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Abstract 

Prevention of the damage phenomenon in the structural components has always been a major 

criterion for keeping the longest possible working lifetime of the engineering systems and thus 

the minimization of the financial expenses due to maintenance, as well as for the safety of the 

people who benefit from such systems. In recent times, the need for keeping the track of the 

damage is even higher as a demand towards lighter, thinner and smaller designing solutions is 

rapidly increasing, where the very rigorous reliability and safety requirements need to be 

satisfied. In addition, new production technologies enable the manufacturing of the novel 

material solutions that provide exceptional exploitation characteristics, but can be very 

susceptible to failure due to very complex microstructures, where, from the engineering point 

of view, the initiation of the damage takes place. In order to reduce the amount of classical 

experiments to assess the structural integrity, various numerical models for the description of 

the material degradation are developed to this end. Due to importance of the microstructure in 

the damage development, multiscale models capable of consideration of such phenomena 

present an important modeling tool, but still need to be developed more for the commercial use. 

 Regarding the modeling of damage at one scale only, classical continuum theory cannot 

be employed due to inconsistencies in the mathematical model that eventually lead to incorrect 

numerical results. Most of the available damage models take into account the influence of the 

microstructure by enhancing the constitutive relations with the measurement of the internal 

length scale, which serves as a strain localization limiter and prevents the dependency of the 

numerical results on the discretization. Although most of the models based on this, so called 

nonlocal continuum, can prevent the aforementioned numerical artefacts when damage is 

considered, there are still some difficulties that can arise when the internal length scale is kept 

constant, leading to nonphysical or spurious growth of the damage. 

 Herein, a damage model for quasi-brittle materials embedded into the two dimensional 

C1 continuity triangular finite element formulation based on the strain gradient continuum 

theory is considered. The isotropic damage law is applied to the higher-order stress-strain 

constitutive model, which enables the analysis of both homogeneous and heterogeneous 

materials. Such softening formulation also ensures a decrease of the intensity of the material 

nonlocality associated with the damage growth, which is necessary for the correct description 

of the narrow localized deformation. In order to obtain the required constitutive matrices, the 
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second-order homogenization procedure is applied to the various representative volume 

elements in the frame of a multiscale approach. The derived finite element formulation is 

implemented into the finite element program ABAQUS by means of UEL subroutine. The 

superior regularization capabilities, as well as the accuracy and efficiency of the proposed 

higher-order gradient damage model are demonstrated by the standard benchmark examples. 

 In the multiscale modeling of damage several obstacles are present of which still some 

have to be resolved, especially when computational homogenization is applied as a method for 

scale transitioning. Namely, generally a higher-order continuum has to be used at the 

macrolevel, while in the presence of the sharp localization zones at the microstructural level, 

macrostructural response is dependent on the size of the RVEs used. Physically, inconsistencies 

can arise in such conditions between the strain fields of two structural levels, which is known 

as the violation of the scale separation. 

 In the thesis, previously developed multiscale scheme which utilizes the higher-order 

continuum at both structural levels is modified for the consideration of the damage at the 

microlevel. Effects of the microlevel damage formation can be observed through the 

degradation of the homogenized tangent stiffness tensors, which then govern the localization at 

the larger structural level. Finite element based on the Aifantis theory of gradient elasticity is 

adapted for the softening analysis and its capabilities are tested on the random RVE for several 

different loading cases. Additionally, in order to prove the necessity for the higher-order 

continuum at the macroscale, which is in this case generalized Aifantis theory, scale transition 

methodology where classical continuum is employed at the macrolevel is developed. Therein, 

rather than strains and strain gradients, only the strain tensors contribute to the formation of the 

RVE boundary displacements, while the stiffness tensors that carry the nonlocal characteristics 

cannot be transferred at the macrolevel. Both multiscale schemes are tested on a standard 

benchmark example and compared with the one-scale damage model solution for the case of 

the homogenous microstructure, when only a mild and diffused localization is observed. In 

order to capture the loss of structural integrity of the macrostructural integration point when 

sharp localization is formed across an RVE, a specific conditions which detect the completely 

formed localization zone are developed. Finally, the capabilities of the presented C1-C1 

multiscale scheme to capture the effects of the sharp localization at microlevel are demonstrated 

by few benchmark numerical examples.
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Prošireni sažetak 

Uvod 

 

Novi i sve stroži zahtjevi na pouzdanost i sigurnost konstrukcija, zajedno s primjenom novih 

materijala i novih proizvodnih tehnologija, mogu jedino biti ostvareni korištenjem naprednih 

metoda numeričke strukturne analize i što realnijim opisom ponašanja materijala. Budući da u 

radnom vijeku određene konstrukcijske komponente može doći do pojave oštećenja, potrebno 

je znati opisati njeno ponašanje sve do potpunog gubitka mehaničkog integriteta, odnosno loma. 

Većina inženjerskih materijala nakon određene deformacije počinje pokazivati postepeno 

smanjenje krutosti ili takozvano popuštanje što je direktna posljedica degradacijskih procesa na 

razini atomske rešetke. Kako je numeričko modeliranje procesa koji se zbivaju na toj razini još 

uvijek neprikladno sa stajališta računalnog vremena, oštećenje se u odgovarajući numerički 

algoritam najčešće uvodi kao set kontinuiranih makroskopskih varijabli koje nose informaciju 

o stanju materijala na nižim prostornim skalama, odnosno u njima je implicitno sadržano stanje 

mikrostrukture. Popuštanje se može istovremeno odvijati s pojavom plastičnosti što je slučaj 

kod duktilnih materijala kao što su razni čelici, a u slučaju izostanka plastičnosti govori se o 

popuštanju kvazi-krhkih materijala poput perlitne matrice u nodularnom lijevu koji se često 

javlja u mehaničkim konstrukcijama, betona, keramike i nekih vrsta ojačanih kompozita.  

 Oštećenje je u inženjerskim materijalima izrazito nehomogeno i lokalizirano. 

Mikropukotine se stvaraju na mjestima koncentracije naprezanja i njihov je naknadni rast u 

ograničenom području koje je malo u usporedbi sa cijelom konstrukcijskom komponentom. 

Pojava popuštanja koja nastaje kao posljedica oštećenja uvijek je popraćena velikim 

gradijentima deformacije na način da se deformacija lokalizira u području gdje se popuštanje 

odvija. U teoriji klasičnog kontinuuma popuštanje može dovesti do lokalnog gubitka 

eliptičnosti diferencijalnih jednadžbi koje opisuju proces deformiranja. Matematički gledano, 

modul materijalne tangentne krutosti pri ulasku u fazu popuštanju prestaje biti pozitivno 

definitan što rezultira lošom uvjetovanošću cjelokupnog problema, posljedica čega je 

nemogućnost konvergencije numeričkih rješenja prema fizikalno smislenom rješenju. Pritom 

se deformacija, promatrano u okviru metode konačnih elemenata, lokalizira u samo jedan 

konačni element ili najtanji sloj konačnih elemenata, a disipacijska energija teži k nuli. 
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Postojeći modeli oštećenja 

 

Očuvanje eliptičnosti diferencijalnih jednadžbi koje opisuju proces deformiranja u fazi 

popuštanja, ili takozvana regularizacija problema lokalizacije deformacije, moguća je 

primjenom mehanike kontinuuma višeg reda. Njome se, za razliku od klasične mehanike 

kontinuuma, preko parametra unutarnje duljinske skale u obzir uzimaju i mikrostrukturne 

interakcije koje se mogu opisati na više različitih načina. Primjenom mikropolarne teorije ili 

poznatije Cosseratove teorije, materijalne čestice dobivaju dodatan rotacijski stupanj slobode 

neovisan o polju pomaka. Time se veoma uspješno rješavaju problemi gdje je smik dominantan 

način deformiranja tako da pri čistom vlaku pristup ne funkcionira. Viskoplastična teorija u 

konstitutivni model uključuje ovisnost brzine promjene deformacije, odnosno viskozne efekte, 

no ona daje dobre rezultate samo ako je lokalizacijska zona unaprijed poznata.  

 U novije vrijeme sve se češće primjenjuju metode temeljene na nelokalnom ponašanju 

materijala, tako da naprezanje u nekoj točki kontinuuma ne ovisi samo o deformaciji i ostalim 

varijablama stanja u toj točki, već i o deformacijama i ostalim varijablama stanja točaka koje ju 

okružuju. U osnovi razlikuju se dva različita pristupa pri opisivanju nelokalnog modela, 

integralni i gradijentni pristup. Integralni pristup temeljen je na prostornom osrednjavanju 

varijabli stanja, najčešće deformacija, u konačnoj blizini određene točke, što naposljetku dovodi 

do veoma složenih konstitutivnih relacija sastavljenih od integrala konvolucijskog tipa. 

Gradijentni pristup proširuje konstitutivnu relaciju ili samo gradijentima deformacije ili 

gradijentima deformacije i njihovim konjugiranim veličinama, što se odnosi na takozvanu punu 

gradijentnu teoriju. U slučaju proširenja samo gradijentima deformacije, do sada su kod 

proučavanja lokalizacije i popuštanja najčešće korištene implicitne i nešto rjeđe eksplicitne 

gradijentne formulacije. Problemi razmatrani u literaturi vezani su za elastično ponašanje 

materijala, plastično ponašanje materijala, ili se dotiču analize širenja elastičnih valova. 

Mišljenja su da eksplicitna gradijentna formulacija u model unosi takozvanu slabu nelokalnost 

budući da je ekvivalentna nelokalna deformacija izražena najčešće samo preko ekvivalentne 

lokalne deformacije i njenog drugog gradijenta, što proizlazi odbacivanjem viših članova 

razvoja lokalne ekvivalentne deformacije u Taylorov red. Implicitna formulacija s druge strane 

unosi takozvanu jaku nelokalnost jer kod nje nelokalna deformacija nije eksplicitno izražena 

preko članova lokalne deformacije, već je dana kao rješenje problema rubnih vrijednosti čime 

su zapravo zadržani odbačeni članovi višeg reda u slučaju eksplicitne formulacije. Zbog 

različitih karaktera dviju gradijentnih formulacija nužan je i različit pristup u numeričkoj 
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implementaciji, pa tako korištenje eksplicitne formulacije zahtijeva uporabu konačnih 

elemenata C1 kontinuiteta, dok se implicitna formulacija najčešće rješava konačnim elementima 

C0
 kontinuiteta temeljenim na mješovitoj formulaciji. Iako su C0

 konačni elementi u osnovi 

jednostavniji od konačnih elemenata C1
 kontinuiteta, upitno je postiže li se uvođenjem 

mješovite formulacije bolja numerička učinkovitost.  

 Usprkos tome što se implicitnom gradijentnom formulacijom mogu dobiti rješenja 

neovisna o gustoći i usmjerenju mreže, u literaturi je prijavljeno nekolika slučajeva u kojima 

dolazi do nefizikalnog širenja oštećenja po računalnom modelu. Opisana pojava karakteristična 

je i za integralne i za gradijentne pristupe klasičnog tipa, u kojima područje mikrostrukturnog 

međudjelovanja ostaje konstantno tijekom cijelog procesa opterećivanja. Kao što je objašnjeno 

u literaturi, navedena pretpostavka ima za posljedicu prijenos energije iz područja u kojoj se 

oštećenje odvija u susjedno područje koje elastično popušta. Na taj način dolazi do rasta 

oštećenja u područjima gdje ga fizikalno ne bi trebalo biti, te je onemogućeno stvaranje uskog 

pojasa lokalizacije deformacije. Problem je riješen uvođenjem modificiranih nelokalnih 

formulacija u kojima je veličina područja mikrostrukturnog djelovanja podložna promijeni 

tijekom procesa opterećivanja. Međutim, većina takvih formulacija opisuje povećanje 

navedenog područja s porastom oštećenja, što nije u skladu s fizikalnim procesom stvaranja 

makropukotine, gdje je situacija upravo suprotna, pogotovo u slučaju kvazi-krhkih materijala. 

Od nedavno sve više se razvija modeliranje putem takozvanog faznog polja, koje dijeli mnogo 

sličnosti s gradijentnim formulacijama po pitanju matematičke strukture. Iako se navedenim 

pristupom mogu dobiti u potpunosti regularizirana rješenja, kako bi se dobio točan razvoj 

faznog polja, odnosno oštećenja, potrebno je značajno povećati broj konačnih elemenata u 

području gdje se očekuje pojava pukotine, što naposljetku dovodi i do značajnog povećanja 

računalnog vremena. 

  Drugi tip gradijentnog pristupa gdje u funkciju energije deformiranja ulaze i gradijenti 

deformacije zajedno s njihovim konjugiranim veličinama do sada je nešto rjeđe korišten, 

prvenstveno zato jer je složeniji za numeričku implementaciju. Prednost pune gradijentne 

teorije je jednostavnije opisivanje proizvoljne materijalne heterogenosti uvodeći u konstitutivne 

relacije vandijagonalne tangentne krutosti višeg reda, koje se mogu dobiti procesom 

homogenizacije na odgovarajućem reprezentativnom volumnom elementu (RVE-u). RVE 

predstavlja statistički reprezentativan uzorak materijala. Razmatranja problema oštećenja 

putem pune gradijentne teorije na jednodimenzijskim primjerima dovela su do zaključka kako 

dodatak naprezanja višeg reda doprinosi stabilizaciji pozitivne definitnosti tangentne krutosti 

prilikom ulaska u fazu popuštanja. Daljnja istraživanja s jednodimenzijskog na dvodimenzijski 
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problem procesa lokalizacije i popuštanja provedena su primjenom bezmrežne EFG metode, 

gdje je formulacija ograničena samo na homogene materijale. 

 

Višerazinsko modeliranje oštećenja 

 

U modeliranju procesa popuštanja heterogenih materijala važnu ulogu zauzimaju višerazinske 

metode kojima se omogućuje eksplicitno modeliranje mikrostrukture putem RVE-a, što je 

značajno budući da makrostrukturno ponašanje izravno proizlazi iz deformacijskih procesa na 

mikrorazini. Glavni izazov u višerazinskim metodama gdje se razmatra oštećenje na razini 

RVE-a je povezivanje razvoja mikroskopske lokalizacije deformacije ka stvaranju 

makroskopske pukotine. Taj je problem u literaturi tek djelomično riješen putem takozvanih 

tehnika lokalnog progušćivanja mreže konačnih elemenata. Primjerice, kod višemrežnih 

metoda ili metoda temeljenih na superpoziciji koristi se hijerarhijska podjela na makro- i 

mikostrukturne efekte na način da se makrostrukturna mreža lokalno prekrije diskretizacijom 

detaljno opisane mikrostrukture. Slično, metode dekompozicije domene temelje se na podijeli 

makrorazine materijala na nekoliko područja od kojih svako može imati različitu prostornu 

diskretizaciju s prikladnim unutarnjim duljinskim skalama, što omogućuje rješavanje problema 

lokalizacije uz smanjivanje računalnog vremena. Bitno je spomenuti kako su navedene tehnike 

lokalnog progušćivanja mreže efikasne jedino u slučaju blažih i manjih lokalizacijskih zona čiji 

se položaj mora znati unaprijed. 

 Najveći napredak u višerazinskom modeliranju mikroskopske lokalizacije deformacije 

postignut je primjenom metoda računalne homogenizacije. Njihova velika prednost je u tome 

što na zahtijevaju poznavanje konstitutivnih pretpostavki na makrorazini, već se odaziv 

homogenog materijala određuje u toku analize rješavanjem problema rubnih uvjeta na RVE-

ovima, od kojih je svaki povezan s odgovarajućom točkom integracije na makrorazini. Klasične 

tehnike homogenizacije temelje se na principu separacije skala, koji nalaže da bi veličina RVE-

a trebala biti mnogo manja, nego karakteristična duljina preko koje se makroskopsko 

opterećenje mijenja u prostoru. Homogenizacijom prvog reda ne može se modelirati 

lokalizacija i popuštanje bez gubitka eliptičnosti osnovnih jednadžbi, dok je homogenizacija 

drugog reda pogodna tek za opisivanje umjerene lokalizacije koja nije u proturječju s principom 

separacije skala, odnosno dopušta lokalizaciju u makroskopskoj zoni koja je veća od veličine 

RVE-a. Budući da takav pristup nije pogodan za opisivanje snažnih lokalizacija unutar RVE-a, 

većina radova je posljednjih godina orijentirana pristupu kojim se kontinuum na makrorazini 
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proširuje diskontinuitetom čime se omogućuje prijenos lokalizacije deformacije s mikrorazine 

u pukotinu na makrorazini. U sklopu tog pristupa u literaturi se može naći više različitih tehnika 

kojima se izračunava ekvivalentni diskontinuitet i odgovarajuća konstitutivna relacija odziva 

mikrostrukture. Sljedeći problem koji se javlja kod homogenizacijskih metoda gdje dolazi do 

oštre lokalizacije na mikrorazini je ovisnost makrostrukturnog odaziva modela o veličini RVE-

a, na način da s povećanjem RVE-a dolazi do sve krućeg ponašanja materijala na makrorazini. 

U tom slučaju RVE gubi svoju reprezentativnost za odgovarajuću makroskopsku točku, te je 

stoga u literaturi prozvan mikrostrukturnim volumnim elementom (MVE). Postojanje RVE-a u 

kojem dolazi do primjetne lokalizacije deformacije potvrđeno je u literaturi putem tehnike 

temeljene na homogenizaciji konstitutivne relacije samo iz lokalizacijskog pojasa, što je 

naknadno ugrađeno i u shemu računalne homogenizacije za modeliranje diskretne 

makroskopske pukotine. Usprkos trenutnom intenzivnom istraživanju u navedenom području, 

još uvijek je ostalo mnoštvo otvorenih pitanja pri prijenosu varijabli stanja s mikrorazine na 

makrorazinu. Potrebno je povećati točnost i numeričku učinkovitost predloženih postupaka. 

 

Ciljevi i hipoteze istraživanja 

 

Cilj istraživanja u prvom dijelu disertacije je razvoj modela oštećenja temeljenog na teoriji 

gradijentnih deformacija, u kojoj u energiji deformiranja gradijenti deformacije sudjeluju 

zajedno s njihovim energijski konjugiranim veličinama. Očekuje se da će se primjenom teorije 

kontinuuma višeg reda uspjeti eliminirati nefizikalan razvoj oštećenja, tipično povezan s 

klasičnom implicitnom gradijentnom formulacijom koja je još uvijek jedna od najčešće 

primjenjivanih metoda za modeliranje oštećenja. Također, konstitutivno ponašanje materijala 

modelirat će se na način koji uključuje smanjivanje unutarnje duljinske skale s porastom 

oštećenja, čime će se numerički opisati stvaran proces koji prethodi stvaranju makropukotine. 

Budući da konstitutivne relacije koji proizlaze iz teorije gradijentnih deformacija omogućuju 

razmatranje mikrostrukturnih heterogenosti, razmotrit će se i mogućnosti modeliranja oštećenja 

heterogenih materijala. Pritom će se inicijalni, elastični konstitutivni tenzori izračunavati 

primjenom računalne homogenizacije drugog reda na odgovarajućem RVE-u, a analiza 

popuštanja će se potom odvijati isključivo na makrorazinskom modelu. 

 Drugi dio istraživanja usmjeren je na razvoj nove metode za numeričko modeliranje 

oštećenja u heterogenim materijalima primjenom višerazinskih algoritama temeljenih na teoriji 

gradijentnih deformacija. Razmotrit će se mogućnosti modeliranja oštećenja putem 
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višerazinskog algoritma pri kojem su obje materijalne razine opisane kontinuumom višeg reda, 

koji uključuje primjenu diskretizacije C1
 kontinuiteta i podrazumijeva nelokalno ponašanje 

materijala. Očekuje se da će se na taj način eliminirati problemi u opisivanju lokalizacije 

povezani s diskretizacijom i na makro- i na mikrorazini. Za homogenizaciju varijabli s 

mikrorazine koristit će se klasična homogenizacija drugog reda, pri čemu će doprinos biti 

sadržan u formulaciji pomoćnog algoritma za prepoznavanje gubitka strukturnog integriteta 

RVE-a. 

 

Hipoteze istraživanja su sljedeće: 

 

1. Moguće je modelirati pojavu oštećenja u materijalu primjenom prostorne diskretizacije 

temeljene na metodi pomaka. Predložena nova formulacija pokazat će prednosti u odnosu 

na dosadašnju primjenu diskretizacije temeljene na mješovitoj formulaciji. 

 

2. Primjenom postupka homogenizacije u okviru višerazinskih algoritama moguće je postići 

veću točnost pri modeliranju oštećenja u heterogenim materijalima od one koja se postiže 

dosadašnjim formulacijama koje se nalaze u literaturi. 

 

Zaključak i doprinos rada 

 

Poznato je kako klasična mehanika kontinuuma ne može objektivno opisati problem 

lokalizacije deformacije zbog matematičke nekonzistentnosti modela koja se počinje javljati s 

popuštanjem materijala. Razvojem materijalnih nestabilnosti dolazi do pojave gubitka 

pozitivne definitnosti tangentne krutosti, što za posljedicu ima gubitak eliptičnosti jednadžbi 

ravnoteže te stvaranje loše uvjetovanog problema rubnih vrijednosti. U takvim okolnostima 

može doći do nestabilnog razvoja oštećenja što naposljetku dovodi do nefizikalnog ponašanja 

materijala, što se kod diskretizacije konačnim elementima očituje u ovisnosti numeričkih 

rezultata o gustoći i usmjerenju mreže. Također, oštećenje u takvom razvoju situacije lokalizira 

u najmanji mogući konačni element ili najtanji sloj konačnih elemenata. U ovome radu izveden 

je matematički konzistentan kontinuumski model oštećenja koji može realistično opisati 

iniciranje i naknadni razvoj oštećenja. 

 Nefizikalno ponašanje materijala povezano s korištenjem modela oštećenja temeljenih 

na klasičnoj mehanici kontinuuma, odnosno lokalnom pristupu, u radu je uklonjeno uvođenjem 
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nelokalnog ponašanja materijala putem kontinuuma višeg reda. U nelokalnim modelima važnu 

ulogu ima parametar unutarnje duljinske skale, koji opisuje veličinu područja mikrostrukturnih 

međudjelovanja i koji služi za ograničavanje lokalizacije deformacije, i to na način da sprječava 

pojavu diskontinuiteta pomaka i osigurava neometan razvoj oštećenja. Kontinuum višeg reda 

opisan je pomoću teorije gradijentnih deformacija, pri čemu je unutarnja duljinska skala 

uključena u model preko konstitutivnih tenzora višeg reda, a nelokalno ponašanje uvedeno je 

gradijentnim članovima što proizlaze iz polja pomaka. Iako su gradijenti s matematičke 

perspektive lokalne veličine, u mogućnosti su opisati deformiranje okolnog materijala. 

 Predložen je novi računalni pristup modeliranju oštećenja u kvazi-krhkim materijalima, 

temeljen na teoriji gradijentnih deformacija. Model je izveden uz primjenu izotropnog zakona 

oštećenja na način da je desna strana konstitutivnih relacija pomnožena s istim članom koji 

opisuje degradaciju materijala. Porastom oštećenja navedeni se član smanjuje, a njegovo 

djelovanje na konstitutivne tenzore očituje se u mogućnošću opisivanja popuštanja materijala. 

Smanjivanjem vrijednosti konstitutivnih tenzora također je osigurano i smanjenje veličine zone 

mikrostrukturnog utjecaja, čime je omogućeno točno opisivanje završnog pojasa lokalizacije 

deformacije koji zapravo predstavlja makropukotinu. U početku formiranja oštećenja, veličina 

područja mikrostrukturnog međudjelovanja je najveća što se fizikalno očituje u široko 

raspršenoj mreži mikropukotina, od kojih tek manji dio naposljetku sraste u makropukotinu. 

Iako se modelom ne razmatra fizikalno otvaranje pukotine, ono je virtualno opisano preko 

integracijskih točaka u kojima je oštećenje dostiglo kritičnu vrijednost, a krutost shodno tome 

pala na nulu. Opisani nelinearni model za opisivanje popuštanja materijala ugrađen je u trokutni 

konačni element C1 kontinuiteta putem komercijalnog softverskog paketa ABAQUS/Standard 

i korisničke rutine UEL. Mogućnosti predloženog računalnog pristupa u problemima 

lokalizacije deformacije ispitane su na nekoliko tipičnih testnih primjera, a verifikacija rezultata 

izvršena je usporedbom s raspoloživim rješenjima iz literature. U usporedbi s rezultatima 

dobivenih standardnom implicitnom gradijentnom formulacijom, ovdje dobiveni rezultati 

pokazuju u potpunosti lokaliziran deformacijski pojas uz točno širenje oštećenja. Provedena 

analiza pokazuje da se predloženim modelom oštećenja temeljenim na teoriji gradijentnih 

deformacija može uspješno predvidjeti područje iniciranja rasta oštećenja, kao i naknadna 

lokalizacija deformacije prema makroskopskoj pukotini. Uzimajući u obzir da rezultati ne ovise 

o gustoći ni o rasporedi konačnih elemenata, može se reći kako je postignuta potpuna 

regularizacija matematičkog modela koji opisuje proces oštećivanja materijala. Trenutni 

nedostatak modela očituje se u nemogućnošću opisivanja pada reaktivnih sila na vrijednosti 

blizu nule u slučaju kada lokalizacijska zona presijeca računalni model, odnosno u slučaju 
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formiranja makropukotine. Zaključeno je kako je takav strukturni odaziv posljedica ovisnosti 

varijable oštećenja samo o tenzoru deformacije, a unaprjeđenje modela izvedivo je proširenjem 

navedene ovisnosti i na tenzor deformacija drugog reda. 

 Drugi dio disertacije usmjeren je na ispitivanje mogućnosti već postojećeg C1-C1 

višerazinskog algoritma u modeliranju lokalizacije deformacije, pri čemu se analiza oštećenja 

promatra na mikrorazini materijala opisanoj putem RVE-a. Budući da je mikrostruktura u 

navedenom višerazinskom algoritmu opisana preko Aifantisove teorije linearne elastičnosti, 

postojeći konačni element proširen je na mogućnost opisivanja oštećenja uvođenjem izotropnog 

zakona, na sličan način kao što je već urađeno u slučaju teorije gradijentnih deformacija. 

Izvedeni element testiran je u simulacijama popuštanja mikrostrukture materijala, pri čemu se 

utvrdilo kako je element pogodan za opisivanje oštećenja unutar RVE-a. Kako bi se ustanovili 

nedostaci upotrebe klasičnog kontinuuma na makrorazini, razvijena je C0-C1 shema prijenosa 

varijabli između dviju strukturnih razina. Višerazinski algoritam implementiran je u softverski 

paket ABAQUS/Standard putem UMAT korisničke rutine za makrorazinu, te UEL korisničke 

rutine za mikrorazinu. Na primjeru mikrostrukturno homogenog materijala utvrđeno je kako se 

lokalnim pristupom na makrorazini ne može objektivno opisati problem lokalizacije 

deformacije, što je omogućeno primjenom nelokalnog kontinuuma u slučaju C1-C1 

višerazinskog algoritma. Za slučaj snažne lokalizacije unutar RVE-a, što efektivno označava 

gubitak mehaničkog integriteta makrorazinske točke integracije, razvijen je algoritam koji u 

takvom slučaju uklanja konstitutivni utjecaj te točke. Mogućnosti predložene višerazinske 

strategije najprije su ispitane na jednostavnom numeričkom primjeru koji ne uključuje pojavu 

makrorazinske lokalizacije deformacije, a rezultati pokazuju ovisnost strukturnog odaziva 

heterogene mikrostrukture o veličini mikrostrukturnog parametra unutarnje duljinske skale. U 

slučaju većeg parametra dolazi do puno blaže lokalizacije te su rezultati tada usporedivi s 

rješenjima dobivenima putem jednorazinskog modela oštećenja kojim se ne razmatra 

kontinuirani razvoj mikrostrukture. U primjerima koji obuhvaćaju pojavu makrorazinske 

lokalizacije deformacije, pokazano je kako je putem predloženog C1-C1 višerazinskog algoritma 

moguće opisati fizikalno iniciranje popuštanja materijala na makrorazini uz razmatranje širenja 

oštećenja po heterogenoj mikrostrukturi materijala. 

 

 



Introduction 

1 

1 Introduction 

1.1 Background and motivation 

In recent times, an application of novel structural materials, such as advanced high-strength 

steels or composites, has significantly increased due to the efficiency, reliability and multi-

functionality they offer. These materials often have a complex and heterogeneous 

microstructure, which can be engineered to take advantage of the required properties of each 

constituent. By doing so, the final system or product that exhibits the desired overall 

characteristics can be fabricated more efficiently. Since there is always a strong demand for 

production of cheaper and lighter material solutions, a special attention has to be paid in the 

designing process on the prevention of formation and growth of the damage, since this 

phenomenon can very easily lead to the complete failure of the mechanical systems. In the 

conventional engineering yield limit of the material is usually used as a failure criterion, 

meaning that the component will always stay in the elastic deformation domain. However, in 

more delicate production situations where the safety and reliability are of utmost importance, 

e.g. nuclear and aircraft industry, more precise evaluations of damage initiation and subsequent 

evolution up to and beyond forming of fracture are necessary. After the fracture has been 

formed, traditionally the fracture mechanics was employed for the prediction of crack growth, 

where necessarily a large degree of simplification has to be used. Review of fracture mechanics 

techniques can be found in [1]. However, with the advancement of the computational 

technology, possibilities for more accurate prediction of damage and cracking process have 

extended remarkably. Herein, the most important contribution is made in the field of continuum 

damage mechanics, where the introduction of the set of field variables, or so-called damage 

variables, explicitly describes the material degradation [2-4]. This theory can also be used for 

the description of the growth of the macroscopic cracks, which are then represented by the 

material domain where damage variable becomes critical [5-7]. Generally, the formation of 

cracks in most engineering applications is tried to be avoided, and the most important part for 

the assessment of the working lifespan is done by keeping track of the damage, i.e. material 

degradation, which precedes the formation of crack.  
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 Physically, formation of damage and macroscopic cracks is a direct result of the cascade 

of events happening at the microstructural level [3, 4]. Due to this strong interconnection, 

numerical calculation of the macroscopic damage is in the most efficient damage mechanics 

models usually based on the employment of the so-called nonlocal parameter [8], which takes 

into account all of the microstructural heterogeneities and interactions. Assessment of this 

parameter can be especially difficult for the materials with complex and heterogeneous 

microstructures, which, e.g., consist of multiple constituents embedded in the matrix material. 

Therefore, a more accurate evolution of damage at the macrostructural level could be made if 

the assessment of damage is firstly done at the microstructural level, where the material can be 

modeled more precisely. This is where multiscale modeling can help significantly, a method 

which aims to consistently bridge the material behavior at different length scales, usually 

macro- and microscale [9-11]. Essentially, multiscale techniques are homogenization 

techniques where the certain properties are averaged over a representative volume element 

(RVE), which is assumed to be statistically representative for the macroscopic material point 

[12-14]. The RVE is a bounded segment of the microstructural material, where the all relevant 

microstructural properties needed for the analysis are modeled explicitly. Within 

homogenization techniques, the computational homogenization (CH) scheme is shown to be 

most accurate and versatile, mainly due to the reason that it does not require an explicit a priori 

constitutive relation at the macrolevel. Constitutive behavior is being determined during the 

course of simulation and it is dependent on the RVE homogenization results. This allows the 

modeling of nonlinear behavior of complex and evolving microstructures in a rather 

straightforward manner. Two boundary value problems (BVPs) have to be solved 

simultaneously during the calculation, one for the macroscale and the other for the underlying 

microstructure, where the transfer of the solution variables between two BVPs represents a 

crucial and most challenging part of the multiscale modeling. This is particularly relevant when 

damage modeling is included at the RVE level, where the efficient and accurate upscaling of 

the variables is still a very delicate research topic. For example, a second-order CH technique 

is demonstrated as superior when it comes to multiscale modeling of majority non-linear 

problems [15-18], except in case when localization of the deformation occurs at the microscale. 

Transfer of the variables from micro- to macroscale then becomes questionable due to loss of 

the representative character of the RVE [19, 20]. 
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1.2 Overview of damage modeling in continuum 

The damage phenomenon, macroscopically characterized by decrease in the elastic material 

stiffness or so-called strain softening, is common in all engineering materials and can 

significantly decrease structural load-carrying capacity and eventually lead to a complete loss 

of mechanical integrity. When there is no plasticity involved before or after initiation of 

damage, materials soften immediately after reaching the critical elastic deformation and can be 

then classified as quasi-brittle. Materials like these include, among others, high-strength steels, 

polymers, composites and various geo-materials such as concrete and rock.  

 Concerning the numerical simulations, it is well-known that the strain softening cannot 

be properly resolved with the application of the classical continuum mechanics. This approach 

leads to the local loss of positive definiteness of the material tangent stiffness, which may cause 

the local loss of ellipticity of the governing differential equations. The mathematical description 

of the model than becomes ill-posed and numerical solutions do not converge to a physically 

meaningful solution [21]. If the finite elements are applied as a discretization technique, the 

solutions are then completely dependent on both mesh refinement and mesh alignment. In other 

words, the energy dissipated in the fracture process tends to zero when the size of the elements 

involved in the softening process is reduced, and the localization zone exhibits an extreme 

tendency to propagate along the mesh lines [22].  

 Various regularization techniques have been developed in the past few decades to 

overcome this problem. Many of them are based on the improvement of the classical continuum 

model, precisely on its enrichment with the internal length scale parameter in several different 

ways. Some of the known methods include the micropolar theory [23], viscoplastic theory [24], 

fracture energy approach [25] and crack band model [26] but all off them suffer from the lack 

of generality since the preservation of ellipticity is possible only in some specific cases. On the 

other hand, the theories related to the nonlocal material behavior have been shown to be the 

most versatile. In the case of the nonlocal models, the stress at a material point does not depend 

only on the strain and other state variables at this point, as it is the case with the classical 

continuum theory, but also on the strains and other state variables of the points in the 

surrounding area. Physically, the nonlocality represents the heterogeneities and interactions 

taking place at the microscale, which cannot be neglected in the damage analysis, where the 

scale of the macrostructural fluctuations of the constitutive variables approaches the scale of 

the microstructure [27]. The intensity of these interactions is described by the aforementioned 
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internal length scale parameter, which in this way introduces a microstructural contribution in 

the model [6].  

 Basically, there are two different approaches regarding the implementation of the 

material nonlocality in the model, the integral and the gradient approach. The integral approach, 

introduced in [28], accounts for the influence of previously mentioned microstructural 

interactions through the weighted average of a variable driving the damage process, typically 

strain. This leads to very complicated constitutive relations made of convolution-type integrals, 

making the numerical implementation very demanding. In the case of the gradient approach, 

either the classical constitutive relation is enhanced with the strain gradients, or both the strain 

gradients and their stress conjugates are introduced in the model via the higher-order 

continuum. In the case when only strain-gradients are used as an enhancement of the 

constitutive relation, the explicit and especially the implicit gradient formulations are usually 

used when dealing with softening, either in elasticity context [29], plasticity context [30, 31] or 

in the analysis of the elastic wave propagation [32]. Although the structural responses are mesh 

objective, the mentioned formulations suffer from the spurious damage growth reported in [33], 

where the damage process zone evolves incorrectly after initiation in the mode-I and the shear 

band problems. The described phenomenon occurs if the conventional integral and gradient 

enhancements are used, which assume a constant interaction domain throughout the entire load 

history. Because of this assumption, the energy is transferred from the damage process zone to 

a neighboring elastically unloading region, resulting in a smeared damage zone instead in a 

localized deformation band [34]. This problem can be more or less successfully avoided by 

using the modified nonlocal formulations which assume the evolving internal length scale 

parameter. Most of these formulations employ the increasing length scale parameter with the 

rising deformation level [35-37]. By doing so, it is presumed that the intensity of microstructural 

interactions also increases, which does not have a correct physical background. This is 

explained in more detail in [34], where a new model based on the decreasing microstructural 

interactions is presented, recognizing that the width of the fracture process zone localizes 

towards a macroscopic crack in the quasi-brittle fracture. Recently, a phase-field model is 

commonly employed in the problems including damage and localization [38-41]. The model 

shares a lot of similarities with gradient-damage formulation in terms of the mathematical 

structure, with the main difference in the interpretation of the governing Helmholtz equations. 

Whereas nonlocal variables in the gradient approach can be interpreted as a spatial averaging 

operators, in the phase-field model they follow from the regularized energy variation due to 

fracture evolution [42]. Although phase-field models provide fully regularized solutions, to 
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accurately capture the evolution of the phase-field, i.e. damage, the mesh has to be substantially 

refined along the anticipated crack path, which significantly contributes to the increased 

computational costs. 

 The strain gradient continuum theory, where both the strain gradients and their stress 

conjugates contribute to the internal energy [43] is employed less often, mainly because it is 

numerically more complex. In the recent developments, this higher-order stress-strain theory is 

employed in the context of a damage modeling of an infinitely long bar [44], where it is 

concluded that the addition of the higher-order stress terms results in stabilizing the positive 

definiteness of the tangent stiffness moduli when entering the strain softening regime. In such 

a way the physically consistent solutions leading to a realistic reproduction of the softening 

phenomenon can be ensured. Further development from one-dimensional to multi-dimensional 

simulation of a localized failure process is made in [45]. In both [44] and [45] element-free 

Galerkin (EFG) meshless method is used for finding the approximate solutions to the 

corresponding boundary value problems. Another advantage of the higher-order stress-strain 

theory is that material heterogeneity in the constitutive relations can be easily introduced 

through the non-diagonal higher order material stiffness tangents [46]. The stiffness tangents 

can be obtained by applying the second-order homogenization technique on the RVE. The 

constitutive relations emerging from the second-order homogenization are dependent on the 

choice of the RVE size, or in other words, the size effect can be studied by changing the RVE 

sizes rather than changing the model dimensions. On the other hand, as suggested in [47] and 

[48], the gradient constitutive behavior is a material property, and as such it should not be 

influenced by the choice of the RVE size, but only by a stochastic aspect of the heterogeneities 

included in the RVE. For this purpose, a correction that is to be applied on the strain gradient 

modulus of the sixth order is derived in [47], making the overall constitutive relations more 

consistent and intrinsic. Although the previously mentioned gradient feature of the constitutive 

law resulting from the standard homogenization procedure is not as physically as appropriate, 

when a real engineering material is considered, the necessary RVE size can be determined and 

the unique and consistent strain gradient constitutive relations can be obtained. Another 

limitation of the standard second-order homogenization is concerned with the microfluctuation 

field inside the RVE, as it is recognized in [49]. Here the authors suggest another approach for 

its resolution by treating the microfluctuation term in the extended Hill-Mandel condition 

different from zero, which is exactly the opposite from what is generally used in the standard 

approach, e.g. as described in [17, 50]. Beside  the second-order CH, which can be used for an 

arbitrary RVE geometry and is the most general in that sense, a constitutive model for the 



Introduction 

6 

materials with a simple microstructure can be established using an analytical approach, e.g. as 

described in [51]. 

 Concerning the numerical implementation of the strain gradient continuum theory using 

the finite element method, both C0 and C1 continuous elements have already been employed. In 

[52] a superior robustness of the C1 displacement based finite elements over the C0 elements 

used with a penalty function approach is shown. In [53], the C1 formulation is used for the crack 

analysis in the context of the linear elastic fracture mechanics. Authors in [54] presented an in-

depth analysis of the performance of three different C1 continuous finite elements and 

additionally made a comparison with the C1 natural element method. In [17] a triangular 

displacement based C1 finite element and used it in the scope of the multiscale modeling of 

heterogeneous materials is developed. Regarding the damage mechanics, the C0 finite elements 

based on the mixed formulation are mostly used due to their lower complexity, either when the 

implicit gradient enhancement [21] or the micromorphic approach [34] is used as a 

regularization technique. To the authors’ knowledge, the two-dimensional C1 displacement 

based finite elements have not yet been employed for the analysis of softening materials. 

Although the C1 formulation is considered more complex owing to a relatively high polynomial 

used for the displacement field approximation, there is no need for the introduction of the 

additional variables representing the link to the microstructure, e.g. the non-local equivalent 

strain or the micromorphic variable, which are specific for the C0 formulations. In that sense, 

the C1 displacement based finite elements can be considered more intrinsic as all state variables 

are calculated in terms of the displacements and their derivatives. Besides, due to the mentioned 

displacement field approximation using a high polynomial, a much coarser discretization is 

generally sufficient, compared to the C0 finite elements.  

1.3 Multiscale modeling of damage 

The mechanical response of heterogeneous materials, observed from a macrostructural level, is 

highly dependent on the microstructural characteristics, such as size, shape, spatial distribution, 

volume fraction and properties of the individual constituents. Modeling of the microstructure 

of such materials can be used to assess the overall or effective material properties, and also to 

predict the occurrence of failure which limits the operational use of many engineering 

structures. One of the possible ways to model such a material where localization at the 

microscale has arisen is by using direct numerical simulation, where the exact microstructure 
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is explicitly modeled at the macrostructural level. Although this method provides very accurate 

results, its applicability is still very limited due to high computational costs.  

 Another class of methods for the incorporation of the micromechanical localized 

response in the structural analysis of the macrostructure are multiscale methods. The main 

challenge here is bridging the evolution of the microscopic localization towards material failure 

at the large scale, i.e. engineering level. This problem is tackled only with a partial success by 

development of so-called local mesh refinement techniques. In multigrid or superposition based 

methods hierarchical decomposition of macro- and microscale effects is employed, such that 

the coarse macroscopic mesh is locally overlaid with a detailed microscale description where 

localization is to be expected [55, 56]. Similarly, domain decomposition methods are based on 

disassembly of the macroscale in several subsets where each of them can have different spatial 

resolutions with appropriate length scales, which allows to resolve a strain localization in the 

zone of interest and thereby save the computational costs [57, 58]. Given local mesh refinement 

techniques are mainly efficient if only a mild and small localization zone is expected, position 

of which is known a priori. 

 However, the most progress in the multiscale modeling of the microscopic localization 

is achieved by utilization of CH methods. As stated before, there is no need to make any 

constitutive assumptions at the macroscale, as the response of the homogenized material is 

determined during the analysis by solving a microscale BVP associated with each macroscopic 

integration point, represented by an RVE. Through the homogenization process, response of 

the heterogeneous microstructure is averaged over an RVE, whereby a new, effective 

homogeneous material is formed, as presented in Figure 1.1. Classical homogenization 

techniques are built upon the principle of separation of scales, which states that the RVE size 

should be much smaller, than a characteristic length over which the macroscopic loading varies 

in space. In other words, the uniform distribution of the macro-strain over the entire RVE 

domain is assumed. This, however, is violated when the first-order CH schemes, which are 

based on classical continuum formulation at both scales, as described in [59-62], are used with 

the problems where strain softening occurs at the microlevel. When there is no clear separation 

of scales, capturing of the propagation of the underlying rapidly fluctuating responses can be 

remedied to some extent by higher-order enrichment of the macroscopic continuum. Besides, 

standard continuum formulation at the macroscale cannot regularize the formation of the strain 

localization, which in addition leads to the ill-posedness of the macrostructural BVP. As an 

improvement to the first-order CH, second-order CH is proposed [18], which is shown to be 

successful in treating only the mildly softening materials, specifically the materials not 
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exhibiting the deformation beyond a quadratic nature in the displacements, as stated in [63]. 

Classical homogenization in its essence implies the averaging of some physical phenomenon, 

and it is believed that, in the case of the sharp localization which is characteristic to the certain 

RVE, it should not be performed. Additionally, with the occurrence of the sharp strain 

localization, homogenized response stops being objective with the respect to the size of the 

RVE - by increasing the size of the micro-sample, the macroscopic structural response becomes 

more brittle [12]. In that case RVE stops being statistically representative for the macroscopic 

material point and should be called a microstructural volume element (MVE) instead, as stated 

in [64]. Another class of homogenization methods which deal with the strain softening problems 

is based upon the enrichment of the macroscale continuum with a discontinuity, where the 

microscale strain localization band is lumped into a macroscale cohesive crack. Taking into 

account the techniques used for the extraction of the equivalent discontinuity from the localized 

MVE and formation of the corresponding macrostructural effective constitutive relation, 

several different procedures can be found in the literature [65-71]. The existence of an RVE for 

softening materials undergoing localized damage has been confirmed in [72], where a new 

averaging technique based on extraction of the deformation of just a localization band is 

proposed. By using this technique, a CH scheme for discrete macroscopic crack modeling that 

is objective with respect to the size of the RVE is presented in [66, 68]. 

 

Figure 1.1 Homogenization of a heterogeneous material. Based on [60]. 



Introduction 

9 

In [73], a new second-order CH scheme is derived, where the C1 continuous finite elements are 

employed at both macro- and microlevel. Employment of the nonlocal theory at the microscale 

has shown better efficiency compared to available homogenization schemes, additionally 

offering an advanced frame for damage modeling. Regarding the modeling of localization 

phenomena by using the C1 continuity, a new damage model employing the strain gradient 

theory embedded into C1 continuous finite element is recently presented in [74], where the 

exceptional regularization capabilities of such model are demonstrated. Potentially, merging of 

this damage model with the two-scale scheme presented in [73] could resolve some of the issues 

related to multiscale modeling of localization phenomena, which is one of the topics of this 

thesis.  It is clear from the given overview that development of the multiscale models which 

deal with the damage localization problems still needs to be improved in order to enable their 

employment in practical, engineering considerations. 

1.4 Scope and objective 

The main objective of the research is a development of the damage formulation based on the 

strain gradient theory, which includes a spatial discretization with the continuity of 

displacements and first derivatives of displacements (C1 continuity). Besides, a new method for 

numerical modeling of damage in heterogeneous materials using the multiscale algorithms 

based on the higher-order continuum theory will be proposed. 

 

The hypotheses of the research are: 

 

1. It is possible to model the damage phenomenon using the displacement based spatial 

discretization. Proposed novel method will show advantages in comparison with spatial 

discretization based on mixed formulation. 

 

2. It is possible to achieve the higher accuracy of modeling of damage in the heterogeneous 

materials using the homogenization procedure within a framework of multi-scale 

algorithms, then the accuracy that can be reached by the formulations available in literature. 

 

Research in the scope of the thesis is divided in two parts. In the first part, objective is to develop 

a damage model based on the strain gradient continuum theory which includes both the strain 
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gradients and their stress conjugates, where the C1 continuity displacement based triangular 

finite element developed in [17] will be utilized. It is expected that the employment of the 

higher-order continuum should resolve the existing issues with spurious damage growth that 

can be observed in problems where conventional gradient implicit formulation is typically used. 

In addition, constitutive relations will be modeled in a way that will decrease the intensity of 

the microstructural interactions in the process zone while the softening progresses. In this way 

a physically correct structural response standing behind a fracturing process can be captured, 

unlike the results obtained using the conventional implicit gradient damage model, where the 

spurious damage growth can be observed [33, 75]. The microstructural contribution will be 

incorporated through the constitutive tensors obtained using the second-order CH, while the 

softening analysis will be performed exclusively on the macroscale model. Thus, not only the 

internal length scale, but also the heterogeneous contribution of the RVE will be acquired for 

the implementation in the macroscale constitutive model. Although simplified, incorporation 

of heterogeneities by the described means should be a computationally effective way to model 

the damage in the heterogeneous materials. This procedure could potentially find its application 

in the preliminary analyses of heterogeneous structures where damage is expected, 

complementing as such the subsequent employment of the multiscale method. 

 Second part of the thesis aims to provide a two-scale method for the analysis of the 

damaged material, where both structural levels will be described as a higher-order continuum, 

which necessitates the employment of the C1 continuity. Since the nonlocality is intrinsically 

included in this type of continuum, neither objectivity issues related to discretization nor 

spurious damage growth are expected, i.e. a full regularization of the localization problems at 

both scales should be achieved. The topic regarding the preservation of the objectivity with 

respect to the size of the RVE will not be included in this thesis. Conventional homogenization 

will be applied during the calculation up until the full formation of the localization zone in the 

certain RVE, when the appropriate stiffness conditions for the cracked material point will be 

included in the macrostructural constitutive model. This should allow for a more realistic 

description of the structural behavior of the large scale model when localization occurs at the 

microscale. 
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To summarize, the expected scientific contribution of the thesis is: 

 

1. Development of the damage model based on the strain gradient theory which allows the 

displacement based discretization. In this way numerical efficiency with respect to the 

gradient formulations based on the mixed finite elements will be increased. 

 

2. Development of the novel numerical method for the multi-scale modeling of damage in 

heterogeneous materials which utilizes constitutive relations derived by the 

homogenization algorithm within the multi-scale algorithm. This will contribute to the 

higher accuracy of the modeling, and accordingly to the higher safety of the structures. 

1.5 Outline of the thesis 

The thesis is organized in five chapters. After the introduction, general concepts of elasticity-

based continuum damage mechanics are given in Chapter 2. Constitutive modeling for 

description of the damage phenomenon in quasi-brittle materials is provided. The shortcomings 

of the classical continuum approach are described and the origins of the inaccurate localization 

are discussed afterwards. Finally, a brief overview of the existing methods that prevent such 

unwanted behavior is given. In Chapter 3, a C1 continuity triangular finite element derived in 

[17] is extended to the consideration of the softening phenomena in quasi-brittle materials. A 

brief description of the basic element together with the fundamental relations of the gradient 

theory are given at the beginning. A formulation and numerical implementation of the higher-

order stress-strain damage theory into the C1 continuity finite element is presented. Verification 

of the new procedure is then made on several standard benchmark examples, where both the 

homogeneous and heterogeneous materials are taken into consideration. A special attention is 

directed to the advanced regularization capability of derived model to prevent the spurious 

damage growth. Chapter 4 is dedicated to the derivation of the multiscale procedure that enables 

the softening analysis at the macrostructural level by homogenizing the localized response of 

the RVE level. Numerical implementation of the previously derived damage model at the 

microstructural scale is firstly discussed. In order to test the applicability of the classical 

continuum at macroscale, C0-C1 macro-micro scale transition relations are derived afterwards. 

Basic relations of the existing two-scale scheme that employs the gradient continuum at both 

structural levels presented in [73] are then given. RVE cracking conditions, i.e. conditions that 
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indicate the full formation of the localization band at the RVE level and consequential change 

of the macrostructural stiffness are derived. Numerical example including both C0 and C1 

continuity macrolevel discretization together with the homogeneous microstructure is provided 

in order to show the deficiencies of using the local approach when damage occurs at the 

microscale. In addition, few numerical examples where the heterogeneous RVE is employed 

are presented and compared with the one-scale solutions obtained by the model from Chapter 

3, where the same RVE is used for the extraction of the stiffness tensors. At the end of this 

chapter, a short discussion on perspectives for multiscale modeling of heterogeneous materials 

undergoing damage is provided. Finally, concluding remarks are given in Chapter 5.
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2 Damage modeling in linear-elastic 

materials 

Continuum damage mechanics, being a part of the continuum mechanics, is a theory used to 

analyze the mechanical effects of material damage and fracture process. Damage is defined as 

a phenomenon where the nucleation, growth and coalescence of the microscopic cavities and 

cracks lead to the initiation of the macroscopic crack, resulting in the deterioration of the 

mechanical properties of the observed material [4, 76]. Considering the differences in materials 

and loading conditions, damage may be classified phenomenologically in several categories 

[3], such as brittle, ductile, creep and fatigue damage among others. Since the thesis deals with 

the development of the new damage model, complexity level of the underlying physics is 

reduced to minimum for the clarity reasons. Accordingly, viscous and dynamic effects together 

with thermal and other non-mechanical influences are excluded from the consideration, while 

strains and rotations are assumed to be small. Additionally, material behavior is assumed to be 

linear-elastic when there is no damage growth, which finally leads to the class of damage 

models often called elasticity based damage or damage coupled with elasticity [77]. 

Predominant dissipation mechanism in phenomena which can be described by elasticity based 

damage is growth of material defects which involves a high degree of microstructural change 

before complete loss of mechanical integrity. Also, the dissipation caused by the plastic 

deformations can be neglected in such problems. Ultimately, the only fracture mechanism 

corresponding to all of the aforementioned criteria is quasi-brittle fracture, which occurs in 

many realistic materials where cohesive strength is much lower than the slip strength. Materials 

like these include, among others, high-strength steels, polymers, composites and various geo-

materials like concrete and rock.  

 The basic theory of the classical damage mechanics in general is given in Section 2.1, 

following by the particular case of elasticity based damage associated with quasi-brittle 

materials, presented in Section 2.2, where constitutive modeling is described in more detail. In 

Section 2.3 local approach to damage and problems related to it are presented, while in Section 

2.4 overview of the existing regularization techniques is given. 



Damage modeling in linear-elastic materials 

14 

2.1 Basic theory of continuum damage mechanics 

The fundamental procedure of the continuum damage mechanics begins with a representation 

of the damage state of the material by a set of continuous damage variables, which are then 

used for the description of the mechanical behavior of the damaged material and the subsequent 

development of the damage. Damage variable D represents a measure of the number and size 

of the defects in a small volume of a material point, usually called representative volume 

element (RVE) [78]. By taking an RVE of the appropriate size at each material point, 

mechanical effects of the discontinuous microstructure can be statistically averaged as a 

continuous field on the macroscale. In order to obtain a unique mechanical state of the 

continuum, RVE should be large enough to contain a sufficient number of microstructural 

discontinuities, and also sufficiently small that an increase in its size does not lead to 

considerable differences in the homogenized properties [12]. When the microvoids are 

randomly distributed over the RVE, the local damage state is usually taken to be isotropic and 

can be described by means of the scalar damage variable D. On the other hand, when microvoids 

have oriented geometry multiple anisotropic damage states exist, and in that case a set of 

damage variables or a tensor have to be used [79]. Due to simple mathematical implementation 

of the scalar damage variable, isotropic damage theory is assumed throughout the thesis. 

Damage variable can generally be obtained in few different ways [4], and the most common 

one is the modeling by effective area reduction proposed in [80]. Considering the two-

dimensional case of homogeneous damage pictured in Figure 2.1, the value of damage D 

attached to the point M can be defined as 

  
d

d

DA
D M

A
 , (2.1) 

where d DA  represents an effective area of all microstructural defects inside the RVE of an area 

dA. Damage variable D ranges from zero to one, where 0D   represents the initial, undamaged 

state of the material, while 1D   represents the final fractured state or a complete loss of 

mechanical integrity of a material point. For the values between zero and one, certain 

development of damage has occurred, but material still has the capacity to carry the loading. 

Three different material domains involving the damage distribution are depicted in Figure 2.2 
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Figure 2.1 Damaged body and RVE of the point M 

Regions of material where damage reached the critical value of one are basically the continuum 

representation of cracks, where the stresses are non-existent and the equilibrium equations 

therefore meaningless. This implies that cracked region should be excluded from the rest of the 

material by introducing an internal boundary of zero stress value, position of which changes 

with the subsequent damage growth [6]. In the numerical calculations throughout the thesis, 

damage variable is set to never reach the critical value, which means that all cracking integration 

points will still have a very small stiffness and thus remain the part of continuum. By doing so, 

there is no need to continuously formulate the new free boundaries, which is in the finite 

element context described by removal of the cracked finite elements from the initial boundary 

value problem.  

 

Figure 2.2 Distribution of damage in a continuum. Based on [21]. 
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2.2 Damage in quasi-brittle materials 

Quasi-brittle material is type of the material where a certain amount of dissipation occurs before 

the crack initiation, as opposed to brittle material where no dissipation prior to crack exists [4]. 

Typically, in quasi-brittle materials, fracture is not the consequence of the growth of one 

dominant crack, but rather starts in a volume characterized by a diffuse network of microcracks. 

The evolution of the failure process, as observed in concrete experiments [81] and meso-scale 

simulations [82], can be described in few separate stages, which are shown in Figure 2.3. After 

a diffuse network of the microcracks has been established in the initial stage ( 1t ), propagation 

of the microcracks is continued in much narrower volume ( 2t ). The rest of the microcracks 

excluded from the propagation process zone unload elastically which eventually leads to their 

closure, depicted in Figure 2.3 as dotted lines. With the further increase in the deformation, 

rapid coalescence of the microcracks can be observed in the process zone, which is 

simultaneously becoming smaller in width. In the final stage ( 3t ), a localized macroscopic crack 

is formed occupying only a fragment of the initial volume of diffused microcracks. As a 

consequence of the described process, a gradual decrease in load carrying capacity of material 

point is usually observed, in contrast to the abrupt loss of strength in perfectly brittle fracture.  

 

Figure 2.3 Evolution of the failure process in quasi-brittle materials. Based on [34]. 

In the elasticity based damage mechanics and under the assumption of the isotropic damage, 

the gradual decrease in load carrying capacity can be expressed according to [77] as 

 eff ,σ C ε  (2.2) 
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with 

  eff 1 D C C . (2.3) 

In the above relations, σ  and ε  are Cauchy stress tensor and linear strain tensor, while eff
C and 

C  denote the effective and the elastic stiffness tensors, respectively. As can be seen from  

(2.3), increase in the damage variable D leads to decrease of the effective stiffness eff
C . As 

mentioned above, when D = 1, stiffness in non-existent and stresses cannot be transferred 

anymore, a state which is physically represented by a crack. Equations (2.2) and (2.3) define 

how the damage affects the stress and the strain field, but at the same time, increase of the 

damage variable is dependent on change of stresses and strains. The damage state is governed 

by the monotonically increasing scalar history parameter  , which can be determined as the 

largest value of the equivalent strain eq  reached in a material point during the loading history. 

Since the damaging process is irreversible in a material point, damage variable can only 

increase when the equivalent strain reaches the history parameter  , i.e., when eq  . By 

using the selected parameters, growth of the damage is usually expressed through the damage 

loading function 

  eq eq,f      , (2.4) 

where 0f   defines a loading surface in strain space. The qualities of the loading surface are 

dependent on the definition of the equivalent strain eq  and the history parameter  , which will 

be given later. When the strain state lies inside the loading surface, damage cannot increase and 

material behaves elastically. For the increasing damage, elastic domain defined within the 

loading surface has to continuously grow such that the strain state remains on the loading 

surface, i.e. conditions 0f   and  0f   have to be satisfied. This can mathematically be 

expressed through Kuhn-Tucker relations 

  eq eq0, 0, 0          , (2.5) 

where the initial elastic domain is determined by 0  , and denotes the equivalent strain 

needed to be reached for the start of the damaging process ( 0D  ).  

Evolution of damage is usually for the quasi-brittle materials specified directly in the 

form  D D  . When it comes to the theoretical considerations of the damage process, the 

damage evolution governed by the linear softening law [6] is usually used 
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 , (2.6) 

where u   is material parameter representing the strain at which material completely loses its 

stiffness. Relation (2.6) together with the corresponding uniaxial stress-strain responses is 

depicted in Figure 2.4a. Real materials usually soften in a nonlinear fashion, where the initial 

pronounced descent of stress can be noticed followed by a milder decrease. The application of 

exponential softening law is the most common here, especially for the concrete [83], given as 

   0
0 01 1 exp ifD


      


         , (2.7) 

and shown in Figure 2.4b. Here, damage variable asymptotically approaches 1D  , which 

means that the material will always have a very small stiffness that prevents the crack formation. 

Parameters   and   determine how low will the stress decrease and the rate at which damage 

grows, respectively. With higher value of  , stress can reach a smaller values when 

approaching 1D  , while a higher value of   leads to a more rapid growth of damage, resulting 

in a more brittle structural response.  

 

Figure 2.4 Damage growth and corresponding uniaxial stress-strain response for (a) linear softening 

and (b) exponential softening. Based on [6]. 
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In order to a have a fully defined quasi-brittle damage model, the equivalent strain eq  has to 

be known beside the damage evolution law. The equivalent strain eq  is a scalar representation 

of the strain tensor, which can be defined in various ways depending on the material properties 

and loading conditions. Due to the different effects of the strain tensor components on the 

damage growth, they have to be weighted appropriately to obtain the desired equivalent strain. 

Two different elastic strain measures are generally used within the context of the softening 

behavior of a quasi-brittle material. The first one is defined in [83] as 

 
3

2

eq

1

i

i

 


  , (2.8) 

with  1, 2, 3i i   representing the principal strains, while  
1

2
i i i    . So called 

Mazars’ definition (2.8) is plotted in Figure 2.5a under the assumption of the plane stress state, 

where a constant eq 1   curve is shown in the principal strain space and for the Poisson’s ratio 

0.2  . Dashed lines represent the uniaxial stress paths. 

 

Figure 2.5 Equivalent strain measurements in principal strain space for (a) Mazars’ definition (2.8) 

and (b) modified von Mises’ definition (2.9). Based on [6]. 

It is clear form (2.8) and Figure 2.5a that the Mazars’ equivalent elastic strain measure depends 

only on the positive principal strains, making it more sensitive to tensile than to compressive 

strains, which is a behavior very often observed in engineering materials, e.g. concrete. On the 

other hand, the modified von Mises’ equivalent strain measure is according to [84] given by 
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   
, (2.9) 

and includes a parameter k which represents the ratio between uniaxial compressive and tensile 

strength of the material. Graphical representations of the definition (2.9) for 1k   and 10k   

are given in Figure 2.5b. For the 1k  , meaning that both compression and tension influence 

the equivalent strain measure equally, modified von Mises’ definition results in  

 eq 2

1
3

1
J





. (2.10) 

In above expressions 1I  and 2J  are the first invariant of the strain tensor and the second 

invariant of the deviatoric strain tensor, respectively, defined as 

 

 

   

1

2

2

tr ,

1 1
tr tr .

2 6

I

J



  

ε

ε ε ε
 (2.11) 

Here, only the description of softening laws and equivalent strain definitions are given which 

are used throughout the thesis. As far as quasi-brittle material damage is concerned, a so-called 

modified power law usually used to describe the damage evolution in short glass-fibre 

reinforced polymers is proposed in [85], and equivalent strain measure related to the energy 

release rate associated to the damage variable is suggested in [77]. 

2.3 Local approach to damage 

The method of damage analysis is defined as local when it is based on the damage mechanics 

parameters defined by the strain and other relevant state variables which exist in the observed 

material point. On the other hand, when the method of damage analysis is based on the global 

damage mechanics parameters defined by the stress and strain fields in the neighboring region 

around the observed material point, then the method of damage analysis is said to be nonlocal. 

When the local approach is used by means of the continuum damage mechanics and the finite 

element method, material softening caused by damage can lead to so called mesh sensitivity, 

an unwanted condition when numerical solution does not converge to a physically reasonable 

solution of the problem [86]. At the onset of the strain softening, i.e. material instability, loss 

of positive-definiteness of the tangent stiffness matrix is induced, which leads to the loss of 

ellipticity of the equilibrium rate equations. As a consequence, loss of the well-posedness of 
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the rate boundary value problem can be expected eventually [22, 87, 88]. It is important to stress 

that the mesh sensitivity is a numerical consequence of limitations of the underlying 

mathematical modeling, and it is not caused by numerical artifacts or inappropriate boundary 

value problem solving algorithms, as stated in [6].  

 The most prominent characteristic related to mesh-dependence of the softening 

materials is the formation of the deformation localization zones of the width similar to the size 

of the finite elements. Because the energy dissipation caused by the damaging process is 

strongly connected to the localization zone, it is therefore governed by the mesh size. This 

implies that with the refinement of the spatial discretization, the predicted dissipation of the 

fracture energy becomes smaller, physically meaning that the actual crack would propagate 

faster. In the limit of the infinitely small elements, this phenomenon may lead to unlimitedly 

small dissipation for the fracture of the material, i.e. an infinite crack growth rate or perfectly 

brittle fracture. Increase in the brittleness of the structural responses with the mesh refinement, 

which is also connected with a decrease in the total dissipated energies represented by the areas 

under the particular responses, is shown qualitatively in Figure 2.6. 

 

Figure 2.6 Qualitative softening responses for different finite element discretizations in the framework 

of classical continuum mechanics 

Material instability due to damage can be mathematically briefly explained as follows. 

Assuming a time-independent material with the rate constitutive equation, that is an 

incrementally-linear stress-strain relation 

  Dσ C ε , (2.12) 

the condition of material stability according to [89] is given by 

 0T ε σ , (2.13) 
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or after the substitution of  (2.12), by 

   0T D ε C ε . (2.14) 

By performing a uniaxial tension or compression test, it is obvious that dot product (2.13) 

becomes negative if the axial stress is decreasing for the increasing axial deformation, resulting 

in the negative slope of the stress-strain curve – a phenomenon called strain softening. From 

(2.14) the condition of the positive-definiteness of the tangent stiffness tensor  DC  can be 

obtained as 

  det 0T C C , (2.15) 

which ensures uniqueness of the deformation and therefore no mesh-related problems. The 

limiting case when the inequality (2.15) is replaced by the equality indicates the onset of the 

strain softening, which is associated with the loss of positive-definiteness of the tensor  DC . 

The condition can be written as  

  det 0T C C ,  (2.16) 

and indicates the possibility for the loss of ellipticity of the equilibrium rate equation and 

consequentially the loss of well-posedness of the rate boundary value problem. As long as the 

ellipticity condition is valid, a finite number of linearly independent solutions with no 

discontinuities are allowed [90].  Loss of ellipticity occurs if 

  det 0j ijkl ln C n  , (2.17) 

which physically indicates the existence of a discontinuity in the velocity gradient, as explained 

in more detail in [6]. This situation marks the start of the so-called bifurcation of the 

deformation [91-93]  and formation of the intense localization band, the width and the direction 

of which are governed by the spatial discretization. 

The material instability described by (2.16) can also be a cause of the structural 

instability, even when there are no destabilizing terms related to geometry of the structure. 

Hill’s criterion of material stability, [89], can be reformulated for a structure that occupies a 

volume V  as 

 d 0T

V

V ε σ , (2.18) 

and the neutral stability of a discrete mechanical system is according to [94, 95] reached when 
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  det 0T K K , (2.19) 

where K represents a structural stiffness matrix. This implies that local loss of positive-

definiteness of the material tangent stiffness tensor  DC  may lead to the loss of positive-

definiteness of the structural stiffness matrix K. 

2.4 Regularization techniques 

In order to preserve the well-posedness of the boundary value problems and eliminate the 

instability and mesh-dependence of the numerical solutions, numerous schemes called 

regularization techniques have been developed throughout the years. In the following text a 

brief overview of most well-known regularization techniques is given. 

So-called fracture energy approach is based on imposing a limit on the damage 

dissipation through adaptation of the parameters of the damage evolution equation to the mesh 

size. Thereby, a constant global response can be obtained for different spatial discretizations, 

as shown in [25, 88]. Although this approach may be practical in some considerations by 

providing the reasonable global responses, the prediction of local states is still sensitive to the 

orientation and size of the finite element mesh, which can lead to unrealistic results.  

 Another similar technique imposes a limit on the size of the localization band, rather 

than on damage dissipation. This is done by setting a lower threshold on the finite element 

discretization, and technique is called a crack band model [26] or a cell model [96]. Because of 

its simple implementation, technique is often used in realistic engineering problems, but can be 

challenging in selection of the appropriate mesh size for specific materials and also in securing 

the calculation accuracy. 

Majority of regularization techniques are essentially based on the enrichment of the 

classical continuum theories, which rely on the principle of local action, with so-called internal 

length scale parameters in various ways. For example, the viscoplastic theory utilizes the 

addition of the rate-dependent terms, i.e. the viscous effects in the constitutive models to avoid 

the loss of ellipticity [97, 98]. The problem with this theory is that it can provide reasonable 

results only for limited range of cases where the width of the localization zone has to be known 

prior to numerical analysis, or where the transient loading is bounded by specific range of strain 

rates.  
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 Employment of the Cosserat, or micropolar continuum, characterized by the additional 

material rotational degree of freedom alongside the conventional displacements [99-101], is 

proven successful for determination of the size effects and in the analyses where the additional 

rotational degree of freedom is activated during the calculation, e.g. in the shear, i.e. mode-II 

localization problems [102]. Otherwise, in analyses where mode-I deformation is predominant, 

the abnormal localization may still occur [103].  

 As mentioned earlier, nonlocal approach to damage does not rely on the principle of 

local action as observed in classical continuum models, but also utilizes the strain state and state 

of the other state variables in the surrounding material points for the calculation of the strain 

and other variable states in the observed point. The main idea behind such approach is that the 

nonlocality provides a smoothing effect on the deformation and damage field, and thus prevents 

the localization in a smallest possible volume [84].  One of such schemes shown to be successful 

in eliminating the mesh-related problems is so-called nonlocal damage theory, described in 

more detail in [8, 28, 87, 104]. The concept of this method is to introduce direct spatial 

interactions in the continuum model, which is done by utilization of the weighted volume 

averages of certain state variables, defined as nonlocal variables in form of 

  
 

   
1

; d
; d V

V

A
A

  

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

x y x y
y x

, (2.20) 

where  , y x  is the weight function that depends only on the distance x y  between points 

x and y. V  represents the integration domain of the body where 1D  , while   x   denotes 

the nonlocal variable for the local quantity   y . Several weighting functions  , y x  exist in 

the literature of which the Gaussian function is employed most often, given by 

  
2

2
, exp

2l


 
  
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x y
y x , (2.21) 

where the length scale parameter l determines the volume of the material which contributes to 

the nonlocal variable, thus representing the maximum size of material inhomogeneity. 

Theoretical nonlocal neighborhood of the point where the weighted averaging is performed is 

graphically represented in Figure 2.7. Obviously, the intensity of the weighting function, and 

thus the appropriate nonlocal variable, decreases with the distance from the point considered 

for the averaging. 
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Figure 2.7 Representation of the nonlocal material behavior (top) and weighted averaging for an 

irregular microstructure (bottom). Based on [104]. 

Physically, nonlocality represents the interactions and heterogeneities taking place at the 

microscale, which cannot be suppressed anymore when the fluctuations of the constitutive 

variables get closer in size to the fluctuations of the microstructure [105]. The integral nonlocal 

damage theory represents one of the most effective numerical procedures for the regularization 

of the strain localization, but still has few drawbacks, like challenging numerical 

implementation of the convolution-type integrals which appear in constitutive model. In 

addition, due to the asymmetry of the tangent stiffness matrix computational time is necessarily 

increased. 

 For sufficiently smooth fields of  , the integral relation (2.20) can be reformulated by 

using the gradients of   through expansion into a Taylor series , which can be rearranged after 

some calculus in 

        2

1 2 ...c c        x x x x  , (2.22) 

with 2, , ...  denoting the gradient operators of first-, second-, … order. Hence the name 

gradient formulations for this technique, where the regularization is achieved by replacing the 

local equivalent strain   x  in the loading function (2.4) and in the appropriate softening law 

formulation with the gradient-dependent nonlocal strain  

      2

eq eq eqc    x x x . (2.23) 

Relation (2.23) is derived from (2.22) by inserting equivalent strain values eq  instead of  , 

and by neglecting the terms of order fourth and higher. Internal length scale parameter l is 
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included in the gradient coefficient c, and the relation between them depends on the choice of 

the weighting function  , y x . After the insertion of the model given by (2.23), usually called 

explicit gradient formulation [6], into the constitutive model, complexity of the equilibrium 

problem is necessarily increased due to additional gradients. In order to avoid this, implicit 

gradient formulation can be derived from (2.23), as shown in [6], in form of  

      2

eq eq eqc    x x x , (2.24) 

which represents one of the most often used techniques for the regularization of the damage 

process.  

Although both nonlocal integral and gradient formulations yield mesh-independent 

structural responses, they still suffer from nonphysical, spurious damage growth, as reported in 

number of articles [33, 34, 75]. The reason for such unwanted behavior, as stated in [34], is the 

constant interaction domain throughout the entire loading history, represented by the nonlocal 

damage parameter l, which leads to the transfer of the energy from the damage process zone to 

a neighboring elastically unloading region. In other words, evolution of the nonlocal strain 

 eq x  can be observed outside of the initial localized damage profile, which consequentially 

provokes further damage growth beyond the initial localized zone. There are several 

suggestions in the literature to remedy this problem, and majority of them are based on 

introducing an evolving nonlocality. Initially, this was accomplished by allowing the weight of 

the nonlocal variable to be greater than unity [106, 107], which was afterwards extended to 

utilization of an evolving weight dependent on the damage or deformation [36]. Evolving length 

scale parameter given as a function of the local equivalent strain, and thus damage, is proposed 

in [75]. In [37], it is shown that in order to satisfy the thermodynamic aspect, the evolving 

length scale has to increase when made dependent on the damage and that by decreasing it, 

effective regularization cannot be achieved [108]. Departure from such models is made in [34], 

where the authors successfully incorporated the decreasing interaction domain, which is 

acceptable from physical point of view. As described in Section 2.2, width of the process zone 

in quasi-brittle materials localizes towards a microscopic crack, which indicates a decrease of 

the microstructural interactions domain with the deformation.  

 Similarly to gradient theories, the phase field approach provides a regularization by 

employing the nonlocal material behavior, introduced in the model through the phase-field 

parameter d  which basically describes the spatially averaged damage. Therein, the assumption 

is made that the evolution of the phase-field is directly related to the crack growth by 
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introducing the fracture energy cG , i.e. the amount of the energy dissipation per unit of created 

fracture surface. The diffusion equation that governs the phase-field evolution is according to 

[42] given by 
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where  h d  is a degradation function. It is obvious that partial differential equation (2.25) 

closely resembles to (2.24), and can be in fact brought down to implicit gradient-damage 

formulation through some minor changes [42]. The main advantage of the phase-field model 

over the implicit gradient formulation is that the derivative of the degradation function  h d  

vanishes at a complete loss of material integrity, which ensures the stable localization zone with 

no spurious damage growth. Downside of phase-field modeling is the necessity for very fine 

discretization in the damage process zone, due to direct correlation of the internal length scale 

and the characteristic element size. 

Gradient theories given above are based on the enhancement of the constitutive law by 

the introduction of only strain-related gradients. On the other hand, employment of the strain 

gradient continuum theory, where both the strain gradients and their stress conjugates contribute 

to internal energy, is shown to be unconditionally stable, thus offering a more robust approach. 

Authors in [44] concluded that the addition of the higher-order stress terms results in stabilizing 

the positive definiteness of the tangent stiffness moduli when entering the strain softening 

regime. This eliminates some numerical difficulties with regard to strain softening associated 

with gradient theories where only strain gradients are employed. Although numerically more 

complex, mainly due to the need for continuity requirements of the higher order, strain gradient 

continuum theory is successfully applied in various localization problems, either by the usage 

of the element-free Galerkin (EFG) meshless method [45, 109, 110] or the finite element 

method [74].  
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3 Higher-order finite element for 

softening analysis 

Introduction of the second-order gradients of displacements in the virtual work statement 

necessarily leads to the higher-order differential equations. Solution to these equations by using 

the analytical methods would be strenuous even for the very simple problems, so the 

employment of some numerical method, e.g. finite element method is practically unavoidable. 

Since a numerical solution of the governing partial differential equation requires in this case a 

higher interpolation scheme, C1 continuity has to be ensured. Consequentially, finite elements 

have to be enhanced with additional degrees of freedom, which inevitably increases a structural 

complexity of the problem. In order to reduce the C1 interpolation requirements, various C0 

continuity finite elements based on mixed formulation are developed [52, 111-113]. Although 

more demanding when it comes to numerical implementation, C1 continuity finite elements, 

described in [52, 114], are shown to be superior when compared to mixed C0 continuity finite 

elements, which suffer from several shortcomings that can often lead to unacceptable results. 

When it comes to the analysis of damage and localization, C0 continuity finite elements based 

on the mixed formulation are predominantly used, most often in the framework of the implicit 

gradient formulation [21, 115], micromorphic continuum formulation [34, 116, 117] and phase-

field formulation [38-40, 42]. Neither the conventional implicit gradient nor conventional 

micromorphic formulation cannot completely regularize the localization process, where the 

spurious damage growth can be observed as a consequence [33, 75]. When it comes to the 

phase-field formulation, a very fine discretization of the model is usually needed, which can 

lead to the significant increase in the computational time. C1 continuity is much easier to satisfy 

by using the meshless methods, where the approximation function with high-order of continuity 

can be straightforwardly incorporated into the formulation without increasing the problem size 

[118, 119]. However, high computational costs associated with the calculation of the 

approximation functions still represent a major shortcoming [120]. To author’s knowledge, no 

existing C1 continuity finite elements are used so far in the problems that include the 

localization of the damage. Herein, the C1 continuity finite element formulation developed in 

[17] is used as a basis for the further extension of the element capabilities towards consideration 

of the material softening behavior.  
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 In Section 3.1 higher-order theory is briefly described and basic C1 continuity finite 

element is presented, while the implementation of the material softening and all belonging 

algorithms needed for the performing of the damage analysis are given in Section 3.2. In Section 

3.3, the newly derived element is tested on few benchmark examples and compared with the 

solutions from the literature. 

3.1 C1 continuity finite element based on the second-

gradient continuum theory 

3.1.1 Higher-order continuum theory 

When it comes to objective modeling of damage, introduction of nonlocal material behavior is 

shown to have a major contribution to the regularization capabilities of the localization 

phenomena. As described in Chapter 2, the term nonlocality refers to all heterogeneities and 

interactions taking place at the microscale, which cannot be neglected in the damage analysis 

where the sharp fluctuations of the variables at the macroscale are of the similar size as the 

microstructure [27]. Since the classical continuum theory does not contain internal length scale, 

effects originating from the microstructure cannot be captured, which leads to the unacceptable 

results in numerical observations. Extension of the classical continuum theory towards higher-

order continuum is stimulated when so-called size effect was discovered in engineering, which 

is basically a problem of obtaining different structural responses with scaling of the structure, 

as described in [121]. Work of Cosserat brothers [122], based on the introduction of the 

additional rotational  degrees of freedom at the microlevel, together with non-symmetric stress 

tensor and higher-order couple stress tensor, is further extended during that time in [123-126]. 

By the addition of the stretch gradients in the Cosserat theory, development of the full second-

gradient theory began in [127], where so-called double stress tensor is introduced as an 

energetically conjugated term to the second derivative of the displacement field. In addition, 

material with the microstructure where each material point has its own degrees of freedom is 

described in [128, 129]. Besides modeling of size effects and damage phenomena [8, 32, 85], 

higher-order theories are also recognized as a valuable tool for modeling of material 

elastoplasticity derived within a gradient dependent plasticity [30, 130, 131]. Here, only the 

basic relations of the strain gradient continuum will be presented, while the detailed derivation 
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of all relations is given in [11, 53]. A comprehensive review of generalized continua can be 

found in [132]. 

 According to the classical small strain theory, equilibrium is always considered by using 

the reference body configuration, i.e. an undeformed body, where the kinematical behavior at 

time t is described by the displacement field u. The fundamental strain gradient continuum 

relations are given in Table 3.1. In the small strain continuum theory the strain tensor ε  is 

defined as a symmetric part of the displacement gradient field u  , as shown in (3.1). In 

(3.4) σ  is the Cauchy stress tensor and 3μ  stands for the third-order double-stress tensor, 

representing an energetically conjugate measure to the strain gradient tensor 3η , defined in 

(3.2). As obvious from (3.3), strain density function is in the higher-order theory dependent on 

both the strain and the strain gradient tensors. Variation of the work done by internal forces is 

defined by (3.5) with A  and D as the surface gradient and normal gradient operators, 

respectively, while n  represents the unit outward normal to surface A of a body of volume V. 

In the variation of the external work given by (3.6), t  and τ  stand for the traction and double 

surface traction vectors, respectively, with their definitions given in (3.7) and (3.8). Equilibrium 

equation (3.10) is derived from the principle of virtual work ( int extδ δW W ), where σ  

represents the effective stress defined by (3.9). 

  



Higher-order finite element for softening analysis 

31 

Table 3.1 Basic relations of the strain gradient continuum [17] 

The strain tensor: 

   1

2

T
   ε u u . (3.1) 

The strain gradient tensor: 

 3 η ε . (3.2) 

The strain energy density function: 

  3,W W ε η . (3.3) 

Variation of the strain energy function: 

 3 3δ :δ δW  σ ε μ η . (3.4) 

Variation of the internal work: 

 

         

   

    

int 3 3 3

3

3

δ δ d

δ d

δ dA

A A

A

V

A

W A

V

D

               
 

      
 

     
 







n σ μ n n n μ n μ u

σ μ u

n μ n u

, (3.5) 

with  A   I n n  and D  n . 

Variation of the external work: 

     extδ δ d δ d
A A

W A D A       t u τ u , (3.6) 

where 

         3 3 3A A            t n σ μ n n n μ n μ   (3.7) 

 3 .  τ n μ n  (3.8) 

The effective stress: 

  3  σ σ μ . (3.9) 

The equilibrium equation: 

  σ 0 . (3.10) 
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A special case of the general strain gradient continuum theory is described in [133-135], where 

a modified case of Mindlin’s form II strain energy density [43] is proposed as 

 2

, , , ,

1 1

2 2
ii jj ij ij ii k jj k ij k ij kW l       

 
    

 
, (3.11) 

with 2l  as the microstructural parameter or the internal length scale, and   and   as elastic 

Lamé’s constants, given by 

 
  1 1 2

E


 


 
 ,  (3.12) 

 
 2 1

E






. (3.13) 

Employment of (3.4) and (3.11) then leads to following identities 

  tr 2
W

 


   


σ ε I ε
ε

, (3.14) 

     2

3
tr 2

W
l  


       

μ ε I ε
η

, (3.15) 

     2 2tr 2 tr 2l           σ ε I ε ε I ε . (3.16) 

This simplified version of the higher-order continuum theory is especially convenient for 

modeling of the microstructure in the multiscale models, which will be explained in Chapter 4. 

3.1.2 Formulation of the basic C1 continuity finite element 

Here, the C1 continuity plane strain triangular finite element derived in [11] is presented, which 

will be extended in the thesis to the capability of describing the material softening behavior. As 

obvious from Figure 3.1, the element consists of three nodes and 36 degrees of freedom with 

the displacement field approximated by the complete fifth order polynomial, defined as 

 

2 2 3 2

1 2 1 3 2 4 1 5 1 2 6 2 7 1 8 1 2

2 3 4 3 2 2 3 4

9 1 2 10 2 11 1 12 1 2 13 1 2 14 1 2 15 2

5 4 3 2 2 3 4 5

16 1 17 1 2 18 1 2 19 1 2 20 1 2 21 2 .

u a a x a x a x a x x a x a x a x x

a x x a x a x a x x a x x a x x a x

a x a x x a x x a x x a x x a x

        

      

    

  (3.17) 
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The nodal degrees of freedom are the two displacements and their first- and second-order 

derivatives with respect to the Cartesian coordinates. The physical interpretation of the 

mentioned nodal degrees of freedom is comprehensively described in [73].  

 

Figure 3.1 C1 continuity triangular finite element. Based on [11]. 

The derivation of the element equations is obtained by employing the principle of virtual work, 

which can be expressed for the strain gradient continuum as 

        3 3: δ d δ d δ d : δ d
A A s s

A A s s         σ ε μ η t u T u , (3.18) 

with s representing the perimeter of the element and T the double traction tensor,  T τ n . 

All other quantities are already mentioned and described above. In addition to (3.18), the 

boundary conditions expressed by the displacement and the normal derivative of displacement 

  u n  should be prescribed to solve the boundary value problem. After the discretization 

of the field variables in weak form given by (3.18), the strain and strain gradient tensors can be 

written as 

 

11

22

122









 
 

 
 
  

ε B v , (3.19) 
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212

2

2















 
 
 
 

  
 
 
 
  

η B v . (3.20) 

In (3.19) and (3.20), B   and B  represent the matrices containing adequate first and second 

derivatives of the element shape functions N , while v is the vector of the nodal degrees of 
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freedom. Considering a nonlinear problem described by (3.18), the displacement vector u, the 

stress tensor σ  and the double stress μ  are updated according to 

 1i u u u , (3.21) 

 1i σ σ σ , (3.22) 

 3 3 1 3i μ μ μ  , (3.23) 

where the exponent  1i   refers to the last converged equilibrium state, and the symbol   

indicates an incremental change and mathematically acts as a differential operator. The 

linearized incremental constitutive relations are defined as 

 4 5 3:     σ C ε C η , (3.24) 

 3 5 6 3:     μ C ε C η , (3.25) 

with 4

C , 5

C , 5

C  and 6

C  as the constitutive stiffness matrices. As evident from (3.24) 

and (3.25), in generalized constitutive relations both first- and second-gradients of 

displacements contribute in a calculation of the stress fields. Herein, non-diagonal matrices 

5

C  and 5

C  are different from zero when the material with the heterogeneous microstructure 

is observed. The strain and the second-order strain increments, employing (3.19) and (3.20), in 

terms of the displacement vector increment v , read 

 ,  ε B v   (3.26) 

   μ B v . (3.27) 

Since the C1 continuity finite element for softening analysis is based on the enhancement of the 

generalized constitutive relations (3.24) and (3.25), further derivation of the basic C1 continuity 

finite element will not be included here, but can be found in [11]. 

3.2 C1 continuity finite element for softening analysis 

3.2.1 Weak formulation 

Implementation of the softening behavior into the finite element starts with the application of 

the isotropic damage model (2.3) to the generalized strain gradient constitutive model where 

the linearization is omitted, as follows 
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    4 5 31 : 1D D    σ C ε C η , (3.28) 

    3 5 6 31 : 1D D    μ C ε C η . (3.29) 

Introduction of the damage enhanced constitutive relations represented by (3.28) and (3.29) into 

the principle of the virtual work for the strain gradient continuum, given by (3.18), leads to the 

following variational expression in terms of the damage variable 

 

    

    

   

4 5 3

5 6 3 3

1 : 1 : δ d

1 : 1 δ d

δ d : δ d .

A

A

s s

D D A

D D A

s s

 

 

     

     

    





 

C ε C η ε

C ε C η η

t u T u

  (3.30) 

The linearized finite element equation is derived from the principle of the virtual work 

expressed by (3.18), using the standard incremental approach. By substitution of the discrete 

form of the field variables given by (3.19) and (3.20) into (3.18) following relation is obtained 

         3: δ d δ d δ d : δ d
A A s s

A A s s 
                   σ B v μ B v t N v T N v , (3.31) 

where the relations listed below are employed 

 δ δu N v , (3.32) 

 δ δε B v , (3.33) 

 δ δη B v . (3.34) 

Next, by inserting (3.22) and (3.23) into (3.31), and after some straightforward mathematical 

manipulation, the following incremental relation in matrix notation can be acquired 

    1 1d d grad d dT T T T T i T i

A A s A

A A s A   

          B σ B μ N t N T B σ B μ . (3.35) 

The right-hand side terms in the above expression represent the external and internal nodal force 

vectors eF  and iF , respectively. Considering the constant values of the constitutive stiffness 

matrices and the updates of the strain tensor, the strain gradient tensor and the damage variable 

in the form of 

 1i ε ε ε , (3.36) 

 1i η η η  , (3.37) 

 1iD D D  , (3.38) 
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generalized strain gradient damage constitutive model given by (3.28) and (3.29) reads 

     1 1 11 i i iD D   

         σ C ε C η C ε C η , (3.39) 

     1 1 11 i i iD D   

         μ C ε C η C ε C η . (3.40) 

Here, the incremental change of the damage variable may be expressed by 

 

1
d

d

i
D

D



 
   

 
ε

ε
, (3.41) 

since the damage variable is assumed to be a function only of the strain tensor  D D ε . 

Calculation of the derivative given in (3.41) is made by using the chain rule in the following 

way 

  
eq

eq

dd d d

d d d d

D D 

 


ε ε
, (3.42) 

where the term 
eq

d

d




 is equal to one when damage rises and zero when there is no damage 

growth. According to (2.6) and (2.7) damage  D D   has to be differentiated with respect to 

history parameter  , while equivalent elastic deformation  eq eq  ε  as a function of the 

strain tensor ε  is differentiated with respect to strain tensor components, as evident from (2.8)

and (2.9). When the incremental higher-order damage constitutive model represented by (3.39) 

and (3.40) is embedded into the incremental relation (3.35), and by using (3.41), the following 

expression is obtained 
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 



 
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  
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  
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 
    
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


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ε
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

 

 
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
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v

N t N T B σ B μ

 (3.43) 
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After some regrouping of the terms in the above relation, the finite element equation can be 

written as 

   e i        K K K K v F F , (3.44) 

where the particular element stiffness matrices are defined as 

  
1 1

1 1 1d d
1 d

d d

i i

T i i i

A

D D
D A     

 

  
    

       
     

K B C C ε C η B
ε ε

, (3.45) 

  11 dT i

A

D A   

 K B C B , (3.46) 

  
1 1

1 1 1d d
1 d

d d

i i

T i i i

A

D D
D A     

 

  
    

       
     

K B C C ε C η B
ε ε

, (3.47) 

  11 dT i

A

D A   

 K B C B . (3.48) 

3.2.2 Calculation of constitutive stiffness matrices 

For the analysis of the softening behavior of an arbitrary heterogeneous material all constitutive 

stiffness matrices appearing in (3.45)-(3.48) have to be known. To compute these matrices, the 

second-order computational homogenization procedure is utilized, for which the basic relations 

are listed in Table 3.2. Generally, the procedure is performed in the multiscale analyses, where 

the quantities from lower scales have to be homogenized to put them in use at higher scales. 

The sequential macro-micro algorithm, which consists of the solutions of the boundary value 

problems at two different levels, is employed. The macrolevel refers to the model discretized 

by the aforementioned C1 triangular finite elements, where in each integration point the 

microstructural contribution is included through the analysis of the RVE, in this thesis 

discretized by the C0 quadrilateral finite elements. In the Table 3.2, the presented quantities 

denoted by the subscript “M” correspond to the macrolevel, while the subscript “m” indicates 

a microlevel quantity. In (3.49), x  is the spatial coordinate on the RVE boundary, while r  

represents the microstructural fluctuation field. By means of the Hill-Mandel condition given 

by (3.50), the first- and second-order stress tensors can be derived in the form of (3.51) and 

(3.52), where D  and H  are the coordinate matrices which include all boundary nodes 

1, 2, ...,i n  of the RVE, while bf  represents the RVE boundary nodal force vector. Taking 
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into account the internal (subscript “a”) and the boundary (subscript “b”) contributions of the 

RVE, the finite element equation for the nonlinear problems can be written in the incremental 

form as presented in (3.57). By employing (3.24) and (3.25) and the condensed stiffness matrix 

given by (3.60), the incremental form of the first- and second-order stress tensors represented 

by (3.62) and (3.63) can then easily be obtained, which yields the tangent stiffness matrices 

(3.64)-(3.67). Detailed information about the second-order homogenization procedure can be 

found for example in [17, 46]. 

Table 3.2 Basic relations of the second-order homogenization [17] 

The RVE displacement field: 

 m M M

1

2

T T  u x ε x η x r . (3.49) 

The Hill-Mandel condition: 

  m m M M M M

1
δ d δ δT T T

V

V
V

  ε σ ε σ η μ . (3.50) 

The first- and second-order stress tensors: 

 M b

1

V
σ Df , (3.51) 

 M b

1

V
μ Hf , (3.52) 

where  

 1 2

1
...

2

T T T

n
   D D D D , (3.53) 

 1 2

1
...

2

T T T

n
   H H H H , (3.54) 

and 
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i
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 
  

 
D , (3.55) 

 
2 2

2 2

2 0 2 0 01

2 0 2 0 2 0
i

x y xy

y x xy

 
  

 
H . (3.56) 

The partitioned finite element equation in incremental form: 

 
aa ab a a

ba bb b b

      
     

      

Κ Κ u f

Κ Κ u f
. (3.57) 
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In the convergence state 

 a f 0 , (3.58) 

 b bb b  f Κ u ,  (3.59) 

with  

 1

bb bb ba aa ab

 Κ Κ Κ Κ Κ . (3.60) 

The RVE boundary nodes displacement increment: 

 b M M

T T    u D ε H η .  (3.61) 

The incremental values of the first- and second-order stress tensors: 

  M bb M bb M

1 T T

V
    σ DΚ D ε DΚ H η , (3.62) 

  M bb M bb M

1 T T

V
    μ HΚ D ε HΚ H η . (3.63) 

The tangent stiffness matrices: 

 bb

1 T

V
 C DΚ D , (3.64) 

  bb

1 T

V
 C DΚ H , (3.65) 

 bb

1 T

V
 C HΚ D , (3.66) 

 bb

1 T

V
 C HΚ H . (3.67) 

 

As described previously, in the case of material homogeneity, material isotropy, and symmetry 

of the RVE considered the tangent stiffness matrices C  and C  are equal to zero [46]. The 

remaining two tangent stiffness matrices can be computed analytically [13, 46], which may be 

written symbolically in the form 

  ,E  C C  , (3.68) 

  , ,E l  C C , (3.69) 

where l denotes the microstructural length scale. On the other hand, the stiffness matrices can 

be also computed numerically using the homogenization procedure as already done in [17].  

Therein the microstructural parameter is expressed by the relation 
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2

2

12

L
l  , (3.70) 

where L is the RVE side length. As displayed above, the material nonlocality is included into 

the second-gradient continuum theory through the higher-order constitutive matrices C , C  

and C  in terms of the microstructural parameter l. When these matrices are multiplied by the 

term  1 D  according to (3.28) and (3.29), the nonlocality decreases if the damage rises. Such 

behavior is physically acceptable when the formation of the crack in quasi-brittle materials is 

observed, as discussed earlier. Differences in the calculation of the stiffness behavior for 

materials with homogeneous and heterogeneous microstructures are briefly summarized in 

Table 3.3. 

Table 3.3 Stiffness calculation for microstructurally homogeneous and heterogeneous materials 

Homogeneous material Heterogeneous material 
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   4 5 31 : 1D D          σ ε C ε ε C η  

   3 5 6 31 : 1D D          μ ε C ε ε C η  

 

3.2.3 Analysis procedure 

The analysis procedure is concisely shown as a flowchart in Figure 3.2. It should be noted that 

this is not a true multiscale algorithm which includes subsequent solving of the two boundary 
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value problems, the one at the macrolevel and the other at the microlevel. Instead, the boundary 

value problem has to be solved here only for the macromodel, while the microstructural RVE 

analysis, comprised only of the stiffness homogenization, is performed in a preprocessing step 

to obtain the values of the constitutive stiffness tensors. Since the linear elastic material 

behavior is considered in the presented damage analysis, the homogenized solutions do not 

depend on the macroscale deformation. Therefore, the homogenization procedure has to be 

performed only once in each analysis. The homogenized stiffness values then enter the 

constitutive relations, and remain constant until the end of the nonlinear damage analysis. When 

the damage is initiated in the model, the elastic stiffness is being reduced according to (2.3) and 

to the damage enhanced constitutive relations (3.28) and (3.29) as well. In each finite element 

integration point, the incremental-iterative procedure is carried out, where the stress and double 

stress tensors are calculated from the updated values of the strain tensor, the second-order strain 

tensor and the damage variable, as well as the constant elastic stiffness tensors obtained in the 

preprocessing step. The presented damage algorithm together with the formulation of the 

triangular finite element is implemented into the commercial finite element software 

ABAQUS/Standard employing its nonlinear solver and the user-defined subroutine UEL [136, 

137], which is written in FORTRAN programming language. More details on the numerical 

implementation of the presented finite element formulations into ABAQUS/Standard can be 

found in [11]. 
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Figure 3.2 Scheme of the damage algorithm 

3.3 Numerical examples 

3.3.1 Plate with an imperfect zone subjected to tensile load, homogeneous 

microstructure 

The presented algorithm is verified in a benchmark problem already studied in [45], where only 

a homogeneous material is considered. In this contribution the analysis is extended to the 

consideration of heterogeneous materials, too. The geometry and boundary conditions of the 

rectangular plate with an imperfect zone under tension are shown in Figure 3.3. The Mazars’ 

equivalent strain measure (2.8) is used together with the damage evolution governed by the 

linear softening (2.6). The material data are: the Young’s modulus 220000 N/mmE  , the 

Poisson’s ratio 0.25  , the limit elastic strain 0 0.0001  , the equivalent strain 

corresponding to the fully damaged state u 0.0125  . The horizontal displacement of 
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0.0325u   mm is prescribed at the right edge. In order to trigger localization, the Young’s 

modulus is reduced by 10% in the 10 mm wide zone in the middle hatched area of the plate. 

Along the vertical edges the second-order derivatives of the displacement component in the 

normal direction, 1,11u  and 1,22u , together with the mixed derivatives, 1,12u  and 2,12u , are 

suppressed. The first-order derivatives associated with the shear deformation, 1,2u  and 2,1u , are 

also set to zero. These boundary conditions yield the straight vertical edges. Here, the indices 1 

and 2 refer to the Cartesian coordinates x and y, respectively. 

 

Figure 3.3 Geometry and boundary conditions of the plate subjected to tensile load. Based on [45]. 

The solutions of the same numerical example are obtained by means of the EFG meshless 

method in [45]. Therein, the constitutive tensors are derived for the materials with granular 

microstructure, so the underlying microstructural theory differs when compared with the 

second-order homogenization approach. The constitutive model is restricted only to 

homogeneous materials, where the corresponding stiffness tensors can be written in the form 

of (3.68) and (3.69) with the particle radius r instead of the microstructural parameter l. The 

same constitutive model is used for the computation of the softening response of the plate by 

means of the proposed FEM algorithm. The damage responses obtained for the same 

microstructural values and using different approaches are presented in Figure 3.4. In this 

numerical example, the distributions of the damage and equivalent strain are considered along 

the horizontal central axis of the plate, crossing the hinged joint at 21y   mm. 
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Figure 3.4 Comparison of damage profiles along the horizontal central axis of the plate obtained using 

the presented FEM damage model to the EFG results from the literature 

As can be seen from Figure 3.4, the calculated damage profiles show very good agreement with 

the solutions from the literature. The figure also illustrates the effect of the microstructural size 

on the macrostructural behavior. The increase in the microstructural values leads to the 

expansion of the localization zone and a slight decrease in the peak damage values, as expected. 

Furthermore, the mesh sensitivity of the proposed algorithm is examined by using the three 

different finite element discretizations. Figure 3.5 presents the coarsest mesh of 72 elements 

with the reduced material properties in the marked area covered by only few elements. A 

homogeneous material with the internal length scale of 1.5l   mm is considered. 

 

Figure 3.5 The coarsest finite element mesh of the plate under tension 
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As evident from Figure 3.6, the reduction of the element size in the last two discretizations does 

not lead to the further localization of the damage profile in the softening zone, which proves 

that the presented damage model is independent on the mesh refinement. It is also interesting 

to note that values of the nodal variables computed by the coarsest and the finest discretization 

are quite similar, leading to the conclusion that convergence can be achieved with a relatively 

coarse mesh and accordingly with a significant reduction of the computational time. In order to 

achieve a more detailed visualization of variables, discretization consisting of 1280 finite 

elements is used for the depiction of following diagrams and contour plots. 

 

Figure 3.6 Comparison of damage profiles along horizontal central axis of the plate under tension for 

three different mesh densities 

Next, the evolution of the equivalent elastic strain measure as well as the damage variable are 

depicted in Figure 3.7 and Figure 3.8, respectively. It can be noted that the growth of the 

equivalent elastic strain emerges within the imperfection and rather early in the softening 

process reaches its final width, which does not change in the subsequent loading stages. Instead, 

the localization drastically intensifies during final loading stages in the narrow region in the 

middle of the plate, which is basically a continuum representation of the macroscopic crack. In 

[75] the similar problem is studied in only one dimension employing the conventional implicit 

gradient enhancement, resulting in an unacceptable growth of the damage zone. Instead of the 

localization into a macroscopic crack, the expansion of the damaged zone with the loading 

progression is reported for the analyzed bar in tension. The solutions obtained by the strain 

gradient formulation proposed in this contribution show no such spurious damage growth, 

which is obviously an advantage when compared with the conventional implicit gradient 

formulation. The described physically meaningless phenomenon is eliminated in [75] in the 
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form of the somewhat complicated strain-based transient-gradient damage method which 

couples the nonlocal effect to the local deformation state of the material. It can be noted that a 

similar thing is basically done in the present contribution, where the local and nonlocal effects 

are coupled through the damage constitutive relations of the second-gradient continuum theory, 

knowing that the damage variable is a function of the local equivalent strain measure. 

 

Figure 3.7 Evolution of the equivalent elastic strain eq  along horizontal central axis of the plate for 

different loading levels 

 

Figure 3.8 Evolution of the damage variable D along horizontal central axis of the plate for different 

loading levels 

For a better perception of the softening process in the failure deformation stage, the distributions 

of equivalent elastic strain measure and damage variable are displayed in Figure 3.9 and Figure 

3.10, respectively. In Figure 3.9 the localized deformation band can be clearly seen, with the 
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highest values of equivalent elastic strain in the central part of the plate, being a consequence 

of the lateral contraction. Namely, since the edges defined by the normal vectors in vertical 

direction are free boundaries, the material is more pliable in their vicinity and it stretches in the 

loading direction more than the material in the central part of the plate. Besides, due to the 

Poisson’s effect, it contracts more laterally and therefore does not contribute to the Mazars’ 

equivalent elastic strain measure defined in (2.8). As evident, the damage distribution in Figure 

3.10 appears overly spread in contrast to the equivalent elastic strain distribution in Figure 3.9. 

This phenomenon can be explained by considering the damage irreversibility and knowing that 

the fracture usually starts as a zone of high material nonlocal behavior, and ends as a narrow 

localized deformation band where nonlocality is significantly reduced. Additionally, it is worth 

to mention that softening laws for the quasi-brittle materials usually give rather high damage 

values for the equivalent elastic strain values just slightly above the limit strain 0 . 

 

Figure 3.9 Distribution of the equivalent elastic strain eq  for homogeneous material at failure stage 

 

Figure 3.10 Distribution of the damage D for homogeneous material at failure stage 
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The equivalent stress field defined by 

  eq eq1 D E    (3.71) 

is depicted in Figure 3.11, where its reduction can clearly be seen in the area which coincides 

with the localization zone shown in Figure 3.9. As it is obvious from Figure 3.9, the softening 

of the material is at its highest in the middle of the plate, whereas its intensity decreases towards 

the free boundaries. Therefore, it is to expect that the material at the free horizontal boundaries 

carries more load than that which is closer to the central part of the plate. The direct 

consequence of such a behavior are the higher equivalent stress values of the material closer to 

the boundaries, taking into account the (3.71). Of course, with the increasing distance from the 

highly damaged area, where the high gradients are present, the stress field becomes more 

uniform towards the left and the right vertical boundaries, where the straight edges are enforced. 

 

Figure 3.11 Distribution of the equivalent stress eq  for homogeneous material at failure stage 

The contour plots of the strain gradient component 111  and the corresponding double stress 

component 111  are shown in Figure 3.12 and Figure 3.13, respectively. As evident from Figure 

3.12, the two symmetrically mirrored strain gradient bands are formed on the edges of the 

localization band displayed in Figure 3.9. In the narrow area in the middle of the localization 

band, where the strain 11  reaches its peak value, the strain gradient component 111  changes 

the sign and it is equal or very close to zero. The double stress component 111  in Figure 3.13 

closely resembles the strain gradient component 111 , which is logical due to their direct 

connection through the second constitutive relation of the strain gradient continuum theory 

shown in (3.29).  
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Figure 3.12 Distribution of the strain gradient component 111  for homogeneous material at failure 

stage 

 

Figure 3.13 Distribution of the double stress component 111  for homogeneous material at failure 

stage 

Deformed shape of the plate under tension with the distribution of the strain tensor component 

11  is provided in Figure 3.14, which basically corresponds to the equivalent elastic strain eq  

due to the nature of the Mazars’ definition (2.8) which takes into account only positive principal 

strains. As evident, a necking effect can be observed in the middle of the plate which is a 

consequence of the softening of the material in the localization area.  
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Figure 3.14 Deformed shape with the distribution of strain component 
11  for homogeneous material 

with the internal length scale l = 1.5 mm 

3.3.2 Plate with an imperfect zone subjected to tensile load, heterogeneous 

microstructure 

The next step is the consideration of damage responses of the plate with heterogeneous 

microstructure. The materials used in the following calculations are described by the porous 

RVEs at microstructural level. Here all homogenized stiffness tensors according to the damage 

enhanced constitutive relations (3.28) and (3.29) are included in the computation. As stated 

earlier in the paper, the influence of the heterogeneous microstructure described by the RVE on 

the macrostructural anisotropic response is carried by the non-diagonal constitutive tensors of 

the fifth order, C  and C . The calculation of the constitutive tensors by employment of the 

homogenization process has been described in the previous section. The RVEs differ in the size, 

porosity and in the number, size and distribution of the holes. The material properties are the 

same as for the homogeneous plate. Firstly, a simple, academic example of an RVE, presented 

in Figure 3.15, is used to analyze the plate softening behavior. This RVE geometry is labelled 

as RVE_0 in the following consideration. 
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Figure 3.15 RVE_0 described by the size L = 5.2 mm (l = 1.5 mm), average hole radius  

ave 1.118r   mm and porosity e = 0.13 

As it is the case with the plate where homogenous microstructure is observed, 1280 finite 

elements are used for the discretization in the following considerations of heterogeneous 

microstructures. The evolution of the equivalent elastic strain measure and the damage variable 

is depicted in Figure 3.16 and Figure 3.17 for different loading levels. The distributions of the 

same variables over the whole plate at the failure stage are depicted as contour plots in Figure 

3.18 and Figure 3.19, respectively. A slight shift of the presented variables to the right can be 

seen from the given diagrams and contour plots when compared with the diagrams and contour 

plots concerning the homogeneous material, given in Figure 3.7 - Figure 3.10. Such behavior 

can be ascribed to the microscopic heterogeneity which is mathematically expressed by the 

relatively high values of the non-diagonal C  and C   matrices in the damage enhanced 

constitutive equations (3.28) and (3.29). As obvious, the differences between the damage 

distributions in Figure 3.10 and Figure 3.19 are just barely visible, but in order to retain the 

consistence of the whole work presented, the latter figure is shown too. 

 Additionally, if the softening analysis is performed by the constitutive tensors acquired 

for the RVE_0 rotated for 180°, the obtained results are symmetrically mirrored to the ones 

depicted in Figure 3.16 - Figure 3.19, as expected. Taking this into account, and knowing that 

microscopic samples in the form of RVE_0 are randomly distributed in various directions in 

the real material, an average contribution of all RVEs could lead to the isotropic macrostructural 

response. Thus, it is clear that the given academic RVE lacks the statistical representativeness, 

i.e. it is not representative in a global sense, for the whole material. From comparison of Figure 

3.7 and Figure 3.16, it can be noted that the maximum equivalent strain value for the 

homogenous material is slightly higher than that for the heterogeneous material. Because the 

heterogeneous plate is more pliable in the whole domain due to the holes in the microstructure, 
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the bulk material outside of the localization zone permits higher equivalent strain in this 

particular area, leading to the slightly smaller equivalent strain in the middle of the plate when 

compared with the equivalent strain in the homogeneous plate. 

 

 

Figure 3.16 Evolution of the equivalent elastic strain eq  along horizontal central axis of the 

heterogeneous plate for different loading levels 

 

Figure 3.17 Evolution of the damage variable D along horizontal central axis of the heterogeneous 

plate for different loading levels 
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Figure 3.18 Distribution of the equivalent elastic strain eq  for heterogeneous material represented by 

RVE_0 at failure stage 

 

Figure 3.19 Distribution of the damage D for heterogeneous material represented by RVE_0 at failure 

stage 

As for the homogeneous material, the increase in the RVE size, which expresses the change in 

the size of microstructural interactions, leads to the expansion of the localization zone. Here the 

three different-sized RVEs of the same heterogeneity are considered, which is defined by the 

porosity of 0.13e   and the average hole radius of ave 0.744r   mm, as shown in Figure 3.20. 

In Figure 3.21, the damage profiles for the three described heterogeneous RVEs are compared 

to the damage responses of the homogeneous material with the same nonlocal parameter l. 
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Figure 3.20 Three different-sized samples of the same heterogeneous material:  

(a) RVE_1 with the size L = 3 mm (l = 0.87 mm), (b) RVE_2 with the size L = 7.5 mm (l = 2.16 mm) 

and (c) RVE_3 with the size L = 15 mm (l = 4.33 mm) 

 

Figure 3.21 Comparison of damage profiles along horizontal central axis of the plate for 

heterogeneous material represented by three different-sized RVEs and homogenous material of the 

corresponding internal length scales 

As can be seen from Figure 3.21, a slight deviation from the damage profile of the 

corresponding homogenous material is shown for the damage profile obtained using the 

smallest RVE, while this difference is much less pronounced for the other two heterogeneous 

samples. This confirms that for statistically well-defined RVE, the damage distribution in 

qualitative sense should not deviate significantly from the damage distribution for the 
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homogeneous material of the same internal length scale. Next, an analysis employing the two 

different heterogeneous materials, defined by the RVEs of the same side length of 6.9L   mm 

and porosity of 0.13e  , but different average hole radii, ave 1.5r   and 0.6 mm, is performed. 

Their damage responses are compared to the damage response of the homogeneous material 

defined by the same RVE size, as shown in Figure 3.22. As expected, the damage response of 

the heterogeneous material with larger average hole radius shows a notable shift when 

compared to the damage response of the corresponding homogeneous material. Obviously, this 

difference is much smaller for the heterogeneous material with smaller average hole radius. The 

aforementioned shift in the case of the heterogeneous material defined by the ave 1.5r   mm 

occurs as a consequence of the larger macrostructural anisotropic response.  

 

Figure 3.22 Comparison of damage profiles along horizontal central axis of the plate for two 

heterogeneous materials of the same porosity and corresponding homogenous material 

Finally, the RVE with the higher porosity e, labelled RVE_4 and depicted in Figure 3.23, is 

employed for the calculation of the stiffness matrices required for the softening analysis. 
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Figure 3.23 RVE_4 described by the size L = 1.73 mm (l = 0.5 mm), average hole radius  

ave 0.075r  mm and porosity e = 0.27 

Because of the higher RVE porosity, a significant decrease in the loading associated with the 

start of the softening process is expected, which is shown in the load-displacement diagram 

displayed in Figure 3.24. In the diagram, the reaction forces at the right end of the plate are 

plotted versus the imposed displacement for both the heterogeneous material defined by the 

RVE_4 and the corresponding homogeneous material. It can clearly be seen that reduced 

stiffness of the heterogeneous material causes the softening initiation at much lower load level 

than in the case of the homogeneous material. 

 

Figure 3.24 Comparison of structural responses of the plate under tension for heterogeneous material 

represented by RVE_4 and homogeneous material of the same internal length scale 

It is to note that the presented damage analysis of the heterogeneous structure is based on the 

microlevel homogenization procedure in order to compute the stiffness matrices, while the 
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softening response is modeled by the damage enhanced constitutive relations (3.28) and (3.29) 

at the macrolevel. Although the proposed analysis has its advantages due to the simplicity and 

low computational costs, it should be stressed that a true multiscale analysis should be 

performed to obtain more accurate results. Namely, a more accurate computation of the damage 

response of heterogeneous materials requires the application of the constitutive relations 

directly at the microlevel considering all material constituents in the RVE and, after a 

homogenization procedure, transfer of the state variables to the macrostructural level. 

3.3.3 Shear band problem 

The second example, where further capacities of the presented algorithm are shown, is a plate 

with an imperfect zone subjected to compressive load, presented in Figure 3.25a. Due to 

symmetry, only the upper half of the plate is discretized by the C1 continuity triangular finite 

element employing appropriate boundary conditions, as depicted in Figure 3.25b. The 

compressive loading is applied using a direct displacement control, where the analysis stops at 

the vertical displacement of 0.08v   mm. Firstly the homogeneous material is considered 

which is characterized by the Young’s modulus 220000 N/mmE   and the Poisson’s ratio 

0.2  . For modeling of damage responses, the modified von Mises’ equivalent elastic strain 

measure (2.10) together with the exponential softening law (2.7) is used, for which the 

parameters are set to: 0 0.0001  , 0.99   and 300  . To induce localization, the reduced 

value of 0 0.00005   as a material imperfection is imposed on the small region of 10 10h h  

as shown in Fig. 24a. The material microstructural parameter is taken as 2l   mm. Since both 

the symmetry plane and the loaded edge have to remain straight during the analysis, the 

boundary conditions for the straight edge are enforced there. Herein, the second-order 

derivatives of the displacement component in the normal direction, 2,11u  and 2,22u , together with 

the mixed derivatives, 1,12u  and 2,12u , are suppressed. The first-order derivatives associated with 

the shear deformation, 1,2u  and 2,1u , are also set to zero. As mentioned before, the indices 1 and 

2 refer to the Cartesian coordinates x and y, respectively. 
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Figure 3.25 (a) Geometry and boundary conditions of the plate with an imperfect zone subjected to 

compressive load (h = 60 mm) and (b) computational model consisting of upper half of the plate and 

appropriate boundary conditions, with a depicted mesh detail 

The same specimen has already been studied in [33] with the adoption of the damage model 

based on the conventional implicit gradient enhancement, resulting in the spurious damage 

growth along the bottom horizontal boundary with the rise of the deformation level, which is, 

according to [33, 34], a non-physical behavior. As discussed in [34], the conventional nonlocal 

models, being either integral or gradient, deal with a material softening employing a constant 

interaction domain throughout the entire loading history. This leads to the transfer of the energy 

from the damage process zone to a neighboring elastically unloading region, resulting in the 

smeared damage distribution within and beyond the shear band. The consequence of such 

unwanted behavior is the inability of a macrocrack formation. 

 The regularizing capabilities of the proposed formulation in terms of the elimination of 

the spurious damage growth are shown by plotting the distribution of the equivalent elastic 

strain in Figure 3.26 and the distribution of the damage in Figure 3.28, through several loading 

stages. The results are compared with the solutions obtained in [33], given in Figure 3.27 and 

Figure 3.29. For a better comparison of the given variables, the loading levels chosen for the 

contour plots are the same as shown in [33], where the aforementioned spurious damage growth 

is observed. It can clearly be seen, especially from Figure 3.28, that in the present contribution 
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the shear band starts to develop from the defect region and propagates towards the right edge 

of the plate model, as expected. In the formulation in [33] the shear band is developing along 

the horizontal boundary, which is stated as unrealistic. Furthermore, the contour plots obtained 

in the present formulation display that once the shear band reaches its final width, which is very 

early in the softening process, the localization of the deformation continues in its center until 

the shear fracture occurs. This is particularly visible in Figure 3.26 starting from the loading 

level at 0.021v   mm. At lower displacements, a development of the localized deformation 

cannot be seen because the equivalent elastic strain is just slightly beyond the critical value of 

0 . This can be confirmed by the damage distribution images in Figure 3.28 and knowing that 

even for a very small equivalent elastic deformation the damage field rises to very high values 

in the case of exponential softening law. A similar shear band evolution accompanied with the 

strong localization and no spurious damage growth is also obtained in [34], where the localizing 

gradient damage model derived in the micromorphic framework is used. The similar realistic 

results are observed in the experimental investigations in [138] as well. 

 

Figure 3.26 Distribution of the equivalent elastic strain eq  through several loading stages for 

homogeneous material 

 

Figure 3.27 Distribution of the equivalent elastic strain e  through several loading stages obtained by 

conventional implicit gradient formulation [33] 
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Figure 3.28 Distribution of the damage D through several loading stages for homogeneous material 

 

Figure 3.29 Distribution of the damage   through several loading stages obtained by conventional 

implicit gradient formulation [33] 

To examine the mesh sensitivity, an additional finite element discretization of 800 triangular 

finite elements is considered, opposed to the 3200 elements used so far. Generally, the accurate 

results could also be obtained by using a non-uniform mesh and much smaller number of finite 

elements, as proven earlier in the paper. In this case, in order to maintain the mesh uniformity 
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for simplicity, such fine discretization is conditioned by a very small imperfect region. As 

portrayed in Figure 3.30, there are no differences in the damage responses. The damage profile 

is correctly captured for the two different discretization sizes. 

 

Figure 3.30 Comparison of damage distribution D for homogeneous material for two different 

disretizations consisting of 800 (left) and 3200 (right) triangular finite elements 

If a smaller internal length scale is used, the shear band decreases in the width, as expected, 

which is shown in Figure 3.31. In Figure 3.32 a deformed shape of the whole plate before 

complete failure is presented, where obvious shearing typical for mode-II loading case can be 

noted in the damage localization bands. 

 

Figure 3.31 Comparison of damage distribution D for homogeneous material defined with the internal 

length scales l = 1 mm (left) and l = 2 mm (right) 
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Figure 3.32 Deformed shape with damage distribution D for homogeneous material with the internal 

length scale l = 2 mm 

Calculation of the damage response of the heterogeneous material in the context of the shear 

band problem is performed with an RVE qualitatively similar to the RVE_4 shown in Figure 

3.23, but defined with the side length of 6.9L   mm and the average hole radius ave 0.297r   

mm. Here, the whole plate model depicted in Figure 3.25a has to be used due to the material 

anisotropy which is a consequence of the microstructural heterogeneity. The contour plots 

displaying the damage responses of the considered heterogeneous and homogeneous material 

show barely notable differences and are therefore not shown. This is a consequence of the 

employed damage growth law (2.7) which shows a very steep initial damage rise for a very 

narrow range of the history parameter, i.e. equivalent elastic strain, followed by a very slow 

asymptotic convergence to the value of one. On the other hand, difference in the contour plots 

can clearly be seen for the equivalent elastic strain on Figure 3.33, where a noticeable influence 

of the material heterogeneity can be observed. Obviously, the equivalent elastic strain does not 

evolve symmetrically, which eventually leads to one dominant shear band, indicating the 

formation of the macrocrack.  
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Figure 3.33 Distribution of the equivalent elastic strain eq  through several loading stages for 

heterogeneous material 

From the load-displacement diagram depicted in Figure 3.34, a very pronounced decrease in 

the reaction force at the initial softening can be seen for the heterogeneous material when 

compared to the reaction force of the corresponding homogeneous material, similarly as in the 

previous numerical example. 

 

Figure 3.34 Comparison of structural responses of the plate under compression for heterogeneous 

material and homogeneous material of the same internal length scale 
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3.3.4 Compact tension specimen 

The next example deals with failure of the compact tension specimen with pre-existing crack 

which can be seen in Figure 3.35a, while the computational model due to the symmetry of the 

problem consists only of the upper half, as depicted in Figure 3.35b. The tensile loading is 

applied using a direct displacement control again, with the end of the analysis at the vertical 

displacement of 0.35v   mm. Homogeneous material considered in this example is 

characterized by the Young’s modulus 21000 N/mmE   and the Poisson’s ratio 0.2  . 

Softening behavior is modeled by von Mises’ equivalent elastic strain measure (2.9) with 

parameter 10k  , and by the exponential softening law (2.7), which utilizes following 

parameters: 0 0.002  , 0.99   and 200  . Localization is here induced easily due to 

strong geometrical discontinuity represented by the tip of the pre-existing crack, which 

automatically induces high strain gradients in this area. In order to prevent confusion with the 

crack initiation, pre-existing crack will be referred to as notch in the continuation of the text. 

For the initial analysis the material microstructural parameter is taken as 0.2 20l h   mm. 

Conveniently for comparison, all values are set to be equal as in [34] where the same numerical 

example is analyzed by using the localizing gradient damage model. As in the previous 

example, both the symmetry plane and the loaded edge have to remain straight during the 

analysis, hence the same boundary conditions for the straight edge are enforced in those regions. 

 

Figure 3.35 (a) Geometry and boundary conditions of the compact tension specimen (h = 100 mm) 

and (b) computational model consisting of upper half of the plate and appropriate boundary conditions 
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Considering the quasi-brittle failure analysis of notched specimens, it is concluded in [139] on 

the basis of the experimental evidence that cracks should propagate from the notch tip. 

Numerical analysis conducted in [33] on the same example presented here by employment of 

the conventional implicit gradient formulation indicates the incorrect initiation and subsequent 

propagation of the damage. It is observed that the nonlocal damage-driving variable is 

maximum at some distance away from the notch tip during the whole analysis, i.e. crack 

initiation is predicted inside the specimen, rather than at the notch tip, which can clearly be seen 

in Figure 3.36a. (i) and (ii) in Figure 3.36 represent two loading steps which refer to the onset 

of the softening and a stage where localization zone is fully formed, respectively. As explained 

in [34], due to constant interaction domain which extends to the region behind the notch tip, a 

smoothened damage field with a maximum value at a distance away from the notch tip is 

induced, followed by a further propagation inside the specimen. For the damage values near 

critical, this anomaly leads to the crack initiation away from the notch tip, which is not 

physically acceptable for quasi-brittle materials. Along with the wrong damage initiation and 

propagation along the notch line, spurious damage growth is also observed in [33, 34] leading 

to the final damage zones much larger than they should be in the reality, as it is shown in Figure 

3.37. This nonphysical behavior is improved in [34] by introduction of the interaction function 

that decreases the nonlocal material response with progression of the damage. Although the 

spurious damage growth is in that way completely resolved and the propagation of the 

macroscopic crack correctly captured at the notch tip for the critical value of damage, shift of 

the maximum damage value at the initiation of the localization is still observed inside the 

specimen, as evident from Figure 3.36b. 

 

 Figure 3.36 Damage evolution ahead of the notch tip through several loading stages obtained by (a) 

conventional implicit gradient damage formulation and (b) localizing gradient damage model with 

decreasing interactions [34] 
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Figure 3.37 Damage profiles at different loading stages obtained by conventional implicit gradient 

damage formulation [34] 

However, when the strain gradient damage model described in the thesis here is applied, a 

complete regularization is achieved, i.e. spurious damage growth is eliminated along with the 

mesh sensitivity of the solutions, while the maximum values of the damage variable are located 

right at the notch tip from the start of the localization until the initiation of the macroscopic 

crack. Evolution of the damage ahead of the notch tip can be observed in Figure 3.38, damage 

distributions for two different discretizations are given in Figure 3.39, and damage profiles for 

two different internal length scales are shown in Figure 3.40. Finally, deformed shape of the 

whole compact tension specimen with the damage contour plot is provided in Figure 3.41, 

where a clear mode-I opening can be observed. 

 

Figure 3.38 Damage evolution ahead of the notch tip through several loading stages for homogeneous 

material 



Higher-order finite element for softening analysis 

67 

 

Figure 3.39 Comparison of damage distribution D for homogeneous material for two different 

disretizations consisting of 800 (left) and 3200 (right) triangular finite elements 

 

Figure 3.40 Comparison of damage distribution D for homogeneous material defined with the internal 

length scales l = 8 mm (left) and l = 20 mm (right) 

When it comes to the analysis of the material with the heterogeneous microstructure, 

distributions of the damage and equivalent elastic strain are qualitatively very similar to the 

distributions of the homogeneous material, presumably due to sharp geometrical discontinuity 

in form of the notch which strongly determines the course of the damage evolution. Difference 

can be seen in Figure 3.42, where the load-displacement curves of both homogeneous and 

heterogeneous material are plotted. In all the figures so far where structural responses are 

showed, namely Figure 3.24, Figure 3.34 and Figure 3.42, reactive forces do not drop to zero 

or values close to zero, but have a tendency to stabilize around some value and continue in a 

straight line, even when physically failure should occur. Stabilization of reaction forces 
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numerically occurs when the incremental change of damage (3.41) is close to zero or zero in all 

integration points of the model, i.e. when the formation of the localization zone is complete. A 

plausible explanation for the phenomenon that reaction forces are not even close to zero in the 

moment of stabilization might lie in the formulation of the constitutive relations shown in Table 

3.3. It can be noticed there that damage variable is a function only of the strain tensor, i.e. of 

the first-order derivatives of displacement field, and as such evolves in the continuum governed 

by the constitutive model where also the second-order derivatives of displacements are relevant 

degrees of freedom. Unfortunately, since the model is relatively novel, there are no definitions 

of the damage variable dependent both on strain and strain gradient tensor available in the 

literature. Calibration of the damage growth laws and equivalent measures that account for both 

strain and strain gradients would certainly be an interesting topic for further research.  

 

 

Figure 3.41 Deformed shape with damage distribution D for homogeneous material with the internal 

length scale l = 8 mm 
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Figure 3.42 Comparison of structural responses of the compact tension specimen for heterogeneous 

material and homogeneous material of the same internal length scale 

3.3.5 Gear tooth damage 

So far damage behavior of typical benchmark examples is presented in the thesis, for which the 

evolution of the localization zone is known apriori from the experimental observations. Here a 

practical engineering problem is analyzed in form of the spur gear with two different 

imperfections in the root of a tooth, a notch and a pre-existing crack, as can be seen in Figure 

3.43a and Figure 3.43b. Such imperfections usually arise during the working regime due to 

wear or fatigue of the material, and represent the main stress concentrators from where the 

macrocrack would eventually start to propagate. Gear geometry and computational model are 

chosen according to [140], by employing the following geometrical characteristics of the gear: 

teeth number 25z  , module 2m   mm, pressure angle 20   , while tooth profile is taken 

as ISO53-A norm. Damage growth is observed for the loading case of highest point of single 

tooth contact (HPSTC), where loading is prescribed as a displacement normal to surface of the 

tooth of the involute gear. As explained in [141], HPSTC is one of the characteristic points in 

the analysis of gear kinematics, which represents a moment when two working gears are in 

contact only in this particular point and when all loading is taken over by a single tooth, causing 

the stresses in its the root to grow to maximum.  
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Figure 3.43 Computational model of the spur gear with: (a) notch and (b) pre-existing crack 

Problem observed here is slightly simplified compared to reality, primarily due to prescribed 

loading which should be taken as force-controlled. Unfortunately, the arc-length iterative 

method needed for the convergence of the numerical solutions in softening problems cannot be 

used in ABAQUS/Standard with presented C1 continuity user-defined finite elements. Hence, 

displacement control which relies on Newton-Raphson iterative scheme is used instead, with 

the applied normal displacement of HPSTC 0.065u   mm. When it comes to material behavior, 

usually in reality only the cemented and hardened teeth surface shows a quasi-brittle behavior, 

while the bulk of the gear is tougher and more ductile in order to endure eventual impacts. 

However, the main focus here is to show the applicability of the strain gradient damage 

algorithm to practical examples, so the material used in the numerical analysis here can be 

qualitatively classified as a quasi-brittle high-strength steel for the whole computational model. 

Homogeneous microstructure described by the internal length scale of 0.15l   mm is 

employed, while the Young’s modulus and Poisson’s ratio are taken as 5 22.1 10 N/mmE      

and 0.3  , respectively. For the description of the damage growth, von Mises’ equivalent 

strain (2.9) and parameter 10k   together with the softening law (2.7) and parameters 

0 0.002  , 0.99  , 200   are utilized. In Figure 3.44 distribution of the equivalent elastic 

strain over the computational model of gear with the notch is presented, which is basically a 

contour plot of the macrocrack that would appear in such material and loading conditions. 

Deformed shape of the gear model with pre-existing crack showing the damage distribution is 

depicted in Figure 3.45. Due to geometrical discontinuity, discretization size in the middle tooth 
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has to be drastically decreased in order to preserve a proper finite element size and shape 

metrics. Similar results as depicted here are obtained in numerous experimental and numerical 

observations throughout the literature, e.g. in [142, 143]. 

 

Figure 3.44 Distribution of the equivalent elastic strain eq  over the gear model with notch 

 

Figure 3.45 Deformed shape with the distribution of the damage variable D over the gear model with 

pre-existing crack 

3.3.6 Discussion 

At the end of this chapter, it should be stressed that the presented damage model, as evident 

from all presented numerical examples, can successfully predict the strain localization. In 

addition, the damage growth without any spurious phenomena can be obtained, in contrast to 
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the formulation using the conventional implicit gradient-enhanced damage model which yields 

the non-physical damage response. It is believed that the main reason for this ability lies in the 

constitutive damage model based on the strain gradient theory, represented by (3.28) and  

(3.29), where the right-hand side of both equations are influenced by the same factor  1 D  

as a result of the damage growth. If this factor is observed as a reduction mechanism of the 

higher-order stiffness tensors C , C  and especially C , which are directly connected to the 

size of the microstructural interaction area, i.e. a nonlocal material behavior, it can be said that 

the intensity of the microstructural interactions decreases with the damage progression and that 

the material gradually loses the ability to behave nonlocally at a particular damaged point. Such 

material behavior is physically completely valid and motivated by the fact that a fracturing of 

quasi-brittle materials usually starts as a diffuse network of microcracks, represented by a large 

microstructural interaction domain, and ends with their localization into a macrocrack, 

characterized by almost non-existent intensity of microstructural interactions, as discussed in 

more detail in [34]. 
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4 Multiscale analysis of quasi-brittle 

heterogeneous materials undergoing 

damage 

In the previous chapter the one-scale algorithm for damage analysis of both microstructurally 

homogeneous and heterogeneous materials is derived. Constitutive behavior of the 

microstructure is thereat basically kept constant during the analysis, while the softening effect 

is added in the macrostructural analysis, emulating in this way a material degradation of the 

microstructure. Thus, a simplified damage analysis algorithm is presented which generally 

provides acceptable results in terms of prediction of the localization initiation and subsequent 

propagation. However, the impact of the actual evolution of the microstructure might change 

the outcome of the simulations or generally provide a more accurate solutions and therefore, it 

should be included in the analysis. As described earlier in the thesis, localization in quasi-brittle 

materials usually starts as a diffuse network of the microcracks, and in order to take into 

consideration their influence on the macrostructure, a damage analysis of the microstructure is 

necessary. Multiscale modeling in form of the computational homogenization is proven reliable 

when it comes to simulation of various problems where the materials with evolving 

microstructures are considered, e.g. in the large strain analysis of elasto-plastic materials [144], 

problems that include moderate strain localization [18], multi-physics or coupled problems 

[145], cohesive layers [146] and shell problems [147]. It is believed that these schemes are 

physically justified as long as the scale separation principle remains valid, i.e. if the RVEs are 

locally representative for the microstructure [63, 64]. Thereat, classical or conventional 

homogenization can be applied, which relies under the assumption that neighboring material 

behaves the same as the observed RVE. Specifically, second-order computational 

homogenization can be successfully applied in the problems where the localization of the 

deformation over the RVE can be described by the second-order distribution of displacements, 

but everything beyond cannot be consistently transferred to the macrolevel [63]. In the problems 

including intense localization in RVEs, where the distribution of displacements is usually 

higher than that of second-order, the scale separation is respected in the initial stage when strain 

localization is still mild, but eventually with the formation of sharp localization bands, the 

principle becomes violated. This means that microstructural material sample gradually evolves 
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from being representative (RVE) towards unique (MVE), and homogenization based on the 

classical principles should not be applied there, as stated in the literature [64, 69]. Several 

schemes are proposed so far for dealing with this problem, whereby the more successful ones 

are typically based on enriching the macroscale with a discontinuity when localization band is 

formed at the microscale [65-71]. Such way of thinking emanates from the standpoint that the 

failure of the MVE cannot be extrapolated to the neighboring material, resulting in the 

introduction of the equivalent discontinuity at the macroscale integration point, rather than 

continuous display of localized deformation. 

 In this thesis, a different approach is employed for the consideration of the 

microstructural damage. Due to nature of the macrocrack formation in the quasi-brittle 

materials which is preceded by a diffuse network of microcracks, an assumption can be made 

that the material locally has a similar structural response. In that sense, the formation of the 

sharp localization at the RVE level does not necessarily mean the initiation of the macrocrack, 

but a situation where the macrostructural material point loses its stiffness while still remaining 

a part of the continuum. By doing so, conventional homogenization can be applied to obtain the 

averaged stiffness behavior and stresses from the observed damaged RVE until the full 

formation of the localization zone, when the material conditions that account for the loss of 

material integrity have to be applied at the appropriate macrolevel integration point. During the 

evolution stage of the microstructural localization, homogenization process can be interpreted 

as the means for transformation of the localized deformation band and the rest of elastically 

unloading area of an RVE, into the equivalent RVE where damage is homogeneously dispersed, 

as represented graphically in Figure 4.1. 

 In the proposed approach, a multiscale algorithm based on the second-order 

computational homogenization developed in [73] is used for the transition of the variables 

between scales. Damage at the microstructural level is computed by the strain gradient damage 

algorithm derived in the previous chapter, which is here slightly altered to coincide with the 

modified case of Mindlin’s form II strain energy density used at microlevel in [73]. In order to 

obtain regularized solutions, C1 continuity is employed at the macrostructural level as well, 

where localization is induced by degraded stiffness resulting from the RVE homogenization. 

Although not verified in the thesis, it should be stressed here that the algorithm presented in 

this chapter presumably still suffers from the objectivity issues related to the size of the RVE 

[68, 72], and elimination of such behavior is certainly an interesting topic for the further 

research. In addition, the main idea here is to present the computational possibilities of the 

proposed algorithm, which, although not ideal, can provide a reasonable results by including 
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the analysis of evolving microstructure. In comparison with the algorithm derived in the 

previous chapter where virgin microstructural response is virtually degraded within the 

macrostructural constitutive model, the ability to analyze the evolving microstructure is by all 

means a step forward in the damage analysis of heterogeneous materials. 

 

 

Figure 4.1 Homogenization of the localized deformation 

 Formulation of the C1 continuity finite element modified for the damage analysis at the 

microstructural level is given Section 4.1, where also its applicability is tested on an RVE for 

few different loading cases. In Section 4.2 basic relations of the scale transitions are derived for 

the C0-C1 macro-micro discretization, which is then utilized in a numerical example where the 

shortcomings of using the local approach at the macroscale are demonstrated. The same 

numerical example is then analyzed by using the C1-C1 macro-micro discretization in Section 

4.3. Additionally, conditions indicating the full formation of the localization zone when 

macrostructural stiffness is lost in the appropriate integration point are given here. Numerical 

examples that include the damage analysis of both homogeneous and heterogeneous 

microstructures are given in Section 4.4. 
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4.1 C1 continuity finite element for softening analysis of 

microstructure 

4.1.1 Weak formulation 

In the work presented in [73] both macro- and microlevel are discretized by C1 continuity finite 

elements based on the modified case of Mindlin’s form II strain energy density as described in 

[133-135]. In order to make use of this setting, a modification of the previously derived finite 

element based on strain gradient theory has to be made. A main distinction of the so called 

Aifantis theory of gradient elasticity is the employment of only the classical constitutive tensor 

C  and in the grouping of higher-order variables, which are expressed as the gradients of strain 

field in form of 
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1
B  and 

2
B  in the upper relations contain gradients of the interpolation matrix B  with respect 

to Cartesian coordinates 1x  and 2x , respectively. Work conjugate of strain tensor is well-known 

Cauchy stress, given as 

  σ C B v , (4.3) 

whereas the work conjugates of strain gradients are defined as 
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Obviously, constitutive model of the Aifantis theory is significantly simplified in comparison 

with the full strain gradient theory, since four constitutive tensors are now reduced to the 

internal length scale parameter and classical elasticity matrix, which can be easily determined 

experimentally. Principal of virtual work is now written in terms of strain gradient tensors 
1x

ε  

and 
2xε  as 

          
1 1 2 2

3 3: δ d δ d δ d δ d : δ dx x x x
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which after the application of discretization by (3.19), (4.1), (4.2) and u Nv  adopts the 

following form 
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In order to linearize the problem (4.7), relations (3.21) and (3.22) along with the following 

updates for double stress tensors have to be utilized 
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resulting in the incremental principle of virtual work given in matrix notation as 
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Finally, linearized incremental constitutive relations are expressed by 

 4 :  σ C ε , (4.11) 

  
1 1

3 2 4 :x xl   μ C ε , (4.12) 

  
2 2

3 2 4 :x xl   μ C ε . (4.13) 

In the same manner as shown in Chapter 3, softening behavior is implemented by inserting the 

isotropic damage model (2.3) into the non-linearized constitutive model of Aifantis theory of 

gradient elasticity in the following way 

   41 :D  σ C ε , (4.14) 
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  
1 1

3 2 41 :x xl D 
   μ C ε , (4.15) 

  
2 2

3 2 41 :x xl D 
   μ C ε . (4.16) 

Next, by employing (3.36), (3.38) and the updates of the strain gradient tensors 

 
1 1 1

1i

x x x

 ε ε ε , (4.17) 

 
2 2 2

1i

x x x

 ε ε ε , (4.18) 

constitutive damage model based on Aifantis theory of gradient elasticity is obtained as 

  1 11 i iD D 

      σ C ε C ε , (4.19) 

  
1 1 1

2 1 2 11 i i

x x xl D l D 

      μ C ε C ε , (4.20) 

  
2 2 2

2 1 2 11 i i

x x xl D l D 

      μ C ε C ε , (4.21) 

where the term D  is approximated by (3.41). Implementation of constitutive relations (4.19) 

- (4.21) into the linearized and discretized principle of virtual work (4.10) leads to the finite 

element equation  

  
1 2

e ix x      K K K v F F  , (4.22) 

with the particular element stiffness matrices defined as 

    
1

1 1 d
1 d

d

i
T i i

A

D
D A     


 

  
    

   
K B C B C ε B

ε
 , (4.23) 

    
1 1 11

1
12 1 d

1 d
dx

i
T i i

x x

A

D
l D A    


 

  
    

   
K B C B C ε B

ε
 , (4.24) 

    
2 2 22

1
12 1 d

1 d
dx

i
T i i

x x

A

D
l D A    


 

  
    

   
K B C B C ε B

ε
 , (4.25) 

and the external and internal forces eF  and iF  described by the first and second term on the 

right-hand side of (4.10), respectively. 

4.1.2 Numerical test 

Applicability of the finite element for softening analysis derived in previous section is tested 

on an RVE representing a high-strength porous steel of the side length of 0.5 mm, depicted in 
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Figure 4.2. In order to examine the damage response, three elementary loading cases are applied 

on the RVE, namely tensile, compressive and shear. Straight edges are enforced both at left and 

right RVE side by suppressing the following degrees of freedom: the second-order derivatives 

of the displacement component in the normal direction 1,11u   and 1,22u , mixed derivatives 1,12u  

and 2,12u , and the first-order derivatives associated with the shear deformation 1,2u  and 2,1u . 

The matrix material is considered homogeneous with the elastic behavior described by Young’s 

modulus 5 22.1 10 N/mmE    and Poisson ratio 0.3  , while the microstructural nonlocal 

behavior is described by the internal length scale parameter 0.01l   mm. For the description 

of the damage evolution von Mises’ equivalent strain (2.9) in combination with parameter 

10k   is employed, along with the softening law (2.7) and parameters 0 0.0002  , 

0.99  , 200  . The same absolute displacement 0.002u v   mm is applied on the 

appropriate loading edges. Due to parameter k material is ten times more sensitive to tensile 

than to compressive strain, which causes the tensile loaded RVE to fail in much earlier stage. 

Computational models and deformed shapes of the RVEs with damage contour plots observed 

in the failure stages for tensile, compressive and shear loading case are given in Figure 4.3, 

Figure 4.4 and Figure 4.5, respectively. 

 

Figure 4.2 RVE of the side length of 0.5 mm discretized by 2205 C1 triangular finite elements 
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Figure 4.3 Tensile loading case: (a) computational model and (b) deformed shape with distribution of 

damage D in failure stage 

 

Figure 4.4 Compressive loading case: (a) computational model and (b) deformed shape with 

distribution of damage D in failure stage 

Load-displacement diagrams for all three loading cases are depicted in Figure 4.6. Right vertical 

axis is introduced for the compressive structural response, where much higher values of reaction 

forces are reached due to postponed initiation of damage. This is a consequence of the 

utilization of parameter 10k   in modified von Mises’ equivalent strain definition (2.9), 

causing the elastic equivalent strain in compressive loading case to increase with the ten times 

slower rate compared to tensile loading case. 
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Figure 4.5 Shear loading case: (a) computational model and (b) deformed shape with distribution of 

damage D in failure stage 

 

Figure 4.6 Structural responses for three different RVE loading cases 

As evident from the presented figures, derived finite element is capable of capturing the 

localization of the deformation over the RVE for different loading situations. In order to assess 

the influence of different internal length scales, an additional analysis is made with a tensile 

loading case on the RVE with 0.02l   mm. The structural responses for both internal length 

scales are shown in Figure 4.7. It can be concluded that smaller nonlocal parameter results in 

more brittle softening, which is in accordance with the nonlocal theory and numerical results 

obtained in Chapter 3. Evolution of the damage localization zone for several different loading 

steps for internal length scale 0.01l   mm is given in Figure 4.8, and for 0.02l   mm in Figure 

4.9. 
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Figure 4.7 Structural responses for two tensile RVE loading cases with different internal length scale 

parameters 

 

Figure 4.8 Distribution of the damage D through several loading stages for internal length scale 

parameter l = 0.01 mm 
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Figure 4.9 Distribution of the damage D through several loading stages for internal length scale 

parameter l = 0.02 mm 

A different formation of the localization zones can be noted in above figures, which is obviously 

a consequence of utilization of different internal length scales that define different nonlocal 

behaviors. When the nonlocal effect is wider, i.e. when a bigger area of neighboring material is 

in the interaction, one predominant and wider localization zone is formed, as evident from 

Figure 4.9. In contrast, for the weaker nonlocal effect, two narrower localization bands are 

formed, as shown in Figure 4.8. This phenomenon would probably not exist in reality, since a 

crack would be initiated in a dominant localization zone, across which the fracture would 

eventually happen. Presented constitutive model (4.14) - (4.16) does not consider the crack 

formation, allowing in this way for the loading to still be carried over the localization zone. As 

discussed in the previous chapter, definition of the damage variable should probably be written 

in terms of both strain and strain-gradient tensor in order to reduce the internal forces in the 

localization zone and overall reaction force response. However, in both examples localization 

zone is fully formed, where no additional damage growth outside of it can be noticed. In other 

words, RVEs still have the load-carrying capacity, with the change of strain level allowed only 

in the middle of the localization band. This trait is important because it allows the simple 

assessment of the RVE failure, which will be incorporated into the multiscale scheme in the 
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next section. From the presented numerical tests it can be concluded that C1 continuity finite 

element for softening analysis based on Aifantis theory of gradient elasticity can successfully 

predict the growth of the damage and is suitable for the implementation in the multiscale 

algorithm. 

4.2 C0-C1 multiscale scheme 

4.2.1 C0-C1 macro-micro scale transition relations 

In order to test the capability of the multiscale algorithm employing the local approach in the 

problems involving localization of the deformation, classical C0 continuity quadrilateral finite 

elements are employed at the macroscale, while previously derived C1 elements for softening 

analysis are considered at the microscale. Since there are no such multiscale schemes in the 

literature, relations describing transitions of the variables between scales have to be derived 

first. C0-C1 multiscale scheme is given in Figure 4.10, and can be briefly described in the 

following way. Starting from the converged global macrolevel nonlinear BVP described by 

e i  K V F F , obtained global vector of incremental nodal degrees of freedom V  is used for 

the formulation of the local vector v  related to the observed finite element. By computing the 

increment of macrostrain tensor Mε  in one of the element’s integration points, increment of 

the RVE boundary displacement vector bu  can be then formulated by the appropriate micro-

to-macro scale transition relations. The microlevel BVP is formed and solved afterwards, 

followed by the homogenization of resulting microlevel variables needed for the formation of 

the macrolevel constitutive behavior. Here, only Cauchy stress tensor Mσ  and classical 

elasticity tensor C  have to be homogenized since the macrolevel does not account for the 

higher-order variables that constitute the microlevel. Once computed, homogenized stress and 

stiffness are transferred back to macrolevel finite element integration point, where they 

contribute in the calculation of the finite element stiffness matrix k and internal forces vector 

if . When the homogenized response is obtained in all integration points for all macrolevel finite 

elements, global stiffness matrix K and internal force vector iF  are formulated, and the updated 

macroscale BVP can then be established. From this point the process repeats in the loop until 

the convergence for the given loading conditions at the macrolevel is reached.  
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Figure 4.10 Scheme of C0-C1 multiscale algorithm 

In the following, relations describing the macro-to-micro and micro-to-macro scale transitions 

are described in more detail. A square-shaped RVE is considered with the origin of the 

coordinate system placed in its centroid, as depicted in Figure 4.11.  
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Figure 4.11 Representative volume element [17] 

Formation of the RVE displacement field is made by a Taylor series expansion depending only 

on the macrolevel strain Mε  as follows 

 m M  u ε x r . (4.26) 

Here, x is the microlevel spatial coordinate vector while r represents the microfluctuation field, 

i.e. the microlevel contribution to the RVE displacement field, as stated in [17]. In accordance 

with the relation (4.26), microlevel strain tensor can be defined as 

 m m M    
m m

ε u ε r . (4.27) 

In order to find the necessary transition relations for the microscale strain gradients, following 

relation holds 

  m M      
m m m

ε ε r . (4.28) 

Considering the principle that in the homogenization volume averages of the microstructural 

variables have to be equal to the conjugate variables at the macrolevel, relations (4.27) and 

(4.28) can be written as 

  m M

1 1
d d

V V

V V
V V

     mε ε r , (4.29) 

    m M

1 1
d d

V V

V V
V V

          m m mε ε r . (4.30) 
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To satisfy the condition that the macrostrain is equal to the volume average of the microstrain, 

the second term on the right-hand side of (4.29) should vanish 

    
1 1

d d
V A

V A
V V

     m r n r 0 . (4.31) 

In above relation, volume integral is transformed into the surface integral by means of the Gauss 

theorem. Considering that there are no strain gradients at the macrolevel due to C0 continuity 

discretization, relation (4.30) can be transformed to 

    m

1 1
d d

V V

V V
V V

         m m mε r , (4.32) 

which basically says that realization of the RVE strain gradient field is interconnected solely 

with the realization of the microfluctuation field. When it comes to modeling of 

microfluctuations on the RVE boundaries, usually displacement and periodic boundary 

conditions are employed, where the former yield a stiffer RVE response [46, 61, 148]. In order 

to satisfy constraint (4.31), an appropriate choice of boundary conditions has to be made. 

Displacement boundary conditions prescribe the zero value of microfluctuation on the RVE 

boundaries, i.e. boundary movements are completely predefined. By the insertion of the 

,  r 0 x , constraint (4.31) is automatically satisfied. Periodic boundary conditions 

prescribe the equality of the microfluctuation fields on the opposite sides of the RVE, which 

considering Figure 4.11 leads to 

    R Ls sr r , (4.33) 

    T Bs sr r . (4.34) 

Since the normal vectors on the opposite RVE sides have different signs, i.e.    R Ls s n n  

and    T Bs s n n , constraint (4.31) with the application of (4.33) and (4.34) remains valid. 

Due to periodicity of microfluctuations (4.33) and (4.34), it is sufficient to consider only one of 

the opposite RVE edges for implementation of the boundary integrals derived in [11], and given 

as 

 

L

Ld
A

A  r 0 , (4.35) 

 

B

Bd
A

A  r 0 . (4.36) 
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After the microfluctuation field from (4.26) is inserted in (4.35) and (4.36), following 

expressions are obtained 

 

L L

L M Ld d
A A

A A  u ε x , (4.37) 

 

B B

B M Bd d
A A

A A  u ε x . (4.38) 

As explained in [11], prescription of the nodal values of displacements to the RVE boundaries 

is dependent on the nodal position. Numerical implementation of this dependency is, as done 

by the coordinate matrix iD  in form of 

 

1

2

2 1

1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

1 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2

i

x

x

x x

 
 
 

  
 
 
 

D , (4.39) 

where the subscript i refers to an appropriate node on the RVE boundary. Displacement of a 

single node can then be expressed by 

 M

T

i iu D ε , (4.40) 

or, in order to avoid the rigid body motions of RVE, by 

  1 M

T

i i u D D ε , (4.41) 

where all prescribed displacements are defined relatively to node 1 of the RVE depicted in 

Figure 4.11, as defined in [11]. When it comes to displacement boundary conditions, relation 

(4.41) is applied to every node on the RVE boundary, since all the microfluctuations are 

suppressed there. On the other hand, generalized periodic boundary conditions require 

prescription of displacements in the form of (4.40) only in the corner nodes, with the exception 

of usually corner node 1 in Figure 4.11, where the displacements are set to zero in order to 

eliminate the rigid body motions. Rest of the nodes on the boundaries are related in accordance 

with the microfluctuation periodicity assumptions expressed by (4.33) and (4.34), which comes 

down to linking of the  nodal degrees of freedom on opposite edges of the RVE. This is done 

by expressing the microfluctuation field from (4.26) for every RVE edge by means of (4.40), 

and by subsequent substitution of the obtained relations in (4.33) and (4.34), where following 

periodicity equations are obtained after some straightforward calculus 
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  R L R L M

T T  u u D D ε , (4.42) 

  T B T B M

T T  u u D D ε . (4.43) 

In above relations, only a relative ratio between displacements on opposite edges is prescribed 

rather than the pure values, which, on the other hand, is the case with the displacement boundary 

conditions. Due to this difference, generalized periodic boundary conditions provide more 

compliant and realistic RVE response, which consequentially leads to a more compliant 

material behavior observed at the macrostructural level, as stated in [11]. In addition to 

periodicity equations (4.42) and (4.43), microfluctuation integrals (4.37) and (4.38) are needed 

for the full definition of the generalized periodic boundary conditions, which, after the 

introduction of coordinate matrix D , read 

 

L L

L L Md dT

A A

A A
 

  
 
 

 u D ε , (4.44) 

 

B B

B B Md dT

A A

A A
 

  
 
 

 u D ε . (4.45) 

Derivation of the consistent micro-to-macro transition relations for the C0-C1 multiscale scheme 

starts with the Hill-Mandel energy condition, which equalizes the work variation done at the 

RVE level with the work variation at the macrostructural material point, in form of 

  3

m m m m m M M

1
: δ δ d : δ

V

V
V

      σ ε μ ε σ ε . (4.46) 

Microstrain and microstrain gradient can be obtained from (4.27) and (4.28), which, after 

insertion in (4.46) and considering that macrostrain gradient does not exist, yields the following 

expression for the Hill-Mandel energy condition 

    3

m M m m M M

1
: δ δ δ d : δ

V

V
V

         m mσ ε r μ r σ ε . (4.47) 

According to [11], integral terms containing microfluctuations (4.47) should vanish, which can 

be proven by converting them into surface integrals using the Gauss theorem as follows 

    m m

1 1
: δ d δ d 0

V A

V A
V V

      mσ r n σ r , (4.48) 

    3 3

m m m

1 1
δ d : δ d 0

V A

V A
V V

              m mμ r n μ r . (4.49) 
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Justification of the above equalities can be provided by the fact that, due to periodicity 

assumptions on the RVE boundaries, there is no contribution of the microfluctuations to the 

internal work of the RVE. In addition, corner microfluctuations are not allowed which 

completely confirms that RVE boundary integrals can be removed from the Hill-Mandel energy 

condition. By employing the relations (4.48) and (4.49), and considering that Mδε  is a constant 

value expression (4.47) becomes 

 m M M M

1
d : δ : δ

V

V
V

 
 

 
σ ε σ ε , (4.50) 

from where the following relation for the homogenized Cauchy stress tensor can be extracted 

 M m

1
d

V

V
V

 σ σ . (4.51) 

Only constitutive tangent needed for the macrolevel constitutive model is the classical one, 

which can be obtained by 

    bb

1 TD D
V

 C DK D . (4.52) 

In (4.52) bbK  represents a condensed RVE stiffness matrix where only external boundary nodes 

are taken into account for the calculation of the stiffness behavior, which is derived and clarified 

in more detail in [11]. According to Table 3.2, condensed RVE stiffness matrix is constructed 

from the stiffness response of the whole RVE, which is, on the other hand, composed of the 

finite element stiffness matrices, obtained for the case of Aifantis theory by the relations (4.23) 

- (4.25). As obvious from the given relations, finite element stiffness matrices are dependent on 

the damage variable D, which implies that the condensed RVE stiffness matrix is implicitly 

dependent on the damage variable, i.e.  

  bb bb DK K .  (4.53) 

Generally in the second-order computational homogenization procedure, the macrostructural 

stiffness is obtained as a function of the condensed stiffness matrix, which can be written in the 

form of 

  M M bbC C K . (4.54) 

By insertion of (4.54) in (4.53), a following relation holds 
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  M M DC C , (4.55) 

from where it is clear that the homogenized macrostructural stiffness is directly influenced by 

the damage growth observed at the microstructural level. Due to this degradation effect, 

capability of the proposed multiscale scheme in capturing the macrostructural localization of 

the deformation can be expected. Since only the classical stiffness tensor  DC , that is 

independent of any choice of microstructural internal length scale and RVE size, is employed 

at the macrolevel due to C0 continuity, a problems related to the regularization of strain 

localization could arise here, which will be tested in a numerical example in the following 

section. Presented C0-C1 macro-micro scheme is implemented in ABAQUS/Standard via user 

subroutines, as depicted in Figure 4.10. Numerical implementation of the proposed algorithm 

is similar to the one given for C1-C0 multiscale framework described lengthily in [11], and here 

only a basic algorithm of calculations at both structural levels is given in Table 4.1. Process can 

be briefly described as follows. Prior to multiscale analysis homogenization of the RVE 

constitutive behavior has to be performed for the purpose of initialization of values required for 

the macrostructural analysis. The subsequent multiscale analysis consists of UMAT subroutine 

at the macrolevel, where rectangular eight-node plane strain element with reduced integration 

(CPE8R) is used, and UEL subroutine at the microlevel, where the C1 continuity triangular 

finite element for softening analysis is implemented. UMAT subroutine is here a main routine, 

where the RVE boundary conditions are formulated, and from where the UEL subroutine is 

initiated. During the computation of the microlevel BVP, macrolevel UMAT subroutine is 

paused. The computation resumes when the homogenized variables become available, after 

which the ABAQUS/Standard solver provides the solutions and checks for the convergence. 

The solving procedure of the presented multiscale scheme is completely parallelized between 

multiple CPU threads, which can be easily enabled through the UMAT subroutine. To every 

CPU thread one macrostructural finite element is assigned in every iteration, meaning that the 

calculations for particular Gauss integration points are done simultaneously for all “threaded” 

elements. Obviously, the parallelization procedure significantly accelerates the computation, 

which is always welcoming in usually very demanding multiscale calculations. 
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Table 4.1 Solving algorithm of C0-C1 macro-micro scheme 

MACRO MICRO 

1. Start analysis 

2. Apply new load increment 

3. Apply new N.-R. iteration 

4. Compute Mε  

 

 5. Formulate RVE boundary conditions 

6. Apply new load increment in terms of bu  

7. Apply new N.-R. iteration 

8. Solve RVE BVP 

9. Convergence check: 

Yes – go to 6. 

No – go to 7. 

Last increment - homogenize Mσ  and MC  

10. Formulate macrostructural BVP 

11. Solve macrostructural BVP 

12. Convergence check: 

Yes – go to 2. 

No – go to 3. 

 

4.2.2 Numerical example 

In the following example plate with an imperfect zone subjected to tensile load, already 

analyzed in Chapter 3 for numerical testing of the one-scale damage model, is utilized for the 

damage analysis by employing the C0-C1 multiscale scheme, whereby the homogeneous 

microstructure is considered. By elimination of all effects resulting from the microstructural 

heterogeneities, a more clear conclusions can be made regarding the macrolevel structural 

response. Although the same numerical example is already described in previous chapter, all 

necessary computational data is given again for the clarity reasons. Computational model of the 

problem is shown in Figure 4.12, while three different discretizations for the C0 continuous 

macrolevel are given in Figure 4.13. Homogeneous microlevel is taken as a rectangular MVE 

with uniform C1 continuity discretization, as shown in Figure 4.14. Periodic boundary 
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conditions are considered at the MVE boundaries during the calculation. Since the term RVE 

is commonly reserved for description of the representative character of heterogeneous 

microstructure, MVE is used instead in this example. 

 

Figure 4.12 Geometry and boundary conditions of the plate subjected to tensile load 

Considering the softening characteristics, the Mazars’ equivalent strain measure (2.8) is used 

together with the damage evolution governed by the linear softening law (2.6). The material 

data for the RVE matrix material are: the Young’s modulus 220000 N/mmE  , the Poisson’s 

ratio 0.25  , the limit elastic strain 0 0.0001  , the equivalent strain corresponding to the 

fully damaged state u 0.0125  . The horizontal displacement of 0.0325u   mm is prescribed 

at the right edge of the large scale model. In order to trigger localization, the Young’s modulus 

is reduced by 10% in the 10 mm wide zone in the middle hatched area of the plate. Along the 

vertical edges the second-order derivatives of the displacement component in the normal 

direction, 1,11u  and 1,22u , together with the mixed derivatives, 1,12u  and 2,12u , are suppressed. 

The first-order derivatives associated with the shear deformation, 1,2u  and 2,1u , are also set to 

zero. These boundary conditions yield the straight vertical edges. Here, the indices 1 and 2 refer 

to the Cartesian coordinates x and y, respectively. 
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Figure 4.13 Macrolevel discretization consisting of: (a) 24, (b) 54 and (c) 48 C0 continuity rectangular 

finite elements (CPE8R) 

 

Figure 4.14 Homogeneous MVE consisting of 32 C1 continuity triangular finite elements 

In order to make comparison with the results obtained by the one-scale damage model where 

the analysis of the microstructural evolution is excluded, the same macrostructural nonlocal 

parameter has to be employed both in multiscale and one-scale damage analyses. This is done 

by taking into account the relation for the calculation of the effective nonlocal behavior of the 
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macrostructure, derived in [73] by means of analytical C1 continuous second-order 

computational homogenization and given by 

  
2

22

eff micro
12

L
l l  . (4.56) 

Relation (4.56) shows an approximate way to calculate the effective internal length scale at the 

macroscale, which is compounded out of the internal length scale at the microstructural level 

microl  and the contribution of the RVE side length L. From the physical point of view, RVE side 

length L introduces the nonlocality in form of the size of the microstructural interaction domain, 

while microl  represents all nonlocal effects taking place at the length scales below microscale. 

Although this relation works only for the linear-elastic, isotropic and homogeneous material 

where no non-linear effects are observable, as there isn’t any other alternative, it will be used 

in the following examples as a simple reference point in comparison of the multiscale analysis 

results with the results obtained by the one-scale damage model. In the following multiscale 

analyses, the effective macrostructural nonlocal parameter is taken as eff 1l   mm, which is 

obtained by using (4.56) and the microstructural nonlocal parameter of micro 0.6608l   mm at 

the MVE level, while the MVE size is taken as 2.6L   mm. These particular values are chosen 

due to reason that they don’t exhibit intense strain localization inside the MVE, which could 

happen if the ratio microl L  is too small and which is undesirable in this case of homogeneous 

microstructure. The same numerical example is then calculated by the one-scale model based 

on the Aifantis theory of gradient elasticity where the C1 continuity discretization is employed, 

while the Aifantis parameter is taken as eff 1l l   mm. Structural responses for three different 

macroscale discretizations shown in Figure 4.13 and used in the C0-C1 multiscale scheme, 

together with the structural response obtained by the converged one-scale damage model are 

depicted in Figure 4.15. Obviously, three different mesh densities provide three different 

structural responses for C0-C1 multiscale scheme. Increase in the mesh density, i.e. decrease in 

the finite element width in the damage process zone where energy dissipation takes place, leads 

to more brittle reaction force response. Such behavior can be attributed to the local continuum 

model where the strain tends to localize in the smallest possible volume, or a narrowest band 

of finite elements in this case. With this example it is proven that with the employment of C0 

continuity at macrolevel, objective results in multiscale damage analysis cannot be provided.  
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Figure 4.15 Load-displacement diagrams obtained by three different macrolevel discretizations used 

in C0-C1 multiscale scheme and by one-scale damage model 

4.3 C1-C1 multiscale scheme 

4.3.1 C1-C1 macro-micro scale transition relations 

Employment of the nonlocal continuum at the macrolevel instead of the classical one should be 

beneficial for two main reasons. First, since both strain and strain gradients are used in 

formulation of the RVE boundary conditions, a more complex and realistic RVE deformation 

modes can be obtained, and consequently a more realistic prediction of the damage growth can 

be made. The second reason is concerned with the regularization capabilities of the finite 

elements based on the strain gradient theory, which enables the transfer of the nonlocal 

parameters from the microstructure by homogenization of additional higher-order constitutive 

tensors. The C1-C1 multiscale scheme is shown in Figure 4.16, where few differences can be 

spotted in comparison with the C0-C1 multiscale scheme given in Figure 4.10. Due to 

employment of triangular finite elements that provide additional degrees of freedom, strain is 

accompanied by strain gradients in the calculation of the RVE boundary displacements. 

Regarding the homogenization process, besides classical constitutive tangent and Cauchy stress 

tensor, additional constitutive tangents as well as double stress tensor are required to be 

transferred back to macrolevel.  
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Figure 4.16 Scheme of C1-C1 multiscale algorithm 

The whole computational process is elaborated in [11, 73], so here only a brief explanation of 

basic scale transition relations is given. All relevant relations regarding the transition of 

variables from macro- to microscale are presented in Table 4.2. All that is previously said for 

macro-to-micro scale transitions in C0-C1 multiscale scheme basically holds for the C1-C1 

multiscale scheme, with the main difference that in all relations the contribution of the 

macroscale strain gradient terms in now included. An additional constraint on the 

microfluctuation field (4.61) arises when the relation (4.59) is expressed in volume average 

terms. By using the same logic as described earlier, it can be easily shown that constraint (4.61) 
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completely satisfies both the displacement and the periodic boundary conditions. Coordinate 

matrices 1H  and 2H  are introduced to describe the dependency of strain gradient terms on the 

nodal position at the RVE boundary. 

Table 4.2 Macro-to-micro scale transition relations in C1-C1 multiscale scheme [11] 

RVE boundary displacement field: 

  m M M

1

2
        u ε x x ε x r . (4.57) 

Microlevel strain tensor: 

  m M M    
m

ε ε ε r . (4.58) 

Microlevel strain gradient tensor: 

  m M      
m m m

ε ε r . (4.59) 

Constraints on the microfluctuation field: 

    m

1 1
d d

V A

V A
V V

     r n r 0 , (4.60) 

    m m m

1 1
d d

V A

V A
V V

               r n r 0 . (4.61) 

RVE displacement of the ith node on the RVE boundary: 

        
1 2M 1 2

M M
, 1, ...,T T T

i i x x ii i
i m u = D ε + H ε + H ε r . (4.62) 

Coordinate matrices: 

  

2

1 1

2

1 2 2 1 2 2 1

2

1 1

1
0 1 0 0 0 0 0 0 0 0

2

1
0 0 0 1 0 1 0

2

1
0 0 0 0 0 0 0 1 0 0

2

i

x x

x x x x x x

x x

 
 
 
    
 
 
 
  

H , (4.63) 

  

2

1 2 2 1 1 1

2

2 2 2

2

2 2

1
0 1 0 0 1 0 0

2

1
0 0 0 0 0 0 0 0 0 1

2

1
0 0 0 1 0 0 0 0 0 0

2

i

x x x x x x

x x

x x

 
   

 
 
 
 
 
  

H . (4.64) 
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Periodicity equations: 

             
1 2R L R L M 1 1 2 2R L R LM M

T T T T T T

x x
      
   

u u = D D ε + H H ε + H H ε , (4.65) 

             
1 2T B T B M 1 1 2 2T B T BM M

T T T T T T

x x
      
   

u u = D D ε + H H ε + H H ε . (4.66) 

Microfluctuation integrals: 

        
L L L L

L L M 1 1 2 2M ML L
d d d , d ,T T T

A A A A

A A A A
     

       
     
     

   u D ε H ε H ε , (4.67) 

        
B B B B

B B M 1 1 2 2M MB B
d d d , d ,T T T

A A A A

A A A A
     

       
     
     

   u D ε H ε H ε . (4.68) 

 

The most important relations and variables related to the homogenization process are given in 

Table 4.3. Once again, due to existence of the macrolevel strain gradients as a relevant degrees 

of freedom, Hill-Mandel energy condition is extended with second term on the right-hand side 

of (4.70), when compared with Hill-Mandel condition (4.46) in C0-C1 multiscale scheme. 

Regarding the homogenized double stress tensor (4.72), the second term under the integral 

represents contribution of the heterogeneities, as stated in [11]. Constitutive relations (4.73) - 

(4.75) are expanded with eight additional constitutive matrices, because the classical one cannot 

take into account the contribution of all the heterogeneities and the interactions taking place at 

the microstructural level. Since these additional constitutive tangents are dependent on the 

microstructure, a proper regularization of the damage effects at the macrolevel can be expected. 

Once again, tangent stiffness matrices (4.76) are formulated by the employment of only external 

RVE boundary nodes through the condensed stiffness matrix bbK , together with the appropriate 

combination of two coordinate matrices. As already discussed for the C0-C1 multiscale scheme, 

when softening is observed at the microlevel, the homogenized macrostructural stiffness MC  is 

through the condensed stiffness matrix bbK  under a direct influence of the damage variable D. 

Considering this connection, the tangent stiffness matrices represented by relation (4.76) can 

be put in the following form 

  
1 2 1 1 1 1 2 2 2 1 2 2

, , , , , , , ,
x x x x x x x x x x x x

f D               C C C C C C C C C . (4.69) 
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Table 4.3 Micro-to-macro scale transition relations in C1-C1 multiscale scheme [11] 

Hill-Mandel energy condition: 

      3 3

m m m m m M M M M

1
: δ δ d : δ δ

V

V
V

      σ ε μ ε σ ε μ ε . (4.70) 

Homogenized stress tensors: 

 M m

1
d

V

V
V

 σ σ , (4.71) 

  3 3

M m m

1
d

V

V
V

  μ μ σ x . (4.72) 

Macroscopic constitutive relations: 

 
1 21 2

4 5 3 5 3:
x xx x        σ C ε C ε C ε , (4.73) 

 
1 1 21 1 1 1 2

3 5 6 3 6 3:
x x x x xx x x           μ C ε C ε C ε , (4.74) 

 
2 1 22 2 1 2 2

3 5 6 3 6 3:
x x x x xx x x           μ C ε C ε C ε . (4.75) 

Tangent stiffness matrices: 

 

1 2

1 1 1 1 2

2 2 1 2 2

bb bb 1 bb 2

1 bb 1 bb 1 1 bb 2

2 bb 2 bb 1 2 bb 2

1 1 1
, , ,

1 1 1
, , ,

1 1 1
, , .

x x

x x x x x

x x x x x

T T T

T T T

T T T

V V V

V V V

V V V

  

     

     

  

  

  

C DK D C DK H C DK H

C H K D C H K H C H K H

C H K D C H K H C H K H

 (4.76) 

 

In contrast to the multiscale scheme with the C0 continuity finite elements at the macrolevel, 

parallelization of the solving processes is not fully automated here since the UEL subroutine 

has to be used instead of UMAT, thus introducing some programming limitations. Still, the 

computing process is considerably accelerated by using a so-called “pseudo-parallelized” code, 

described in detail in [11]. Basically, all CPU power is at a time directed to the computations 

of only one finite element, where the RVEs for all Gauss integration points are considered 

simultaneously. Solving algorithm is fundamentally the same as presented in Table 4.1, where 

the only additions are needed in the context of the contributions of higher-order variables. 
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4.3.2 RVE failure conditions 

With the formation of sharp localization zone inside the RVE, e.g. as depicted in Figure 4.17, 

the macrolevel material point represented by that particular RVE should not be able to carry the 

load anymore. The numerical model used so far considers that material remains the part of the 

continuum where in reality cracks should form, which is done by keeping the stiffness values 

close to zero by the application of the isotropic damage law. Basically, zero stiffness means that 

material in particular point does not provide any resistance to applied loading. When 

homogenization of the tangent stiffness is performed over the RVE, both the points inside and 

outside the localization zone are included in the calculation. When the localization zone is 

completely formed, there is practically no contribution to homogenized stiffness from this area, 

since the damage is maximum there. On the other hand, material points excluded from the 

localization zone still possess an intact or a slightly degraded stiffness, which makes a 

significant contribution to homogenized RVE stiffness tangents. In order to prevent this 

spurious contribution, a conditions used for the detection of the occurrence of fully formed 

localization zone are developed here and implemented in the UEL subroutines.  

 

Figure 4.17 Localization zone inside an RVE 

First condition that has to be fulfilled is given as 

 
1

1
i

d

d

A

A



 , (4.77) 

where dA  represents the localization area, i.e. area of all integration points which experienced 

the damage growth. If the ratio of the localization area from the last converged increment 1i

dA   

and the new converged value dA  is close to the value of 1, it means that formation of the zone 

is most likely finished. Additionally, check over all integration points is performed to acquire 
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the maximum value of the damage variable maxD  inside the localization zone, which leads to 

the second condition 

 maxD  , (4.78) 

where   stands for a threshold value, usually taken very close to the critical value of damage. 

Two described conditions are necessary for the evaluation of the fully formed localization zone, 

since one without the other could provide the misleading information in some loading cases.  

4.3.3 Numerical example 

Considering the same numerical example analyzed by employment of the C0-C1 multiscale 

scheme, which computational model is depicted in Figure 4.12, elimination of the mesh 

dependency resulting from the discretization based on the local approach is achieved here by 

employing the C1 continuity finite elements at the macrostructural level. Two different 

discretization densities are used, as shown in Figure 4.18. Material and model parameters 

remain the same as before, either at the micro- and macrolevel. 

 

Figure 4.18 Macrolevel discretization consisting of: (a) 48 and (b) 96 C1 continuity triangular finite 

elements 

Reaction force diagrams obtained by the two multiscale analyses with macroscale 

discretizations depicted above and by the one-scale damage model are given in Figure 4.19. 

Clearly, the results obtained by multiscale analyses are now basically identical, which confirms 
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that, generally, in the multiscale problems which involve the damage analysis at microlevel, 

macrolevel has to be discretized by numerical scheme that can regularize the strain localization 

phenomenon. A slight deviation from the results obtained by the one-scale damage model can 

be ascribed to the treatment of the nonlocality. While in one-scale model the initial nonlocal 

material behavior is degraded by the isotropic damage law as shown in (4.15) and (4.16), in 

multiscale analyses the nonlocality continuously changes with the evolution of the 

microstructure. It can be seen that the reaction forces are closest at the onset of softening and 

then start to deviate as the nonlinearity progresses, which confirms that the effective nonlocal 

parameter in the form of (4.56) is the most suited when linear material behavior is considered. 

 

Figure 4.19 Load-displacement diagrams obtained by two different macrolevel discretizations used in 

C1-C1 multiscale scheme and by one-scale damage model 

4.4 Numerical examples 

4.4.1 Rectangular plate subjected to tensile load 

A rectangular plate subjected to tensile load, as depicted in Figure 4.20, is used for comparison 

of results obtained by one-scale and multiscale analyses of both homogeneous and 

heterogeneous materials. Horizontal displacement of 0.05u   mm is applied, and both vertical 

edges are kept straight during the analyses by employment of the following boundary 

conditions: the second-order derivatives of the displacement component in the normal direction, 
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1,11u  and 1,22u , mixed derivatives, 1,12u  and 2,12u  and the first-order derivatives associated with 

the shear deformation, 1,2u  and 2,1u , are set to zero. The indices 1 and 2 refer to the Cartesian 

coordinates x and y, respectively. Discretization of the plate is made very simple, by utilization 

of two C1 continuous triangular finite elements, but considering the 13 integration points that 

each element has, acceptable accuracy is expected. 

 

Figure 4.20 Computational model of rectangular plate subjected to tensile load with h = 10 mm 

Material properties as well as the damage modeling characteristics, which include linear 

softening (2.6) and Mazars’ equivalent elastic strain (2.8), are the same as in the previous 

example. Homogeneous MVE of the same dimensions and microstructural length scale is 

considered likewise, while the heterogeneous microstructure is modeled by the RVE shown in 

Figure 4.21. Basically, it is the same RVE as RVE_0 depicted in Figure 3.15, only the side 

length is now set to 2.6L   mm, and the discretization is changed to C1 continuity triangular 

finite elements. Presented RVE is utilized in two C1-C1 multiscale analyses where different 

microstructural length scale parameters are included. In order to induce only a mild strain 

localization, or a very diffused damage appearance over the RVE with no sharp gradients, the 

microstructural length scale of micro 0.6608l   mm is employed, which, together with the RVE 

size of 2.6L   mm gives the effective macrostructural internal length scale of eff 1l   mm, 

according to (4.56). Diagram depicting the dependence of the reaction force at the right edge 

of the plate on the imposed displacement is shown in Figure 4.22. Distribution of the damage 

variable in several characteristic RVEs at the ending point of the analysis is presented in Figure 

4.23. Considering the dispersed, non-localized distribution of the damage variable which has 
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reached the critical value in most of the RVEs, it can be concluded that the analysis reached the 

failure stage.  

 

 

Figure 4.21 RVE described by the size L = 2.6 mm, average hole radius ave 0.559r   mm and porosity 

e = 0.13 

 

Figure 4.22 Load-displacement diagram obtained by C1-C1 multiscale analysis for heterogeneous 

microstructure of internal length scale micro 0.6608l   mm 
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Figure 4.23 Distribution of damage variable D over some characteristic RVEs for micro 0.6608l   mm 

at failure stage 

An additional multiscale analysis is made with a smaller microstructural internal length scale 

of micro 0.025l   mm, which leads to the formation of the sharp localization band over the RVE. 

Size of the RVE is left as 2.6L   mm, which gives the effective internal length scale at the 

macrostructural level less than eff 1l   mm, but considering the nonlinear intricacy of the model, 

making the comparisons based on relation (4.56) might not lead to good conclusions anyway. 

Structural response of the analysis is given in Figure 4.24, and the distribution of the damage 

over some characteristic RVEs is depicted in Figure 4.25. Evidently, softening is now initiated 

at smaller value of the imposed displacement and lower reaction force level, which can be 

attributed to intense localizations obtained at the RVE level. The localization bands in the RVEs 

closer to the left boundary managed to stabilize, so it can be assumed that RVE failure 

conditions (4.77) and (4.78) have been satisfied there, and that the stiffness is accordingly 

degraded in appropriate macrostructural integration points in order to mimic the loss of material 

integrity. Growth of the damage at the RVE boundaries, as can be seen from Figure 4.25, is an 

effect of the enhanced compliance of the generalized periodic boundary conditions and can be 
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considered as spurious, but ultimately, it does not affect the formation of the localization zones. 

Overall, RVE responses show the physically acceptable behavior, which can be interpreted as 

follows. The localization is the most intense in the vicinity of the left edge of the computational 

model where microfuctuations are heavily influenced by the straight edge boundary conditions, 

allowing the RVEs to expand considerably only in the direction of the loading. By moving away 

from the left edge, localization gets milder until almost none can be noticed near the loaded 

right edge, where the material shows more compliancy in all directions, thus preventing the 

formation of the localization.  

 

Figure 4.24 Load-displacement diagram obtained by C1-C1 multiscale analysis for heterogeneous 

microstructure of internal length scale micro 0.025l   mm 
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Figure 4.25 Distribution of damage variable D over some characteristic RVEs for micro 0.025l   mm at 

failure stage 

Beside the multiscale analyses where heterogeneous microstructure is considered, multiscale 

analysis with the homogeneous microstructure is carried out, where the effective length scale 

of eff 1l   mm is modeled with the microstructural nonlocality of micro 0.6608l   mm and MVE 

side length of 2.6L   mm. The comparison of the multiscale analyses results is made with 

solutions obtained by the one-scale damage model, where both the homogenous and the 

heterogeneous material are taken into consideration. One-scale damage analysis where 

homogeneous microstructure is considered is carried out by employing the Aifantis theory with 

eff 1l l   mm, while in the case of heterogeneous microstructure damage model based on the 

strain gradient theory presented in Chapter 3 is used. Therein, the calculation of the tangent 

stiffness matrices is made on the RVE of the side length 3.46L   mm, which can be obtained 

by relation (3.70) and considering that 1l   mm. For the comparison purposes, it can be said 

that, through the damage constitutive model described by (3.28) and (3.29), the one-scale 

damage model assumes in a way an even distribution of the damage over an RVE, which 
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coincides more accurately with the assumption of no sharp localization zones, as presented in 

Figure 4.23. Structural responses of all conducted analyses are plotted in Figure 4.26. 

 

Figure 4.26 Load-displacement diagrams obtained by one-scale damage models and C1-C1 multiscale 

scheme for materials consisting of homogeneous and heterogeneous microstructures 

As can be seen from Figure 4.26, one-scale damage analysis and multiscale analysis for the 

homogeneous microstructure provide identical results, which is expected due to resulting 

constant macrolevel strain field and consequential absence of the strain gradients. For the one-

scale and multiscale model where heterogeneous microstructure with micro 0.6608l   mm is 

considered, similar qualitative behaviors of the reaction forces can be noticed. Although the 

same macrostructural internal length scales are taken into account by employing the relations 

(3.70) and (4.56), in case of the one-scale damage model softening starts at a lower reaction 

force level than for the multiscale model. The reason for such response can be found in slightly 

different treatments of the nonlocal material behaviors, since the one scale damage model 

employs the strain gradient theory, and the multiscale model is based on the Aifantis theory. As 

presented above, multiscale analysis which includes the smaller microstructural internal length 

scale parameter of micro 0.025l   mm leads to the formation of the intense localization bands 

over the RVEs. Even though the bands itself occupy the smaller areas of the RVEs, due to very 
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abrupt rise of the damage inside the band, the homogenized results lead to more brittle 

macrostructural response. 

4.4.2 Plate with an imperfect zone subjected to tensile load 

Following example is already analyzed by both C0-C1 and C1-C1 multiscale procedures 

previously in this chapter, with the consideration of the homogeneous microstructure. Here the 

heterogeneous microstructure is included via the RVE presented in Figure 4.21. In order to get 

intense localization zones, similarly as in the previous example of rectangular palate, the 

microstructural internal length scale is taken as micro 0.025l   mm. The computational model of 

the macroscale analysis is shown in Figure 4.12, and all material parameters and softening 

characteristics are kept the same as described in Subsection 4.2.2. Discretization of the 

macrostructural model is made by employing 48 triangular finite elements, as it is shown 

previously in the thesis in Figure 4.18a. Considering that such finite element mesh density 

provided converged results in case of the homogenous microstructure, as can be seen from 

Figure 4.19, it can be assumed that accurate solutions will also be reached in case of the 

heterogeneous microstructure. Besides, a finer discretization would lead to a significant slowing 

down of the already very time consuming computational process. This is a consequence mainly 

of the computationally very expensive inverse calculation of the RVE structural matrix aaK , 

needed for the formation of the condensed stiffness matrix bbK , as given by (3.60). Load-

displacement curve obtained by the presented model is depicted in Figure 4.27, where also the 

previously obtained structural response for the homogeneous microstructure is plotted for the 

comparison purpose. Obviously, the softening is initiated at a smaller reaction force level for 

the heterogeneous material. After the peak is reached, a very steep drop of the reaction force 

can be noticed. In the peak stage of the analysis, area of the localization zone is already formed 

at the macrostructural level, and few subsequent converged incremental steps lead only to the 

rise of the deformation level in the center of the zone. It should be mentioned that, in order to 

cross the peak, convergence criteria have to be relaxed slightly for the ABAQUS/Standard 

solver. However, the continuation of the analysis is not possible anymore at some point after 

the peak when the problems with the convergence increase, as shown in Figure 4.27. Deformed 

shape of the plate with the distribution of the strain tensor component in the direction of the x 

Cartesian axis is depicted in Figure 4.28 for the final stage of the analysis. Due to very sparse 

mesh, smooth visualization of the variables at the macrolevel is difficult to obtain. Physically 
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acceptable localization of the deformation can clearly be seen from the figure, which indicates 

that, for the case of heterogeneous microstructure, the initiation of the damage and subsequent 

position of the macrocrack can successfully be captured by the proposed C1-C1 multiscale 

algorithm.  

 

Figure 4.27 Structural responses of the plate subjected to tensile load obtained by the C1-C1 multiscale 

scheme for homogeneous and heterogeneous microstructure 

 

Figure 4.28. Deformed shape with the distribution of strain component 11  for heterogeneous 

microstructure with the internal length scale micro 0.025l   mm at final stage of the analysis 

Distribution of the damage over several characteristic RVEs in the macrostructural localization 

zone is presented in Figure 4.29. It can be observed that the most intense damage bands are 

formed in the middle of the plate, where the localization of the deformation is the strongest. By 

moving away from the localization, damage bands at the microlevel are becoming milder, until 

they eventually become negligible and disappear. Obviously, material behavior can be 

interpreted as physical both at micro- and macrolevel.  
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Figure 4.29 Distribution of damage variable D over some characteristic RVEs for micro 0.025l   mm at 

final stage of the analysis 

4.4.3 Shear band problem 

In the final example C1-C1 multiscale scheme is employed for the analysis of the shear band 

problem, already considered in Chapter 3. Although most of the computational data is the same 

as for the one-scale analysis model, here it is displayed once again for the clarity reasons. 

Computational model for the analysis with the heterogeneous microstructure is given in Figure 

4.30a. The compressive loading is prescribed both at top and bottom edge of the model using a 

direct displacement control, where the vertical displacement of 0.08v   mm is imposed. Matrix 

material of the RVE is characterized by the Young’s modulus 220000 N/mmE   and the 

Poisson’s ratio 0.2  . For modeling of damage responses, the modified von Mises’ equivalent 

elastic strain measure (2.10) together with the exponential softening law (2.7) is used, for which 

the parameters are set to: 0 0.0001  , 0.99   and 300  . To induce localization, the 

reduced value of 0 0.00005   as a material imperfection is imposed on the small region of 

10 10h h  as shown in Fig. 24a. Since both the symmetry plane and the loaded edge have to 

remain straight during the analysis, the boundary conditions for the straight edge are enforced 

there. Herein, the second-order derivatives of the displacement component in the normal 
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direction, 2,11u  and 2,22u , the mixed derivatives, 1,12u  and 2,12u , and the first-order derivatives 

associated with the shear deformation, 1,2u  and 2,1u , are suppressed. The indices 1 and 2 refer 

to the Cartesian coordinates x and y, respectively. 

  

Figure 4.30 (a) Geometry and boundary conditions of the plate with an imperfect zone subjected to 

compressive load (h = 60 mm) and (b) discretization consisting of 96 C1 continuous triangular finite 

elements 

Finite element mesh of the whole model is depicted in Figure 4.30b. Because the uniform mesh 

would lead to much higher number of finite elements, and therefore a more time-consuming 

computation, a non-uniform mesh is employed. Once again, finite elements might seem too 

large in order to obtain converged results, but considering the 13 integration points, this should 

not present the problem. Homogenous microstructure is modeled by the MVE of side length 

2.6L   mm, as presented in Figure 4.14, while the microstructural nonlocal behavior is 

described by the parameter micro 0.6608l  , leading to an effective macrostructural internal 

length scale eff 1l   mm. On the other hand, for the modeling of heterogeneous microstructure 

RVE given in Figure 4.21 is used, where the same side length of 2.6L   mm is considered, but 

the microstructural size of the nonlocal interactions is set to micro 0.025l   mm, similarly as in 
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previous example. Load-displacement curves for both homogeneous and heterogeneous 

microstructure are given in Figure 4.31, where again, a similar situation as in the previous 

example can be observed. Softening initiation happens at a smaller reaction force level for the 

heterogeneous material, while the subsequent drop, although pronounced, is very short due to 

emergence of convergence problems in the ABAQUS solver. 

 

Figure 4.31 Structural responses of the plate subjected to compressive load obtained by the C1-C1 

multiscale scheme for homogeneous and heterogeneous microstructure 

Distribution of the equivalent elastic strain at the onset of softening for heterogeneous material 

can be seen in Figure 4.32. Obviously, localization zones have started to develop as expected 

for the shear band problem. 
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Figure 4.32 Distribution of the equivalent elastic strain eq  for heterogeneous microstructure with the 

internal length scale micro 0.025l   mm at the onset of softening 

Distribution of damage over several characteristic RVEs in the macrostructural localization 

zone at the onset of softening is presented in Figure 4.33. By observing the small region where 

material parameters are decreased, it can be clearly seen that the developed damage zones are 

more intense in the RVEs in the lower part of the plate. Besides, direction in which the damage 

has evolved so far suggests that the lower shear band would eventually become dominant. 

Similar situation is already predicted by using the one-scale damage model where 

microstructural evolution is excluded from the analysis, as discussed in Chapter 3 and depicted 

in Figure 3.33. Although a more complex RVE is used in that analysis, a similar evolution of 

the microstructural localization zones as depicted in Figure 4.33 can be expected for that RVE 

case and employment of the true multiscale analysis presented in this chapter, but this has yet 

to be verified. If the verification turns out to be positive, it can be stated that the results obtained 

by the presented multiscale algorithm provide a strong confirmation of the applicability of the 

one-scale algorithm in problems where heterogeneous microstructure is observed. 
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Figure 4.33 Distribution of damage variable D over some characteristic RVEs for micro 0.025l   mm at 

the onset of softening 

4.4.4 Discussion 

As obvious from the results of the considered numerical examples, C1-C1 multiscale scheme is 

able to successfully predict the initiation of the localization at the macrostructural level. By 

taking into account that the constitutive behavior of the macrostructure is obtained directly from 

the analysis of the evolving heterogeneous microstructure, it can be said that such algorithm 

represents a step forward with respect to the one-scale damage model presented in Chapter 3. 

Although the structural responses can be qualitatively interpreted as physically acceptable, 

additional comparison with the experimental results is needed to confirm the quantitative 
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validity of the obtained numerical results. Considering that the localized deformation is 

transformed into a diffused deformation field over an RVE by the application of 

homogenization, it is questionable if the homogenized constitutive response can accurately 

describe the softening process at the macrolevel after the initiation of the localization. Albeit 

the macrostructural load-displacement curves might be different than in reality, the 

compensation comes in form of the ability of the algorithm to capture the RVE failure and 

incorporate it in the macrostructural constitutive behavior, which should bring the final loss of 

mechanical integrity closer to the actual solution. It should also be stressed that, once the 

formation of the initial localization zone at the macrolevel is reached, some convergence issues 

can be noticed in the computational process, and in order for the analysis to continue, 

appropriate convergence criteria have to be relaxed slightly. It is not yet clear why this happens, 

and further research is needed to reach some reasonable conclusions. One of the possible 

explanations for such behavior could be that there is a too large difference in the initial stiffness 

between the region where material is purposely degraded and rest of the material, which causes 

extremely high spatial gradients of the variables at the interface. This in turn causes a very 

intense softening, as suggested by reaction force diagrams in Figure 4.27 and Figure 4.31, which 

cannot be resolved by ABAQUS solver. In addition, due to a very large difference between the 

values in the global stiffness matrix once the softening is initiated, the problems connected with 

the ill-posedness possibly arise. Hence, effect of the increase of the appropriate initial material 

parameters in the degraded regions should be investigated in more detail. 

 Furthermore, a discussion should be made regarding the principle of the scale 

separation, which is, from the purely physical point of view, undoubtedly violated in the 

numerical examples presented above where strong localizations are observed at the microlevel. 

Generally, by the formation of the computational model, all numerical methods necessarily 

include some degree of approximation and simplification of the real life problems. While it is 

desirable to mathematically describe the real physics as accurately as possible, sometimes, 

primarily due to shortage of the available computational resources, a higher degree of 

approximation is needed in order to obtain specific results. And the beauty of the numerical 

methods lies in the fact that the substantial simplification of the problem does not automatically 

yield inaccurate results. On the contrary, sometimes the simpler, more elegant modeling 

solutions tend to be more efficient than ones where every possible physical aspect is included. 

Whether this is the case with the proposed multiscale approach where the fulfillment of the 

principle of scale separation is not considered crucial, it has yet to be demonstrated. Numerical 
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results obtained in the examples above by all means make sense from the physical perspective, 

which is definitely an encouraging fact. 

 However, presented multiscale algorithm could potentially be employed without the 

violation of the scale separation principle. The key is to eliminate the sharp fluctuations of the 

strain field over the RVE, which could be done by decreasing the size of the RVE and increasing 

the microstructural length scale parameter, thus resulting in a diffused damage appearance over 

the RVE. In such way a physically more realistic situation could be obtained, where the 

consistency of the strain fields between the scales would be preserved. Numerical example of 

the rectangular plate, where the heterogeneous microstructure with larger microstructural 

parameter micro 0.6608l   mm is considered leading to results depicted in Figure 4.22 and Figure 

4.23, might be observed as such a case. 

 Theoretically, the violation of the principle could also be avoided by development of 

the order of the computational homogenization higher than two, where continuum of the same 

order would be used at the macrolevel. By doing so, the strain state of the RVE where sharp 

localization is present could be transferred at the macrostructural level more consistently. 

Likewise, the RVE boundary conditions could be described more precisely. Thereby, the higher 

number of the Taylor order terms corresponding to the higher number of the macrostructural 

degrees of freedom could easily model the sharp distributions of the RVE boundary 

displacements. Of course, it is questionable whether this could be done in the finite element 

framework, due to significant complication of the computational problem with the increase of 

the macrolevel continuity order. However, it is known that some of the available numerical 

methods can model the higher-order continuity much easily than finite element method, like 

meshless numerical schemes for example, which could definitely be one of the possible research 

directions in multiscale damage analysis in order to preserve the scale separation. 
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5 Conclusions 

The first and the main objective of the research presented in this thesis was a development of a 

mathematically consistent continuum model that could realistically describe the initiation and 

subsequent growth of the damage. When it comes to classical continuum theory, the principal 

problem in modeling of the localization of the deformation, which is always associated with the 

damage phenomenon, is that it cannot be objectively described due to mathematical 

inconsistencies that can arise at the onset of the softening. Namely, loss of positive-definiteness 

of the tangent stiffness matrix is induced as a result of material instabilities, which eventually 

leads to the loss of ellipticity of the equilibrium rate equations and consequentially to loss of 

the well-posedness of the rate boundary value problem. Displacement discontinuities can arise 

in such circumstances leading to an unstable development of the damage which cannot be 

uniquely described anymore, thus yielding a non-physical material behavior. In the framework 

of the finite element solution scheme, numerical results become strongly dependent on the 

fineness and orientation of the spatial discretization, where the damage localizes in the smallest 

possible finite element or a narrowest band of the finite elements, whereby an objective 

convergence cannot be achieved. 

 In order to eliminate the nonphysical material responses associated with the employment 

of the damage models based on the classical continuum mechanics, which relies on the local 

approach, a nonlocal constitutive behavior may be introduced. In that way the stress state of the 

material point is, in addition to its own deformation state, governed by the deformation state of 

the neighboring material as well. Size of the material domain which participates in the 

interaction is defined by the internal length scale parameter that has to be related to the 

microstructure of the material, and which acts as a localization limiter, thus preventing the 

displacement discontinuities and ensuring a smooth damage field. In this thesis, the strain 

gradient continuum theory is employed for the description of the nonlocal material behavior, 

where the internal length scale is introduced in the model through the constitutive higher-order 

tensors. The nonlocal action is due to continuity of the displacement field carried out by the 

strain gradient terms which, although local quantities in the mathematical sense, include the 

information about the deformation of the surrounding material.  
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With the strain gradient theory as a foundation, a computational approach for the 

modeling of quasi-brittle damage phenomena is proposed. The model is based on the isotropic 

damage law so that right-hand side of the constitutive relations are pre-multiplied by the same 

term governing the damage process. The growth of the damage causes this term to decrease, 

which not only ensures the softening of the material by reducing the values of the constitutive 

tensors, but it also affects the size of the microstructural interaction domain in the same way. 

The latter is mandatory for the correct description of the final localized deformation band, i.e. 

a macrocrack, which comes into existence from the scattered network of microcracks at the 

onset of the softening, when the size of microstructural interaction domain is the largest. While 

the physical formation of the cracks is not considered by the model, they are represented 

virtually by the integration points where all the stiffness is lost, i.e. where the damage variable 

is close to the critical value. The highly non-linear softening model is embedded into the 

triangular C1 finite element and implemented into the FE software ABAQUS/Standard via UEL 

subroutine.  

 The capabilities of the proposed computational strategy to simulate the strain 

localization are demonstrated in several benchmark examples in which the verification of the 

derived algorithm is performed by comparison with the available solutions from the literature. 

Both homogeneous and heterogeneous materials are considered by employing the second-order 

homogenization to obtain the required material stiffness matrices, a procedure which is mainly 

used in the multiscale computational approach. It is observed that the damage response depends 

on the RVE size, porosity and average hole radius of the heterogeneous material. Furthermore, 

constitutive behavior resulting from the heterogeneous microstructure evokes the structural 

anisotropy in the macrostructural computational model, which can be observed in some 

numerical examples as an asymmetrical evolution of the damage zone. The structural responses 

clearly indicate that heterogeneous material has a much lower load-carrying capacity, as 

expected. In addition, reaction forces rarely drop to values close to zero, which would be 

expected when the fully formed localization zone crosses the computational model. Explanation 

for such behavior can be found in the definition of the damage variable, which is a function 

only of the elastic strain tensor. Since the damage variable in the constitutive model degrades 

the classical and higher-order material tensors by the same intensity, improvement could 

probably be made by adding in the definition of the damage variable the dependency on strain 

gradient terms as well.  

 In contrast to the results obtained in the literature, where the conventional implicit 

gradient damage formulation is adopted, the proposed damage algorithm yields a fully localized 
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deformation band without any notice of spurious damage growth. The conducted analyses 

demonstrate that the proposed damage model based on the strain gradient continuum theory is 

able to successfully predict the initiation of the damage growth as well as to describe the 

subsequent localization of the deformation into a macroscopic crack, meaning that a complete 

regularization of the mathematical model of the material failure behavior can be achieved.  

 The second part of the thesis is concerned with the multiscale modeling of the materials 

exhibiting the strain localization phenomena, whereby the evolution of damage is observed at 

the microstructural level described by an RVE. Regarding the employment of the computational 

homogenization approach in multiscale analysis of damage, several key issues need to be 

addressed here when the sharp localization bands form at the RVE level. Objectivity of the 

macrolevel results cannot be achieved by using the local continuum approach, which can be 

remedied by the application of the second-order computational homogenization, where higher-

order continuum is employed instead of the classical one. Furthermore, for the increasing size 

of the RVE, which generally should not have an effect on the homogenized material behavior 

due to representative character of the RVE, increased brittleness of the macrostructural response 

can be noticed, compromising in this way the objectivity of the numerical results. The last issue 

is of the physical nature, and it is concerned with the violation of the principle of separation of 

the scales when the localization is obtained at the microlevel. Since the RVE represents an 

actual portion of the material around the macrolevel integration point, it is believed that the 

occurrence of localization phenomenon across the RVE would actually mean that a localization 

zone of the same dimensions should be present in the macromodel. Representativeness of the 

RVE comes in the question then, and so does its ability to describe the strain state of the locally 

surrounding material. All of the problems listed here can be solved to some extent by 

introducing the effective discontinuities and traction-separation laws at the macrolevel, which 

can be calculated from the localization bands that occur across the RVEs. However, an efficient 

solving procedure still has to be developed, and therefore the applicability of the second-order 

computational homogenization to the localization problems is examined in more detail in this 

thesis. 

 In order to simplify the problem at the microscale, continuum theory based on modified 

case of Mindlin’s form II strain energy density is employed, in which only a classical 

constitutive tensor exists and the size of the nonlocal interaction zone is explicitly assigned by 

the internal length scale parameter. Triangular C1 finite element for softening analysis is derived 

in the same manner as is the case with strain gradient theory, by the application of the isotropic 

damage law to the constitutive relations of the gradient elasticity theory. Applicability of the 
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finite element is tested on the RVE example where several loading conditions are applied, and 

the results show the expected material behavior. It is found that change in the size of the 

nonlocal interaction zone leads to the formation of completely different localization paths. 

 Next, the C0-C1 macro-micro multiscale scheme with the appropriate scale transitions is 

derived, in order to examine the influence of the classical continuum at the macrolevel. The 

multiscale procedure is implemented into the FE software ABAQUS/Standard by using the 

UMAT subroutine for the macrolevel, and UEL subroutine for the microlevel. As expected, the 

results are dependent on the discretization and the convergence to physically acceptable 

solution cannot be reached. In contrast, C1-C1 multiscale scheme developed in [73] and applied 

to considered damage problem shows almost identical structural responses for different finite 

element mesh densities, and the results are comparable with the one-scale damage model 

solution. RVE failure conditions used for the assessment of the complete formation of the 

localization zone across the RVE are derived. The stiffness of the macrostructural integration 

point is then manually updated to the value of zero, which emulates the formation of the crack. 

An example is considered where no formation of the localization at the macrolevel is expected 

due to absence of the localization triggering mechanisms, and comparison is made between the 

macrostructural responses for several different RVE cases. When a larger microstructural length 

scale is used, damage is spread more even across the RVE and the results are then qualitatively 

comparable to the one-scale damage model. For the smaller length scale which induces a 

significant localization at the microlevel, much brittle macrostructural material behavior is 

obtained. Additionally, two examples which include the localization of the deformation at the 

macrostructural level are considered, where it is shown that the presented multiscale damage 

model can successfully describe the initiation of the localization. 
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