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Abstract
Modern implicitly coupled pressure–velocity algorithms introduced a considerable increase

in the convergence rates when compared with segregated algorithms. Although, segregated

treatment of turbulence model equations often limits such algorithms from reaching their full

potential. Hence, implicit coupling of two-equation turbulence models is investigated.

In order to implement the implicitly coupled turbulence models in the block-matrix frame-

work, it is necessary to linearise the non-linear source and sink terms. The linearised sources

and sinks also need to undergo the stability and boundedness analysis. Linearisation and im-

plementation of two-equation turbulence models,k � e and k � w SST, in foam-extend (the

community-driven fork of the OpenFOAM) software is presented.

Validation of implemented turbulence models is performed. The two validation cases are: a

separated �ow past a NACA 4412 airfoil at maximum lift and an incompressible turbulent �ow

over a backward facing step.Validation of the implicitly coupledk� w SSTmodel is performed

for both cases, whereas validation of the implicitly coupledk� e model is performed only for

the backward facing step case.

Finally, performance of implemented turbulence models is compared with existing segre-

gated models. Benchmarking is performed on the two validation cases. Similarly as for the

validation, both implemented turbulence models are benchmarked on the backward facing step

case and only thek� w SSTis benchmarked on the NACA 4412 case.

Key words:CFD, OpenFOAM, foam-extend, turbulence modelling, k � e, k � w SST, block-

matrix, implicit coupling, linearisation, validation, benchmarking.
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Sa�zetak
Kori�stenje modernih implictno spregnutih algoritama za povezivanje jednad�zbi brzine i tlaka

dovelo je do znatno br�ze konvergencije rje�senja u usporedbi s tradicionalnim odvojenim al-

goritmima. Prilikom simulacije turbulentnih strujanja spregnutim rje�sava�cima brzine i tlaka

konvergenciju rje�senja�cesto ograni�cava odvojeno rje�savanje jednad�zbi modela turbulencije,

stoga se u ovom radu razmatra implicitno sprezanje dvojednad�zbenih modela turbulencije.

Prije implementacije implicitno spregnutih dvojednad�zbenih modela turbulencije, nu�zno

je provesti linearizaciju nelinearnih izvorskih i ponorskih�clanova te analizu stabilnosti i poz-

itivnosti produkata linearizacije. Prikazuju se linearizacija i implementacija dvojednad�zbenih

modela turbulencijek� e i k� w SSTunutar foam-extend (OpenFOAM-ova ina�cica koju razvija

zajednica) softverskog paketa.

Validacija implementiranih modela turbulencija provodi se na dva poznata slu�caja strujanja

za koja su dostupna eksperimentalna mjerenja: odvojeno nestla�civo strujanje oko NACA 4412

aeropro�la pri maksimalnom uzgonu te nestla�civo strujanje u kanalu s naglim pro�sirenjem.

Validacija k � w SSTmodela turbulencije provodi se na oba slu�caja strujanja, dok sek � e

model validira samo na strujanju unutar kanala.

Takoder se usporeduju performanse implementiranih implicitno spregnutih modela s odgo-

varajúcim postojécim odvojenim ina�cicama modela turbulencija. Sli�cno kao i prilikom vali-

dacije, usporebak � w SSTmodela provodi se na oba slu�caja strujanja, dok sek � e model

usporeduje samo na slu�caju strujanja unutar kanala.

Klju �cne rije�ci: CFD, OpenFOAM, foam-extend, modeliranje turbulencije, k � e, k � w SST,

blok-matrica, implicitno sprezanje, linearizacija, validacija, mjerenje performansi.
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Pro�sireni sa�zetak
Kori�stenje modernih implicitno spregnutih algoritama za povezivanje jednad�zbi brzine i tlaka

dovelo je do znatno br�ze konvergencije rje�senja u usporedbi s tradicionalnim odvojenim al-

goritmima. Prilikom simulacije turbulentnih strujanja spregnutim rje�sava�cima konvergenciju

rje�senja�cesto ograni�cava odvojeno rje�savanje jednad�zbi modela turbulencije, stoga se u ovom

radu razmatra implicitno sprezanje dvojednad�zbenih modela turbulencijek � e i k � w SST

unutar foam-extend (OpenFOAM-ova ina�cica koju razvija zajednica) softverskog paketa.

Nestla�civi k � e model turbulencije

Jednad�zba turbulentne kineti�cke energije unutark� e modela turbulencije glasi:

¶k
¶t

+ Ñ� (uk) � kÑ� u � Ñ� (Gk;e f fÑk) = G� e; (1)

gdje k ozna�cava turbulentnu kineti�cku energiju,u vremenski osrednjenu brzinu,Gk;e f f efek-

tivnu difuziju za poljek, G izvorski �clan (stvaranje turbulentne kineti�cke energije), ae je po-

norski �clan, odnosno disipacija turbulentne kineti�cke energije. Jednad�zba disipacije turbulentne

kineti�cke energije glasi:

¶e
¶t

+ Ñ� (ue) � eÑ� u � Ñ� (Ge;e f fÑe) = C1
e
k

G� C2
e2

k
; (2)

gdjeGe;e f f ozna�cava efektivnu difuziju za poljee, aC1 i C2 su konstantne modela.

Nestla�civi k � w SSTmodel turbulencije

Jednad�zba turbulentne kineti�cke energije unutark� w SSTmodela turbulencije glasi:

¶k
¶t

+ Ñ� (uk) � kÑ� u � Ñ� (Gk;e f fÑk) = min(G; c1b � kw) � b � kw; (3)

gdje c1 i b � ozna�cavaju konstante modela. Jednad�zba speci��cne disipacije turbulentne ki-

neti�cke energije glasi:

¶w
¶t

+ Ñ� (uw) � wÑ� u � Ñ� (Gw;e f fÑw) =

gmin
�
S2;

c1

a1
b � w max

�
a1w; b1F23

p
S2

� �

� bw2 + ( 1� F1)CDkw;

(4)
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gdjeGw;e f f ozna�cava efektivnu difuziju za poljew, S2 kvadrat simetri�cnog dijela tenzora gra-

dijenta brzine,F1 funkciju mije�sanja,CDkw medudifuziju, dok sua1, b i c1 konstante modela.

Struktura blok-sustava

Većina CFD algoritama koristi odvojene algoritme, koji rje�savaju svaku jednad�zbu zasebno,

jednu nakon druge. Nedostatak takvih algoritama je u eksplicitnom sprezanju jednad�zbi, tj.

rje�senja jednad�zbi se moraju znatno podrelaksirati radi osiguravanja numeri�cke stablinosti te

konvergencije rje�senja. Prilikom implicitnog sprezanja, jednad�zbe se rje�savaju simultano, unu-

tar blok-matrice,�sto rezultira vécim linearnim sustavom, ali smanjenjem potrebe za podrelak-

siranjem te ubrzavanjem procesa konvergencije rje�senja.

Prostornom diskretizacijom domene (koristeći metodu kona�cnih volumena) dobivamo line-

arni sustav jednad�zbi:
0

B
B
B
B
B
B
@

a1;1 a1;2 � � � a1;N

a2;1 a2;2 � � � a2;N
...

...
...

...

aN;1 aN;2 � � � aN;N

1

C
C
C
C
C
C
A

0

B
B
B
B
B
B
@

f 1

f 2
...

f N

1

C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
@

b1

b2
...

bN

1

C
C
C
C
C
C
A

, (5)

gdje N ozna�cava broj kontrolnih volumena,ai; j �clan matrice,f i vrijednost polja ućeliji i za

koju se rje�sava sustav, dokbi ozna�cava desnu stranu jednad�zbe záceliju i.

Kod odvojenih algoritama,�clanovi matricaai; j , vrijednosti poljaf i i bi su skalari jer se

svaka jednad�zba rje�sava zasebno. Prilikom implicitnog sprezanja jednad�zbi, odnosno kod blok-

matrica,ai; j je tenzor dimenzijan� n gdje jen broj implicitno spregnutih jednad�zbi, u skladu

s tim f i i bi postaju vektori dimenzijan.

U ovom se radu razmatraju dvojednad�zbeni modeli turbulencija, stoga radi jednostavnijeg i

preglednijeg prikaza uvode se dvije generi�cke, uvijek pozitivne, varijablef A i f B te pripadajúce

generi�cke skalarne transportne jednadn�zbe:

¶ f A

¶t
+ Ñ� (uf A) � f AÑ� u � Ñ� (GAÑf A) = SA ; (6)

¶ f B

¶t
+ Ñ� (uf B) � f BÑ� u � Ñ� (GBÑf B) = SB ; (7)

gdje suSA i SB neto izvorski�clanovi, koji u sebi uklju�cuju sve izvorske i ponorske�clanove

jednad�zbe, stoga mogu poprimiti i pozitivnu i negativnu vrijednost. U slu�caju implicitnog
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sprezanja jednad�zbi (6) i (7), f i postaje vektor:

f i =

0

@
f Ai

f Bi

1

A , (8)

a �clan matriceai; j tenzor:

ai; j =

0

@
af Ai;f A j af Ai;f B j

af Bi;f A j af Bi;f B j

1

A : (9)

Linearizacija

Prije umetanja jednad�zbi u blok-matricu, neto izvorski�clanovi moraju biti linearizirani po svim

varijablama koje se tretiraju implicitno:

Sn
A � So

A +
�

¶SA

¶ f A

� o

(f n
A � f o

A) +
�

¶SA

¶ f B

� o

(f n
B � f o

B) ; (10)

Sn
B � So

B +
�

¶SB

¶ f A

� o

(f n
A � f o

A) +
�

¶SB

¶ f B

� o

(f n
B � f o

B) ; (11)

gdje eksponent�n ozna�cava implicitno tretirani�clan, a�o ozna�cava eksplicitno tretirani�clan.

Nakon linearizacije dobiveni�clanovi se analiziraju te razvrstavaju u odgovarajuće grupe:

Sn
A = S+

A + S�
Af n

B + S�
A f n

A ; (12)

Sn
B = S+

B + S�
Bf n

A + S�
B f n

B ; (13)

gdje suS+ eksplicitni (uvijek pozitivni) izvori, S� (uvijek pozitivni) izvori koji implicitno

spre�zu jednad�zbe, aS� implicitni (uvijek negativni) ponori. Analiza i preraspodjela produkata

linearizacija nu�zna je radi o�cuvanja pozitivnosti rje�senja jednad�zbi. Varijable koje se javljaju

unutar modela turbulencije (npr.k, e, w itd.) su po de�niciji uvijek pozitivne vrijednosti te u

slu�caju pojavljivanja negativnog rje�senja u procesu rje�savanja sustava jednad�zbi, �cesto uzrokuju

destabilizaciju i ne�zeljene u�cinke na ostatak prora�cuna. Implicitno tretiranje ponora pridonosi

dijagonalnoj dominantnosti matrice�sto povoljno utje�ce na linearne rje�sava�ce. Izvori koji im-

plicitno spre�zu jednad�zbe nalaze se izvan dijagonale�clana matrice (9), stoga njihov predznak

mora biti suprotan od onih na dijagonali kako ne bi negativno utjecao na dijagonalnu dominant-

nost, isto se pravilo primjenjuje i za eksplicitne izvore jer desna strana jednadn�zbe, kod uvijek

pozitivnih varijabli, mora biti suprotnog predznaka od dijagonale da bi se osigurala pozitivna
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Slika 1: Doprinos pojedinih produkata linearizacije blok-sustavu.

ograni�cenost rje�senja. Doprinos pojedinih�clanova jednad�zbi (12) i (13) blok-sustavu prikazan

je na slici 1.

Implementacija implicitno spregnutog k� e modela turbulencije

Nakon manipulacije ponora unutar jednad�zbe (1), nakon provedene linearizacije te analize

�clanova, implicitno spregnutik � e model turbulencije implementiran je u sljedećoj formi:

¶k
¶t

+ Ñ� (uk) � kÑ� u � Ñ� (Gk;e f fÑk) = G+ Cm
(ko)2

nt
� 2Cm

ko

nt
kn ; (14)

¶e
¶t

+ Ñ� (ue) � eÑ� u � Ñ� (Ge;e f fÑe) = C1
eo

ko G+ C2

�
eo

ko

� 2

kn� 2C2
eo

ko en ; (15)
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gdje su�clanovi ozna�ceni plavom bojom izvori koji implicitno spre�zu jednadn�zbe, a�clanovi

ozna�ceni crvenom bojom implicitni ponori.

Implementacija implicitno spregnutog k� w SSTmodela turbulencije

Nakon linearizacije te analize�clanova jednad�zbi (3) i (4), implicitno spregnutik� w SSTmodel

turbulencije implementiran je u sljedećoj formi:

¶k
¶t

+ Ñ� (uk) � kÑ� u � Ñ� (Gk;e f fÑk) = min(G; c1b � kown) � b � wokn; (16)

¶w
¶t

+ Ñ� (uw) � wÑ� u � Ñ� (Gw;e f fÑw) =

gmin
�
S2;

c1

a1
b � womax

�
a1wo; b1F23

p
S2

� �

+ b (wo)2 � 2bwown+( 1� F1)CDkw ;

(17)

gdje su �clanovi ozna�ceni plavom bojom izvori koji implicitno spre�zu jednadn�zbe, �clanovi

ozna�ceni crvenom bojom implicitni ponori, a�clan(1� F1)CDkw de�niran je izrazom:

(1� F1)CDkw =

8
><

>:

(1� F1)CDkw = (1� F1)CDkw
ko kn CDkw > 0;

(1� F1)CDkw = (1� F1)CDkw
wo wn CDkw < 0:

(18)

Primjeri validacije implementiranih modela turbulencije

Validacija implementiranih modela turbulencija se provodi na dva poznata slu�caja strujanja za

koja su dostupna eksperimentalna mjerenja: odvojeno nestla�civo strujanje oko NACA 4412

aeropro�la pri maksimalnom uzgonu te nestla�civo strujanje u kanalu s naglim pro�sirenjem.

Validacija k � w SSTmodela turbulencije provodi se na oba slu�caja strujanja, dok sek � e

model validira samo na strujanju unutar kanala.

Slika 2 prikazuje usporedbu povr�sinske raspodjele koe�cijenta tlaka po aeropro�lu. Iz nje

je vidljivo da rezultati dobiveni implicitno spregnutimk� w SSTmodelom turbulencije dobro

opisuju trendove eksperimentalnih podataka.

Slika 3 prikazuje polo�zaj �sest linija du�z kojih su dostupni eksperimentalni podaci normalizi-

rane brzine u smjeru pro�la, dok slika 4 prikazuje usporedbu dobivenih rezultata s eksperimen-

talnim podacima iz koje je vidljivo da se numeri�cki rezultati poklapaju s eksperimentalnima.

xvii



0 0.2 0.4 0.6 0.8 1
x/c

-8

-6

-4

-2

0

2

C
p

coupled k - w SST
experiment (Coles & Wadcock)

NACA 4412
Surface Pressure Coefficient

Slika 2: NACA 4412: Usporedba povr�sinske raspodjele koe�cijenta tlaka.
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0.7863 0.8418 0.8973

0.9528

Slika 3: NACA 4412: Polo�zaj linija du�z kojih su dostupni eksperimentalni podaci.
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Slika 4: NACA 4412: Usporedba normaliziranih pro�la brzine u smjeru aeropro�la.
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Slika 5 prikazuje usporedbu povr�sinske raspodjele koe�cijenta tlaka po donjem zidu kanala,

a slika 6 usporedbu povr�sinske raspodjele koe�cijenta trenja po donjem zidu kanala. Iz njih

je vidljivo da rezultati dobiveni obama implicitno spregnutim modelima turbulencije dobro

opisuju trendove eksperimentalnih podataka.
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Slika 5: BFS: Usporedba raspodjele koe�cijenta tlaka du�z donjeg zida.

Slika 7 prikazuje polo�zaj pet linija du�z kojih su dostupni eksperimentalni podaci normalizi-

rane brzine ux smjeru, dok slika 8 prikazuje usporedbu dobivenih rezultata s eksperimentalnim

podacima iz koje je vidljivo da se numeri�cki rezultati dobiveni obama implementiranim mode-

lima poklapaju s eksperimentalnima.
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Slika 6: BFS: Usporedba raspodjele koe�cijena trenja du�z donjeg zida.

Slika 7: BFS: Polo�zaj linija du�z kojih su dostupni eksperimentalni podaci.
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(a) x/H = -4, (b) x/H = 1,

(c) x/H = 4, (d) x/H = 6,

(e) x/H = 10.

Slika 8: BFS: Usporedba normaliziranih pro�la brzine u x smjeru.
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Usporedba performansi implementiranih implicitno spregnutih modela s

odvojenim modelima turbulencije

Provodi se i usporedba performansi implementiranih implicitno spregnutih modela s odgova-

rajućim postojécim odvojenim ina�cicama modela turbulencija. Sli�cno kao i prilikom validacije,

usporebak� w SSTmodela provodi se na oba slu�caja strujanja, dok sek� e model usporeduje

samo na slu�caju strujanja unutar kanala.

Slika 9 prikazuje polo�zaj triju sondi pomócu kojih su prácene vrijednosti polja kroz itera-

cije. Slike 10 i 11 prikazuju usporedbu konvergencije vrijednosti polja implicitno spregnutog i

odvojenogk� e modela te spregnutog i odvojenogk� w SSTmodela turbulencije.

Slika 9: BFS: Polo�zaj sondi.
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(a) Ux, (b) Uy,

(c) p, (d) nt .

Slika 10: BFS: Usporedba konvergencije vrijednosti polja implicitno spregnutog i odvojenog

k� e modela turbulencije.
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(a) Ux, (b) Uy,

(c) p, (d) nt .

Slika 11: BFS: Usporedba konvergencije vrijednosti polja implicitno spregnutog i odvojenog

k� w SSTmodela turbulencije.
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Slika 12 prikazuje konvergenciju minimalnih i maksimalnih vrijednosti polja po iteracijama

za oba implementirana modela te pripadajuće odvojene ina�cice.

(a) max(U), (b) max(p),

(c) min(p).

Slika 12: BFS: Usporedba konvergencije minimalnih i maksimalnih vrijednosti polja.

Slika 13 prikazuje konvergenciju koe�cijenata sile po iteracijama dobivenih implicitno

spregnutim te odvojenimk � w SST modelom turbulencije na slu�caju opstrujavanja NACA

4412 aeropro�la.
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(a) Koe�cijent otpora.

(b) Koe�cijent uzgona.

Slika 13: NACA: Konvergencija koe�cijenata sile po iteracijama.
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Slika 14 prikazuje konvergenciju minimalnih i maksimalnih vrijednosti polja po iteracijama

za implicitno spregnuti te odvojenik� w SSTmodel turbulencije.

(a) max(U), (b) max(p),

(c) min(p).

Slika 14: NACA: Usporedba konvergencije minimalnih i maksimalnih vrijednosti polja.

Slika 15 prikazuje konvergenciju koe�cijenata sile kao funkciju procesorskog vremena, za

implicitno spregnuti te odvojenik� w SSTmodel turbulencije.
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(a) Koe�cijent otpora,

(b) Koe�cijent uzgona.

Slika 15: NACA: Konvergencija koe�cijenata sile kroz procesorsko vrijeme.
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Iz prethodno prikazanih slika vidljivo je da implicitno sprezanje jednad�zbi modela turbulen-

cije pospje�suje mirniju i br�zu konvergenciju rje�senja (ne samo turbulentnih varijabli već i tlaka

i brzine), �cesto sprje�cava prema�sivanje vrijednosti u procesu ra�cunanja te ubrzava konvergen-

ciju minimalnih i maksimalnih vrijednosti polja u prora�cunskoj domeni. Implicitno spregnuti

modeli dosljedniji su u o�cuvanju pozitivnosti varijabli te u kontekstu procesorskog vremena

skrácuju vrijeme trajanja prora�cuna. U slu�caju prora�cuna koe�cijenata sile uzgona i otpora za

NACA 4412 aeropro�l, ubrzanje je otprilike 20%.
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Chapter 1

Introduction

1.1 Background

Development and implementation of implicitly coupled pressure–velocity algorithms for in-

compressible �ows in Computational Fluid Dynamics (CFD) introduced a substantial increase

in the convergence rates for the velocity and pressure equations, compared with corresponding

segregated algorithms (e.g. SIMPLE or PISO) [1]. When implicitly coupled solvers are used

for turbulent �ow simulations, convergence rates are often controlled by segregated treatment

of turbulence model equations. Therefore, implicit coupling of two-equation eddy viscosity

(incompressible) turbulence models,k� e andk� w SST, shall be presented in this thesis.

1.2 Previous and Related Studies

Two-equation turbulence models include two extra transport equations for representation of the

turbulent �ow properties, which are by de�nition positive quantities. Despite their relatively

simple mathematical representation, turbulence model equations present serious numerical dif-

�culties, among which are non-linear coupling, convergence and positivity preserving dif�cul-

ties. The inter-equation coupling is usually strongly non-linear, leading to added numerical

stiffness which usually results in slower convergence. Furthermore, in the process of conver-

gence, non-physical solutions, namely negative values of the turbulence quantities may appear

even if the equation set analytically guarantees to remain positive [2]. Therefore, stability and

boundedness of the implemented turbulence models is becoming an active and challenging �eld

1
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for research.

Ilinca et al. [3, 4] propose a substitution of dependent variables that guarantees positivity of

turbulence variables in numerical simulation algorithms. The approach solves for the natural

logarithm of the turbulence variables which are known to be strictly positive.

Du and Wu [5] prove that the mixed (analytical/numerical) method based on operator split-

ting, which is extended to thek � e turbulence model, does not converge to a stable steady

state solution. Therefore, an unsplit mixed method with implicit treatment of the source term

is proposed.

Wasserman et al. [6] present a robust multigrid method for the solution of Reynolds-

Averaged Navier-Stokes (RANS) equations with two-equation turbulence models. The method

employs a basic relaxation scheme (alternating line Gauss-Siedel) where mean-�ow and tur-

bulence model equations are marched in time in a loosely-coupled manner. The proposed

multigrid method uses an extended version of the unconditionally positive-convergent scheme

for two-equation turbulence models (adapted for use in multigrid) and a strongly coupled multi-

grid cycling strategy.

Moryossef and Levy [7, 8] propose an unconditionally positive-convergent implicit proce-

dure for two-equation turbulence models. The implicit procedure is based on designing the

implicit Jacobian to be an M-matrix. The suggested M-matrix design should guarantee the pos-

itivity of the turbulence equation dependent variables for any time step, without the use of any

a posteriori arti�cial numerical bounding.

In this thesis we shall explore options for accelerated convergence of the two-equation eddy

viscosity turbulence equations by means of block-solution. Here, equations of the turbulence

model are solved together using a block-matrix and a single call of the (iterative) linear equation

solver. This allows us to consider various forms of linearised implicit inter-equation coupling,

with a view of accelerated convergence.

1.3 Thesis Outline

Chapter 2 introduces the basic governing equations in �uid dynamics and gives a brief overview

of turbulence modelling for CFD, with a focus on the (incompressible)k � e andk � w SST

turbulence models and the corresponding wall functions.

Faculty of Mechanical Engineering and Naval Architecture 2



Robert Keser Master's Thesis

Chapter 3 describes the block-system structure which is used to achieve inter-equation cou-

pling. Linearisation procedure for the non-linear source terms is described. Analysis of sta-

bility and boundedness of the linearised model is examined. Furthermore, linearisation and

implementation ofk � e andk � w SSTturbulence models in the block-matrix framework is

summarised.

Chapter 4 presents validation of the implemented turbulence models. Two validation cases

are examined, a separated �ow past a NACA 4412 airfoil at maximum lift and an incompress-

ible turbulent �ow over a backward facing step.

Chapter 5 presents the performance benchmark tests of implemented turbulence models on

both validation cases. The implemented models are compared with the corresponding segre-

gated versions.

Chapter 6 summarises the Thesis and gives a comprehensive conclusion.
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Chapter 2

Turbulent Flow Modelling

Majority of �ows encountered in engineering practice are turbulent by nature, therefore the

ability to appropriately model turbulent phenomena is essential. As Wilcox [9] suggests, an

ideal turbulence model should introduce minimal amount of complexity while capturing the

essence of the relevant physics. Main properties of turbulent �ows are:

� High unsteadiness,

� Three-dimensionality,

� Vorticity,

� High diffusivity (turbulent diffusion),

� Dissipation,

� Coherent structures,

� Fluctuations on broad ranges of length and time scales. [10]

Time-dependent, three-dimensional Navier-Stokes equations describe all the physics of tur-

bulent �ow. However, due to the non-linearity of the convection term, resolving the whole range

of spatial and temporal scales of turbulence is prohibitively expensive for most engineering ap-

plications [9, 11]. The goal of turbulence modelling is to �nd approximate solutions for the

Navier-Stokes equations in a manner that they either describe the turbulence in terms of mean

properties or limit the spatial/temporal resolution requirements associated with the full model

[11].
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2.1 Incompressible Navier–Stokes Equation

The Navier-Stokes or the momentum equation, is the basic governing equation which de-

scribes the motion of viscous �uids and belongs to the class of vector convection-diffusion

equations.The momentum equation is accompanied by the continuity (mass conservation) and

the energy conservation equation. This thesis does not deal with heat transfer, therefore the

energy equation is neglected.

The momentum and the continuity equation for the incompressible �ow read:

¶u
¶t

+ Ñ� (uu) � Ñ� (nÑu) = � Ñp; (2.1.1)

Ñ� u = 0; (2.1.2)

whereu is the instantaneous velocity �eld,n is the kinematic molecular viscosity andp is the

kinematic pressure de�ned asp = P=r , whereP is the pressure andr is the density.

2.2 Overview of Turbulence Modelling for CFD

There are three basic approaches for predicting turbulent �ows in CFD [9]:

� Direct Numerical Simulation (DNS), solves the Navier-Stokes equations for all scales

without turbulence modelling. Suf�cient temporal and spatial resolution is required.

� Large Eddy Simulation (LES), solves �ltered Navier-Stokes equations, where large scale

turbulence and coherent structures are simulated, but �ltered small scale eddies are mod-

elled.

� Reynolds-Averaged Navier-Stokes equations (RANS), solves the averaged Navier-Stokes

equations, where turbulent �uctuations are appropriately modelled. Consequently, a

coarser spatial and temporal resolution is suf�cient and it is possible to introduce a con-

vent of solutions which are steady or two-dimensional in the mean, compared to the in-

trinsically three-dimensional and unsteady nature of turbulent �ows. Additional closure

correlations are required.

In this thesis, only the RANS approach will be considered in a more detailed manner.
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2.2.1 Reynolds Temporal Averaging of Navier-Stokes Equations

If the objective of the simulations is to obtain the mean properties of the �ow without consid-

ering the details of turbulent �uctuations, Reynolds averaging is the most appropriate choice.

Following the Reynolds decomposition ofu and p, instantaneous �elds are decomposed

into a mean and �uctuating part:

u = u+ u0; (2.2.1)

p = p+ p0; (2.2.2)

where� denotes the mean and�0denotes the �uctuating part.

Time averaging of Equations (2.1.1) and (2.1.2) yields the Reynolds-Averaged Navier-

Stokes Equations and the time-averaged continuity equation:

¶u
¶t

+ Ñ� (uu) � Ñ� (nÑu) = � Ñp� Ñ�
�
u0u0

�
; (2.2.3)

Ñ� u = 0: (2.2.4)

Equation (2.2.4) is identical to (2.1.2), with the mean velocity replacing the instantaneous ve-

locity. The only difference between the time-averaged Equation (2.2.3) and instantaneous mo-

mentum Equation (2.1.1) is the appearance of the correlation� u0u0, which is commonly known

as the Reynolds-stress tensor [9]. As Equations (2.2.3) and (2.2.4) do not form a closed set, a

turbulence model is introduced to model the Reynolds-stress tensor. The most common types

of turbulence models are the eddy viscosity models in which the Reynolds-stress tensor is mod-

elled with:

� u0u0= nt

�
Ñu+ ( Ñu)T

�
�

2
3

I k; (2.2.5)

wherent is the kinematic eddy viscosity,I is the identity tensor (Kronecker delta) andk is the

turbulent kinetic energy.

Following [10], the molecular viscosityn is replaced with the effective viscosityne f f which

is equal to the sum of the molecular and eddy viscosity (turbulent viscosity)ne f f = n + nt .

The Reynolds-averaged momentum equation with an eddy-viscosity turbulence model has the

following form:
¶u
¶t

+ Ñ� (uu) � Ñ�
�
ne f fÑu

�
= � Ñp; (2.2.6)

and the continuity equation remains the same, Equation (2.2.4).

Eddy viscosity models are often divided into [9]:
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� Algebraic models,

� One-equation models,

� Two-equation models.

Only the two-equation models are covered in scope of this thesis, more information about

remaining models can be found in [9].

2.3 Two-Equation Turbulence Models

The two-equation models are the work-horse of engineering simulations today. Therefore, two

extensively used two-equation turbulence modelsk� e andk� w SSTwill be analysed in this

thesis. [12, 11]

In most of the two-equation models, the �rst equation is the turbulent kinetic energyk equa-

tion which determines the velocity scale, and the second equation is the turbulent dissipation

e equation which determines the length scale of the turbulence. Instead ofe, the inverse time

scalew (speci�c turbulence dissipation or eddy turnover time) can also be used as the second

equation.

At this point, it is useful to emphasize that the complexity of turbulence phenomena makes

it unlikely that any single Reynolds-averaged model will be able to represent all turbulent �ows.

Hence, turbulence models should be regarded as engineering approximations rather than scien-

ti�c laws [10].

Equations described in the following sections represent the implementation of the incom-

pressiblek � e andk� w SSTmodels in OpenFOAM [13], more precisely in the community-

driven fork of the OpenFOAM, i.e. the OpenFOAM Extend-Project [14] (hereinafter referred

to as foam-extend).

2.3.1 Incompressiblek� e Turbulence Model

In foam-extend,k � e turbulence model (kEpsilon ) is implemented according to Jones and

Launder [15] and is often referred to as the standardk � e turbulence model. In the standard
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k� e model the turbulent kinetic energy equation reads:

¶k
¶t

+ Ñ� (uk) � kÑ� u � Ñ� (Gk;e f fÑk) = G� e; (2.3.1)

Despite the fact that the �ow is assumed to be incompressible, the� kÑ� u term is implemented,

because it enhances the conservativeness of the solution during the calculation.

Gk;e f f = n + nt : (2.3.2)

Dissipation of turbulence kinetic energy equation reads:

¶e
¶t

+ Ñ� (ue) � eÑ� u � Ñ� (Ge;e f fÑe) = C1
e
k

G� C2
e2

k
; (2.3.3)

Ge;e f f = n +
nt

se
: (2.3.4)

The eddy viscosity is de�ned as:

nt = Cm
k2

e
; (2.3.5)

and the production of turbulent kinetic energy:

G = 2nt

�
�
�
�
1
2

�
Ñu+ ( Ñu)T

� �
�
�
�

2

: (2.3.6)

Closure coef�cients have the following values:Cm = 0:09,C1 = 1:44,C2 = 1:92,se = 1:3.

2.3.2 Incompressiblek� w SSTTurbulence model

In foam-extend,k � w SSTturbulence model (kOmegaSST) is implemented according to the

model described by Menter and Esch [16] with updated coef�cients from [12], but with the

consistent production according toNASA Turbulence Modeling Resourceweb-page [17]. Op-

tional F3 term for rough walls is added according to Hellsten [18]. In thek � w SSTmodel

turbulent kinetic energy equation reads:

¶k
¶t

+ Ñ� (uk) � kÑ� u � Ñ� (Gk;e f fÑk) = min(G; c1b � kw) � b � kw; (2.3.7)

Gk;e f f = aknt + n: (2.3.8)

Speci�c dissipation rate equation reads:

¶w
¶t

+ Ñ� (uw) � wÑ� u � Ñ� (Gw;e f fÑw) =

gmin
�
S2;

c1

a1
b � w max

�
a1w; b1F23

p
S2

� �

� bw2 + ( 1� F1)CDkw;

(2.3.9)
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Gw;e f f = awnt + n: (2.3.10)

The eddy viscosity is calculated as:

nt =
a1k

max
h
a1w; b1F23

p
2

�
�
� 1

2

�
Ñu+ ( Ñu)T

� �
�
�
i (2.3.11)

and the production of turbulent kinetic energy reads:

G = ntS2; (2.3.12)

S2 = 2

�
�
�
�
1
2

�
Ñu+ ( Ñu)T

� �
�
�
�

2

: (2.3.13)

Thek� w SSTformulation combines the best properties ofk� w andk� e turbulence models.

The use ofk � e in the free-stream removes the the sensitivity of the originalk � w to the

inlet free-stream turbulence properties. The use ofk � w in the inner parts of the boundary

layer makes the model usable close to the wall without damping functions. Thus, each of the

constants represents a blend of constants from set1 (k� w) and set2 (k� e):

ak = F1 (ak1 � ak2) + ak2; (2.3.14)

aw = F1 (aw1 � aw2) + aw2; (2.3.15)

b = F1 (b1 � b2) + b2; (2.3.16)

g = F1 (g1 � g2) + g2; (2.3.17)

where the blending is performed via blending functions,F1 is a function that is one in the

sublayer and logarithmic region of the boundary layer and gradually switches to zero in the

wake region [19]:

F1 = tanh
h
(arg1)4

i
; (2.3.18)

arg1 = min

(

min

"

max

 p
k

b � wy
;

500n
y2w

!

;
4aw2k

CDkw+ y2

#

; 10

)

; (2.3.19)

F2 is a function that is one for boundary-layer �ows and zero for free shear layers [19]:

F2 = tanh
h
(arg2)2

i
; (2.3.20)

arg2 = min

"

max

 
2
p

k
b � wy

;
500n
y2w

!

; 100

#

: (2.3.21)
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Hellsten [18] introduced the implementation of functionF3 designed to prevent the SST limi-

tation from being activated in the roughness layer in rough-wall �ows, i.e. the layer very close

to the rough wall:

F3 = 1� tanh
h
(arg3)4

i
; (2.3.22)

arg3 = min
�

150n
y2w

;10
�

: (2.3.23)

Blending functionF23 is by default equal toF2, but if the optionalF3 function is activated,F23

becomes equal to the product of bothF2 andF3.

F23 =

8
><

>:

F23 = F2 default setting,

F23 = F2F3 optional term for rough-wall �ows.
(2.3.24)

Positive portion of the cross-diffusion term is introduced for numerical stability:

CDkw+ = max
�
CDkw; 10� 10� ; (2.3.25)

CDkw = 2aw2
Ñk � Ñw

w
: (2.3.26)

Closure coef�cients have the following values:ak1 = 0:85, ak2 = 1, aw1 = 0:5, aw2 = 0:856,

b1 = 0:075,b2 = 0:0828,b � = 0:09,g1 = 5=9, g2 = 0:44,a1 = 0:31,b1 = 1, c1 = 10.

2.4 Near-Wall Treatment

When studying part of the wall bounded turbulent �ows, the near-wall region is traditionally

divided into the inner and outer turbulent boundary layer. In this thesis only the inner layer will

be brie�y investigated since all the important phenomena for near-wall �ow modelling in CFD

occur in this layer. Various regions of the turbulent boundary layer are shown in Figure 2.4.1.

Roughly speaking, the inner layer consists of: the viscous linear sublayer(0 < y+ < 5), the

buffer sublayer(5 < y+ < 30) and the inertial sublayer(30< y+ < 200� 300) wherey+ is the

normalised distance to the wall calculated as:

y+ =
C1=4

m k1=2

n
y: (2.4.1)
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Figure 2.4.1: Regions of the turbulent boundary layer. [20]

In the viscous linear sublayer, molecular viscosity is dominant and the turbulence effects are

negligible. In the inertial sublayer, turbulent viscosity is dominant, making the molecular vis-

cosity unimportant. In the buffer sublayer both turbulent and molecular viscosities are equally

important.

The presented assumptions allow implementation of simple expressions, which model be-

haviour of important variables in the near-wall region (as functions of wall distance). Fig-

ure 2.4.2 shows the dependency of dimensionless velocityU+ with respect toy+ (the red line
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represents the experimental observations and the two blue lines represent the two derived pro-

�les). The linear pro�le in the viscous sublayer and the logarithmic pro�le in the inertial

sublayer �t the experimental observations, while the buffer sublayer can be viewed as a smooth

transition between the two. Consequently, it is recommended to put the �rst cell centre either

in the viscous linear sublayer or in the inertial sublayer. The buffer sublayer should be avoided,

as it represents a transitional region from the linear to the log pro�le.

Figure 2.4.2: Law of the wall. [21]

Positioning the �rst cell in the linear sublayer is an attribute of low Reynolds turbulence

modelling, while placing it in the inertial (log-layer) is a characteristic of high Reynolds mod-
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elling.

Figure 2.4.3: High Reynolds number vs. low Reynolds number approach. [22]

In CFD codes, the previously described correlations are implemented as wall functions. The

focus of this thesis is the implicit coupling of two-equation incompressiblek� w SSTandk� e

turbulence models, therefore wall boundary conditions fork, e andw, and their implementation

in foam-extend will be covered in detail.

In foam-extend wall function for �eldk is denoted withkqRWallFunction , for �eld e

epsilonWallFunction , for w omegaWallFunction and the correction fornt is done in

nutWallFunction .

2.4.1 Standard Wall Functions fork� e Turbulence Model

In foam-extend,k � e turbulence model is implemented only as a high Reynolds version and

therefore uses standard wall functions, which avoid solving the �ow inside the viscous sublayer

by using empirical relations applicable in the inertial sublayer. Furthermore, in adjacent cells

to the wall, Equation (2.3.3) fore is not solved and an algebraic expression is used instead:

e =
C3=4

m k3=2

k y
; (2.4.2)
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wherek is the von Ḱarmán constant with a default value of 0:41. The production termG in

Equation (2.3.1) fork is calculated using the following expressions:

G =

8
><

>:

G = Gvis for y+ � y+
lam,

G = Glog for y+ > y+
lam,

(2.4.3)

Gvis = 0; (2.4.4)

Glog =
((nt + n) jÑuj)2

k C1=4
m k1=2y

: (2.4.5)

Thek equation is still solved in cells adjacent to the wall. Equation (2.4.5) was altered in com-

parison with [23] for achieving consistency with ANSYS Fluent implementation [24]. Simi-

larly as in [23] the normalised distance to the wally+ is calculated from Equation (2.4.1) and

the interface between the viscous and the inertial sublayer (log-layer)y+
lam is calculated with:

y+
lam =

ln
�
max

�
E y+

lam; 1
��

k
; (2.4.6)

whereE is a dimensionless constant with a default value of 9:8. Equation (2.4.6) is solved

iteratively in ten iterations.

2.4.2 Automatic Wall Treatment for k� w SSTTurbulence Model

In contrast to thek� e, thek� w SST(andk� w) turbulence model does not need extra damping

functions to act as a low Reynolds model because thew equation has a known solution in both

viscous and inertial (log-layer) sublayer. Adopting this property, Menter [16] developed a

blending technique which allows a smooth transition from high to low Reynolds formulation

and vice versa. Despite the smooth shift, automatic wall treatment does not give a correct

representation of the buffer layer. The blending is performed by:

w =
q

w2
vis+ w2

log; (2.4.7)

wherewvis andwlog are de�ned as follows:

wvis =
6n

b1y2 ; (2.4.8)

wlog =
k1=2

k C1=4
m y

: (2.4.9)
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Similarly as in the standard wall functions fork � e, Equation (2.3.9) forw is not solved

for cells adjacent to the wall, rather, its value is obtained from Equation (2.4.7). In these cells

the production termG in Equation (2.3.9) is modi�ed according to:

G =

8
><

>:

G = Gvis if y+ � y+
lam,

G = Glog if y+ > y+
lam.

(2.4.10)

Gvis = 0; (2.4.11)

Glog =
C1=4

m k1=2 (nt + n) jÑuj
k y

; (2.4.12)

wherey+ andy+
lam are calculated from Equation (2.4.1) and Equation (2.4.6).
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Chapter 3

Implicit Coupling of Two-Equation

Turbulence Models

In the previous chapter, a short theoretical overview of turbulence modelling in CFD was de-

scribed and special attention was given on two-equation turbulence models (k � e and k �

w SST) and their implementation in foam-extend. In this chapter, implementation of two-

equation turbulence models (k� e andk� w SST) in the block-matrix framework is presented.

Related problems regarding the linearisation, stability and boundedness of the models are also

investigated.

3.1 Block-Coupling

Most CFD algorithms use segregated algorithms in order to solve two-equation turbulence

models, where the turbulence equations are solved sequentially one after another. Bottleneck

of segregated algorithms is the explicit coupling, where the solution variables need to be sub-

stantially under-relaxed to ensure numerical stability. On the other hand, segregated algorithms

are memory-ef�cient because only one discretisation matrix at a time needs to be stored.

Implicit coupling introduces a simultaneous way of solving governing equations. All the

equations are considered as part of a single system which has a block-banded structure [10], and

all equations in the block are solved together. Implicit coupling should be able to improve con-

vergence (under-relaxation factors can be considerably increased) but it leads to a substantially

larger linear system and an increased memory usage [25].

16



Robert Keser Master's Thesis

3.2 Block-System Structure

The structure of the block-system can be represented by two levels: the �rst is bound to the

calculated compact-stencil discretisation of the computational domain with control volumes

(CV) and the second handles the format of the each matrix entry [25].

Spatial discretisation (via �nite volume method) of the domain intoN CVs, leads to a linear

system ofN unknowns:
0

B
B
B
B
B
B
@

a1;1 a1;2 � � � a1;N

a2;1 a2;2 � � � a2;N
...

...
...

...

aN;1 aN;2 � � � aN;N

1

C
C
C
C
C
C
A

0

B
B
B
B
B
B
@

f 1

f 2
...

f N

1

C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
@

b1

b2
...

bN

1

C
C
C
C
C
C
A

, (3.2.1)

whereai; j is a matrix entry,f i is the �eld value to be solved in the celli, andbi is the right hand

side (RHS) term for the celli.

In the segregated approach, each matrix entry is a scalar, since every equation is solved

sequentially. In the simultaneous implicitly coupled approach, eachf i is an-dimensional vec-

tor, wheren is the number of the implicitly coupled equations. The same applies for the RHS

vectorbi and each matrix entryai; j is an� n tensor, which models the coupling between the

implicitly coupled equations.

If the two-equation turbulence models are used, two additional transport equations need to

be solved, which are coupled through source and sink terms. Assume that the two transported

variables aref A andf B (which are also positive-bounded) and that the transport equations have

the following generic form:

¶ f A

¶t
+ Ñ� (uf A) � f AÑ� u � Ñ� (GAÑf A) = SA ; (3.2.2)

¶ f B

¶t
+ Ñ� (uf B) � f BÑ� u � Ñ� (GBÑf B) = SB ; (3.2.3)

whereSA and SB are net source terms, which are both functions off A and f B, i.e. SA =

SA (f A; f B) andSB = SB (f A; f B). In case of implicit coupling of the two-equations, �eld value

f i in the celli is a two-dimensional vector:

f i =

0

@
f Ai

f Bi

1

A , (3.2.4)
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and each matrix entryai; j is a 2� 2 tensor which models the coupling between the two-

equations:

ai; j =

0

@
af Ai;f A j af Ai;f B j

af Bi;f A j af Bi;f B j

1

A ; (3.2.5)

whereaf Ai;f A j models the coupling betweenf A in cell i with f A in cell j , af Ai;f B j models the

coupling betweenf A in cell i with f B in cell j , af Bi;f A j models the coupling betweenf B in cell

i with f A in cell j andaf Bi;f B j models the coupling betweenf B in cell i with f B in cell j .

Here, it is important to emphasize that the turbulence equations are mainly coupled through

their source terms, as shown in Chapter 2, therefore, cross-coupling termsaf Ai;f B j andaf Bi;f A j

which are located on the off-diagonal of the matrix entryai; j (3.2.5) have a nonzero value only

on the diagonal of the linear system (3.2.1), i.e. wheni = j.

Furthermore, the global sparseness pattern related to mesh connectivity can be preserved

by choosing an appropriate form of the block-matrix layout.

3.3 Analysis of Stability and Boundedness of the Linearised

Model

Turbulence variables, e.g. turbulent kinetic energyk, dissipatione and speci�c dissipationw

belong to the group of positive-bounded variables, i.e. these variables are physically or by

de�nition non-negative quantities, therefore their value should always remain positive during

the calculation. If the negative values do occur, numerical instabilities are inevitable, which

may have an undesirable effect on the rest of the calculation. [26]

If f is a generic, positive-bounded scalar dependent variable and Equation (3.3.1) is the

appropriate generic scalar transport equation:

¶ f
¶t

+ Ñ� (uf ) � f Ñ� u � Ñ� (GÑf ) = S; (3.3.1)

the net source termS in Equation (3.3.1), accounts for any sources or sinks that either create

or destroyf , thereforeScan acquire both positive and negative values. If the net source term

is not properly handled, the positive-bounded variable may acquire erroneous negative values.

Hence, Patankar [26] suggests dividing the net source term into the source (which is always

Faculty of Mechanical Engineering and Naval Architecture 18



Robert Keser Master's Thesis

positive) and sink (which is always negative) terms:

S= S+ + S� f ; (3.3.2)

where the sink termS� is treated implicitly and the source termS+ is treated explicitly. Implicit

treatment of the sink term, increases the diagonal dominance of the matrix, which is conducive

to convergence and explicit treatment of the source, enhances the boundedness and the stability

of the solution.

In case of turbulence modelling, the source/sink terms are often non-linear functions of

the dependent variable itself. Since the discretised equations are solved using linear algebraic

solvers, the non-linear dependency needs to be linearised. In this thesis the Picard's method is

adopted:

Sn � So +
�

¶S
¶f

� o

(f n � f o) ; (3.3.3)

where the superscript�n denotes the new time-level (implicit treatment) and the superscript�o

denotes the old time-level (explicit treatment).

After the linearisation, the source terms are converted into the explicit form and added into

theS+ term, while the sink terms are treated implicitly by combining them intoS� :

Sn = S+ + S� f n : (3.3.4)

If the two-equation turbulence model equations should be solved in an implicitly coupled

manner, linearisation of the net source terms with respect to both variables is necessary. Again,

the two generic transport equations (Equations (3.2.2) and (3.2.3)) are used as an example and

the linearisation is performed according to the Taylor expansion:

Sn
A � So

A +
�

¶SA

¶ f A

� o

(f n
A � f o

A) +
�

¶SA

¶ f B

� o

(f n
B � f o

B) ; (3.3.5)

Sn
B � So

B +
�

¶SB

¶ f A

� o

(f n
A � f o

A) +
�

¶SB

¶ f B

� o

(f n
B � f o

B) : (3.3.6)

Despite the fact that the equations are inserted into the block-system and that the system is

solved in a simultaneous manner, proper net source term treatment is necessary, if the bound-

edness of the variables is to be preserved.
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Applying the same reasoning for the net source term treatment as previously described in

this section, products of linearisation are divided into three groups: the explicit sourcesS+ , the

implicit cross-coupling sourcesS� and the implicit sinksS� :

Sn
A = S+

A + S�
Af n

B + S�
A f n

A ; (3.3.7)

Sn
B = S+

B + S�
Bf n

A + S�
B f n

B : (3.3.8)

The contribution of the individual terms from Equations (3.3.7) and (3.3.8) to the block-

system is shown in Figure 3.3.1.

S+
A

0

@
af Ai;f Ai af Ai;f Bi

af Bi;f Ai af Bi;f Bi

1

A ,

0

@
bf Ai

bf Bi

1

A

S+
B

0

@
af Ai;f Ai af Ai;f Bi

af Bi;f Ai af Bi;f Bi

1

A ,

0

@
bf Ai

bf Bi

1

A

S�
A

0

@
af Ai;f Ai af Ai;f Bi

af Bi;f Ai af Bi;f Bi

1

A ,

0

@
bf Ai

bf Bi

1

A

S�
B

0

@
af Ai;f Ai af Ai;f Bi

af Bi;f Ai af Bi;f Bi

1

A ,

0

@
bf Ai

bf Bi

1

A

S�
A

0

@
af Ai;f Ai af Ai;f Bi

af Bi;f Ai af Bi;f Bi

1

A ,

0

@
bf Ai

bf Bi

1

A

S�
B

0

@
af Ai;f Ai af Ai;f Bi

af Bi;f Ai af Bi;f Bi

1

A ,

0

@
bf Ai

bf Bi

1

A

Figure 3.3.1: Contribution of the individual products of the linearisation to the block-system.
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Regarding the division and treatment of the products of the linearisation, the only major

difference between the segregated and the implicitly coupled approach lies in theS� term,

which models the implicit cross-coupling of the two-equations. Since this term lies on the

off-diagonal of the matrix entryai;i , its sign needs to be opposite of that fromS� , in order to

preserve the diagonal dominance of the block-matrix. If the same sign (negative on the RHS

of the equation) is used, problems regarding the boundedness of the always positive variables

emerge (which destabilises the convergence of the solution), hence lower under–relaxation

factors need to be used which directly negates potential bene�ts of the implicit cross-coupling.

Therefore, negative signs of theS� term should be avoided at all cost.

3.4 Linearisation and Implementation of the Two-Equation

Models

In this section the derived guidelines for the linearisation and proper net source treatment of

implicitly coupled equations are carried out on the incompressiblek� e andk� w SSTturbu-

lence models. Furthermore, implementation of the implicitly coupled turbulence equations in

the block-matrix framework is presented.

3.4.1 Linearisation and Implementation of thek� e Turbulence Model in

the Block-Matrix Framework

Prior to the implementation of thek� e turbulence model in the block-matrix framework, some

manipulations of Equations (2.3.1) and (2.3.1) and linearisation of the corresponding net source

terms are necessary.

If Sk is the (net source term) RHS of Equation (2.3.1) fork, in the current formulation of

thek� e turbulence model,Sk is equal to:

Sk = G� e: (3.4.1)

The linearisation of theSk with respect to both variables yields:

Sn
k � So

k +
�

¶Sk

¶k

� o

(kn � ko) +
�

¶Sk

¶e

� o

(en � eo) : (3.4.2)
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and division of the linearisation products in appropriate groups (see Section 3.3) is:

Sn
k = S+

k + S�
ken + S�

k kn : (3.4.3)

This gives the corresponding terms:S�
k = 0, S�

k = 0 andSn
k = S+

k . Therefore, the current

formulation of Equation (2.3.1) is not suitable for implicit coupling. In order to model the

cross-coupling in a numerically bene�cial way, the sink term is substituted with [27, 28, 29]:

� e = � Cm
k2

nt
: (3.4.4)

Also, the production termG is substituted with Equation (2.3.6) wherent is expressed as in

Equation (2.3.5):

G = 2Cm

�
�
�
�
1
2

�
Ñu+ ( Ñu)T

� �
�
�
�

2k2

e
: (3.4.5)

After the substitutions, the new formulation of thek equation has the following form:

¶k
¶t

+ Ñ� (uk) � kÑ� u � Ñ� (Gk;e f fÑk) = 2Cm

�
�
�
�
1
2

�
Ñu+ ( Ñu)T

� �
�
�
�

2k2

e
� Cm

k2

nt
: (3.4.6)

Once again, the linearisation of the newSk (with respect to both variables) is performed. For

clarity, the linearisation is performed one term at a time. Moreover the linearisation products

which have a contribution to the implicit cross-coupling sourceS�
k are coloured blue and prod-

ucts which have a contribution to the implicit sinkS�
k are coloured red:

C�
m = 2Cm

�
�
�
�
1
2

�
Ñu+ ( Ñu)T

� �
�
�
�

2

; (3.4.7)

�
C�

m
k2

e

� n

�
�

C�
m

k2

e

� o

+

0

B
B
B
@

¶
�

C�
m

k2

e

�

¶k

1

C
C
C
A

o

(kn � ko) +

0

B
B
B
@

¶
�

C�
m

k2

e

�

¶e

1

C
C
C
A

o

(en � eo) ; (3.4.8)

�
C�

m
k2

e

� n

= C�
m

(ko)2

eo + 2C�
m

ko

eo(kn � ko) � C�
m

(ko)2

(eo)2(en � eo) ;

= 2C�
m

ko

eo kn � C�
m

�
ko

eo

� 2

en ;

(3.4.9)

�
� Cm

k2

nt

� n

�
�

� Cm
k2

nt

� o

+

0

B
B
B
@

¶
�

� Cm
k2

nt

�

¶k

1

C
C
C
A

o

(kn � ko) ; (3.4.10)
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�
� Cm

k2

nt

� n

= � Cm
(ko)2

nt
� 2Cm

ko

nt
(kn � ko) ;

= Cm
(ko)2

nt
� 2Cm

ko

nt
kn ;

= Cm
(ko)2

nt
� 2Cm

ko

nt
kn :

(3.4.11)

Although, the substitutions do not give a suitable implicit cross-coupling term, an implicit sink

term is provided:

¶k
¶t

+ Ñ� (uk) � kÑ� u � Ñ� (Gk;e f fÑk) =

2C�
k

ko

eo kn � C�
k

�
ko

eo

� 2

en + Cm
(ko)2

nt
� 2Cm

ko

nt
kn :

(3.4.12)

The following form of thek equation for thek� e turbulence model is reformulated as follows:

¶k
¶t

+ Ñ� (uk) � kÑ� u � Ñ� (Gk;e f fÑk) = G+ Cm
(ko)2

nt
� 2Cm

ko

nt
kn : (3.4.13)

After the reformulation of thek equation, thee equation is investigated.Se is the (net

source term) RHS of Equation (2.3.3). Linearisation of theSe in respect with both variables is

performed according to:

Sn
e � So

e +
�

¶Se

¶k

� o

(kn � ko) +
�

¶Se

¶e

� o

(en � eo) : (3.4.14)

Again, the linearisation products are divided into appropriate groups (see Section 3.3):

Sn
e = S+

e + S�
ekn + S�

e en : (3.4.15)

The linearisation is performed one term at a time and the linearisation products which have

a contribution to the implicit cross-coupling sourceS�
e are coloured blue and products which

have a contribution to the implicit sinkS�
e are coloured red:

�
C1

e
k

G
� n

�
�
C1

e
k

G
� o

+

0

B
@

¶
�
C1

e
k

G
�

¶k

1

C
A

o

(kn � ko) +

0

B
@

¶
�
C1

e
k

G
�

¶e

1

C
A

o

(en � eo) ; (3.4.16)

�
C1

e
k

G
� n

= C1
eo

ko G� C1
eo

(ko)2G(kn � ko) + C1
1
koG(en � eo) ;

= C1
eo

ko G� C1
eo

(ko)2Gkn + C1
1
koGen ;

(3.4.17)
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�
� C2

e2

k

� n

�
�

� C2
e2

k

� o

+

0

B
B
B
@

¶
�

� C2
e2

k

�

¶k

1

C
C
C
A

o

(kn � ko) +

0

B
B
B
@

¶
�

� C2
e2

k

�

¶e

1

C
C
C
A

o

(en � eo) ;

(3.4.18)

�
� C2

e2

k

� n

= � C2
(eo)2

ko + C2
(eo)2

(ko)2 (kn � ko) � 2C2
eo

ko (en � eo) ;

= C2

�
eo

ko

� 2

kn � 2C2
eo

ko en ;

= C2

�
eo

ko

� 2

kn� 2C2
eo

ko en :

(3.4.19)

After the linearisation and substitution, thee equation has the following form:

¶e
¶t

+ Ñ� (ue) � eÑ� u � Ñ� (Ge;e f fÑe) =

C1
eo

ko G� C1
eo

(ko)2Gkn + C1
1
koGen+ C2

�
eo

ko

� 2

kn� 2C2
eo

ko en :
(3.4.20)

Thee equation for thek� e turbulence model is implemented as:

¶e
¶t

+ Ñ� (ue) � eÑ� u � Ñ� (Ge;e f fÑe) = C1
eo

ko G+ C2

�
eo

ko

� 2

kn� 2C2
eo

ko en : (3.4.21)

Additionally, it is important to emphasize that the cross-coupling coef�cientsS�
k and S�

e

need to be eliminated from the block-system in the near-wall cells.

In foam-extend, implementation ofk� e turbulence in the block-matrix framework is named

thecoupledKEpsilon model.

3.4.2 Linearisation and Implementation of thek� w SSTTurbulence Model

in the Block-Matrix Framework

Prior to the implementation of thek� w SSTturbulence model in the block-matrix framework,

linearisation of the net source terms in both equations is necessary.

Sk is the (net source term) RHS of Equation (2.3.7) fork. Linearisation of theSk with

respect to both variables is performed according to:

Sn
k � So

k +
�

¶Sk

¶k

� o

(kn � ko) +
�

¶Sk

¶w

� o

(wn � wo) : (3.4.22)

Faculty of Mechanical Engineering and Naval Architecture 24



Robert Keser Master's Thesis

The linearisation products are divided into appropriate groups (see Section 3.3):

Sn
k = S+

k + S�
kwn + S�

k kn : (3.4.23)

For clarity, the linearisation is performed one term at a time. Moreover, the linearisation prod-

ucts which have a contribution to the implicit cross-coupling sourceS�
k are coloured blue and

products which have a contribution to the implicit sinkS�
k are coloured red.

In Equation (2.3.7), a production limiter is used to prevent the build-up of turbulence in stagna-

tion regions [12], consequently the source term ink equation is calculated as min(G; c1b � kw).

The linearisation of both arguments needs to be investigated.

G is calculated according to Equation (2.3.12):

G = ntS2; (2.3.12)

wherent is de�ned by Equation (2.3.11):

nt =
a1k

max
�
a1w; b1F23

p
2

�
�
�
�
1
2

�
Ñu+ ( Ñu)T

� �
�
�
�

� :
(2.3.11)

In case whenG < c1b � kw anda1w > b1F23
p

2
�
�
� 1

2

�
Ñu+ ( Ñu)T

� �
�
� the source term ink equa-

tions is calculated asS2
k
w

.

�
S2

k
w

� n

�
�

S2
k
w

� o

+

0

B
B
@

¶
�

S2
k
w

�

¶k

1

C
C
A

o

(kn � ko) +

0

B
B
@

¶
�

S2
k
w

�

¶w

1

C
C
A

o

(wn � wo) ; (3.4.24)

�
S2

k
w

� n

= S2
ko

wo +
S2

wo (kn � ko) � S2
ko

(wo)2 (wn � wo) ;

= S2
ko

wo +
S2

wo kn + S2
ko

(wo)2 wn :
(3.4.25)

None of the linearisation products in Equation (3.4.25) is suitable for treatment as an implicit

cross-coupling term nor implicit sink, as both potential candidates have unfavourable signs.

In caseG < c1b � kw and a1w < b1F23
p

2
�
�
� 1

2

�
Ñu+ ( Ñu)T

� �
�
� the source term in k equation

is calculated as a1k
b1F23

p
2j 1

2(Ñu+( Ñu)T)j
S2. For easier manipulation of the expression the constant

part (in context ofk andw) is substituted withCG, a1k
b1F23

p
2j 1

2(Ñu+( Ñu)T)j
S2 = CG

k
F23

. If blending
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term F23 is assumed to be equal toF2 (rough wall �ow treatment is neglected), thenF23 is

calculated according to:

F23 = F2 = tanh
h
(arg2)2

i
; (3.4.26)

wherearg2 is de�ned by Equation (2.3.21):

arg2 = min

"

max

 
2
p

k
b � wy

;
500n
y2w

!

; 100

#

: (2.3.21)

In caseG < c1b � kw , a1w < b1F23
p

2
�
�
� 1

2

�
Ñu+ ( Ñu)T

� �
�
� and 500n

y2w < 2
p

k
b � wy < 100 the source

term ink equation is calculated as:

Gb = CG
k

tanh

2

4

 
2
p

k
b � wy

! 2
3

5

;

�
Gb

� n
�

�
Gb

� o
+

 
¶

�
Gb

�

¶k

! o

(kn � ko) +

 
¶

�
Gb

�

¶w

! o

(wn � wo) ; (3.4.27)

 
¶

�
Gb

�

¶k

! o

= CGcoth

 
4ko

(b � )2 (wo)2y2

!

�

4CGkocsch2
 

4ko

(b � )2 (wo)2y2

!

(b � )2 (wo)2y2
;

= S2
a1

b1
p

2

�
�
�
�
1
2

�
Ñu+ ( Ñu)T

� �
�
�
�

coth

 
4ko

(b � )2 (wo)2y2

!

�

4S2
a1

b1
p

2

�
�
�
�
1
2

�
Ñu+ ( Ñu)T

� �
�
�
�

kocsch2
 

4ko

(b � )2 (wo)2y2

!

(b � )2 (wo)2y2
;

(3.4.28)

 
¶

�
Gb

�

¶w

! o

=
8CG (ko)2csch2

�
4ko

b � (wo)2y2

�

(b � )2 (wo)3y2
;

=

8S2
a1

b1
p

2

�
�
�
�
1
2

�
Ñu+ ( Ñu)T

� �
�
�
�

(ko)2csch2
�

4ko

b � (wo)2y2

�

(b � )2 (wo)3y2
;

(3.4.29)
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where coth() is the hyperbolic cotangent and csch() is the hyperbolic cosecant function. The

linearisation products presented in Equations (3.4.28) and (3.4.29) could eventually even give

terms which are suitable for treatment as implicit cross-coupling terms or implicit sinks but

their implementation is inapplicable, therefore, blending functions will be treated as constants

(and not as functions ofk andw) in the context of linearisation.

In caseG > c1b � kw the source term ink equation is calculated asc1b � kw:

(c1b � kw)n � (c1b � kw)o +
�

¶ (c1b � kw)
¶k

� o

(kn � ko) +
�

¶ (c1b � kw)
¶w

� o

(wn � wo) ;

(3.4.30)

(c1b � kw)n = c1b � kowo + c1b � wo (kn � ko) + c1b � ko (wn � wo) ;

= � c1b � kowo + c1b � wokn + c1b � kown ;

= � c1b � kowo + c1b � wokn+ c1b � kown :

(3.4.31)

Equation (3.4.31) gives a suitable term for implicit cross-coupling, but it is only active when

c1b � kw < G:

(� b � kw)n � (� b � kw)o +
�

¶ (� b � kw)
¶k

� o

(kn � ko) +
�

¶ (� b � kw)
¶w

� o

(wn � wo) ;

(3.4.32)

(� b � kw)n = � b � kowo � b � wo (kn � ko) � b � ko (wn � wo) ;

= b � kowo � b � wokn � b � kown ;

= b � kowo� b � wokn � b � kown :

(3.4.33)

Equation (3.4.33), i.e. the linearisation of the sink term ink equation, gives a suitable implicit

sink term but the cross-coupling term has the unfavourable sign for implicit treatment.

After the linearisation and substitution, thek equation has the following form:

¶k
¶t

+ Ñ� (uk) � kÑ� u � Ñ� (Gk;e f fÑk) = min(G; � c1b � kowo + c1b � wokn+ c1b � kown)

+ b � kowo� b � wokn � b � kown:

(3.4.34)

Thek equation for thek� w SSTturbulence model is implemented as:

¶k
¶t

+ Ñ� (uk) � kÑ� u � Ñ� (Gk;e f fÑk) = min(G; c1b � kown) � b � wokn: (3.4.35)
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After the implementation of thek equation, thew equation is investigated.Sw is the (net

source term) RHS of Equation (2.3.9). Linearisation of theSw in respect with both variables is

performed according to:

Sn
w � So

w +
�

¶Sw

¶k

� o

(kn � ko) +
�

¶Sw

¶w

� o

(wn � wo) : (3.4.36)

The linearisation products are divided into appropriate groups see (Section 3.3):

Sn
w = S+

w + S�
wkn + S�

wwn : (3.4.37)

Again, the linearisation is performed one term at a time and the linearisation products which

have a contribution to the implicit cross-coupling sourceS�
w are coloured blue products which

have a contribution to the implicit sinkS�
w are coloured red.

In caseS2 > c1
a1

b � w max
�
a1w; b1F23

p
S2

�
anda1w > b1F23

p
S2 the source term inw equa-

tion is calculated asgc1b � w2:

�
gc1b � w2� n

�
�
gc1b � w2� o

+

 
¶

�
gc1b � w2

�

¶w

! o

(wn � wo) ; (3.4.38)

�
gc1b � w2� n

= gc1b � (wo)2 + 2gc1b � wo (wn � wo) ;

= � gc1b � (wo)2 + 2gc1b � wown :
(3.4.39)

Linearisation products in Equation (3.4.39) are not suitable for treatment as implicit cross-

coupling term nor as implicit sink.

�
� bw2� n

�
�
� bw2� o

+

 
¶

�
� bw2

�

¶w

! o

(wn � wo) ; (3.4.40)

�
� bw2� n

= � b (wo)2 � 2bwo (wn � wo) ;

= b (wo)2 � 2bwown ;

= b (wo)2 � 2bwown :

(3.4.41)

Equation (3.4.41), the linearisation of the sink term inw equation, gives a suitable implicit sink

but the implicit cross-coupling is not present.

After the linearisation and substitution, thew equation has the following form:

¶w
¶t

+ Ñ� (uw) � wÑ� u � Ñ� (Gw;e f fÑw) =

gmin
�
S2;

c1

a1
b � womax

�
a1wo; b1F23

p
S2

� �

+ b (wo)2 � 2bwown + ( 1� F1)CDkw :

(3.4.42)
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Equation (3.4.41) does not have implicit cross-coupling terms, therefore modi�cations are in-

troduced in order to obtain additional implicit cross-coupling ofk andw equations.

Thew equation for thek� w SSTturbulence model is implemented as:

¶w
¶t

+ Ñ� (uw) � wÑ� u � Ñ� (Gw;e f fÑw) =

gmin
�
S2;

c1

a1
b � womax

�
a1wo; b1F23

p
S2

� �

+ b (wo)2 � 2bwown+( 1� F1)CDkw ;

(3.4.43)

where(1� F1)CDkw term is de�ned as:

(1� F1)CDkw =

8
><

>:

(1� F1)CDkw = (1� F1)CDkw
ko kn CDkw > 0;

(1� F1)CDkw = (1� F1)CDkw
wo wn CDkw < 0:

(3.4.44)

Additionally, it is important to emphasize that the cross-coupling coef�cientsS�
k andS�

w need

to be eliminated from the block-system in the cells adjacent to the wall, where wall functions

are used.

In foam-extend, implementation ofk� w SSTturbulence in the block-matrix framework is

namedcoupledKOmegaSST.

3.4.3 Linearisation of the Wall Functions fork� e Turbulence Model

For evaluation of the implicit coupling potential of wall functions fork � e turbulence model,

the linearisation is necessary.

As described in Section 2.4.1, for wall function cells the valuee is obtained by solving

the algebraic Equation (2.4.2) and not thee equation. The value ofk is obtained from Equa-

tion (2.3.1), but the generation termG is modi�ed according to Equation (2.4.3). Considering

thatGvis = 0, only the expression forGlog is linearised:

Gn
log � Go

log +
�

¶Glog

¶k

� o

(kn � ko) ; (3.4.45)

Gn
log =

((nt + n) jÑuj)2

k C1=4
m (ko)1=2 y

�
1
2

((nt + n) jÑuj)2

k C1=4
m (ko)3=2 y

(kn � ko) ;

=
3
2

((nt + n) jÑuj)2

k C1=4
m (ko)1=2 y

�
1
2

((nt + n) jÑuj)2

k C1=4
m (ko)3=2 y

kn :

(3.4.46)
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Sincee equation is not solved for wall function cells, theG term is only present in thek equa-

tion, therefore the Equation (3.4.46), in whichGlog is a function only ofk, does not represent

a cross-coupling term, but it could be implemented as an implicit sink term because the coef�-

cient ofkn is negative on the RHS of thek equation.

If nt in Equation (2.4.5) is substituted with Equation (2.3.5),Glog becomes a function of

bothk ande:

Glog =
((nt + n) jÑuj)2

k C1=4
m k1=2y

=

�
n2

t + 2ntn + n2
�

jÑuj2

k C1=4
m k1=2y

;

=
jÑuj2

k C1=4
m k1=2y

 
C2

mk4

e2 +
2Cmn k2

e
+ n2

!

;

=
jÑuj2

k C1=4
m y

 
C2

mk7=2

e2 +
2Cmn k3=2

e
+

n2

k1=2

!

;

(3.4.47)

and after linearisation as a multi-variable function, the expression has the following form:

Gn
log � Go

log +
�

¶Glog

¶k

� o

(kn � ko) +
�

¶Glog

¶e

� o

(en � eo); (3.4.48)

Gn
log =

jÑuj2

k C1=4
m y

 
C2

m (ko)7=2

(eo)2 +
2Cmn (ko)3=2

eo +
n2

(ko)1=2

!

+
jÑuj2

k C1=4
m y

 
7
2

C2
m (ko)5=2

(eo)2 +
3Cmn (ko)1=2

eo �
1
2

n2

(ko)3=2

!

(kn � ko)

+
jÑuj2

k C1=4
m y

 

�
2C2

m (ko)7=2

(eo)3 �
2Cmn (ko)3=2

(eo)2

!

(en � eo) ;

=
jÑuj2

k C1=4
m y

 

�
1
2

C2
m (ko)7=2

(eo)2 +
Cmn (ko)3=2

eo +
3
2

n2

(ko)1=2

!

+
jÑuj2

k C1=4
m y

 
7
2

C2
m (ko)5=2

(eo)2 +
3Cmn (ko)1=2

eo �
1
2

n2

(ko)3=2

!

kn

�
jÑuj2

k C1=4
m y

 
2C2

m (ko)7=2

(eo)3 +
2Cmn (ko)3=2

(eo)2

!

en:

(3.4.49)

According to the guidelines for proper source treatment presented in Section 3.3, the poten-

tial cross-coupling term with impliciten has the unfavourable sign for implementation as an

implicit cross-coupling term.

Moreover, the linearisation and implicit cross-coupling potential of Equation (2.4.2) is in-
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vestigated:

en � eo +
�

¶e
¶k

� o

(kn � ko); (3.4.50)

en =
C3=4

m (ko)3=2

k y
+

3
2

C3=4
m (ko)1=2

k y
(kn � ko) ;

= �
1
2

C3=4
m (ko)3=2

k y
+

3
2

C3=4
m (ko)1=2

k y
kn:

(3.4.51)

Equation (3.4.51) is suitable for implicit cross-coupling, because the coef�cient of thekn term

is positive on the RHS.

Overall implicit cross-coupling potential of the standard wall functions for thek� e turbu-

lence model is partial. Linearisation of the modi�ed production termG for the wall function

cell does not give adequate terms for implicit treatment but the linearisation of the algebraic

expression, which replaces thee equation in the wall function cells, gives a suitable implicit

cross-coupling term. This thesis does not present implementation of the implicit wall functions

for thek� e turbulence model.

3.4.4 Linearisation of the Wall Functions fork� w SSTTurbulence Model

For evaluation of the implicit coupling potential of wall functions fork � w SSTturbulence

model, the linearisation is necessary.

As described in Section 2.4.2, for wall function cells the valuew is obtained by solving

the algebraic Equation (2.4.7) and not thew equation. The value ofk is obtained from Equa-

tion (2.3.7), but the generation termG is modi�ed according to Equation (2.4.10). Considering

thatGvis = 0, only the expression forGlog is linearised:

Gn
log � Go

log +
�

¶Glog

¶k

� o

(kn � ko) ; (3.4.52)

Gn
log =

C1=4
m (ko)1=2 (nt + n) jÑuj

k y
+

C1=4
m (nt + n) jÑuj

2k y(ko)1=2
(kn � ko) ;

=
C1=4

m (ko)1=2 (nt + n) jÑuj
2k y

+
C1=4

m (nt + n) jÑuj

2k y(ko)1=2
kn :

(3.4.53)

The production termG is only present in thek equation, therefore the Equation (3.4.53), in

which Glog is function only ofk, does not represent a cross-coupling term nor could it be
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implemented as an implicit sink term because the coef�cient ofkn is positive on the RHS of

Equation (2.3.1).

If nt in Equation (2.4.12) is substituted with Equation (2.3.11),Glog becomes function of

bothk andw, but only in case whena1w > b1F23
p

2
�
�
� 1

2

�
Ñu+ ( Ñu)T

� �
�
� . Since the other cases

do not containw, because the blending functions are treated as constants in context of lineari-

sation (see Section 3.4.2).

Glog =
C1=4

m jÑuj
k y

k1=2 (nt + n)

=
C1=4

m jÑuj
k y

k1=2
�

k
w

+ n
�

=
C1=4

m jÑuj
k y

 
k3=2

w
+ nk1=2

!

:

(3.4.54)

After linearisation as a multi variable function, the expression has the following form:

Gn
log � Go

log +
�

¶Glog

¶k

� o

(kn � ko) +
�

¶Glog

¶w

� o

(wn � wo); (3.4.55)
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2
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!
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�
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m jÑuj
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(ko)3=2

(wo)2

!

wn:

(3.4.56)

According to the guidelines for proper source treatment presented in Section 3.3, both terms

with implicit values,kn andwn, in Equation (3.4.56) have unfavourable signs for implementa-

tion as implicit sink and implicit cross-coupling terms.

Furthermore, the linearisation and implicit cross-coupling potential of Equation (2.4.7) is
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investigated:

wn � wo +
�

¶w
¶k

� o

(kn � ko); (3.4.57)
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+
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s
36n2

b2
1 y4

+
ko
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m k 2y2

kn:

(3.4.58)

Equation (3.4.58) is suitable for implicit cross-coupling, because the coef�cient of thekn term

is positive on the RHS.

Overall implicit cross-coupling potential of the standard wall functions for thek � w SST

turbulence model is partial. Linearisation of the modi�ed production termG for the wall func-

tion cell does not give adequate terms for implicit treatment but the linearisation of the algebraic

expression, which replaces thew equation in the wall function cells, gives a suitable implicit

cross-coupling term. This thesis does not present implementation of the implicit wall functions

for thek� w SSTturbulence model.

3.5 Closure

In this chapter, structure of the block-system was presented, furthermore problems regarding

the linearisation, stability and boundedness of the model were investigated. Also, the im-

plementation ofk � e (coupledKEpsilon ) andk � w SST(coupledKOmegaSST) turbulence

models in the block-matrix framework was described. At the end of the chapter, suggested

linearisation of the wall functions for both models were given.
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Chapter 4

Validation of Implemented Turbulence

Models

In the previous chapter, linearisation and implementation of thek � e (coupledKEpsilon )

andk � w SST(coupledKOmegaSST) turbulence models in the block-matrix framework was

described. In this chapter, the validation of implementedcoupledKOmegaSSTand

coupledKEpsilon turbulence models shall be presented.

In the �rst section, a separated �ow past a NACA 4412 airfoil at maximum lift is investi-

gated. In this case a low Reynolds turbulence modelling approach is adopted, therefore only

thecoupledKOmegaSSTis taken into account.

In the second section, an incompressible turbulent �ow over a backward facing step is

investigated. In this case a high Reynolds turbulence modelling approach is adopted, therefore

both thecoupledKOmegaSSTand thecoupledKEpsilon are taken into account.

4.1 NACA 4412

The �rst test case for the validation of the implementedcoupledKOmegaSSTis the separated

�ow past a NACA 4412 airfoil at maximum lift. The experimental data is available at theNASA

Turbulence Modeling Resourceweb-page [30] but the particular data originates from the ex-

periments performed by Coles and Wadcock [31]. Table 4.1.1 presents the selected: Reynolds

number (for airfoil chord length), angle of incidence, freestream velocity value, airfoil chord

length and the molecular kinematic viscosity.

34



Robert Keser Master's Thesis

Rec [� ] a [� ] Uin f [m=s] c [m] n
�
m2=s

�

1:52� 106 13:87 27:13 0:9012 1:61� 10� 5

Table 4.1.1:Geometry and �ow parameters for the NACA 4412 case according to [31, 30].

4.1.1 Case set-up

The grid used in the simulation is available at theCFD supportpage [32] and was scaled to

the chosen chord length. The domain size and the grid density are shown in Figure 4.1.1. The

simulation is set up as a steady-state two-dimensional simulation, however OpenFOAM always

operates in three dimensions, therefore, anemptyboundary condition needs to be speci�ed on

the boundaries normal to the third dimension. In this thesis, these boundaries (patches) are

namedFrontAndBack. The names of the solution domain boundaries are shown in Figure 4.1.2.

The presented problem was solved using thepUCoupledFoam[33] solver and the

coupledKOmegaSSTturbulence model with the following boundary conditions and numerical

schemes.

(a) Domain size. (b) Re�nement near the NACA airfoil.

Figure 4.1.1: NACA 4412: Computational domain.
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Figure 4.1.2: NACA 4412: Patch names.

Boundary and initial conditions

� Inlet

– Velocity: inletOutlet with inletValue uniform (26.34 6.50 0)

– Pressure: zeroGradient

– Turbulence kinetic energy: inletOutlet with inletValue uniform 0.00082

– Turbulence dissipation: inletOutlet with inletValue uniform 33.81

� Outlet

– Velocity: inletOutlet with inletValue uniform (0 0 0)

– Pressure: fixedValue with value uniform 0

– Turbulence kinetic energy: inletOutlet with inletValue uniform 0.00082

– Turbulence dissipation: inletOutlet with inletValue uniform 33.81

� SolidWall
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– Velocity: fixedValue with value uniform (0 0 0)

– Pressure: zeroGradient

– Turbulence kinetic energy: kqRWallFunction

– Turbulence dissipation: omegaWallFunction

� FrontAndBack: typeemptyfor all �elds

� Initialisation

– Velocity: uniform (26.34 6.50 0)

– Pressure: uniform 0

– Turbulence kinetic energy: uniform 0.00082

– Turbulence dissipation: uniform 33.81

The selected numerical schemes are shown in Table 4.1.2.

Detailed overview of the basic numerical schemes is presented in [34] and a comprehensive

analysis of the Gamma differencing scheme is presented by Jasak et al. [35].

Additionally, simulations were performed using the following combinations of solvers and

turbulence models:

� pUCoupledFoamandcoupledkOmegaSST,

� pUCoupledFoamandkOmegaSST,

� simpleFoamandcoupledKOmegaSST,

� simpleFoamandkOmegaSST,

and the results were identical to those shown below.
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Time schemes

default steadyState

Gradient schemes

default Gauss linear

Divergence schemes

default Gauss linear

div(phi,U) Gauss GammaV 1

div(phi,k) Gauss upwind

div(phi,omega) Gauss upwind

Laplacian schemes

default Gauss midPoint limited 0.5

Interpolation schemes

default linear

Surface normal gradient schemes

default limited 0.5

Table 4.1.2:NACA 4412: Numerical schemes.
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4.1.2 Results

Figure 4.1.3 illustrates the calculatedy+ distribution over of the NACA airfoil, where the values

are considerably below 5, hence the assumption of the low Reynolds turbulence modelling

approach is applicable.

Figure 4.1.3: NACA 4412: Normalised distance to the wall.

The plot of the normalised velocity magnitude is shown in Figure 4.1.4, where the normali-

sation is carried out with respect to the freestream velocity valueUin f . The pressure coef�cient

plot, which is calculated according to Equation (4.1.1), around the NACA 4412 airfoil is shown

in Figure 4.1.5.

Cp =
p� pin f

1

2
U2

in f

: (4.1.1)

In Equation (4.1.1), the freestream kinematic pressure valuepin f is de�ned by the pressure

boundary condition at theOutletpatch.
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Figure 4.1.4: NACA 4412: Normalised velocity magnitude plot.

Figure 4.1.5: NACA 4412: Pressure coef�cient plot.
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The experimental results from [31] are nondimensionalised with respect to a non-traditional

velocity valueUre f , at a location only about one chord length below and behind the airfoil,

which is different from a traditional freestream value. In order to make the traditionally nor-

malised velocity CFD results comparable to the normalised experimental data, the CFD data

needs to be divided by 0:93. In case of the chordwise velocity normalisation, the correction

looks like:

u

Ure f
=

u

0:93Uin f
: (4.1.2)

In Figure 4.1.6 a comparison of constant normalised chordwise velocity contour lines is

shown, where the contour lines from the CFD simulation (coloured red) were drawn over the

�gure from [31].

Figure 4.1.6:NACA 4412: Comparison of the constant normalised chordwise velocity contour

lines.

The comparison of the surface pressure coef�cient distribution, is shown in Figure 4.1.7,

but the surface pressure coef�cients from the experiment [31] were not corrected, and therefore

should only be viewed in a qualitative sense [30]. As the Figure 4.1.7 illustrates, the calculated

pressure coef�cient distribution trend is in very good agreement with the experiment.

NASA [30] also provides the experimental data [31] for the normalised velocity pro�les

along the six lines near the trailing edge of the NACA 4412 airfoil, whose locations are shown in

Figure 4.1.8. Likewise, the CFD data was interpolated along the same lines for the comparison,

which is shown in Figure 4.1.9.
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experiment (Coles & Wadcock)

NACA 4412
Surface Pressure Coefficient

Figure 4.1.7: NACA 4412: Comparison of the surface pressure coef�cient distribution.

x/c = 0.6753 0.7308
0.7863 0.8418 0.8973

0.9528

Figure 4.1.8:NACA 4412: Location of the lines along which experimental data was extracted.
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(b) x/c = 0.7308,
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(c) x/c = 0.7863,
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(d) x/c = 0.8418,
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(e) x/c = 0.8973,
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(f) x/c = 0.9528.

Figure 4.1.9: NACA 4412: Comparison of the normalised chordwise velocity pro�les.
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The comparison given in Figure 4.1.9, shows a very good agreement between the computed

normalised chordwise velocity pro�les and the experimental data.

4.2 Backward Facing Step

In the second validation test case, an incompressible turbulent �ow over a backward facing step

is investigated. The experimental data is available at theNASA Turbulence Modeling Resource

page [36] but the particular data originates from the experiments performed by Driver and

Seegmiller [37]. The Reynolds number (based on height of the step), freestream velocity value,

step height and molecular kinematic viscosity were chosen according to [38] and are presented

in Table 4.2.1.

ReH [� ] Uin f [m=s] H [m] n
�
m2=s

�

36� 103 44:32 1 1:23� 10� 3

Table 4.2.1:Geometry and �ow parameters for the BFS case. [38]

4.2.1 Case set-up

The computational grid, which is shown in Figure 4.2.1 is generated using theblockMesh

utility. The selected near-wall re�nement (the height of cells next to the wall were chosen for

y+ values between 30 and 40) is suitable for the high Reynolds turbulence modelling approach,

therefore both thecoupledKEpsilon and thecoupledKOmegaSSTcan be validated with this

test case. Figure 4.2.1 also illustrates the selected domain size and the near-wall re�nement.

The simulation is set up as a steady-state two-dimensional case, where the boundaries nor-

mal to the third dimension are namedFrontAndBackand are speci�ed with theemptybound-

ary condition. The names of the solution domain boundaries are shown in Figure 4.2.2. The

presented problem was solved using thesimpleFoamsolver and bothcoupledKEpsilon and

coupledKOmegaSSTas turbulence models with the following boundary conditions and numer-

ical schemes.
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(a) Domain size (not to scale).

(b) Computational grid.

(c) Re�nement near the step.

Figure 4.2.1: BFS: Computational domain.

Figure 4.2.2: BFS: Patch names.
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Boundary and initial conditions

� Inlet

– Velocity: fixedValue with value uniform (44.32 0 0)

– Pressure: zeroGradient

– Turbulence kinetic energy: fixedValue with value uniform 0.295

– Turbulence dissipation:

� epsilon : fixedValue with value uniform 0.08

� omega: fixedValue with value uniform 97.37

� Outlet

– Velocity: inletOutlet with inletValue uniform (0 0 0)

– Pressure: outletInlet with outletValue uniform 0

– Turbulence kinetic energy: zeroGradient

– Turbulence dissipation:

� epsilon : zeroGradient

� omega: zeroGradient

� LowerWall

– Velocity: fixedValue with value uniform (0 0 0)

– Pressure: zeroGradient

– Turbulence kinetic energy: kqRWallFunction

– Turbulence dissipation:

� epsilon : epsilonWallFunction

� omega: omegaWallFunction

� UpperWall

– Velocity: fixedValue with value uniform (0 0 0)
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– Pressure: zeroGradient

– Turbulence kinetic energy: kqRWallFunction

– Turbulence dissipation:

� epsilon : epsilonWallFunction

� omega: omegaWallFunction

� Symmetry: typesymmetryPlanefor all �elds

� FrontAndBack: typeemptyfor all �elds

� Initialisation

– Velocity: uniform (44.32 0 0)

– Pressure: uniform 0

– Turbulence kinetic energy: uniform 0.295

– Turbulence dissipation: uniform 97.37

� epsilon : uniform 0.08

� omega: uniform 97.37

The selected numerical schemes are shown in Table 4.2.2
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Time schemes

default steadyState

Gradient schemes

default Gauss linear

Divergence schemes

default Gauss linear

div(phi,U) Gauss linearUpwind

div(phi,k) Gauss upwind

div(phi,epsilon) Gauss upwind

div(phi,omega) Gauss upwind

Laplacian schemes

default Gauss linear uncorrected

Interpolation schemes

default linear

Surface normal gradient schemes

default uncorrected

Table 4.2.2:BFS: Numerical schemes.
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Additionally, simulations were performed using the implementedcoupledKOmegaSSTand

coupledKEpsilon and the corresponding segregated models,kOmegaSSTandkEpsilon . The

implicitly coupled models and their segregated counterparts produced the same results.

4.2.2 Results

Figure 4.2.3 illustrates the calculatedy+ distribution along theLowerWall, which is very sim-

ilar to the desired values, hence the assumption of the high Reynolds turbulence modelling

approach is applicable.

The plot of the normalised velocity magnitude, for both turbulence models, is shown in

Figure 4.2.4, where the normalisation is carried out with respect to the freestream velocity

valueUin f .

Figure 4.2.3: BFS: Normalised distance to the wall along theLowerWall.
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(a) coupledKOmegaSST.

(b) coupledKEpsilon .

Figure 4.2.4: BFS: Normalised velocity magnitude plot.

For incompressible �ows, the skin friction coef�cient is de�ned by:

Cf =
t w

1

2
U2

re f

; (4.2.1)

wheret w is the wall shear stress andUre f is the reference velocity at the channel centre near
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x=H = � 4 [36]. Similarly, the pressure coef�cient is calculated according to Equation (4.2.2):

Cp =
p� pre f

1

2
U2

re f

; (4.2.2)

wherepre f is the reference kinematic pressure near the same location. However, NASA [36]

mentions that the experimental pressure coef�cient data have been shifted uniformly so that

Cp has a zero value near the positionx=H = 40, therefore it can be assumed thatpre f � pin f

which is de�ned by the pressure boundary condition at theOutletpatch. Furthermore, after the

comparison of velocity �eld data, a simple correlation between theUre f and theUin f can be

introduced,Ure f=Uin f � 1:05.

The comparison of the calculated wall pressure coef�cient distribution along theLowerWall,

for both models with the experimental data, is presented in Figure 4.2.5.

In Figure 4.2.6, a comparison of the wall skin friction coef�cient distribution along the

LowerWallis given.

0 10 20 30
x/H

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

C
p

coupled k - w SST
coupled k - e
experiment (Driver & Seegmiller)

BFS
Wall Pressure Coefficient (along the LowerWall)

Figure 4.2.5: BFS: Comparison of the wall pressure coef�cient distribution along the

LowerWall.
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Figure 4.2.6: BFS: Comparison of the wall skin friction coef�cient distribution along the

LowerWall.

As shown in Figure 4.2.5, both models give a similar prediction of the pressure distribution

which is in fair agreement with the experimental data. A signi�cant pressure value discrepancy

is visible in the 0< x=H < 2 region, but despite the deviation, the pressure distribution trend is

still compatible with the experimental data. Similarly, Figure 4.2.6 also shows fair agreement of

the computed skin friction distributions with the experimental data, especially in the upstream

region of the step. In the downstream region, both models under predict the reattachment

location, but thecoupledKOmegaSSTis slightly more accurate. In both cases, the deviations in

the recirculation region are due to inadequatey+ values, i.e. the �rst cells next to the wall are

in the buffer layer, which can not be adequately modelled by the wall functions.
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NASA [36] also provided the experimental data [37] for the normalised velocity pro�les

along �ve lines, whose locations are shown in Figure 4.2.7. Likewise, the CFD data was inter-

polated along the same lines for the comparison, which is shown in Figure 4.2.8.

Figure 4.2.7: BFS: Location of the lines along which experimental data was extracted.
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(a) x/H = -4, (b) x/H = 1,

(c) x/H = 4, (d) x/H = 6,

(e) x/H = 10.

Figure 4.2.8: BFS: Comparison of the normalised velocities pro�les in x direction.
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As Figure 4.2.8 illustrates, both models give very similar results to each other, which are

consistent with the experimental velocity pro�les. The only considerable discrepancy is visible

along the line located atx=H = 1. As mentioned before, this error is due to inadequatey+

values is the recirculation region. It is exceptionally hard to achieve desiredy+ values in the

whole domain, especially when recirculation or stagnation points are present and when the wall

functions are used.

In this chapter, validation of implementedcoupledKOmegaSSTandcoupledKEpsilon tur-

bulence models were performed. The comparison of the numerical results from both models

with the experimental data were presented and described. In the following chapter, benchmark-

ing of the implemented turbulence models will be presented.
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Chapter 5

Benchmarking of Coupled vs. Segregated

Model Performance

In the previous chapter, validation of implementedcoupledKOmegaSSTandcoupledKEpsilon

turbulence models has been performed. In this chapter, performance of the implemented turbu-

lence models shall be compared with the existing segregated models.

In the �rst section, benchmarking of both implemented turbulence models on the backward

facing step case is presented. In the second section, benchmarking ofcoupledKOmegaSST

turbulence model on NACA 4412 case is shown. In all benchmarking cases,pUCoupledFoam

(with identical linear solver controls) is used for implicit pressure-velocity coupling.

5.1 Backward Facing Step

To qualify the performance improvement of the implementedcoupledKOmegaSSTand

coupledKEpsilon turbulence models, following items are compared to the existing segregated

models:

� Convergence rates for all equations,

� Convergence of �eld values in speci�c coordinates,

� Convergence of minimal and maximal �eld values.

The convergence of �eld values is monitored with probes whose location in the domain is

shown in Figure 5.1.1. The �rst probe is located at the recirculation boarder, the second is in

56



Robert Keser Master's Thesis

the recirculation zone and the third is in the outer zone. Minimal and maximal �eld values are

reported by an existing function objectminMaxField.

Figure 5.1.1: BFS: Probe locations.

For consistent comparison of residuals, �eld solutions from the implicitly coupled turbu-

lence models (block-matrices) are placed in the corresponding segregated equations for the

evaluation of initial residuals, which are later compared with residuals from the segregated

turbulence models.

5.1.1 Solution and algorithm control

Table 5.1.1 speci�es linear-solvers that are used for each discretised equation, with correspond-

ing parameters.kEpsilon is the solver name for implicitly coupledk� e equations,kOmegais

the solver name for implicitly coupledk � w equations,k is the solver name for segregatedk

equation,epsilon is the solver name for segregatede equation andomegais the solver name

for segregatedw equation.
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Linear solver control

Solver and parameters
Equation

kEpsilon kOmega k epsilon omega

Solver BiCGStab BiCGStab BiCGStab BiCGStab BiCGStab

Preconditioner Cholesky Cholesky DILU DILU DILU

Tolerance 1e-09 1e-09 1e-09 1e-09 1e-09

Relative tolerance 0.01 0.01 0.01 0.01 0.01

Minimum number of iterations 1 1 1 1 1

Maximum number of iterations 100 100 100 100 100

Table 5.1.1:BFS: Linear solver controls.
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Table 5.1.2 presents the selected under-relaxation parameters.

Solution under-relaxation

k 0.99 (0.98) �

epsilon 0.99 (0.98) �

omega 0.99

Table 5.1.2:BFS: Solution under-relaxation.

5.1.2 Results

Figure 5.1.2 illustrates the comparison ofUx, Uy, p and nt values, obtained by monitoring

probes for thecoupledKEpsilon andkEpsilon turbulence models. The results show faster

convergence of the �eld values calculated by thecoupledKEpsilon in comparison with the

kEpsilon model, the enhanced convergence also affects the pressure-velocity system. It is

also visible that the implicitly coupled model often prevents overshoots and undershoots of the

calculated �eld values during the calculation. Despite the slightly lower under-relaxation factor,

the segregatedkEpsilon turbulence model experiences minor instabilities at the beginning of

the calculation.

Comparison of the residual convergence pro�les are shown in Figure 5.1.3. At �rst, the

coupledKEpsilon model shows a moderate increase in the convergence rates compared to

thekEpsilon model. As the iterations advance, convergence rates of thecoupledKEpsilon

model decrease below thekEpsilon model.

� under-relaxation factor0.98 is used forkEpsilon turbulence model, since it was not stable with0.99
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(a) Ux, (b) Uy,

(c) p, (d) nt .

Figure 5.1.2:BFS: Field value convergence for coupled and segregatedk� e turbulence mod-

els.
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(a) Ux residuals, (b) Uy residuals,

(c) p residuals, (d) k residuals,

(e)e residuals.

Figure 5.1.3: BFS: Convergence of residuals for coupled and segregatedk � e turbulence

models.
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In Figure 5.1.4 the convergence of the �led values of 3 probes for thecoupledKOmegaSST

and thekOmegaSSTturbulence models is shown. The results show slightly faster convergence of

all (including the pressure-velocity system) �eld values calculated by thecoupledKOmegaSST

in comparison with thekOmegaSSTmodel. It is also visible that the implicitly coupled model

often prevents overshoots and undershoots of the calculated �eld values during the simulation.

Comparison of the residual convergence pro�les are shown in Figure 5.1.5. The implicitly

coupled model shows a moderate increase in the convergence rates compared to thekOmegaSST

model.

(a) Ux, (b) Uy,

(c) p, (d) nt .

Figure 5.1.4: BFS: Field value convergence fork� w SSTturbulence models.
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(a) Ux residuals, (b) Uy residuals,

(c) p residuals, (d) k residuals,

(e)w residuals.

Figure 5.1.5:BFS: Convergence of residuals for coupled and segregatedk� w SSTturbulence

models.
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Figure 5.1.6 illustrates the convergence of minimal and maximal �eld values for both im-

plicit turbulence models and their corresponding segregated versions. As mentioned before,

implicitly coupled turbulence models show faster convergence of the minimal and maximal

�eld values and often prevent overshoots and undershoots of the calculated �eld values in com-

parison with the segregated versions.

(a) max(U), (b) max(p),

(c) min(p).

Figure 5.1.6: BFS: Maximum/minimum �eld value comparison.
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5.2 NACA 4412

To qualify the performance improvement of the implementedcoupledKOmegaSSTturbulence

models as a low Reynolds model, following items are compared to the existing segregated

model:

� Convergence rates for all equations,

� Convergence of force coef�cients (dragCd and lift Cl ),

� Convergence of minimal and maximal �eld values.

Note that the simulation presented in this section uses a coarser grid in comparison with the

grid used in the Section 4.1.

Minimal and maximal �eld values are monitored with theminMaxField function object

and the convergence of force coef�cients is monitored withforceCoeffs function object.

5.2.1 Solution and algorithm control

Table 5.2.1 presents the selected linear-solvers with corresponding parameters, while Table 5.2.2

introduces the selected under-relaxation parameters.

Linear solver control

Solver and parameters
Equation

kOmega k omega

Solver BiCGStab BiCGStab BiCGStab

Preconditioner Cholesky DILU DILU

Tolerance 1e-09 1e-09 1e-09

Relative tolerance 0.01 0.01 0.01

Minimum number of iterations 1 1 1

Maximum number of iterations 100 100 100

Table 5.2.1:NACA 4412: Linear solver controls.

Faculty of Mechanical Engineering and Naval Architecture 65



Robert Keser Master's Thesis

Solution under-relaxation

k 0.99

omega 0.99

Table 5.2.2:NACA 4412: Solution under-relaxation.

5.2.2 Results

Figure 5.2.1 illustrates the convergence of dragCd and lift Cl coef�cient throughout the iter-

ations. The results show faster convergence of the force coef�cient values calculated by the

coupledKOmegaSSTin comparison with thekOmegaSSTmodel. It is also visible that the seg-

regated model experiences larger amplitudes and oscillations during the simulation.

Comparison of the residual convergence pro�les are shown in Figure 5.2.2. The imple-

mentedcoupledKOmegaSSTmodel shows a moderate increase in the convergence rates com-

pared to thekOmegaSSTmodel, where the improved convergence also in�uences the pressure-

velocity system.

Furthermore, the implicitly coupled model is superior in preserving the boundedness of the

turbulence variables than the segregated version.
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(a) Drag coef�cient.

(b) Lift coef�cient.

Figure 5.2.1: NACA: Force coef�cients convergence per iteration.
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(a) Ux residuals, (b) Uy residuals,

(c) p residuals, (d) k residuals,

(e)w residuals.

Figure 5.2.2: NACA: Convergence of residuals for coupled and segregatedk � w SSTturbu-

lence models.
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Figure 5.2.3 illustrates the comparison of minimal and maximal �eld values convergence

for the coupledKOmegaSSTand kOmegaSSTturbulence models. As mentioned earlier, the

implicitly coupled turbulence model shows faster and smoother convergence of the minimal

and maximal �eld values and often prevent overshoots and undershoots of the calculated �eld

values in comparison with the segregated version.

(a) max(U), (b) max(p),

(c) min(p).

Figure 5.2.3: NACA: Maximum/minimum �eld value comparison.

Figure 5.2.4 presents the comparison of the force coef�cient convergence per elapsed CPU

time. The implicitly coupled modelcoupledKOmegaSSTachieved convergence of the force

coef�cients in approximately 20% less CPU time, furthermore, the convergence process of the

coupled model is signi�cantly more damped than the segregated.
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(a) Drag coef�cient,

(b) Lift coef�cient.

Figure 5.2.4: NACA: Force coef�cients convergence per CPU time.
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Chapter 6

Conclusion

Block-coupled solution algorithms for incompressible two-equation turbulence models,k � e

andk� w SST, are presented in this thesis.

Prior to implementation of the turbulence models in the block-matrix framework, lineari-

sation of the non-linear source terms was investigated in detail. Furthermore, investigation of

the stability and boundedness of the linearised model was performed. The derived implicitly

coupled turbulence models,coupledKEpsilon andcoupledKOmegaSST, were implemented

in foam-extend (the community-driven fork of the OpenFOAM) software.

Two validation cases were presented, a separated �ow past a NACA 4412 airfoil at maxi-

mum lift and an incompressible turbulent �ow over a backward facing step (BFS). The NACA

4412 case was set up for the validation of turbulence models with low Reynolds approach and

the BFS case was intended for the validation of high Reynolds models. Thek � e turbulence

model is implemented only as a high Reynolds version, therefore, validation was performed

only for the BFS case. Thek � w SSTturbulence model can blend between the high and low

Reynolds formulation consequently, validation was performed for both cases. In the NACA

4412 validation case, the numerical results from the implementedcoupledKOmegaSSTturbu-

lence model were compared with the experimental data and an overall good agreement was

obtained. In the BFS case, the numerical results from both implemented turbulence models

were compared with the experimental data and an overall good agreement was obtained as

well.

Furthermore, performance of the implemented turbulence models was compared with the

existing segregated models. Benchmarking was performed on the two validation cases, where
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pUCoupledFoamwas the selected incompressible pressure-velocity solver. Similarly as for

the validation, both implemented turbulence models were benchmarked on the BFS case and

only coupledKOmegaSSTwas benchmarked on the NACA 4412 case. Overall, implicit cross-

coupling of two-equation turbulence models accelerates convergence of �eld values, exhibits

smoother convergence compared to segregated turbulence models and often prevents over-

shoots and undershoots of the calculated �eld values during the simulation. The implemented

coupledKOmegaSSTmodel achieved convergence of the force coef�cients in approximately

20% less CPU time than the segregated model. Additionally, the implicitly coupled models

are found to be superior in preserving the boundedness of the turbulence variables than the

segregated versions.
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