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Zagreb, 2019.





iii

First of all, I would like to sincerely thank

my mentors Prof. Hrvoje Kozmar and

Prof. Walter Meile for the knowledge and

support they gave me. Their doors were

open whenever I needed.

I also take this opportunity to express

gratitude to Prof. Günter Brenn for giving

me a chance to come and do my research at

the Institute of Fluid Mechanics and Heat

Transfer (IFMHT) at the Graz University of

Technology (GUT), Austria.

My stay in Austria would be much harder

without the support of the PhD. students

from IFMHT who helped me to adapt and

for spending a lot of pleasant time with me.

Special thanks to Dino Golubić and Dino
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skim modelima von Kármána i Kolmogorova . . . . . . . . . . . . . . . xxii

0.6 Ovisnost broja izmjena zraka o kutu nastrujavanja i brzini za samostalnu

zgradu, a) jednostrana ventilacija, b) poprečna ventilacija . . . . . . . . . xxii
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Sažetak

Prirodna ventilacija je proces dobave svježeg zraka u zatvoreni prostor i uklanjanje us-

tajalog zraka iz prostorije bez rada mehaničkog uredaja. Za izmjenu zraka koriste se

prirodne sile gibanja zraka i uzgona. U vrijeme sve veće potrošnje električne energije

i zagadenja okolǐsa, ovaj ekološki prihvatljiv način izmjene zraka je vrlo poželjan. Za

iskorǐstavanje punog potencijala prirodne izmjene zraka i konstrukciju uredaja koji će je

pospješiti, važno je poznavati karakteristike parametara koji utječu na efikasnost ven-

tilacije. S ciljem detaljnijeg analiziranja parametara koji utječu na prirodnu ventilaciju

zgrada su provedeni modelski eksperimenti u zračnom tunelu za generiranje modela at-

mosferskog graničnog sloja na Institutu za mehaniku fluida i prijenos topline Tehničkog

sveučilǐsta u Grazu, Austrija. Cilj istraživanja bio je odrediti utjecaj karakteristika

vjetra na intenzitet prirodne ventilacije samostalne zgrade, kao i one smještene u ur-

banom okruženju, i to za atmosferski granični sloj modeliran za strujanje nad ruralnim

i prigradskim terenom. Karakteristike strujanja zraka su odredene na temelju mjerenja

brzine sustavom užarene žice, a za izmjenu zraka u modelu zgrade je korǐsten sustav

praćenja koncentracije plina. Ispitivanje je provedeno za jednostranu i poprečnu venti-

laciju modela zgrade, pri čemu se na modelu zgrade nalazio jedan odnosno dva prozora,

mijenjajući brzinu i kut nastrujavanja zraka i udaljenost medu modelima zgrada. Za oba

je modela atmosferskog graničnog sloja izmjena zraka veća prilikom poprečnog nastru-

javanja zraka i raste s porastom brzine. Takoder, izmjena zraka je prilikom poprečnog

nastrujavanja intenzivnija ako je model zgrade samostalan, tj. ako nije dio urbanog

naselja.

Ključne riječi: atmosferski granični sloj, prirodna ventilacija, turbulencija, ruralni

teren, prigradski teren, eksperimenti u zračnom tunelu
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Summary

Natural ventilation is a process of supplying the fresh air in the indoor space and re-

moving the saturated air from the indoor space without using a mechanical device. The

driving forces for this air exchange are the buoyancy and the flow momentum. At a

time of increasing electrical consumption and environmental pollution, it is important

to promote this environmentally friendly technology. To exploit its full potential, it is

necessary to properly understand the relationship between parameters that affect its ef-

ficiency. Therefore, small-scale model experiments were carried out in a boundary layer

wind tunnel at the Institute of Fluid Mechanics and Heat Transfer at the Graz University

of Technology, Austria. It was attempted to determine the influence of inflow character-

istics on the characteristics of a natural ventilation of a stand-alone cubic building as well

as of a building situated in an urban environment. The atmospheric boundary layer was

successfully modeled to simulate flow over rural and suburban terrain types. A hot-wire

anemometry system was used to measure turbulent flow characteristics, while tracer gas

system was employed to determine air exchange rates. Experiments were conducted for

single-side and cross-ventilation arrangements of the studied building model. The ana-

lyzed parameters include the flow velocity and its incidence angle as well as a distance

between the buildings. The experimental results indicate that the natural ventilation

has similar patterns for both studied atmospheric boundary layer models, whereas the

rural-type atmospheric boundary layer model is more sensitive to the changes of input

parameters. Air change rate is larger for larger wind velocities, as well as for cross-

ventilated buildings compared to the single-side ventilation arrangement.

Keywords: atmospheric boundary layer, natural ventilation, turbulence, rural

terrain, suburban terrain, wind tunnel experiment
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Uvod

Prirodna ventilacija je najčešće korǐsteni način izmjene zraka u zatvorenim pros-

torima. Za dobavu svježeg zraka koristi prirodne sile razlike tlaka i uzgona. Osim

besplatnom pogonskom energijom, ovaj se način izmjene zraka ističe ekološkom pri-

hvatljivošću i malim investicijskim troškovima. Poznavanje karakteristika parametara

prirodne ventilacije neophodno je za projektiranje kvalitetnog sustava.

Utjecaj okolnih zgrada, njihov raspored i gustoća te kut i brzina nastrujavanja vjetra

poznati su parametri koji uvjetuju intenzitet izmjene zraka. Medutim, u prethodnim

je istraživanjima malo pažnje posvećeno karakteristikama vjetra unutar atmosferskog

graničnog sloja s obzirom na teren preko kojeg zrak struji. Upravo je taj parameter

detaljnije obraden u ovome radu.

Mjerena je količina izmijenjenog zraka samostalnog modela zgrade smještenog na

ruralnoj i prigradskoj vrsti terena. Ispitivanje je provedeno za jednostranu i poprečnu

ventilaciju zgrade. Zatim je oko ispitnog modela postavljeno osam identičnih modela

zgrade kako bi se simulirali uvjeti naseljene četvrti i sva mjerenja su ponovljena za tri

različite gustoče modela zgrada.

Atmosferski granični sloj

Zemljina atmosfera sastoji se od niza slojeva. Za područje industrijske aerodina-

mike najznačajniji je najniži sloj - troposfera. Preciznije njen donji dio koji se naziva

atmosferski granični sloj (ABL). Brzina u atmosferskom graničnom sloju raste od nule

u dodiru s tlom do brzine neporemećenog strujanja na njegovom rubu δ. Unutarnji dio

ABL-a prostire se kroz donjih 10 − 15% visine δ. U njemu je strujanje pod utjecajem

karakteristika terena. Vanjski dio nastavlja se do visine δ = 450-600 m, a dominantan

je utjecaj Coriolisove sile uslijed rotacije Zemlje, slika 0.1.

xviii
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Slika 0.1: Profil brzine unutar atmosferskog graničnog sloja, [1]

Unutar atmosferskog graničnog sloja strujanje je turbulentno. Karakteristike stru-

janja koje opisuju atmosferski granični sloj su srednja brzina strujanja zraka, intenzitet

turbulencije, integralna duljinska mjera turbulencije, Reynoldsovo naprezanje i spektar

kinetičke energije turbulentnih pulzacija brzine.

Eksperimentalne postavke

Atmosferski granični sloj je modeliran za strujanje iznad ruralnog i prigradskog tipa

terena u zračnom tunelu za generiranje modela atmosferskog graničnog sloja na Ins-

titutu za mehaniku fluida i prijenos topline Tehničkog sveučilǐsta u Grazu, Austrija.

Zračni tunel je tipa Göttingen i zatvorenog je sustava rada. Za simulaciju graničnog

sloja u mjernu je sekciju umetnuta rešetka s nepravilnim rasporedom cilindričnih cijevi,

nazubljena barijera i podna hrapavost. Na slici 0.2 prikazana je mjerna sekcija na čijem

se kraju nalazi konfiguracija urbane četvrti. Izmjena je zraka ispitivana na sredǐsnjem

modelu s dva poprečna prozora. U slučaju ispitivanja jednostrane ventilacije jedan je

prozor zabrtvljen poklopcem.
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Slika 0.2: Shema sastavnih dijelova ispitne sekcije IFMHT-GUT zračnog tunela, dimen-

zije u mm

Učinkovitost ventilacije opisuje se brojem izmjena zraka (ACH) u jednom satu:

ACH = V̇
VR

, gdje je VR volumen promatrane prostorije, a V̇ volumni protok. ACH

je izračunat iz podataka dobivenih sustavom za praćenje koncentracije plina za samos-

talni model zgrade i za model zgrade kao dio naseljene četvrti sa:

a) Malom udaljenost izmedu modela, d = 0.5a,

b) Srednjom udaljenost izmedu modela, d = a,

c) Velikom udaljenost izmedu modela, d = 1.5a,

gdje je a dužina brida modela (a = 200 mm). Mjerenja brzine provedena su anemome-

trom kojemu je osjetnik užarena žica konstantne temperature.
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Rezultati i zaključak

Dobiveni su profili brzine za strujanje u ruralnom i prigradskom atmosferskom graničnom

sloju usporedeni sa zakonom potencije i logaritamskim zakonom na slici 0.3.
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Slika 0.3: Profili osrednjene brzine za ruralni i prigradski tip terena usporedeni sa zako-

nom potencije i logaritamskim zakonom

Nakon prikaza profila osrednjene brzine obradeni su podaci za karakteristike turbu-

lencije. Na slikama 0.4 i 0.5 prikazani su rezultati integralne duljinske mjere turbulencije

i spektralne raspodjele kinetičke energije turbulencije za obje vrste terena.

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

L
u,x

 [m]

z
 [
m

]

Ruralni teren

 

 

u = 5m/s

u = 7m/s

u = 10m/s

ESDU 85020

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

L
u,x

 [m]

z
 [
m

]

Prigradski teren

 

 
u = 5m/s

u = 7m/s

u = 10m/s

ESDU 85020

Slika 0.4: Integralna duljinska mjera turbulencije i pripadajuće vrijednosti ESDU 85020

standarda
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Slika 0.5: Usporedba spektralne raspodjele kinetičke energije turbulencije s teorijskim

modelima von Kármána i Kolmogorova

Drugi dio ispitivanja sastojao se od mjerenje broja izmjena zraka u jednom satu.

Rezultati za samostalnu zgradu u ovisnosti o kutu nastrujavanja i brzini dani su na slici

0.6.
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Slika 0.6: Ovisnost broja izmjena zraka o kutu nastrujavanja i brzini za samostalnu

zgradu, a) jednostrana ventilacija, b) poprečna ventilacija

Slika 0.7 prikazuje ovisnost broja izmjena zraka o kutu nastrujavanja i gustoći okolnih

zgrada za jednostranu ventilaciju pri konstantnoj brzini nastrujavanja (5 m/s). Ista je

ovisnost, ali za poprečno prostrujavanje prikazana na slici 0.8.
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a) b)

Slika 0.7: Ovisnost broja izmjena zraka o kutu nastrujavanja i gustoći raspodjele okolnih

zgrada za jednostranu ventilaciju pri brzini nastrujavanja u = 5 m/s, a) ruralni teren,

b) prigradski teren

a) b)

Slika 0.8: Ovisnost broja izmjena zraka o kutu nastrujavanja i gustoći raspodjele okolnih

zgrada za poprečnu ventilaciju pri brzini nastrujavanja u = 5 m/s, a) ruralni teren, b)

prigradski teren

U zračnom su tunelu uspješno modelirani atmosferski granični slojevi karakteristični za

ruralno i prigradsko područje. Dobivene su ciljane vrijednosti eksponenata zakona po-

tencije α = 0.15 za ruralno i 0.22 za prigradsko područje. Izračunate vrijednosti aerodi-

namičke duljine hrapavosti svedene na prirodnu veličinu se podudaraju s medunarodnim

ESDU standardom. Integralne duljinske mjere turbulencije su manje od ESDU vri-

jednosti, što je uobičajeno za simulacije u zračnom tunelu. Zidovi zračnog tunela ne

dopuštaju razvijanje velikih vrtloga. Spektar raspodjele kinetičke energije turbulencije

prati teorijske modele von Kármána i Kolmogorova. Dobiveni je intenzitet turbulencije

manji u odnosu na vrijednosti u ESDU standardu, a Reynoldsovo naprezanje jasno prati

prirodne zakone.
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Trendovi i vrijednosti broja izmjena zraka ruralnog i prigradskog atmosferskog graničnog

sloja u ovisnosti o kutu i brzini nastrujavanja, kao i gustoći okolnih zgrada, prilično su

slični. Oba modela atmosferskog graničnog sloja postižu maksimum kod jednostrane

ventilacije samostalne zgrade za β = 90◦. U slučaju poprečnog nastrujavanja izolirane

zgrade maksimum se za prigradski sloj postiže pri β = 0◦, dok je za prigradski sloj on

kod β = 15◦. Ventilacija zgrade koja čini dio naselja najintenzivnija je za kuteve nastru-

javanja izmedu β = 30◦ i 60◦ i raste s povečanjem brzine. Smanjenjem gustoće zgrada

unutar naseljenog područja povećava se ACH kod poprečne ventilacije. Izuzetak je kut

od β = 0◦ za ruralno naselje. Jednostrana ventilacija ne prati tu zakonitost. Kod nje

utjecaj okolnih zgrada može biti i pozitivan tako što stvoreno polje tlaka uslijed većih

brzina strujanja u prostoru izmedu zgrada intenzivnije usisava zrak iz prostorije.



1 Introduction

Nowadays, ventilation is one of the key issues in the building design as it yields

thermal comfort and good air quality. Most of the buildings are still ventilated naturally.

Natural ventilation is a process of supplying the air in the indoor spaces and removing

the saturated air without using mechanical devices. This passive method of cooling is

quite attractive as it saves the energy and the environment.

Natural ventilation uses freely available resources of energy. There are two basic

types of building natural ventilation, i.e. (a) wind-driven ventilation due to the air

pressure difference around a building, (b) thermally induced ventilation due to a dif-

ference in temperature inside and outside of a building. In both cases, the flow enters

the building through windows, doors or openings in the building envelope and circulates

through the interior space. Air change rate (ACH) is a measure that represents the

volume of ambient air which enters the building in a certain time divided by the volume

of the respective indoor space. A uniform air change rate is essential to improve human

comfort and health in the buildings. Full-scale and small-scale wind-tunnel experiments

as well as computational simulations are common methods of studying the building nat-

ural ventilation. Computational simulations have been often performed to investigate a

potential of natural single-side (Allocca [2]) and cross ventilation (Stavrakakis [3]). The

full-scale experiments are commonly used to validate the experimental and computa-

tional models. In the wind-tunnel experiment, Ernest et al. [4] found correlations of

indoor air motion as a function of the wind direction and the external pressure distri-

bution on the facades. Most studies were performed only with respect to stand-alone

buildings despite the fact that the proximity to other buildings is likely to yield sub-

1
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stantial effects. In particular, a presence of neighbouring buildings, their arrangement,

and spacing density, may also have a significant effect on the local flow field and hence

the ventilation characteristics of a studied building, e.g. Cheung and Liu [5] and Lee

at al. [6]. Langensteiner [1] studied the building natural ventilation in the suburban

environment both for thermally and wind-driven ventilation as well as their interaction.

The present thesis focuses on the ACH of a cubic body that represents a cubic

building. The effects of building displacement, flow incidence angle and characteristics

were previously not studied as thoroughly as it is the case in this work. The small-scale

wind-tunnel simulations were carried out in the IFMHT boundary layer wind tunnel

for the rural and the suburban flow conditions. The measurements were performed for

a stand-alone building model with one window open (single-side ventilation) first, and

subsequerntly for a building model surrounded by dummy objects representing other

buildings in a 3 x 3 square pattern. The experiments were performed for the cross-

ventilation arrangement of a building model as well. The thermally-induced airflow was

out of the scope of the present work that focuses solely on the wind-driven building

ventilation.



2 Theoretical background

2.1. Characteristics of the atmospheric airflow

Just about every wind on Earth can be traced in cause back to the Sun. As the Earth

is affected unevenly by heat energy from the Sun, the characteristics of the airflows

(winds) are different in different world regions. As a result of this uneven heating, air

above the underlying surfaces characterized by higher temperatures will rise due to the

buoyancy. On the other hand, the air in contact with the colder surface will sink. Those

Figure 2.1: Time and space scales of various atmo-

spheric flow phenomena

flow phenomena substantially in-

fluence pressure fields in the

lower atmosphere and thus the

wind characteristics. The rise

of the pressure gradient enhances

the air flow from the higher to

the lower pressure fields. Differ-

ent patterns of motion, mutually

independent in space and time,

create atmospheric motions. Fig-

ure 2.1 shows an entire range

of these phenomena presented as

microscale, convective-scale, and

macroscale [7].

3
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The atmospheric turbulence generally consists of small vortices with the shortest

lifetime (below 10 min) and the size of just a few centimetres to the jet streams

determined by large-scale pressure differences that can last for a month and cir-

cumvent the entire globe. Elementary air mass moves under the action of forces

in the horizontal and vertical directions. Movement in vertical direction caused

by a buoyancy force can be equal to 0, act upwards or downwards. According

to the direction of this movement, the thermal stratification of the atmosphere

may be neutral, unstable or stable. Variation of speed with the hight for different

atmospheric stratifications is shown in Fig. 2.2. In the present thesis, the thermal

Figure 2.2: Wind profile in the stable, neutral and unstable atmosphere [8]

stratification of the atmosphere is assumed neutral and the mean velocity profile

follows the logarithmic law.

In addition to the vertical buoyancy, there are other forces that act horizontally

on the air mass.

Figure 2.3: Equilibrium of forces in the atmospheric boundary layer [9]
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First of them is the horizontal pressure gradient force due to a difference in the air

pressure. The lines connecting the points of equal atmospheric pressure are called

isobars. In Fig. 2.3 two isobar lines are marked (p1 < p2). The pressure gradient

force is denoted ~Fp and its specific value is:

~fp = −1

ρ

dp

dn
. (2.1)

The Coriolis force develops due to the Earth rotation and it deflects the air parcells

moving through the atmosphere. As we are rotating on the Earth only the relative

motion of the atmosphere can be noticed. The observer can see that the objects

on the Earth have an additional rotational movement. That deviation may be

attributed to the Coriolis force:

~Fc = mf~v, (2.2)

From Eq. (2.2) it is evident that the Coriolis force is proportional to the

mass of the moving particle (m), its velocity vector (~v and the Coriolis parameter

f = 2ω sinφ. The angular velocity vector of the Earth ω is equal to 0.7272 · 10−4,

and the latitude angle is denoted by φ. Another force, caused by the momentum

transfer between the ground surface and the air appears and constrains the air

motion. The impact of this viscous force ~Ff is at the maximum close to the

ground and decreases with increasing the height. Directions of the viscous force

and air movement are the opposite. The equilibrium of forces driving the flow in

the lower atmosphere is illustrated in Fig. 2.3.

Figure 2.4: Schematic view of the twisted velocity profile in the atmospheric

boundary layer [1]
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Height at which the influence of viscous forces is negligible is the gradient height (δ).

The height range between δ and the ground surface is the atmospheric boundary layer

(ABL). The flow velocity on the ground surface is zero (no-slip condition) and it increases

to the velocity of the undisturbed flow at the gradient height (upper ABL boundary).

According to Dyrbye and Hansen [10] wind direction may vary between 10◦ and 45◦ from

the ABL top to the ground surface depending on the atmospheric stability and ground

roughness. This phenomenon is combined due to the viscous and Coriolis force effects.

This is graphically presented in Fig. 2.4 with the Ekman spiral and β the maximal flow

deflection angle.

2.2. Atmospheric layers

The atmospheric layers are graphically presented in Figs. 2.5 and 2.6.

Figure 2.5: The layers of the atmosphere [10]

The Earth atmosphere has a series of layers, each with its specific characteristics. For

the subject of this thesis, the lowest layer - troposphere is of a particular importance.

More precisely, its bottom part named the atmospheric boundary layer (ABL). Also

known as the planetary boundary layer (PBL), it is influenced directly by the presence
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of the Earth surface. Its characteristic length scales are vertical and horizontal distances

of ∼ 1 km and ∼ 50 km, respectively, and a characteristic time period of ∼ 1 day.

Viscous sublayer also known as roughness sublayer is the lowest and smallest one

in touch with the ground where the viscous forces are dominant. In the roughness

layer the air motion is controlled by surface roughness. Its depth is dependant upon the

dimensions of the surface roughness elements. It extends above the rooftops of buildings

and other engineering structures to at least 1 to 3 times their height or spacing. In this

zone, the flow is highly irregular as strongly affected by the nature of the individual

roughness features, e.g. trees, buildings, etc., [10], [11].

The turbulent surface layer (Prandtl constant-flux layer) is the lower ABL part

characterized by intense small-scale turbulence generated by the surface roughness and

convection. Despite its variability in the short term (e.g. seconds), the surface layer is

horizontally homogeneous when observed over longer periods (longer than 10 min); its

thickness is 10-15% of the ABL thickness (up to 100 m above the ground surface). The

dominant mechanism of energy, mass and momentum transfer is turbulent stress. In

the surface layer, the Coriolis force can still be considered negligible.

From the top of the Prandtl layer to about one kilometre above the surface there is

the Ekman layer that covers the largest part of the ABL. The Coriolis effect increases

with height untill the top of the ABL where the free atmospheric flow further develops.

Figure 2.6: Zones within the atmospheric boundary layer [10]
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2.3. Mean velocity characteristics

The atmospheric wind motions are always turbulent. A commonly used concept to

describe turbulent flows is to separate absolute velocity into the mean value denoted by

an overbar and the fluctuation denoted by a prime:

u(t) = u+ u′(t)

v(t) = v + v′(t)

w(t) = w + w′(t).

(2.3)

This procedure is known as the Reynolds decomposition. Mean value is averaged over

time periods T :

u =
1

T

∫ T/2

−T/2
u(t)dt. (2.4)

The turbulent wind velocity time record is shown in Fig. 2.7. The longitudinal velocity

component u is considerably larger than the lateral v and vertical w one, so the latter

two components may be neglected in the wind-tunnel measurements.

Figure 2.7: Representation of the absolute flow velocity for a certain point in a flow field

as well as its mean and fluctuation components [1]

For engineering applications, it is useful to characterize the wind velocity profile,

where the mean flow velocity increases with increasing the height from the ground sur-

face. In the lower ABL, up to approximately 100 m, it is possible to use the logarithmic

law [12]:

uz
uτ

=
1

κ
ln
z − d
z0

, (2.5)
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where uz is the mean longitudinal velocity at the height z, uτ is friction velocity calcu-

lated as a square root of the shear stress through density

√
τ

ρ
, κ is von Kármán constant

equal to 0.4, d is the displacement height and z0 is the aerodynamic surface roughness

length. If we observe the velocity profile in the area of complex flows that develop in-

between densely spaced obstacles (e.g. inside city centre, forest or mountains), the zero

plane of the mean velocity profile must be raised for the displacement height, which is

between 75% [13] and 100% [14] of the surrounding obstacles’ height. Aerodynamic sur-

face roughness length is, in theory, equivalent to the height at which the wind velocity

becomes zero. Specific values of z0 are given in Fig. 2.9 and Table 2.1.

Figure 2.8: Representation of displacement height and aerodynamic surface roughness

length [15]



Table 2.1: Classification of the effective terrain roughness according to Wieringa et. al. [16].

Class z0 (m) Landscape description

1. Sea 0.00002 Open sea or lake, tidal flat, snow-covered flat plain,

featureless desert, tarmac and concrete with a free

fetch of several kilometres.

2. Smooth 0.005 Featureless land surface without any noticeable obstacles

and with negligible vegetation; e.g. beaches, pack ice

without large ridges, marsh or open country.

3. Open 0.03 Level country with low vegetation (e.g. grass) and isolated

obstacles with separations of at least 50 obstacle heights;

grazing land without wind breaks, heather, moor and tundra,

runway area of airports. Ice with ridges across-wind.

4. Roughly open 0.1 Cultivated or natural area with low crops or plant covers, or

moderately open country with occasional obstacles (e.g. low

hedges, isolated low buildings or trees) at relative horizontal

distances of at least 20 obstacle heights.

5. Rough 0.25 Cultivated or natural area with high crops or crops of varying

height, and scattered obstacles at relative distances of 12–15

obstacle heights for porous objects (e.g. shelterbelts) or 8–12

obstacle heights for low solid objects (e.g. buildings).

6. Very rough 0.5 Intensively cultivated landscape with many rather large

obstacle groups (large farms, clumps of forest) separated by

open spaces of about eight obstacle heights. Low densely

planted major vegetation like bush land, orchards, forest.

Also, area moderately covered by low buildings with

interspaces of three to seven building heights.

7. Skimming 1.0 Landscape regularly covered with similar-size large obstacles,

with open spaces of the same order of magnitude as obstacle

heights; e.g. mature regular forests, densely built-up area

without much building height variation.

8. Chaotic 2.0 < 8.0 City centres with mixture of low-rise and high-rise buildings,

or large forests of irregular height with many clearings.

10
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Figure 2.9: Power-law exponent for urban, suburban and rural terrain [17]

While the logaritmic law may be adopted to represent the mean velocity profile through-

out the surface layer, the power law is valid for the entire ABL:

uz
uref

=

(
z − d
zref − d

)α
=

(
z̃

z̃ref

)α
(2.6)

This power law is empirical, but its validity is proven in many previous study, e.g.

Kozmar [18], [19] and [20]. uref is the reference velocity at the reference height zref. The

reference value for zref in meteorology is commonly 10 m. α is the exponent of the power

law. Representation of α as a function of z0 is shown in Fig. 2.10.

Figure 2.10: Characteristic values of α and z0 [21]
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2.4. Turbulent wind characteristics

Atmospheric turbulence spans a wide range of length and time scales. Turbulent ed-

dies are important elements in the global circulation, synoptic weather systems, regional

circulations, severe storms, clouds, plant canopies and in the ABL. The turbulence in

the ABL is a part of a continuous spectrum of atmospheric motions, [22]. The airflow

in the ABL is turbulent. Dissipation of the wind kinetic into thermal energy leads to

chaotic changes in pressure and velocity of the flow. The turbulence may impact the

structures in the following ways, e.g. Kozmar [11]:

• Rigid constructions are exposed to increased unsteady loads due to the wind tur-

bulence;

• Vibrations are emphasized for the flexible structures;

• The structure aerodynamic response is in direct correlation with turbulence char-

acteristics (Fig. 2.11).

Moreover, in addition to the adverse effect on the structural stability, the turbulence

may also change pressure distribution on a building, which in turn determines the ACH.

Figure 2.11: Aerodynamic response of a building to the wind [23]

The major relevant parameters that describe the atmospheric turbulence, in addition

to the mean flow velocity, are turbulence intensity, integral turbulence length scale,

Reynolds shear stress, and power spectral density of velocity fluctuations.
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2.4.1. Turbulence intensity

Turbulence intensity in the longitudinal (x), lateral (y) and vertical (z) directions is

defined as:

Iu(z) =

√
u′2(z)

uref
, Iv(z) =

√
v′2(z)

vref
, Iw(z) =

√
w′2(z)

wref

(2.7)

where u′(z), v′(z) and w′(z) are fluctuating components at height z of the absolute

velocity u, v and w, respectively. The numerator is the Root-Mean-Square (RMS) of

velocity fluctuations, and the denominator is the reference mean velocity commonly

determined at the gradient height δ, in the measuring point height or at the studied

body height. Measurements in the atmosphere showed that the longitudinal turbulence

intensity is larger than the lateral and vertical turbulence intensity and their ratio is

nearly constant close to the ground [24]:

Iv
Iu

= 0.75,
Iw
Iu

= 0.5. (2.8)

Ventilation or air conditioning systems that are perceived to be too ‘’drafty” are not that

comfortable. It was observed that the ‘’draftiness” of air is a function of the turbulence

intensity of the moving air [25] and therefore directly related to human comfort in

buildings.

2.4.2. Integral turbulence length scale

Turbulent flow can be considered as a family of eddies transferred by the mean

flow. Each eddy is characterized by the circular frequency ω = 2πf or by the wave

number k = 2π
λ

, where λ is wavelength and f is frequency. The total kinetic energy

of the turbulent flow can be approximated as the sum of the turbulent kinetic energy

contained in all eddies. While λ describes the magnitude of a particular eddy, the average

size of these energy-containing eddies can be quantified using the integral length scale

of turbulence. Each flow direction is characterized by three integral length scales, so

for three directions there are in total nine length scales. The most important integral

length scale is the one describing the average size of eddies in the longitudinal direction

caused by velocity fluctuations in the same direction. Mathematical expression for Lxu

was presented by Sockel [26]:
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Lxu =

∫ ∞
0

Rx
u(∆x)d∆x, (2.9)

Rx
u(∆x) =

u′1(t) · u′2(t)√
u′1

2 ·
√
u′2

2

(2.10)

Indices 1 and 2 indicate two different points in space. Rx
u(∆x) is the correlation factor.

Fig. 2.12 present velocity time history (x-axis is time, y-axis is velocity) in three points

of airflow.

Figure 2.12: Correlation between the points in the airflow [27]

It is obvious that the changes of velocities in time are rather similar in two points

characterized by two time records depicted higher in the graph. The third time record

lower in the graph differs substantially from two higher time records. With the use of the

Taylor’s frozen turbulence hypothesis, it is possible to calculate Rx
u as a function of time

for each of the time records independently (autocorrelation) as well as by comparing

two different time records (cross-correlation).

Rx
u(∆x) =

u′1(t) · u′1(t−∆t)

u′1
2

= Rx
u(∆t); (2.11)

Lxu = u

∫ ∞
0

Rx
u(∆t)d∆t. (2.12)
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2.4.3. Reynolds shear stress

Laminar flow can be represented as the flow of particles travelling in layers of differ-

ent velocities. The momentum transfer occurs at the molecular level between the two

adjacent particles. On the other hand, the momentum exchange in the turbulent flow

occurs at the level of flow particles. The shear stress accordingly develops between the

adjacent layers. The molecular momentum transfer leads to the viscous stress µ∂u
∂z

and

the turbulent transfer to the Reynolds shear stress ρu′w′:

τ = µ
∂u

∂z
− ρu′w′ (2.13)

In the atmospheric flows, the viscous stress is at maximum close to the ground. Its

influence dramatically decreases with increasing the height from the ground surface.

In the inertial sublayer, the Reynolds stress is dominant and the viscous stress can

be neglected. Turbulent stress is equal to zero at the surface and strongly increases

with increasing the height up to the inertial sublayer where it becomes nearly constant

and remains so up to the upper boundary of the inertial sublayer. In the outer layer,

its magnitude decreases down to zero at the top of the ABL. In equation (2.13), the

Reynolds stress terms u′v′ and v′w′ are not considered because they are much smaller

than the component u′w′ and thus neglected.

2.4.4. Power spectral density of velocity fluctuations

Turbulent flow contains eddies of various sizes with each of them characterized by

their turbulence kinetic energy. The power spectral density of velocity fluctuations

represents a distribution of the turbulence kinetic energy over frequencies. In wind

engineering applications, the most common studied spectrum of the turbulence kinetic

energy is the one of velocity fluctuations in the x-direction:

σ2
u =

∫ ∞
0

Su(f)df, (2.14)

where σu =
√
u′2 is the standard deviation of absolute velocity in the longitudinal

direction, Su(f) is the power spectral density of velocity fluctuations in the longitudinal

direction. Large, energy-containing eddies resolve into smaller ones. This leads to the
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energy transfer from larger to smaller vortices until the smallest ones dissipate into the

heat. This process is called the energy cascade [11] and it is shown by Garratt [28] in

Fig. 2.13.

Figure 2.13: Power spectral density of longitudinal velocity fluctuations

The Kolmogorov theory describes how the turbulence kinetic energy is transferred

throughout the inertial subrange: Su(f) ≈ k
−5/3
w , where kw is the wave number of

the eddy. A wide range (meteorological) power spectral density of longitudinal velocity

fluctuations is shown in Fig. 2.14.

Figure 2.14: Spectral distribution of the turbulence kinetic energy in the atmospheric

boundary layer, [29]



Chapter 2. Theoretical background 17

Three main peaks are marked and the reason of their existence, lifetime and frequency

is noted. In the wind engineering, only the power spectrum with the energy clustered

around the peak around 1 min (also reported in Fig. 2.13) is relevant and studied in

detail, whereas the energy concentrated around two other peaks (4 days and 12 hours)

are more relevant in geophysics, meteorology and climatology.

2.5. Flow around the cube

Flow and heat transfer in a channel with wall-mounted cubes represent a commonly

studied engineering configuration that is relevant in many applications. This simple

geometry creates complex vortical structures and generic flow phenomena associated

with turbulent flow. Flow patterns around bluff bodies were investigated in detail over

the past few decades. Martinuzzi and Tropea [30] and Hussein and Martinuzzi [31]

presented their experimental results where they characterized the approaching flow as

four main features. There is a standing vortex upstream of the windward facade. Corner

streams and flow separation areas develop at the surfaces parallel to the main flow and

on the top building surface. An area with a high-velocity gradient is the shear layer.

The horseshoe vortex is clearly exhibited.

Figure 2.15: 3D representation of the flow around a surface mounted cube, [31]

The wind flow around the building influences pressure distribution on the building facade

that in turn impacts the ACH. Surface pressure distribution is commonly provided using
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the pressure coefficient:

Cp =
p− p∞
1
2
ρV 2
∞
, (2.15)

where:

• p is the total pressure in the measuring point,

• p∞ is the static pressure in the undisturbed freestream flow,

• ρ is the air density,

• V∞ is the mean velocity in the undisturbed freestream flow.

A characteristic Cp distribution on a bluff body is shown in 2.16.

Figure 2.16: Pressure distribution on a body of a cubic shape, results for rural (left),

and suburban (right) terrain type [32]

The turbulent flow around the wall-mounted bluff body separates from the leading

edges of the body and then eventually reattaches on the top and side surfaces. Positive

pressure appears only on the windward surface where the kinetic energy of the flow for

the most part converts into pressure. The maximal positive pressure is in the stagnation

point. That point is at approximately 70% of the building height. The largest negative

pressures occur immediately downstream of the separation lines and are followed by a
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substantial pressure recovery on the top and side surfaces. Larger upstream turbulence

leads to earlier reattachment and pressure recovery, [33].

Velocity field around neighbouring cubes is presented in Fig. 2.17. These phenomena

are particularly important for the ACH of the studied building, which is predominantely

influenced by the surface pressure at the outside building surface (facade).

Figure 2.17: Velocity field around neighbouring cubes, side view [34]

Figure 2.18: Velocity field around neighbouring

cubes, ground plan [35]

Flow impingement and separa-

tion on front buildings have a sig-

nificant impact on downstream

buildings. There are standing

vortices and other complex phe-

nomena in the gaps between the

buildings, Figure 2.18, with more

details provided in King at al.

[35] and Castro at al. [36].



3 Experimental setup and

measurement methods

There are generally four working approaches in the field of wind engineering and

environmental aerodynamics:

• Wind-tunnel experiment;

• Full-scale experiment;

• Computational Fluid Dynamics (CFD);

• Semi-empirical methods.

Semi-empirical methods and CFD, whose development is rapid, are less expensive op-

tions. Their results however must be validated by the experiments due to their insuffi-

cient accuracy. For the present thesis, the experimental approach was selected and the

wind-tunnel experiments were conducted at the Institute of Fluid Mechanics and Heat

Transfer at the Graz University of Technology (TUG), Austria.

3.1. Wind-tunnel design

Wind tunnels are generally tube-shaped facilities that allow scientists and engineers

to test the aerodynamics of structural models. Air flow in the wind tunnel can represent

wind if the model is static in reality, but can also simulate moving object like a car or an

aeroplane moving through the still air. As the aim of the present study is to evaluate the

intensity of natural ventilation depending on wind characteristics, it is necessary to use

the wind tunnel that can simulate various wind characteristics (Fig. 3.1). The IFMHT

20
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in Graz is equipped with two wind-tunnels, i.e. the low-speed aerodynamic wind tunnel

and the boundary layer wind tunnel. The latter one is appropriate for this thesis as it

can simulate different terrains and their corresponding wind characteristics.

Figure 3.1: Boundary layer wind tunnel at the IFMHT

It is a Göttingen closed-circuit type wind tunnel with the closed test section. The ceiling

is adjustable in height so a development of the ABL simulation is not affected by the

static pressure gradient along the test section. The total length of the test section is

8.6 m, and 2 m wide and 1 m high at the turntable. The air is circulated with two

powerful axial fans. The maximum flow velocity is 40 m/s. The turntable is mounted

at the end of the test section. Structural models are commonly placed at the turntable,

where it is possible to investigate the effects of various flow incidence angles by rotating
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the turntable. For an appropriate thickness of the ABL simulation, the test section

should be long because the boundary layer develops rather slowly. To enhance the ABL

simulation development, a grid of cylindrical rods was added at the test section inlet.

Downstream of the rods there was a sawtooth barrier. The purpose of the barrier is

to enhance an equilibrium boundary layer flow in a shortened distance. It is important

that the ratio between the boundary layer thickness and the characteristic building

dimensions is equal in model and prototype - Jensen similarity. This study aims to

evaluate natural ventilation in the suburban and rural environments. The power-law

exponent α in the suburban environment was taken as α = 0.22 and for the rural terrain

α = 0.15. The experimental setup in the test section is shown in Fig. 3.2.

Figure 3.2: Plan view of the IFMHT-GUT wind tunnel with dimensions in mm

For the suburban terrain, surface roughness elements (Lego and Lego Duplo bricks) of

different sizes were placed on the test section floor (also on Fig. 3.2). The layout of



Chapter 3. Experimental setup and measurement methods 23

Figure 3.3: Schematic view

of the grid of rods, dimen-

sions in mm

bricks was adopted from Langensteiner [1]. There are

six rows with two connected Duplo bricks followed by

thirteen single Duplo rows. Each row has eleven equally

spaced bricks. Between the second and the third row

ten basic Lego bricks were added at positions where air

would otherwise pass unhindered. The spacing between

horizontal rods varies and is shown in Fig. 3.3 The saw-

tooth edge barrier was 200 mm high in total.

For the rural terrain type, some changes had to be

made to satisfy the necessary power law and turbulence

characteristics. A suitable configuration was determined

by trial and error. The surface roughness was removed

and height of the sawtooth edge barrier was decreased

by removing its central part. The barrier dimensions are

shown in Fig. 3.4 for both types of terrain. Elements and

their size are represented in Fig. 3.5, case a) for suburban

and case b) for rural terrain.

Figure 3.4: Schematic view of the sawtooth edge

barrier for suburban (upper) and rural (lower)

terrain, dimensions in mm
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a) b)

Figure 3.5: Wind-tunnel test section for suburban, a) and rural, b) terrain

During the simulation of natural conditions, it is important that there are no changes

in the streamline patterns due to implemented models. These changes may cause dif-

ferent pressure distribution on building model walls. To satisfy this condition blockage

of the wind tunnel needs to be as small as possible. In this study the blockage was :

ϕo =
Am
An

=

√
2002 + 2002 · 200 · 3

1000 · 2000
· 100 = 8.49% (3.1)

where Am is the projection surface of the model and An the cross-sectional area of the

wind tunnel test section.

3.2. Building models

The natural ventilation of a cubic building model was studied in arrangements with

one and two windows. Dependence of the ACH on the flow incidence angle for both

terrain types was determined using the same building model for the single-side and cross

ventilation. The building model was previously studied in Golubić [37] as well, (Fig.

3.6 a).
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a) b)

Figure 3.6: Schematic view of the cubic building model a) and control box for pneu-

matically driven sliders b)

The building model is equipped with pneumatic sliders connected to the compressed

air system. Opening and closing of windows is regulated manually using the control

box by releasing or stopping the compressed air, Fig. 3.6 b. Figure 3.7 shows the cube

interior. The roof is removed so that the sliders, pipes for the pneumatics (blue) and

tracer gas (transparent) can be seen.

a) b)

Figure 3.7: Interior of the cubic building model a) with an open window, b) with closed

windows

Walls are made of wood and coated with the special enamel from the inside to suppress

leaking of the tracer gas outside of the cube. For the ACH testing in urban environment,

eight dummy building models were set around the main building in a 3 x 3 pattern.
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Dummies are cubes of the same size as the main building model, but without the

windows.

3.3. Experimental arrangements

In order to gain a perspective on the influence of various parameters on building nat-

ural ventilation, it was necessary to carry out many experiments with different system

configurations. First measurements were carried out for the suburban type terrain. A

stand-alone building model was placed in the test section. The ACH was measured for

a single-side (1 window open) as well as cross ventilation (2 windows open). The effects

of different velocities (3, 5 and 7 m/s) and flow incidence angles were investigated. In

the subsequent tests, dummy models were added to simulate the urban neighbourhood.

Eight of them were properly arranged around the studied building model. In addition

to the flow velocity and its incidence angle, the spacing density between the building

models was varied as well. The procedure was repeated for the rural area.

The studied spacing densities of building models:

a) Small spacing density of building models, i.e. distance between building models

d = 100 mm or d = 0.5a, where a is the length of an edge of the cubic building model

(a = 200 mm),

b) Medium spacing density of building models, i.e. d = 200 mm= a,

c) Large spacing density of building models, i.e. d = 300 mm= 1.5a.

Figure 3.8 presents studied model configurations for a stand-alone building model

with a single window opened (single-side ventilation).
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Figure 3.8: Studied configurations for single-side ventilation measurements

on a stand-alone cubic building model

Stand alone building model with both windows open is shown in Figure 3.9 (cross

ventilation).
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Figure 3.9: Studied configurations for cross ventilation measurements on a

stand-alone cubic building model

A photograph of a 3 x 3 square pattern representing an urban neighbourhood with

different spacing densities among building models is shown in Figure 3.10. The schematic

view of the configurations for cross ventilation and single-side ventilation are shown in

Figures 3.11 and 3.12, respectively.
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Figure 3.10: Different spacing densities for a 3x3 square pattern of building

models

Figure 3.11: Studied configurations for cross ventilation measurements of a

building model situated in a neighbourhood model
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It should be noted that Figure 3.11 shows configurations for measurements in a rural

area. For the suburban area, the flow incidence angles of 0◦, 30◦, 60◦ and 90◦ were tested.

Figure 3.12: Studied configurations for single-side ventilation measurements

of a building model situated in a neighbourhood model



Chapter 3. Experimental setup and measurement methods 31

3.4. Velocity measurements

There is a number of requirements that must be satisfied by the velocity measuring

apparatus before turbulence can be properly measured, Hinze [38]:

• The detecting element in the flow field must be so small that it causes only minimal

disturbance of the flow

• The instantaneous velocity distribution must be uniform in the region occupied

by the element. A detecting element must be smaller than the smallest eddy we

want to measure. For regular measurements, size of 1 mm should not be exceeded.

• Instrument must have low inertia, so that response to even the most rapid fluctua-

tions is practically instantaneous. For low and moderate flow velocities, frequencies

up to 5000 s−1 may be expected.

• The sensor must be sufficiently sensitive to record small differences in the fluctu-

ations as they are often only a few percents of the mean velocity.

• Sensor must be stable, sufficiently strong and rigid to exclude vibrations caused

by turbulent flow.

A sensor whose development and application for measuring turbulent flow have out-

stripped those of others is hot-wire anemometer (HWA). Its outstanding characteristics

meet all of the parameters listed above, so the HWA was used in the present study as

well.

3.4.1. Operating principle and modes

This method relies on the heat transfer between a small heated sensor connected to

an electric circuit and the fluid flow. The sensor is a round wire or a thin film connected

between the prongs of a probe. It is made of metal whose electric resistance depend

on the temperature. Many kinds of probes and sensors are available. For the present

study, Dantec Dynamics 55P61 dual-sensor X wire probe was used, Figure 3.13. X wire

means that a probe has two sensors, each measuring one velocity component. Sensors

work simultaneously. Probe needs to be placed parallel to the main stream direction
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and wires should be exposed to the flow which impinges them at an incidence angle of

45◦.

Figure 3.13: Dantec Dynamics 55P61 dual-sensor X wire probe, [39].

As the current is passing through the wire it generates heat (Joule heating). The tem-

perature of wires increases and heat is transferred to the moving air by forced convection.

For a turbulent flow the instantaneous heat balance is:

mwcw = RwI
2
w − (Tw − Ta)φconv(u), (3.2)

where the left hand side represents the thermal energy stored in the sensor, and the right

hand side is a difference between the heating and cooling the rate. Convection function

φconv(u) mainly depends on the fluid velocity. Equation (3.2) reveals that the change in

velocity leads to a change in an electric circuit which can be measured. Considering the

change in the circuit, three operating modes may be distinguished:

1. Constant Temperature Anemometry (CTA): In this mode a change of velocity u

creates a change in current Iw by keeping the Rw constant. With no change in Rw

the temperature remains constant.

2. Constant Current Anemometry (CCA): The change of velocity u creates a change

in resistance Rw by keeping the Iw constant. Rw is measured.

3. Constant Voltage Anemometry (CVA): The voltage Vw, which is a product of Rw

and Iw, is constant and change of the current Iw is measured.
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In the present study, velocity was measured using the constant temperature anemometry.

Dantec Dynamics multichannel CTA system 54N82 was used, Fig. 3.14.

Figure 3.14: Constant Temperature Anemometry (CTA) system [40]

The sensor is fixed on the probe which is mounted on the support. It is connected to the

anemometer with the probe cable. Inside the anemometer is the Wheatstone bridge,

which has fixed and variable resistors. The regulation maintains constant resistance,

and consequently temperature, of the hot wire by adjustment of a variable resistor. In-

stantaneous changes of temperature are controlled by the servo amplifier, which supplies

exactly the same rate of electrical energy to the wire as needed to compensate the con-

vective heat transfer into the environment. Heat transfer is recorded over the voltage

of the bridge. From the heat transferred to the air, the velocity of the flow can be

calculated. Conditioner for high and low-pass filtering sends a signal to the A/D board.

Analog signal is converted into digital so that the analysis can be performed on the

personal computer. Dantec Dynamics MiniCTA software was used for the procedures

involving the CTA.

3.4.2. Velocity measurement methodology

Velocity was measured for two main reasons, i.e. a) to determine whether the set

configuration properly simulates the characteristics of the examined terrain, b) to control

the flow velocity as a parameter for measuring the ACH and to adjust the velocity before

starting the traverse movement.
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Before simulations of the ABL, the CTA probe with accompanying cables was cal-

ibrated in the low-speed aerodynamic wind tunnel. Calibration was performed for ve-

locities in the range from 2 m/s to 16 m/s in 8 different points. Calibration points were

fitted using the fourth order polynomial.

In the the boundary layer wind tunnel, the x wire with holders was mounted on

the traverse located at the beginning of the test section. Traverse is an automated

device for positioning the probe. The traverse movement was vertical to investigate

the vertical velocity profiles. Grid for traverse extends to 713 mm and it is divided

in 48 points. The points were denser in the lower part because of the larger velocity

gradients. Longitudinal and vertical velocity components were measured for each of 48

points. The time record length for each point was 25 seconds at the sampling rate of

10 KHz. Figure 3.15 shows x wire mounted on a support in the measuring position (in

front of the turntable).

Figure 3.15: Hot-wire probe mounted on a traverse support in the IFMHT-GUT wind

tunnel [37]

Dantec Dynamics reference velocity probe 54T29 (Fig. 3.16) was set at the other

side of the measuring section (referring to the traverse), at the height of 500 mm.
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Figure 3.16: Dantec Dynamics reference velocity probe 54T29

ABL simulations were carried out for the suburban and rural type terrains. The ABL

characteristics were tested for 3, 5 and 7 m/s. Apart from the lateral centre of the

wind-tunnel test section, the ABL simulation characteristics were investigated in plains

with 250 mm offset to the right and to the left. That test aimed to verify the uniformity

of the flow. The positioning in the lateral direction was done manually.

3.5. Tracer gas measurements

The main topic of this research, i.e. building natural ventilation, refers to the flow

of the outside air in the interior space through various openings on the building. In

order to quantify building natural ventilation, the ACH was measured using a tracer

gas system. ACH is defined as:

ACH =
V̇

VR
. (3.3)



Chapter 3. Experimental setup and measurement methods 36

VR is the total volume of the indoor space and V̇ is the volume flow rate [1]. There are

three versions of this method:

• The concentration-decay method,

• The constant-concentration method,

• The constant-injection method,

whereas in the present work, the concentration-decay method was applied.

3.5.1. Tracer gas system

For determination of the ACH, infrared (IR) Multi Gas Monitor Innova 1316A-2 of

LumaSense Technologies was used. System can work with variety of gases, depending on

the needs and conditions of a particular study. In the present study, CO2 was selected

because of its non-aggressive properties. As integral part of the atmosphere, it is neither

poisonous nor flammable. In addition to being safe and not harmful to the environment,

CO2 is chemically stable, does not have colour, smell and it does not have taste. Its

operating principle is described in the manual [41]:

” The Non Dispersive Infrared Sensors (NDIR) method uses fixed, non-scanning infrared

light frequencies to characterize gas concentrations. The concentration of a gas volume

is a function of the quantity of gas molecules in the sample. The absorption of IR

light increases with the number of gas molecules in the light path. With increase in

concentration of infrared-absorbing gas, the transmission of infrared light decreases.”

Figure 3.17 shows main elements of the gas analyser.

Figure 3.17: Non Dispersive infrared gas analyser, [1]



Chapter 3. Experimental setup and measurement methods 37

An infrared light source emits the light of wide frequency range, including IR. One path

of the light passes through the reference cell, filled with a non-absorbing gas such as

nitrogen. The other path goes to the sample cell. A sample cell is filled with the tracer

gas sample that is to be analysed. Gas is pumped into the chamber through the tubes,

whose other end is placed in the model (Fig. 3.7). The IR source continuously sends

IR waves through the gas tubes. The detector measures the intensity of wavelengths

for both paths of the light separately. The intensity of the waves going through the

reference cell is not reduced. If the CO2 gas is present in a sample cell, the detector

will read a reduced intensity of appropriate wavelengths. The difference in reading is

proportional to the amount of absorbing gas in the sample cell, i.e. CO2 gas. The

signal from the detector is amplified and sent to the computer where it is recorded in

the BZ6013-1316A-2 LumaSense program.

3.5.2. Tracer gas measurement methodology

Concentration decay method implies the initial filling of the internal model space

with a tracer gas, while all the openings are closed. After some time, tracer gas and air

make a homogeneous mixture. Mixing time depends on a concentration of a tracer gas.

The mixture was considered homogeneous when the measured concentration, monitored

in the BZ6013 program, ceased to be altered. Then windows were opened using switches

on a control box for fixed time interval ∆t = t2 − t1. During that time, fresh air was

entering and flowing through the indoor space at the previously set velocity. If the

model walls are taken as the boundaries of the system, mass conservation law for the

tracer gas is:
dm

dt
= Coṁoi − Ciṁio + E, (3.4)

where m is the mass of the tracer gas within a model, C is tracer gas mass concentration,

ṁ is mass flow rate and E is mass injection rate of the tracer gas. Subscripts i refers

to indoor and o to outdoor space. The mass of tracer gas is related to the mass of the

inside air M by the concentration of the tracer gas in the indoor air Ci:

m = CiM. (3.5)

While windows are open, the tracer gas is not injected into the model, so the last member

of the Eq.(3.4) is zero. It is assumed that the air mass entering the model is equal to
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the mass leaving it ṁ = ṁio = ṁoi. With these assumptions Eq.(3.4) transforms into:

M
dCi
dt

= ṁ(Ci − Co). (3.6)

With ∆C = Ci − Co, the mass flow rate is:

ṁ =
M

dCi

dt
∆C

. (3.7)

If the mass over volume and density is ṁ = ρV̇ and M = ρVR , where VR is the volume

of the observed space, ρ is the constant air density, and V̇ is volume flow rate and after

integrating Eq.(3.7) over a defined time period we get:

V̇

VR
= ACH =

1

∆t
ln

∆C(t)

∆C(t+ ∆t)
. (3.8)

The ACH can therefore be calculated from the measurements of the concentration drop

in a given time. Concentration was measured before the opening of the windows (after

mixing time), and after closing them again. After closing the windows, it was necessary

to wait for the mixture to become homogeneous. Concentrations were recorded, and

the process was repeated. After collecting enough data to see what values deviate from

the average, they were removed and the average value of the others was calculated. A

dimensional analysis yields the ratio of the ACH for model and prototype:

ACHr

ACHm

=
1

S
. (3.9)

Where S is the simulation length scale factor calculated in the following section, S

determines how many times is the ACH measured in the lab larger than the actual one.



4 Results

In order to investigate the influence of wind characteristics on building natural ven-

tilation, it was necessary to simulate the ABL flow. The ABLs of interest were those

developing above the suburban and rural type terrains. Therefore, the simulation results

of the ABLs will be presented first. When the results from the laboratory matched those

from the full-scale, the ACH was measured. The obtained data were compared with the

available literature. The results for the rural terrain are marked with the triangular

shapes and full line, for the suburban terrain with the squares and dashed line.

4.1. Simulation of the atmospheric boundary layer

4.1.1. Mean velocity profiles

Velocity profiles matched well the required conditions for the rural and suburban type

terrains. The mean velocity profile was plotted in linear, semi-logarithmic and double-

logarithmic scale. A dependence of the mean velocity profile on the height represented

by the power law in the double-logarithmic scale reveals a straight regression line. The

gradient of that line indicates α, Fig. 4.1.

39
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Figure 4.1: Mean velocity profiles for u = 5 m/s in a double-logarithmic scale

Values of α calculated from the regression lines are:

Table 4.1: Calculated values of α for the rural and suburban terrain types

α 3 m/s 5 m/s 7 m/s

Rural 0.145 0.152 0.152

Suburban 0.202 0.222 0.229

The mean values of α agree well with the preset values of 0.15 for the rural and 0.22 for

the suburban terrain types. Table 4.2 lists the mean velocity parameters of various wind

standards. α = 0.15 corresponds to the second category (open terrain, island, flat area

and water etc.), and 0.22 is between the third and fourth category (suburban, town,

small city etc.). These power-law exponents will be used for the comparison with the

measured data.
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Table 4.2: Description of various terrain types according to several wind standards [42]
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Further analysis has revealed the logarithmic law components, i.e. z0 and uτ. Data

were plotted on a semi-logarithmic scale. The straight regression line was set to fit the

experimental data. The intersection point between the y-axis and the regression line

presents z0, and its inclination presents uτ. Semi-logarithmic plot is shown in Fig. 4.2.
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Figure 4.2: Mean velocity profiles for u = 5 m/s in a semi-logarithmic scale

The average friction velocities for the rural and suburban terrain types uτ is 0.271 m/s

and 0.387 m/s and the aerodynamic surface roughness lengths z0,m is 0.130 mm and

1.153 mm in the model scale, respectively. The results in Fig. 4.3 indicate the lateral

uniformity of the flow. Quantities are reduced to the corresponding values at the height

of the reference probe, i.e. 500 mm model scale.
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Figure 4.3: Mean velocity profiles for u = 5 m/s measured in three different lateral

planes for both terrains and their comparison with the power-law profile

The results reported in Fig. 4.4 (normalized using the reference velocity of 5 m/s)

indicate successful ABL simulations in comparisons with their respective power-law

curves and in Fig. 4.5 with the logarithmic law.
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Figure 4.4: Comparison of the rural and suburban mean velocity profiles
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Figure 4.5: Mean velocity profiles compared to the power and logarithmic laws

The rural ABL profile has a larger velocity gradient close to the ground, which is

expected for the smoother ground surface.
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Simulation length scale factor

The simulation length scale factor was calculated according to Cook [43]:

S =
91.3(z − d)0.491

(z0)0.088 (Lu,x)1.403
. (4.1)

Scale factors were calculated for each measuring point separately using Eq. (4.1).

The average value of all the points is the simulation length scale factor. For both

ABL simulations it is 1:250. Scaling-up the model aerodynamic surface roughness

length z0,m yields the prototype aerodynamic surface roughness length z0,p. For the

rural terrain type z0,p = 0.0325 m which agrees with the second terrain category

(z0 = 0.01-0.06 m) in Table 4.2. This terrain type is described as a rural area with

a few low-rise buildings. Measurements for the suburban terrain type yielded z0,p

= 0.288 m. This z0,p characterizes the third terrain category (z0 = 0.2 - 0.3 m)

described as the forest/suburban scattered low (3-5 m high) buildings.

4.1.2. Turbulence characteristics

Turbulence intensity

The turbulence intensity profiles in the vertical Iw and longitudinal Iu direction

are shown in Figs. 4.6 and 4.7, respectively. The results for the longitudinal di-

rection are compared with ESDU 85020 [14] for an appropriate range of z0,p value

for each terrain type.
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Figure 4.6: Turbulence intensity profile - vertical component Iw
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Figure 4.7: Turbulence intensity profile - longitudinal component Iu

ESDU 85020 [14] agrees with the measured values only in the lower ABL region. Curves

for 3 m/s do not fall into the recommended area likely due to a small flow velocity, i.e.

Reynolds number issues.

Integral turbulence length scales

The obtained integral turbulence length scales are plotted in Fig. 4.8. The results

are presented in the full-scale measures.
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Figure 4.8: Integral turbulence length scales in comparison with the respective ESDU

85020 values
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In both ABL simulations, close to the ground, the integral length scales increase

with increasing the height and remain constant with further increasing the height. This

phenomen was previously observed in other studies as well and it is due to the confined

wind-tunnel test section that prevents large eddies to develop.

Reynolds shear stress

The Reynolds shear stress profiles are presented in Fig. 4.9.
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Figure 4.9: Reynolds shear stress profiles

The reference velocity applied to calculate the Reynolds shear stress is the one at the

height of the reference probe (500 mm). The Reynolds shear stress is zero at the ground,

increases with increasing the height up to the inertial sublayer where it becomes nearly

constant. It is clear that the inertial sublayer of the rural ABL simulation is smaller,

which is in agreement with the atmospheric physics, as the Prandtl constant-flux layer

was observed to be thicker above rougher surfaces.

Power spectral density of velocity fluctuations

The power spectral density of longitudinal velocity fluctuations in Figs. 4.10, 4.11

and 4.12 is in agreement with von Kármán. The inertial sublayer characterised by the

constant (Kolmogorov) slope is clearly visible.
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Figure 4.10: Power spectral density of longitudinal velocity fluctuations at z = 10 m
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Figure 4.11: Power spectral density of longitudinal velocity fluctuations at z = 25 m
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Figure 4.12: Power spectral density of longitudinal velocity fluctuations at z = 75 m
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4.2. Building natural ventilation

In this section, the results of the ACH measurements are presented and discussed.

The analysis is based on the influence of the terrain type, flow incidence angle β, velocity

and spacing density of surrounding buildings.

4.2.1. Stand-alone building

Time intervals between an opening and closing the windows were set to 3 and 5 s.

Measurements were carried out in series from the starting concentrations of around 50%

(
mCO2

mCO2
+mair

) to the final of around 10%. The ACH for each point was calculated as an

average of several measurements. After computing the simulation length scale factor,

the ACH was scaled. Figure 4.13 represents the influence of the flow incidence angle

on the ACH for a single-side ventilation. The same effect, but for cross ventilation, is

shown in Fig. 4.14.
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Figure 4.13: Air change rate (ACH) for various flow incidence angles for a single-side

ventilation of a stand-alone cubic building model

In a single-side ventilated stand-alone building model there is no significant difference

between the ACH values for different terrain types. The ACH is at the maximum for an

incidence angle β = 90◦. The flow in the perpendicular direction to the opening creates

a lower pressure region near the window. The created pressure gradient between the
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interior space and the external flow sucks the air outwards. At the angles of β = 0◦

and β = 180◦ the stagnation point is created in front of the window. This prevents the

air change with the environment and reduces the ACH. That is not the case for the

cross-ventilated space.
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Figure 4.14: Air change rate (ACH) for various flow incidence angles for a cross venti-

lation of a stand-alone cubic building model

For the cross-ventilated space, the flow enters the model through the front window and

exits through the rear window. That way a substantial amount of air circulates through

the indoor space. In the cross ventilated spaces, the ACH is largest for β = 0◦. As

the flow incidence angle increases, the ACH decreases. The minimum is reached at the

incidence angle β = 90◦. The results for the rural and suburban ABL simulation have

similar trends. The largest difference is that for the suburban ABL simulation the peak

value is around β = 0◦, while for the rural ABL simulation it is around β = 15◦. Further

analysis of Figs. 4.13 and 4.14 reveals that the values of the ACH for cross ventilation

are significantly larger. The ACH for the cross-ventilated stand-alone building model is

from 2 to 16 h−1, while for the single-side ventilation it is from 0.25 to 1.25 h−1. An

increase in the flow velocity yields an increase of the ACH.



Chapter 4. Results 51

4.2.2. Building natural ventilation in an urban neighbourhood

The ACH was measured for three test cases, i.e. a) d = 100 mm = 0.5a, b) d = 200

mm = a and c) d = 300 mm = 1.5a. The effects of the spacing density among the

building models, flow incidence angle and velocity were studied.

Single-side ventilation

The ACH dependence on the flow incidence angle for a single-side ventilation is

shown in Figs. 4.15, 4.16 and 4.17. Measurements were carried out for β = 0◦ to

β = 180◦. The trends and values of the ACH for β = 180◦ − 360◦ are the same as for

β = 0◦ to β = 180◦ due to symmetry.
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Figure 4.15: Air Change Rate (ACH) for various flow incidence angles for the cubic

building model as a part of a group of buildings, single-side ventilation case a)
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Figure 4.16: Air Change Rate (ACH) for various flow incidence angles for the cubic

building model as a part of a group of buildings, single-side ventilation case b)
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Figure 4.17: Air Change Rate (ACH) for various flow incidence angles for the cubic

building model as a part of a group of buildings, single-side ventilation case c)

There is a clear difference in the ACH behaviour between the stand-alone building

model and the one situated in the neighbourhood. When the building is surrounded

by other buildings, the peak values shift from β = 90◦ to smaller flow incidence angles.

The maximum is reached between 30◦ and 60◦. Golubić [37] noticed that the reason for

that phenomenon might be a gap between the building models. These gaps are passages

that enable the flow to pass through the building opening and directly enhance the
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ventilation. It is interesting that the peak ACH values for the b) and c) cases are larger

than for a stand-alone building model. The a) case reveals another trend. The gap

between the building models is too small, and the air flow is blocked. Figure 4.18 shows

these passages for the c) and a) cases. The first one does not allow a large amount of

air to pass between the buildings. Nevertheless, the air that ”manages” to pass through

the tight passage is accelerated due to a reduced cross-section for the flow. The static

pressure drops and the flow velocity is increased. The result is a larger air suction from

the inside out. That is why the peak value of the a) case remained the same, while for

other cases it increased.

Figure 4.18: Passage between models in 3x3 square pattern. Left is case c), right case

a)

It is interesting to note that the trends for the rural and suburban ABL simulations are

quite similar. The most significant difference is that the rural ABL simulation is more

sensitive to changes in the flow incidence angle. For a given velocity and spacing density

it reaches both the maximum and minimum values, while the suburban ABL simulation

is less sensitive.

The ACH for various spacing densities at the constant flow incidence angle impinging

the building model situated in the urban neighbourhood model is presented in Fig. 4.19.
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Figure 4.19: Air Change Rate (ACH) for

various spacing density between the cubic

building models, single-side ventilation
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In the range from β = 0◦ to β = 30◦ the ACH increases with increasing d. The

exceptions are high speeds in the suburban ABL simulation at β = 30◦. The curves for

β = 90◦ and β = 180◦ are almost flat and a mild drop with increasing spacing density

is observed at β = 150◦. In the rural ABL simulation the trends are generally similar

but more exhibited.

Cross ventilation

The cross-ventilation results are reported in Figs. 4.20 to 4.22 from β = 0◦ to

β = 90◦.
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Figure 4.20: Air Change Rate (ACH) for various flow incidence angles for the cubic

building model as a part of a group of buildings, cross ventilation case a)
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Figure 4.21: Air Change Rate (ACH) for various flow incidence angles for the cubic

building model as a part of a group of buildings, cross ventilation case b)
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Figure 4.22: Air Change Rate (ACH) for various flow incidence angles for the cubic

building model as a part of a group of buildings, cross ventilation case c)

The results differ substantially depending on the passage width among the building

models. For the a) case, where the flow cross-section is minimal, the peak ACH value is

also minimal compared to other cases. It is located at 0◦. There is a drop in the ACH

toward β = 30◦ followed by another small growth till β = 60◦. The minimal value of

the ACH is at 90◦. For the b) and c) cases, the maximum is shifted to the larger flow

incidence angles. This may be due to the ability of the free flow to easier approach the
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entrance to the building model. The maximum ACH is around 8.5 h−1 for d = 1.5a at

the velocity of 7 m/s, which is still just a half of the ACH obtained for the stand-alone

building model. The ACH is larger at larger incident flow velocities. While the ACH

trends for the rural and suburban ABL simulations are quite similar, the gradients in

the rural ABL simulation are more exhibited. Figure 4.23 shows the ACH as a function

of various spacing densities for both terrains. The flow incidence angles were the same

and results are presented for β = 0, 30, 60 and 90◦ .
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Figure 4.23: Air Change Rate (ACH) for various spacing density between buildings,

cross ventilation



5 Conclusion

Small-scale experiments were carried out to investigate the influence of wind char-

acteristics on the natural ventilation of buildings. The inflow conditions impinging the

building model were the wind-tunnel simulations of the atmospheric boundary layers

(ABLs) developing above the rural and suburban type terrains. The building model was

a wall-mounted cube. The ventilation efficiency was studied for a stand-alone building

model and for a building model situated in a model of a generic urban neighborhood.

The experiments were performed for one and two windows on the building model placed

at various flow incidence angles β.

The hot-wire anemometry system was used to determine flow characteristics. The

natural ventilation was quantified by measuring the Air Change Rate (ACH) using the

tracer gas system. The experiments were conducted in a boundary layer wind tunnel of

the Institute of Fluid Mechanics and Heat Transfer at the Graz University of Technology,

Austria.

The velocity profiles correspond well to the power-law with the exponent of α =

0.22 for the suburban and α = 0.15 for the rural type terrains. The logarithmic law

components z0 and uτ agree with the values recommended in the international Engi-

neering Sciences Data Unit (ESDU) standard. Turbulence intensities for a flow over

suburban area show a good agreement with the ESDU 85020 in a lower region of the

ABL simulation, while for the rural ABL simulation those values are rather small. The

measurements verified the inability of integral turbulence length scales to fully develop

in a wind tunnel, which is a well-known problem. The Reynolds shear stress is close to

the zero near the ground and approximately constant throughout the inertial sublayer
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in agreement with the atmospheric conditions. The power spectral density of velocity

fluctuations compares well with the theoretical models of von Kármán and Kolmogorov.

Single-side ventilation measurements of a stand-alone building model showed max-

imal values of the ACH for β = 90◦. The flow perpendicular to the opening in the

building creates the suction on the sidewalls façade that sucks the inside air out of the

room. In the building model surrounded by other objects this effect can be amplified

due to the reduced cross-section for the flow, i.e. an increase in the velocity. On the

other hand, the peak values of the ACH for cross-ventilated stand-alone object were ob-

served for β = 0◦ and β = 15◦ for the suburban and rural ABL simulations, respectively.

The trends observed are quite similar for both studied terrain types. Nevertheless, a

clear discrepancy is that the rural ABL flow is more sensitive to the changes in the flow

incidence angle.
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