Poisson's ratio nu		0.300
Density (kg/m ³)	7	830.000
Coefficient of thermal expansion	(10^-6/K)	11.500
Temperature (°C)	, , , , , , , , , , , , , , , , , , ,	20.000
Weight of shaft (kg)	t The seers are no	2.695
Note: the weight is only for the shar	t. The years are no	
Mass memore of insertia (kg*mm ²)	nasses (ky)	2.090
Mamontum of mass (D2 (Nm ²)		409.013
Momentum of mass GD2 (Nm ⁻)		0.016
The direction of the weight is not con Gears mounted with stiffness accordi	sidered ng to ISO	
Consider deformations due to shearing	ng	
Shear correction factor		1.100
Contact angle of rolling bearings is co	onsidered	
Tolerance field:	Mean value	
Reference temperature (°C)		20.000

Figure: Load applications

Shaft definition

Outer contour Cylinder (Cylinder) Diameter (mm) [d] Length (mm) [l] Surface roughness (µm)

0.000 mm ... 27.000 mm 25.0000 27.0000 [Rz] 8.0000

Chamfer left (Chamfer left) l=1.00 (mm), alpha=45.00 (°)

Key way (Key way) 3.000 mm ... 25.000 mm I=22.00 (mm), i=1, Rz=8.0, Machined (Ra=3.2μm/125μin)

(Vratilo)

Relief groove right (Relief groove right) r=0.80 (mm), t=0.30 (mm), l=2.50 (mm), Rz=8.0, Machined (Ra=3.2µm/125µin) Form E (DIN 509), Series 1, with the usual stressing

Cylinder (Cylinder) Diameter (mm) [d] Length (mm) [l] Surface roughness (µm)	27.000 mm 30 7([Rz] 8	97.000 mm 0.0000 0.0000 8.0000
Chamfer left (Chamfer left) l=0.50 (mm), alpha=45.00 (°)		
Radius right (Radius right) r=0.50 (mm), Rz=8.0, Machined (Ra	=3.2µm/125µin)	
Cylinder (Cylinder) Diameter (mm) [d] Length (mm) [l] Surface roughness (µm)	97.000 mm 38 54 [Rz] 8	151.000 mm 5.0000 6.0000 8.0000

Chamfer left (Chamfer left) I=0.50 (mm), alpha=45.00 (°)

Key way (Key way) I=30.00 (mm), i=1, Rz=8.0, Machined (l11.000 mm 141.000 mm Ra=3.2µm/125µin)
Relief groove right (Relief groove right) r=0.80 (mm), t=0.30 (mm), l=2.50 (mm) Form E (DIN 509), Series 1, with the us), Rz=8.0, Machined (Ra=3.2µm/125µin) sual stressing
Square groove (Square groove) b=2.00 (mm), t=1.00 (mm), r=0.01 (mm	ı), Rz=8.0, Machined (Ra=3.2µm/125µin)
Cylinder (Cylinder) Diameter (mm) [d] Length (mm) [l] Surface roughness (μm)	151.000 mm 257.000 mm 39.0000 106.0000 [Rz] 8.0000
Chamfer right (Chamfer right) I=0.50 (mm), alpha=45.00 (°)	
Chamfer left (Chamfer left) I=0.50 (mm), alpha=45.00 (°)	
Cylinder (Cylinder) Diameter (mm) [d] Length (mm) [l] Surface roughness (µm)	257.000 mm 311.000 mm 35.0000 54.0000 [Rz] 8.0000
Chamfer right (Chamfer right) I=1.00 (mm), alpha=45.00 (°)	
Key way (Key way) 2 l=30.00 (mm), i=1, Rz=8.0, Machined (67.000 mm 297.000 mm Ra=3.2μm/125μin)
Relief groove left (Relief groove left) r=0.80 (mm), t=0.30 (mm), l=2.50 (mm) Form E (DIN 509), Series 1, with the us), Rz=8.0, Machined (Ra=3.2µm/125µin) sual stressing
Square groove (Square groove) b=2.00 (mm), t=1.00 (mm), r=0.01 (mm	ı), Rz=8.0, Machined (Ra=3.2µm/125µin)
Cylinder (Cylinder) Diameter (mm) [d] Length (mm) [l] Surface roughness (μm)	311.000 mm 383.000 mm 30.0000 72.0000 [Rz] 8.0000
Chamfer right (Chamfer right) I=0.50 (mm), alpha=45.00 (°)	
Radius left (Radius left) r=0.50 (mm), Rz=8.0, Machined (Ra=3	.2µm/125µin)
Forces	
Type of force element Label in the model Position on shaft (mm) [y _{local}] Position in global system (mm) Length of load application (mm) Power (kW)	Centric force Sile ozubljenja 126.0000 [y _{global}] 0.0000 9.4248 driving (output)

F

Type of force element Label in the model Position on shaft (mm) [y _{local}] Position in global system (mm) Length of load application (mm) Power (kW) Torque (Nm) Axial force (N) Shearing force X (N) Shearing force Z (N) Bending moment X (Nm) Bending moment Z (Nm)	Centric force Sile ozubljenja 126.0000 (yglobal) 126.0000 0.0000 9.4248 -60.0000 0.0000 -360.0000 1000.0000 0.0000 0.0000	driving (output)
Label in the model	Sile remenice	

Position on shaft (mm) [y _{local}] Position in global system (mm) Length of load application (mm) Power (kW) Torque (Nm) Axial force (N) Shearing force X (N) Shearing force Z (N) Bending moment X (Nm) Bending moment Z (Nm)	[yglobal] 282.0000 282.0000 9.4248 -60.0000 0.0000 1500.0000 0.0000 0.0000 0.0000	driving (output)
Type of force element	Coupling	
Label in the model	ulaz snage	
Position on shaft (mm) [y _{local}]	15.0000	
Position in global system (mm)	[y _{global}] 15.0000	
Effective diameter (mm)	0.0000	
Radial force factor (-)	0.0000	
Direction of the radial force (°)	0.0000	
Axial force factor (-)	0.0000	
Length of load application (mm)	0.0000	
Power (kW)	18.8496	driven (input)
Torque (Nm)	120.0000	
Axial force (N)	0.0000	
Shearing force X (N)	0.0000	
Shearing force Z (N)	0.0000	
Bending moment X (Nm)	0.0000	
Bending moment Z (Nm)	0.0000	
Mass (kg)	0.0000	
Mass moment of inertia Jp (kg m ⁻)	0.0000	
Mass moment of inertia JXX (kg m ⁻)	0.0000	
Eccentricity (mm)	0.0000	
	0.0000	

Bearing

Label in the model Bearing type		Lijevi ležaj SKF 6006-2RS	31
Bearing type		Deep groove b SKF Explorer	all bearing (single row)
Bearing position (mm)	[y _{lokal}]		51.000
Bearing position (mm)	[y _{global}]		51.000
Attachment of external ring		Free bearing	
Inner diameter (mm)	[d]	-	30.000
External diameter (mm)	[D]		55.000
Width (mm)	[b]		13.000
Corner radius (mm)	[r]		1.000
Basic static load rating (kN)	[C ₀]		8.300
Basic dynamic load rating (kh	V)	[C]	13.800
Fatigue load limit (kN)	[C _u]		0.355
Values for approximated geo	metry:		
Basic dynamic load rating (kh	V)	[C _{theo}]	0.000
Basic static load rating (kN)	[C _{0theo}]		0.000
Correction factor Basic dynar	nic load rati	ng	
	[f _c]		1.000
Correction factor Basic static	load rating		
	[f _{C0}]		1.000

Label in the model		Desni ležaj	
Bearing type		SKF 6006-2RS	S1
Bearing type		Deep groove b	ball bearing (single row)
		SKF Explorer	
Bearing position (mm)	[y _{lokal}]	:	361.000
Bearing position (mm)	[y _{global}]	:	361.000
Attachment of external ring		Free bearing	
Inner diameter (mm)	[d]		30.000
External diameter (mm)	[D]		55.000
Width (mm)	[b]		13.000
Corner radius (mm)	[r]		1.000
Basic static load rating (kN)	[C ₀]		8.300
Basic dynamic load rating (kl	N)	[C]	13.800

Fatigue load limit (kN) [C _u]		0.355
Values for approximated geometry:		
Basic dynamic load rating (kN)	$[C_{theo}]$	0.000
Basic static load rating (kN) [C _{0theo}]		0.000
Correction factor Basic dynamic load rating		
[f _c]		1.000
Correction factor Basic static load rating		
[f _{C0}]		1.000

Results

Shaft

Maximum deflection (µm)	41.808
Position of the maximum (mm)	225.824
Mass center of gravity (mm)	197.395
Total axial load (N)	0.000
Torsion under torque (°)	-0.156

Bearing

Probability of failure Axial clearance (ISO 281) Lubricant	[n] [u _A] ISO-VG 46	10.00	%	10.00	μm	
Lubricant - service temperatur	e			[Τ _Β]	70.00	°C
Rolling bearings, classical cal	culation (con	tact an	gle conside	ered)		
Shaft 'Vratilo' Rolling bearin	g 'Lijevi lež	aj'				
Position (Y-coordinate)		51.00	mm			
Statio aguivalent load		0.77	KIN	0 77	LNI	
Life modification factor for roli	[P ₀] abilitu(a 1			1 000	KIN	
	ability[a ₁]			1.000		
Results according to ISO 281:						
Lubricant	ISO-VG 46					
Load ratio	[C/P]			18.019)	
Operating viscosity	[v]			14.699	mm²/s	
Reference viscosity	[V ₁]			0.000	mm²/s	
Viscosity ratio	[K]			0.000		
Basic bearing rating life	[L _{nh}]			65005.3	6 h	
Static safety factor	[S ₀]			10.84		
Bearing reaction force	[Fx]	-0.109	kN			
Bearing reaction force	[Fy]	0.000	kN			
Bearing reaction force	[Fz]	-0.758	kN			
Bearing reaction force	[Fr]	0.766	kN(-98.21	°)		
Oil level	[H]	0.000	mm			
Rolling moment of friction	[M _{rr}]			0.009	Nm	
Sliding moment of friction	[M _{sl}]			0.006	Nm	
Moment of friction, seals	[M _{seal}]			0.071	Nm	
Moment of friction for seals de	etermined ac	cording	to SKF ma	ain catalo	og 17000/1	EN:2018
Moment of friction flow losses	[M _{drag}]			0.000	Nm	
Torque of friction	[M _{loss}]			0.086	Nm	
Power loss	[P _{loss}]			13.467	Ŵ	-
The moment of friction is calci	lated accord	ding to	the details		atalog 201	8.
The calculation is always perfe	ormed with a	coeffic	cient for add	ditives in	the lubrica	nt µbl=0.15.
Displacement of bearing	[u _x]			0.740	μm	
Displacement of bearing	[U _y]			0.000	μm	
Displacement of bearing	[U _z]			6.206	μm	201
Displacement of bearing	[U _r]			0.250	µm (83.2	<u>(</u>)
Miselignment of bearing	[[x] [r]			0.318	mrad(1.05	<i>י</i>)
Misalignment of bearing	[ly] [r]			-0.931	mrad(0 °	ノ 1'\
Misalignment of bearing	['z] [r]			-0.235	mrad (1 26	· /
moangriment of beaming	U 13			0.535	mau(1.50	,

Shaft 'Vratilo' Rolling bearing	ıg 'Desni	ležaj'				
Position (Y-coordinate)	[y]	361.00	mm			
Dynamic equivalent load	[P]	1.06	kN			
Static equivalent load	[P₀]			1.06	6 kN	
Life modification factor for reli	ability[a₁]			1.000	C	
Results according to ISO 281		40				
Lubricant	ISO-VG	46		40.00	•	
Load ratio	[C/P]			13.03	6	1-
Operating viscosity	[V]			14.69	9 mm²/	/S
	[V1]			0.000	J mm-/	/S
Pagia bagging rating life	[K] II I		~	0.000	J 16	h
Static sefety factor	[Lnh] [C]		2	401Z. 70/	10	n
	[50]			1.04	•	
Bearing reaction force	[Fx]	-1.031	kN kN			
Bearing reaction force	[[y] [[- 7]	0.000				
Bearing reaction force	[[2] [Er]	1 050	kN/-166 70	٥١		
	[F] [H]	0.000	mm)		
Bolling moment of friction	[''] [N/I]	0.000		0.01	1 Nm	
Sliding moment of friction				0.01	1 Nm	
Moment of friction seals	[M]			0.01	1 Nm	
Moment of friction for seals de	etermined	laccording	to SKF mai	n cata	log 17(000/1 EN:2018
Moment of friction flow losses	[M _{drag}]			0.000) Nm	
Torque of friction	[M _{loss}]			0.092	2 Nm	
Power loss	[P _{loss}]			14.43	3 W	
The moment of friction is calc	ulated ac	cording to	the details ir	n SKF	Catalo	g 2018.
The calculation is always perf	ormed wi	th a coeffic	ient for addi	tives i	n the lu	ibricant µbl=0.15.
Displacement of bearing	[u _x]			6.05	1 µm	
Displacement of bearing	[u _y]			-0.00) μm	
Displacement of bearing	[u _z]			1.563	3 µm	
Displacement of bearing	[u _r]			6.250)µm	(14.48°)
Misalignment of bearing	[r _x]			-0.23	1 mrad	I(-0.8')
Misalignment of bearing	[r _y]			-2.710	6 mrad	I(-9.34')
Misalignment of bearing	[r _z]			0.42	7 mrad	1(1.47')
Misalignment of bearing	[r _r]			0.486	6 mrad	1(1.67')
Damaga (%)	гі	roal (20000 0	าก	`	
Damage (%)	۱L	red] (20000.00	00)	
1 20 77 91 26						
Σ 30.77 81.26						
Utilization (%)	[L	req] (20000.00	00)	
B1 B2						
67.51 93.32	4 /1.)					
Note: Utilization = $(Lreq/Lh)^{(1)}$ Ball bearing: k = 3, roller bear	1/к) ing: k = 1	0/3				
B1 : Lijevi ležaj						
B2 : Desni ležaj						

Calculation of the factors required to define reliability R(t) using the Weibull distribution. t in (h): Reliability not calculated

Figure: Deformation (bending etc.) (Arbitrary plane 37.36918427 124)

Nominal stresses, without taking into account stress concentrations GEH(von Mises): sigV = ((sigB+sigZ,D)^2 + 3*(tauT+tauS)^2)^1/2 SSH(Tresca): sigV = ((sigB-sigZ,D)^2 + 4*(tauT+tauS)^2)^1/2

Figure: Equivalent stress

Strength calculation according to DIN 743:2012 with finite life fatigue strength according to FKM standard and FVA draft

Summary

Vratilo

Material	S235J2 (St37.3 N)
Material type	Structural steel
Material treatment	untreated
Surface treatment	No

Calculation of finite life fatigue strength and static strength

Calculation for load case 2 ($\sigma av/\sigma mv = const$)

Cross section	Position (Y-Coo	rd) (mm)			
A	20.00	Key			
В	27.00	Should	er with re	elief groov	'e
С	97.00	Should	er	Ũ	
D	120.00	Kev			
F	151.00	Should	er with re	elief aroov	'e
F	257.00	Should	er with re	elief groov	'e
Results:					
Cross section	βσ	KFσ	K2d	SD	SS
А	2.08	1.00	0.92	3.26	2.39
В	1.63	0.95	0.92	3.03	2.22
С	1.82	0.95	0.91	3.92	3.94
D	2.09	1.00	0.90	4.76	5.84
E	1.71	0.95	0.90	5.93	9.00
F	1.71	0.95	0.90	4.56	7.60
Required safeties:				1.20	1.20
Abbreviations:					
βσ: Notch factor, bend	ing				
KFo: Surface factor					
K2d: size factor bendir	ng				
SD: Safety endurance	limit				

Service life and damage

SS: Safety against yield point

System service life (h)	[Hatt]	100000	00.00
Damage to system (%)	[D]		0.00
Damage (%)	[H] (1500.0	h)
Damage to cross sections (%) A: B: C: D: E: E:	[D] 0.00 0.00 0.00 0.00 0.00		
F:	0.00		

Calculation of the factors required to define reliability R(t) using the Weibull distribution. t in (h): Reliability not calculated

Utilization (%)	[Smin/S]			
Cross section A		Static 50.275	Endurance 36.808	

В	54.076	39.609	
С	30.445	30.592	
D	20.554	25.202	
E	13.340	20.236	
F	15.796	26.322	
Maximum utilization (%)	[A]	Ę	54.076

Utilization = Smin/S (%)

Figure: Strength (nominal load)

Calculation details

General statements

Label		Vrat	tilo				
Length (mm) Speed (1/min)		[l] [n]	383 1200	8.00 9.00			
Material Material type Material treatment Surface treatment	S235J2 (St37 Structural ster untreated No	7.3 N) el	I				
		Tens	sion/C	Compre	ssion Ber	ding Torsion Sheari	ng
Load factor static calcul	ation	1.	700	1.700	1.700	1.700	-
Load factor endurance	limit	1.	.000	1.000	1.000	1.000	
Reference diameter ma	terial (mm)	[dB]			16.00		
σB according to DIN 74	3 (at dB) (N/m	m²)		[σB]	360.00		
σB according to DIN 74	3 (at dB) (N/m	m²)		[σS]	235.00		
[ozdW], bei dB (N/mm ²)					145.00		
[σbW],		bei d	IB (N/	'mm²)	180.00		
[ttW], bei dB (N/mm ²)					110.00		
Thickness of raw mater	ial (mm)	[dW	erkst]		40.00		
Material data calculated	l according DI	N743	/3 wit	h K1(d)			
Material strength calcul	ated from size	of ra	w ma	terial			
Geometric size factor K	1d calculated	from	raw n	naterial	diameter		
[σBeff] (N/mm²)					360.00		
[σSeff] (N/mm ²)					229.08		
[obFK] (N/mm ²)					274.89		
[TtFK] (N/mm ²)					158.71		
[ODBRand] (N/mm²)					360.00		
[ozdW] (N/mm²)					145.00		

[σbW] (N/mm²) [τtW] (N/mm²)				180.00 110.00		
Fatigue strength for single sta Required life time Number of load cycles (Mio) Data of S-N curve (Woehler I [kJo, kJ] [kDo, kD1] [NDo, ND1] [NDoII, ND1]]	age use [H [ne) analog 5 8 0 0 1e+06 1e+ 0 0	H] NL] to FK№ 06	I standa	1500.00 135.000 ırd:		
Calculation for load case 2 (c	σ.av/σ.mv =	const)				
Cross section 'A' Key Comment Position (Y-Coordinate) (mm) External diameter (mm) Inner diameter (mm) Notch effect Number of keys Groove with manufactured w Standard: DIN 6885.1:1968 I [b, t] (mm) 8.00 Mean roughness (µm)) [y] [da [di] ith end milli Default 0 4.100 [Rz] Key ng cutte	er	20.000 25.000 0.000 1 8.000		
0		- nnion/(Compro	onion Por	ding Toroio	n Shooring
Load: (N) (Nm) Mean value [Fzdm, Mbm, Amplitude [Fzda, Mba, Maximum value[Fzdmax, Mb Cross section, moment of res [A, Wb, Wt, A]	, Tm, Fqm] Ta, Fqa] omax, Tmax sistance: (m 4!	0.000 0.000 0.7 Fqmax 1m ²) 90.8741	0.000 0.007 <] 0.00 533.98	ssion Ber 60.000 60.000 0 0.013 13067.96	0.000 0.042 204.000 2 490.874	n Shearing 0.071
Stresses: (N/mm²) [ozdm, obm, tm, tqm] (N/mn [ozda, oba, ta, tqa] (N/mm²) [ozdmax,obmax,tmax,tqmax	n²) ‹] (N/mm²)	0.000 0.000 0.000	0.000 0.005 0.008	19.557 19.557 66.494	0.000 0.000 0.000	
Technological size influence	[K1(σB)] [K1(σS)]			1.000 0.975		
	Te	ension/(Compre	ssion Ber	nding Torsio	n
Notch effect coefficient [dB] (mm) = 40.0 Geometrical size influence Geometrical size influence Notch effect coefficient Geometrical size influence Influence coefficient surface Roughness factor is included Surface stabilization factor Total influence coefficient	[ß(dB)] [K3(d)] [ß] [K2(d)] [K2(d)] roughness[i l into the no [KV] [K]	2.100 0.974 0.964 2.078 1.000 KF] ttch effe 1.000 2.078	2.100 0.974 0.964 2.078 0.920 1.000 ct coeff 1.000 2.260	1.300 0.991 0.987 1.295 0.920 1.000 icient 1.000 1.409	1.000	
Present safety for endurance Equivalent mean stress (N/m Equivalent mean stress (N/m	e limit: Im²) Im²)		[σm\ [τm\	/] 33.874 /] 19.557		
Fatigue limit of part (N/mm ²) Influence coefficient of mean Permissible amplitude (N/mn Permissible amplitude (N/mn Effective Miner sum Density Load spectrum factor Safety against fatigue Required safety against fatig	[σWK] (stress sens [ψσK] n²) [σADK] n²) [σANK] [DM] [V] [KKoll] [S] ue	69.772 sitivity. 0.107 0.007 0.300 0.000 1.000	0.124 0.039 0.039 0.300 0.000 1.000 [Smi	78.096 0.122 69.625 69.625 0.300 0.000 1.000 3.260 m] 1.200		

Result (%)	[S/Smin]			271.7		
Present safety for proof against exceed of y Static notch sensitivity factor Increase coefficient Yield stress of part (N/mm ²) Safety yield stress Required safety Result (%)	ield point: [K2F] [vF] [oFK] 2: [S] [Smin] [S/Smin]	1.000 1.000 29.0792	1.200 1.000 74.895	1.200 1.000 158.710 2.387 1.200 198.9		
Cross section 'B ' Shoulde	er with relie	ef groov	/e			
Comment Position (Y-Coordinate) (mm External diameter (mm) Inner diameter (mm) Notch effect [D, d, D1, r, t11 (mm) 30) [y] [da [di]] Shou 25 000	ulder wit	27.000 25.000 0.000 th relief g	roove 300	
Shape B		1	0100	0.000		
Mean roughness (µm)	[Rz	:]		8.000		
Load: (N) (Nm) Mean value [Fzdm, Mbm, Amplitude [Fzda, Mba, Maximum value[Fzdmax, Mb Cross section, moment of res [A, Wb, Wt, A]	Te Tm, Fqm] Ta, Fqa] max, Tmax sistance: (m 4(ension/0 0.000 0.000 , Fqmax m ²) 67.5951	Compre: 0.000 0.007 (] 0.00 426.16	ssion Ber 60.000 60.000 0 0.012 42852.32	nding Torsic 0.000 0.042 204.000 7 467.595	on Shearing 0.071
Stresses: (N/mm²) [σzdm, σbm, τm, τqm] (N/mn [σzda, σba, τa, τqa] (N/mm²) [σzdmax,σbmax,τmax,τqmax	1²) ː] (N/mm²)	0.000 0.000 0.000	0.000 2 0.005 2 0.008	21.035 21.035 71.521	0.000 0.000 0.000	
Technological size influence	[K1(σB)] [K1(σS)]			1.000 0.975		
	Te	ension/C	Compre	ssion Ber	nding Torsic	n
Stress concentration factor References stress slope Notch sensitivity factor Notch effect coefficient Geometrical size influence Influence coefficient surface Surface stabilization factor Total influence coefficient	[α] [G'] [ß] [K2(d)] roughness[i [KV] [K]	2.511 3.178 1.398 1.797 1.000 KF] 1.000 1.851	2.277 3.178 1.398 1.630 0.920 0.949 1.000 1.826	1.639 1.437 1.267 1.293 0.920 0.949 1.000 1.436	0.971	
Present safety for endurance Equivalent mean stress (N/m Equivalent mean stress (N/m	e limit: ım²) ım²)		[σm\ [τm\	/] 36.434 /] 21.035		
Fatigue limit of part (N/mm ²) Influence coefficient of mean Permissible amplitude (N/mm Effective Miner sum Density Load spectrum factor Safety against fatigue Required safety against fatig Result (%)	[σWK] stress sens [ψσK] n ²) [σADK] [DM] [V] [KKoll] [S] ue [S/Smin]	78.357 9 sitivity. 0.122 0.007 0.007 0.300 0.000 1.000	98.602 0.159 0.041 0.041 0.300 0.000 1.000 [Smi	76.604 0.119 68.454 68.454 0.300 0.000 1.000 3.030 in] 1.200 252.5		
Description						

Present safety

for proof against exceed of yield point:

1.0001.2001.2001.1001.1001.000

Safaty viold strass		51.907	302.384	158.710	Q	
Required safety	[Smin]			1.20	9 0	
Result (%)	[S/Smin]			184.9		
Cross section 'C ' Should	r					
Comment	F1					
Position (Y-Coordinate) (mm)	[y]			97.00	0	
External diameter (mm)	[da [da	a] I		30.00	0	
Notch effect	Įui	ı Shoi	ulder	0.00	0	
[D, r, t] (mm) 35.0	000 0.500	2.500				
Mean roughness (µm)	[R:	z]		8.00	0	
	т	ension/(Compre	ssion Be	endina Tors	ion Shearing
Load: (N) (Nm)						
Mean value [Fzdm, Mbm,]	[m, Fqm]	0.0	0.0	60.0	0.0	
Amplitude [Fzda, Mba, Maximum value[Fzdmax, Mb	⊺a, ⊢qaj max. Tmax	0.0 . Foma:	35.Z xl 0.0	60.0) 59.9	204.0	1302.0
Cross section, moment of res	sistance: (n	יין, אר 1m²)			20.00	100210
[A, Wb, Wt, A]	7	06.9 26	650.7 5	301.4	706.9	
Stresses: (N/mm²)						
[σzdm, σbm, τm, τqm] (N/mn	1²)	0.000	0.000	11.318	0.000	
[ozda, oba, ta, tqa] (N/mm²) [ozdmax obmax tmax tomax	1 (N/mm²)	0.000	13.289	11.318 38.480	1.445	
נסבמוומא,סטוומא,ווומא,ווומא,וקוומא] (14) (11))	0.000	22.002	00.400	2.400	
Ta ala ai a ai a ai a i a fluca a a				4 00	0	
rechnological size influence	$[K1(\sigma B)]$			0.97	0 5	
	[[(((00)]			0.01	•	
	т	oncion/	Compro	onion Pr	anding Toro	ion
	I	ension/	Compre	SSION DE	ending tors	ion
Stress concentration factor	[α]	3.006	2.736	1.848		
References stress slope	[G']	5.020	5.020	2.300		
Notch effect coefficient	[[]] [ß]	2.004	1.824	1.381		
Geometrical size influence	[K2(d)]	1.000	0.907	0.907		
Influence coefficient surface	roughness[KF]	0.949	0.949	0.97	1
Surface stabilization factor	נגען נגו	1.000	1.000	1.000		
	[14]	2.000	2.004	1.002		
Present safety for endurance	limit:				•	
Equivalent mean stress (IN/m	m²)		Įσm	VI 19.60	3	
Equivalent mean stress (N/m	m²)		[tm]	vi 11 31	8	
Equivalent mean stress (N/m	m²)		[тт)	v] 11.31	8	
Equivalent mean stress (N/m Fatigue limit of part (N/mm²)	m²) [σWK]	70.464	(דm) 87.209	V] 11.31 70.881	8	
Equivalent mean stress (N/m Fatigue limit of part (N/mm²) Influence coefficient of mean	m²) [σWK] stress sen [wσK]	70.464 sitivity.	[τm ['] 87.209 0.138	V] 11.31 70.881 0 109	8	
Equivalent mean stress (N/m Fatigue limit of part (N/mm²) Influence coefficient of mean Permissible amplitude (N/mn	m²) [σWK] stress sen [ψσK] η²) [σADK]	70.464 sitivity. 0.108 0.013	[τm [\] 87.209 0.138 72.475	V] 11.31 70.881 0.109 63.903	8	
Equivalent mean stress (N/m Fatigue limit of part (N/mm²) Influence coefficient of mean Permissible amplitude (N/mn Permissible amplitude (N/mn	m²) stress sen [ψσK] h²) [σADK] h²) [σANK]	70.464 sitivity. 0.108 0.013 0.013	[Tm' 87.209 0.138 72.475 72.475	V] 11.31 70.881 0.109 63.903 63.903	8	
Equivalent mean stress (N/m Fatigue limit of part (N/mm²) Influence coefficient of mean Permissible amplitude (N/mn Permissible amplitude (N/mn Effective Miner sum	m²) stress sen [ψσK] 1²) [σADK] 1²) [σANK] [DM]	70.464 sitivity. 0.108 0.013 0.013 0.300	[Tm' 87.209 0.138 72.475 72.475 0.300	V] 11.31 70.881 0.109 63.903 63.903 0.300	8	
Equivalent mean stress (N/m Fatigue limit of part (N/mm²) Influence coefficient of mean Permissible amplitude (N/mn Permissible amplitude (N/mn Effective Miner sum Density Load spectrum factor	m ²) stress sen [ψσK] n ²) [σADK] n ²) [σANK] [DM] [V] [KKoll]	70.464 sitivity. 0.108 0.013 0.013 0.300 0.000 1.000	[Tm' 87.209 0.138 72.475 72.475 0.300 0.000 1.000	V] 11.31 70.881 0.109 63.903 63.903 0.300 0.000 1.000	8	
Equivalent mean stress (N/m Fatigue limit of part (N/mm²) Influence coefficient of mean Permissible amplitude (N/mn Permissible amplitude (N/mn Effective Miner sum Density Load spectrum factor Safety against fatigue	m ²) stress sen [ψσK] ^{2°}) [σADK] ^{2°}) [σADK] [DM] [V] [KKoll] [S]	70.464 sitivity. 0.108 0.013 0.013 0.300 0.000 1.000	[Tm' 87.209 0.138 72.475 72.475 0.300 0.000 1.000	v] 11.31 70.881 0.109 63.903 63.903 0.300 0.000 1.000 3.92	8 3	
Equivalent mean stress (N/m Fatigue limit of part (N/mm ²) Influence coefficient of mean Permissible amplitude (N/mn Permissible amplitude (N/mn Effective Miner sum Density Load spectrum factor Safety against fatigue Required safety against fatig	m ²) stress sen [ψσK] r ²) [σADK] r ²) [σANK] [DM] [V] [KKoll] [S] ue	70.464 sitivity. 0.108 0.013 0.013 0.300 0.000 1.000	[Tm' 87.209 0.138 72.475 72.475 0.300 0.000 1.000 [Sm	v] 11.31 70.881 0.109 63.903 63.903 0.300 0.000 1.000 3.92 in] 1.20	8 3 0	
Equivalent mean stress (N/m Fatigue limit of part (N/mm²) Influence coefficient of mean Permissible amplitude (N/mn Permissible amplitude (N/mn Effective Miner sum Density Load spectrum factor Safety against fatigue Required safety against fatig Result (%)	m ²) stress sen [ψσK] n ²) [σADK] n ²) [σANK] [DM] [V] [KKoll] [S] ue [S/Smin]	70.464 sitivity. 0.108 0.013 0.013 0.300 0.000 1.000	[Tm' 87.209 0.138 72.475 72.475 0.300 0.000 1.000 [Sm	v] 11.31 70.881 0.109 63.903 63.903 0.300 0.000 1.000 3.92 in] 1.20 326.9	8 3 0	
Equivalent mean stress (N/m Fatigue limit of part (N/mm ²) Influence coefficient of mean Permissible amplitude (N/mn Permissible amplitude (N/mn Effective Miner sum Density Load spectrum factor Safety against fatigue Required safety against fatig Result (%) Present safety	m ²) stress sen [ψσK] ^{1²)} [σADK] ^{1²)} [σANK] [DM] [V] [KKoll] [S] ue [S/Smin]	70.464 sitivity. 0.013 0.013 0.300 0.000 1.000	[Tm' 87.209 0.138 72.475 72.475 0.300 0.000 1.000 [Sm	v] 11.31 70.881 0.109 63.903 63.903 0.300 0.000 1.000 3.92 in] 1.20 326.9	8 3 0	
Equivalent mean stress (N/m Fatigue limit of part (N/mm ²) Influence coefficient of mean Permissible amplitude (N/mn Permissible amplitude (N/mn Effective Miner sum Density Load spectrum factor Safety against fatigue Required safety against fatig Result (%) Present safety	m ²) [σWK] stress sen [ψσK] ²) [σADK] ²) [σADK] [DM] [V] [KKoll] [S] ue [S/Smin] eld point:	70.464 sitivity. 0.013 0.013 0.300 1.000	[Tm) 87.209 0.138 72.475 72.475 0.300 0.000 1.000 [Sm	v] 11.31 70.881 0.109 63.903 63.903 0.300 0.000 1.000 3.92 in] 1.20 326.9	8 3 0	
Equivalent mean stress (N/m Fatigue limit of part (N/mm²) Influence coefficient of mean Permissible amplitude (N/mn Permissible amplitude (N/mn Effective Miner sum Density Load spectrum factor Safety against fatigue Required safety against fatig Result (%) Present safety for proof against exceed of yi Static notch sensitivity factor Increase coefficient	m ²) [σWK] stress sen [ψσK] ²) [σADK] ²) [σADK] [DM] [V] [KKoll] [S] ue [S/Smin] eld point: [K2F] [vF]	70.464 sitivity. 0.108 0.013 0.300 0.000 1.000	[Tm) 87.209 0.138 72.475 72.475 0.300 0.000 1.000 [Sm 1.200 1.100	v] 11.31 70.881 0.109 63.903 63.903 0.300 0.000 1.000 3.92 in] 1.20 326.9	8 3 0	
Equivalent mean stress (N/m Fatigue limit of part (N/mm²) Influence coefficient of mean Permissible amplitude (N/mn Permissible amplitude (N/mn Effective Miner sum Density Load spectrum factor Safety against fatigue Required safety against fatig Result (%) Present safety for proof against exceed of yi Static notch sensitivity factor Increase coefficient Yield stress of part (N/mm²)	m ²) [σWK] stress sen [ψσK] n ²) [σADK] [²) [σANK] [DM] [V] [KKoll] [S] ue [S/Smin] eld point: [K2F] [γF] [σFK] 2	70.464 sitivity. 0.108 0.013 0.003 0.000 1.000 1.000 1.000 1.150 63.4413	[Tm) 87.209 0.138 72.475 72.475 0.300 0.000 1.000 [Sm 1.200 1.100 302.384	vj 11.31 70.881 0.109 63.903 63.903 0.300 0.000 1.000 3.92 in] 1.20 326.9 1.200 1.000 1.000	8 3 0	
Equivalent mean stress (N/m Fatigue limit of part (N/mm²) Influence coefficient of mean Permissible amplitude (N/mn Permissible amplitude (N/mn Effective Miner sum Density Load spectrum factor Safety against fatigue Required safety against fatig Result (%) Present safety for proof against exceed of yi Static notch sensitivity factor Increase coefficient Yield stress of part (N/mm²) Safety yield stress	m ²) [σWK] stress sen [ψσK] i ²) [σADK] [DM] [V] [KKoll] [S] ue [S/Smin] eld point: [K2F] [γF] [σFK] 2 [S]	70.464 sitivity. 0.108 0.013 0.001 0.000 1.000 1.000 1.150 63.4413	[Tm' 87.209 0.138 72.475 72.475 0.300 0.000 1.000 [Sm 1.200 1.100 302.384	vj 11.31 70.881 0.109 63.903 63.903 0.300 0.000 1.000 3.92 in] 1.20 326.9 1.200 1.000 1.000 158.710 3.94	8 3 0	

[γF]

Result (%)	[S/Smin]		328.5		
Cross section 'D ' Key Comment Position (Y-Coordinate) (mm External diameter (mm) Inner diameter (mm) Notch effect Number of keys Groove with manufactured w Standard: DIN 6885.1:1968 [b, t] (mm) 10.00 Mean roughness (µm)) [y] [da] [di] rith end millin Default 10 5.100 [Rz]	Key ig cutter nsion/Compre	120.000 35.000 0.000 1 8.000 ession Ber	nding Torsior	Shearing
Load: (N) (Nm) Mean value [Fzdm, Mbm, Amplitude [Fzda, Mba, Maximum value[Fzdmax, Mb Cross section, moment of re [A, Wb, Wt, A]	Tm, Fqm] (Ta, Fqa] (omax, Tmax, sistance: (mn 962	0.0 0.0 0.0 52.8 Fqmax] 0.0 n ²) 2.1 4209.2 8	60.0 60.0 76 0 89.8 2 3418.5 96	0.0 65.9 204.0	1302.0
Stresses: (N/mm²) [ozdm, obm, tm, tqm] (N/mm [ozda, oba, ta, tqa] (N/mm²) [ozdmax,obmax,tmax,tqmax	n²) (((N/mm²) (0.000 0.000 0.000 12.554 0.000 21.341	7.127 7.127 24.232	0.000 1.061 1.804	
Technological size influence	[K1(σB)] [K1(σS)]		1.000 0.975		
	Ter	nsion/Compre	ession Ber	nding Torsior	1
Notch effect coefficient [dB] (mm) = 40.0 Geometrical size influence Geometrical size influence Notch effect coefficient Geometrical size influence	[ß(dB)] 2 [K3(d)] 0 [K3(dB)] 0 [ß] 2 [K2(d)] 2	2.100 2.100 0.967 0.967 0.964 0.964 2.094 2.094 1.000 0.897	1.300 0.988 0.987 1.299 0.897		
Influence coefficient surface Roughness factor is included Surface stabilization factor Total influence coefficient	roughness[K I into the noto [KV] [K]	F] 1.000 ch effect coef 1.000 1.000 1.000 2.094 2.334	0 1.000 ficient 1.000 1.448	1.000	
Present safety for endurance Equivalent mean stress (N/m Equivalent mean stress (N/m	e limit: nm²) nm²)	[σm [τn	V] 12.345 ıV] 7.127		
Fatigue limit of part (N/mm ²) Influence coefficient of mean Permissible amplitude (N/mr Permissible amplitude (N/mr Effective Miner sum Density Load spectrum factor Safety against fatigue Required safety against fatig Result (%)	[σWK] 69 stress sensi [ψσK] (0 n²) [σADK] (0 [DM] (0 [V] (0 [KKoll] (1 [S] ue [S/Smin]	9.253 77.128 itivity. 0.106 0.120 0.019 68.989 0.300 0.300 0.300 0.300 1.000 1.000 [Sm	75.991 0.118 67.971 67.971 0.300 0.000 1.000 4.762 sin] 1.200 396.8		
Present safety for proof against exceed of y Static notch sensitivity factor Increase coefficient Yield stress of part (N/mm ²) Safety yield stress Required safety	ield point: [K2F] [γF] [σFK] 229 [S] [Smin]	1.000 1.200 1.000 1.000 9.079274.895	1.200 1.000 5158.710 5.838 1.200		
KISSsoft

Result (%)	[S/Smin]		486.5		
Cross section 'E ' Should	er with relie	ef groove			
Comment Position (Y-Coordinate) (mm) [v]		151,000		
External diameter (mm)	/ [ʃ]]	35.000		
Inner diameter (mm)	[di]	Shouldorwi	0.000 th roliof a	2001/0	
[D, d, D1, r, t1] (mm) 39.	000 34.400	35.000 0.80	0.0000	300	
Shape B	10-	1	0.000		
mean roughness (µm)	[R2	-]	8.000		
	Те	ension/Compre	ssion Ben	iding Torsio	n Shearing
Load: (N) (Nm) Mean value [Fzdm, Mbm,]	Tm. Faml	0.0 0.0	30.0	0.0	
Amplitude [Fzda, Mba,	Ta, Fqa]	0.0 54.6	30.0 52	28.1	
Maximum value[Fzdmax, Mt	omax, Tmax sistance: (m	, Fqmax] 0.0) 92.8 1	102.0	897.7
[A, Wb, Wt, A]	92	29.4 3996.5 7	992.9 92	29.4	
Stresses: (N/mm ²)					
[ozdm, obm, tm, tqm] (N/mr	n²)	0.000 0.000	3.753	0.000	
[ozdmax,obmax,tmax,tqmax	k] (N/mm²)	0.000 13.033	12.761	1.288	
Technological size influence	[K1(σB)]		1.000		
-	[K1(σS)]		0.975		
	Te	ension/Compre	ssion Ben	iding Torsio	n
Stress concentration factor	[α]	2.593 2.389	1.666		
References stress slope	[G']	3.202 3.202	1.437		
Notch sensitivity factor	[n] [ß]	1.399 1.399 1.399	1.267		
Geometrical size influence	[K2(d)]	1.000 0.897	0.897		
Influence coefficient surface	roughness[KF] 0.949 1 000 1 000	0.949	0.971	
Total influence coefficient	[K]	1.907 1.957	1.495		
Present safety for endurance	e limit [.]				
Equivalent mean stress (N/m	nm²)	[ơm	V] 6.501		
Equivalent mean stress (N/m	nm²)	[TM	V] 3.753		
Fatigue limit of part (N/mm ²)	[σWK]	76.034 91.997	73.581		
Influence coefficient of mean	stress sens	sitivity.	0 11 4		
Permissible amplitude (N/mr	ιψοκι n²) [σADK]	0.039 85.999	66.061		
Permissible amplitude (N/mr	n²) [σANK]	0.039 85.999	66.061		
Effective Miner sum Density	[DM] [v]	0.300 0.300	0.300		
Load spectrum factor	[KKoll]	1.000 1.000	1.000		
Safety against fatigue Required safety against fatio	[S] we	[Sm	5.930 inl 1 200		
Result (%)	[S/Smin]	Įom	494.2		
Present safety					
for proof against exceed of y	ield point:				
Static notch sensitivity factor	[K2F]	1.000 1.200	1.200		
Yield stress of part (N/mm ²)	ιγΓ] [σFK] 2	51.987302.384	158.710		
Safety yield stress	[S]		8.995		
Result (%)	[Smin] [S/Smin]		1.200 749.6		
	-				

KISSsoft

Cross section 'F' Shoulde	er with relie	f groov	/e			
Comment Position (Y-Coordinate) (mm) External diameter (mm) Inner diameter (mm) Notch effect [D, d, D1, r, t1] (mm) 39. Shape B Mean roughness (µm)) [y] [da] [di] 000 34.400 [Rz	 Shou 35.000]	ılder wit 0.80	257.000 35.000 0.000 h relief 0 0 8.000	0 0 0 groove).300	
Load: (N) (Nm) Mean value [Fzdm, Mbm, 1 Amplitude [Fzda, Mba, Maximum value[Fzdmax, Mb Cross section, moment of res [A, Wb, Wt, A]	Te [m, Fqm] Ta, Fqa] max, Tmax, sistance: (m 92	ension/C 0.0 0.0 Fqmax m ²) 29.4 39	Compres 0.0 (74.1 (] 0.0 96.5 79	ssion Be 30.0 30.0 { 126.0 992.9 {	ending Torsic 0.0 528.1 102.0 929.4	on Shearing 897.7
Stresses: (N/mm²) [σzdm, σbm, τm, τqm] (N/mn [σzda, σba, τa, τqa] (N/mm²) [σzdmax,σbmax,τmax,τqmax	1²)] (N/mm²)	0.000 0.000 0.000 \$	0.000 18.539 31.516 ⁻	3.753 3.753 12.761	0.000 0.758 1.288	
Technological size influence	[K1(σB)] [K1(σS)]			1.000 0.975	0 5	
	Te	ension/C	Compres	ssion Be	ending Torsic	on
Stress concentration factor References stress slope Notch sensitivity factor Notch effect coefficient Geometrical size influence Influence coefficient surface Surface stabilization factor Total influence coefficient	[α] [G'] [ß] [K2(d)] roughness[ŀ [KV] [K]	2.593 3.202 1.399 1.854 1.000 (F] 1.000 1.907	2.389 3.202 1.399 1.707 0.897 0.949 1.000 1.957	1.666 1.437 1.267 1.314 0.897 0.949 1.000 1.495	0.971	
Present safety for endurance Equivalent mean stress (N/m Equivalent mean stress (N/m	limit: m²) m²)		[σm [\] [τm [\]	V] 6.50 [,] V] 3.753	1 3	
Fatigue limit of part (N/mm ²) Influence coefficient of mean Permissible amplitude (N/mn Permissible amplitude (N/mn Effective Miner sum Density Load spectrum factor Safety against fatigue Required safety against fatig Result (%)	[σWK] 7 stress sens [ψσK] n ²) [σADK] n ²) [σANK] [DM] [V] [KKoll] [S] ue [S/Smin]	76.034 § sitivity. 0.118 0.039 § 0.039 § 0.300 0.000 1.000	0.146 37.502 (37.502 (37.502 (0.300 0.000 1.000 [Smi	73.581 0.114 36.061 36.061 0.300 0.000 1.000 4.555 n] 1.200 379.9	9 0	
Present safety for proof against exceed of yi Static notch sensitivity factor Increase coefficient Yield stress of part (N/mm ²) Safety yield stress Required safety Result (%)	eld point: [K2F] [γF] [σFK] 25 [S] [Smin] [S/Smin]	1.000 1.100 51.9873	1.200 1.100 02.384 ⁻	1.200 1.000 158.710 7.597 1.200 633.1	7 0	

Remarks: - The shearing force is not considered in the analysis specified in DIN 743.

 Cross section with interference fit: The notching factor for the light fit case is no longer defined in DIN 743. The values are imported from the FKM-Guideline..

lines: 928

Na osovini se nalaze 4 ovakva lezaja. 2 su u sklopu zupcanika i utega, a 2 su u sklopu remenice i utega. Upisanim vecim opterecenjem na lezaj, ide se na stranu sigurnosti.

Matteo Ivan Nikolic FSB

January 29, 2021

1. Abstract

Deep groove ball bearing

SKF Explorer Popular item

Designation	Life model	
	Basic	SKF life
	L _{10h}	L _{10mh}
	h	
• <u>6008-2RS1</u>	1220	6140

* SKF rating life (L_{10mh}) for steel-steel bearings; GBLM load based life (L_{10GMh}) for hybrid bearings

2. Input

2.1. Bearing data

Designation	Bearing type	Principal dimensions			Basic load	ratings	Fatigue load limit		
					Dynamic	Static			
		d	D	В	С	C ₀	P _u		
		mm			kN				
► <u>6008-2RS1</u>	Deep groove ball bearing	40.0	68.0	15.0	17.8	11.0	0.49		
Designation	Speed rating	js		Clea	rance class				
	Reference	Lim	iting						
	n _{ref}	n _{lim}	I						
	r/min								
► <u>6008-2RS1</u>		630	0.0	Norr	nal				

SKF Bearing Select

2021-01-29

2.2. Loads, Speed and Temperature

	Forces		Speed	Temperature	Case weight		
	Radial (F_r)	Axial (F_a)		Inner ring	Outer ring		
	kN		r/min	°C			
			1	1		1	
LC1	4.0	0.2	1200.0	70	65	1	

- Maximum temperature is used for calculating the actual viscosity, kappa, a_{SKF} and SKF rating life.

- Mean temperature is used for calculating bearing friction and power loss.

2.3. Lubrication

Designation	Lubricant	Effective EP additives
	Name	
► <u>6008-2RS1</u>	MT33	False
Designation	Contomination	
Designation	Contamination	
Designation	Method	
Designation	Method	
Designation	Method	

3. Results

3.1. Bearing loads

Desig	nation	Load ratio	Equivalent dynamic load
		C/P	P kN
► <u>600</u>	08-2RS1	4.45	4.0

3.2. Bearing minimum load

Designation	Reaction	Reaction forces		
	Radial	Radial Axial F _r F _a F		
	F _r			
	kN			
	·			
► <u>6008-2RS1</u>	4.0	0.2	0.0711	у

3.3. Lubrication conditions

Designation	Operating	Operating viscosity			
	Actual	Rated	Rated @ 4 °C	d @ 40 K	
	ν	v ₁	v_{ref}		
	mm²/s				
► <u>6008-2RS1</u>	25.3	14.6	45.6	1.72	

SKF Bearing Select

2021-01-29

3.4. Bearing rating life

Designation	Bearing ratir	ng life	SKF life modification factor	Contamination factor	
	Basic	SKF			
	L _{10h} L _{10mh} ;		a _{skf}	η _c	
	h				
► <u>6008-2RS1</u>	1220	6140	5.02	0.82	

* SKF rating life (L_{10mh}) for steel-steel bearings; GBLM load based life (L_{10GMh}) for hybrid bearings

SKF Bearing Select

LIMITED WARRANTY : The SKF Bearing Select software tool of the SKF Company supports the calculation and selection of bearings. This software is provided 'as is' with out any warranty of any sort, implicitly as well as explicitly. Please note that the obtained results can be affected by many external parameters and/or the quality of the assumptions taken into account. The results obtained using this software must be validated by the user who accepts the fact that the use of this software and the exploitation of the obtained results are under the user's entire and sole responsibility. ® SKF is a registered trademark of the SKF Group. © SKF Group 2019.

B-B

10

Detalj G M 1:2

KULIST	e tresaca		1	MIN-ZR-01-01-00	-	546x424x308	66.77	
Mat	ica M6		10	DIN 6923	8	Vijci Kranjec	0.006	
Vijak	M6x30		10	DIN 24018	8.8	Vijci Kranjec	0.012	
Podložna	n pločica M6		10	DIN 9021	A2	Vijci Kranjec	0.003	
Lim p	odloške		2	MIN-ZR-01-06-00	S235JR	200x20x2	0.06	
Gumena	podloška		2	-	-	-	2.18	
Uskoč	nik $Ø$ 12		1	DIN 471	Fe 360 B	Vijci Kranjec	0.064	
Uskoč	nik $Ø$ 16		1	DIN 471	Fe 360 B	Vijci Kranjec	0.098	
Svornjal	k hvataljke		1	MIN-ZR-01-05-00	S355J0	Ø 20x39	0.06	
Svornj	ak štapa		1	MIN-ZR-01-04-00	S355J0	Ø 16x37	0.03	
Hidrauli	čki cilindar		1	CDM1MP3_25_18 _250A2X_B11CK _UMWW	_	Bosch Rexroth	1.71	
Pomični	dio štapa		1	MIN-ZR-01-03-00	-	405x200x156	3.73	
Zavareni sklop	dohvatnog	štapa	1	MIN-ZR-01-02-00	-	2440x265x227	27.80	
oz. Naziv pozicije				Broj crteža Norma	Materijal	Sirove dimenzije Proizvođač	Masa	
oj naziva – code		Datum		lme i prezime	ezime Potpis			
	Projektirao	15.2.2021.	Matt	eo Ivan Nikolić		(O)		
	Razradio	15.2.2021.	Matt	eo Ivan Nikolić		FSB Z	laoreb	
	Crtao	15.2.2021.	Matt	eo Ivan Nikolić			5	
	Pregledao	17.2.2021.	Neve	n Pavković				
	Voditelj rada	17.2.2021.	Neve	n Pavković				
50 – tolerancije	Objekt:				Objekt broj:			
	TRAKTORSKI	PRIKLJUČA	K ZA T	REŠNJU STABLA	R. N. broj:			
	Napomena:				^{Smjer} Konstr	ukcijski 🛛 💥	Kopija	
	Materijal:			Masa: 110 kg	ZAVR	ŠNI RAD		
	Mjerilo origin	Naziv:	T	RESAČ		Pozicija: Fo	rmat: A2	
	1:10	Crtei	ž broj:	MIN-ZR-01-00-	00	Lis	t: 1	
	Mat Vijak Podložna Lim p Gumena Uskoč Uskoč Svornjak Svornj Hidrauli Pomični Zavareni sklop Naziv oj naziva - code	Matica M6 Vijak M6x30 Podložna pločica M6 Lim podloške Gumena podloška Uskočnik Ø 12 Uskočnik Ø 16 Svornjak hvataljke Svornjak štapa Hidraulički cilindar Pomični dio štapa Zavareni sklop dohvatnog Naziv pozicije oj naziva - code Projektirao Razradio Crtao Pregledao Voditelj rada 30 - tolerancije Objekt: TRAKTORSKI Napomena: Materijal: Mjerilo origin 1:10	Matica M6 Vijak M6x30 Podložna pločica M6 Lim podloške Gumena podloška Uskočnik Ø 12 Uskočnik Ø 16 Svornjak hvataljke Svornjak štapa Hidraulički cilindar Pomični dio štapa Zavareni sklop dohvatnog štapa Naziv pozicije oj naziva - code Projektirao Progledao 15.2.2021. Pregledao 17.2.2021. Voditelj rada Voditelj rada Napomena: Materijal: Mjerilo originala 11:10	Matica M6 10 Vijak M6x30 10 Podložna pločica M6 10 Lim podloške 2 Gumena podloška 2 Uskočnik Ø12 1 Uskočnik Ø16 1 Svornjak hvataljke 1 Svornjak štapa 1 Hidraulički cilindar 1 Pomični dio štapa 1 Zavareni sklop dohvatnog štapa 1 Naziv pozicije Kol. oj naziva - code Datum Projektirao 15.2.2021. Matt Razradio 15.2.2021. Matt Pregledao 17.2.2021. Neve Voditelj rada 17.2.2021. Neve Materijal: Materijal: Materijal: Tf Materijal: Tf	Matica M6 10 DIN 6923 Vijak M6x30 10 DIN 24018 Podložna pločica M6 10 DIN 9021 Lim podloške 2 MIN-ZR-01-06-00 Gumena podloška 2 - Uskočnik Ø12 1 DIN 471 Uskočnik Ø16 1 DIN 471 Svornjak hvataljke 1 MIN-ZR-01-05-00 Svornjak i stapa 1 MIN-ZR-01-05-00 Hidraulički cilindar 1 CDMMP3_25_18 Hidraulički cilindar 1 Z50A2X_B11CK UwWw Pomični dio štapa 1 MIN-ZR-01-02-00 Zavareni sklop dohvatnog štapa 1 MIN-ZR-01-02-00 Naziv pozicije Kol. Broj crteža Norma oj naziva - code Datum Ime i prezime Projektirao 15.2.2021. Matteo Ivan Nikolić Razradio 15.2.2021. Matteo Ivan Nikolić Crtao 15.2.2021. Neven Pavković Voditelj rada 17.2.2021. Neven Pavković Objekt: TRAKTORSKI PRIKLJUČAK ZA TREŠNJU STABLA Napomena: Materijal:	Matica M6 10 DIN 6923 8 Vijak M6x30 10 DIN 24018 8.8 Podložna pločica M6 10 DIN 9021 A2 Lim podloške 2 MIN-ZR-01-06-00 S235JR Gumena podloška 2 - - Uskočnik Ø 12 1 DIN 471 Fe 360 B Uskočnik Ø 16 1 DIN 471 Fe 360 B Svornjak hvataljke 1 MIN-ZR-01-05-00 S355JO Svornjak štapa 1 MIN-ZR-01-04-00 S355JO Svornjak štapa 1 MIN-ZR-01-03-00 - Hidraulički cilindar 1 250A2X_B11CK - UMWW Pomični dio štapa 1 MIN-ZR-01-02-00 - Zavareni sklop dohvatnog štapa 1 MIN-ZR-01-02-00 - Naziv pozicije Kol. Broj crteža Norma Materijal Oj naziva - code Projektirao 15.2.2021. Mateo Ivan Nikolić Crtao 15.2.2021. Matteo Ivan Nikolić - Crtao 15.2.2021. Neven Pavković - Voditelj rada 17.2.2021. Neven Pavković - Objekt: TRAKTORSKI PRIKLJUČAK ZA TREŠNJU STABLA R. N. broj: Smjer <td>Matica M6 10 DIN 6923 8 Vijci Kranjec Vijak M6x30 10 DIN 24018 8.8 Vijci Kranjec Podložna pločica M6 10 DIN 9021 A2 Vijci Kranjec Lim podloške 2 MIN-ZR-01-06-00 S235JR 200x20x2 Gumena podloška 2 - - - Uskočnik Ø 12 1 DIN 471 Fe 360 B Vijci Kranjec Uskočnik Ø 16 1 DIN 471 Fe 360 B Vijci Kranjec Svornjak hvataljke 1 MIN-ZR-01-05-00 S355J0 Ø 20x39 Svornjak štapa 1 MIN-ZR-01-04-00 S355J0 Ø 16x37 Hidraulički cilindar 1 25042X_B1TCK </td>	Matica M6 10 DIN 6923 8 Vijci Kranjec Vijak M6x30 10 DIN 24018 8.8 Vijci Kranjec Podložna pločica M6 10 DIN 9021 A2 Vijci Kranjec Lim podloške 2 MIN-ZR-01-06-00 S235JR 200x20x2 Gumena podloška 2 - - - Uskočnik Ø 12 1 DIN 471 Fe 360 B Vijci Kranjec Uskočnik Ø 16 1 DIN 471 Fe 360 B Vijci Kranjec Svornjak hvataljke 1 MIN-ZR-01-05-00 S355J0 Ø 20x39 Svornjak štapa 1 MIN-ZR-01-04-00 S355J0 Ø 16x37 Hidraulički cilindar 1 25042X_B1TCK	

C-C

11

12

 \triangleleft

						KM2/32M2LAY00					
32	32 Hidraulicki motor					4DL1	-		Kracht		6.07
31	Pero hidromotora					DIN 6885	S355	Vij	jci Kranje	с	0.002
30	Spojka KTR GS 28					-	-		KTR		0.15
29	Zavareni sklop kućišta				1	MIN-ZR-01-01-03	-	42	4x308x27	² 0	19.70
28	Poklopac kućišta					MIN-ZR-01-01-04	S235JR	4()7x270x5	5	5.09
27		Mati	ica M10		2	ISO 4034	8	Vijci Kranjec			0.01
26		Nosač h	idromotora		1	MIN-ZR-01-01-05		17	0x165x114	+	2.15
25	Po	oklopac le	ežaja ECW 2	06	1	-	_		SKF		0.02
24		Ležaj FY	WK 30 YTH		2	-	_		SKF		1.40
23		Zupčas	sti remen		1	HTD-640-8M-30	_	Co	ontinenta	ι	0.07
22		Pogonsk	a remenica		1	MIN-ZR-01-01-06	S235JR	(otin 106x50		2.04
21		Usko	čnik Ø35		2	DIN 471	Fe 360 B	Vi	jci Kranje	۲C	0.002
20		Pogonsł	ki zupčanik		1	MIN-ZR-01-01-07	C45	(otin 167x50		4.81
19		F	^р его		1	DIN 6885	S355		8x7x28		0.003
18		F	°его		2	DIN 6885	S355		10x8x32		0.003
17		Vratil	o kućišta		1	MIN-ZR-01-01-01	E335	(⊅40x387		2.75
16		Gonjena	a remenica		1	MIN-ZR-01-01-08	S235JR	(⊅106X50		1.60
15		Vijak	M8x65		8	ISO 4016	8.8	Vi	jci Kranje	с	0.04
14		Podložna	a pločica M8		8	ISO 7089	A2	Vi	jci Kranje	с	0.002
13		Uteg	tresača		2	MIN-ZR-01-01-09	E335	160x160x50			5.01
12		Gonjen	i zupčanik		1	MIN-ZR-01-01-03	C45	otin 167x50			4.41
11		Mati	ica M10		12	ISO 4161	8	Vijci Kranjec			0.015
10		Mat	ica M12		4	ISO 4161	8	Vijci Kranjec			0.02
9		Vijak	M8x20		8	ISO 4162	8.8	Vijci Kranjec			0.03
8		Vijak	M10x30		4	ISO 4162	8.8	Vijci Kranjec			0.04
7		Vijak	M10x46		10	ISO 4162	8.8	Vijci Kranjec			0.05
6		Vijak	M12x55		4	ISO 4162	8.8	Vijci Kranjec			0.09
5	Go	rnji dio o	slonca osov	ine	2	MIN-ZR-01-01-10	S235JR	1:	24x39x30		0.59
4	(Odstojna i	čahura ležaj	а	2	MIN-ZR-01-01-11	S235JR		Ø44x34		0.07
3		Ležaj 6	008_2RS1		4	-	-		SKF		195.28
2	0	dstojna č	ahura oslon	a	2	MIN-ZR-01-01-12	E335		Ø44x49		0.10
1		Osovin	a kućišta		1	MIN-ZR-01-01-02	E335	(⊅45x260		2.62
Poz.		Naziv	pozicije		Kol.	Broj crteža Norma	Materijal	Siro P	ve dimen: roizvođač	zije	Masa
Вг	oj naziva	– code	Desistations	Datum	M 11	lme i prezime	Potpis		$\overline{\mathbb{A}}$		
			Razradio	15.2.2021.	Matt	eo Ivan Nikolić eo Ivan Nikolić				Za	qreb
			Crtao Prenledao	15.2.2021.	Matt Neve	eo Ivan Nikolić n Pavković					2
			Voditelj rada	11.2.2021	Neve	n Pavković					
	<u>sU – foler</u>	ancije	Objekt: T	RESAČ			Objekt broj:				
			Napomena:				K. N. broj: ^{Smjer}			K	opija
							Konstr	ukcijsł	ki		
			Materijal:	NI '		Masa: 99 kg	ZAVR	SNI R	AU		
			$\left \bigcirc \oplus \right $		1/11		د ۷ بر ۲		Pozicija: 1	Form	at: A1
			Mjerilo origin	ala	ĸUl	LISIE IRES	SALA			Listo	va: 2
			1:2	Crtež	Ьгој:	MIN-ZR-01-00-	00			List:	1
I	I				 1		40 50	60	70 8		90 1

 ∇

by CADLab

1 5 4 5 5 1 124 10 5 5 5 1 124 10 5 6 6 1 124 10 6 6 6 1 124 10 10 6 6 1 12 10 10 10 10 10 1 10		Detalj C M 1:5						
1 Image: State in the state in			5					5 14 6 15 7 6
12 1 15 Lim oslonca nosača tresača 1 MIN-ZR-02-01-14 S235 JR 61x44x36 0 14 Ušica oslonca nosača tresača 2 MIN-ZR-02-01-13 S235 JR 103x100x5 0 13 Nosač spremnika 1 1 MIN-ZR-02-01-13 S235 JR 45x30x165 0 12 Nosač spremnika 2 1 MIN-ZR-02-01-10 S235 JR 40x30x665 1 10 Nosač spremnika 2 1 MIN-ZR-02-01-10 S235 JR 40x30x665 1 10 Nosač spremnika 2 1 MIN-ZR-02-01-09 S235 JR 300x320x150 3 9 Svornjak trospojne veze 2 MIN-ZR-02-01-07 S235 JR 80x40x30 0 6 Poprečni profil 3 2 MIN-ZR-02-01-05 S235 JR 80x40x320 1 5 Poprečni profil 3 2 MIN-ZR-02-01-03 S235 JR 80x40x400 1 4 Vertikalni profil k 1 MIN-ZR-02-01-03 S235 JR 80x40x400 0								_4_ _13_ 8_ 9_ 10_
15 Lim ostonca nosača tresača 1 MN-ZR-02-01-14 S235JR 61%44x35 0 14 Ušica oslonca nosača tresača 2 MIN-ZR-02-01-13 S235JR 103x100x5 0 13 Nosač spremnika 1 1 MIN-ZR-02-01-12 S235JR 45x30x165 0 12 Nosač spremnika 2 1 MIN-ZR-02-01-11 S235JR 45x30x165 0 10 Nosač spremnika 2 1 MIN-ZR-02-01-01 S235JR 40x30x665 1 10 Nosač hidrauličke pumpe 1 MIN-ZR-02-01-00 S235JR 300x320x150 3 9 Svornjak trospojne veze 2 MIN-ZR-02-01-07 S235JR 80x40x3 0 6 Poprečni profil 3 2 MIN-ZR-02-01-06 S235JR 80x40x320 1 5 Poprečni profil 4 1 MIN-ZR-02-01-00 S235JR 80x40x400 1 4 Vertikalni profil 6kvira 2 MIN-ZR-02-01-03 S235JR 80x40x120 0 2 Nosač oslon								12 1 3 2
14 Usica oslonca nosaca fresaca 2 Min-Zk-02-01-13 SZ35JR 103X100x5 0 13 Nosač spremnika 1 1 Min-ZR-02-01-12 S235JR 45x30x165 C 12 Nosač spremnika 2 1 Min-ZR-02-01-11 S235JR 45x30x165 C 11 Poprečni profil 2 1 Min-ZR-02-01-10 S235JR 40x30x665 1 10 Nosač hidrauličke pumpe 1 Min-ZR-02-01-09 S235JR 300x320x150 3 9 Svornjak trospojne veze 2 Min-ZR-02-01-08 S235JR 80x40x320 1 6 Poklopac nosača svornjaka 6 Min-ZR-02-01-07 S235JR 80x40x320 1 5 Poprečni profil 3 2 Min-ZR-02-01-05 S235JR 80x40x160 7 4 Vertikalni profil okvira 2 Min-ZR-02-01-05 S235JR 80x40x160 7 3 Nosač oslonca 1 2 Min-ZR-02-01-05 S235JR 80x40x160 C 4 Vertikalni	15	Lim oslonca nosača tresača			MIN-ZR-02-01-14 S235JR 6'		61x44x36	5 0.10
13 Nosač spremnika 1 1 Imme2n-20-01-12 32.53 /r 4.530x105 0 12 Nosač spremnika 2 1 MIN-ZR-02-01-11 \$2233 /r 45x30x165 0 11 Poprečni profil 2 1 MIN-ZR-02-01-10 \$2233 /r 40x30x665 1 10 Nosač hidrauličke pumpe 1 MIN-ZR-02-01-00 \$235 /r 40x30x665 1 9 Svornjak trospojne veze 2 MIN-ZR-02-01-08 \$235 /r 40x69 0 8 Poklopac nosača svornjaka 6 MIN-ZR-02-01-08 \$235 /r 80x40x32 1 6 Poprečni profil 3 2 MIN-ZR-02-01-05 \$235 /r 80x40x320 1 5 Poprečni profil 4 1 MIN-ZR-02-01-00 \$235 /r 80x40x40x00 7 3 Nosač donjeg oslonca 2 2 MIN-ZR-02-01-03 \$235 /r 80x40x120 0 2 Nosač oslonca 1 2 MIN-ZR-02-01-02 \$235 /r 80x40x120 0 1 Poprečni profil 1	14	Ušica oslonca nosača tresača			MIN-ZR-02-01-13	S235JR	103x100x5	5 0.24 5 0.42
12 Nosač apreminka 12 1 Nim 2.0.001 2235, R 40x30x665 1 11 Poprečni profil 2 1 MIN-ZR-02-01-00 \$235, R 40x30x665 1 10 Nosač hidrauličke pumpe 1 MIN-ZR-02-01-09 \$235, R 300x320x150 3 9 Svornjak trospojne veze 2 MIN-ZR-02-01-08 \$235, R Ø 40x69 0 8 Poklopac nosača svornjaka 6 MIN-ZR-02-01-07 \$235, R 80x40x3 0 6 Poprečni profil 3 2 MIN-ZR-02-01-06 \$235, R 80x40x320 1 5 Poprečni profil 4 1 MIN-ZR-02-01-00 \$235, R 80x40x400 1 4 Vertikalni profil okvira 2 MIN-ZR-02-01-00 \$235, R 80x40x120 0 2 Nosač oslonca 1 2 MIN-ZR-02-01-03 \$235, JR 80x40x825 4 9 Svorač oslonca 1 2 MIN-ZR-02-01-01 \$235, JR 80x40x825 4 9 Poprečni profil 1 <td>12</td> <td colspan="3">Nosac spremnika 1</td> <td>MIN_ZR_02_01_12</td> <td>S235JR S235 IR</td> <td>45x50x16</td> <td>5 0.42 5 0.42</td>	12	Nosac spremnika 1			MIN_ZR_02_01_12	S235JR S235 IR	45x50x16	5 0.42 5 0.42
10 Nosač hidrauličke pumpe 1 MIN-ZR-02-01-09 S235 JR 300x320x150 3 9 Svornjak trospojne veze 2 MIN-ZR-02-01-08 S235 JR Ø 40x69 0 8 Poklopac nosača svornjaka 6 MIN-ZR-02-01-07 S235 JR 80x40x3 0 7 Ušica trospojne veze 2 MIN-ZR-02-01-06 S235 JR 80x40x3 0 6 Poprečni profil 3 2 MIN-ZR-02-01-05 S235 JR 80x40x320 1 5 Poprečni profil 4 1 MIN-ZR-02-01-05 S235 JR 80x40x400 1 4 Vertikalni profil okvira 2 MIN-ZR-02-01-00 S235 JR 80x40x100 7 3 Nosač oslonca 1 2 MIN-ZR-02-01-02 S235 JR 80x40x120 0 2 Nosač oslonca 1 2 MIN-ZR-02-01-03 S235 JR 80x40x825 4 9 Pozicije Kol. Broj crteža Nosač Nosač Sirove dimenzije M 1 Pop	11	Ponrečni nrofil 2			MIN-ZR-02-01-10	S235JR	40x30x66	5 1.36
9 Svornjak trospojne veze 2 MIN-ZR-02-01-00 S235JR Ø 40x69 C 8 Poklopac nosača svornjaka 6 MIN-ZR-02-01-07 S235JR 80x40x3 C 7 Ušica trospojne veze 2 MIN-ZR-02-01-06 S235JR 55x50x10 C 6 Poprečni profil 3 2 MIN-ZR-02-01-05 S235JR 80x40x320 1 5 Poprečni profil 4 1 MIN-ZR-02-01-05 S235JR 80x40x4000 1 4 Vertikalni profil okvira 2 MIN-ZR-02-01-00 S235JR 80x40x120 C 2 Nosač donjeg ostonca 2 2 MIN-ZR-02-01-03 S235JR 80x40x120 C 2 Nosač ostonca 1 2 MIN-ZR-02-01-02 S235JR 80x40x825 4 Poz. Naziv pozicije Kol. Broj retža Norma Materijal Sirove dimenzije Proizvođač M Broj naziva - code Datum Ime i prezime Projektirao Potpis Sirove dimenzije R. N. broji Sirove dimenzije R. N. broji	10	Nosač hidrauličke numne			MIN-ZR-02-01-09	S235JR	300x320x1	50 3.29
8 Poklopac nosača svornjaka 6 MIN-ZR-02-01-07 S235 JR 80x40x3 C 7 Ušica trospojne veze 2 MIN-ZR-02-01-06 S235 JR 55x50x10 C 6 Poprečni profil 3 2 MIN-ZR-02-01-06 S235 JR 80x40x320 1 5 Poprečni profil 4 1 MIN-ZR-02-01-00 S235 JR 80x40x400 1 4 Vertikalni profil okvira 2 MIN-ZR-02-01-03 S235 JR 80x40x120 C 3 Nosač donjeg oslonca 2 2 MIN-ZR-02-01-03 S235 JR 80x40x120 C 2 Nosač oslonca 1 2 MIN-ZR-02-01-03 S235 JR 80x40x120 C 1 Poprečni profil 1 1 MIN-ZR-02-01-03 S235 JR 80x40x825 4 Poz. Naziv pozicije Kol. Broj cretža Norma Materijal Sirove dimenzije Proizvođač M 8 Broj naziva - code Datum Ime i prezime NoSIVA KONSTRUKCIJA Objekt broj: R. N. broj: FSB Zagi	9	Svornjak trospojne veze		2	MIN-ZR-02-01-08	S235JR	Ø40x69	0.34
7 Ušica trospojne veze 2 MIN-ZR-02-01-06 S235 JR 55x50x10 0 6 Poprečni profil 3 2 MIN-ZR-02-01-05 S235 JR 80x40x320 1 5 Poprečni profil 4 1 MIN-ZR-02-01-00 S235 JR 80x40x400 1 4 Vertikalni profil okvira 2 MIN-ZR-02-01-00 S235 JR 80x40x1400 7 3 Nosač donjeg oslonca 2 2 MIN-ZR-02-01-03 S235 JR 80x40x120 0 2 Nosač oslonca 1 2 MIN-ZR-02-01-02 S235 JR 80x40x160 0 1 Poprečni profil 1 1 MIN-ZR-02-01-02 S235 JR 80x40x825 4 Poz. Naziv pozicije Kol. Broj crteža Norma Materijal Sirove dimenzije Projzvođač M 8roj naziva - code Datum Ime i prezime Norma Potpis FSB Zagi 1S0 - tolerancije Objekt: NosiVA KONSTRUKCIJA Neven Pavković Objekt broj: R. N. broj: Kopi	8	Poklopac nosača svornjaka		6	MIN-ZR-02-01-07	S235JR	80x40x3	0.07
6 Poprečni profil 3 2 MIN-ZR-02-01-05 S235 JR 80x40x320 1 5 Poprečni profil 4 1 MIN-ZR-02-01-00 S235 JR 80x40x400 1 4 Vertikalni profil okvira 2 MIN-ZR-02-01-04 S235 JR 80x40x1400 7 3 Nosač donjeg oslonca 2 2 MIN-ZR-02-01-03 S235 JR 80x40x120 0 2 Nosač oslonca 1 2 MIN-ZR-02-01-02 S235 JR 80x40x160 0 1 Poprečni profil 1 1 MIN-ZR-02-01-02 S235 JR 80x40x825 4 Poz. Naziv pozicije Kol. Broj crteža Norma Materijal Sirove dimenzije Proizvođač M Broj naziva - code Datum Ime i prezime Potpis Potis Projektirao 15.2.2021. Matteo Ivan Nikolić FSB Zagl Razradio 15.2.2021. Matteo Ivan Nikolić Projektirao NoslVA KONSTRUKCIJA NoslVi FSB Zagl Iso - tolerancije Objekt: NoslVK KONSTRUKCIJA R. N. broj:	7	Ušica tro	ospojne veze	2	MIN-ZR-02-01-06	S235JR	55x50x10	0.17
5 Poprečni profil 4 1 MIN-ZR-02-01-00 \$235 JR 80x40x400 1 4 Vertikalni profil okvira 2 MIN-ZR-02-01-04 \$235 JR 80x40x1400 7 3 Nosač donjeg oslonca 2 2 MIN-ZR-02-01-03 \$235 JR 80x40x120 0 2 Nosač oslonca 1 2 MIN-ZR-02-01-02 \$235 JR 80x40x160 0 1 Poprečni profil 1 1 MIN-ZR-02-01-02 \$235 JR 80x40x160 0 1 Poprečni profil 1 1 MIN-ZR-02-01-01 \$235 JR 80x40x825 4 Poz. Naziv pozicije Kol. Broj crteža Norma Materijal Sirove dimenzije Proizvođač M Broj naziva - code Datum Ime i prezime Potpis Projektirao 15.2.2021. Matteo Ivan Nikolić Proizvođač Projektirao FSB Zagl Pregledao 17.2.2021. Matteo Ivan Nikolić Pozicija: FSB Zagl FSB Zagl ISO - tolerancije Objekt: Nosra Objekt broj: R. N. broj: Konstrukcijski Kopi Materijal: Masa: 35,2	6	Popreči	ni profil 3	2	MIN-ZR-02-01-05	S235JR	80x40x32	0 1.75
4 Vertikatni protil okvira 2 MiN-ZR-02-01-04 \$235JR 80x40x1400 7 3 Nosač donjeg oslonca 2 2 MiN-ZR-02-01-03 \$235JR 80x40x120 0 2 Nosač oslonca 1 2 MiN-ZR-02-01-02 \$235JR 80x40x160 0 1 Poprečni profil 1 1 MiN-ZR-02-01-01 \$235JR 80x40x825 4 Poz. Naziv pozicije Kol. Broj crteža Norma Materijal Sirove dimenzije Proizvođač M Broj naziva - code Datum Ime i prezime Potpis FSB Zagi Projektirao 15.2.2021. Matteo Ivan Nikolić Projektirao FSB Zagi ISO - tolerancije Objekt: Neven Pavković Objekt broj: R. N. broj: Napomena: Napomena: Smjer Konstrukcijski Format: Materijal: Masa: 35,2 kg ZAVRŠNI RAD Pozicija: Format: Materijal: Naziv: NoSIVI OKVIR STROJA 1 Listova	5	Poprečni profil 4			MIN-ZR-02-01-00	S235JR	80x40x40	0 1.97
2 Nosač oslonca 1 2 MIN-ZR-02-01-02 S255/K 80x40x120 C 1 Poprečni profil 1 1 MIN-ZR-02-01-02 S235 JR 80x40x825 4 Poz. Naziv pozicije Kol. Broj crteža Norma Materijal Sirove dimenzije Proizvođač M Broj naziva - code Datum Ime i prezime Potpis Sirove dimenzije Proizvođač M Projektirao 15.2.2021. Matteo Ivan Nikolić Materijal Sirove dimenzije Proizvođač M Pregledao 17.2.2021. Matteo Ivan Nikolić Materijal FSB Zagl ISO - tolerancije Objekt: NOSIVA KONSTRUKCIJA Objekt broj: Kopi Napomena: Napomena: Smjer Konstrukcijski Kopi Materijal: Masa: 35,2 kg ZAVRŠNI RAD Pozicija: Format: Mjerilo originala NoSIVI OKVIR STROJA 1 Listova	4 3	Nosař dopieg oslopca 2		2	MIN_7P 02 01 02	2235JK	80v/.0v12	0 1.54
1 Poprečni profil 1 1 MIN-ZR-02-01-01 S235JR 80x40x825 4 Poz. Naziv pozicije Kol. Broj crteža Norma Materijal Sirove dimenzije Proizvođač M Broj naziva - code Projektirao 15.2.2021 Matteo Ivan Nikolić Projektirao FSB Zagl Broj naziva - code Projektirao 15.2.2021 Matteo Ivan Nikolić Projektirao FSB Zagl ISO - tolerancije Objekt: NoSIVA KONSTRUKCIJA Objekt broj: R. N. broj: Kopi Materijal: Materijal: Masa: 35,2 kg ZAVRŠNI RAD Format: Materijal: Maziv: NoSIVI OKVIR STROJA 1 Listova	2	Nosač ubijeg ostonca Z			MIN-ZR-02-01-03	5235 IR	80x40x12	0 0.00
Poz. Naziv pozicije Kol. Broj crteža Norma Materijal Sirove dimenzije Proizvođač M Broj naziva - code Datum Ime i prezime Potpis Projzvođač M Projektirao 15.2.2021 Matteo Ivan Nikolić Projzvođač M Razradio 15.2.2021 Matteo Ivan Nikolić Projzvođač FSB Zagl Pregledao 17.2.2021 Matteo Ivan Nikolić Projzvođač FSB Zagl Voditelj rada Neven Pavković Objekt broj: FSB Zagl NOSIVA KONSTRUKCIJA R. N. broj: R. N. broj: Kopi Napomena: Materijal: Masa: 35,2 kg ZAVRŠNI RAD Materijal: Maziv: Pozicija: Format: Mjerilo originala NOSIVI OKVIR STROJA 1 Listova	1	Poprečni profil 1			MIN-ZR-02-01-01	S235JR	80x40x82	5 4.29
Broj naziva - code Datum Ime i prezime Potpis Projektirao 15.2.2021. Matteo Ivan Nikolić Ime i prezime Potpis Razradio 15.2.2021. Matteo Ivan Nikolić Ime i prezime Potpis Crtao 15.2.2021. Matteo Ivan Nikolić Ime i prezime Potpis Pregledao 15.2.2021. Matteo Ivan Nikolić Ime i prezime Potpis Voditelj rada Neven Pavković Ime i prezime Ime i prezime Potpis ISO - tolerancije Objekt: Objekt: Objekt broj: Ime i prezime Napomena: Napomena: Smjer Konstrukcijski Materijal: Masa: 35,2 kg ZAVRŠNI RAD Mjerilo originala NOSIVI OKVIR STROJA 1 Mjerilo originala 1:10 Ime i prezime	Poz.	Naziv	Naziv pozicije		Broj crteža	Materijal	Sirove dimer	nzije Masa
Napomena: Smjer Konstrukcijski Materijal: Masa: 35,2 kg ZAVRŠNI RAD Materijal: Masa: 35,2 kg ZAVRŠNI RAD Mijerilo originala NoSIVI OKVIR STROJA 1 1:10 Nosivi Listova	Broj ISO	naziva – code – tolerancije	Dat Projektirao 15.2.2 Razradio 15.2.2 Crtao 15.2.2 Pregledao 17.2.2 Voditelj rada Objekt: NOSIVA	tum 2021. Matt 2021. Matt 2021. Matt 2021. Neve Neve KONSTR	Ime i prezime eo Ivan Nikolić eo Ivan Nikolić eo Ivan Nikolić n Pavković n Pavković	Potpis Objekt broj:	FSI	B Zagret
Materijal: Masa: 35,2 kg ZAVRŠNI RAD Mijerilo originala Naziv: Pozicija: Mjerilo originala NOSIVI OKVIR STROJA 1			Napomena:			K. N. Droj: Smjer		Kopija
Mjerilo originala 1:10 Naziv: Pozicija: Pozicija: Format: Listova			Materijal:		Masa: 35,2 kg	Konstr ZAVR	ukcijski ŠNI RAD	
			Mjerilo originala	aziv: NC	ISIVI OKVI	R STROJ	A 1	Format: A2
Crtež broj: MIN-ZR-02-01-00 List			1:10	Crtež broi:	MIN-ZR-02-01-	00	I	List: 1
				, , ,				

10

9

11

12

8

<u>____a5 /__</u>

Detalj F M 1:5

7

Detalj B M 1:5

Detalj H M 1:5

