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Abstract

Modern implicitly coupled pressure—velocity algorithms introduced a considerable increase
in the convergence rates when compared with segregated algorithms. Although, segregated
treatment of turbulence model equations often limits such algorithms from reaching their full
potential. Hence, implicit coupling of two-equation turbulence models is investigated.

In order to implement the implicitly coupled turbulence models in the block-matrix frame-
work, it is necessary to linearise the non-linear source and sink terms. The linearised sources
and sinks also need to undergo the stability and boundedness analysis. Linearisation and im-
plementation of two-equation turbulence modéds, e andk wSST in foam-extend (the
community-driven fork of the OpenFOAM) software is presented.

Validation of implemented turbulence models is performed. The two validation cases are: a
separated ow past a NACA 4412 airfoil at maximum lift and an incompressible turbulent ow
over a backward facing step. Validation of the implicitly coupkedw SSTmodel is performed
for both cases, whereas validation of the implicitly cougtede model is performed only for
the backward facing step case.

Finally, performance of implemented turbulence models is compared with existing segre-
gated models. Benchmarking is performed on the two validation cases. Similarly as for the
validation, both implemented turbulence models are benchmarked on the backward facing step

case and only the w SSTis benchmarked on the NACA 4412 case.

Key words: CFD, OpenFOAM foam-extendturbulence modellingk e, k wSST block-

matrix, implicit coupling linearisation validation, benchmarking
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Sazetak

Koristenje modernih implictno spregnutih algoritama za povezivanje jetnazine i tlaka
dovelo je do znatno ke konvergencije rgenja u usporedbi s tradicionalnim odvojenim al-
goritmima. Prilikom simulacije turbulentnih strujanja spregnutinsajgcima brzine i tlaka
konvergenciju rjsenjacesto ogrartava odvojeno rigavanje jednazbi modela turbulencije,
stoga se u ovom radu razmatra implicitno sprezanje dvojedreanih modela turbulencije.

Prije implementacije implicitno spregnutih dvojedzaénih modela turbulencije, mano
je provesti linearizaciju nelinearnih izvorskih i ponorskilanova te analizu stabilnosti i poz-
itivnosti produkata linearizacije. Prikazuju se linearizacija i implementacija dvojethesth
modelaturbulencij@ eik wSSTunutarfoam-extend (OpenFOAM-ova tiea koju razvija
zajednica) softverskog paketa.

Validacija implementiranih modela turbulencija provodi se na dva poznatajalstrujanja
za koja su dostupna eksperimentalna mjerenja: odvojeno aestitrujanje oko NACA 4412
aeropro la pri maksimalnom uzgonu te nesifl strujanje u kanalu s naglim imenjem.
Validacijak wSSTmodela turbulencije provodi se na obacsja strujanja, dok sk e
model validira samo na strujanju unutar kanala.

Takoder se uspoiduju performanse implementiranih implicitno spregnutih modela s odgo-
varajlLtim postoj€im odvojenim ingicama modela turbulencija. 8fio kao i prilikom vali-
dacije, usporeb&a wSSTmodela provodi se na oba skja strujanja, dok sk e model

usporguje samo na shkaju strujanja unutar kanala.

Kljucne rijeci: CFD, OpenFOAM foam-extendmodeliranje turbulencijek e, k wSST

blok-matricg implicitno sprezanjglinearizacija, validacija, mjerenje performansi

Xii



Prosireni sazetak

Koristenje modernih implicitno spregnutih algoritama za povezivanje jeatnduizine i tlaka
dovelo je do znatno ke konvergencije rgenja u usporedbi s tradicionalnim odvojenim al-
goritmima. Prilikom simulacije turbulentnih strujanja spregnutinsajcima konvergenciju
rjesenjacesto ogramava odvojeno rigavanje jednazbi modela turbulencije, stoga se u ovom
radu razmatra implicitno sprezanje dvojedrniaenih modela turbulencije e i k wSST

unutar foam-extend (OpenFOAM-ova tiea koju razvija zajednica) softverskog paketa.

Nestlacivi k e model turbulencije
Jednadba turbulentne kinatke energije unutak e modela turbulencije glasi:

TEN@) KT R (Gerf= G e &)
gdje k oznacava turbulentnu kinetku energiju,u vremenski osrednjenu brzinG.q¢¢ efek-
tivnu difuziju za poljek, G izvorski clan (stvaranje turbulentne kinelkie energije), & je po-
norskiclan, odnosno disipacija turbulentne kingg energije. Jednaba disipacije turbulentne

kineticke energije glasi:

2
T+ Re) o R(Gerifle)= GG G )

gdje Ge.e 1 0Oznacava efektivnu difuziju za polje, aCy i C; su konstantne modela.

Nestlecivi k  w SSTmodel turbulencije

Jednadba turbulentne kinatke energije unuték w SSTmodela turbulencije glasi:

'1"1_‘t‘+ N(k) kNT N(GeeriNK) = min(G;cib kw) b kw; 3)

gdjecy i b oznacavaju konstante modela. Jedmbd specicne disipacije turbulentne ki-

neticke energije glasi:

1:1_\:'+ N@w) wNT N(GyefiNw)=

gmin $; %b wmax ajw; b1F23p S 4)
1

bw?+(1 Fi)CDyy;
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gdje Gy:.ef 0znaava efektivnu difuziju za poljev, S, kvadrat simetgnog dijela tenzora gra-

dijenta brzineF; funkciju mijesanjaCDy,, medudifuziju, dok suaz, b i ¢c; konstante modela.

Struktura blok-sustava
Vetina CFD algoritama koristi odvojene algoritme, kojisgaju svaku jednatbu zasebno,
jednu nakon druge. Nedostatak takvih algoritama je u eksplicithom sprezanju 7&and
rjesenja jednarbi se moraju znatno podrelaksirati radi osiguravanja nwkerstablinosti te
konvergencije rjsenja. Prilikom implicitnog sprezanja, jedrzde se rjsavaju simultano, unu-
tar blok-matrice sto rezultira véim linearnim sustavom, ali smanjenjem potrebe za podrelak-
siranjem te ubrzavanjem procesa konvergencigeng.

Prostornom diskretizacijom domene (koristsetodu konanih volumena) dobivamo line-

arni sustav jednaabi:

0 10 1 0 1
ap1 app arN fq b1
ax1 a2 aN fa 07
=B . (5)
aN;1 an2 ann b

gdje N oznacava broj kontrolnih volumenag;;; clan matricef; vrijednost polja uceliji i za
koju se rjsava sustav, dolg oznaava desnu stranu jedrazk zaceliju i.

Kod odvojenih algoritamaglanovi matricaa;;j, vrijednosti poljaf; i bj su skalari jer se
svaka jednazba rjesava zasebno. Prilikom implicitnog sprezanja jedicbdnosno kod blok-
matrica,;;j je tenzor dimenzija n gdje jen broj implicitno spregnutih jednaabi, u skladu
stimf; i b postaju vektori dimenzija.

U ovom se radu razmatraju dvojedzbéeni modeli turbulencija, stoga radi jednostavnijeg i
preglednijeg prikaza uvode se dvije geokg, uvijek pozitivhe, varijabléa i f g te pripadajge

genercke skalarne transportne jednabe:

fa

W+|<|(UfA) fANT N (GaNfp) = Sa; (6)
T R@afe) foNT RN (GRFp)= S
Tt (Ufg) feNU N(GeNfg)= Sg; (7)

gdje suSy i s neto izvorskiclanovi, koji u sebi ukljeuju sve izvorske i ponorskelanove

jednadbe, stoga mogu poprimiti i pozitivnu i negativnu vrijednost. Ucslu implicitnog

Xiv



sprezanja jednatbi (§) i (7)), f postaje vektor:

0 1
f .
fi=@"A ®)
f i
aclan matrices;;j tenzor: 0 1
ayy = @ Nafa Haife; p (©)
8 g;if aoj | O gisf g

Linearizacija
Prije umetanja jednaathi u blok-matricu, neto izvorskilanovi moraju biti linearizirani po svim

varijablama koje se tretiraju implicitno:

(0] (0]
SO+ IR n 9 IR 4 o). (10)
ﬂfA ﬂfB
(0] (0]
§ g IB o ofyr BB hn g, (1)
Tfa fs

dje eksponent” oznacava implicitno tretiranclan, a © oznacava eksplicitno tretiranclan.
J

Nakon linearizacije dobiverdlanovi se analiziraju te razvrstavaju u odgovatejgrupe:
Sh= Sh+ Saf 8+ Saf A (12)

S§:S§+SBfR+SBf§; (13)
gdje suS" eksplicitni (uvijek pozitivni) izvori,S (uvijek pozitivni) izvori koji implicitno
sprezu jednadbe, aS implicitni (uvijek negativni) ponori. Analiza i preraspodijela produkata
linearizacija nana je radi guvanja pozitivnosti rjigenja jednazbi. Varijable koje se javljaju
unutar modela turbulencije (npk, e, w itd.) su po de niciji uvijek pozitivne vrijednosti te u
slucaju pojavljivanja negativnog rgenja u procesu rgavanja sustava jednaal, cesto uzrokuju
destabilizaciju i neeljene winke na ostatak procana. Implicitno tretiranje ponora pridonosi
dijagonalnoj dominantnosti matric#o povoljno utjee na linearne rigavae. lzvori koji im-
plicitno spreu jednadbe nalaze se izvan dijagonalkna matrice[(9), stoga njihov predznak
mora biti suprotan od onih na dijagonali kako ne bi negativno utjecao na dijagonalnu dominant-
nost, isto se pravilo primjenjuje i za eksplicitne izvore jer desna strana jedbedkod uvijek

pozitivnih varijabli, mora biti suprotnog predznaka od dijagonale da bi se osigurala pozitivha
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Slika 1: Doprinos pojedinih produkata linearizacije blok-sustavu.

ograntenost rigenja. Doprinos pojediniblanova jednazbi (12) i (13) blok-sustavu prikazan

je naslic].

Implementacija implicitno spregnutog k e modela turbulencije
Nakon manipulacije ponora unutar jedzéd (1), nakon provedene linearizacije te analize

clanova, implicitno spregnuki e model turbulencije implementiran je u sljgutg formi:

0\2 o)
L N@k) kNT N(GeeriNk)= G+ cm(k) 2ka—k”; (14)
It N Nt
e .~ . - e° g0 ? e?
ﬁ+ N(ue) eNu N(Ge;effNe)zc%sz e K" 2C%e”; (15)
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gdje suclanovi oznaeni plavom bojom izvori koji implicitno spei jednadmabe, aclanovi

oznaeni crvenom bojom implicitni ponori.

Implementacija implicitno spregnutog k w SSTmodela turbulencije
Nakon linearizacije te analiz#anova jednazbi (3) i (4), implicitno spregnutk w SSTmodel

turbulencije implementiran je u sljedej formi:

%(+N(Uk) kNT N (GeerfNK) = min(G; cib kK°w™) b wok™,; (16)
111_\:/+ N@w) wNT N(GyefiNw)=

p__
gmin Sz;gb wemax aw® biFs S (17)
1

+b(W%? 2bwow™+(1 Fp)CDyy;
gdje suclanovi oznaeni plavom bojom izvori koji implicitno spe jednadabe, clanovi

oznaeni crvenom bojom implicitni ponori,ean(1l F;) CDy, de niran je izrazom:
8

3 (1 F — (1 F)CDwy 0 -
1) CDuw = K"  CDyy > 0;
(1 F1)CDw = “ (18)

" (1 F1)CDyy= ETUPwyn Dy, < 0:

Primjeri validacije implementiranih modela turbulencije

Validacija implementiranih modela turbulencija se provodi na dva poznatajalstrujanja za
koja su dostupna eksperimentalna mjerenja: odvojeno wastlatrujanje oko NACA 4412
aeropro la pri maksimalnom uzgonu te nesfl strujanje u kanalu s naglim Benjem.
Validacijak wSSTmodela turbulencije provodi se na obacsja strujanja, dok sk e
model validira samo na strujanju unutar kanala.

Slika[2 prikazuje usporedbu painske raspodijele koe cijenta tlaka po aeropro lu. Iz nje
je vidljivo da rezultati dobiveni implicitno spregnutitn  w SSTmodelom turbulencije dobro
opisuju trendove eksperimentalnih podataka.

Slika[3 prikazuje poleajsest linija da kojih su dostupni eksperimentalni podaci normalizi-
rane brzine u smjeru pro la, dok slika 4 prikazuje usporedbu dobivenih rezultata s eksperimen-

talnim podacima iz koje je vidljivo da se numeki rezultati poklapaju s eksperimentalnima.
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Slika 2: NACA 4412: Usporedba posmske raspodjele koe cijenta tlaka.
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Slika 3: NACA 4412: Polaaj linija duz kojih su dostupni eksperimentalni podaci.
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Slika 4: NACA 4412: Usporedba normaliziranih pro la brzine u smjeru aeropro la.
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Slika[§ prikazuje usporedbu painske raspodijele koe cijenta tlaka po donjem zidu kanala,
a slika[6 usporedbu posinske raspodijele koe cijenta trenja po donjem zidu kanala. 1z njih
je vidljivo da rezultati dobiveni obama implicitno spregnutim modelima turbulencije dobro

opisuju trendove eksperimentalnih podataka.
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Slika 5: BFS: Usporedba raspodijele koe cijenta tlakazdlonjeg zida.

Slika[q prikazuje polpaj pet linija dz kojih su dostupni eksperimentalni podaci normalizi-
rane brzine x smjeru, dok slikaJ8 prikazuje usporedbu dobivenih rezultata s eksperimentalnim
podacima iz koje je vidljivo da se numeki rezultati dobiveni obama implementiranim mode-

lima poklapaju s eksperimentalnima.
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Slika 6: BFS: Usporedba raspodijele koe cijena trenjadlonjeg zida.

Slika 7: BFS: Polaaj linija duz kojih su dostupni eksperimentalni podaci.
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(a) x/H = -4, (b) x/H =1,

(c)x/MH =4, (d) x/H =6,

(e)x/H =10.

Slika 8: BFS: Usporedba normaliziranih pro la brzine u x smjeru.
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Usporedba performansi implementiranih implicitno spregnutih modela s
odvojenim modelima turbulencije
Provodi se i usporedba performansi implementiranih implicitno spregnutih modela s odgova-
rajucim postoj€im odvojenim inaicama modela turbulencija. 8tio kao i prilikom validacije,
usporeb& wSSTmodela provodi se na oba shkja strujanja, dok e e model usporduje
samo na sloaju strujanja unutar kanala.

Slika[9 prikazuje polraj triju sondi poméu kojih su pré&ene vrijednosti polja kroz itera-
cije. Slike[I0 i 1] prikazuju usporedbu konvergencije vrijednosti polja implicitno spregnutog i

odvojenogk e modela te spregnutog i odvojenkg w SSTmodela turbulencije.

Slika 9: BFS: Polaaj sondi.
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(a) Ux, (b) Uy,

(©) p. (d) n;.

Slika 10: BFS: Usporedba konvergencije vrijednosti polja implicitno spregnutog i odvojenog

k e modela turbulencije.

XXV



(a) Ux, (b) Uy,

(©) p, (d) ;.

Slika 11: BFS: Usporedba konvergencije vrijednosti polja implicitno spregnutog i odvojenog

k wSSTmodela turbulencije.

XXV



Slika[12 prikazuje konvergenciju minimalnih i maksimalnih vrijednosti polja po iteracijama

za oba implementirana modela te pripadajwdvojene inace.

(a) maxU), (b) max(p),

(c) min(p).

Slika 12: BFS: Usporedba konvergencije minimalnih i maksimalnih vrijednosti polja.

Slika[13 prikazuje konvergenciju koe cijenata sile po iteracijama dobivenih implicitno
spregnutim te odvojenink w SST modelom turbulencije na staju opstrujavanja NACA

4412 aeropro la.

XXVI



(a) Koe cijent otpora.

(b) Koe cijent uzgona.

Slika 13: NACA: Konvergencija koe cijenata sile po iteracijama.
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Slika[14 prikazuje konvergenciju minimalnih i maksimalnih vrijednosti polja po iteracijama

za implicitno spregnuti te odvojeki w SSTmodel turbulencije.

(a) max(U), (b) max(p),

(c) min(p).

Slika 14: NACA: Usporedba konvergencije minimalnih i maksimalnih vrijednosti polja.

Slika[13 prikazuje konvergenciju koe cijenata sile kao funkciju procesorskog vremena, za

implicitno spregnuti te odvojerk w SSTmodel turbulencije.
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(a) Koe cijent otpora,

(b) Koe cijent uzgona.

Slika 15: NACA: Konvergencija koe cijenata sile kroz procesorsko vrijeme.
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Iz prethodno prikazanih slika vidljivo je da implicitno sprezanje jedstdhodela turbulen-
cije pospjsuje mirniju i bzu konvergenciju rigenja (ne samo turbulentnih varijablitvetlaka
i brzine), cesto sprjeava premsivanje vrijednosti u procesugananja te ubrzava konvergen-
ciju minimalnih i maksimalnih vrijednosti polja u praranskoj domeni. Implicitno spregnuti
modeli dosljedniji su u cuvanju pozitivnosti varijabli te u kontekstu procesorskog vremena
skretuju vrijeme trajanja pro@una. U sleaju prorauna koe cijenata sile uzgona i otpora za

NACA 4412 aeropro |, ubrzanje je otprilike 20%.
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Chapter 1

Introduction

1.1 Background

Development and implementation of implicitly coupled pressure—velocity algorithms for in-
compressible ows in Computational Fluid Dynamics (CFD) introduced a substantial increase
in the convergence rates for the velocity and pressure equations, compared with corresponding
segregated algorithms (e.g. SIMPLE or PISQ) [1]. When implicitly coupled solvers are used
for turbulent ow simulations, convergence rates are often controlled by segregated treatment
of turbulence model equations. Therefore, implicit coupling of two-equation eddy viscosity

(incompressible) turbulence modeéks, e andk w SSTshall be presented in this thesis.

1.2 Previous and Related Studies

Two-equation turbulence models include two extra transport equations for representation of the
turbulent ow properties, which are by de nition positive quantities. Despite their relatively
simple mathematical representation, turbulence model equations present serious numerical dif-
culties, among which are non-linear coupling, convergence and positivity preserving dif cul-
ties. The inter-equation coupling is usually strongly non-linear, leading to added numerical
stiffness which usually results in slower convergence. Furthermore, in the process of conver-
gence, non-physical solutions, namely negative values of the turbulence quantities may appear
even if the equation set analytically guarantees to remain positive [2]. Therefore, stability and

boundedness of the implemented turbulence models is becoming an active and challenging eld

1
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for research.

llinca et al. [3] 4] propose a substitution of dependent variables that guarantees positivity of
turbulence variables in numerical simulation algorithms. The approach solves for the natural
logarithm of the turbulence variables which are known to be strictly positive.

Du and Wu[5] prove that the mixed (analytical/numerical) method based on operator split-
ting, which is extended to thke e turbulence model, does not converge to a stable steady
state solution. Therefore, an unsplit mixed method with implicit treatment of the source term
is proposed.

Wasserman et al.[ [6] present a robust multigrid method for the solution of Reynolds-
Averaged Navier-Stokes (RANS) equations with two-equation turbulence models. The method
employs a basic relaxation scheme (alternating line Gauss-Siedel) where mean- ow and tur-
bulence model equations are marched in time in a loosely-coupled manner. The proposed
multigrid method uses an extended version of the unconditionally positive-convergent scheme
for two-equation turbulence models (adapted for use in multigrid) and a strongly coupled multi-
grid cycling strategy.

Moryossef and Levy [7,/8] propose an unconditionally positive-convergent implicit proce-
dure for two-equation turbulence models. The implicit procedure is based on designing the
implicit Jacobian to be an M-matrix. The suggested M-matrix design should guarantee the pos-
itivity of the turbulence equation dependent variables for any time step, without the use of any
a posteriori arti cial numerical bounding.

In this thesis we shall explore options for accelerated convergence of the two-equation eddy
viscosity turbulence equations by means of block-solution. Here, equations of the turbulence
model are solved together using a block-matrix and a single call of the (iterative) linear equation
solver. This allows us to consider various forms of linearised implicit inter-equation coupling,

with a view of accelerated convergence.

1.3 Thesis Outline

Chaptef R introduces the basic governing equations in uid dynamics and gives a brief overview
of turbulence modelling for CFD, with a focus on the (incompressible)e andk wSST

turbulence models and the corresponding wall functions.
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Chaptef B describes the block-system structure which is used to achieve inter-equation cou-
pling. Linearisation procedure for the non-linear source terms is described. Analysis of sta-
bility and boundedness of the linearised model is examined. Furthermore, linearisation and
implementation ok e andk wSSTturbulence models in the block-matrix framework is
summarised.

Chaptef # presents validation of the implemented turbulence models. Two validation cases
are examined, a separated ow past a NACA 4412 airfoil at maximum lift and an incompress-
ible turbulent ow over a backward facing step.

Chaptef b presents the performance benchmark tests of implemented turbulence models on
both validation cases. The implemented models are compared with the corresponding segre-
gated versions.

Chaptef b summarises the Thesis and gives a comprehensive conclusion.

Faculty of Mechanical Engineering and Naval Architecture 3



Chapter 2

Turbulent Flow Modelling

Majority of ows encountered in engineering practice are turbulent by nature, therefore the
ability to appropriately model turbulent phenomena is essential. As Wildox [9] suggests, an
ideal turbulence model should introduce minimal amount of complexity while capturing the

essence of the relevant physics. Main properties of turbulent ows are:

High unsteadiness,
Three-dimensionality,

\orticity,

High diffusivity (turbulent diffusion),
Dissipation,

Coherent structures,

Fluctuations on broad ranges of length and time scales. [10]

Time-dependent, three-dimensional Navier-Stokes equations describe all the physics of tur-
bulent ow. However, due to the non-linearity of the convection term, resolving the whole range
of spatial and temporal scales of turbulence is prohibitively expensive for most engineering ap-
plications [9, 11]. The goal of turbulence modelling is to nd approximate solutions for the
Navier-Stokes equations in a manner that they either describe the turbulence in terms of mean
properties or limit the spatial/temporal resolution requirements associated with the full model
[1].
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2.1 Incompressible Navier—Stokes Equation

The Navier-Stokes or the momentum equation, is the basic governing equation which de-
scribes the motion of viscous uids and belongs to the class of vector convection-diffusion
equations.The momentum equation is accompanied by the continuity (mass conservation) and
the energy conservation equation. This thesis does not deal with heat transfer, therefore the
energy equation is neglected.

The momentum and the continuity equation for the incompressible ow read:

%+ N (uu) N (nNu)= Np; (2.1.1)

Nu=0; (2.1.2)

whereu is the instantaneous velocity ela, is the kinematic molecular viscosity amds the

kinematic pressure de ned gs= P=r , whereP is the pressure andis the density.

2.2 Overview of Turbulence Modelling for CFD

There are three basic approaches for predicting turbulent ows in CFD [9]:

Direct Numerical Simulation (DNS), solves the Navier-Stokes equations for all scales

without turbulence modelling. Suf cient temporal and spatial resolution is required.

Large Eddy Simulation (LES), solves Itered Navier-Stokes equations, where large scale
turbulence and coherent structures are simulated, but Itered small scale eddies are mod-

elled.

Reynolds-Averaged Navier-Stokes equations (RANS), solves the averaged Navier-Stokes
equations, where turbulent uctuations are appropriately modelled. Consequently, a
coarser spatial and temporal resolution is suf cient and it is possible to introduce a con-
vent of solutions which are steady or two-dimensional in the mean, compared to the in-
trinsically three-dimensional and unsteady nature of turbulent ows. Additional closure

correlations are required.

In this thesis, only the RANS approach will be considered in a more detailed manner.
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2.2.1 Reynolds Temporal Averaging of Navier-Stokes Equations

If the objective of the simulations is to obtain the mean properties of the ow without consid-
ering the details of turbulent uctuations, Reynolds averaging is the most appropriate choice.
Following the Reynolds decomposition ofand p, instantaneous elds are decomposed
into a mean and uctuating part:
u= o+ u’ (2.2.1)
p=p+ po; (2.2.2)
where™ denotes the mean arftienotes the uctuating part.
Time averaging of Equation$ (2.1.1) and (21.2) yields the Reynolds-Averaged Navier-
Stokes Equations and the time-averaged continuity equation:
u - ~ - - o
11TT_t+ N@u NmNm= Np N vl ; (2.2.3)
Nu=0: (2.2.4)

Equation[(2.24) is identical t§ (2.1.2), with the mean velocity replacing the instantaneous ve-
locity. The only difference between the time-averaged Equafion {2.2.3) and instantaneous mo-
mentum Equatio.l) is the appearance of the correlatidn® which is commonly known
as the Reynolds-stress tendor [9]. As Equatipns (2.2.3)[and]|(2.2.4) do not form a closed set, a
turbulence model is introduced to model the Reynolds-stress tensor. The most common types
of turbulence models are the eddy viscosity models in which the Reynolds-stress tensor is mod-
elled with:

uo=n, No+(No)' él k; (2.2.5)

whereny is the kinematic eddy viscosity,is the identity tensor (Kronecker delta) aks the
turbulent kinetic energy.

Following [10], the molecular viscosity is replaced with the effective viscositg + which
is equal to the sum of the molecular and eddy viscosity (turbulent viscagity)= n + ny.
The Reynolds-averaged momentum equation with an eddy-viscosity turbulence model has the
following form:

"111_? +R @ N nefu = Kp: (2.2.6)

and the continuity equation remains the same, Equdtion [2.2.4).

Eddy viscosity models are often divided into [9]:
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Algebraic models,
One-equation models,
Two-equation models.

Only the two-equation models are covered in scope of this thesis, more information about

remaining models can be found in [9].

2.3 Two-Equation Turbulence Models

The two-equation models are the work-horse of engineering simulations today. Therefore, two
extensively used two-equation turbulence modtelse andk w SSTwill be analysed in this
thesis. [[12, 11]

In most of the two-equation models, the rst equation is the turbulent kinetic ekexgua-
tion which determines the velocity scale, and the second equation is the turbulent dissipation
e equation which determines the length scale of the turbulence. Insteadhaf inverse time
scalew (speci c turbulence dissipation or eddy turnover time) can also be used as the second
equation.

At this point, it is useful to emphasize that the complexity of turbulence phenomena makes
it unlikely that any single Reynolds-averaged model will be able to represent all turbulent ows.
Hence, turbulence models should be regarded as engineering approximations rather than scien-
ti c laws [10].

Equations described in the following sections represent the implementation of the incom-
pressiblek e andk wSSTmodels in OpenFOAM [13], more precisely in the community-
driven fork of the OpenFOAM, i.e. the OpenFOAM Extend-Projéect [14] (hereinafter referred

to as foam-extend).

2.3.1 Incompressibl&k e Turbulence Model

In foam-extendk e turbulence modelkEpsilon ) is implemented according to Jones and

Launder [15] and is often referred to as the standarde turbulence model. In the standard
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k e model the turbulent kinetic energy equation reads:
k - - .
111_t+ N(Uk) kNU N(GeefiNK)= G € (2.3.1)

Despite the fact that the ow is assumed to be incompressible, iU term is implemented,

because it enhances the conservativeness of the solution during the calculation.
Geeff= N+ ng: (2.3.2)

Dissipation of turbulence kinetic energy equation reads:

2
1111—te+ N(e) eNu R (GueriNe)= clge Cz%; (2.3.3)
Goeff= N+ L. (2.3.4)
Se
The eddy viscosity is de ned as:
k2
Nt = Cy—; (2.3.5)
e
and the production of turbulent kinetic energy:
1 2
St (R T
G= 2y > Nu + ( NU) : (2.3.6)

Closure coef cients have the following valugS;, = 0:09,C; = 1:44,C, = 1:92,5, = 1:3.

2.3.2 Incompressiblek w SSTTurbulence model

In foam-extendk w SSTturbulence modelkOmegaS$Ts implemented according to the
model described by Menter and Eschl/[16] with updated coef cients from [12], but with the
consistent production according MASA Turbulence Modeling Resouweb-pagel[17]. Op-
tional F3 term for rough walls is added according to Hellstenl [18]. In khew SSTmodel

turbulent kinetic energy equation reads:

1111_lt<+ N (k) kNT N(GeerfNk)= min(G;cib kw) b kw; (2.3.7)
Geeff= axnt + n: (2.3.8)
Speci c dissipation rate equation reads:
TR whT N (Grerfiw) =

p_
gmin $; %b wmax aw; biFs S (2.3.9)
1

bw?+(1 Fy)CDyw;
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Gueff= awh + n: (2.3.10)

The eddy viscosity is calculated as:

N = h a.]_k ;
t - o J— ~ ~ T
max aiw, b1F23p 2 % NU+( NU)T (2311)
and the production of turbulent kinetic energy reads:
G=nS; (2.3.12)
1 . 5 2
$=2; Nu+(Ro)" (2.3.13)

Thek wSSTformulation combines the best propertiekofw andk e turbulence models.

The use ofk e in the free-stream removes the the sensitivity of the origknalw to the

inlet free-stream turbulence properties. The us& ofw in the inner parts of the boundary
layer makes the model usable close to the wall without damping functions. Thus, each of the

constants represents a blend of constants from @et w) and seb (k  €):

ax= Fi(ak, ak,)* ak, (2.3.14)
aw = Fi(aw, aw,)+ aw,; (2.3.15)
b=F(by b+ by (2.3.16)
9= Rh(a @)+ @; (2.3.17)

where the blending is performed via blending functiofs,is a function that is one in the
sublayer and logarithmic region of the boundary layer and gradually switches to zero in the
wake region[[19]: h i
Fp = tanh (arg1)4 ; (2.3.18)
( " p_ ! #

args = min - min max bWy YW CDiysy?

110 ; (2.3.19)

F is a function that is one for boundary-layer ows and zero for free shear layers [19]:

h [
F2 = tanh (argy)® ; (2.3.20)
" p_ ! #
. 2 k 500n _
argz = min max b—wyyZ—w ; 100 : (2.3.21)
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Hellsten [18] introduced the implementation of functiéndesigned to prevent the SST limi-
tation from being activated in the roughness layer in rough-wall ows, i.e. the layer very close

to the rough wall:

h [
F:= 1 tanh (args)”* ; (2.3.22)
. 150 .
args = min y2—w’10 : (2.3.23)

Blending functionF3 is by default equal té-, but if the optionals function is activatedi»3

becomes equal to the product of bé&handFs.
8
2 Fz=F default setting,

Fo3 = S (2.3.24)
- 3= FF3  optional term for rough-wall ows.
Positive portion of the cross-diffusion term is introduced for numerical stability:
CDyyw+ = max CDy,; 10 10 ; (2.3.25)
Nk N
CDyy = 28pg——2" (2.3.26)

Closure coef cients have the following valuesj, = 0:85,ay, = 1, aw, = 0.5, aw, = 0:856,
by = 0:075,b, = 0:0828,b = 0:09,¢01 = 59, = 0:44,a = 0:31,b; = 1,¢, = 10.

2.4 Near-Wall Treatment

When studying part of the wall bounded turbulent ows, the near-wall region is traditionally
divided into the inner and outer turbulent boundary layer. In this thesis only the inner layer will
be brie y investigated since all the important phenomena for near-wall ow modelling in CFD
occur in this layer. Various regions of the turbulent boundary layer are shown in Figure 2.4.1.

Roughly speaking, the inner layer consists of: the viscous linear sulflayey” < 5), the
buffer sublayef5< y* < 30) and the inertial sublaygB80< y" < 200 300 wherey" is the
normalised distance to the wall calculated as:

B Crln:4k1:2

n

+

y (2.4.1)

Y-
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Figure 2.4.1: Regions of the turbulent boundary layér. |[20]

In the viscous linear sublayer, molecular viscosity is dominant and the turbulence effects are
negligible. In the inertial sublayer, turbulent viscosity is dominant, making the molecular vis-
cosity unimportant. In the buffer sublayer both turbulent and molecular viscosities are equally
important.

The presented assumptions allow implementation of simple expressions, which model be-
haviour of important variables in the near-wall region (as functions of wall distance). Fig-

ure[2.4.2 shows the dependency of dimensionless veldcityvith respect to/* (the red line

Faculty of Mechanical Engineering and Naval Architecture 11
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represents the experimental observations and the two blue lines represent the two derived pro-
les). The linear pro le in the viscous sublayer and the logarithmic pro le in the inertial
sublayer tthe experimental observations, while the buffer sublayer can be viewed as a smooth
transition between the two. Consequently, it is recommended to put the rst cell centre either
in the viscous linear sublayer or in the inertial sublayer. The buffer sublayer should be avoided,

as it represents a transitional region from the linear to the log pro le.

Figure 2.4.2: Law of the wall. [21]

Positioning the rst cell in the linear sublayer is an attribute of low Reynolds turbulence

modelling, while placing it in the inertial (log-layer) is a characteristic of high Reynolds mod-
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elling.

Figure 2.4.3: High Reynolds number vs. low Reynolds number approach. [22]

In CFD codes, the previously described correlations are implemented as wall functions. The
focus of this thesis is the implicit coupling of two-equation incompressibler SSTandk e
turbulence models, therefore wall boundary condition&ferandw, and their implementation
in foam-extend will be covered in detail.

In foam-extend wall function for el is denoted wittkgqRWallFunction, for eld e
epsilonWallFunction , for w omegaWallFunction and the correction fam; is done in

nutWallFunction .

2.4.1 Standard Wall Functions fork e Turbulence Model

In foam-extendk e turbulence model is implemented only as a high Reynolds version and
therefore uses standard wall functions, which avoid solving the ow inside the viscous sublayer
by using empirical relations applicable in the inertial sublayer. Furthermore, in adjacent cells

to the wall, Equation (2.3]3) fa is not solved and an algebraic expression is used instead:

Co k=2

o (2.4.2)

e=
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wherek is the von Karman constant with a default value of4d. The production tern® in

Equation[(2.3]1) fok is calculated using the following expressions:
8

_2G=0Gys foryt v,

G= S (2.4.3)
- G= G|Og fOI’ y+ > y|+am,
Giis= 0; (2.4.4)
ne + n)jNgj)?
Giog = ((ng _)J )] : (2.4.5)

k G 'kiR2y
Thek equation is still solved in cells adjacent to the wall. Equation (2.4.5) was altered in com-
parison with [23] for achieving consistency with ANSYS Fluent implementation [24]. Simi-
larly as in [23] the normalised distance to the wdllis calculated from Equatiofi (2.4.1) and

the interface between the viscous and the inertial sublayer (log-lgyers calculated with:

+ _Inmax By 1

Vi = - : (2.4.6)

whereE is a dimensionless constant with a default value :8f %quation[(2.4]6) is solved

iteratively in ten iterations.

2.4.2 Automatic Wall Treatment for k w SSTTurbulence Model

Incontrasttothé& e, thek wSST(andk w)turbulence model does not need extra damping
functions to act as a low Reynolds model becauseleguation has a known solution in both
viscous and inertial (log-layer) sublayer. Adopting this property, Menter [16] developed a
blending technique which allows a smooth transition from high to low Reynolds formulation
and vice versa. Despite the smooth shift, automatic wall treatment does not give a correct
representation of the buffer layer. The blending is performed by:

q

W= Wi+ leog; (2.4.7)
wherew,is andwiqg are de ned as follows:
6n
Wyis = W’ (2.4.8)
k1:2
Wigg = ————: 2.4.9
0og kCr1n_4y ( )
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Similarly as in the standard wall functions fekr e, Equation[(2.3]9) fokv is not solved
for cells adjacent to the wall, rather, its value is obtained from Equdtion [2.4.7). In these cells

the production tern® in Equation|(2.3.9) is modi ed according to:
8
_ 2 G = GViS If y+ y|+ama

G= S (2.4.10)
) G= G|og |f y+ > y|+am.
Guis= 0; (2.4.11)
Con K22 (n + n) NG|
Grog= —m < (m* M)ING, (2.4.12)

ky
wherey" andyj,, are calculated from Equatiop (2.41.1) and Equation (2.4.6).
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Chapter 3

Implicit Coupling of Two-Equation

Turbulence Models

In the previous chapter, a short theoretical overview of turbulence modelling in CFD was de-
scribed and special attention was given on two-equation turbulence madels &nd k

w SST) and their implementation in foam-extend. In this chapter, implementation of two-
equation turbulence modelk ( e andk w SST) in the block-matrix framework is presented.
Related problems regarding the linearisation, stability and boundedness of the models are also

investigated.

3.1 Block-Coupling

Most CFD algorithms use segregated algorithms in order to solve two-equation turbulence
models, where the turbulence equations are solved sequentially one after another. Bottleneck
of segregated algorithms is the explicit coupling, where the solution variables need to be sub-
stantially under-relaxed to ensure numerical stability. On the other hand, segregated algorithms
are memory-ef cient because only one discretisation matrix at a time needs to be stored.
Implicit coupling introduces a simultaneous way of solving governing equations. All the
equations are considered as part of a single system which has a block-banded structure [10], and
all equations in the block are solved together. Implicit coupling should be able to improve con-
vergence (under-relaxation factors can be considerably increased) but it leads to a substantially

larger linear system and an increased memory usage [25].
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3.2 Block-System Structure

The structure of the block-system can be represented by two levels: the rst is bound to the
calculated compact-stencil discretisation of the computational domain with control volumes
(CV) and the second handles the format of the each matrix entry [25].

Spatial discretisation (via nite volume method) of the domain INt€VSs, leads to a linear

system ofN unknowns:

0 10 1 0 1
ar1 a2 arN fq b1
ar1 ao a- f b
7 2.,N .2 _ a.z | (3.2.1)
aN:1 an2 an:N fn bn

wherea;;j is a matrix entryf i is the eld value to be solved in the cellandb; is the right hand
side (RHS) term for the ceil

In the segregated approach, each matrix entry is a scalar, since every equation is solved
sequentially. In the simultaneous implicitly coupled approach, éachan-dimensional vec-
tor, wheren is the number of the implicitly coupled equations. The same applies for the RHS
vectorb; and each matrix entrg;j is an n tensor, which models the coupling between the
implicitly coupled equations.

If the two-equation turbulence models are used, two additional transport equations need to
be solved, which are coupled through source and sink terms. Assume that the two transported
variables aré o andf g (which are also positive-bounded) and that the transport equations have

the following generic form:

%+ N(@fa) faNT N(GaNfa)= Sa; (3.2.2)
%+ N(ufg) fsgNu N(GNfg)= Sg; (3.2.3)

where Sy, and Sg are net source terms, which are both functiond gfandfpg, i.e. Sy =
Sa(fafg) andSs = S (f a;fg). In case of implicit coupling of the two-equations, eld value

f; in the celli is a two-dimensional vector:

0 1

fi= @ A : (3.2.4)

f i
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and each matrix entrg;;j is a 2 2 tensor which models the coupling between the two-

equations: 0 1

@ Haifai | Haifej o : (3.2.5)
& gi;f g

whereas 1 ,, models the coupling betwedn in cell i with f A in cell j, & ,:t5; Mmodels the

ai;j =
af gi;f |

coupling betweethi 5 in cell i with f g in cell j, a1 ,, models the coupling betweém in cell
i with f A in cell j andas Bi:f ] models the coupling betweé in cell i with f g in cell j.
Here, it is important to emphasize that the turbulence equations are mainly coupled through
their source terms, as shown in Chapter 2, therefore, cross-couplingagrms anday g ,;
which are located on the off-diagonal of the matrix ergry (3.2.3) have a nonzero value only
on the diagonal of the linear system (3]2.1), i.e. when;.
Furthermore, the global sparseness pattern related to mesh connectivity can be preserved

by choosing an appropriate form of the block-matrix layout.

3.3 Analysis of Stability and Boundedness of the Linearised

Model

Turbulence variables, e.g. turbulent kinetic enekgdissipatione and speci ¢ dissipationv
belong to the group of positive-bounded variables, i.e. these variables are physically or by
de nition non-negative quantities, therefore their value should always remain positive during
the calculation. If the negative values do occur, numerical instabilities are inevitable, which
may have an undesirable effect on the rest of the calculation. [26]

If f is a generic, positive-bounded scalar dependent variable and Equation (3.3.1) is the

appropriate generic scalar transport equation:

1]"—];+N(Uf) fNu N(GNF)=S: (3.3.1)

the net source terr8in Equation [(3.3]1), accounts for any sources or sinks that either create
or destroyf , thereforeS can acquire both positive and negative values. If the net source term
is not properly handled, the positive-bounded variable may acquire erroneous negative values.

Hence, Patankarl [26] suggests dividing the net source term into the source (which is always
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positive) and sink (which is always negative) terms:

S=S +Sf: (3.3.2)

where the sink terr8 is treated implicitly and the source tei$h is treated explicitly. Implicit
treatment of the sink term, increases the diagonal dominance of the matrix, which is conducive
to convergence and explicit treatment of the source, enhances the boundedness and the stability
of the solution.

In case of turbulence modelling, the source/sink terms are often non-linear functions of
the dependent variable itself. Since the discretised equations are solved using linear algebraic
solvers, the non-linear dependency needs to be linearised. In this thesis the Picard's method is

adopted:

(0}
g L+ 1111_fs (" £9); (3.3.3)

where the superscript denotes the new time-level (implicit treatment) and the supers€ript
denotes the old time-level (explicit treatment).
After the linearisation, the source terms are converted into the explicit form and added into

theS" term, while the sink terms are treated implicitly by combining them #ito

=S +s M (3.3.4)

If the two-equation turbulence model equations should be solved in an implicitly coupled

manner, linearisation of the net source terms with respect to both variables is necessary. Again,

the two generic transport equations (Equations (B.2.2)[and|(3.2.3)) are used as an example and

the linearisation is performed according to the Taylor expansion:

(0] 0

S K+ 12 08 R (819 (3.3.5)
(0] 0

§ g+ % (t2 £+ % (F0 19 (3.3.6)

Despite the fact that the equations are inserted into the block-system and that the system is
solved in a simultaneous manner, proper net source term treatment is necessary, if the bound-

edness of the variables is to be preserved.
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Applying the same reasoning for the net source term treatment as previously described in
this section, products of linearisation are divided into three groups: the explicit s@&ircte

implicit cross-coupling sourceS and the implicit SinksS :
K= Sy + Saf g+ SifA; (3.3.7)

$= S+ Sfa+ Sfe: (3.3.8)
The contribution of the individual terms from Equatiofs (3.3.7) and (B3.3.8) to the block-
system is shown in Figufe 3.3.1.

{ 0 1—=06 T
af irT Ai & i»T Bi i
S; @ A fa Asfei A ,@bfAA
t A giifai | Hgisfai bei
0 1—™06 T
Sé { @ 8 pifai | & aifai A '@bfAiA
t B giifai | W pisfi b Bi
0 1—0 T
S, { @ A piifai | O aisfai A ’@bfAiA
t A giifai | W pisfai b Bi
0 1—0 i »
S { @ 8f pifai | B aifai A ’@bfAiA
t A giifai | W gisfai b Bi
0 1—0 i »
SA ( @ 8f pif i | O aifai A '@bfAiA
L A giifai | W gisfai b Bi
§) 1—0 T
SB { @ 8 pifai | & aifai A ,@bfAiA
t B giifai | Wi bei

Figure 3.3.1: Contribution of the individual products of the linearisation to the block-system.
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Regarding the division and treatment of the products of the linearisation, the only major
difference between the segregated and the implicitly coupled approach lies $ teem,
which models the implicit cross-coupling of the two-equations. Since this term lies on the
off-diagonal of the matrix entrg;, its sign needs to be opposite of that fr@n, in order to
preserve the diagonal dominance of the block-matrix. If the same sign (negative on the RHS
of the equation) is used, problems regarding the boundedness of the always positive variables
emerge (which destabilises the convergence of the solution), hence lower under—relaxation
factors need to be used which directly negates potential bene ts of the implicit cross-coupling.

Therefore, negative signs of tise term should be avoided at all cost.

3.4 Linearisation and Implementation of the Two-Equation

Models

In this section the derived guidelines for the linearisation and proper net source treatment of
implicitly coupled equations are carried out on the incompresgible andk w SSTturbu-
lence models. Furthermore, implementation of the implicitly coupled turbulence equations in

the block-matrix framework is presented.

3.4.1 Linearisation and Implementation of thek e Turbulence Model in

the Block-Matrix Framework

Prior to the implementation of tHe e turbulence model in the block-matrix framework, some

manipulations of Equationg (2.83.1) anhd (2]3.1) and linearisation of the corresponding net source

terms are necessary.
If S is the (net source term) RHS of Equati¢n (23.1) Kpm the current formulation of

thek e turbulence model is equal to:
=G e: (3.4.1)
The linearisation of th&, with respect to both variables yields:

SIS 1]”—?: (K" K)+ 111_% (e" €9: (3.4.2)
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and division of the linearisation products in appropriate groups (see Sectjon 3.3) is:

F=5 +Se"+ S k" (3.4.3)
This gives the corresponding term§, = 0, S, = 0 andS; = S;. Therefore, the current
formulation of Equation[(2.3]1) is not suitable for implicit coupling. In order to model the
cross-coupling in a numerically bene cial way, the sink term is substituted with [27, 28, 29]:
k2

e= C :
mnt

(3.4.4)

Also, the production tern is substituted with Equatiof (2.3.6) whemgis expressed as in

Equation[(2.35):

1 . o 1 2K
G= 2Cm§ Nu + ( NU) E: (3.4.5)
After the substitutions, the new formulation of tkequation has the following form:
K. . N 1 . 2K K
‘1"T_t+ N(Uk) kNuU N(GK;efka):ZCmE No+(Nu)" s Cmn—: (3.4.6)
t

Once again, the linearisation of the n&w(with respect to both variables) is performed. For
clarity, the linearisation is performed one term at a time. Moreover the linearisation products
which have a contribution to the implicit cross-coupling soucare coloured blue and prod-

ucts which have a contribution to the implicit sik are coloured red:
2

C= 2cm% No+(Ro)™ (3.4.7)
0 2 1, 0 2 1,
k" e BV Cog T Cng
Cmg Cmg + T (kn ko) + T (en eo) ; (348)
2 N 0\2 ) 0)2
ka— = Cm(kg +2ka—0(kn K°) Cm(ko)z(en €9);
e e e (e°)
0 o 2 (3.4.9)
= 2Cm5kn Cm E en;
0 2 1,
Kk " K2 © %ﬂ Cmn—t §
— — _ " k9; 3.4.10
Cr Co + B 6 (0 K (3:4.10)

Faculty of Mechanical Engineering and Naval Architecture 22



Robert Keser Master's Thesis

K2 " K0)2 KO
cn = S 2o (€ 1);
Nt Nt
0\2 o)
- Cm(kn) ., k_kn (3.4.11)
t
_ (k02 k° -
= Cn - 2c:mnt KN

Although, the substitutions do not give a suitable implicit cross-coupling term, an implicit sink

term is provided:

111]_::(4_ N(uk) kNu N(G«;efka):

Ko 2 (k°) 2 KO
n n n.
Ck k Cy 0 e+ Cny N 2Cm— N K':

The following form of thek equation for thé& e turbulence model is reformulated as follows:

0]
%mmk) kN N(qefka)—e+cm(k°) 2cm‘;k“ (3.4.13)
Nt t

(3.4.12)

After the reformulation of the&k equation, thee equation is investigated is the (net
source term) RHS of Equatioh (2.B.3). Linearisation of $hén respect with both variables is

performed according to:

1% %00 o, 1S °
$$+W(k k)+%

Again, the linearisation products are divided into appropriate groups (see Section 3.3):

(e" €9): (3.4.14)

=5 +SkK"+5 e (3.4.15)
The linearisation is performed one term at a time and the linearisation products which have

a contribution to the implicit cross-coupling sourSeare coloured blue and products which

have a contribution to the implicit sirg, are coloured red:

0 e 1, 0 . Lo
n 0 1 Cl il Cl G
clze ClgG rB— KR W o+ B KK (e e): (34.16)
clgc; ClkG Cus ©)+ Cis Lo e9);
( ) . (3.4.17)
n.
- kOG Cl(k) GK'+ 1 oGe"
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0 o2 1, 0 o2
ez e2 ° %ﬂ Gy § %ﬂ Cye %
= z +B* K" ¥+B— ™ n 0y -
(3.4.18)
e Co N Gl 0.
Cr = Gy (k )2(k k°) 2C2—(e e%);
€ *in 20, 4.1
=C 5 K 2C2Ee (3.4.19)
g0 2 . g0
After the linearisation and substitution, teeequation has the following form:
e, &, e -
ﬁ+N(ue) eNu R (GoeriNe) =
1 Qo 2 0 (3.4.20)
K+ N+ = k' 2C—
ClkoG Cl(k) G ClkoGe G ko Czkoe
Thee equation for th&k e turbulence model is implemented as:
e, K(e) eNu W fo)= olere, & K 2C, (3.4.21)
Tt (Ue) eNU (GeertNe) = 1k° 2 o Ee A

Additionally, it is important to emphasize that the cross-coupling coef ci&htand S,
need to be eliminated from the block-system in the near-wall cells.
In foam-extend, implementation kf e turbulence in the block-matrix framework is named

thecoupledKEpsilon model.

3.4.2 Linearisation and Implementation of thek w SSTTurbulence Model

in the Block-Matrix Framework

Prior to the implementation of tHe w SSTturbulence model in the block-matrix framework,
linearisation of the net source terms in both equations is necessary.

& is the (net source term) RHS of Equati¢n (2]3.7) Kor Linearisation of theS, with
respect to both variables is performed according to:

S S 111—% (K" K%)+ TT—“:’V‘ (w" wO): (3.4.22)
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The linearisation products are divided into appropriate groups (see Sectiion 3.3):

=S +Sw"+ S K" (3.4.23)

For clarity, the linearisation is performed one term at a time. Moreover, the linearisation prod-
ucts which have a contribution to the implicit cross-coupling so@care coloured blue and
products which have a contribution to the implicit si§k are coloured red.
In Equation[(2.3.7), a production limiter is used to prevent the build-up of turbulence in stagna-
tion regions[[12], consequently the source terrk @guation is calculated as n{(i8; ci1b kw).
The linearisation of both arguments needs to be investigated.

G is calculated according to Equatign (2.3.12):

G=nS; (2.3.12)

wheren is de ned by Equation[(2.3.11):

alk

_1 . .
max ajw; b1F23p 2 > NU + ( NU)T

ng =

@3.11)

In case wherG < ¢;b kw andajw > b1F23p 2 3 Nu+( Nu)T  the source term ik equa-

. . k
tions is calculated aSZW.

0 K 1o 0 K 1o
T S T S
k" k ° w no 1o w N0y -
S S +%T§ K" KO+ %ﬂ—W§ W' w): (3.4.24)
K n_ k° S n 0 k° n 0y -
Sy T St K S w);
e S o (3.4.25)
= -+ = n+SZ 5 n
wo T we T wo)

None of the linearisation products in Equatipn (3.4.25) is suitable for treatment as an implicit
cross-coupling term nor implicit sink, as both potential candidates have unfavourable signs.

In caseG < c1b kw andajw < b1F23p§ % NuT+ ( NU)T the source term in k equation

is calculated as—p——22K -S. For easier manipulation of the expression the constant
DiFos 2j 3(Nu+( NU)T)JSZ P P
k
art (in context ok andw) is substituted witlCg, p__aukK .S, = —. If blendin
part ( ) o b a1 (Y 2= GO g
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term F»3 is assumed to be equal & (rough wall ow treatment is neglected), théhs is

calculated according to:

h [
F3= F = tanh (argy)? ; (3.4.26)
wherearg, is de ned by Equation[(2.3.21):
" p_ ! #
. 2 k 500n _
args = min max b—vvy yz—w ;100 (2.3.21)

P>

N N p-
In caseG < ¢ib kw, ayw < biFpg 2 1 Ru+(Ro)"  and59® < 2K < 100 the source

y2w b wy
term ink equation is calculated as:

b _
GP=Cg—2 P -3
tanld —— 5
b wy
b ' o b o
IR ﬂﬂi K KO)+ ﬂﬂw W' wo); (3.4.27)
!
4K°
! | 4Cgkcsch ———
ﬂ Gb 0: CGCOth 4k0 (b )Z(WO)ZYZ
Tk (b )?(wo)2y2 (b )?(wo)2y?
a1 4K°
=3 coth
b 2 = Ru+(Ro)" (b )?(w°)2y? (3.4.28)
2
!
ag 4k°
4S kcscf —
by 2 % Nu+( Na)" (b )?(we)?y?
(b )?(w0)2y?
[ > 4K°
o o: 8Cg (k°)?cscit b WOy
fiw (b )*(we)3y2
0 3.4.29
8S 01 il (k°)2cscht bj\,—kozz ( )
by 2 3 o+ ( Ko)T (wo)“y

(b )% (wo)3y2
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where cotl) is the hyperbolic cotangent and c§cls the hyperbolic cosecant function. The

linearisation products presented in Equatidns (3]4.28)[and (B.4.29) could eventually even give

terms which are suitable for treatment as implicit cross-coupling terms or implicit sinks but
their implementation is inapplicable, therefore, blending functions will be treated as constants
(and not as functions dfandw) in the context of linearisation.

In caseG > ci1b kw the source term ik equation is calculated asb kw:

[0} [0}
(cib k)" (cab kw)o+ 1LC10 KW) (Cl;kkw) K K+ 1LGD kW) (C;bwkw) W wO);
(3.4.30)
(cib kw)" = cib kWP + cib wOo(k" k%) + cib Ko(w"  wO);
= cib k°w®+ cib woKk"+ cib kK°w"; (3.4.31)

cib k°w®+ cib wlk™ cib kow":
Equation [(3.4.31) gives a suitable term for implicit cross-coupling, but it is only active when
cib kw < G:

0 0
(o (bimee TCORD Tgo ey, TEDIW Sun o)
(3.4.32)
( bkw)"= b Kw® bwl(k" k° b ko(wW" wO;
=b kKW° b wk" b k°w"; (3.4.33)

=b kw°® b w" b kK°w":
Equation[(3.4.33), i.e. the linearisation of the sink ternk Bjuation, gives a suitable implicit
sink term but the cross-coupling term has the unfavourable sign for implicit treatment.

After the linearisation and substitution, tkequation has the following form:

1%—1(+ N(tk) kNT N(GeerfNk)= min(G;, cib K°w®+ b wok™ b k°w")
+b KW°® b w°k" b k°w"
(3.4.34)
Thek equation for th&k w SSTturbulence model is implemented as:
;TT_‘:+ (k) kRO R (Geer(NK) = min(G; cib kow") b wok™ (3.4.35)
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After the implementation of thi equation, thev equation is investigateds, is the (net
source term) RHS of Equatiopn (2.B.9). Linearisation of$ljen respect with both variables is
performed according to:

[0} [0}
g L+ ﬂ'ﬂ_SkN (K" K%+ 111_3"’ (w" wO: (3.4.36)

The linearisation products are divided into appropriate groups see (Secfion 3.3):

S =S, + Sk + W™ (3.4.37)
Again, the linearisation is performed one term at a time and the linearisation products which
have a contribution to the implicit cross-coupling sou§geare coloured blue products which
have a contribution to the implicit sir, are coloured red.
In caseS, > %b wmax agw; blegp S, andajw > b1F23p S the source term i equa-
tion is calculated agci b w2

b w2 °
geib w2 gob w? %+ ‘"gC‘E—WW (w" wO; (3.4.38)

geib w2 "= geib (wO)%+ 2gcib wo(w"  wP);
! ' ! (3.4.39)

= gcib (WO)2%+ 2gcib wow":
Linearisation products in Equatiop (3.4/39) are not suitable for treatment as implicit cross-

coupling term nor as implicit sink.
!
7 bw? °

bw? " bw? °+
Iw

(w" wO); (3.4.40)

bw? "= bWw%? 2bwl(w" wO);
= b(Ww%? 2bwow"; (3.4.41)
= b (w°%? 2bw°w";
Equation|(3.4.41), the linearisation of the sink termviequation, gives a suitable implicit sink
but the implicit cross-coupling is not present.

After the linearisation and substitution, theequation has the following form:

1:1_\;V+ N(UW) wNT N(Gw;effNW):

gmin $; %b w°max a;wo; b1F23p S, (3.4.42)
1

+b(W°? 2bwew"+(1 F1)CDyy:
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Equation[(3.4.41) does not have implicit cross-coupling terms, therefore modi cations are in-
troduced in order to obtain additional implicit cross-couplindc@indw equations.

Thew equation for th&k w SSTturbulence model is implemented as:

111_\;V+ N(UW) wNT N(Gw;effNW):

gmin &; %b w°max a;w°; blegp S, (3.4.43)
1
+b(W%? 2bw°w"™+(1 F1)CDyy;

where(1 F;)CDy, termis de ned as:
8

2(1 F1)CDgy = &CPwn  cpy, > 0;
(1 F)CDw = (3.4.44)

" (1 F1)CDyy= HTUPwyn CDy, < 0:
Additionally, it is important to emphasize that the cross-coupling coef ci€tandS,, need
to be eliminated from the block-system in the cells adjacent to the wall, where wall functions
are used.
In foam-extend, implementation & w SSTturbulence in the block-matrix framework is

namedcoupledKOmegaSST

3.4.3 Linearisation of the Wall Functions fork e Turbulence Model

For evaluation of the implicit coupling potential of wall functions for e turbulence model,
the linearisation is necessary.

As described in Section 2.4.1, for wall function cells the vaduis obtained by solving
the algebraic Equatiof (2.4.2) and not #¢hequation. The value d is obtained from Equa-
tion (2.3.1), but the generation ter@is modi ed according to Equation (2.4.3). Considering
thatG,js = 0, only the expression fdBqq is linearised:

ﬂGIog ©
Tk

GInog C':'Ioog + (kK" Kk%; (3.4.45)

gp = (e mIRE)® 1t MR oo
g K Cr]h=4 (ko) 1=2 y 2 k Cr]h:4 (ko) 3=2 y
_ 3((ne+ m)jNa)? 1 ((ne+ n)jNG)?

S 2kcEr )2y 2kcE (k0)*y

(3.4.46)
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Sincee equation is not solved for wall function cells, tleterm is only present in thieequa-
tion, therefore the Equatiof (3.4]46), in whi€l,g is a function only ofk, does not represent
a cross-coupling term, but it could be implemented as an implicit sink term because the coef -
cient ofk" is negative on the RHS of tHeequation.

If ny in Equation [(2.4.5) is substituted with Equati¢n (2.3G)g becomes a function of
bothk ande:

((ne+ m)jRuj)® _ n?+ 2nn+ n? jRuj?

G| = — -
¥ kcEhe2y kCrii=2y
iNgji2 ~ CAk* 2
= J1|:l4ujl—2 22 * Zcrgnk +n? (3.4.47)
kCh ki=2y !
jRgj2  CEk™? , 2N k32 .\ n2

and after linearisation as a multi-variable function, the expression has the following form:

1Giog ° 1Gioq °
Glog  Giog* ﬁ (K" K+ ﬁ (e" €9%; (3.4.48)
|
N2 CAK)T 2en (k)32 n2
GlOQ_ 1=4 2 + 0 + 1=2
kCuly  (e9) e (ko)
K 2 C2 k05=2 o\ 1=2 2 )
P NI TG Em O L
kCnly 2 (€9 © 2 (k)*
iRg2  2CA () 2cen (k)2
+ kC1:4y ()3 (e)2 (e" €9;
o o L onT=2 s ! (3.4.49)
_ iNgj? 1Ch (k) Cmn (k°) 3 n?
S kCily 2 (e0)? T T 2o
!
,Ng? 7GR0 sem (0 1 0?2
kCrln:A'y 2 (e0)2 eo E(k0)3:2
!
iNgji2  2C3 (k)= , 2Cmn k)=
kCalty  (e9)° (€9)°

According to the guidelines for proper source treatment presented in Sgectjon 3.3, the poten-
tial cross-coupling term with implicie" has the unfavourable sign for implementation as an
implicit cross-coupling term.

Moreover, the linearisation and implicit cross-coupling potential of Equaftion {2.4.2) is in-
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vestigated:

Te ©

T (K" KO); (3.4.50)

e" e%+

_ Cm ()2 3Cn (k)
ky 2 ky

1Cn ()% 3Cn ()2

2 ky ¥ 2 Ky K

Equation [(3.4.51) is suitable for implicit cross-coupling, because the coef cient d&f'tteym

n

(K K);
(3.4.51)

is positive on the RHS.

Overall implicit cross-coupling potential of the standard wall functions foikthes turbu-
lence model is partial. Linearisation of the modi ed production te&enfor the wall function
cell does not give adequate terms for implicit treatment but the linearisation of the algebraic
expression, which replaces tkesquation in the wall function cells, gives a suitable implicit
cross-coupling term. This thesis does not present implementation of the implicit wall functions

for thek e turbulence model.

3.4.4 Linearisation of the Wall Functions fork w SSTTurbulence Model

For evaluation of the implicit coupling potential of wall functions for wSST turbulence
model, the linearisation is necessary.

As described in Sectign 2.4.2, for wall function cells the valués obtained by solving
the algebraic Equatiof (2.4.7) and not theequation. The value df is obtained from Equa-
tion (2.3.7), but the generation tei@is modi ed according to Equatioi (2.4.10). Considering

thatGyis = 0, only the expression fdg)qq is linearised:

n 0 TGiog ° n
GIog C:"Iog + ik (kK" Kk%; (3.4.52)
o = G ()= e+ iR | Cn* e+ NGy o
0 Ky 2 y(k9) 2 | (3.4.59
_ G () (et n)jNTj | G (et )N,
2ky 2k y (ko) 12 '

The production ternG is only present in thé equation, therefore the Equatidn (3.4.53), in

which Gjoq is function only ofk, does not represent a cross-coupling term nor could it be
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implemented as an implicit sink term because the coef cienit"of positive on the RHS of

Equation[(2.3]1).
If n in Equation [(2.4.72) is substituted with Equatipn (2.8.13;)q becomes function of
bothk andw, but only in case wheaqw > b1Fo3 2 1 Nu+( Nu)T . Since the other cases

do not contairw, because the blending functions are treated as constants in context of lineari-

sation (see Sectign 3.4.2).

Z4n (3.4.54)

After linearisation as a multi variable function, the expression has the following form:

1Giog ° 1Giog °
Ghg CGlhg* —g 0 (K0 K+ 8 " wo); (3.4.55)
!
on < CrINT (O o
og k WO
L CniNG - 3()™ 1 n (K" K°)
Ky 2 wo° ' 2(k0)1=2
CEYiNT  (k0)32
"Ry ((w)°)2 (- w:
e o ! (3.4.56)
A
— Cm JNUJ }(k) + }n(k0)1=2

ky 2 we° 2
!

. ca N 3(K) .1 n "
Ky 2 wo° 2(k°)l:2
|

C i) (k)32
ky (wo)?
According to the guidelines for proper source treatment presented in Sgecfjon 3.3, both terms

n.

with implicit values, k" andw", in Equation|(3.4.56) have unfavourable signs for implementa-
tion as implicit sink and implicit cross-coupling terms.

Furthermore, the linearisation and implicit cross-coupling potential of Equation|(2.4.7) is
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investigated:

[0}
wh o owl+ HT_V;/ (K" K9); (3.4.57)
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u 2
S P en 2+ (k)12

w" = — —
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by* ' Co 2k 2y2
Equation [(3.4.58) is suitable for implicit cross-coupling, because the coef cient d&f'tteym
is positive on the RHS.

Overall implicit cross-coupling potential of the standard wall functions forkkhev SST
turbulence model is partial. Linearisation of the modi ed production t&or the wall func-
tion cell does not give adequate terms for implicit treatment but the linearisation of the algebraic
expression, which replaces theequation in the wall function cells, gives a suitable implicit
cross-coupling term. This thesis does not present implementation of the implicit wall functions

for thek wSSTturbulence model.

3.5 Closure

In this chapter, structure of the block-system was presented, furthermore problems regarding
the linearisation, stability and boundedness of the model were investigated. Also, the im-
plementation ok e (coupledKEpsilon) andk wSST (coupledKOmegaS$Turbulence

models in the block-matrix framework was described. At the end of the chapter, suggested

linearisation of the wall functions for both models were given.
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Chapter 4

Validation of Implemented Turbulence

Models

In the previous chapter, linearisation and implementation ofkthee (coupledKEpsilon )
andk wSST(coupledKkOmegaS$iurbulence models in the block-matrix framework was
described. In this chapter, the validation of implemertedpledKOmegaSShd
coupledKEpsilon turbulence models shall be presented.

In the rst section, a separated ow past a NACA 4412 airfoil at maximum lift is investi-
gated. In this case a low Reynolds turbulence modelling approach is adopted, therefore only
the coupledKOmegaSS3 taken into account.

In the second section, an incompressible turbulent ow over a backward facing step is
investigated. In this case a high Reynolds turbulence modelling approach is adopted, therefore

both thecoupledKOmegaSSahd thecoupledKEpsilon are taken into account.

4.1 NACA 4412

The rst test case for the validation of the implementalipledKOmegaSS3 the separated

ow past a NACA 4412 airfoil at maximum lift. The experimental data is available aNASA
Turbulence Modeling Resoureeeb-page([30] but the particular data originates from the ex-
periments performed by Coles and Wadcack [31]. Table |4.1.1 presents the selected: Reynolds
number (for airfoil chord length), angle of incidence, freestream velocity value, airfoil chord

length and the molecular kinematic viscosity.
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Re[ ] al] Uinf [mFs]  c[m] n m=s

1:52 10° 13:87 2713 09012 161 10 °

Table 4.1.1: Geometry and ow parameters for the NACA 4412 case according ta [31, 30].

4.1.1 Case set-up

The grid used in the simulation is available at (BED supportpage [32] and was scaled to

the chosen chord length. The domain size and the grid density are shown in[Figure 4.1.1. The

simulation is set up as a steady-state two-dimensional simulation, however OpenFOAM always

operates in three dimensions, thereforegapty boundary condition needs to be speci ed on

the boundaries normal to the third dimension. In this thesis, these boundaries (patches) are

namedrrontAndBack The names of the solution domain boundaries are shown in Figurg 4.1.2.
The presented problem was solved usinggb€oupledFoarn83] solver and the

coupledKOmegaSSiirbulence model with the following boundary conditions and numerical

schemes.

(a) Domain size. (b) Re nement near the NACA airfoil.

Figure 4.1.1: NACA 4412: Computational domain.
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Figure 4.1.2: NACA 4412: Patch names.

Boundary and initial conditions

Inlet

— Velocity inletOutlet  with inletValue uniform (26.34 6.50 0)

— Pressure zeroGradient
— Turbulence kinetic energynletOutlet

— Turbulence dissipatiannletOutlet

Outlet

with inletValue uniform 0.00082

with inletValue uniform 33.81

— Velocity inletOutlet  with inletValue uniform (0 0 0)

— PressurefixedValue with value uniform 0

— Turbulence kinetic energynletOutlet

— Turbulence dissipatiannletOutlet

Solidwall

with inletValue uniform 0.00082

with inletValue uniform 33.81
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— Velocity fixedValue with value uniform (0 0 0)
— Pressure zeroGradient
— Turbulence kinetic energkgRWallFunction

— Turbulence dissipatiaromegaWallFunction
FrontAndBack: typeemptyfor all elds
Initialisation

— Velocity uniform (26.34 6.50 0)
— Pressure uniform 0
— Turbulence kinetic energyniform 0.00082

— Turbulence dissipatiaruniform 33.81

The selected numerical schemes are shown in 4.1.2.
Detailed overview of the basic numerical schemes is presentedlin [34] and a comprehensive
analysis of the Gamma differencing scheme is presented by Jasak ef al. [35].

Additionally, simulations were performed using the following combinations of solvers and

turbulence models:
pUCoupledFoarandcoupledkOmegaSST
pUCoupledFoarmandkOmegaSS$ST
simpleFoamandcoupledKOmegaSST
simpleFoamandkOmegaSS$ST

and the results were identical to those shown below.
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Time schemes

default steadyState

Gradient schemes

default Gauss linear

Divergence schemes

default Gauss linear
div(phi,U) Gauss GammaV 1
div(phi,k) Gauss upwind
div(phi,omega) Gauss upwind

Laplacian schemes

default Gauss midPoint limited 0.5

Interpolation schemes

default linear

Surface normal gradient schemes

default limited 0.5

Table 4.1.2:NACA 4412: Numerical schemes.
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4.1.2 Results

Figure[4.1.B illustrates the calculatgddistribution over of the NACA airfoil, where the values
are considerably below 5, hence the assumption of the low Reynolds turbulence modelling

approach is applicable.

Figure 4.1.3: NACA 4412: Normalised distance to the wall.

The plot of the normalised velocity magnitude is shown in Figure 4.1.4, where the normali-
sation is carried out with respect to the freestream velocity Vdjyse The pressure coef cient
plot, which is calculated according to Equatipn (4.1.1), around the NACA 4412 airfoil is shown

in Figure[4.1.5.

P Pinf
o 4.1.1)

Cp =
L 2
Euinf
In Equation [(4.1]1), the freestream kinematic pressure vgjiseis de ned by the pressure

boundary condition at th®utletpatch.
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Figure 4.1.4: NACA 4412: Normalised velocity magnitude plot.

Figure 4.1.5: NACA 4412: Pressure coef cient plot.
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The experimental results from [31] are nondimensionalised with respect to a non-traditional
velocity valueU,q¢, at a location only about one chord length below and behind the airfoil,
which is different from a traditional freestream value. In order to make the traditionally nor-
malised velocity CFD results comparable to the normalised experimental data, the CFD data
needs to be divided by:93. In case of the chordwise velocity normalisation, the correction

looks like:

u u
Uref 0.93U|nf l
In Figure[4.1.6 a comparison of constant normalised chordwise velocity contour lines is

(4.1.2)

shown, where the contour lines from the CFD simulation (coloured red) were drawn over the

gure from [31].

Figure 4.1.6: NACA 4412: Comparison of the constant normalised chordwise velocity contour

lines.

The comparison of the surface pressure coef cient distribution, is shown in 4.1.7,
but the surface pressure coef cients from the experiment [31] were not corrected, and therefore
should only be viewed in a qualitative sensel [30]. As the Figure]4.1.7 illustrates, the calculated
pressure coef cient distribution trend is in very good agreement with the experiment.

NASA [30] also provides the experimental data![31] for the normalised velocity pro les
along the six lines near the trailing edge of the NACA 4412 airfoil, whose locations are shown in
Figurg/4.1.8. Likewise, the CFD data was interpolated along the same lines for the comparison,
which is shown in Figurg 4.1].9.
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NACA 4412
Surface Pressure Coefficient
-8
— coupled k w SST ]
O experiment (Coles & Wadcock]
-6
-4
o
@)
-2 Q Qo oFe
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\ 00 0 o o Co@)
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Figure 4.1.7:NACA 4412: Comparison of the surface pressure coef cient distribution.

x/c =0.6753 0.7308
0.7863
0.8418  gg73

0.9528

Figure 4.1.8: NACA 4412: Location of the lines along which experimental data was extracted.
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NACA 4412 NACA 4412
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(e)x/c =0.8973,

(f) x/c = 0.9528.

Figure 4.1.9: NACA 4412: Comparison of the normalised chordwise velocity pro les.
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The comparison given in Figure 4.1..9, shows a very good agreement between the computed

normalised chordwise velocity pro les and the experimental data.

4.2 Backward Facing Step

In the second validation test case, an incompressible turbulent ow over a backward facing step
is investigated. The experimental data is available alNA8A Turbulence Modeling Resource
page [[36] but the particular data originates from the experiments performed by Driver and
Seegmiller([37]. The Reynolds number (based on height of the step), freestream velocity value,
step height and molecular kinematic viscosity were chosen according to [38] and are presented
in Table[4.2.11.

Rey[ ] Uint [mFs] H [m] n nr=s

36 103 4432 1 123 10 3

Table 4.2.1: Geometry and ow parameters for the BFS casel [38]

4.2.1 Case set-up

The computational grid, which is shown in Figure 4]2.1 is generated usingldickMesh

utility. The selected near-wall re nement (the height of cells next to the wall were chosen for

y" values between 30 and 40) is suitable for the high Reynolds turbulence modelling approach,

therefore both theoupledKEpsilon and thecoupledKOmegaSShn be validated with this

test case. Figufe 4.2.1 also illustrates the selected domain size and the near-wall re nement.
The simulation is set up as a steady-state two-dimensional case, where the boundaries nor-

mal to the third dimension are nametbntAndBackand are speci ed with thempty bound-

ary condition. The names of the solution domain boundaries are shown in Figure 4.2.2. The

presented problem was solved using simapleFoamsolver and botttoupledKEpsilon and

coupledKOmegaSS3iE turbulence models with the following boundary conditions and numer-

ical schemes.
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(a) Domain size (not to scale).

(b) Computational grid.

(c) Re nement near the step.

Figure 4.2.1: BFS: Computational domain.

Figure 4.2.2: BFS: Patch names.
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Boundary and initial conditions
Inlet

— Velocity fixedValue with value uniform (44.32 0 0)

— Pressure zeroGradient

— Turbulence kinetic energyixedValue with value uniform 0.295

— Turbulence dissipatian

epsilon : fixedValue with value uniform 0.08

omegafixedValue with value uniform 97.37
Outlet

— Velocity inletOutlet  with inletValue uniform (0 0 0)
— Pressure outletinlet  with outletValue uniform 0

— Turbulence kinetic energyeroGradient

— Turbulence dissipatian

epsilon : zeroGradient

omegazeroGradient
LowerWall

— Velocity fixedValue with value uniform (0 0 0)
— Pressure zeroGradient

— Turbulence kinetic energkgRWallFunction

— Turbulence dissipatian

epsilon : epsilonWallFunction

omegaomegaWallFunction
UpperWall

— Velocity fixedValue with value uniform (0 0 0)
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— Pressure zeroGradient
— Turbulence kinetic energkgqRWallFunction
— Turbulence dissipatian

epsilon : epsilonWallFunction

omegaomegaWallFunction
Symmetry: typesymmetryPlanefor all elds
FrontAndBack: typeemptyfor all elds
Initialisation

— Velocity uniform (44.32 0 0)

— Pressure uniform 0

— Turbulence kinetic energyiniform 0.295
— Turbulence dissipatiaruniform 97.37

epsilon : uniform 0.08

omegauniform 97.37

The selected numerical schemes are shown in 4.2.2
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Time schemes

default steadyState

Gradient schemes

default Gauss linear

Divergence schemes

default Gauss linear
div(phi,U) Gauss linearUpwind
div(phi,k) Gauss upwind
div(phi,epsilon) Gauss upwind
div(phi,omega) Gauss upwind

Laplacian schemes

default Gauss linear uncorrected

Interpolation schemes

default linear

Surface normal gradient schemes

default uncorrected

Table 4.2.2:BFS: Numerical schemes.
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Additionally, simulations were performed using the implemertegpledKOmegaSShd
coupledKEpsilon and the corresponding segregated modélsnegaSSandkEpsilon . The

implicitly coupled models and their segregated counterparts produced the same results.

4.2.2 Results

Figure[4.2.8 illustrates the calculatgll distribution along thé_owerWal| which is very sim-
ilar to the desired values, hence the assumption of the high Reynolds turbulence modelling
approach is applicable.

The plot of the normalised velocity magnitude, for both turbulence models, is shown in
Figure[4.2.4, where the normalisation is carried out with respect to the freestream velocity

valueUjn.

Figure 4.2.3: BFS: Normalised distance to the wall along tteverWall
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(a) coupledKOmegaSST

(b) coupledKEpsilon .

Figure 4.2.4: BFS: Normalised velocity magnitude plot.

For incompressible ows, the skin friction coef cient is de ned by:

Cf = : (421)
1 2
Euref

wheret, is the wall shear stress akliet is the reference velocity at the channel centre near
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x=H = 4 [36]. Similarly, the pressure coef cient is calculated according to Equdftion {4.2.2):

P Pret
Cp= : (4.2.2)

1
5 Uit
where pret is the reference kinematic pressure near the same location. However, NASA [36]
mentions that the experimental pressure coef cient data have been shifted uniformly so that
Cp has a zero value near the positieeH = 40, therefore it can be assumed tipat;  pint
which is de ned by the pressure boundary condition at@uletpatch. Furthermore, after the
comparison of velocity eld data, a simple correlation betweenlhg and theU;,; can be
introducedUet=Uins  1:05.
The comparison of the calculated wall pressure coef cient distribution alongavwerWall
for both models with the experimental data, is presented in Fjgurg 4.2.5.
In Figure[4.2.5, a comparison of the wall skin friction coef cient distribution along the

LowerWallis given.

BFS

Wall Pressure Coefficient (along the LowerWall)

%
/ Q.o .~ A
0 /\J
1
1
1
1
1
1

O

-0.1 /6
110

e) — coupled k w SST
-0.15[= o -- coupled k €
\\QD @é O experiment (Driver & Seegmillef)
O
0.2 ,
0.25 0 10 20 3(
x/H

Figure 4.2.5: BFS: Comparison of the wall pressure coefcient distribution along the

LowerWall
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BFS
Wall Skin Friction Coefficient (along the LowerWall)
0.004 -
— coupled k w SST
0.003 oo - coupled k €
o= O experiment (Driver & Seegmillef)
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’,," /—
O~ 0.001 /9’
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-0.001 2
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Figure 4.2.6: BFS: Comparison of the wall skin friction coef cient distribution along the

LowerWall

As shown in Figuré 4.2]5, both models give a similar prediction of the pressure distribution
which is in fair agreement with the experimental data. A signi cant pressure value discrepancy
is visible in the 0< x=H < 2 region, but despite the deviation, the pressure distribution trend is
still compatible with the experimental data. Similarly, Figure 4.2.6 also shows fair agreement of
the computed skin friction distributions with the experimental data, especially in the upstream
region of the step. In the downstream region, both models under predict the reattachment
location, but thecoupledKOmegaSSq slightly more accurate. In both cases, the deviations in
the recirculation region are due to inadequgtevalues, i.e. the rst cells next to the wall are

in the buffer layer, which can not be adequately modelled by the wall functions.
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NASA [36] also provided the experimental datal[37] for the normalised velocity pro les
along ve lines, whose locations are shown in Figure 4.2.7. Likewise, the CFD data was inter-

polated along the same lines for the comparison, which is shown in 4.2.8.

Figure 4.2.7: BFS: Location of the lines along which experimental data was extracted.
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(a) x/H = -4, (b) x/H =1,

(c) x/MH =4, (d) x/H =6,

(e)x/H =10.

Figure 4.2.8: BFS: Comparison of the normalised velocities pro les in x direction.
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As Figure[4.2.B illustrates, both models give very similar results to each other, which are
consistent with the experimental velocity pro les. The only considerable discrepancy is visible
along the line located at=H = 1. As mentioned before, this error is due to inadeqyate
values is the recirculation region. It is exceptionally hard to achieve degiredlues in the
whole domain, especially when recirculation or stagnation points are present and when the wall
functions are used.

In this chapter, validation of implementedupledKOmegaS&hdcoupledKEpsilon tur-
bulence models were performed. The comparison of the numerical results from both models
with the experimental data were presented and described. In the following chapter, benchmark-

ing of the implemented turbulence models will be presented.
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Chapter 5

Benchmarking of Coupled vs. Segregated

Model Performance

In the previous chapter, validation of implementedipledKOmegaSShdcoupledKEpsilon
turbulence models has been performed. In this chapter, performance of the implemented turbu-
lence models shall be compared with the existing segregated models.

In the rst section, benchmarking of both implemented turbulence models on the backward
facing step case is presented. In the second section, benchmarkbogmédKOmegaSST
turbulence model on NACA 4412 case is shown. In all benchmarking gas€gupledFoam

(with identical linear solver controls) is used for implicit pressure-velocity coupling.

5.1 Backward Facing Step

To qualify the performance improvement of the implemertedpledKOmegaSShd
coupledKEpsilon turbulence models, following items are compared to the existing segregated

models:

Convergence rates for all equations,
Convergence of eld values in speci ¢ coordinates,

Convergence of minimal and maximal eld values.

The convergence of eld values is monitored with probes whose location in the domain is

shown in Figur¢ 5.1]1. The rst probe is located at the recirculation boarder, the second is in

56



Robert Keser Master's Thesis

the recirculation zone and the third is in the outer zone. Minimal and maximal eld values are

reported by an existing function objetinMaxField.

Figure 5.1.1: BFS: Probe locations.

For consistent comparison of residuals, eld solutions from the implicitly coupled turbu-
lence models (block-matrices) are placed in the corresponding segregated equations for the
evaluation of initial residuals, which are later compared with residuals from the segregated

turbulence models.

5.1.1 Solution and algorithm control

Tableg[5.1.11 speci es linear-solvers that are used for each discretised equation, with correspond-
ing parameterkEpsilon is the solver name for implicitly coupldd e equationskOmegés

the solver name for implicitly couplekl w equationsk is the solver name for segregated
equationgpsilon is the solver name for segregate@quation anadmegas the solver name

for segregated equation.
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Linear solver control

2IN1031IY2lY [eAeN pue Bulisaulbul esiueydan Jo AjnoeH

Solver and parameters Equation

KEpsilon kOmega k epsilon omega
Solver BiCGStab BiCGStab BiCGStab BiCGStab BiCGStab,
Preconditioner Cholesky Cholesky DILU DILU DILU
Tolerance 1le-09 1le-09 1le-09 1le-09 1le-09
Relative tolerance 0.01 0.01 0.01 0.01 0.01
Minimum number of iterations 1 1 1 1 1
Maximum number of iterations 100 100 100 100 100

8G

Table 5.1.1:BFS: Linear solver controls.
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Table[5.1.2 presents the selected under-relaxation parameters.

Solution under-relaxation

k 0.99 (0.98)[]
epsilon 0.99 (0.98)C
omega 0.99

Table 5.1.2:BFS: Solution under-relaxation.

5.1.2 Results

Figure[5.1.p illustrates the comparisonf, Uy, p andn; values, obtained by monitoring
probes for thecoupledKEpsilon andkEpsilon turbulence models. The results show faster
convergence of the eld values calculated by twmipledKEpsilon in comparison with the
kEpsilon model, the enhanced convergence also affects the pressure-velocity system. It is
also visible that the implicitly coupled model often prevents overshoots and undershoots of the
calculated eld values during the calculation. Despite the slightly lower under-relaxation factor,
the segregateklEpsilon turbulence model experiences minor instabilities at the beginning of
the calculation.

Comparison of the residual convergence pro les are shown in Figure] 5.1.3. At rst, the
coupledKEpsilon model shows a moderate increase in the convergence rates compared to
thekEpsilon model. As the iterations advance, convergence rates afdhpledKEpsilon

model decrease below tk&psilon model.

under-relaxation factd.98 is used fokkEpsilon turbulence model, since it was not stable witB9
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(&) Ux, (b) Uy,

©)p, (d) n;.

Figure 5.1.2: BFS: Field value convergence for coupled and segredateg turbulence mod-

els.
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(a) Uy residuals, (b) Uy residuals,

(c) presiduals, (d) k residuals,

(e) e residuals.

Figure 5.1.3: BFS: Convergence of residuals for coupled and segredated turbulence

models.
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In Figure[5.1.4 the convergence of the led values of 3 probes foctupledKOmegaSST
and the&kOmegaSSitirbulence models is shown. The results show slightly faster convergence of
all (including the pressure-velocity system) eld values calculated bythwledKOmegaSST
in comparison with th&OmegaSShodel. It is also visible that the implicitly coupled model
often prevents overshoots and undershoots of the calculated eld values during the simulation.
Comparison of the residual convergence pro les are shown in Fjgurg 5.1.5. The implicitly
coupled model shows a moderate increase in the convergence rates compark@toegaSST

model.

(a) Ux, (b) Uy,

(©) p, (d) ;.

Figure 5.1.4: BFS: Field value convergence fer w SSTturbulence models.
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(a) Uy residuals, (b) Uy residuals,

(c) presiduals, (d) k residuals,

(e)w residuals.

Figure 5.1.5: BFS: Convergence of residuals for coupled and segregated SSTturbulence

models.
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Figure[5.1.6 illustrates the convergence of minimal and maximal eld values for both im-
plicit turbulence models and their corresponding segregated versions. As mentioned before,
implicitly coupled turbulence models show faster convergence of the minimal and maximal
eld values and often prevent overshoots and undershoots of the calculated eld values in com-

parison with the segregated versions.

(a) maxU), (b) max(p),

(c) min(p).

Figure 5.1.6: BFS: Maximum/minimum eld value comparison.
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5.2 NACA 4412

To qualify the performance improvement of the implemerdedpledKOmegaSSilirbulence
models as a low Reynolds model, following items are compared to the existing segregated

model:
Convergence rates for all equations,
Convergence of force coef cients (dr&y and liftC),
Convergence of minimal and maximal eld values.

Note that the simulation presented in this section uses a coarser grid in comparison with the
grid used in the Sectign 4.1.
Minimal and maximal eld values are monitored with tineinMaxField function object

and the convergence of force coef cients is monitored iatteCoeffs function object.

5.2.1 Solution and algorithm control

Tablg5.2.]1 presents the selected linear-solvers with corresponding parameters, whjle Table 5.2.2

introduces the selected under-relaxation parameters.

Linear solver control

Solver and parameters Equation

kOmega k omega
Solver BiCGStab BiCGStab BiCGStab
Preconditioner Cholesky DILU DILU
Tolerance 1le-09 1le-09 1e-09
Relative tolerance 0.01 0.01 0.01
Minimum number of iterations 1 1 1
Maximum number of iterations 100 100 100

Table 5.2.1:NACA 4412: Linear solver controls.
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Solution under-relaxation

k 0.99
omega 0.99

Table 5.2.2:NACA 4412: Solution under-relaxation.

5.2.2 Results

Figure[5.2.11 illustrates the convergence of d@agand lift C; coef cient throughout the iter-
ations. The results show faster convergence of the force coef cient values calculated by the
coupledKOmegaSSit comparison with th&kOmegaSSTnodel. It is also visible that the seg-
regated model experiences larger amplitudes and oscillations during the simulation.

Comparison of the residual convergence pro les are shown in Figure] 5.2.2. The imple-
mentedcoupledKOmegaSSmodel shows a moderate increase in the convergence rates com-
pared to th&kOmegaSShodel, where the improved convergence also in uences the pressure-
velocity system.

Furthermore, the implicitly coupled model is superior in preserving the boundedness of the

turbulence variables than the segregated version.
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(a) Drag coef cient.

(b) Lift coef cient.

Figure 5.2.1: NACA: Force coef cients convergence per iteration.
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(a) Uy residuals, (b) Uy residuals,

(c) presiduals, (d) k residuals,

(e)w residuals.

Figure 5.2.2: NACA: Convergence of residuals for coupled and segregated SSTturbu-

lence models.
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Figure[5.2.B illustrates the comparison of minimal and maximal eld values convergence
for the coupledKOmegaSSand kOmegaSStlrbulence models. As mentioned earlier, the
implicitly coupled turbulence model shows faster and smoother convergence of the minimal
and maximal eld values and often prevent overshoots and undershoots of the calculated eld

values in comparison with the segregated version.

(a) max(U), (b) max(p),

(c) min(p).

Figure 5.2.3: NACA: Maximum/minimum eld value comparison.

Figure[5.2.4 presents the comparison of the force coef cient convergence per elapsed CPU
time. The implicitly coupled modetoupledKOmegaSSachieved convergence of the force
coef cients in approximately 20% less CPU time, furthermore, the convergence process of the

coupled model is signi cantly more damped than the segregated.
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(a) Drag coef cient,

(b) Lift coef cient.

Figure 5.2.4: NACA: Force coef cients convergence per CPU time.
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Chapter 6

Conclusion

Block-coupled solution algorithms for incompressible two-equation turbulence madels,
andk wSSTare presented in this thesis.

Prior to implementation of the turbulence models in the block-matrix framework, lineari-
sation of the non-linear source terms was investigated in detail. Furthermore, investigation of
the stability and boundedness of the linearised model was performed. The derived implicitly
coupled turbulence modelspupledKEpsilon andcoupledKkOmegaSSWwere implemented
in foam-extend (the community-driven fork of the OpenFOAM) software.

Two validation cases were presented, a separated ow past a NACA 4412 airfoil at maxi-
mum lift and an incompressible turbulent ow over a backward facing step (BFS). The NACA
4412 case was set up for the validation of turbulence models with low Reynolds approach and
the BFS case was intended for the validation of high Reynolds modelsk Theeturbulence
model is implemented only as a high Reynolds version, therefore, validation was performed
only for the BFS case. The w SSTturbulence model can blend between the high and low
Reynolds formulation consequently, validation was performed for both cases. In the NACA
4412 validation case, the numerical results from the implemerdagledKOmegaSSitirbu-
lence model were compared with the experimental data and an overall good agreement was
obtained. In the BFS case, the numerical results from both implemented turbulence models
were compared with the experimental data and an overall good agreement was obtained as
well.

Furthermore, performance of the implemented turbulence models was compared with the

existing segregated models. Benchmarking was performed on the two validation cases, where
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pUCoupledFoamwvas the selected incompressible pressure-velocity solver. Similarly as for
the validation, both implemented turbulence models were benchmarked on the BFS case and
only coupledKOmegaSSwWas benchmarked on the NACA 4412 case. Overall, implicit cross-
coupling of two-equation turbulence models accelerates convergence of eld values, exhibits
smoother convergence compared to segregated turbulence models and often prevents over-
shoots and undershoots of the calculated eld values during the simulation. The implemented
coupledKkOmegaSSTodel achieved convergence of the force coef cients in approximately
20% less CPU time than the segregated model. Additionally, the implicitly coupled models
are found to be superior in preserving the boundedness of the turbulence variables than the

segregated versions.

Faculty of Mechanical Engineering and Naval Architecture 72



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

M. Darwish, I. Sraj, and F. Moukalled, “A coupled nite volume solver for the solution of
incompressible ows on unstructured griddgurnal of Computational Physicgol. 228,
no. 1, pp. 180 — 201, 2009.

Z.-N. Wu and S. Fu, “Positivity ok e Turbulence Models for Incompressible Flow,”
Mathematical Models and Methods in Applied Scienees 12, no. 03, pp. 393-406,
2002.

F. llinca and D. Pelletier, “Positivity preservation and adaptive solution of two-equation
models of turbulence Jnternational Journal of Thermal Scienge®l. 38, no. 7, pp. 560
—571, 1999.

L. Ignat, D. Pelletier, and F. llinca, “A universal formulation of two-equation models for
adaptive computation of turbulent owsComputer Methods in Applied Mechanics and
Engineeringvol. 189, no. 4, pp. 1119 — 1139, 2000. Adaptive Methods for Compressible
CFD.

T. Du and Z.-N. Wu, “Mixed analytical/numerical method applied to the high Reynolds

numberk e turbulence model,Computers and Fluidssol. 34, 2005.

M. Wasserman, Y. Mor-Yossef, I. Yavneh, and J. Greenberg, “A robust implicit multigrid
method for RANS equations with two-equation turbulence modétsjinal of Computa-
tional Physicsvol. 229, no. 16, pp. 5820 — 5842, 2010.

[7] Y. Moryossef and Y. Levy, “Unconditionally positive implicit procedure for two-equation

turbulence models: Application to w turbulence modelsJournal of Computational
Physicsvol. 220, no. 1, pp. 88 — 108, 2006.

73



Robert Keser Master's Thesis

[8] Y. Mor-Yossef and Y. Levy, “The unconditionally positive-convergent implicit time in-
tegration scheme for two-equation turbulence models: Revisit€drfiputers & Fluids
vol. 38, no. 10, pp. 1984 — 1994, 2009.

[9] D. Wilcox, Turbulence Modeling for CFDDCW Industries Incorporated, 1994.

[10] J. H. Ferziger and M. Peri€Gomputational Methods for Fluid Dynamic8erlin, Ger-
many: Springer-Verlag Berlin Heidelberg, 1996.

[11] H. JasakCourse Slides: Turbulence Modelling for CFIFAMENA, University of Za-

greb, Croatia.

[12] F. R. Menter, M. Kuntz, and R. Langtry, “Ten years of industrial experience with the SST
turbulence model,Heat and Mass Transfevol. 4, pp. 625 — 632, 2003.

[13] OpenCFD Ltd., “OpenFOAM The open source CFD toolbdmth://www.openfoam.

com/.

[14] H. Jasak, “The OpenFOAM Extend Project (Community-driven Releases of Open-
FOAM).” http://www.extend-project.de/

[15] W. Jones and B. Launder, “The prediction of laminarization with a two-equation model
of turbulence,International Journal of Heat and Mass Transfegol. 15, no. 2, pp. 301 —

314, 1972.

[16] F. Menter and T. Esch, “Elements of industrial heat transfer prediction,” 16th Brazilian

Congress of Mechanical Engineering (COBEM), 2001.

[17] NASA Turbulence Modeling Resource, “The Menter Shear Stress Transport Turbulence

Model.” http://turbmodels.larc.nasa.gov/sst.html

[18] A. Hellsten, ch. Some improvements in Menter's k-omega SST turbulence model. Fluid
Dynamics and Co-located Conferences, American Institute of Aeronautics and Astronau-

tics, 1998.

[19] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applica-

tions,” AIAA Journal vol. 32, 08 1994.

Faculty of Mechanical Engineering and Naval Architecture 74



Robert Keser Master's Thesis

[20] CFD Online, “Introduction to turbulence / Wall bounded turbulent owsttp://www.

cfd-online.com/Wiki/Introduction to turbulence
[21] Aokomoriuta, “Wikipedia - Law of the wall https://en.wikipedia.org/wiki/Law_
of the wall |
[22] CFD Online, “Two equation turbulence models / Near-wall treatme higd"//www.

cfd-online.com/Wiki/Two_equation_models

[23] E. D. Huckaby and O. A. Marzouk, “Effects of turbulence modeling and parcel approach

on dispersed two-phase swirling ow,” vol. 2, (San Francisco, USA), 2009.

[24] ANSYS Fluent, “FLUENT 6.3 User's Guide - 12.10.2 Standard Wall Functicimig:

/laerojet.engr.ucdavis.edu/
[25] V. Vukcevic. Private communication.

[26] S. PatankariNumerical Heat Transfer and Fluid FlawSeries in computational methods

in mechanics and thermal sciences, Taylor & Francis, 1980.

[27] F. llinca, D. Pelletier, and A. Garon, “Positivity preserving formulations for adaptive so-
lution of two-equation models of turbulence,” American Institute of Aeronautics and As-

tronautics Fluid Dynamics Conference, 1996.

[28] F. llinca and D. Pelletier, “Positivity Preservation and Adaptive Solution forkthee

Model of Turbulence,AlAA Journa) vol. 36, 01 1998.

[29] D. Pelletier and F. llinca, “Adaptive Remeshing for the e Model of Turbulence,AIAA
Journal vol. 35, 04 1997.

[30] NASA Turbulence Modeling Resource, “2D NACA 4412 Airfoil Trailing Edge Separa-

tion.” http://turbmodels.larc.nasa.gov/

[31] D. Coles and A. J. Wadcock, “Flying-Hot-Wire Study of Flow Past an NACA 4412 Airfoll
at Maximum Lift,” AIAA Journa) vol. 17, 04 1979.

[32] CFD support, “NACA4412 Airfoil Case http://www.cfdsupport.com/

Faculty of Mechanical Engineering and Naval Architecture 75



Robert Keser Master's Thesis

[33] K. Jareteq, V. Vukcevic, and H. Jasak, “pUCoupledFoam - an open source coupled incom-
pressible pressure-velocity solver based on foam-extend,” 9th OpenFOAM Workshop,
2014.

[34] H. JasakError Analysis and Estimation for the Finite Volume Method with Applications
to Fluid Flows PhD thesis, Department of Mechanical Engineering, Imperial College of

Science, Technology and Medicine, 1996.

[35] H. Jasak, H. Weller, and A. Gosman, “High resolution NVD differencing scheme for
arbitrarily unstructured meshedtiternational Journal for Numerical Methods in Fluids
vol. 31, 1999.

[36] NASA Turbulence Modeling Resource, “2DBFS: 2D Backward Facing Step://

turbmodels.larc.nasa.gov/

[37] D. M. Driver and H. L. Seegmiller, “Features of a reattaching turbulent shear layer in
divergent channel ow,”AIAA Journa] vol. 23, 02 1985.

[38] Caelus, “Two-dimensional Backward Facing Stéytp://www.caelus-cml.com/

Faculty of Mechanical Engineering and Naval Architecture 76



	Introduction
	Background

	Turbulent Flow Modelling

