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Abstract 

Strong cross-winds on bridges and viaducts may cause dynamic instabilities for 

passing vehicles. To protect vehicles from those adverse cross-wind effects, wind barriers are 

commonly placed on bridges. While these barriers proved to be successful in sheltering 

vehicles from cross-winds, their influence on bridge aerodynamic and aeroelastic 

characteristics is still fairly unknown. This is particularly important for long-span cable-

supported bridges that are susceptible to dynamic instabilities due to wind effects. 

Hence, the present thesis focuses on the effects of wind barriers on aerodynamic 

characteristics of three typical long-span cable-supported bridge decks and their sensitivity to 

self-excited vibrations. Experiments were carried out in the climatic boundary-layer wind 

tunnel of the Institute of Theoretical and Applied Mechanics in Prague, Czech Republic. 

Experiments were performed on sectional models of the Golden Gate Bridge (USA), Kao-Pin 

Hsi Bridge (Taiwan), and Great Belt Bridge (Denmark). Wind-barrier models of different 

porosities and heights were placed at the bridge-deck section models in various arrangements 

(windward, leeward and both windward and leeward). Flow characteristics around bridge-

deck section models and their average aerodynamic loads (drag force, lift force and pitch 

moment) were determined for various flow incidence angles. Galloping instability was 

analyzed using the quasi-steady approach. Flutter sensitivity was studied via dynamic free-

vibration tests and eigenvalue analysis of a two-degree-of-freedom system. 

The obtained results generally indicate a substantial influence of wind barriers on 

aerodynamic loads and stability of studied bridge decks.  

The drag force coefficient increases as the porosity of the wind barrier decreases, and as the 

height of the wind barrier increases. Wind barriers change the trends and absolute values of 

the lift force coefficient of bridge decks, which is more exhibited for more solid and higher 

wind barriers. The pitch moment of bridge decks decreases when the wind barriers are in 

place, while the influence of the porosity is more dominant than the wind-barrier height. 

The effects of wind barriers on galloping vibration of bridge-deck sections are rather 

negligible; however, bridge decks become quite prone to flutter when wind barriers are in 

place. For the windward wind barrier only, flutter susceptibility of bridge decks is more 
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exhibited for less-porous wind barriers. The effects of increasing wind-barrier height are not 

unambiguous, as they are simultaneously influenced by the aerodynamic shape of bridge-deck 

sections. 

The wind-barrier arrangement has a major influence as well. For the configurations with the 

windward wind barrier only as well as both windward and leeward wind barriers, the flutter 

sensitivity of bridge decks increases substantially, as the critical flow velocity for bridge-deck 

flutter in those experiments decreased significantly in comparison with the respective empty 

bridge-deck sections. For the leeward wind barrier only, the flutter susceptibility of bridge-

deck sections did not change and remained the same as it was for the empty bridge-deck 

sections.  

 

Keywords: 

Cable-supported bridges; roadway wind barriers; aerodynamic forces and moments; flutter; 

galloping; wind-tunnel experiments. 
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Prošireni sažetak 

 Snažni bočni vjetrovi mogu uzrokovati dinamičku nestabilnost vozila na mostovima, 

prevrnuti vozila ili uzrokovati sudar s drugim vozilima. Da bi se vozila zaštitila od utjecaja 

bočnog vjetra, na mostove se postavljaju zaštitni vjetrobrani. Prethodno je pokazano da 

vjetrobrani uspješno štite vozila od bočnog vjetra na mostovima, ali njihov utjecaj na 

aerodinamička i aeroelastična svojstva mostova dosad nije istražen, što je izrazito bitno 

ispitati za viseće i ovješene koji su karakterizirani niskim vlastitim frekvencijama i malim 

mehaničkim prigušenjem i time izuzetno osjetljivi na djelovanje vjetra.  

Djelovanje vjetra na mostove se ispituju u okviru aerodinamike i aeroelastičnosti, koja se 

bavi međudjelovanjem elastičnih, inercijskih i aerodinamičkih sila koje djeluju na sekcije 

mosta izložene strujanju zraka. Utjecaj vjetra na mostove se nije posebno pručavao sve do 

urušavanja mosta Tacoma Narrows u SAD-u u studenom 1940. godine. Nakon tada 

provedene analize dokazano je da se most urušio zbog vibracija uzorokovanih djelovanja 

vjetra, pa su se ispitivanja aeroelastičnih svojstava mostova od tada počela provoditi kod 

projektiranja mostova. Vibracije uzrokovane gibanjem tijela uslijed puhanja vjetra su 

najčešći oblik vibracija kod mostova. Ova vrsta nestabilnosti može se podijeliti na treperenje 

(engl. flutter) i galopiranje (engl. galloping). 

Treperenje mosta nastaje uslijed djelovanja pulzirajućih aerodinamičkih sila koje unose 

energiju u dinamički sustav mosta pri svakoj oscilaciji, pri čemu se treperenje umanjuje 

mehaničkim prigušenjem sustava. Kada se ostvari kritična brzina strujanja zraka, ukupno 

prigušenje (suma mehaničkog prigušenja konstrukcije i aerodinamičkog prigušenja uslijed 

utjecaja vjetra) postiže nultu vrijednost, te sustav postaje dinamički nestabilan. Ako brzina 

strujanja zraka postane veća od kritične, postiže se negativno ukupno prigušenje, te svaka 

daljnja pobuda sustava rezultira divergentnim oscilacijama sekcije mosta.  

Galopiranje je dinamička nestabilnost tipična za vitke sekcije mosta s pravokutnim ili 'D' 

poprečnim presjekom, gdje ne dolazi do ponovnog nalijeganja struje zraka na površinu sekcije 

mosta nakon što se struja zraka prvotno odvojila od mosta na uzvodnom naletnom bridu 

sekcije mosta. Ova nestabilnost u smjeru okomitom (vertikalnom) na glavni smjer strujanja 

vjetra uobičajeno ima nisku frekvenciju i relativno velike amplitude oscilacija. Galopiranje se 

od vibracija uslijed odvajanja vrtloga (engl. Vortex-Induced-Vibration, VIV) razlikuje u 
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tomu što se potonje javljaju kod točno određene brzine strujanja kada se frekvencija 

odvajanja vrtloga struje zraka izjednači s vlastitom frekvencijom sekcije mosta., engl. lock-in. 

Lock-in vibracije su prisutne samo u uskom području frekvencija i iščezavaju s daljnim 

povećanjem brzine strujanja zraka, dok se vibracije kod pojave galopiranja nastavljaju 

povećavati s povećanjem brzine vjetra. Analiza treperenja sekcije mosta zahtijeva 

proučavanje dinamičkog odziva mosta, a galopiranje se uobičajeno proučava kao 

kvazistacionarna pojava. 

Matematički model za analizu dinamičkog odziva sekcije mosta obuhvaća jednadžbe gibanja 

u dva stupnja slobode u kojima se kao sile pobude uvrštavaju aerodinamička sila uzgona i 

moment prevrtanja sekcije mosta uzrokovani gibanjem sekcije mosta. Aerodinamička sila 

uzgona i moment prevrtanja se mogu izraziti uz pomoć bezdimenzijskih aeroelastičnih 

koeficijenata (derivativa treperenja), koji su pokazatelji aeroelastične stabilnosti sekcije 

mosta. U matrici dinamičkog odziva mosta se mogu razlučiti mehaničke matrice krutosti i 

prigušenja koje se određuju iz dinamičkog odziva mosta bez strujanja zraka, te 

aerodinamičke matrice krutosti i prigušenja koje ovise o dinamičkom odzivu sekcije mosta 

uslijed strujanja zraka. Iz dobivenih matrica krutosti i prigušenja sustava računaju se 

bezdimenzijski aeroelastični koeficijenti (derivativi treperenja). Za određivanje navedenih 

matrica potrebno je poznavati vlastite frekvencije vibracija te prigušenja sustava, koje se 

određuju iz izmjerenog dinamičkog odziva sekcije mosta. 

Težište ovog rada je na aerodinamičkim i aeroelastičnim svojstvima visećih i ovješenih 

mostova s cestovnim vjetrobranima, i to posebice na analizi vibracija uzrokovanih gibanjem 

sekcije mosta uslijed puhanja vjetra. Analiza aerodinamičkih svojstava sekcija mostova 

uključuje određivanje aerodinamičkih sila uzgona i otpora i momenta prevrtanja sekcija 

mostova, te karakteristike strujanja zraka oko sekcija mostova. Analiza aerodinamičke 

stabilnosti mostova s ugrađenim cestovnim vjetrobranima obuhvaća određivanje 

aeroelastičnih koeficijenata i analizu vlastitih frekvencija sekcija mostova uz dva stupnja 

slobode gibanja za izračun kritične brzine strujanja  zraka karakteristične za pojavu 

treperenja. 

Hipoteze istraživanja: 

1. Dinamička stabilnost sekcija mostova je pogoršana i kritična brzina strujanja vjetra za 

pojavu treperenja je smanjena kada su cestovni vjetrobrani ugrađeni na sekcije mostova. 
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2. Smanjenje poroznosti cestovnih vjetrobrana na sekcijama mostova povećava dinamičku 

nestabilnost mostova. 

3. Aerodinamička sila otpora sekcija mostova je veća kada su cestovni vjetrobrani ugrađeni 

na most. 

Istraživanja su provedena eksperimentalno u klimatskom zračnom tunelu Instituta za 

teorijsku i primijenjenu mehaniku u Pragu, Češka. Ovaj zračni tunel je göttingenskog tipa 

(zatvoreni tok struje zraka), a sastoji se od aerodinamičke i klimatske sekcije. Aerodinamička 

sekcija je konstruirana s ciljem provedbe eksperimenata vezanih uz djelovanje vjetra na 

konstrukcije i vozila, pravokutnog je poprečnog presjeka s visinom od 1,8 m i širinom od 1,9 

m. Brzina strujanja u aerodinamičkoj sekciji se može podešavati od 0,5 m/s do 35 m/s, a 

intenzitet turbulencije na ulazu u praznu ispitnu sekciju je manji od 2%.  

U sklopu istraživanja su korištena tri modela sekcije mosta: Kao-Pin Hsi (Tajvan), Great 

Belt (Danska-Švedska) i Golden Gate (SAD). Sva tri modela sekcije mosta su izrađena u 

geometrijskom mjerilu 1:100, dok su duljine sekcija modela ovih mostova (poprečno 

horizontalno na smjer strujanja zraka) kod svih modela 1 m. Modeli cestovnih vjetrobrana 

različitih visina i poroznosti su također izrađeni u geometrijskom mjerilu 1:100.  

U prvom dijelu eksperimentalnog rada istražen je utjecaj poroznosti i visine cestovnog 

vjetrobrana postavljenog samo na uzvodni rub sekcija mostova na aerodinamička i 

aeroelastična svojstva sekcija mostova. Pritom su korišteni stupnjevi poroznosti vjetrobrana 

od 0%, 30% i 50%, te (modelske) visine vjetrobrana od 30 mm, 40 mm i 50 mm. 

U drugom dijelu eksperimentalnog rada istražen je utjecaj načina postavljanja vjetrobrana 

na aerodinamička i aeroelastična svojstva sekcija mostova. Pritom su vjetrobrani različitih 

visina postavljeni na sljedeće načine: a) vjetrobran postavljen samo na uzvodni rub sekcije 

mosta, b) vjetrobran postavljen samo na nizvodni rub sekcije mosta, c) vjetrobrani 

postavljeni na oba ruba sekcije mosta. 

S ciljem dobivanja aerodinamičkih koeficijenata sila i momenta prevrtanja, koristio se 

eksperimentalni mehanizam razvijen u sklopu ovog doktorskog rada. Ovim mehanizmom je 

moguće zasebno odrediti aerodinamičke sile otpora i uzgona, kao i moment prevrtanja sekcije 

mosta. Mjerenja su provedena tenzometrima postavljenim na eksperimentalni mehanizam. 

Tenzometri su povezani s galvanski izoliranim modulima te se signal pojačava i filtrira 
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tijekom mjerenja. Odziv tenzometara na vanjsko opterećenje je linearan. Konstrukcija 

mehanizma za određivanje aerodinamičkih sila i momenta prevrtanja je opremljena bočnim 

ravnim pločama čime se osigurava dvodimenzijsko strujanje zraka, dok je Prandtl-Pitotova 

cijev korištena za mjerenje brzine strujanja zraka. Aerodinamički koeficijenti sile uzgona, sile 

otpora, i momenta prevrtanja su bitni za određivanje statičke i dinamičke stabilnosti sekcija 

mostova s obzirom na pojavu galopiranja sekcija mostova. Procjena dinamičke stabilnosti 

galopiranja sekcija mostova je provedena uz korištenje Glauert-Den Hartogovog kriterija. 

Kod provedbe ispitivanja dinamičke stabilnosti mostova, modeli su postavljeni na 

mehanizam razvijen za potrebe određivanja aeroelastičnog odziva modela sekcije mosta, koji 

omogućava pomake u vertikalnom smjeru kao i rotaciju modela sekcije mosta. Ovaj 

mehanizam omogućava precizno i brzo podešavanje prirodnih frekvencija oscilacija u 

vertikalnom i rotacijskom gibanju, čime se podešava krutost sustava. Konstrukcija 

mehanizma za aeroelastična ispitivanja je opremljena ravnim bočnim pločama za 

izbjegavanje nepoželjnog utjecaja dijelova mehanizma na strujanje zraka oko modela sekcije 

mosta. Referentna brzina strujanja zraka se mjeri Prandtl Pitotovom cijevi koja je 

postavljena uzvodno od modela sekcije mosta. Vertikalni pomak i torzijski zakret modela 

sekcije mosta je izmjerena magnetskih osjetnicima. Kinematika eksperimentalnog mehanizma 

i ponašanje opruga su linearni. Eksperimenti su provedeni metodom slobodnih vibracija, koja 

uključuje inicijalni pomak modela sekcije mosta u vertikalnom i rotacijskom smjeru, te 

mjerenja prigušenja slobodnih oscilacija pri različitim brzinama strujanja zraka.  

Polje brzine strujanja zraka oko modela sekcije mosta je određeno uz primjenu PIV (engl. 

Particle Image Velocimetry) metode. Zrak koji struji u zračnom tunelu se ispunjava sitnim 

česticama koje se osvjetljavaju laserskim snopom svjetla u području oko modela sekcije 

mosta. Raspodjela sitnih čestica u dva bliska vremenska trenutka se mjeri uz pomoć 

visokofrekventne kamere te se koristi za izračunavanje polja brzine i vrtložnosti strujanja 

zraka. 

Postignuti eksperimentalni rezultati ukazuju na značajan utjecaj cestovnih vjetrobrana na 

aerodinamičke i aeroelastične karakteristike sekcija visećih i ovješenih mostova.  

U slučaju vjetrobrana postavljenog samo na uzvodni rub sekcije mosta, koeficijent 

aerodinamičkog otpora se povećava kod smanjenja poroznosti vjetrobrana, te povećavanjem 

visine vjetrobrana. Ovaj trend je zabilježen kod sekcija svih ispitivanih mostova, te je 
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izraženiji u rasponu pozitivnih napadnih kutova struje zraka, tj. kad zrak nastrujava na 

sekciju mosta od gore prema dolje. Utjecaj vjetrobrana na povećanje koeficijenta 

aerodinamičkog otpora je izraženiji za slučaj mostova koji imaju aerodinamičan oblik, 

odnosno kod kojih je manje izraženo odvajanje struje zraka (npr. Great Belt). Cestovni 

vjetrobrani mijenjaju trendove i apsolutne vrijednosti koeficijenta aerodinamičkog uzgona, 

dok je to izraženije za vjetrobrane s većom visinom i manjom poroznosti. Koeficijent 

aerodinamičkog momenta prevrtanja sekcija mostova je manji kada su cestovni vjetrobrani 

postavljeni na sekcije mosta u odnosu na sekcije mosta bez vjetrobrana, dok je utjecaj 

poroznosti vjetrobrana dominantan u odnosu na utjecaj visine vjetrobrana. 

Raspored vjetrobrana također bitno utječe na koeficijente aerodinamičkih sila uzgona i 

otpora. U uobičajenom rasponu napadnih kutova struje zraka na most (napadni kut je 

relativno mali ili jednak nuli), svi istraživani rasporedi postavljanja vjetrobrana doprinose 

negativnoj sili uzgona, tj. vertikalno prema dolje. Za neke ispitivane konfiguracije, 

vjetrobrani uzrokuju promjenu smjera aerodinamičke sile uzgona. Raspored vjetrobrana ne 

utječe značajno na koeficijent aerodinamičkog momenta prevrtanja. Stoga, raspored 

postavljanja vjetrobrana na sekcije mostova ne utječe na torzijsku divergenciju sekcija 

mosta.  

Cestovni vjetrobrani pri svim ispitivanim visinama, poroznosti te rasporedima postavljanja 

ne utječu na galopiranje mostova, tj. osjetljivost na galopiranje je približno jednaka za 

sekcije mostova sa i bez cestovnih vjetrobrana; dinamička stabilnost s obzirom na galopiranje 

sekcija mosta je postignuta kvazistacionarnim pristupom i u dinamičkim testovima. S druge 

strane, promjena pozitivnog u negativni (i obratno) gradijent sile uzgona s obzirom na kut 

nastrujavanja zraka, a koja je zabilježena kod nekih ispitivanih konfiguracija, sugerira 

moguće kritične konfiguracije s obzirom na dinamičku stabilnost uslijed vertikalnog gibanja 

sekcija mosta. 

U slučaju vjetrobrana postavljenog samo na uzvodnu stranu sekcije mosta, osjetljivost na 

torzijski oblik treperenja je značajno povećana. Ovo je izraženije za manje porozne 

vjetrobrane, dok su utjecaji visine vjetrobrana istodobno uvjetovani aerodinamičkim oblikom 

sekcije mosta na koji se vjetrobran postavlja. Sekcije mostova koje imaju aerodinamičan 

oblik (npr. Great Belt) su općenito osjetljivije na torzijski oblik treperenja ako su na njih 

postavljeni niži vjetrobrani, dok su sekcije mostova koje imaju manje aerodinamičan oblik 
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(npr. Golden Gate) osjetljivije na torzijski oblik treperenja ako su na njih postavljeni viši 

vjetrobrani.  

Raspored vjetrobrana također utječe na osjetljivost s obzirom na treperenje sekcija mostova. 

Vjetrobran postavljen samo na uzvodnu stranu sekcija mosta i vjetrobrani postavljeni na 

obje strane mosta značajno utječu na torzijski oblik treperenja sekcija mostova, dok 

postavljanje vjetrobrana samo na nizvodnu stranu sekcija mosta ne utječe značajno na 

torzijski oblik treperenja sekcija mostova. Vjetrobran postavljen samo na uzvodnu stranu 

sekcija mosta, te vjetrobrani postavljeni na obje strane sekcija mosta mogu uzrokovati 

vibracije uslijed periodičnog odvajanja vrtloga. Rezultati analize vlastitih vrijednosti sustava 

s dva stupnja slobode gibanja za izračun kritične brzine strujanja zraka kod koje se javlja 

treperenje se općenito podudaraju s trendovima aeroelastičnih koeficijenata treperenja.  

Osrednjene brzine strujanja zraka su značajno smanjene iznad sekcija mosta nizvodno od 

vjetrobrana, što potvrđuje zaštitna svojstva vjetrobrana s obzirom na stabilnost vozila koja 

prometuju mostovima; ovaj rezultat je u skladu s prethodnim istraživanjima. Vjetrobran 

postavljen samo na uzvodnu stranu sekcija mostova i vjetrobrani postavljeni na obje strane 

sekcija mostova ukazuju na slične trendove s obzirom na osrednjene brzine strujanja vjetra 

na gornjoj strani sekcija mostova. Najveća varijanca brzine strujanja zraka je postignuta u 

smičnom sloju koji se odvaja od vrha uzvodnog vjetrobrana. Karakteristike tog smičnog sloja 

uvjetuju karakteristike aerodinamičke sile uzgona i momenta prevrtanja sekcija mostova.  

Predloženi ciljevi istraživanja za ovaj doktorski rad su postignuti i postavljene hipoteze 

istraživanja su ispunjene. Prikazani rezultati potvrđuju da, dok vjetrobrani štite vozila od 

bočnih vjetrova, oni također uzrokuju negativne promjene aerodinamičkih koeficijenata sila i 

momenta prevrtanja, te smanjuju aerodinamičku stabilnost mostova. 

Moguća tema budućih istraživanja je optimizacija oblika vjetrobrana koji bi pružao 

zadovoljavajuću zaštitu vozila od bočnog vjetra, te istovremeno ne bi bitno narušavao 

aerodinamičku stabilnost mostova. Ova svojstva se potencijalno mogu zadovoljiti koristeći 

vjetrobrane s promjenjivom poroznosti s obzirom na karakteristike nadolazećeg vjetra. 

Utjecaj mirujućih i prometujućih vozila na aerodinamička i aeroelastična svojstva mostova s 

vjetrobranima također još nije u potpunosti istražen, kao niti utjecaj tranzijentnih vjetrova 

(npr. bura, uragan, tornado) na aerodinamičke karakteristike visećih i ovješenih mostova 

opremljenih cestovnim vjetrobranima. 
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1.1. Design of cable-supported bridges 

Recent developments in building technology along with architectural requirements 

yielded a significant increase in span length of bridges. Span is the distance between two 

adjacent supports of a structure, i.e. two towers of a bridge supporting the bridge deck.  

Bridges are commonly classified with respect to a distribution of the external and internal 

loads through the structure. Two main categories of contemporary long-span bridges are 

cable-stayed and suspension bridges, Figure 1.  

(a) (b) 

  
Figure 1: Two main categories of long-span bridges: (a) Cable-stayed bridge, (b) suspension 

bridge. 

Cable-stayed bridges (Figure 1.1a) are supported by the cables which are extended from the 

tower to the bridge deck in a fan-like pattern or in parallel lines.  Suspension bridges (Figure 

1.1b) are suspended by the cables as well; however, the cables extend vertically from the 

bridge deck to the suspension cable that connects the tops of two bridge towers. These two 

types of bridges are commonly called cable-supported bridges.  

While the cable-stayed bridges have been commonly used for bridge spans up to 1 km, 

suspension bridge design has been used for long-span bridges, e.g. Akashi Kaikyo Bridge in 

Japan with the span of 1991 m, Figure 2. 

Bridge spanBridge tower

Bridge deck

Bridge cables

Bridge span

Suspender cables
Bridge tower

Bridge deck

Suspension cable



Chapter 1  Introduction 

3 
 

 
Figure 2: Akashi Kaikyo Bridge in Japan - the longest central bridge span ever built. Photo 

courtesy of http://broer.no. 

7 out of 10 bridges with longest spans were built in the 21th century, thus indicating the 

current trend of building longer and larger bridges. Long-span suspension and cable-stayed 

bridges are flexible slender structures characterized by relatively low natural frequency and 

low mechanical damping in the pitch and heave motions. Due to an increase in the span 

length of contemporary cable-supported bridges, these engineering superstructures are highly 

susceptible to wind effects. 

1.2. Wind effects on cable-supported bridges 

1.2.1. Wind characteristics around cable-supported bridges 

 Bridge design is influenced by many factors, such as span length, terrain properties, 

climate conditions and owner preferences. As the wind blows around bridge-deck sections, 

the flow may separate from the bridge. In general, bridge decks may be classified in three 

categories with respect to the flow separation from bridge decks: (i) streamlined bridge deck 

with little flow separation, e.g. Humber Bridge, (ii) semi-bluff or semi-streamlined bridge 

deck with more noticeable flow separation, e.g. Osman Gazi Bridge, (iii) bluff bridge deck 

with substantial flow separation, e.g. Akashi Kaikyo Bridge. Those differences in the trends 

of the flow separation are due to the aerodynamic shape of bridge decks and additional 

bridge elements. Flow characteristics around those three types of bridge-deck sections are 

schematically presented in Figure 3. 

http://broer.no/
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(a) Streamlined bridge deck 

 
(b) Semi-bluff bridge deck 

 
(c) Bluff bridge deck 

 
Figure 3: Flow characteristics around various types of 

bridge decks; flow is from right to left. 

For the streamlined bridge decks, the flow separation may occur at the leeward 

(downstream) edge of the bridge deck, whereas its intensity is rather low. The flow 

separation for the semi-bluff bridge decks may occur at the windward (upstream) edge of the 

bridge deck in addition to the flow separation at the leeward edge, while the flow commonly 

reattaches at the bridge-deck surface. For the bluff bridge decks, the flow on the bottom 

surface of the bridge deck through the steel-stiffening structure is quite chaotic accompanied 

by an intense flow separation, while it may occur on both the windward and leeward bridge 

deck edges.  

1.2.2. Aerodynamic loading of cable-supported bridges 

 The dominant aerodynamic forces acting on bridge decks are the drag force acting in 

the horizontal (main flow) direction and the lift force acting in the vertical direction. This is 

Flow separation
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due to design characteristics of long-span bridge decks, i.e. large ratio between the span and 

other characteristic dimensions. A distribution of these two forces with respect to the bridge 

deck center of gravity yields the aerodynamic pitch moment. For the long-span bridges, the 

reference area for both the drag force and the lift force are quite large; hence, the integral 

aerodynamic forces acting on bridge decks may be significant. These forces yield a 

substantial load on bridge supporting structures, e.g. the aerodynamic lift force affects the 

tension of cables on suspension bridges. 

The top surface of bridge decks (i.e. road) is flat, hence the streamlined bridge decks may 

experience smaller air pressure on the bottom side of bridge decks in comparison with the 

top surface and consequently large integral aerodynamic forces and moments. On the other 

hand, the semi-bluff and bluff bridge decks may experience stronger fluctuations of the 

aerodynamic forces and moments due to a more pronounced flow separation.  

1.2.3. Aeroelasticity of cable-supported bridges 

 In addition to the average aerodynamic integral forces and the pitch moment, where 

bridges are considered as static solid bodies, the aeroelastic behavior of contemporary long-

span cable-supported bridges is quite important because their substantial span length makes 

them flexible and sensitive to wind actions. 

Aeroelasticity generally addresses an interaction among elastic, inertial and aerodynamic 

forces experienced by an elastic body that is subjected to the fluid flow. It was originally 

believed that the aeroelastic problems occur in aerospace engineering only, e.g. airplane-wing 

flutter. However, a collapse of the Tacoma Narrows Bridge in 1940 indicated that the bridge 

aeroelasticity phenomena could cause civil engineering structures (like bridges) to collapse as 

well, so this unfortunate event motivated the aeroelasticity to be addressed in bridge 

engineering as well, e.g. Miyata (2003). Nowadays the aeroelastic phenomena are commonly 

considered when designing tall towers and buildings, long-span suspension and cable-stayed 

bridges, power lines and similar slender structures, e.g. Hansen et al. (2006), Shyy et al. 

(2010), Kareem and Wu (2013).  

In general, it is an important goal for bridge engineers to design bridges that have critical 

flow velocities for divergent self-excited oscillations larger than the maximum expected wind 

velocities in the particular geographic region to avoid occurrence of dynamic instability 
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during the bridge lifetime. Aeroelasticity can be studied as the static and dynamic 

aeroelasticity. The static aeroelasticity deals with a steady response of an elastic body in a 

fluid flow; hence, inertial forces are not accounted for. It can be further divided into control 

reverse and torsional divergence. Control reverse is aeroelastic phenomena occurring on 

aircrafts when elastic deformations due to aerodynamic forces influence the controllability of 

an aircraft, e.g. Yoon et al. (2012). Torsional divergence occurs when a body deflects due to 

the aerodynamic pitch moment, while this phenomenon may further increase aerodynamic 

loads and cause the structure to collapse, e.g. Zhang et al. (2013). This phenomenon was 

common on aircraft wings in the past. As the aircraft wing bends due to the aerodynamic 

pitch moment, the flow incidence angle of the wing increases, thus further increasing 

aerodynamic loads and ultimately leading to a failure of the wing. 

Dynamic aeroelasticity addresses the dynamic response of a body immersed into the flow for 

the case when the inertial forces are taken into account as well. Based on a source of 

structure excitation, there are three different kinds of dynamic aeroelasticity, i.e. (i) self-

excited vibrations, (ii) instability-induced vibrations, (iii) extraneously-induced vibrations.  

For bridges, the self-excited vibrations (galloping and flutter) are most dangerous. They are 

caused due to self-excited aerodynamic forces that arise due to the body movement and 

occur due to a complex interaction between the airflow and the vibrating bridge deck. It is 

therefore required to carefully analyze aeroelastic behavior of long-span bridges during 

construction and service prior to building the bridge. Hence, aeroelastic studies are 

commonly performed experimentally on small-scale bridge-deck section models in wind 

tunnels, e.g. Larsen (1993).  

1.2.4. Vortex-Induced-Vibration 

 Vortex-Induced-Vibration (VIV) occurs due to the vortex shedding from the leading 

bridge-deck edge, which phenomenon may be observed intermittently on the top and bottom 

bridge-deck surfaces. These shed vortices define the oscillatory aerodynamic force in the 

direction perpendicular (vertical) to the main flow direction. At the vortex-shedding 

frequency equal to the natural frequency of a body, the body starts to vibrate, e.g. 

Matsumoto (1999). While vortex-induced vibrations are often not disastrous for 

contemporary bridges, they may nevertheless yield a considerable fatigue of structural 
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components, e.g. Diana et al. (2006). It is therefore important that the natural frequencies of 

all bridge components are not in the range of the vortex-shedding frequency. The vortex-

shedding frequency for a given structure is linearly dependent on the flow velocity - the 

Strouhal number, 

  St ,vsf L
v

=                  (1.1) 

where St is Strouhal number, fvs is vortex-shedding frequency, L is characteristic length, v  is 

flow velocity. With increasing the flow velocity, the vortex-shedding frequency increases as 

well to satisfy the characteristic St for a given structure. When the vortex-shedding 

frequency becomes equal to the natural frequency of the structure, a further increase in the 

flow velocity does not yield a further increase in the vortex-shedding frequency, but the 

vortex-shedding frequency remains equal (for a narrow range of flow velocities) to the 

natural frequency of the structure. This range of flow velocities, where the vortex-shedding 

frequency does not satisfy the characteristic St but remains constant, is known as the lock-in 

region with stable-orbit oscillations, Figure 4.  

 
Figure 4: Lock-in phenomenon of the vortex-shedding frequency. 

1.2.5. Galloping instability 

Galloping is the aerodynamic instability typical for slender structures with particular 

cross-sectional shapes such as, for example, rectangular or ‘D’ sections or ice-coated power-

line cables, where the flow reattachment on the body surface does not occur after the flow 

separated at the leading edge of the structure, e.g. Simiu and Scanlan (1996). Galloping is 

fv
s

v
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fn

y
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not considered to be a typical instability mode for long-span cable-supported bridges, but it 

may nevertheless affect bridge-deck sections with width to height aspect-ratio smaller than 

three, i.e. bridge-deck sections that are considered to be bluff, e.g. Ruscheweyh et al. (1996), 

Carassale et al. (2013), Mannini et al. (2014), Nguyen et al. (2015), while the flow at an 

incidence angle may trigger this instability as well, e.g. Argentini et al. (2018). 

Galloping is characterized by large amplitude oscillations perpendicularly and vertically to 

the main flow direction; therefore, this instability is often called across-wind galloping. 

Frequency of motion at which this instability occurs is usually rather small, i.e. much smaller 

than the characteristic vortex-shedding frequency of the same bridge-deck section. Another 

way to distinguish galloping from vortex-shedding oscillations is that the vortex-shedding 

oscillations appear at a certain flow velocity and die out when the flow velocity further 

increases, while the galloping amplitudes start to occur at a certain flow velocity and further 

increase with an increase in the flow velocity. 

1.2.6. Flutter instability 

Flutter is a dynamic self-excited instability influenced by the flow and vortex separation 

from the leading edge of bridge decks and a possible reattachment of the downstream flow. It 

is characterized by the coupling of the aerodynamic forces and the motion of the bridge deck, 

as the motion of the bridge deck results in self-excited aerodynamic forces and self-excited 

oscillations. Wind forces feed the energy into the system during each individual cycle of 

oscillation, and they are counteracted by the structural damping, as the fed energy is 

dissipated through the characteristic structural damping of the bridge deck.  

When the flow velocity becomes critical , the net damping (a sum of the structural damping 

of a bridge deck - positive by definition, and the modal damping due to a wind, i.e. 

aerodynamic damping that may become negative) is zero, and the critical state of the bridge 

deck is achieved, i.e. the system is dynamically on the stability threshold (bifurcation point). 

In case the wind velocity further increases, the negative modal damping due to a wind 

additionally increases; therefore, the net damping becomes negative as well, and any small 

disturbance to the system, such as buffeting force due to wind turbulence, results in 

diverging oscillations that ultimately end at a stable cycle limit, e.g. Xu (2013).  
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This movement-induced vibration often cannot be completely avoided, but critical conditions 

for flutter appearance can be delayed, i.e. shifted to larger wind velocities, where it is not 

likely for flutter to occur. Flutter was originally recognized as aeroelastic instability with 

respect to airfoils, which caused several aircraft accidents. However, subsequent to the 

collapse of the Tacoma Narrows Bridge (Figure 5) at a wind velocity of only about 19 m/s, 

wind-tunnel experiments confirmed that it collapsed due to the aeroelastic flutter, e.g. Larsen 

and Larose (2015). At that point, the flutter instability of bridges became a primary concern 

for bridge engineers. 

 
Figure 5: Tacoma Narrows Bridge flutter oscillations leading to a collapse.  

Photo from https://www.txstate.edu. 

Classical (coupled) flutter, originally analyzed with respect to thin airfoils on aircrafts, is 

characterized by two degrees of freedom (vertical and torsional) coupled unstable oscillations 

that are driven by the wind flow, e.g. Jain et al. (1996). 

Stall (torsional) flutter is a single degree of freedom torsional oscillation of airfoils driven by 

nonlinear characteristics of the lift force in the  stall frequency range, or due to a loss of the 

lift condition, e.g. Dunn and Dugundji (1992). Single-degree-of-freedom (SDOF) torsional 

flutter commonly appears for bodies characterized by a considerable flow separation, e.g. 

Matsumoto et al. (1997). A typical example of a body susceptible to this kind of instability is 



Andrija Buljac  PhD thesis 

10 
 

poorly designed bridge deck, such as the old (collapsed) Tacoma Narrows Bridge. While the 

SDOF flutter may occur both in the vertical and the torsional mode of vibration, the 

torsional flutter is more common. From the instability intensity point of view, the flutter can 

be analyzed as: a) hard flutter and b) soft flutter. Hard flutter characterizes a system where 

the net damping of the system suddenly decreases and this type of flutter is difficult to 

predict, i.e. the negative aerodynamic damping increases abruptly with respect to the wind 

velocity. On the other hand, soft flutter is characterized by a gradual decrease in net 

damping; hence, the threshold for the aerodynamic stability is gradually approached. 

1.3. State-of-the-art of wind effects on cable-supported bridges 

 Bridge sensitivity to wind effects, particularly to flutter, has been commonly studied 

using flutter derivatives (FDs). These are the dimensionless coefficients that are used to 

linearize the self-excited aerodynamic forces and moments around the equilibrium point. 

They are considered as contributors to the generalized damping and stiffness matrices and 

indicators of the bridge dynamic stability. The original method for extracting dimensionless 

FDs was proposed by Scanlan and Tomko (1971). In this method, direct and cross 

derivatives are extracted separately, whereas it is necessary to maintain the same frequency 

for the torsional and vertical oscillations. The ARMA (Auto Regressive Moving Average) 

model for the extraction of FDs was suggested by Shinozuka et al. (1982), while the 

extended Kalman filtering method for the identification of FDs from coupled-vibration time 

histories was developed by Yamada et al. (1992). Sarkar (1993) developed a time-domain 

method to extract FDs from the coupled free-vibration decay response of a bridge deck. A 

method based on the least square theory was developed by Gu et al. (2000), where FDs were 

extracted from the free-vibration experiments. This procedure was further developed by Ding 

et al. (2010) with respect to the stability and precision.  

In addition to the free-vibration method, the controlled forced-vibration is another approach 

for identification of FDs. In this method, the bridge deck is forced to vibrate at a single 

frequency, while the aeroelastic derivatives are determined from the differences among the 

inertial and excitation forces. For example, Matsumoto et al. (1996),(1997) investigated 

torsional flutter of bluff bodies using the forced-vibration method, whereas this approach was 

used by Falco et al. (1992) as well. FDs obtained using both the free-vibration and controlled 
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forced-vibration methods were commonly compared to the thin flat plate experiments, as the 

flat plate proved to be mainly stable with respect to wind-induced vibrations, Theodorsen 

(1935). 

In general, when the wind-tunnel experiments with respect to bridge aeroelasticity are 

carried out, three different types of small-scale models are commonly used: a) full-bridge 

model, b) taut-strip bridge model, and c) bridge-deck section model, Figure 6. Full-bridge 

models are most expensive, because it is necessary to design features such as full geometry of 

a bridge, mass distribution, stiffness and damping of a structure. In addition, these models 

require large wind tunnels in order to satisfy blockage requirements, i.e. to keep the blockage 

of the test section below 5% according to Holmes (2015). Taut-strip models are the models 

that are in-between the bridge-deck section models and full-bridge models. Taut-strip models 

are rather rarely used for determination of FDs. Bridge-deck section models represent only a 

portion of the bridge deck and it is assumed that the flow is two-dimensional, and the 

bridge-deck section model is characterized by a dynamic response. 

(a) Full-bridge model (b) Taut-strip model 

  

(c) Bridge-deck section model 

 

Figure 6: Types of bridge models for aeroelastic tests in wind tunnels. 
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It is proven that the experiments carried out on short bridge-deck section models are suitable 

for the analysis of aeroelastic properties of bridge decks due to the fact that the cross-

sectional bridge deck is the most important feature for the overall dynamic response of a 

bridge, Gu et al. (2001). When performing aeroelastic tests using a bridge-deck section 

model, the rigid model is attached to springs that represent elastic properties of a bridge 

deck and allow for a motion of a bridge-deck section model in the vertical and torsional 

directions. The influence of the bridge-deck properties (i.e. mass, mass moment of inertia) on 

FDs extracted in wind-tunnel tests proved to be negligible, Gu et al. (2001). Scanlan and Lin 

(1978) noted that the absolute values of FDs in the turbulent flow are slightly larger 

compared to those identified in the smooth flow. Sarkar et al. (1994) pointed out that the 

FDs obtained in the smooth flow could be the mean values about which FDs obtained from 

the turbulent flow fluctuate.  

Aerodynamic characteristics of empty cable-supported bridges proved to change in case some 

additional structures are placed on the bridge deck. Structural elements of bridges and 

viaducts, e.g. railings, crash barriers, vehicles, central slotting, proved to influence 

aerodynamic forces and moments of bridges, e.g. Raggett (2007), Diana et al. (2013), Xu et 

al. (2014a). Design of bridge-deck cross sections may influence their aeroelastic behavior as 

well, Xu et al. (2014b), while bluff cross sections are in general more susceptible to flutter, 

e.g. Nikitas et al. (2011).  

Vehicles on bridges can significantly alter the dynamic stability of bridge decks, e.g., Han et 

al. (2014), Han et al. (2015), Pospíšil et al. (2017). As the construction of long-span cable-

supported bridges requires a lot of time, the importance of studying aeroelastic stability of 

bridges during the construction was emphasized in Diana et al. (2013). This is necessary 

because the bridges prove to have smaller critical flutter velocity in the initial construction 

stages in comparison with the finalized bridge. Wang et al. (2014) proposed installing rigid 

central buckle to enhance flutter stability, while external dampers can reduce bridge 

sensitivity to flutter as well, Jain et al. (1998). Active and passive control methods are 

commonly used to suppress dynamic instability of bridges, Bakis et al. (2016).  

Strong cross-winds on bridges and viaducts may cause dynamic instabilities of vehicles and 

trains, e.g. Dorigatti et al. (2012). Wind gusts can overturn vehicles and trucks on bridges or 
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cause them to collide with each other, Figure 7, e.g. Argentini et al. (2011), whereas driving 

comfort is an important issue as well, Zhou and Chen (2016).  

  
Figure 7: Overturned trucks at North Carolina Bridge and Mackinac Bridge, USA. Photos 

courtesy of http://livetrucking.com and http://wcrz.com. 

Hence, during extreme wind events, unprotected viaducts and bridges are often closed to 

traffic. To protect vehicles from those adverse cross-wind effects in harsh wind conditions 

and to keep the roads open even in strong wind conditions, roadway wind barriers are 

commonly placed on bridges, e.g. Chen et al. (2015). These barriers proved to be successful 

in sheltering vehicles and trucks from cross-winds on bridges and viaducts, e.g. Kozmar et al. 

(2012a), Chu et al. (2013). 

Three major flow phenomena that are characteristic for wind barriers on bridges are (i) wind 

flow through wind-barrier gaps, (ii) shear layer separating from the top of the wind barrier 

placed at the leading edge of the bridge deck, (iii) flow recirculation downstream of the 

windward wind barrier, Telenta et al. (2014).  

Major properties of wind barriers that determine their sheltering efficiency for vehicles are 

their porosity and height. Chen et al. (2015) indicated that large porosity of wind barriers is 

unfavorable for dynamic stability of vehicles on bridges, as the obtained velocity reduction 

may not be sufficient in case the wind-barrier gaps represent more than 50 % of the entire 

wind-barrier wall. Sheltering efficiency of wind barriers for vehicles is strongly affected by the 

wind-barrier height, Chu et al. (2013). An optimal wind-barrier design with respect to the 

vehicle sheltering for the wind perpendicular to bridge decks is considered the one with 30% 

porosity and 5 m height, e.g. Kozmar et al. (2014).  

http://livetrucking.com/
http://wcrz.com/
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While the protective effects of wind barriers for vehicles are fairly known, their influence on 

aerodynamic forces and aerodynamic stability of bridges is rather unknown. Only several 

studies considered aerodynamic forces for bridges with wind barriers, Guo et al. (2015). The 

effect of bird-protection barriers on aerodynamic and aeroelastic behavior of high-speed train 

bridges is reported in Ogueta-Gutiérrez et al. (2014).  

As previous studies, e.g. Jones et al. (1995) and Mannini et al. (2016), proved that even a 

small change in the design of the bridge-deck cross section may trigger unstable oscillations, 

it is anticipated that placing the barriers on bridges will affect their aeroelastic stability. 

Wind barriers were in fact observed to cause shedding of vortices on the top surface of the 

bridge deck, e.g. Avila-Sanchez et al. (2016), which may cause vortex-induced instability of 

bridge decks in case the frequency of the shed vortices is equal to the heave natural 

frequency of the bridge deck. Wind barriers cause the vortex-shedding frequency of the twin-

box bridge-deck section to decrease and they enhance the flow separation, Laima et al. 

(2018). An addition of the horizontally placed wind barriers to the vertical wind barriers 

may suppress the vortex-induced vibrations; however, it may initiate the flutter instability, 

Yang et al. (2016). 

Wind barriers are commonly characterized by their porosity and height, which are optimized 

for wind and terrain characteristics at a bridge site. At this moment, it is not completely 

known whether and to what extent the aerodynamic and aeroelastic characteristics of cable-

supported bridges alter due to changes in wind-barrier porosity and height. 

Wind barriers are commonly placed at the windward (upstream) edge of the bridge decks 

only, e.g. Kozmar et al. (2014), because in most areas strong cross winds blow on bridges 

predominantly from one direction and it is necessary to protect vehicles only for the 

dominant wind direction. However, to further assess other arrangements of wind barriers and 

their effects on aerodynamic stability of bridges, it is necessary to analyze dynamic behavior 

of bridges for wind barriers placed at the leeward bridge-deck edge as well as for both 

windward and leeward bridge-deck edges. This is required because long-span cable-supported 

bridges are commonly built to stay in service for decades and the predominant wind 

direction may alter over years, for example due to climate change or urban development. 

This means that the windward wind barrier may eventually become the leeward wind barrier 

and vice versa. In some areas, wind commonly blows from various directions, so it is anyway 
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necessary to place wind barriers at both the windward and leeward bridge-deck edges to 

protect vehicles for all wind directions, e.g. Chen et al. (2015).  

1.4. Research objectives and hypotheses 

 The present thesis focuses on the effects of wind barriers on aerodynamic 

characteristics of three typical long-span cable-supported bridge decks and their sensitivity to 

self-excited vibrations. Wind-barrier models with different porosities and heights were placed 

at the bridge-deck section models in various arrangements (windward, leeward, both 

windward and leeward). 

Aerodynamic drag and lift force and the pitch moment coefficients were determined for 

various flow incidence angles. The susceptibility of the studied bridge-deck sections to 

galloping was analyzed using the quasi-steady approach. The aerodynamic stability of 

bridges with respect to flutter was analyzed using the free-vibration tests, while the critical 

flow velocity for flutter was determined using the eigenvalue analysis. The analysis of the 

results is supported by the flow characterization around the bridge-deck sections.  

Research hypotheses are:  

(i) The dynamic stability of bridge decks deteriorates and the critical flutter wind velocity 

decreases in case the bridges are equipped with wind barriers;  

(ii) A decrease in the porosity of roadway wind barrier deteriorates the dynamic stability of 

bridge decks;  

(iii) Aerodynamic drag force of bridge decks increases in case the bridges are equipped with 

wind barriers. 

This thesis provides insights into previously unknown aerodynamic and aeroelastic effects of 

roadway wind barriers on cable-supported bridges. The focus is on height and porosity of 

wind barriers, their arrangement on bridge-deck sections, the effects of wind turbulence and 

aerodynamic shape of bridge decks. 
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Chapter 2 

Mathematical models for wind effects on  

cable-supported bridges 

 

Mathematical models for the analysis of the static 

and dynamic response of bridge-deck sections to the 

wind flow. Dimensionless aerodynamic coefficients 

for the analysis of average aerodynamic loads acting 

on the static bridge-deck sections. Analytical model 

based on the quasi-steady approach for the 

galloping phenomenon. Mathematical model for the 

two-degree-of-freedom flutter based on the 

equations of motion with external aerodynamic self-

excited forces. Critical flutter velocity based on the 

eigenvalues analysis for the coupled system in the 

heave and pitch directions. 

 

  



Chapter 2                        Mathematical models for wind effects on cable-supported bridges 

17 
 

2.1. Aerodynamic forces and moments 

Aerodynamics is a field of research dealing with the interaction of the moving air and 

solid objects. The air flow around an object creates a pressure field on the object surface. 

The resultant force acting on the object due to the air motion, 

  dS dS dS,i ji j i ji j
S S S

F n p n nσ= ⋅ = − ⋅ + ∑∫ ∫ ∫              (2.1) 

where dSi
S

p n− ⋅∫  is the pressure force component, and dSji j
S

n∑∫  is the viscous force 

component. In the two-dimensional flow, the resultant integral forces are commonly 

decomposed into two components, the drag force FD acting in the main flow direction, and 

the lift force FL acting perpendicularly (vertically) to the main flow direction. They are 

commonly presented as dimensionless coefficients, 
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where CD and CL are aerodynamic drag and lift force coefficients, respectively; v is average 

freestream flow velocity, ρ is air density, A is reference area. These two forces yield the 

aerodynamic pitch moment M, hence the aerodynamic pitch moment coefficient CM  is, 

  
2

,1
2

M
MC
v ALρ

=                    (2.4) 

where L is the characteristic object length. 

The integral average aerodynamic forces are important for the overall static stability of 

bridges and its structural components, Xu et al. (2010). The aerodynamic coefficients may be 

used to calculate bridge susceptibility to dynamic instabilities using the quasi-steady 

approach, i.e. the aerodynamic forces acting on the moving body vary with the incoming flow 

velocity in the same manner as for the steady flow, e.g. Simiu and Scanlan (1996), Xu 

(2013). 
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The static aerodynamic coefficients in the present study are determined at various flow 

incidence angles α using the following equations, 
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where H, B and L are bridge-deck height, width and length, respectively. 

The sign convention for aerodynamic forces and moments along with displacements is 

reported in Figure 8. 

 
Figure 8: Sign convention for aerodynamic loads and displacements of bridge decks. 

2.2. Galloping 

The frequency of body motion for the galloping oscillations is rather low, it can be 

adopted that the aerodynamic forces are acting on a body in the same manner as for a 

steady flow, e.g. Simiu and Scanlan (1996). Therefore, galloping of bridge-deck sections is 

commonly analyzed using the quasi-steady approach. In order to outline this approach, a 

bridge-deck section subjected to the flow is schematically presented in Figure 9. It is 

assumed to be rigid, i.e. not flexible, while the incidence angle of the flow velocity vr is α. 
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Figure 9: Aerodynamic lift and drag forces experienced by the bridge-deck section subjected 

to the flow. 

The aerodynamic drag and lift forces of bridge-deck sections may be expressed using the 

force coefficients as, 

  ( ) ( )21 ,
2D r D

HF v BC
B

α ρ α=               (2.8) 

  ( ) ( )21 .
2L r LF v BCα ρ α=                  (2.9) 

where FD (α) and FL (α) are drag and lift force, respectively. The vertical force acting in the 

y-axis direction can be expressed as a function of aerodynamic drag and lift forces, 

  ( ) ( ) ( )α α α α α= − −sin cos ,y D LF F F             (2.10) 

  ( ) ( ) ( )21 sin cos .
2y r D L

HF v B C C
B
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           (2.11)
 

The flow velocity parallel with the x-axis is v = vr cos(α), therefore, 

  ( ) ( ) ( )21 tan sec .
2y D L
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          (2.12) 

In case it is assumed that the bridge-deck section oscillates in the across-wind direction (y-

direction), under assumption that the oscillation is small, α can be expressed as, 

  0.
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v

α ≈ →                           (2.13) 

The vertical force can be written as Taylor expansion function, 
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First term in the Eq. (2.14) is given as, 
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This component can be neglected as it is the static component. The second term in Eq. 

(2.14) is given as, 
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It follows that the force in the y-direction is, 
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Eq. 2.18 is a quasi-steady expression of a bridge-deck aerodynamic force acting in the y-

direction. The equation of motion in the direction normal to the main flow direction 

(assuming the body is elastically sprung and has linear mechanical damping) is, 

  ( ) ( )22 ,y y y ym y y y Fξ ω ω α+ + =                                  (2.19) 

where m is mass of system, yξ  is critical damping ratio in the vertical direction, yω  is 

natural frequency of oscillation in the vertical direction. The external force to the system is, 
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Net damping of the system is, 
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Mechanical damping of the system denoted as 2ξyωy is positive by its definition; therefore, 

the net damping of the system can be negative only in case, 
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This condition is known as the Glauert-den Hartog criterion. It is a necessary condition for 

galloping instability to occur. A sufficient condition for galloping instability is, 
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                     (2.24) 

The bridge-deck section susceptibility to galloping is therefore analyzed by evaluating its lift 

and drag force coefficients at various flow incidence angles. 

2.3. Flutter 

Flutter is generally a nonlinear problem; however, it is possible to analyze it as linear 

elastic, i.e. the vibrating structure can be assumed to be a linear elastic system for relatively 

small vibration amplitudes.  

Mathematical modeling of the flutter phenomenon is performed through the analysis of the 

equations of motion. Equation of motion for a SDOF discrete mechanical system can be 

given with respect to the 2nd Newton’s law, 

  ( ) ( )= + ,  ,  ,mx f t x x F t                (2.25) 

where m is mass of a system, x is displacement with its time derivations, t is time, 

( ),  ,  f t x x  are forces acting in the system, F(t) are external forces acting on the system. 

The function f can be expanded into Taylor series around the static equilibrium point xs, 
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Neglecting the higher order derivatives, the equation of motion is, 

( ) ( ) ( ) ( ) ( )
∂ ∂

= + − + +
∂ ∂

 



,  ,  0 ,  ,  0
,  ,  0 ,s s

s s
f t x f t x

mx f t x x x x F t
x x

       (2.27) 
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The static equilibrium yields f (t, xs, 0) = 0, 

  ( ) ( ) ( ) ( )
∂ ∂

− − − =
∂ ∂

 



,  ,  0 ,  ,  0
.s s

s
f t x f t x

mx x x x F t
x x

                     (2.28) 

The time dependent coefficients in the equation of motion for the static equilibrium are, 

  ( )∂
= −

∂ 
( ) ,  ,  0 ,s

fk t t x
x

                       (2.29) 

  ( )∂
= −

∂
( ) ,  ,  0 .s

fc t t x
x

             (2.30) 

It accordingly follows, 

  ( )+ + =  .mx kx cx F t                        (2.31) 

This is a linear homogenous differential equation of motion for a SDOF discrete mechanical 

system excited by a general external force F(t). The equation of motion can be alternatively 

given as, 

  ( ) ( ) ( ) ( )ξω ω+ + = 

22 ,n nmx t mx t mx t F t            (2.32) 

where ξ is dimensionless critical damping ratio, 

  ξ = ,
2

k
mc

               (2.33) 

 while ωn is undamped circular frequency of the system oscillation, 

  ω = .n
c
m

                 (2.34) 

In case a two-degree-of-freedom (2DOF) mechanically independent system with x1 and x2 

degrees of freedom is considered, the equations of motion are commonly provided as a 

matrix, 

  
( )
( )

( )
( )

            
+ + =            

             

 

 

1 1 1 1 1 1

2 2 2 2 2 2

0 0 0
,

0 0 0
m x k x c x t F t

m x k x c x t F t
          (2.35) 

or in a symbolic way, 

  ( ) ( ) ( ) ( )+ + =  .t t t tMx Kx Cx F             (2.36) 
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M is mass matrix, K is damping matrix, C is stiffness matrix, x is displacement vector, F is 

vector of external forces. 

The vertical and torsional vibration modes are commonly analyzed when studying 

dynamic stability of long-span bridges, whereas the lateral vibration mode is commonly 

considered to have a minor influence and it is therefore neglected, e.g. Dyrbye and Hansen 

(1996). Dynamic response of a bridge deck moving in the 2DOF mechanically independent 

system can be mathematically expressed using the general equations of motion, 

  
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2
0 0 0

2
0 0 0

2 ,

2 ,
h h h Ls

s

m h t h t h t F t

I t t t M tα α α

ξ ω ω

α ξ ω α ω α

 + + = 
 + + = 

 

 

           (2.37) 

where h and α are heave and pitch displacement, I is mass moment of inertia. ξh0 and ξα0 are 

structural critical damping ratios in the heave and pitch motions, ωh0 and ωα0 are structural-

damped natural circular frequencies in the heave and pitch motions, respectively. External 

forces acting on bridge decks are the aerodynamic self-excited lift force and the pitch 

moment, i.e. Ls(t) and Ms(t), respectively. They can be expanded into Taylor series around 

the equilibrium point that is considered h = α = 0,  

  α α α
α α

∂ ∂ ∂ ∂
= = = + + + +

∂ ∂ ∂∂








( 0) ,Ls Ls Ls Ls
Ls Ls

F F F FF F h h h
h h

              (2.38) 

  ( )α α α
α α

∂ ∂ ∂ ∂
= = = + + + +

∂ ∂ ∂∂








0 .s s s s
s s

M M M MM M h h h
h h

           (2.39) 

The static components of the self-excited aerodynamic lift force and the pitch moment are 

not considered. Excessively large displacements may influence a linear dependence of the self-

excited aerodynamic forces on the motion of the bridge-deck section models, e.g. Diana et al. 

(2008), which is the assumption of the linear flutter model because the self-excited 

aerodynamic forces are commonly linearized with respect to the static position. The self-

excited aerodynamic lift force and the pitch moment are generally non-linear functions of 

displacements in the vertical and torsional directions and their derivations.  

The second and higher-order derivatives are commonly neglected in bridge engineering. 

Scanlan and Tomko (1971) expressed the derivatives of the self-excited aerodynamic lift force 

and the pitch moment using the dimensionless coefficients Hi* and Ai* (i = 1, 2, 3, 4) as a 

function of the dimensionless reduced frequency of the system K, 
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ω

∞

= 2 ,BK
v

               (2.40) 

where ω is natural frequency of oscillation in the heave or pitch motions. The self-excited 

aerodynamic lift force expanded in Taylor series is, 

  ( ) ( )ρ ω ρ ∞
∞

∂
= =

∂ 
2 * 2 *

1 1
1 1 ,
2 2

Ls
h

F KB L H K v BL H K
vh

                    (2.41) 

  ( ) ( )αρ ω ρ
α ∞

∞

∂
= =

∂ 
3 * 2 *

2 2
1 1 ,
2 2

LsF KBB L H K v BL H K
v

                   (2.42) 

( ) ( )αρ ω ρ
α ∞

∂
= =

∂
3 2 * 2 2 *

3 3
1 1 ,
2 2

LsF B L H K v BLK H K                    (2.43) 

( ) ( )ρ ω ρ ∞
∂

= =
∂

2
2 2 * 2 *

4 4
1 1 .
2 2

Ls
h

F KB L H K v BL H K
h B

                   (2.44) 

The self-excited aerodynamic pitch moment is, 

  ( ) ( )ρ ω ρ ∞
∞

∂
= =

∂ 
3 * 2 2 *

1 1
1 1 ,
2 2

s
h

M KB L A K v B L A K
vh

          (2.45) 

( ) ( )αρ ω ρ
α ∞

∞

∂
= =

∂ 
4 * 2 2 *

2 2
1 1 ,
2 2

sM KBB L A K v B L A K
v

                   (2.46) 

  ( ) ( )αρ ω ρ
α ∞

∂
= =

∂
4 2 * 2 2 2 *

3 3
1 1 ,
2 2

sM B L A K v B LK A K                    (2.47) 

  ( ) ( )ρ ω ρ ∞
∂

= =
∂

2
3 2 * 2 2 *

4 4
1 1 .
2 2

s
h

M KB L A K v B L A K
h B

                   (2.48) 

Dimensionless coefficients Hi* and Ai* (i = 1, 2, 3, 4) are aeroelastic coefficients of a system, 

i.e. FDs. They are indicators of the bridge-deck flutter stability. The self-excited 

aerodynamic lift force and the pitch moment are provided using the FDs as, 

( ) ( ) ( ) ( )
2

2 * * 2 * *
1 2 3 4

1 ,
2Ls

K KB KF v BL H K h H K K H K H K h
v v B

ρ α α∞
∞ ∞

 
= + + + 

 


    (2.49) 

( ) ( ) ( ) ( )
2

2 2 * * 2 * *
1 2 3 4

1 .
2s

K KB KM v B L A K h A K K A K A K h
v v B

ρ α α∞
∞ ∞

 
= + + + 

 


    (2.50) 

The equations of motion of the bridge-deck 2DOF system moving in the vertical and pitch 

directions with the external flow excitation, 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2
0 0 0

2
2 * * 2 * *

1 2 3 4

2
0 0 0

2
2 2 * * 2 * *

1 2 3 4

2

1 ,
2

2

1 .
2

h h hm h t h t h t

K KB Kv BL H K h H K K H K H K h
v v B

I t t t

K KB Kv B L A K h A K K A K A K h
v v B

α α α

ξ ω ω

ρ α α

α ξ ω α ω α

ρ α α

∞
∞ ∞

∞
∞ ∞

 + + = 
 

= + + + 
 

 + + = 
 

= + + + 
 

 





 





      (2.51) 

These are the general equations of motion for bridge decks moving in the 2DOF system in 

which the self-excited aerodynamic lift force and the pitch moment are expressed using the 

dimensionless FDs and a reduced frequency of the system. The self-excited aerodynamic lift 

force and the pitch moment are coupled in the vertical and torsional directions. Due to this 

coupling, flutter instability may occur for bridges that proved to be dynamically stable in 

separate SDOF system tests. 

The governing equation of motion for the bridge-deck 2DOF dynamic system in matrix form, 

 

( ) ( )

( ) ( )

( )

2
0 0 0

2
0 0 0

2 * 2 *
1 2

2 2 * 2 2 *
1 2

2
2 *

4

0 2 0 0
0 0 2 0

1 1
2 2
1 1
2 2

1 1
2 2

h h hm m m hh h
I m m

K KBv BL H K v BL H K
hv v

K KBv B L A K v B L A K
v v

Kv BL H K
B

α α α

ξ ω ω
ξ ω αα α ω

ρ ρ

αρ ρ

ρ ρ

∞ ∞
∞ ∞

∞ ∞
∞ ∞

∞

         
+ + =         

               
 
   
 = + 
    
  

+

 

 





( )

( ) ( )

2 2 *
3

2
2 2 * 2 2 2 *

4 3

,
1 1
2 2

v BLK H K h
Kv B L A K v B LK A K
B

α
ρ ρ

∞

∞ ∞

 
   
   
   
  

             (2.52) 

or in a symbolic form, 

  m m a a .Mx + K x + C x = K x + C x               (2.53) 

where M is mass matrix, 

  
0

.
0
m

I
 

=  
 

M                 (2.54) 

Km is mechanical (structural) damping matrix, 

  
0 0m

0 0

2 0
.

0 2
h hm

m α α

ξ ω
ξ ω

 
=  
 

K                       (2.55) 
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Cm is mechanical (structural) stiffness matrix, 

  
2
0m

2
0

0
.

0
hm

m α

ω

ω

 
=  
  

C                        (2.56) 

x is displacement matrix, 

  .
h
α
 

=  
 

x                         (2.57) 

Ka is aerodynamic damping matrix, 

  
( ) ( )

( ) ( )

2 * 2 *
1 2

a

2 2 * 2 2 *
1 2

1 1
2 2

.
1 1
2 2

K KBv BL H K v BL H K
v v
K KBv B L A K v B L A K
v v

ρ ρ

ρ ρ

∞ ∞
∞ ∞

∞ ∞
∞ ∞

 
 
 =
 
  

K          (2.58) 

Ca is aerodynamic stiffness matrix, 

  
( ) ( )

( ) ( )

2
2 * 2 2 *

4 3
a

2
2 2 * 2 2 2 *

4 3

1 1
2 2 .
1 1
2 2

Kv BL H K v BLK H K
B
Kv B L A K v B LK A K
B

ρ ρ

ρ ρ

∞ ∞

∞ ∞

 
 

=  
 
  

C           (2.59) 

The aerodynamic stiffness and damping matrices can be combined with the structural 

matrices, 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 * 3 *
0 0 1 2

3 * 4 *
1 0 0 2

2 2 2 * 3 2 *
0 4 3

3 2 * 2 4 2 *
4 0 3

1 120 2 2
0 1 12

2 2
1 1
2 2

1 1
2 2

h h h

h

h h

h

m B L H K B L H Km h h
I B L A K I B L A K

m B L H K B L H K h

B L A K I B L A K

α

α α α

α

α α

ξ ω ρ ω ρ ω

α αρ ω ξ ω ρ ω

ω ρ ω ρ ω

αρ ω ω ρ ω

 − −     
+ +     

         − −
  

 − −  
+  
 − −
  

 

 

0.

= 

 

   (2.60) 

This equation is commonly given as, 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 3
* *

0 0 1 2

3 4
* *
1 0 0 2

2 3
2 2 * 2 *
0 4 3

3 4
2 * 2 2 *

4 0 3

21 0 2 2
0 1

2
2 2

2 2

2 2

h h h

h

h h

h

B L B LH K H Kh hm m
B L B LA K A K
I I

B L B LH K H K hm m
B L B LA K A K
I I

α

α α α

α

α α

ρ ρξ ω ω ω

α αρ ρω ξ ω ω

ρ ρω ω ω

αρ ρω ω ω

 
− −     

+ +     
         − −  

 
− −   

+   
   − −  

 

 

0.=

       (2.61) 
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or in a symbolic form,

   e e 0,x + K x + C x =                (2.62) 

where Ke and Ce represent effective damping and stiffness matrices, respectively. These 

matrices are composed of the structural and aerodynamic terms, 

  
( ) ( )

( ) ( )

2 3
* *

0 0 1 2
e

3 4
* *
1 0 0 2

2
2 2 ,

2
2 2

h h h

h

B L B LH K H K
m m

B L B LA K A K
I I

α

α α α

ρ ρξ ω ω ω

ρ ρω ξ ω ω

 
− − 

=  
 − −  

K         (2.63) 

  
( ) ( )

( ) ( )

2 3
2 2 * 2 *
0 4 3

e
3 4

2 * 2 2 *
4 0 3

2 2 .

2 2

h h

h

B L B LH K H K
m m

B L B LA K A K
I I

α

α α

ρ ρω ω ω

ρ ρω ω ω

 
− − 

=  
 − −  

C                  (2.64) 

FDs obtained from the diagonal terms of the stiffness and damping matrices are direct FDs. 

The remaining FDs extracted from non-diagonal terms of the matrices are non-direct FDs; 

they are obtained from the 2DOF system only, as they represent the influence of the heave 

on the pitch motion and vice versa, 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

* e m * e m
1 11 11 2 12 122 3

* e m * e m
3 12 12 4 11 113 2 2 2

* e m * e m
1 21 21 2 22 223 4

* e
3 224 2

2 2K K ,             K K ,

2 2C C ,          C C ,  

2 2K K ,             K K ,  

2 C

h

h

h

m mH K H K
B L B L

m mH K H K
B L B L

I IA K A K
B L B L

IA K
B L

α

α

α

α

ρ ω ρ ω

ρ ω ρ ω

ρ ω ρ ω

ρ ω

= − − = − −

= − − = − −

= − − = − −

= − ( ) ( ) ( )m * e m
22 4 21 213 2

2C ,          C C .
h

IA K
B Lρ ω

− = − −

           (2.65) 

FDs are obtained from the generalized system stiffness and damping matrices with the flow 

present as well as from the structural stiffness and damping matrices. The emphasis is 

commonly on direct FDs, as they are considered to provide a better insight into flutter 

sensitivity of bridge decks, e.g. Xu et al. (2014).  

While eight FDs extracted from the 2DOF tests are commonly analyzed for bridges, e.g. Wu 

et al. (2012), some studies emphasize a role of the lateral motion (horizontal to the main 

flow) on the overall flutter characteristics of bridge decks, e.g. Singh et al. (1996), Xu et al. 

(2014c), Xu et al. (2016). The drag self-excited force related derivatives (P-derivatives) are 

reported to have stabilizing effect on flutter, Zhang and Brownjohn (2005), while their 

influence on the critical flutter velocity of bluff bridges is relatively minor, Xu (2015).  



Andrija Buljac  PhD thesis 
 

28 
 

For the streamlined bodies such as airfoils, the self-excited loads, i.e. FDs, can be determined 

using the analytical expressions under several assumptions, Theodorsen (1935). For bluff 

bodies such as bridges, the self-excited aerodynamic forces must be derived from dynamic 

tests using several techniques of excitation, e.g. Dyrbye and Hansen (1996).  

2.4. Dynamic response identification 

 To evaluate Ce and Ke matrices from the dynamic response of bridge decks and 

consequently the FDs, the Modified Unifying Least Squares (ULS) identification method was 

used. This procedure is based on the least squares method - it was originally developed by 

Gu et al. (2000) and Chen et al. (2002) and further modified by Bartoli et al. (2009), Král 

(2011).  

The initial values of parameters used to start the iteration loop were determined by the 

procedure following from the main principle of the ULS method itself, but operating with 

two parameters for each DOF separately. Using a free-decay time history signal in quiescent 

air, the first set of the initial parameter values related to the SDOF system was specified. 

The identical procedure was performed for the heave SDOF system.  

This approach yields four parameters (frequency of oscillation in the heave and pitch 

motions as well as damping ratios in the heave and pitch motions) necessary to use the ULS 

method. This method is rather robust at small flow velocities, while at large flow velocities 

the heave and pitch responses interact considerably, and it is often not possible to obtain a 

complete convergence of the results. 

The estimated dynamic response of bridge-deck free decayed oscillations is, 

  ( )*
2

*

1

ˆ e e ,r rm t m t
m hr hr

r
h A Aλ λ∆ ∆

=

= +∑             (2.66) 

  ( )*
2

*

1

ˆ e e ,r rm t m t
m r r

r
A Aλ λ
α αα ∆ ∆

=

= +∑             (2.67) 

where m is the mth sample in the time history, ∆t is time step, λr and Ar are, 

   *,  ,r r r r r rj jλ α β λ α β= + = −              (2.68) 

  *,  .r r r r r rA U jV A U jV= + = −             (2.69) 

The estimated responses are, 
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  ( ) ( )
2

1

ˆ 2 cos sin ,r m t
m hr r hr r

r
h e U m t V m tα β β∆

=

= ∆ − ∆  ∑           (2.70) 

  ( ) ( )
2

1

ˆ 2 cos sin .r m t
m r r r r

r
e U m t V m tα

α αα β β∆

=

= ∆ − ∆  ∑          (2.71) 

The least squares method is used to get an approximation of the measured dynamic 

responses, 

  ˆ ,hm m me h h= −                (2.72) 

  ˆ ,m m meα α α= −               (2.73) 

where ehm and eαm are error vectors between the estimated and measured values. Initial 

values α (1) and β (1) were determined from the mechanical properties of the system. New 

coefficients were introduced to linearize the equations, 

  ( )( )( ) ( )2 cos ,
i

ri m t i
rm rC e m tα β∆= ∆              (2.74) 

  ( )( )( ) ( )2 sin ,
i

ri m t i
rm rS e m tα β∆= ∆              (2.75) 

hence Eqs. (2.70) and (2.71) become, 

  ( )
2

1

ˆ ,m hr rm hr rm
r

h U C V S
=

= −∑              (2.76) 

  ( )
2

1

ˆ .m r rm r rm
r

U C V Sα αα
=

= −∑              (2.77) 

The objective function is, 

  
{ } [ ]{ } [ ]{ }( ) { } [ ]{ } [ ]{ }( )

{ } [ ]{ } [ ]{ }( ) { } [ ]{ } [ ]{ }( )

T

,

h h

h h

J h C U S V C U S V

h C U S V C U S V
α α

α α

α

α

 = − − + − − × 
 − − + − − 

           (2.78) 

that yields 

  
{ } { } { } { }

0,  0,  0,  0.
h h

J J J J
U V U Vα α

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂
          (2.79) 

The system of equations as a matrix, 

  ,h h

h h

A D U X
D B V Y
     

=    
     

             (2.80) 

  ,
A D U X
D B V Y

α α

α α

     
=    

     
             (2.81) 

where, 
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  [ ] [ ] [ ] [ ] [ ] [ ]
[ ] { } [ ] { } [ ] { } [ ] { }

T T T

T T T T

,   ,   ,

,   ,   Y ,   Y .h h

A C C B S S D C S

X C h X C S h Sα αα α

= = = −

= = = − = −
      (2.82) 

New values of α and β were calculated as, 

  1 ,  1,2,m m
i i i iα α −= + ∆ =              (2.83) 

  1 ,  3, 4.m m
i i i iβ β −= + ∆ =              (2.84) 

The increments ∆i (i=1, 2, 3, 4) were determined from the Taylor expansion of Eqs. (2.66) 

and (2.67) around αim-1 and βim-1 and neglecting the higher-order terms and implying ∂J/∂∆i 

= 0. The numerical method was considered to be completed when the absolute values of the 

∆i increment was smaller than the allowable error, which was adopted as 10-4 in this thesis. 

2.5. Eigenvalue analysis of the bridge-wind system 

 For the equations of motion of the 2DOF system in the state-space using the state 

variables, 

  , 
=  
 

x
Y

x
                  (2.85) 

it follows from Eq. (1.76), 
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                (2.86) 

State matrix A is by definition of the state-space matrix equal to, 

  e e

0
. 

=  − − 

I
A

K C
               (2.87) 

The eigenvalues of the A matrix are complex numbers. The real part of the eigenvalues is 

the net damping of the coupled system in the heave and pitch motions h hξ ω−  and ,α αξ ω−  

while the imaginary parts of the eigenvalues are net frequencies of the coupled system 

1 h hξ ω−  and 1 α αξ ω−  , respectively.  

Through the iterative eigenvalue analysis of the state matrix A, the critical flow velocity for 

a coupled 2DOF system was determined. In case the frequencies from eigen solution of A 
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were equal to the input frequencies, and the damping from the eigen solution of A was zero, 

the critical flutter state was achieved.  
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Chapter 3  

Experimental setup 

 

Experimental setup for wind-tunnel measurements. 

Climatic boundary-layer wind tunnel of the 

Institute of Theoretical and Applied Mechanics in 

Prague, Czech Republic. Studied bridge-deck 

sections: (a) Great Belt Bridge, (b) Kao-Pin Hsi 

Bridge, (c) Golden Gate Bridge. Experimental 

stand that can separately measure the aerodynamic 

lift and drag forces and the pitch moment. Dynamic 

experimental stand that allows for a motion of the 

bridge-deck section model in the vertical and 

torsional directions and determination of flutter 

derivatives. Application of the Prandtl-Pitot tube 

for the measurement of the undisturbed, freestream 

airflow velocity. 2D Particle Image Velocimetry 

(PIV) technique to determine flow and vorticity 

fields around bridge-deck section models. 
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3.1. Wind tunnel 

 Experiments were carried out in the climatic boundary-layer wind-tunnel of the 

Institute of Theoretical and Applied Mechanics (ITAM) in Prague, Czech Republic. Wind 

tunnel is designed as a Göttingen closed-circuit type with controlled flow and temperature 

conditions. It consists of an inlet section, aerodynamic section, climatic section, and a fan 

section, Figure 10.  

 
Figure 10: Schematic view of the Vincenc Strouhal wind tunnel of the Institute of 

Theoretical and Applied Mechanics (ITAM) in Prague, Czech Republic 

This wind-tunnel is designed for experiments with respect to wind effects on structures, 

aeroelastic structural response, atmospheric boundary layer modeling, and general civil, 

environmental and mechanical engineering applications. The aerodynamic section of this 

wind tunnel is 1.9 m wide and 1.8 m high rectangular cross-section with a possibility to 

regulate flow velocity from 0.5 m/s to 35 m/s. Airflow in the test section is generated by the 

axial fan with 2 m in diameter that is powered by 200 kW electric motor. The flow is 

uniform along the wind-tunnel aerodynamic cross section and the turbulence intensity is less 

than 2%, Plut (2013). In this wind tunnel, it is possible to model the atmospheric boundary 

layer (ABL); however, this feature was not employed for the present thesis because the 

vertical dimension of the bridge-deck sections is negligible in comparison with the ABL 

height, i.e. it can be assumed that the freestream flow conditions are nearly the same 

upstream of the top and bottom surfaces of the bridge-deck sections. Bridge-deck section 

models were placed above the boundary layer at the wind-tunnel floor. The majority of 

experiments was carried out in the smooth flow, while additional experiments were 
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conducted using the grid to enhance the turbulence upstream of the bridge-deck section 

models. 

3.2. Bridge-deck section and wind-barrier models 

 Studied bridge-deck sections are: (a) Great Belt Bridge (GBB) with a streamlined 

cross section, e.g. Bruno and Mancini (2002), (b) Kao-Pin Hsi Bridge (KPHB) with a semi-

bluff cross section, e.g. Pospíšil et al. (2017), (c) Golden Gate Bridge (GGB) with a bluff 

cross section, e.g. Scanlan (1997). Geometrical details of the studied bridge cross-sections 

along with photos of the bridge-deck section models with windward wind barriers in place 

are presented in Figure 11.  

(a) 

 

 

(b) 

 

 

(c) 

 

 

Figure 11: Geometrical details of the studied bridge-deck section models:  

(a) Great Belt Bridge, (b) Kao-Pin Hsi Bridge, (c) Golden Gate Bridge.  

All dimensions are in mm provided in model scale. 
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Wind-tunnel structural models were manufactured at the 1:100 length scale. The length of 

the models is L = 1000 mm laterally to the main flow direction (across the wind-tunnel test 

section). The ratio between the width of the bridge-deck section models (measured in the 

main flow direction) and span (laterally to the main flow direction) is smaller than 1:3. The 

bridge-deck section models were manufactured from balsa wood, while additional plastic 

parts were implemented on the GGB model, such as pedestrian railings and stiffness 

structure under the bridge-deck section.  

The porous wind-barrier models were designed in the same 1:100 geometrical scale as for the 

bridge-deck section models. The wind-barrier design is similar to the one used in Kozmar et 

al. (2012a). The wind-barrier models consist of triangular profiles horizontally placed 

between vertical pillars that support the wind-barrier model. The distance between two 

neighboring pillar models is 45 mm. The wind-barrier porosity is calculated as a ratio 

between the area corresponding to the wind-barrier gaps and the entire frontal area of the 

wind barrier. There are some studies on the downscaling procedure when testing porous 

structural elements in the wind tunnel, e.g. Allori et al. (2013), which emphasize the 

importance of maintaining the same porosity for the scaled model, as it is for the prototype, 

while the shape and arrangement of the gaps are not that important. Nevertheless, in the 

present thesis, the focus is on dynamic stability of cable-supported bridges with porous wind 

barriers, which is believed not to be that influenced by the switching of the flow between 

various local flow regimes when the air passes through the gaps.  

The wind-barrier porosity is generally a compromise between two contradictory demands: (i) 

wind conditions at bridge decks should be acceptable from the safety of vehicles point of 

view, (ii) wind barriers must not dramatically alter dynamic stability and aerodynamic 

loading of bridges. In practice, wind barriers are manufactured with various porosities. To 

investigate the effects of a wide range of those porous wind barriers on bridges, in the 

present study the 5 m high very-porous (50%), average-porous (30%) and solid (0%) wind 

barriers were considered. Furthermore, wind characteristics at bridge decks are influenced by 

the wind-barrier height. The 5 m high wind barrier effectively shelters vehicles and trucks on 

viaducts and bridges for the wind perpendicular to the wind barrier, Kozmar et al. (2012a). 

In case the wind incidence angle α is different from zero (upslope or downslope wind), e.g. 

downslope bora wind, Kozmar et al. (2012b), Kozmar et al. (2015), the wind-barrier height 

needs to be accordingly adapted, Figure 12. 
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(a) 

 

(b) 

 

(c) 

 

Figure 12: Wind-barrier sheltering of trucks for various wind incidence angles. 

For the upslope wind, the wind barrier may be smaller than the standard height, while it 

needs to be larger than standard height for downslope wind conditions in order to provide 

the same sheltering efficiency for vehicles in all traffic lanes.  

In the present study, the average-porous (30%) wind barrier of 3 m, 5 m, and 7 m full-scale 

height was considered. The notation of all investigated wind barriers is provided in Table 1. 

 

 

 

v

   5 m high
wind barrier

Separated
shear layer

 Truck

v

   7 m high
wind barrier

Separated
shear layer

 Truck

v    3 m high
wind barrier

Separated
shear layer

 Truck



Chapter 3                                                                                    Experimental setup 

37 
 

Table 1 General characteristics of studied wind barriers 

Notation Height (model-scale) Porosity 

WB 5_30 50 mm 30% 

WB 5_50 50 mm 50% 

WB 5_0 50 mm 0% 

WB 3_30 30 mm 30% 

WB 7_30 70 mm 30% 

 

Geometrical details and dimensions of the studied wind-barrier models are presented in 

Figure 13. The mass and mass moment of inertia of the investigated bridge-deck section 

models were not scaled in accordance with their prototypes. This discrepancy in scaling 

previously proved not to affect the results when using the spring-supported experimental 

model, Gu et al. (2001), which experimental approach was used in the present thesis as well.  

The blockage of the bridge-deck section models placed on the experimental stands in the 

wind-tunnel test section was less than 7%. This was calculated as a ratio between the frontal 

area of the model together with the experimental stand, and the wind-tunnel cross section 

normally to the main flow direction. Hence, no correction factors were applied on the 

obtained results in agreement with West and Apelt (1982), Simiu and Scanlan (1996). 
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(a) (b) 

 

 
(c) (d) 

  
(e) (f) 

  
Figure 13: Geometrical details of the studied wind-barrier models: (a) front view, (b) WB 

5_50, (c) WB 5_30, (d) WB 5_00, (e) WB 3_30, (f) WB 7_30. All dimensions in mm are 

provided in model scale, flow direction is from left to right. 
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3.3. Flow measurements 

 Flow characterization was performed using the 2D Particle Image Velocimetry (PIV) 

technique. This technique is an optical method used to determine flow characteristics around 

an investigated model, e.g. Adrian (1991), Willert and Gharib (1991). In the experiments, 

the air in the wind tunnel is seeded with tracing particles with similar buoyancy as the air; 

hence, the particles are transported together with the flow. The laser illuminates the sheet of 

airflow around the studied model. The high-speed camera captures the series of dual picture 

shots, while an appropriate software is used to calculate the movement of illuminated 

particles, i.e. fluid movement. The schematic view of the PIV experimental setup is shown in 

Figure 14. 

 
Figure 14: Experimental setup for flow characterization 

 using the PIV technique. 

In the present study, PIV equipment from Dantec and Litron Lasers was used. Dantec 

HiSence 4M camera was used to capture snapshots of the flow field. Its resolution was 2048 x 

2048 pixels. The flow was illuminated using pulsed Nd: YAG laser. The seeding particle 

generator was placed in the climatic test section upstream of the fan and the honeycombs. 

The seeding particle generator was activated for a few seconds and then turned off.  

The fog particles have diameter ≈1µm with high seeding density. After some time, the fog 

dispersed, thus resulting in a homogeneously seeded flow field, Figure 15. A series of 50 dual 
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picture shots was taken at a rate of 10 Hz. The time period between each pair of images was 

400 µs. Fog generator vaporized special fog agent.  

The adaptive correlation technique was selected to obtain the local flow velocity in the 

interrogation area with a size of 64 pixels. The resulting vector field was smoothed using a 

moving average filter. Smaller interrogation areas were tested as well but discarded due to 

high signal noise.  

 
Figure 15: Seeding particles around the bridge-deck section model illuminated by laser. 

The presented results represent average values of all the obtained frames. Measurements 

were conducted for the undisturbed freestream flow velocity approximately equal to 5 m/s, 

turbulence intensity less than 2% and the uniform flow velocity profile. The Reynolds 

number of the flow was approximately 105.  

Separate shots were obtained with camera placed in line with the windward and leeward 

wind barrier models, respectively, to allow for a detailed analysis of flow characteristics 

immediately upstream and downstream of both wind barrier models. The same camera 

positioning was applied for measurements bellow the bottom surface of the bridge-deck 

section models. In those measurements, the bridge-deck section models were rotated around 

the horizontal axis parallel to the main flow direction.  

In this way, four different images were captured for each configuration of the bridge-deck 

section and wind-barrier models, while those four images were subsequently merged into one 
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figure during post-processing. The experimental setup for the PIV measurements is presented 

in Figure 16. 

 
Figure 16: Experimental setup for the flow characterization measurements. 

3.4. Aerodynamic force and moment measurements 

 Aerodynamic lift and drag forces as well as the pitch moment were measured for the 

steady bridge-deck section models, i.e. without their movement. The aerodynamic forces and 

the pitch moment are important for the structural stability of bridge decks; they can be used 

to predict across-wind galloping dynamic instability, e.g. Xu (2013). The mean aerodynamic 

lift and drag force coefficients of bridge-deck section models were used to calculate 

susceptibility to across-wind galloping instability using the Glauert-Den Hartog criterion 

based on a quasi-steady approach, Hartog (1932).  

To measure the aerodynamic force and moment coefficients on bridge-deck section models, 

an experimental stand able to separately measure aerodynamic lift and drag forces and the 

pitch moment, experienced by the body immersed in the flow, was developed in this thesis. A 

kinematic scheme of this mechanism with a bridge-deck section model in place is presented 

in Figure 17. 
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Figure 17: Kinematic scheme of the experimental mechanism for measurements of the 

aerodynamic drag and lift forces and the pitch moment. 

Bridge-deck section models were attached to an aluminum plate and connected to an 

assembly of aluminum rods using low-friction bearings. Aerodynamic forces and moments 

were measured using strain gauges. Operative range of strain gauges is from 3 N to 100 N 

(Megatron KM102 model), while they are mechanically pre-stressed in order to be inside the 

operative range.  

Strain gauge No. 1 measures the aerodynamic drag force, No. 2 measures the aerodynamic 

lift force, No. 3 measures the pitch moment of bridge-deck section models. The kinematics of 

the aluminum rods was designed in such a way that if e.g. only the lift force is applied on 

the model, strain gauges No. 2 are excited only. This is the case for the drag force and the 

pitch moment as well. The system proved to be linear, i.e. voltage measured on strain gauges 

is a linear function of force acting on the system. Strain gauges were connected through six 

galvanically isolated modules to the acquisition system via the AD board. 

Calibration procedure included separately employing the lift force, drag force and pitch 

moment (one force, i.e. moment, is applied in one experiment) on the system using various 

dummies with known weight. The pulley-wire system with the measured friction coefficient 

of the pulley was used when applying the drag force only. Calibration results for strain 

gauges for the drag and lift forces and the pitch moment are shown in Figure 18.  

Strain gauge No. 1 Strain gauge No. 3

 Strain gauge No. 2

Flow direction

Bridge deck

Low friction bearing

Wind barrier

Aluminium rod

Rocker
Pitot tube
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Figure 18: Calibration results for strain gauges for the drag and lift forces and the pitch 

moment. 

The system proved to be linear in the range of obtained loads in the subsequent experiments 

(voltage on strain gauges is linear with respect to the acting force or moment). 

The measurements of aerodynamic forces and the moment were carried out at the sampling 

rate of 1 kHz and the time acquisition length of 30 s. The aerodynamic force and moment 

coefficients in the preliminary experiments proved to be nearly constant for Reynolds 

numbers (Re = ρvB/μ) larger than 2·105. Hence, freestream flow velocity in all experiments 

was selected to be approximately 12.5 m/s, thus resulting in Re approximately 3·105, which 

is larger than the critical value. 

Plastic flat end-plates were placed between the mechanism and the bridge-deck section 

models to avoid flow disturbance at the lateral sides of the model (end effects), the influence 

of structural parts of the mechanism, and to provide two-dimensional flow around bridge-

deck section models.  

Prandtl-Pitot tube was used to measure undisturbed, freestream flow velocity. It was placed 

between the plastic plates and 0.5 m upstream of the leading edge of the bridge-deck section 

models. This device is used to determine the mean flow velocity via the difference between 

the total and the static pressure in the flow. While the Prandtl-Pitot tube is not suitable for 

measuring the velocity time history at high sampling rate, it has been commonly used to 

measure reference mean flow velocity, as it was the case in this thesis as well.  

Experimental setup for measurements of the aerodynamic force and moment coefficients is 

shown in Figure 19. Dewetron data acquisition system was used for recording the 
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aerodynamic forces and the moment of the bridge-deck section models placed on the 

experimental stand. Dewetron system allows for recording of the signal by using the 24-bit 

A/D conversion with anti-aliasing filtering, post-processing and signal conditioning tools.  

  

Figure 19: Experimental setup for measurements of the aerodynamic force and moment 

coefficients. 

3.5. Aeroelastic dynamic measurements 

 For the aerodynamic stability analysis, the bridge-deck section models were attached 

to an original and multipurpose experimental stand. This stand was designed and 

constructed at ITAM for the measurements of linear and nonlinear aeroelastic phenomena, 

Král et al. (2016).  

Unlike the traditional concept of mounting the bridge-deck section model using spring-

supported body, this setup enables a quick and precise frequency tuning in the range of ωh  

from 1 to 10 for vertical oscillations and the same range for torsional oscillations. This is due 

to a specific design based on torsional bar that provides stiffness in the vertical motion, and 

m-spring in the torsional degree of freedom. A schematic view of this mechanism along with 

its kinematical arrangement is presented in Figure 20. 
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Figure 20: Kinematic scheme of the experimental stand for measurements of aeroelastic 

properties of bridge-deck section models, Král et al. (2016). 

The motion of this mechanism is based on the Watt linkage principle. The heave motion of 

the model is mechanically independent of the pitch motion. A movement of a model centroid 

is rectilinear for large amplitudes of oscillations. A behavior of structural springs is linear 

until very large amplitudes of oscillation (larger than observed in the experiments) are 

achieved, both in the heave and pitch directions.  

The framework of a movable part was designed to be as light as possible; therefore, the bars 

were made of carbon fiber composite and joined together using the aluminum elements. 

Experimental frame allows for mounting of bridge-deck section models with span ranging 

from 0.2 m to 1 m. The motions of a bridge-deck section model in the heave and pitch 

directions were measured using rotary magnetic transducers. The pitch displacement was 

measured directly in the g1 position (Figure 20), while the heave displacement was acquired 

by the rotary transducer using a mechanical speed-increasing gear, i.e. g2 position in Figure 

20.  

Plastic plates were installed on the experimental stand to allow for achieving the two-

dimensional flow around the bridge-deck section models, while the flow velocity was 

measured using the Prandtl-Pitot tube placed between the plastic plates and 0.5 m upstream 

of the model. The experiments on the dynamic response of bridge-deck section models were 

carried out at the sampling rate of 1 kHz and the time acquisition length of 30 s.  

Experimental setup for the bridge-deck section models including the wind-barrier model in 

the aerodynamic wind-tunnel test section is presented in Figure 21. Dewetron data 
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acquisition system was used for recording a dynamic response of the bridge-deck section 

models placed on the experimental stand.  

  

Figure 21: Experimental setup for the measurement of the dynamic response of bridge-deck 

section models. 

The measurements were conducted using the free-vibration method, which includes an initial 

displacement of a bridge-deck section model in the vertical and torsional directions, and 

measurement of free-decayed oscillations due to the freestream flow velocities.  

The adopted initial vertical and torsional displacements of the bridge-deck section models 

were constant during the experiments, as suggested in Mannini and Bartoli (2015), at h0 ≈ 10 

mm and α0 ≈ 8°, respectively. Excessively large initial displacements may influence the linear 

dependence of the self-excited forces on the motion of the bridge-deck section models, e.g. 

Diana et al. (2008), which is more pronounced for bluff bridge-deck section models, Mannini 

et al. (2016), as this may affect the reattachment point of the separated flow. Initial 

torsional displacement proved to be more important than the heave displacement for FDs, 

Noda et al. (2003).  

In the present thesis, the values for the initial vertical and torsional displacements were set 

based on the preliminary tests because for most configurations the initial amplitudes decayed 

relatively quickly at small reduced flow velocities, and hence it was difficult to identify them 

in case the initial amplitudes were smaller, e.g. Poulsen et al. (1992).  

The largest mean rotation of the model of 0.9° was recorded for the Golden Gate Bridge with 

the 5 m high (full-scale) wind barrier and 0% porosity. The nonlinear effect of the flow 
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incidence angle may accordingly be neglected, e.g. Diana et al. (2010). Free-decay oscillations 

were measured for various freestream flow velocities as well as for the system without the 

flow. The damping and stiffness matrix were accordingly obtained.  

An example of the dynamic response of the bridge-deck section model is reported for two 

characteristic cases, (i) relatively small airflow velocity at which there is no significant 

coupling, while the oscillations gradually decay, (ii) in the proximity of the torsional flutter, 

where coupling of the heave and pitch motions may be observed, and the damping in the 

pitch motion is decreased, Figure 22. 

(a) 

  
(b) 

  
Figure 22: Examples of the dynamic response of the bridge-deck section model: (a) relatively 

small airflow velocity, (b) proximity of torsional flutter. 
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The free-vibration technique is less time consuming in comparison with the forced-vibration 

technique. In addition, the free-vibration technique implies a structural model characterized 

by a more natural interaction of the bridge-deck section model with the flow.  

However, there are some drawbacks of the free-vibration technique as compared to the 

forced-vibration method. Buffeting forces due to turbulence enhance a stochastic component 

of the bridge-deck section model movement with increasing freestream flow velocity. This is 

particularly exhibited in case of dynamically stable bridge decks, while it can decrease the 

accuracy of the results in the range of larger freestream flow velocities.  

Furthermore, large flow velocities may lead to the amplification of the net damping due to 

an increase of the aerodynamic damping if the studied bridge-deck section model is 

dynamically stable. Therefore, a short period of time was available to identify a dynamic 

response of bridge-deck section models. 

The free-vibration method has limited applicability for velocities smaller than the critical 

flow velocity at which the bridge-deck section model starts to flutter, and this method is no 

longer accurate due to linear assumptions of the model. However, the analysis of the 

dynamic behavior is commonly focused on the pre-critical state. 

Due to a complex geometry of the bridge-deck section models and the moving parts of the 

experimental stand, the mass parameters of the bodies engaged in the motion cannot be 

determined analytically and an experimental approach is required. The identification of the 

mass parameters was carried out through three steps. Experiments encompassed 

measurements of the free-decay oscillation (in the still air) of the stand itself, a dummy of 

known mass characteristics mounted on the stand, and finally of the bridge-deck section 

models mounted on the stand. Mass characteristics of the studied bridge-deck section models 

necessary for further analysis of the aeroelastic behavior were determined by using the 

equations, 

  
2 2
, ,
2 2
, ,

1 ;  1 .h st h st
st du dk st

h du h dk

m m m m
ω ω
ω ω
   
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The subscript st is for the experimental stand without the bridge-deck section model, du is 

for the experimental stand with the dummy body mounted, and dk for the experimental 

stand with the bridge-deck section model. 

From the recorded dynamic response of the bridge-deck section models at various flow 

velocities (and still air), the free-decay damping and natural frequencies of oscillations in 

both degrees of freedom can be determined. This was obtained using the numerical method 

based on the least squares method. The mass characteristics and dynamic properties of the 

bridge-deck section models obtained in the quiescent air are provided in Table 2. 

Table 2: Mass characteristics and dynamic properties of the studied bridge-deck section 

models. 

Bridge m, kg I, kg m2 fh, Hz fα, Hz ξh, - ξα, - 

GBB 
3.99 – 
4.17 

0.0206 – 
0.0235 

2.8-2.9 3.2-3.3 
0.007-
0.009 

0.008-
0.01 

KPHB 
4.11 – 
4.29 

0.0248-
0.0287 

2.8-2.9 3.3-3.4 
0.007-
0.008 

0.008-
0.009 

GGB 
5.23-
5.41 

0.0305-
0.0334 

2.8 3.3-3.5 
0.005-
0.007 

0.009-
0.017 

The mass and inertia of the bridge-deck section models depend on the arrangement, height 

and porosity of wind-barrier models, system stiffness depends on the frequency tuning, while 

the mechanical damping depends on the mechanical friction of the system. 

The results include the generalized damping and stiffness matrices obtained at various 

freestream flow velocities. These matrices together with the structural damping and stiffness 

matrices obtained in the still air can be used for determination of FDs at various freestream 

flow velocities. FDs obtained from the 2DOF dynamic response of bridge-deck section models 

are commonly reported as a function of the reduced flow velocity v∞/(fα/h·B), where v∞ is 

undisturbed freestream wind velocity, f is frequency of oscillation in the heave or pitch 

directions, B is width of the bridge-deck section models. FDs associated with the heave 

motion were normalized with respect to the heave natural frequency of oscillation (H1*, H4*, 

A1*, A4*), while the FDs associated with the pitch motion were normalized with respect to 

the pitch natural frequency of oscillation, (H2*, H3*, A2*, A3*).  
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In addition to the experiments carried out in the smooth flow with the turbulence intensity 

less than 2%, the influence of turbulence on the dynamic stability of bridge-deck section 

models including the wind-barrier models was assessed. The turbulence grid that enhances 

turbulence was placed upstream of the bridge-deck section models at two different positions, 

Figure 23: (a) 6.8 m upstream of the model, i.e. low-turbulence case (LT), (b) 1.5 m 

upstream of the model, i.e. high-turbulence case (HT). 

(a) Grid setup for low turbulence 

 
 

(b) Grid setup for high turbulence 

 
Figure 23: Turbulence grid placed upstream of the bridge-deck section model:  

(a) low turbulence, (b) high turbulence. 
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The turbulence intensity is defined as, 

  
2

,vI
v
′

=                          (3.3) 

where I is turbulence intensity, v’ is airflow velocity fluctuation, v  is mean flow velocity. 

The turbulence intensity was determined based of hot-wire measurements in the mid height 

of the wind-tunnel aerodynamic section. A development of the turbulence intensity Ivx along 

the test section (x-direction) is reported in Figure 24, whereas xg is the distance between the 

grid and the measuring position. 

 
Figure 24: Development of the turbulence intensity along the test section (x-direction). 

The obtained turbulence intensity for the subsequent measurements of the bridge-deck 

dynamic stability are 17.5% for HT and 4.5% for LT at the position of the bridge-deck 

section model. 
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Chapter 4 

Experimental results and discussion 
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4.1. Flow characteristics around bridge-deck section models 

The results include the 2D mean flow velocity fields normalized using the undisturbed, 

freestream flow velocity and the variance (standard deviation squared) of the flow velocity. 

Standard deviation of the airflow velocity sv is defined as, 

  
( )2

1 ,
1

N

i
i

v

v v
s

N
=

−
=

−

∑
                (4.1) 

where vi is sample of the flow velocity data, v is mean airflow velocity, N is number of data 

points. The freestream flow velocity was constant in all experiments at approximately 5 m/s; 

hence, the variance of the flow velocity can actually serve as a measure for turbulence 

intensity of the flow. The results are reported here for the Great Belt Bridge because the 

influence of wind barriers on flow characteristics are most pronounced for this particular 

bridge-deck section. 

4.1.1. Mean velocity field around bridge-deck sections 

2D mean flow velocity fields are presented in Figure 25 for the Great Belt Bridge with 

windward wind barriers of various heights and porosities, while the mean flow velocity fields 

for various arrangements of wind barriers are reported in Figure 27. 
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(a) NWB 

 

(b) WB 5_50 (c) WB 3_30 

  

(d) WB 5_30 (e) WB 5_30 

  

(f) WB 5_0 (g) WB 7_30 

  

Figure 25: Mean flow velocity field around the Great Belt Bridge deck section for various 

heights and porosities of the windward wind barrier. Flow direction is from left to right. 
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Mean flow velocities are significantly reduced downstream of wind barriers thus indicating its 

sheltering effect in agreement with Coleman and Baker (1994), Kozmar et al. (2012a), Avila-

Sanchez et al. (2016). The mean flow velocities are more reduced for the less porous, i.e. 

more solid, windward wind barrier because the largest flow velocities immediately above the 

bridge-deck section are observed for the largest porosity of the windward wind barrier.  

The shear layer that separates from the top of the windward wind barrier divides the area of 

the reduced flow velocity under the separated shear layer from the area of the undisturbed 

freestream flow velocity above the shear layer. The slope of the shear layer is larger for more 

solid wind barriers, thus providing a more effective sheltering for vehicles. The height of the 

windward wind barrier determines the height of the sheltered area above the bridge-deck 

section, i.e. higher wind barriers yield an increased height of the reduced flow velocity area 

above the bridge-deck section, thus providing more favorable conditions for vehicles passing 

the bridge. The flow velocity profiles at x/B = 0 for various porosities and heights of the 

windward wind barrier are reported in Figure 26. 

(a) (b) 

  

Figure 26: Flow velocity profiles at x/B = 0 for various (a) porosities and (b) heights of the 

windward wind barrier. 
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(a) WB 3_30 WW (b) WB 3_30 LW 

  
(c) WB 3_30 WW+LW 

 
 

(d) WB 5_30 WW 
 

(e) WB 5_30 LW 

  
(f) WB 5_30 WW+LW 
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(g) WB 7_30 WW (h) WB 7_30 LW 

  
(i) WB 7_30 WW+LW 

 
Figure 27: Mean flow velocity field around the Great Belt Bridge deck section for various 

arrangements of wind barriers. Flow direction is from left to right. 

The windward and both windward and leeward wind barriers yield relatively similar mean 

flow velocity fields, whereas the leeward wind barrier provides practically no sheltering for 

vehicles, as the mean flow velocities above the bridge-deck section are relatively large and 

very close above the bridge-deck section they reach the freestream undisturbed velocities. 

The shear layer separating from the top of the wind barriers is observed for all wind barriers. 

There is a trend of larger mean flow velocities above the bridge-deck section when both wind 

barriers are in place in comparison with the windward wind barrier only, which is due to the 

vortex that is captured between the two wind barriers, in agreement with Avila-Sanchez et 

al. (2016). The flow velocity profiles at x/B = 0 for various arrangements of the 5 m high 

(full-scale) and 50 % porous wind barrier are reported in Figure 28. 
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Figure 28: The flow velocity profiles at x/B = 0 for various arrangements of the 5 m high 

(full-scale) and 50 % porous wind barrier. 

4.1.2. Vorticity field around bridge-deck sections 

The fields of the flow velocity variance are presented in Figure 29 for the Great Belt Bridge 

with the windward wind-barrier of various heights and porosities, while the variance of the 

flow velocity fields for various arrangements of the wind barrier is reported in Figure 31. 
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(a) NWB 

 
 

(b) WB 5_50 (c) WB 3_30 

  
(d) WB 5_30 (e) WB 5_30 

  
(f) WB 5_0 (g) WB 7_30 

  
Figure 29: Flow velocity variance around the Great Belt Bridge deck section for various 

heights and porosities of the windward wind barrier. Flow direction is from left to right. 
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The flow velocity variance indicates large perturbations in the flow velocity due to wind 

barriers. Very large flow velocity variance (vorticity) is observed in the shear layer that 

separates from the tops of wind barriers and the top and bottom surfaces of the bridge-deck 

section. Similarly as for the mean velocity flow fields, the shear layer that separates from the 

top of the windward wind barrier divides the area of the relatively small flow velocity 

variance in the undisturbed freestream flow from the area of the large flow velocity variance 

close to the top bridge-deck section surface. As the wind-barrier porosity decreases, the flow 

velocity variance immediately downstream of the wind barrier decreases, while it 

substantially increases in the wake of the bridge-deck section. Increasing the windward wind-

barrier height shifts an adverse area of strong velocity fluctuations upwards, i.e. away from 

the top surface of the bridge-deck section, thus providing more effective sheltering for 

vehicles passing the bridge. The profiles of the flow velocity variance at x/B = 0 for various 

porosities and heights of the windward wind barrier are reported in Figure 30. 

(a) (b) 

  

Figure 30: The profiles of the flow velocity variance at x/B = 0 for various (a) porosities and 

(b) heights of the windward wind barrier. 
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(a) WB 3_30 WW (b) WB 3_30 LW 

  
(c) WB 3_30 WW+LW 

 
 

(d) WB 5_30 WW (e) WB 5_30 LW 

  
(f) WB 5_30 WW+LW 
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(g) WB 7_30 WW (h) WB 7_30 LW 

  
(i) WB 7_30 WW+LW 

 

Figure 31: Flow velocity variance around the Great Belt Bridge deck section for various 
arrangements of wind barriers. Flow direction is from left to right. 

Large flow velocity variance above the top bridge-deck section surface is observed for the 

windward and both windward and leeward wind barriers. This indicates that large pressure 

fluctuations on the top bridge-deck section surface may be expected in those configurations 

thus yielding large fluctuations of the aerodynamic forces and moments. The largest flow 

velocity variance is again in the separated shear layer. When comparing the results for the 

windward and both windward and leeward wind barriers, discrepancies may be observed 

above the bridge-deck section due to a recirculating flow between the wind barriers in case 

both wind barriers are in place. The profiles of the flow velocity variance at x/B = 0 for 

various arrangements of the 5 m high (full-scale) and 50 % porous wind barrier are reported 

in Figure 32. 
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Figure 32: The profiles of the flow velocity variance at x/B = 0 for various arrangements of 

the 5 m high (full-scale) and 50 % porous wind barrier. 

The behavior of the shear layer is well correlated with the flow incidence angle; hence, a 

small change in the flow incidence angle, e.g. in case of downslope windstorms, may 

substantially modify the characteristics of the separated shear layer. This suggests that the 

shear layer that separates from the wind-barrier top may have an important role in the self-

excited lift force and the pitch moment that both substantially influence the dynamic 

behavior of bridge-deck sections. 

4.2. Aerodynamic forces and the pitch moment acting on bridge-

deck sections  

4.2.1. Effects of wind-barrier height and porosity on aerodynamic forces and 

the pitch moment of bridge-deck sections 

 Wind barriers of various porosity and height were studied on the windward edge of 

the bridge-deck sections first. The drag force coefficient is reported in Figure 33 for the flow 

incidence angles between -10° (upslope flow) and +10° (downslope flow) with an increment of 

1°. 
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The trends in the drag force coefficient obtained for the empty Great Belt Bridge without 

the wind barrier correspond relatively well to previous studies on similar bridge-deck 

sections, e.g. Reinhold et al. (1992). Some differences in the results are likely due to minor 

discrepancies in the Reinhold et al. (1992) H4.1 bridge-deck section used for a validation, 

and the section tested in the present study. In particular, the H4.1 section in Reinhold et al. 

(1992) is equipped with guard rails, the top of the bridge-deck surface is not flat (unlike the 

bridge-deck section tested in the present study), and there are some minor differences in 

dimensions as well.  

 
(a) (b) 
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Figure 33: Drag force coefficient for bridge-deck sections with:  

(a) 5 m high (full-scale) wind barriers of various porosities, 

(b) 30% porous wind barriers of various full-scale heights. 

The influence of guard rails on the aerodynamic force and moment coefficients is reported in 

Simiu and Scanlan (1996) and it corresponds well with the differences in results observed 

between the bridge deck used in the present study and the H4.1 section used in Reinhold et 

al. (1992). 
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flow. While this trend is observed for all studied bridge-deck sections, for all of them it is 

more exhibited at positive flow incidence angles. In this range of flow incidence angles, the 

wind barrier additionally increases the bridge-deck section surface subjected to the flow, 

while in the range of negative flow incidence angles this surface is partly shadowed by the 

slope of the bridge-deck section.  

A decrease in the wind-barrier porosity increases the bluffness of the bridge-deck sections. 

The drag force coefficient generally increases as the porosity of the wind barriers decreases. 

This is observed in the entire range of investigated flow incidence angles for all studied 

bridge-deck sections, except for the Kao-Pin Hsi Bridge at large negative flow incidence 
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barriers. The influence of the wind-barrier height is more pronounced for positive flow 

incidence angles. 

A relative increase in the drag force coefficient with respect to the empty bridge-deck 

sections (without the wind barrier) is reported for various wind barriers in Figure 34. 
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Figure 34: Relative increase in the drag force coefficient in comparison with the empty 

bridge-deck sections: (a) 5 m high (full-scale) wind barriers of various porosities, 

(b) 30% porous wind barriers of various heights. 

The influence of wind barriers on the increase of the drag force coefficient is more exhibited 

for the Great Belt Bridge, which is the most streamlined of the three investigated bridge-

deck sections. For the Great Belt Bridge, largest relative increases are observed at the 1° and 

6° flow incidence angles. An increase in the drag force coefficient due to wind barriers is less 

exhibited for the Kao-Pin Hsi Bridge and the Golden Gate Bridge. The largest increase of 

the drag force coefficient for these sections is observed at the 0° flow incidence angle.  

The lift force coefficient is reported in Figure 35 for the flow incidence angles between -10° 

and +10° with an increment of 1°.  
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(a) (b) 

  

  

  
Figure 35: Lift force coefficient for bridge-deck sections with: (a) 5 m high (full-scale) wind 

barriers of various porosities, (b) 30% porous wind barriers of various full-scale heights. 
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General trends in the lift force coefficient for all studied bridge-deck sections without the 

wind barrier are similar, as the lift force coefficient increases with increasing the flow 

incidence angle from -10° to +10°.  

Wind barriers modify the trends and absolute values of the lift force coefficient, i.e. wind 

barriers generally cause a decrease in the absolute values of the lift force coefficient at large 

positive and large negative flow incidence angles. The influence of wind barriers on the lift 

force coefficient increases as the porosity of the wind barriers decreases. This may cause the 

lift force to change the direction from positive to negative, e.g. the Golden Gate Bridge with 

the WB 5_30 for 0° < α < 4° and the WB 5_00 for 0° < α < 8°. 

The effects of wind barriers on the lift force coefficient increase with increasing the height of 

wind barriers, i.e. the differences in the results with respect to the empty bridge-deck 

sections are larger for higher wind barriers. This is more clearly exhibited for the more bluff 

Golden Gate Bridge section. 

Coefficients of the aerodynamic pitch moment are reported in Figure 36 for the flow 

incidence angles between -10° and +10° with an increment of 1°.  
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(a) (b) 

  

  

  
Figure 36: Pitch moment coefficient for bridge-deck sections with: (a) 5 m high (full-scale) 

wind barriers of various porosities, (b) 30% porous wind barriers of various full-scale heights. 
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The influence of wind barriers on the pitch moment is present in all studied configurations, 

both when changing the wind-barrier porosity and its height. The pitch moment generally 

decreases when the wind barriers are in place, likely due to the flow separation and 

reattachment phenomena that influence the surface pressure distribution on the bridge-deck 

sections. Wind barriers contribute to the negative pitch moment, which is more pronounced 

as the wind-barrier porosity decreases. While there is a change in the pitch moment 

coefficient for studied wind barriers with respect to the empty bridge-deck sections, a 

discrepancy in the results for wind barriers of various heights are relatively minor for the 

Great Belt Bridge and the Kao-Pin Hsi Bridge, and somewhat larger for the Golden Gate 

Bridge, particularly for smaller wind barriers. 

4.2.2. Effects of wind-barrier arrangement on aerodynamic forces and the 

pitch moment of bridge-deck sections 

 The drag force coefficient is presented in Figure 37 for the flow incidence angles from 

-10° to 10°. 
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Figure 37: Drag force coefficient for various arrangements of wind barriers at various flow 

incidence angles. 

The drag force coefficient proved to be very dependent on the arrangement of wind barriers. 

For the large negative flow incidence angles, the leeward wind barrier increases the most the 

drag force coefficient. In this range of the flow incidence angles, the windward wind barrier is 

partly shadowed by the bridge-deck section and its influence on the obtained drag force 

coefficient is smaller. The smallest relative increase in the drag force coefficient is obtained 

for the windward wind barrier. 

As the flow incidence angle approaches zero and has small positive values, the influence of 

the leeward wind barrier decreases, while the largest relative increase in the drag force 

coefficient is observed for both windward and leeward wind barriers.  
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This is due to the characteristic flow recirculation zone in between the windward and 

leeward wind barriers in agreement with Avila-Sanchez et al. (2016). As the flow incidence 

angle further increases, the influence of the leeward wind barrier becomes smaller, while both 

wind barriers still have the largest influence on the drag force coefficient. 

The wind-barrier layout strongly influences the lift force coefficient, Figure 38.  
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Figure 38: Lift force coefficient for various arrangements of wind barriers at various flow 

incidence angles. 

The direction of the lift force is particularly important as it substantially determines the 

integral aerodynamic loads on bridge decks. For the negative flow incidence angles, the 

leeward wind barrier significantly increases the absolute values of the lift force coefficient. 

The leeward wind barrier may actually act as a Gurney flap, e.g. Zanotti and Gibertini 

(2018), as it increases the pressure on the top surface of the bridge-deck section, decreases 

the pressure on the bottom surface of the bridge deck and thus enables the flow to remain 

attached to the bridge-deck section. In case both windward and leeward wind barriers are in 

place, the lift force coefficient is slightly larger than without the wind barriers, while it is 

slightly smaller for the windward wind barrier only. 

In the proximity of the zero flow incidence angle, the leeward wind barrier may significantly 

modify the lift force coefficient and change the direction of the integral lift force. In the 

range of the positive flow incidence angles, all types of the wind barrier contribute to the 

negative lift force. In some configurations, the wind barrier changes the direction of the lift 

force from positive to negative, which is particularly exhibited for the leeward wind barrier. 

The arrangement of wind barriers does not significantly influence the pitch moment 

coefficient of the studied bridge-decks sections, Figure 39.  
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Figure 39: Pitch moment coefficient for various arrangements of wind barriers at various flow 

incidence angles. 
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For the negative flow incidence angles, the discrepancies among various types of the wind 

barrier are small. For the positive flow incidence angles, the leeward wind barrier does not 

affect the pitch moment coefficient. The windward and both windward and leeward wind 

barriers may contribute to the negative pitch moment coefficient, but their qualitative 

influence is still small. This indicates that the orientation and placement of the wind barriers 

does not affect the torsional divergence type of instability for the bridge-deck sections. 

4.3. Galloping stability of bridge-deck sections with wind barriers 

The gradient of the lift force coefficient with respect to the flow incidence angle α is reported 

for all studied configurations in Figure 40 to analyze the galloping sensitivity of the studied 

bridge-deck sections. The gradient of the lift force coefficient with respect to the flow 

incidence angle is important for the quasi-steady analysis of the galloping instability. The 

reduced frequency of galloping oscillations is relatively small, hence the aerodynamic forces 

acting on the bridge-deck sections may be assumed as acting on the body in the steady flow. 

The negative slope of the lift force coefficient curve is not favorable, as it yields negative 

gradient of the lift force coefficient, which is a prerequisite for the dynamic instability in the 

heave direction.  

However, only when the absolute value of the negative gradient in the lift force coefficient is 

larger than the drag force coefficient at the same flow incidence angle, the necessary 

condition for the galloping instability is satisfied.  

The gradients were fitted using the 4th degree polynomial functions of the lift force coefficient 

with respect to α.  
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Figure 40: Gradient of the lift force coefficient with respect to the flow incidence angle for all 

studied bridge-deck sections with the windward wind barrier. 

Based on the results for the drag force coefficient (Figure 33) and the gradient of the lift 

force coefficient with respect to α (Figure 36), the Glauert-Den Hartog criterion for galloping 

is positive for all studied bridge-deck sections with and without the wind barrier in the entire 

range of the investigated flow incidence angles.  
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flow incidence angles, the absolute values of the gradient are smaller than the drag force 

coefficient at respective angles, thus the necessary galloping criterion for the bridge-deck 

sections is not satisfied.  

This suggests that wind barriers placed at the windward edge of wide long-span cable-

supported bridge decks do not make those bridge decks more sensitive to galloping in 

comparison with the respective empty bridge decks without wind barriers. The same 

behavior of the bridge-deck sections was observed in all other arrangements of wind barriers 

as well, i.e. the studied bridge-deck sections remain stable with respect to galloping no 

matter which type of the wind barrier is placed on the bridge deck. Those additional results 

were however not reported for brevity. 

4.4. Flutter sensitivity of bridge-deck sections with wind barriers 

2DOF FDs are reported with respect to the reduced flow velocity v/fB. They are normalized 

using the heave natural frequency of oscillation for H1*, H4*, A1*, A4* and the pitch natural 

frequency of oscillation for H2*, H3*, A2*, A3*, whereas the natural frequencies of oscillations 

were determined in the still air.  

The obtained results compare relatively well with previous relevant studies on similar empty 

bridge-deck sections, e.g. Poulsen et al. (1992), Simiu and Scanlan (1996), (shown in 

diagrams), as well as with Seo and Caracoglia, (2011), Canor et al. (2015) (not shown in 

diagrams for brevity). Nevertheless, some minor discrepancies are likely due to differences in 

the bridge-deck section design used in the present thesis in comparison with the bridge-deck 

sections analyzed in those respective studies. It is important to note that the sign of the 

indirect FDs reported in Simiu and Scanlan (1996) is changed in order to be compliant with 

the sign convention adopted in this thesis. 

4.4.1. Effects of wind-barrier height and porosity on flutter sensitivity of 

bridge-deck sections with wind barriers 

 Hi* (i = 1, 2, 3) FDs are reported for various heights and porosities of wind barriers 

in Figure 41, Figure 43 and Figure 44. 
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Figure 41: H1* FD for bridge-deck sections with:  

(a) 5 m high (full-scale) wind barriers of various porosities (0%, 30%, and 50%), (b) 30% 

porous wind barriers of various full-scale heights (3 m, 5 m, and 7 m). 
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The direct H1* FD is the term in the equation of motion that addresses the gradient of the 

self-excited lift force with respect to the velocity of a bridge deck in the heave direction. It is 

the most important FD for the analysis of the heave motion, as it describes the damping 

behavior in the heave motion due to the aerodynamic self-excited lift forces.  

The positive H1* values are achieved for the negative aerodynamic damping; hence, this 

indicates the bridge-deck section susceptibility to the heave dynamic instability. In case the 

positive H1* is so large that the negative aerodynamic damping is larger than the structural 

damping, the system becomes unstable in the heave motion. The cross-sections of 

contemporary long-span cable-supported bridges are usually not sensitive to the self-excited 

instability in the heave motion, Xu (2013). However, wind barriers may dramatically 

increase the bluffness of the bridge-deck cross-section; hence, it is necessary to perform the 

tests on such bridges to assure for a safe bridge design. 

The studied bridge-deck sections generally remain stable with respect to the heave motion, 

as H1* remains negative except around v/fhB = 1.5 - 2.5 for the Kao-Pin Hsi Bridge and the 

Great Belt Bridge, which is more exhibited for less-porous wind barriers, i.e. WB 5_00 and 

WB 5_30.  

This is likely due to the fluctuating lift force that develops only in certain range of flow 

velocities when the characteristic frequency of vortices shed from the wind barrier is equal to 

the heave natural frequency of the system. H1* becomes negative with the increase in the 

flow velocity. The effect of decreasing wind-barrier porosity is more exhibited for the Golden 

Gate Bridge than for two other bridge-deck sections. 

As an example, the amplitude spectrum of the airflow velocity in the wake of the Great Belt 

Bridge with WB 5_00 is reported in Figure 42. The airflow velocity signal was captured 50 

mm downstream of the model in 15 mm height with respect to the top surface of the bridge-

deck section model. One can see the dominant frequency of the vortices shed from the model 

fv = 22 Hz, while the undisturbed airflow velocity in this experiment was v = 10 m/s. This 

yields the Strouhal number for the bridge-barrier system equal to St = fv·h/v = 0.198 

(calculated using the height of the bridge-deck section model also encompassing the model 

wind-barrier height h = 0.09 m).  
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Figure 42: Amplitude spectrum of v(t) for the GBB with WB 5_00; measurement position is 

50 mm downstream of the bridge-deck section model in 15 mm height with respect to the top 

surface of the bridge-deck section model. 

The natural frequency in the heave motion for this respective configuration in the free-

vibration tests is 2.8 Hz; hence, the reduced flow velocity for the vortex shedding to appear 

(according to Strouhal number equal to 0.198) is approximately 1.5. The trends in H1* for 

this configuration indeed show that the vertical oscillations are present at this particular 

reduced flow velocity.  

The height of the wind barrier does not considerably affect the dynamic stability in the 

heave direction, as H1* is generally negative for all studied bridge-deck sections. Adverse 

positive values of H1* are observed for the Great Belt Bridge and the Kao-Pin Hsi Bridge 

with wind barriers in place for the reduced flow velocity v/fhB = 1 - 2, which is likely due to 

the vortex shedding.  

As the reduced flow velocity increases, the vortex shedding frequency increases and this 

phenomenon vanishes. The effect of increasing wind-barrier height is more exhibited for the 

Golden Gate Bridge than for two other bridge-deck sections. 
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Figure 43: H2* FD for bridge-deck sections with:  

(a) 5 m high (full-scale) wind barriers of various porosities (0%, 30%, and 50%), (b) 30% 

porous wind barriers of various full-scale heights (3 m, 5 m, and 7 m). 
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The indirect H2* FD addresses the gradient of the self-excited lift force with respect to the 

velocity of a bridge deck in the pitch direction.  

The influence of the wind-barrier porosity on H2* is not the same for three studied bridge-

deck sections. In particular, wind barriers contribute to the negative H2* for the Golden Gate 

Bridge, while they contribute to the positive H2* for the Kao-Pin Hsi Bridge and the Great 

Belt Bridge. This is more emphasized for less-porous wind barriers. 

The effect of increasing wind-barrier height is more exhibited for the more streamlined Great 

Belt Bridge than for two other bridge-deck sections. 
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Figure 44: H3* FD for bridge-deck sections with:  

(a) 5 m high (full-scale) wind barriers of various porosities (0%, 30%, and 50%), (b) 30% 

porous wind barriers of various full-scale heights (3 m, 5 m, and 7 m). 

The indirect H3* FD addresses the gradient of the self-excited lift force with respect to the 

pitch angle of a bridge deck.  

The obtained results are nearly the same for the empty bridge-deck sections and the bridge-

deck sections with wind barriers of all studied porosities. For the Kao-Pin Hsi Bridge and the 

Golden Gate Bridge, there is a larger discrepancy for the solid wind barrier (WB 5_00) at 

larger reduced flow velocities in comparison with other configurations. This indicates a 

slightly smaller influence of the pitch angle on the self-excited lift force for the bridge-deck 

sections with WB 5_00. 

The influence of increasing the wind-barrier height on H3* is not that significant, as the 

results in all studied configurations, including the empty bridge-deck sections, are nearly the 

same.  

The direct H4* FD addresses the gradient of the self-excited lift force with respect to the 

heave displacement of a bridge deck. It has rather unpredictable behavior; hence, it is 

commonly not analyzed in detail and not shown in diagrams. In fact, H4* was not included in 

the original formulation by Scanlan and Tomko (1971) neither.  

There is a strong increase in H4* for the Great Belt Bridge with WB 5_50, while for the 

Golden Gate Bridge the H4* absolute values decrease with decreasing the wind-barrier 

porosity. 
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While there are no clear indications about the influence of the increasing wind-barrier height 

on H4*, for the Golden Gate Bridge the H4* absolute values are smaller for all studied wind-

barrier heights in comparison with the empty bridge-deck section. 
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Figure 45: A1* FD for bridge-deck sections with:  

(i) 5 m high (full-scale) wind barriers of various porosities (0%, 30%, and 50%), (ii) 30% 

porous wind barriers of various full-scale heights (3 m, 5 m, and 7 m). 

The indirect A1* FD addresses the influence of the heave motion on the self-excited pitch 

moment. For the Great Belt Bridge, wind barriers have nearly the same trend for all 

porosities. While these trends are similar to the results of the empty bridge-deck section, the 

discrepancies in those trends become significant at larger reduced flow velocities v/fhB > 4. 

For the Kao-Pin Hsi Bridge, it is important to observe a sudden gradient for the solid wind 

barrier (WB 5_00) at v/fhB > 2. For the Golden Gate Bridge, the results are similar for the 

empty bridge-deck section and the bridge-deck sections with all studied wind-barrier 

porosities. 

The increasing wind-barrier height does not yield unambiguous systematic changes in the A1* 

trends for any of the studied bridge-deck sections. Nevertheless, there is a sudden increase in 

A1* for the Great Belt Bridge with the highest wind barrier (WB 7_30). 
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Figure 46: A2* FD for bridge-deck sections with:  

(a) 5 m high (full-scale) wind barriers of various porosities (0%, 30%, and 50%), (b) 30% 

porous wind barriers of various full-scale heights (3 m, 5 m, and 7 m). 
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The A2* FD is commonly considered as the most important in the analysis of the bridge-deck 

dynamic stability. It addresses the influence of the pitch motion frequency on the self-excited 

pitch moment. A2* is related to damping in the pitch motion and is particularly important 

for the torsional flutter analysis. A2* has positive values for the negative aerodynamic 

damping, which decreases the overall damping of the system and may cause the negative 

overall damping of the system. In case of the negative overall damping, the divergent 

oscillations in the torsional direction occur (torsional flutter) and the structure may collapse. 

The observed A2* trends indicate that wind barriers deteriorate the dynamic stability in the 

torsional motion, as A2* becomes positive, which is particularly exhibited for less-porous 

wind barriers at larger reduced flow velocities. This indicates that reducing the wind-barrier 

porosity may trigger the torsional flutter and possibly a collapse of the bridge. 

The trends in A2* for increasing the wind-barrier height are not the same for all studied 

bridge-deck sections, as they are combined influenced by the aerodynamic bridge-deck shape.  

For the streamlined Great Belt Bridge, reducing the wind-barrier height enhances positive 

A2* values and thus deteriorates the dynamic stability in the torsional motion. For the Kao-

Pin Hsi Bridge, increasing the wind-barrier height adversely enhances positive A2* values and 

thus deteriorates the bridge dynamic stability. For the bluff Golden Gate Bridge, increasing 

the wind-barrier height does not have strong influence on the A2* trends, as all the Golden 

Gate Bridge configurations are susceptible to torsional flutter. 
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Figure 47: A3* FD for bridge-deck sections with:  

(a) 5 m high (full-scale) wind barriers of various porosities (0%, 30%, and 50%), (b) 30% 

porous wind barriers of various full-scale heights (3 m, 5 m, and 7 m). 
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The direct A3* FD addresses the influence of the pitch displacement on the self-excited pitch 

moment. It is related to the damped frequency in the pitch motion.  

A3* is generally positive for all studied configurations that suggests a decrease in the damped 

frequency of the pitch motion. The influence of wind barriers on A3* is different for various 

bridge-deck sections. For the Great Belt Bridge, there is a sudden drop in A3* at v/fαB = 2 

in accordance with positive A2* values at those same reduced velocities. For the Kao-Pin Hsi 

Bridge, A3* is smaller in configurations with wind barriers as compared to the empty bridge-

deck section. For the Golden Gate Bridge, there is a decrease in the pitch motion frequency 

that is less emphasized for less-porous wind barriers.  

The influence of the wind-barrier height on the A3* trends is least exhibited for the Kao-Pin 

Hsi Bridge. The drop in A3* for the Great Belt Bridge is in accordance with A2* turning 

positive, as it occurs at v/fαB = 3 for WB 3_30. For the Golden Gate Bridge, there is a 

sudden drop in A3* for the WB 3_30 and WB 7_30 configurations. 

The influence of the heave displacement on the self-excited pitch moment is rather 

unpredictable, hence A4* is sensitive to the input signal and often not analyzed, and therefore 

not reported here. 

4.4.2. Effects of wind-barrier arrangement on flutter sensitivity of bridge-deck 

sections with wind barriers 

 The H1* FD for various arrangement of wind barriers is reported in Figure 48. 
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Figure 48: H1* FD for bridge-deck sections with various arrangements of wind barriers. 
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The H1* FD is negative for all wind-barrier arrangements at large reduced flow velocities. 

Positive H1* FD is observed for the Great Belt Bridge and the Kao-Pin Hsi Bridge for the 

windward and both windward and leeward wind barriers only in the range v/fhB = 1-2. As 

the flow velocity increases, this phenomenon vanishes. A decrease in the generalized damping 

in the heave motion in the respective range of reduced flow velocities is reported in Figure 49 

for the Great Belt Bridge at various arrangements of 5 m high (full-scale) wind barriers.  

 
Figure 49: Generalized damping in the heave motion for the Great Belt Bridge and various 

arrangements of WB 5_30. 

A decrease in the generalized damping that may be observed for the windward and both 

windward and leeward wind barriers, while it is not observed for the leeward wind barrier, is 

due to the vortex-shedding vibrations. Hence, the windward and both wind barriers may 

trigger vortex-induced-vibrations at relatively small reduced flow velocities, which may 

adversely decrease the lifetime of bridge structural components, e.g. Ehsan and Scanlan 

(1990), Wu and Kareem (2012). 

When compared to the results obtained for the empty bridge-deck sections, the leeward wind 

barrier generally contributes to the negative H2* FD, while the windward and both windward 

and leeward wind barriers contribute to the positive H2* FD. The obtained results suggest a 

rather small influence of the wind-barrier layout on the H3* trends. H2* and H3* FDs are not 

shown in diagrams.  

0.005

0.010

0.015

0.020

0.025

0.0 1.0 2.0 3.0 4.0

ζ h
 , 

-

v / fh B

WB 5_30 WW
WB 5_30 LW
WB 5_30 WW+LW

GBB

Mechanical damping



Chapter 4                                                               Experimental results and discussion 

93 
 

The windward and both windward and leeward wind barriers proved to deteriorate the most 

the dynamic stability in the pitch motion, as A2* is positive at the smallest reduced flow 

velocities in those configurations, Figure 50. 

 

 

 

 

  

NWB WB 5_30 WW WB 7_30 WW

WB 3_30 WW WB 5_30 LW WB 7_30 LW

WB 3_30 LW WB 5_30 WW+LW WB 7_30 WW+LW

WB 3_30 WW+LW

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0 1 2 3 4 5 6 7

A
2*

, -

v / fα B

GBB
-0.04

-0.02

0.00

0.02

0.04

0 0.5 1 1.5 2 2.5 3

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6

A
2*

, -

v / fα B

KPHB



Andrija Buljac                                                                                         PhD thesis 

94 
 

 
Figure 50: A2* FD for bridge-deck sections with various arrangements of wind barriers. 

The bridge-deck sections with the leeward wind barrier become dynamically unstable in the 

torsional motion only at larger reduced flow velocities; hence, the leeward wind-barrier 

layout proved to be relatively more dynamically stable. A3* is generally positive suggesting a 

decrease in the damped frequency of the pitch motion, Figure 51. 
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Figure 51: A3* FD for bridge-deck sections with various arrangements of wind barriers. 

A shift in the trend of A3* suggests an instability in the pitch motion, which may be observed 

in agreement with the A2* behavior that is positive in the most of the studied configurations. 

4.4.3. Critical flow velocity for bridge-deck flutter 

 The results for the critical flow velocity for the bridge-deck flutter based on the 

eigenvalue analysis are reported for wind barriers of various porosities and heights in Table 3 
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Table 3: Critical flow velocities for flutter calculated using the eigenvalue analysis for bridge-

deck section models with 5 m high (full-scale) wind barriers of various porosities (0%, 30%, 

and 50%). 

 NWB WB 5_50 WB 5_30 WB 5_00 

GBB 
vcr =  - m/s* 
fcr =  - Hz* 

vcr = 5.38 m/s 
fcr = 3.27 Hz 

vcr = 3.37 m/s 
fcr = 3.36 Hz 

vcr = 2.70 m/s 
fcr = 3.63 Hz 

KPHB 
vcr = 5.67 m/s 
fcr = 3.07 Hz 

vcr = 5.29 m/s 
fcr = 3.17 Hz 

vcr = 3.59 m/s 
fcr = 3.27 Hz 

vc = 3.03 m/s 
fcr = 3.27 Hz 

GGB 
vcr = 4.58 m/s 
fcr = 3.30 Hz 

vcr = 4.55 m/s 
fcr = 3.34 Hz 

vcr = 4.13 m/s 
fcr = 3.36 Hz 

vcr = 3.76 m/s 
fcr = 3.39 Hz 

*Aeroelastically stable in measured range of velocities.  

Wind barriers generally cause the critical flow velocity for flutter to decrease, i.e. for the 

same bridge-deck section, flutter is expected to occur at smaller flow velocities when the 

wind barriers are in place in comparison with the empty bridge-deck sections without wind 

barriers.  

The critical flow velocity for flutter decreases as the wind-barrier porosity decreases, i.e. as 

the wind barriers become more solid. The influence of wind barriers is more exhibited for the 

Great Belt Bridge and the Kao-Pin Hsi Bridge than it is the case for the Golden Gate 

Bridge.  

These results complement well the trends observed for FDs and confirm that a decrease in 

the wind-barrier porosity deteriorates the dynamic stability of wide long-span cable-

supported bridges. 
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Table 4: Critical flow velocities for flutter calculated using the eigenvalue analysis for bridge-

deck section models with 30% porous wind barriers of various full-scale heights (3 m, 5 m, 

and 7 m). 

 NWB WB 3_30 WB 5_30 WB 7_30 

GBB 
vcr = - m/s* 

fcr = - Hz* 

vcr = 2.83 m/s 

fcr = 3.37 Hz 

vcr = 3.37 m/s 

fcr = 3.36 Hz 

vcr = 4.10 m/s 

fcr = 3.27 Hz 

KPHB 
vcr = 5.67 m/s 

fcr = 3.07 Hz 

vcr = 3.90 m/s 

fcr = 3.18 Hz 

vcr = 3.59 m/s 

fcr = 3.27 Hz 

vcr = 3.04 m/s 

fcr = 3.28 Hz 

GGB 
vcr = 4.56 m/s 

fcr = 3.30 Hz 

vcr = 4.56 m/s 

fcr = 3.45 Hz 

vcr = 4.13 m/s 

fcr = 3.36 Hz 

vcr = 4.33 m/s 

fcr = 3.41 Hz 

*Aeroelastically stable in measured range of velocities. 

The critical flow velocity for flutter is combined influenced by the increasing wind-barrier 

height and the aerodynamic bridge-deck shape. For the streamlined Great Belt Bridge, an 

increase in the wind-barrier height enhances the bridge dynamic stability, as the critical flow 

velocity for flutter increases when the wind-barrier height increases. For the semi-bluff Kao-

Pin Hsi Bridge, increasing the wind-barrier height causes a decrease in the critical flow 

velocity for flutter. Increasing the wind-barrier height does not considerably influence the 

critical flutter velocity for the bluff Golden Gate Bridge.  

5.2.1. Critical flutter velocity for various wind-barrier arrangements 

 The results for the critical flow velocity for flutter based on the eigenvalue analysis 

are reported in Figure 52 and Figure 53 for various arrangements of wind barriers. 
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Figure 52: Critical flow velocity for flutter calculated using the eigenvalue analysis for bridge-

deck section models and various arrangements of wind barriers. 
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Figure 53: Frequency at critical flow velocity for flutter calculated using the eigenvalue 

analysis for bridge-deck section models and various arrangements of wind barriers. 

The windward wind barrier as well as both windward and leeward wind barriers cause the 

critical flow velocity for flutter to significantly decrease and the reduced critical frequency to 

increase. Flutter is expected to occur at smaller flow velocities in those two configurations 

compared to the bridge-deck sections equipped with the leeward wind barrier only. The 

windward wind barrier and both windward and leeward wind barriers have approximately 

equal deteriorating influence on the dynamic stability of the studied bridge-deck sections. 

These trends are in agreement with the trends observed for FDs. 

A percentagewise decrease of the critical flow velocity for flutter for the bridge-deck sections 

equipped with wind-barriers is reported in Figure 54 in comparison with the respective 

empty bridge-deck sections (without wind-barriers). These results are reported for Golden 

Gate and Kao-Pin Hsi bridge-deck sections, and not for Great Belt, because the empty Great 

Belt bridge-deck sections (without wind-barriers) remained stable with respect to flutter for 

all the tested flow velocities of our study, so it was not possible to conduct this comparison 

for Great Belt. 
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(a) 

 

(b) 

 

Figure 54: Percentagewise decrease of the critical flow velocity for flutter for the Kao-Pin Hsi 

and Golden Gate Bridge deck sections when the wind-barriers are in place with respect to 

the empty bridge-deck sections (without wind-barriers). 

The results show that the critical flow velocity for flutter may be decreased up to 40% in 

case the windward wind barrier and both wind barriers are placed on bridge decks. For the 

bluff Golden Gate deck section, the critical flow velocity for flutter remained approximately 

the same in all configurations. 

As an example, the diagrams of the numerical solution of the flutter 2DOF equation are 

provided in Figure 55 for the empty Great Belt Bridge section as well as for various 

configurations of the 5 m high (full-scale) wind barrier. The intersection of two solutions 

gives a value of the nondimensional critical flutter frequency K. 
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(d) WW+LW 

 
Figure 55: Numerical solutions of the 2DOF flutter equation for the Great Belt Bridge and 

various configurations of the 5 m high (full-scale) wind barrier. 

4.4.4. Effects of incident flow turbulence on flutter sensitivity of bridge-deck 

sections with wind barriers 

The direct H1* and A2* FDs (the most important FDs for the bridge dynamic 

stability) are reported in Figure 56. 
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Figure 56: H1* and A2* FDs for three different turbulence intensities of the freestream flow. 

The results for the H1* and A2* FDs indicate that the turbulence of the freestream flow may 

have an influence on the flutter susceptibility of cable-supported bridges equipped with wind 

barriers.  

For all three studied bridge-deck section models and the 5_30 windward wind barrier, 

increasing the turbulence intensity of the freestream flow shifts the positive A2* to larger 

reduced flow velocities. Hence, the turbulence intensity of the freestream flow increases the 

dynamic stability of bridge decks with wind barriers with respect to the torsional flutter. A2* 

of the empty Great Belt Bridge (streamlined section) and the Kao-Pin Hsi Bridge (semi-bluff 

section) does not exhibit any particular influence of the turbulence.  
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The empty Golden Gate Bridge deck, which is bluff even without the wind barrier, 

experiences a similar influence of the freestream turbulence as A2* as well as this bridge-deck 

section with wind barriers.  

The high turbulence intensity of the freestream flow may trigger the heave dynamic 

instability, as positive H1* is observed at large reduced flow velocities for some of the studied 

configurations. 
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Conclusions 

Contemporary cable-supported bridges are flexible slender structures characterized by 

relatively low natural frequency and low mechanical damping in the pitch and heave 

motions, which makes them susceptible to the wind-induced dynamic instability. On the 

other hand, strong cross-winds on bridges and viaducts may cause dynamic instabilities of 

vehicles and trains. To protect vehicles from those adverse cross-wind effects in harsh wind 

conditions, protective wind barriers are commonly placed on bridges. While these barriers 

proved to be successful in sheltering vehicles and trains from cross-winds, their influence on 

aerodynamic and aeroelastic characteristics of bridges was previously not analyzed in detail. 

The present thesis thus focuses on the effects of roadway wind barriers on aerodynamic 

characteristics of typical long-span cable-supported bridge decks and their sensitivity to self-

excited vibrations. This work was conducted experimentally on the small-scale models in the 

climatic boundary-layer wind tunnel of the Institute of Theoretical and Applied Mechanics in 

Prague, Czech Republic. Three bridge-deck sections were studied, (i) streamlined Great Belt 

Bridge (Denmark), (ii) semi-bluff Kao-Pin Hsi Bridge (Taiwan), (iii) bluff Golden Gate 

Bridge (USA). Wind barriers of different porosities and heights placed on those bridge-deck 

sections were studied in various arrangements, i.e. (i) wind barrier at the windward bridge-

deck edge only, (ii) wind barrier at the leeward bridge-deck edge only, (iii) wind barrier at 

both windward and leeward bridge-deck edges.  

The analyzed parameters include the aerodynamic force and moment coefficients at various 

flow incidence angles, the quasi-steady Glauert-Den Hartog criterion for the galloping 

instability, aeroelastic flutter derivatives, eigenvalue analysis of the flutter instability, and 

flow characteristics around bridge-deck sections.  

Major findings: 

• Wind barriers negligibly influence a susceptibility of bridge decks to galloping, i.e. the 

galloping stability of cable-supported bridges is nearly the same for (a) empty bridge 

decks without wind barriers and (b) bridge decks equipped with wind barriers; 

• The dynamic stability of cable-supported bridges with respect to torsional flutter is 

substantially deteriorated when wind barriers are placed on bridge decks, which trend 
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is particularly exhibited for more streamlined bridge decks, whereas bridge decks are 

more resilient to flutter at larger wind turbulence; 

• Wind barriers may trigger vortex-induced vibrations of bridge decks. 

Detailed summary of the obtained results: 

For the single windward wind barrier, the drag force coefficient of bridge decks increases as 

the porosity of the wind barrier decreases, and as the height of the wind barrier increases. 

While this trend is observed for all studied bridge-deck sections, for all of them it is more 

exhibited at positive flow incidence angles (bridge deck rotated clockwise). The influence of 

wind barriers on the increase of the drag force coefficient is more exhibited for more 

streamlined bridge-deck sections. Wind barriers change the trends and absolute values of the 

lift force coefficient, which characteristic is more exhibited for more solid and higher wind 

barriers. The pitch moment decreases when the wind barriers are in place, while the 

influence of the porosity is more dominant than the wind-barrier height.  

The arrangement of wind barriers on the bridge-deck sections strongly influences the 

aerodynamic drag and lift force coefficients. In the proximity of the zero flow incidence angle, 

all wind-barrier arrangements contribute to the negative lift force, i.e. downforce. For some 

configurations, due to a presence of wind barriers, the direction of the lift force changes from 

positive to negative, which is particularly exhibited for the leeward wind barrier. The wind-

barrier arrangement does not significantly influence the pitch moment coefficient. Hence, the 

orientation and placement of wind barriers does not affect the torsional divergence (static 

aeroelastic phenomenon) of the bridge-deck sections. 

Wind barriers in various heights, porosities and arrangements do not adversely affect the 

galloping sensitivity of bridges, as their galloping stability is achieved in all experiments both 

in the steady-state approach and dynamic tests. However, a switch from the positive to 

negative values (and vice versa) of the lift force coefficient gradient that is observed for some 

configurations may indicate possible critical points for the dynamic stability in the heave 

motion. 

The windward wind barrier makes long-span cable-supported bridges more susceptible to 

torsional flutter. This is more pronounced for less-porous, i.e. more solid, wind barriers, while 

the effects of increasing the wind-barrier height are simultaneously influenced by the 

aerodynamic shape of bridge decks. The streamlined bridge-deck sections are generally more 
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sensitive to torsional flutter for smaller wind barriers, while the bluff sections are more prone 

to torsional flutter when designed with higher wind barriers.  

From the wind-barrier arrangement point of view, the windward wind barrier and both 

windward and leeward wind barriers substantially deteriorate the torsional flutter stability of 

bridge-deck sections, while the influence of the leeward wind barrier on flutter stability of the 

bridge-deck sections is relatively minor. The windward and both windward and leeward wind 

barriers may trigger vortex-induced vibrations at relatively low reduced flow velocities, which 

may adversely shorten the lifetime of bridge structural components. The results of the 

eigenvalue analysis for the critical flutter flow velocity generally complement well the 

observed trends in the flutter derivatives.  

The mean flow velocities are significantly reduced downstream of wind barriers thus 

indicating their sheltering effect in agreement with previous studies, while the windward and 

both windward and leeward wind barriers yield relatively similar fields of the mean flow 

velocity. The largest flow velocity variance is observed in the shear layer separated from the 

top of the windward wind barrier. Characteristics of the shear layer determine the 

fluctuations in the pressure distribution on the top surface of the bridge-deck sections, which 

may have an important role on the self-excited lift force and the pitch moment, and 

consequently the dynamic behavior of bridge-deck sections. 

The research objectives set for this thesis are achieved and the research hypotheses are 

satisfied. While wind barriers successfully shelter the vehicles on bridges from cross winds, 

they proved to deteriorate aerodynamic stability of bridges. Future work on this topic would 

need to address the optimization of the wind-barrier shape to further enhance its sheltering 

effects for vehicles and at the same time retain the aerodynamic stability of bridges. This 

would potentially require using the movable elements of wind barriers, so the porosity of 

wind barriers may change depending on wind conditions. An influence of stationary and 

moving vehicles on aerodynamic and aeroelastic characteristics of cable-supported bridges 

equipped with wind barriers is still not investigated, nor the influence of transient winds, i.e. 

bora, hurricane, tornado, downburst. 
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