Pandža, Mario

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:184630

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-31

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mario Pandža

Zagreb, 2018.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentor:

Doc. dr. sc. Matija Hoić, dipl. ing.

Student:

Mario Pandža

Zagreb, 2018.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru doc. dr. sc. Matiji Hoiću na pomoći i savjetima tijekom izrade diplomskog rada.

Mario Pandža

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za diplomske ispite studija strojarstva za smjerove:

procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveučilište	u Zagrebu
Fakultet strojarstv	a i brodogradnje
Datum	Prilog
Klasa:	
Ur. broj:	

DIPLOMSKI ZADATAK

Student:

Mario Pandža

Mat. br.: 0035190127

Naslov rada na hrvatskom jeziku: Naslov rada na engleskom jeziku: Opis zadatka:

Mosni granik za podizanje teških vozila Bridge crane for lifting of heavy vehicles

Opis zadatka: Potrebno je konstruirati mosni granik za podizanje i prenošenje teških industrijskih i željezničkih vozila

unutar industrijske hale. Nosiva konstrukcija hale biti će izvedena tako da omogući oslanjanje vozne staze granika. Granik tokom rada neće biti izložen utjecaju vjetra. Ciljano konstrukcijsko rješenje granika mora imati sljedeće karakteristike:

- 1) Najveći teret: 70 t,
- 2) Visina dizanja: 12 m,
- 3) Raspon mosta: 15 m,
- 4) Duljina vozne staze: 60 m,

5) Prihvat vozila u četiri točke s rasponom od 3 do 5 m po širini te 6 do 10 m po dužini vozila.

Rad treba sadržavati:

- 1) Uvodni pregled mosnih granika,
- 2) Kratki opis razmatranih koncepcija rješenja te obrazloženje odabira rješenja,
- 3) Proračun mehanizama za dizanje, te vožnju vitla i mosta,
- 4) Proračun nosive konstrukcije,
- 5) Sklopni crtež mosnog granika s potrebnim presjecima i detaljima,
- 6) Sklopne crteže ili detalje na glavnom sklopnom crtežu mehanizama za dizanje i vožnju.

Pri projektiranju treba rabiti važeće tehničke propise za transportne uređaje.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan: 18. siječnja 2018.

Zadatak zadao:

Datum predaje rada:

22. ožujka 2018.

Predviđeni datum obrane: 28., 29. i 30. ožujka 2018.

Predsjednica Povjerenstva:

Doc. dr. sc. Matija Hoić

Prof. dr. sc. Tanja Jurčević Lulić

SADRŽAJ

SADRŽAJI
POPIS SLIKA V
POPIS TABLICAVII
POPIS TEHNIČKE DOKUMENTACIJE VIII
POPIS OZNAKA IX
SAŽETAKXIV
SUMMARYXV
1. UVOD
2. PREGLED MOSNIH GRANIKA
2.1 Mosni granik proizvođača Abus
2.2 Mosni granika proizvođača <i>Ellsen</i>
2.3 Mosni granik proizvođača <i>Konecranes</i>
2.4 Mosni granik proizvođača <i>Demag</i>
2.5 Zaključak
3. PRIKAZ ODABRANOG KONCEPTUALNOG RJEŠENJA
4. PROJEKTNI PARAMETRI
5. ODABIR PODIZNE I POGONSKE GRUPE
5.1 Izračun dinamičkog faktora ϕ_2
6. ELEMENTI ZA PRIHVAT I DIZANJE TERETA
6.1 Dimenzioniranje i izbor kuke pomičnog bloka
6.1.1 Provjera čvrstoće kuke
6.1.2 Provjera čvrstoće nosača kuke15
6.1.3 Provjera površinskog pritiska nosivih limova16
6.1.4 Izbor aksijalnog ležaja kuke17
6.2 Stupanj djelovanja koloturnika17
6.3 Dimenzioniranje i izbor užeta
6.4 Užnica pomičnog bloka
6.4.1 Proračun osovine užnice
6.4.2 Odabir valjnih ležajeva užnice
6.5 Izravnavajuća užnica

	6.5.1 Proračun osovine izravnavajuće užnice	21
	6.5.2 Odabir valjnih ležajeva izravnavajuće užnice	22
	6.5.3 Provjera površinskog pritiska nosivih limova	23
	6.6 Užnica nepomičnog bloka	24
	6.7 Proračun nosive grede i elemenata za prihvat tereta	24
	6.7.1 Dimenzioniranje i izbor kuke nosive grede	24
	6.7.2 Provjera čvrstoće nosača kuke	25
	6.7.3 Provjera površinskog pritiska nosivih limova	26
	6.7.4 Izbor aksijalnog ležaja kuke	26
	6.7.5 Proračun nosivog lima	27
	6.7.6 Proračun čvrstoće nosive grede	28
	6.7.7 Proračun krutosti nosive grede	29
	6.7.8 Proračun zavara prihvatnog elementa nosive grede	30
	6.7.9 Provjera površinskog pritiska prihvatnog elementa nosive grede	30
7.	MEHANIZAM ZA DIZANJE TERETA	32
	7.1 Bubanj	32
	7.1.1 Osnovne dimenzije bubnja	32
	7.1.2 Ukupna i radna dužina bubnja	34
	7.1.3 Provjera napadnog kuta užeta	34
	7.1.4 Proračun stjenke bubnja	35
	7.1.5 Osnovne mjere i dimenzije bubnja	38
	7.1.6 Provjera čeone ploče bubnja	38
	7.1.7 Veza čeone ploče i bubnja	39
	7.1.8 Proračun osovine bubnja	40
	7.1.9 Veza užeta s bubnjem	41
	7.1.10 Odabir ležajne jedinice bubnja	42
	7.2 Odabir pogona mehanizma za dizanje tereta	42
	7.2.1 Provjera odabrane pogonske jedinice s obzirom na izlazni moment	43
	7.2.2 Provjera ugrađene kočnice	44
	7.2.3 Provjera opterećenosti ležaja reduktora	45
8.	PRORAČUN OKVIRA VITLA	46
	8.1 Proračun čvrstoće okvira vitla	48
	8.1.1 Proračun grede JS	48

8.1.2 Proračun grede HN	49
8.1.3 Proračun grede RU	50
8.1.4 Proračun grede AV	51
8.2 Proračun krutosti okvira vitla	51
8.3 Proračun nosivog lima izravnavajuće užnice	53
8.4 Proračun osovinice izravnavajuće užnice	55
8.5 Proračun nosača užnice nepomičnog bloka	55
8.6 Proračun zavara nosača užnice nepomičnog bloka	56
9. ODABIR KOTAČA I POGONA ZA VOŽNJU VITLA	57
9.1 Odabir sklopa kotača vitla	57
9.2 Odabir pogona za vožnju vitla	59
9.2.1 Provjera elektromotora obzirom na pokretanje	61
9.2.2 Provjera elektromotora obzirom na proklizavanje kotača	62
9.2.3 Provjera kočnice elektromotora	64
10. PRORAČUN NOSIVE KONSTRUKCIJE MOSNOG GRANIKA	65
10.1 Glavni nosač mosta	65
10.1.1 Dimenzioniranje presjeka glavnog nosača	65
10.1.2 Provjera čvrstoće glavnog nosača	66
10.1.3 Provjera krutosti glavnog nosača	68
10.1.4 Provjera stabilnost limova glavnog nosača	70
10.2 Čeoni nosač mosta	72
10.2.1 Dimenzioniranje presjeka čeonog nosača	72
10.2.2 Provjera čvrstoće čeonog nosača	73
10.2.3 Provjera krutosti čeonog nosača	75
10.2.4 Provjera stabilnosti limova čeonog nosača	76
10.3 Proračun zavarenog spoja glavnog i čeonog nosača	79
10.3.1 Veza 1	79
10.3.2 Veza 2	80
11. ODABIR KOTAČA I POGONA ZA VOŽNJU MOSNOG GRANIKA	82
11.1 Izračun opterećenja i odabir kotača mosnog granika	82
11.1.1 Opterećenje kotača na strani oslonaca A u najnepovoljnijem položaju vitla	82
11.1.2 Opterećenje kotača na strani oslonaca A u najpovoljnijem položaju vitla	83
11.1.3 Opterećenje kotača mosnog granika	84

11.1.4 Odabir sklopa kotača mosnog granika	
11.2 Odabir pogona za vožnju mosnog granika	
11.2.1 Provjera elektromotora obzirom na pokretanje	
11.2.2 Provjera elektromotora obzirom na proklizavanje kotača	
11.2.3 Provjera kočnice elektromotora	
12. ZAKLJUČAK	
LITERATURA	
PRILOZI	

POPIS SLIKA

Slika 1. Podizanje lokomotive s četiri mobilne električne dizalice [1]	1
Slika 2. Industrijski pogon za proizvodnju i održavanje teških vozila [2]	1
Slika 3. Mosni granik s jednim nosačem i jednim ovjesnim vitlom [4]	4
Slika 4. Mosni granik nosivosti 60 tona [5]	5
Slika 5. Mosni granik nosivosti 100 tona [6]	5
Slika 6. Mosni granik nosivosti 120 tona [7]	6
Slika 7. Mosni granik nosivosti 200 tona [8]	7
Slika 8. Odabrano konceptualno rješenje	8
Slika 9. Nosiva greda s jednim prihvatnim elementom [10]	9
Slika 10. Oznake mjera slobodno kovane jednokrake kuke [11]	12
Slika 11. Izgled i dimenzije zamjenskog trapeza [11]	14
Slika 12. Spoj nosivog lima i nosača kuke	16
Slika 13. Shematski izgled izvedbe udvojenog faktorskog koloturnika 8/2 [11]	17
Slika 14. Dijagrami opterećenja osovine užnice	20
Slika 15. Dijagrami opterećenja osovine izravnavajuće užnice	22
Slika 16. Konstrukcijska izvedba nosive grede	24
Slika 17. Izgled i opterećenje nosivog lima	27
Slika 18. Dijagrami opterećenja nosive grede	28
Slika 19. Izvedba i opterećenje prihvatnog elementa nosive grede	30
Slika 20. Dimenzije ožljebljenog bubnja i profila žlijeba [11]	32
Slika 21. Ostale mjere bubnja [11]	33
Slika 22. Napadni kut užeta	34
Slika 23. Naprezanje elementa stjenke bubnja i lokalno savijanje ljuske bubnja [11]	36
Slika 24. Proračun stjenke bubnja uslijed savijanja	37
Slika 25. Osnovne mjere i dimenzije bubnja [11]	38
Slika 26. Opterećenje osovine bubnja	40
Slika 27. Veza užeta s bubnjem [11]	41
Slika 28. Najveće radijalno opterećenje vratila reduktora	45
Slika 29. Konstrukcijska izvedba okvira vitla	46
Slika 30. Pojednostavljeni statički model okvira vitla	47

Slika 31. Statički model grede JS	48
Slika 32. Presjek nosača izravnavajuće užnice na mjestu točke O	48
Slika 33. Statički model grede HN	49
Slika 34. Statički model grede RU	50
Slika 35. Statički model grede AV	51
Slika 36. Progib nosača HN uslijed djelovanja sile $F_{\rm K}$	52
Slika 37. Progib nosača HN uslijed djelovanja dvaju sila $F_{\rm J}$ i $F_{\rm L}$	52
Slika 38. Progib nosača HN uslijed djelovanja dvaju sila $2F_u$	53
Slika 39. Izvedba i opterećenje nosivog lima izravnavajuće užnice	53
Slika 40. Određivanje faktora zareznog djelovanja [21]	54
Slika 41. Izvedba i opterećenje nosača užnice nepomičnog bloka	56
Slika 42. Položaj težišta sklopa vitla	57
Slika 43. Reaktivne sile u kotačima vitla uslijed djelovanja vlastite težine sklopa vitla	58
Slika 44. Sklop kotača za vožnju vitla [22]	59
Slika 45. Konstrukcijska izvedba nosive konstrukcije mosnog granika	65
Slika 46. Kutijasti profil glavnog nosača mosta	66
Slika 47. Statički model glavnog nosača mosta i pripadni dijagrami opterećenja	67
Slika 48. Progib glavnog nosača uslijed djelovanja dvaju sila F_1	68
Slika 49. Progib glavnog nosača uslijed djelovanja dvaju sila F_2	69
Slika 50. Progib glavnog nosača uslijed djelovanja kontinuiranog opterećenja $q_{\rm GN}$	69
Slika 51. Skica proračunskog elementa glavnog nosača	70
Slika 52. Faktor nestabilnosti k_{σ} za $\alpha \ge 1$, $-1 \le \psi \le 0$ [24]	71
Slika 53. Kutijasti profil čeonog nosača mosta	73
Slika 54. Statički model čeonog nosača mosta i pripadni dijagrami opterećenja	74
Slika 55. Progib čeonog nosača uslijed djelovanja dvaju sila F	75
Slika 56. Progib čeonog nosača uslijed djelovanja kontinuiranog opterećenja q _{ČN}	76
Slika 57. Skica proračunskog elementa čeonog nosača	77
Slika 58. Obuhvatni spoj glavnog i čeonog nosača u zavarenoj izvedbi	79
Slika 59. Opterećenje kotača na strani oslonca A u najnepovoljnijem položaju vitla	82
Slika 60. Opterećenje kotača na strani oslonca A u najpovoljnijem položaju vitla	83
Slika 61. Sklop kotača za vožnju mosnog granika [22]	84

POPIS TABLICA

Tablica 1. Osnovni parametri dostupnih mosnih granika7
Tablica 2. Traženi projektni parametri
Tablica 3. Odabrani projektni parametri10
Tablica 4. Faktor sigurnosti za proračun kuke u ovisnosti o pogonskoj grupi [11]12
Tablica 5. Mjere slobodno kovane jednokrake kuke [11]13
Tablica 6. Dopušteni površinski pritisak u navoju kuke u ovisnosti o pogonskoj grupi [12]13
Tablica 7. Minimalno potrebni faktori sigurnosti za pogonsku užad [11]18
Tablica 8. Minimalni potrebni odnosi promjera [11]19
Tablica 9. Koeficijent broja pregiba c_p [11]19
Tablica 10. Mjere slobodno kovane jednokrake kuke [11]25
Tablica 11. Dimenzije i karakteristike profila HE550B [14]29
Tablica 12. Preporučene vrijednosti radijusa žlijeba u ovisnosti o promjeru užeta [11]
Tablica 13. Karakteristike odabranog elektromotora s reduktorom za dizanje tereta
Tablica 14. Ovisnost faktora sigurnosti v_k o vrsti mehanizma i mjestu primjene [11]44
Tablica 15. Dimenzije i karakteristike profila HE320B [20]49
Tablica 16. Opterećenje pojedinih kotača vitla
Tablica 17. Dimenzije sklopa kotača za vožnju vitla [22]
Tablica 18. Karakteristike odabranog elektromotora s reduktorom za vožnju vitla
Tablica 19. Dimenzije sklopa kotača za vožnju mosnog granika [22]
Tablica 20. Karakteristike odabranog elektromotora s reduktorom za vožnju granika

POPIS TEHNIČKE DOKUMENTACIJE

BROJ CRTEŽA	Naziv iz sastavnice
DR18-MP-10000	Mosni granik
DR18-MP-10100	Sklop nosive grede
DR18-MP-10200	Sklop kuke
DR18-MP-10300	Most s kotačima
DR18-MP-10400	Okvir vitla s kotačima
DR18-MP-10500	Sklop mehanizma za dizanje tereta
DR18-MP-10600	Sklop izravnavajuće užnice
DR18-MP-10700	Sklop užnice nepomičnog bloka

POPIS OZNAKA

Oznaka	Jedinica	Opis
Α	mm^2	Površina poprečnog presjeka
A_2	mm^2	Nosiva površina zavarenog spoja glavnog i čeonog nosača
$A_{ m j}$	mm^2	Površina jezgre vijka
A_{t}	mm^2	Površina zamjenskog trapeza
b	mm	Visina proračunskog elementa
a	mm	Dužina proračunskog elementa
b_{1t}	mm	Duljina veće osnovice zamjenskog trapeza
b_{2t}	mm	Duljina manje osnovice zamjenskog trapeza
$b_{ m p}$	-	Broj pregiba užeta
С	kN	Dinamička nosivost ležaja
C_0	kN	Statička nosivost ležaja
C_1	kN	Dinamičko opterećenje ležaja
<i>C</i> _p	-	Faktor broja pregiba užeta
D	mm	Vanjski promjer bubnja
$D_{ m b}$	mm	Proračunski promjer bubnja
D _{iz. užnice}	mm	Nazivni promjer izravnavajuće užnice
$D_{ m u\check{z}nice}$	mm	Nazivni promjer užnice
$D_{ m v}$	mm	Vanjski promjer osovinice izravnavajuće užnice
d	mm	Promjer užeta
d_3	mm	Nazivni promjer navoja kuke
d_4	mm	Najmanji promjer vrata kuke
d_5	mm	Promjer jezgre navoja kuke
$d_{ m k}$	mm	Nazivni promjer kotača
$d_{ m os}$	mm	Promjer osovine bubnja
d_{u}	mm	Unutarnji promjer bubnja
Ε	N/mm ²	Modul elastičnost
$e_{\rm s}$	mm	Udaljenost težišta zamjenskog trapeza od veće osnovice
F_{a}	Ν	Aksijalno opterećenje ležaja kuke
$F_{\rm B,max}$	Ν	Najveće opterećenje ležajne jedinice bubnja
F_{b}	Ν	Obodna sila na bubnju
$F_{ m H}$	Ν	Horizontalna sila na bubnju
$F_{\rm k}$	Ν	Proračunsko opterećenje kotača
$F_{\rm k}^{\rm \ G}$	Ν	Opterećenje kotača granika uslijed vlastite težine granika
$F_{\rm k,max}$	Ν	Opterećenje kotača s najvećim dozvoljenim teretom, u najnepovoljnijem položaju vitla

$F_{ m k,min}$	Ν	Opterećenje kotača s najvećim dozvoljenim teretom, u najpovoljnijem položaju vitla
$F_{ m N}$	Ν	Normalna sila u vijku
$F_{ m P}$	Ν	Sila potrebna za pokretanje
$F_{\rm Ra}$	Ν	Dopušteno radijalno opterećenje izlaznog vratila reduktora
$F_{ m r}$	Ν	Radijalno opterećenje izlaznog vratila reduktora
F_{u}	Ν	Najveća sila u užetu
$F_{ m v}$	Ν	Sila potrebna za ustaljenu vožnju
f	-	Faktor ispune užeta
fe	-	Ekvivalentni koeficijent otpora vožnje za kotače s valjnim ležajevima
$f_{ m s}$	-	Faktor sigurnosti kod odabira aksijalnog ležaja kuke
G_{a}	Ν	Adhezijska težina koja otpada na pogonske kotače
Н	m	Visina dizanja tereta
$HN_{\rm pot}$	-	Potrebni broj kuke
h	mm	Visina profila žlijeba
$h_{1\mathrm{t}}$	mm	Visina zamjenskog trapeza
h_2	mm	Visina čeonog nosača
h_3	mm	Korak navoja kuke
$I_{ m y}$	mm^4	Aksijalni moment tromosti razmatranog presjeka
$i_{ m HC}$	-	Podizna grupa
$i_{ m k}$	-	Prijenosni odnos koloturnika
$J_{ m EM}$	kgm ²	Inercija sklopa elektromotora
$J_{ m rot}$	kgm ²	Inercija rotacijskih masa
$J_{ m tr}$	kgm ²	Inercija translacijskih masa
$K_{ m t}$	-	Faktor zareznog djelovanja
k	-	Koeficijent ukupnog broja pogonskih kotača
k_{σ}	-	Faktor nestabilnosti od normalnog naprezanja
$k_{ au}$	-	Faktor nestabilnosti od tangencijalnog naprezanja
L	m	Raspon mosta
$L_{10\mathrm{h}\mathrm{min}}$	h	Zahtijevani nazivni vijek trajanja ležaja
l	mm	Razmak nosivih limova nosača kuke
$l_{ m B}$	mm	Udaljenost ležajne jedinice bubnja od čeone ploče
l _b	mm	Ukupna dužina bubnja
$l_{ m r}$	mm	Radna dužina bubnja
$l_{ m v}$	mm	Razmak vijaka veze užeta s bubnjem
$M_{2\text{potr}}$	Nm	Potrebni okretni moment na izlazu iz reduktora
$M_{ m k}$	Nm	Najveći raspoloživi moment kočenja kočnice
$M_{\rm k_EM}$	Nm	Ukupni moment kočenja kočnica
$M_{\rm k_potr}$	Nm	Potrebni moment kočenja kočnice
$M_{ m max}$	Nm	Najveći moment savijanja

Fakultet strojarstva i brodogradnje

Mario Pandža

M _n	Nm	Nominalni moment elektromotora
$M_{ m p}$	Nm	Potrebni moment pokretanja elektromotora
$M_{\rm p,sr}$	Nm	Srednji moment pokretanja elektromotora
$M_{\rm sp}$	Nm	Moment savijanja zavarenog spoja glavnog i čeonog nosača
$M_{\rm st}$	Nm	Moment potreban za ustaljenu vožnju
$M_{ m ub}$	Nm	Moment potreban za ubrzanje rotacijskih i translacijskih masa
т	mm	Visina matice kuke
m _m	kg	Masa mosta
m _{ng}	kg	Masa nosive grede
$m_{ m pb}$	kg	Masa pomičnog bloka
$m_{\rm t}$	kg	Masa tereta
<i>m</i> _{tr,g}	kg	Ukupna translacijska masa mosnog granika
$m_{ m tr,g}^{ m G}$	kg	Translacijska masa mosnog granika za slučaj bez tereta
$m_{\rm tr,v}$	kg	Ukupna translacijska masa vitla
$m_{\rm v}$	kg	Masa sklopa vitla
n	-	Potrebni broj vijaka veze čeone ploče i bubnja
n _k	\min^{-1}	Brzina vrtnje kotača
<i>n</i> _m	\min^{-1}	Brzina vrtnje ležaja
$P_{\rm EM}$	kW	Potrebna snaga elektromotora mehanizma za dizanje tereta
P _n	kW	Potrebna nominalna snaga elektromotora
P _r	Ν	Ekvivalentno dinamičko radijalno opterećenje ležaja
$P_{\rm v}$	kW	Snaga elektromotora potrebna za ustaljenu vožnju
р	N/mm ²	Površinski pritisak
$p_{ m dop}$	N/mm ²	Dopušteni površinski pritisak
Q^{\dagger}	kN	Najveće opterećenje mehanizma za dizanje tereta
$Q_{ m t}$	kN	Najveće opterećenje kuke nosive grede
<i>q</i> čn	N/mm	Kontinuirano opterećenje uslijed vlastite težine čeonog nosača mosta
$q_{ m GN}$	N/mm	Kontinuirano opterećenje uslijed vlastite težine glavnog nosača mosta
R _e	N/mm ²	Granica tečenja
R _m	N/mm ²	Vlačna čvrstoća
r_1	mm	Radijus profila žlijeba bubnja
r_2	mm	Radijus profila žlijeba bubnja
r _n	mm	Položaj neutralne linije zamjenskog trapeza
S	-	Faktor sigurnosti
$S_{\rm B}$	-	Faktor sigurnosti od izbacivanja lima
$S_{\rm BN}$	-	Potrebni faktor sigurnosti od izbacivanja lima
S	mm	Debljina nosivog lima
t	mm	Hod navoja kuke

Fakultet strojarstva i brodogradnje

-

t _{min}	S	Minimalno vrijeme pokretanja mehanizma za vožnju bez tereta
t _p	S	Vrijeme pokretanja mehanizma za vožnju
t _z	s	Potrebno vrijeme zaustavljanja bez kočenja
<i>u</i> _b	-	Broj užeta koji se namataju na bubnja
<i>u</i> _k	-	Broj nosivih užeta
v _d	m/min	Brzina dizanja tereta
Vg	m/min	Brzina vožnje granika
$v_{\rm v}$	m/min	Brzina vožnje vitla
W	mm ³	Moment otpora razmatranog presjeka
$W_{\rm b}$	mm ³	Moment otpora bubnja
Wos	mm ³	Moment otpora osovine užnica pomičnog bloka
$W_{ m v}$	Ν	Otpor ustaljene vožnje za slučaj bez tereta
$W_{ m vk}$	Ν	Otpor ustaljene vožnje nepogonskih kotača za slučaj bez tereta
$W_{\rm y,HE320B}$	mm ³	Moment otpora profila HE320B oko osi y
$W_{\rm y,HE550B}$	mm ³	Moment otpora profila HE550B oko osi y
W	mm	Progib
<i>w</i> _{dop}	mm	Dopušteni progib
Z.	-	Potrebni broj vijaka veze užeta i bubnja
Zmax	mm	Najveća udaljenost razmatranog presjeka od neutralne linije

Grčke oznake

α	-	Omjer dužine i visine proračunskog elementa
β	-	Faktor korekcije dopuštenog naprezanja zavara
$\beta_{ m v}$	-	Faktor kojim se uzimaju u obzir rotacijske mase
γ	0	Napadni kut užeta
γmax	0	Najveća dozvoljena vrijednost napadnog kuta
δ	mm	Debljina stjenke bubnja
3	-	Eksponent vijeka trajanja ležaja
$\eta_{ m b}$	-	Stupanj korisnosti bubnja
$\eta_{ m g}$	-	Stupanj korisnosti mehanizma za vožnju granika
$\eta_{ m k}$	-	Stupanj korisnosti kočnice
$\eta_{ m koc}$	-	Stupanj korisnosti mehanizma u kočnom stanju
$\eta_{ m kol}$	-	Stupanj korisnosti koloturnika
$\eta_{ m o}$	-	Stupanj korisnosti valjnih ležajeva užnica
$\eta_{ m red}$	-	Stupanj korisnosti reduktora
$\eta_{ m uk}$	-	Ukupni stupanj korisnosti mehanizma za dizanje tereta
$\eta_{ m vit}$	-	Stupanj korisnosti mehanizma za vožnju vitla
κ	-	Odnos graničnih naprezanja
$\lambda_{\rm bt}$	-	Vitkost lima

Fakultet strojarstva i brodogradnje

μ	-	Faktor trenja
<i>II</i> 1	-	Ekvivalentni koeficijent trenja zaobljenog žlijeba pritisne
		pločice
$\mu_{ m a}$	-	Koeficijent adhezije za suhe tračnice
$v_{\rm k}$	-	Faktor sigurnosti za usporenje masa u gibanju
v_n	-	Faktor sigurnosti za proračun kuke
ρ	kg/m ³	Gustoća čelika
$ ho_1$	mm	Polumjer zakrivljenosti zamjenskog trapeza
$ ho_2$	mm	Polumjer zakrivljenosti zamjenskog trapeza
σ	N/mm ²	Normalno naprezanje
σ_{\perp}	N/mm ²	Komponenta ukupnog naprezanja čeonog zavara
σ_1	N/mm ²	Glavno naprezanje
σ_2	N/mm ²	Glavno naprezanje
σ_3	N/mm ²	Glavno naprezanje
$\sigma_{\mathrm{D}(0,1)\mathrm{dop}}$	N/mm ²	Dopušteno naprezanje zavara za odnos graničnih naprezanja 0,1
$\sigma_{ m DI}$	N/mm ²	Trajna dinamička čvrstoća za istosmjerno opterećenje
$\sigma_{ m dop}$	N/mm ²	Dopušteno normalno naprezanje
$\sigma_{ m E}$	kN/cm ²	Eulerovo kritično naprezanje
$\sigma_{ m ekv}$	N/mm ²	Ekvivalentno naprezanje
$\sigma_{ m f}$	N/mm ²	Normalno naprezanje uslijed savijanja
$\sigma_{ m fDI}$	N/mm ²	Trajna dinamička čvrstoća za istosmjerno savojno opterećenje
$\sigma_{ m k\psi}$	kN/cm ²	Karakteristično naprezanje ploče
$\sigma_{ m pr}$	N/mm ²	Naprezanje nosivog lima u blizini provrta
$\sigma_{ m ui}$	kN/cm ²	Idealno usporedno naprezanje ploče
$\sigma_{ m vl}$	N/mm ²	Vlačno naprezanje
σ_{x}	N/mm ²	Normalno naprezanje stjenke bubnja
$\sigma_{ m xdop}$	N/mm ²	Dopušteno normalno naprezanje stjenke bubnja
$\sigma_{\rm z}$	N/mm ²	Ukupno naprezanje čeonog zavara
$\sigma_{ m z,dop}$	N/mm ²	Dopušteno naprezanje zavara
σ_{ω}	N/mm ²	Cirkularno naprezanje stjenke bubnja
$\sigma_{ m \omega dop}$	N/mm ²	Dopušteno cirkularno naprezanje stjenke bubnja
τ	N/mm ²	Tangencijalno naprezanje
$ au_{\parallel}$	N/mm ²	Tangencijalno naprezanje zavarenog spoja glavnog i čeonog nosača
$ au_{\perp}$	N/mm ²	Komponenta ukupnog naprezanja čeonog zavara
$ au_{ m dop}$	N/mm ²	Dopušteno tangencijalno naprezanje
ϕ_2	-	Dinamički faktor
ψ	-	Odnos naprezanja
$\omega_{ m EM}$	s^{-1}	Kutna brzina elektromotora

SAŽETAK

Zadatak ovog diplomskog rada je konstruiranje mosnog granika za podizanje i premještanje teških vozila do 70 tona ukupne mase unutar industrijske hale pri čemu je predviđeno da se vozna staza granika oslanja na nosivu konstrukciji hale. Visina dizanja tereta je 12 metara, a potrebni raspon mosta iznosi 15 metara. Prihvat vozila ostvaruje se u četiri točke s rasponom od 3 do 5 metara po širini te od 6 do 10 metara po dužini vozila. Granik radi u poluteškim pogonskim uvjetima, te u zatvorenom prostoru pa se utjecaj vjetra može zanemariti.

U prvom dijelu rada provedena je kratka analiza postojećih konstrukcijskih rješenja mosnih granika velikih nosivosti s ciljem odabira optimalnog konstrukcijskog rješenja za zadane projektne parametre. U drugom dijelu rada je za odabrano konceptualno rješenje proveden detaljan proračun elemenata za prihvat i dizanje tereta kao i analitički proračun nosive konstrukcije mosta i vitla prema navedenoj literaturi, te je izvršen odabir odgovarajućih pogonskih jedinica mehanizama za dizanje tereta, vožnju vitla i vožnju mosta. Na kraju je izrađen CAD model i potrebna tehnička dokumentacija.

Ključne riječi: mosni granik velike nosivosti, dva vozna vitla, podesiva nosiva greda

SUMMARY

Main goal of this thesis is to design an overhead traveling crane for lifting heavy vehicles with the mass up to 70 t inside an industrial hall where it is predicted that rails are leaning on load-bearing structure of the hall. Required lifting height is 12 m and demanded bridge span is 15 m. Vehicle has 4 lifting points with width span ranging from 3 to 5 m and length span ranging from 6 to 10 m. Crane operates in heavy duty conditions and inside industrial hall, thus the wind load can be neglected.

In the first part of the thesis, a short analysis of the existing structural solutions of high load overhead cranes has been carried out with the purpose of choosing the optimal structural solution for given project parameters. In the second part of the thesis, a detailed calculation of the load lifting element for the chosen conceptual solution has been carried out, as well as the analytical calculation of bridge and trolley load-bearing structure according to cited literature. In addition, the selection of corresponding load lifting, as well the bridge and trolley drive units has been made. Finally, a CAD model and required technical documentation were made.

Key words: high load overhead traveling crane, two trolleys, adjustable lifting beam

1. UVOD

U industrijskim pogonima za proizvodnju i održavanje teških vozila kao što su npr. željeznička vozila najčešće se koriste mobilne električne dizalice. Takve dizalice imaju samo jedan pogonski mehanizam za podizanje vozila. Nosivost im se kreće do 60 tona, a obično se za podizanje vozila koriste četiri dizalice istovremeno kao što je prikazano na slici 1.

Slika 1. Podizanje lokomotive s četiri mobilne električne dizalice [1]

No kako je u ovom slučaju vozila potrebno premještati od ulaza u halu do predviđene stanice za rad preko drugih vozila, kao što prikazuje slika 2, uz zahtijevanu visinu dizanja od 12 metara, spomenute električne dizalice ne udovoljavaju traženom zahtjevu, te je nužno koristiti neku vrstu granika.

Slika 2. Industrijski pogon za proizvodnju i održavanje teških vozila [2] Granik je transportno sredstvo koje ima minimalno tri pogonska mehanizma, te omogućava podizanje i horizontalno prenošenje tereta. Za slučaj ovog diplomskog zadatka prednost se 1

daje mosnom graniku zbog raspoloživog prostora unutar industrijske hale te zbog mogućnosti oslanjanja vozne staze na postojeću nosivu konstrukciju hale. Prilikom konstruiranja mosnog granika treba imati na umu da su sva vozila opremljena odgovarajućim okastim elementima za njihov prihvat u četiri točke pri čemu postoji razlika u rasponu prihvatnih elemenata ovisno o modelu vozila (od 3 do 5 metara po širini vozila te od 6 do 10 metara po dužini vozila). Zahtijevani raspon mosta je 15 metara, a mosni granik je potrebno projektirati za nosivosti do 70 tona.

2. PREGLED MOSNIH GRANIKA

Mosni granici najčešće se koriste za transport sipkog i komadnog materijala unutar industrijskih pogona, skladišta, radionica, montažnih hala, te za utovar i istovar željezničkih vagona i kamiona. Sastoje se od mosta, vitla, pogonskih sklopova i kotača za vožnju granika. Most mosnog granika mogu sačinjavati jedan ili dva glavna nosača na kojima se nalaze tračnice po kojoj se giba vitlo granika. Glavni nosači kruto su vezani za poprečne nosače unutar kojih su smješteni kotači za vožnju granika po voznoj stazi koja se nalazi na nosivim betonskim zidovima hale ili na nosivoj čeličnoj konstrukciji hale.

Mosni granici mogu se podijeliti u dvije osnovne skupine:

- Granici s jednim glavnim nosačem
- Granici s dva glavna nosača

Granici manje nosivosti obično imaju samo jedan glavni nosač s valjanim čeličnim profilom u obliku slova I. Kod takvih izvedbi najčešće se primjenjuje ovjesno vitlo koje se giba po donjem pojasu glavnog nosača. Granici s jednim nosačem imaju manje troškove izrade te su jednostavniji za održavanje. Obično se upotrebljavaju za nosivosti do 10 tona s rasponom mosta do 20 metara. Glavni nedostatak im je kompliciranija izvedba vitla u odnosu na granike s dva nosača, te izloženost glavnog nosača torzijskom naprezanju uslijed njihanja tereta. Uobičajena brzina dizanja tereta kreće se od 0,1 do 0,2 m/s, dok je brzina vožnje najčešće ograničena do 0,5 m/s. [3]

Mosni granici s jednim glavnim nosačem mogu biti opremljeni s jednim ovjesnim vitlom i s dva ovjesna vitla koja se mogu gibati neovisno jedno o drugom. Takvi granici manjih su nosivosti i raspona mosta od granika s dva glavna nosača, te nisu namijenjeni za teške pogonske uvjete. Najveće nosivosti granika s jednim glavnim nosačem, do 16 tona, nudi proizvođač *Abus* s rasponom mosta od 22 metra. Takva vrsta mosnog granika s jednim ovjesnim vitlom prikazana je na slici 3, a sličnih su nosivosti i raspona mosta i granici s dva ovjesna vitla.

Slika 3. Mosni granik s jednim nosačem i jednim ovjesnim vitlom [4]

Granici veće nosivosti obično imaju dva glavna nosača koji su napravljeni kao zavareni kutijasti nosači, a rjeđe u rešetkastoj izvedbi. Kod takvih granika najčešće se koristi vozno vitlo s okvirnom konstrukcijom koje se giba po gornjem pojasu glavnih nosača. I u ovom slučaju postoje varijante mosnih granika s jednim i s dva vozna vitla. Uobičajene brzine dizanja tereta iznose 0,03...0,5 m/s, brzine vožnje vitla 0,25...1,0 m/s, a brzine vožnje granika 0,4...1,6 m/s. [3]

Mosni granici ovog tipa najčešće imaju nosivosti nekoliko desetaka tona s rasponom mosta do 40 metara, dok u nekim posebnim slučajevima mogu imati nosivosti do 100 tona pa čak i više. Takve izvedbe mosnih granika velikih nosivosti i raspona mosta, koje na tržištu nude proizvođači kao što su *Abus*, *Demag, Ellsen, Konecranes*, prikazat će se u nastavku.

2.1 Mosni granik proizvođača Abus

Proizvođač *Abus* u standardnoj ponudi raspolaže mosnim granicima nosivosti do 60 tona s rasponom mosta do 18 metara, dok na poseban zahtjev naručitelja mogu isporučiti mosne granike nosivosti i do 120 tona s rasponom mosta do 40 metara. Riječ je o modelu mosnog granika *ZLK*, a jedan takav nosivosti 60 tona prikazan je na slici 4. Nosivu konstrukciju sačinjavaju dva zavarena kutijasta nosača na kojima se nalaze tračnice po kojima se međusobno neovisno gibaju dva vozna vitla s kukom kao zahvatnim sredstvom. Brzina vožnje vitla može iznosi od 5 do 20 m/min, a brzina vožnje granika od 10 do 40 m/min.

Slika 4. Mosni granik nosivosti 60 tona [5]

2.2 Mosni granika proizvođača Ellsen

Ellsen, poznati dobavljač i proizvođač raznih vrsta transportnih uređaja, raspolaže raznim modelima mosnih granika velike nosivosti za primjenu u ljevaonicama, željezarama, gradilištima, skladištima i raznim vrstama radionica. Jedan takav model *YZ*, nosivosti 100 tona i brzine dizanja tereta od 7.5 m/min prikazan je na slici 5. Nosivu konstrukciju sačinjavaju dva zavarena kutijasta nosača s rasponom mosta do 30 metara, uz visinu dizanja tereta do 18 metara. Granik je namijenjen za rad u ljevaonici. Opremljen je s jednim voznim vitlom koji ima glavni i pomoćni mehanizam za dizanje. Mosni granik ima postavljenu pješačku stazu duž mosta kao i upravljačku kabinu sa svom potrebnom opremom u skladu sa važećim pravilnicima. Brzina vožnje granika može iznositi od 20 do 45 m/min.

Slika 5. Mosni granik nosivosti 100 tona [6]

2.3 Mosni granik proizvođača Konecranes

Tvrtka *Konecranes* raspolaže mosnim granicima iznimno velike nosivosti, do 250 tona ako imaju jedno vozno vitlo, odnosno do 500 tona nosivosti ako imaju dva vozna vitla. Njihov model mosnog granika *Smarton*, slika 6, ima nosivost do 120 tona, raspon mosta do 40 metara i visinu dizanja tereta do 15 metara. Posebno je razvijen za montažne radove i održavanje, gdje su potrebni polagani i precizni pokreti, te za premještanje teških i krhkih predmeta. Konstrukciju mosnog granika sačinjavaju dva zavarena kutijasta nosača, a za razliku od prethodno navedenih mosnih granika, ovaj ima samo jedno vozno vitlo odnosno samo jedan mehanizam za dizanje tereta. Nema predviđenu pješačku stazu duž mosta granika, kao ni upravljačku kabinu.

Slika 6. Mosni granik nosivosti 120 tona [7]

2.4 Mosni granik proizvođača Demag

Još jedan svjetski poznat proizvođač transportnih uređaja *Demag* raspolaže mosnim granicima velike nosivosti za transport generatora, rotora turbina i kompresora, velikih brodskih motora, koljenastih vratila, brodskih propelera, velikih građevinskih strojeva i sličnih velikih strojnih dijelova. Jedan takav mosni granik, ukupne nosivosti 200 tona, prikazan je na slici 7. Kao i kod prethodno prikazanih mosnih granika, konstrukciju mosta sačinjavaju dva zavarena kutijasta nosača po kojima se voze dva međusobno neovisna vitla, svaki nosivosti 100 tona. Raspon mosta granika iznosi 24 metra, brzina vožnje granika doseže 40 m/min, brzina vožnje vitla 20 m/min, a brzina podizanja tereta iznosi 2.1 m/min za slučaj punog opterećenja, odnosno 3.3 m/min za slučaj djelomičnog opterećenja.

Slika 7. Mosni granik nosivosti 200 tona [8]

2.5 Zaključak

U tablici 1. prikazani su osnovni parametri prethodno navedenih mosnih granika, način na koji je izvedena konstrukcija samog mosta, te način na koji je osmišljeno podizanje tereta.

Proizvođač	Abus	Ellsen	Konecranes	Demag	
Model	ZLK	YZ	Smarton	Process Crane	
Nosivost [t]	60	100	120	200	
Raspon mosta [m]	10-18	10-30	20-40	24	
Visina dizanja tereta [m]	10	6-18	6-15	16	
Broj glavnih nosača	2	2	2	2	
Konstrukcija mosta	Kutijasti nosači	Kutijasti nosači	Kutijasti nosači	Kutijasti nosači	
Broj vitla	2	1	1	2	
Broj mehanizama za dizanje tereta	2	2	1	2	
Predviđeno ovjesno sredstvo	Nosiva greda	Ovjesna užad	Ovjesna užad	Nosiva greda	

Tablica 1. Osnovni parametri dostupnih mosnih granika

Iz svega navedenog može se zaključiti da nosivu konstrukciju mosnih granika velikih nosivosti obično sačinjavaju dva glavna nosača, dok bi mosni granici s jednim glavnim nosačem teško mogli ispuniti postavljene im zahtjeve za nosivošću od 70 tona i rasponom mosta od 15 metara. Osim toga, nosiva konstrukcija analiziranih mosnih granika izvedena je od zavarenih kutijasta nosača, dok se rešetkasta konstrukcija rijetko može naći u primjeni. Također, može se primijetiti da su neki mosni granici izvedeni s jednim a neki s dva mehanizma za dizanje tereta ovisno o namjeni samog granika.

3. PRIKAZ ODABRANOG KONCEPTUALNOG RJEŠENJA

U programskom zadatku iz kolegija Projekt MiV [9] ponuđeno je ukupno pet koncepata. Analizom svih koncepata zaključeno je da su prva dva koncepta najprihvatljivija, te je za njih proveden orijentacijski proračun glavnih komponenti kao što su komponente mehanizma za dizanje tereta, mehanizma za vožnju vitla, odnosno vožnju mosta. Također, približno je dimenzioniran presjek glavnog i čeonog nosača mosta. Analizom i usporedbom vrijednosti dobivenih tim približnim proračunom zaključeno je da je, s obzirom na tražene operativne parametre, koncept 2 bolje konstrukcijsko rješenje, te da ima više prednosti u odnosu na koncept 1. Stoga je odlučeno da koncept 2 ide u daljnju konstrukcijsku razradu.

Izvedba mosnog granika zamišljena konceptom 2 prikazana je na slici 8. Nosivu konstrukciju mosnog granika sačinjavaju dva zavarena kutijasta nosača, a unutar poprečnih nosača smještena su ukupno četiri kotača za vožnju granika. Na glavnim nosačima postavljene su tračnice po kojima se, međusobno neovisno, mogu gibati dva vozna vitla. Na taj se način vitla, odnosno zahvatna sredstva (kuke) mogu pozicionirati na međusobnu udaljenost od 6 do 10 metara ovisno o modelu vozila kojeg se podiže. Vitla su opremljena dvodijelnim bubnjem s reduktorom u sredini, a predviđena je primjena udvojenog faktorskog koloturnika.

Slika 8. Odabrano konceptualno rješenje

Kod ovakve izvedbe mosnog granika s dvije kuke predviđena je upotreba dvaju nosivih greda na kojima se širina hvata može ručno regulirati od 3 do 5 metara ovisno o širini samog vozila. Jedna takva nosiva greda prikazana je na slici 9.

Slika 9. Nosiva greda s jednim prihvatnim elementom [10]

4. PROJEKTNI PARAMETRI

Potrebno je projektirati mosni granika za podizanje i premještanje vozila unutar industrijske hale prema projektnim zahtjevima prikazanim u tablici 2.

Najveći teret, m _t	70	t
Visina dizanja tereta, H	12	m
Raspon mosta, L	15	m
Duljina vozne staze	60	m
Raspon prihvatnih elemenata na vozilu po širini	3 do 5	m
Raspon prihvatnih elemenata na vozilu po dužini	6 do 10	m

Tablica 2. Traženi projektni parametri

Kako u tekstu zadatka nisu navedene tražene brzine dizanja tereta, kao ni brzine vožnje vitla, odnosno mosnog granika, spomenute veličine su odabrane proizvoljno, tj. prema preporukama i prikazane su u tablici 3.

Tablica 3. Odabrani projektni parametri

Brzina dizanja tereta, v _d	4	m/min
Brzina vožnje vitla, v _v	15	m/min
Brzina vožnje granika, v _g	20	m/min

5. ODABIR PODIZNE I POGONSKE GRUPE

Podiznu i pogonsku grupu potrebno je odabrati da bi se mogao odrediti dinamički faktor kojim se množi težina ovješenog tereta. Pogonska i podizna grupa odabiru se na temelju zadanih pogonskih uvjeta rada granika, vrsti zahvatnog sredstva, te načinu podizanja i spuštanja tereta. Za grupu *Radioničkih granika* namijenjenih za rad s kukom kao zahvatnim sredstvom može se dodijeliti podizna grupa HC3, te poluteški pogonski uvjeti. Za *Radioničke granike* i poluteške pogonske uvjete dodjeljuje se pogonska grupa kako slijedi:

Pogonska grupa prema HRN EN 13001-1: S₄

Pogonska grupa prema DIN 15018: B4

Pogonska grupa prema ISO: M5

Pogonska grupa prema FEM: 2_m

5.1 Izračun dinamičkog faktora ϕ_2

Utjecaj dinamičkog opterećenja prilikom podizanja tereta obuhvaćen je dinamičkim faktorom ϕ_2 . Utjecaj dinamičkih opterećenja pri dizanje tereta ovisi o načinu upuštanja u rad motora za dizanje, kao i o općim uvjetima rada i o vrsti granika, a uzima se u obzir tako da se nazivni teret pomnoži s dinamičkim faktorom. Dinamički faktor ϕ_2 prema EN 13001-2 za podizne grupe (HC_i; *i* = 1,...,4) iznosi:

$$\phi_{2} = 1 + 0,05 \cdot i_{\rm HC} + 0,17 \cdot i_{\rm HC} \cdot v_{\rm d}$$

$$\phi_{2} = 1 + 0,05 \cdot 3 + 0,17 \cdot 3 \cdot 0,0667$$

$$\phi_{2} = 1,184$$
(5.1)

Gdje je:

 $i_{\rm HC} = 3$ – prethodno odabrana podizna grupa

 $v_{\rm d} = 0,0667 \text{ m/s} - \text{brzina dizanja tereta}$

Masi tereta potrebno je dodati i masu pomičnog bloka, te masu nosive grede. Pretpostavljena vrijednost mase pomičnog bloka iznosi $m_{pb} = 1000 \text{ kg} = 1 \text{ t}$, dok je pretpostavljena masa nosive grede jednaka $m_{ng} = 2000 \text{ kg} = 2 \text{ t}$.

Maksimalno opterećenje tada iznosi:

$$Q = \left(\frac{m_{\rm t}}{2} + m_{\rm ng} + m_{\rm pb}\right) \cdot g \cdot \phi_2 = \left(\frac{70}{2} + 2 + 1\right) \cdot 9,81 \cdot 1,184 = 441,37 \text{ kN}$$
(5.2)

6. ELEMENTI ZA PRIHVAT I DIZANJE TERETA

6.1 Dimenzioniranje i izbor kuke pomičnog bloka

Izraz za izračunavanje potrebnog broja kuke glasi:

$$HN_{\text{pot}} \cong \frac{\left(\frac{m_{\text{t}}}{2} + m_{\text{ng}}\right) \cdot g \cdot \phi_2}{R_{\text{e}}} \cdot \nu_{\text{n}}$$
(6.1)

Za materijal kuke odabran je sitnozrnati čelik oznake StE355, razreda čvrstoće P, granice tečenja $R_e = 31,5$ kN/cm². Tablica 4. prikazuje ovisnost potrebnog faktora sigurnosti o pogonskim grupama. Za razmatrani slučaj potrebni faktor sigurnosti za proračun kuke iznosi $v_n = 2$.

Tablica 4. Faktor sigurnosti za proračun kuke u ovisnosti o pogonskoj grupi [11]

Faktor sigurnosti, v _n	1,25	1,5	2	2,5	3,15	4
Za nove pogonske grupe (DIN)	$1B_m$	1A _m	2 _m	3 _m	4 _m	$5_{\rm m}$
Za stare pogonske grupe (DIN, HRN)	0 (ručni pogon)	1 (laka)	2 (srednja)	3 (teška)	4 (vrlo teška)	-

Prema tome, potrebni broj kuke iznosi:

$$HN_{\text{pot}} = \frac{\left(\frac{70}{2} + 2\right) \cdot 9,81 \cdot 1,184}{31,5} \cdot 2 = 27,29$$
(6.2)

Broj odabrane kuke je HN = 32. Na slici 10. prikazane su oznake i mjere slobodno kovane jednokrake kuke, a u tablici 5. prikazane su sve potrebne dimenzije.

Slika 10. Oznake mjera slobodno kovane jednokrake kuke [11]

Fakultet strojarstva i brodogradnje

Broj kuke	<i>a</i> ₁	<i>a</i> ₂	a ₃	<i>b</i> ₁	<i>b</i> ₂	d_1	Navoj kuke	<i>e</i> ₁	<i>e</i> ₂	<i>e</i> ₃	h_1	<i>h</i> ₂	l_1	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> ₃	<i>r</i> ₄	<i>r</i> ₅	r ₆	<i>r</i> ₇	Masa ≈ kg
32	200	160	225	180	150	132	Rd 110x12	465	510	400	224	190	810	22	36	115	300	425	292	250	220

Tablica 5. Mjere slobodno kovane jednokrake kuke [11]

6.1.1 Provjera čvrstoće kuke

Kontrola naprezanja u vratu kuke

1) Provjera najmanjeg promjera vrata kuke

$$\sigma_{\rm vr} = \frac{4 \cdot Q}{\pi \cdot d_4^2} = \frac{4 \cdot 441,37}{\pi \cdot 9,5^2} = 6,23 \,\frac{\rm kN}{\rm cm^2} < \sigma_{\rm dop} = \frac{R_e}{2,2 \cdot V_{\rm n}} = \frac{31,5}{2,2 \cdot 2} = 7,16 \,\frac{\rm kN}{\rm cm^2} \tag{6.3}$$

2) Provjera smičnog naprezanja u donjem navoju kuke

$$\tau_{\rm n} = \frac{Q}{\pi \cdot d_5 \cdot h_3} = \frac{441,37}{\pi \cdot 9,68 \cdot 1,2} = 12,1 \frac{\rm kN}{\rm cm^2} < \tau_{\rm dop} = \frac{R_e}{1,25 \cdot \nu_{\rm n}} = \frac{31,5}{1,25 \cdot 2} = 12,6 \frac{\rm kN}{\rm cm^2}$$
(6.4)

Naprezanja u vratu kuke su manja od dopuštenih, stoga odabrana kuka zadovoljava.

Kontrola površinskog pritiska u navoju kuke

Površinski pritisak u navoju kuke izračunava se prema sljedećem izrazu [12]:

$$p = \frac{4 \cdot Q \cdot t}{\pi \left(d_3^2 - d_5^2 \right) \cdot m} \tag{6.5}$$

Gdje je:

t = 12 mm - hod navoja

 $m = l_5 = 115 \text{ mm} - \text{visina matice}$

d₃ = 110 mm – vanjski (nazivni) promjer navoja

 $d_5 = 96,8 \text{ mm} - \text{promjer jezgre navoja}$

$$p = \frac{4 \cdot 441,37 \cdot 10^3 \cdot 12}{\pi \left(110^2 - 96,8^2\right) \cdot 115} = 21,48 \frac{N}{mm^2}$$
(6.6)

Tablica 6. prikazuje vrijednost dopuštenog površinskog pritiska u navoju kuke u ovisnosti o pogonskoj grupi. Za pogonsku grupu 2_m dopušteni površinski pritisak iznosi $p_{dop} = 24 \text{ N/mm}^2$.

Tablica 6. Dopušteni površinski pritisak u navoju kuke u ovisnosti o pogonskoj grupi [12]

Dopušteni površinski pritisak, N/mm ²	30	24	19	15
Za nove pogonske grupe (DIN)	1A _m	2 _m	3 _m	4 _m
Za stare pogonske grupe (DIN, HRN)	1	2	3	4

Kako je površinski pritisak u navoju kuke manji od dopuštenog površinskog pritiska odabrana kuka zadovoljava.

$$p = 21,48 \frac{N}{mm^2} < p_{dop} = 24 \frac{N}{mm^2}$$
 (6.7)

Kontrola naprezanja u glavnom presjeku A - B

Zbog kompleksnog poprečnog presjeka kuke u promatranom presjeku proračun naprezanja izvršen je pomoću metode zamjenskog trapeza. Dimenzije zamjenskog trapeza dane su u nastavku.

Slika 11. Izgled i dimenzije zamjenskog trapeza [11]

$$b_{\rm lt} = 0,932 \cdot b_{\rm l} = 0,932 \cdot 180 = 167,8 \,\,{\rm mm}$$
 (6.8)

$$b_{2t} = 0,43 \cdot b_1 = 0,43 \cdot 180 = 77,4 \text{ mm}$$
 (6.9)

$$h_{1t} = h_1 = 224 \text{ mm}$$
 (6.10)

Odgovarajući polumjeri zakrivljenosti iznose:

$$\rho_1 = \frac{a_1}{2} = \frac{200}{2} = 100 \text{ mm}$$
(6.11)

$$\rho_2 = \frac{a_1}{2} + h = \frac{200}{2} + 224 = 324 \text{ mm}$$
 (6.12)

Površina zamjenskog trapeza tada iznosi:

$$A_{t} = \frac{b_{1t} + b_{2t}}{2} \cdot h_{1t} = \frac{167, 8 + 77, 4}{2} \cdot 224 = 27462, 4 \text{ mm}^{2}$$
(6.13)

Položaj težišta S je na udaljenosti e_s :

$$e_{\rm s} = \frac{h_{\rm lt}}{3} \cdot \frac{b_{\rm lt} + 2 \cdot b_{\rm 2t}}{b_{\rm lt} + b_{\rm 2t}} = \frac{224}{3} \cdot \frac{167, 8 + 2 \cdot 77, 4}{167, 8 + 77, 4} = 98,24 \text{ mm}$$
(6.14)

Položaj neutralne linije je:

$$r_{\rm n} = \frac{h_{\rm lt}}{2} \cdot \frac{1 + \frac{b_{\rm 2t}}{b_{\rm lt}}}{\frac{\rho_2}{\rho_1} - \frac{b_{\rm 2t}}{b_{\rm lt}}} = \frac{224}{2} \cdot \frac{1 + \frac{77.4}{167.8}}{\frac{324}{100} - \frac{77.4}{167.8}} = 177.98 \text{ mm} (6.15)$$

$$\frac{\frac{\rho_2}{\rho_1} - \frac{b_{\rm 2t}}{b_{\rm lt}}}{\frac{\rho_2}{\rho_1} - 1} \cdot \ln \frac{\rho_2}{\rho_1} + \frac{b_{\rm 2t}}{b_{\rm lt}} - 1}{\frac{324}{100} - 1} \cdot \ln \frac{324}{100} + \frac{77.4}{167.8} - 1$$

$$r_{\rm s} = \frac{a_{\rm l}}{2} + e_{\rm s} = \frac{200}{2} + 98.24 = 198.24 \text{ mm} (6.16)$$

Maksimalna naprezanja σ_1 i σ_2 iznose:

$$\sigma_{1} = \frac{Q}{A_{t}} \cdot \frac{\frac{r_{s}}{\rho_{1}} - 1}{\frac{r_{s}}{r_{n}} - 1} = \frac{441,37 \cdot 10^{3}}{27462,4} \cdot \frac{\frac{198,24}{100} - 1}{\frac{198,24}{177,98} - 1} = 138,70 \frac{N}{mm^{2}} < \frac{R_{e}}{v_{n}} = \frac{315}{2} = 157,5 \frac{N}{mm^{2}} (6.17)$$

$$\sigma_{2} = \frac{Q}{A_{t}} \cdot \frac{\frac{r_{s}}{\rho_{2}} - 1}{\frac{r_{s}}{r_{n}} - 1} = \frac{441,37 \cdot 10^{3}}{27462,4} \cdot \frac{\frac{198,24}{324} - 1}{\frac{198,24}{177,98} - 1} = -54,80 \frac{N}{mm^{2}}$$

$$|\sigma_{2}| = 54,80 \frac{N}{mm^{2}} < \frac{R_{e}}{2,5 \cdot v_{n}} = \frac{315}{2,5 \cdot 2} = 63 \frac{N}{mm^{2}}$$

$$(6.18)$$

Naprezanja koja se javljaju u kuki manja su od dopuštenih stoga odabrana kuka zadovoljava kriterij čvrstoće.

6.1.2 Provjera čvrstoće nosača kuke

Nosač kuke proračunava se kao nosač na dva oslonca opterećen na savijanje.

Razmak nosivih limova nosača kuke iznosi:

$$l = b_1 + 2\left(\frac{b_4 - c}{2}\right) = 260 + 2\left(\frac{48 - 12}{2}\right) = 296 \text{ mm}$$
(6.19)

Najveći moment savijanja iznosi:

$$M_{\text{max}} = \frac{Q \cdot l}{4} = \frac{441,37 \cdot 10^3 \cdot 296}{4} = 32661380 \text{ Nmm}$$
(6.20)

Moment otpora presjeka nosača kuke jednak je:

$$W = \frac{1}{6} (b_1 - d_2) \cdot h_1^2 = \frac{1}{6} (260 - 113) \cdot 120^2 = 352800 \text{ mm}^3$$
(6.21)

Prema tome, najveće naprezanje nosača kuke iznosi:

$$\sigma = \frac{M_{\text{max}}}{W} = \frac{32661380}{352800} = 92,58 \frac{\text{N}}{\text{mm}^2}$$
(6.22)

Dopušteno naprezanje nosača kuke za materijal C35 prema [12] iznosi $\sigma_{dop} = 100 \text{ N/mm}^2$.

$$\sigma = 92,58 \frac{N}{mm^2} < \sigma_{dop} = 100 \frac{N}{mm^2}$$
 (6.23)

Kako je najveće naprezanje nosača kuke manje od dopuštenog naprezanja, odabrani nosač kuke zadovoljava proračun čvrstoće.

6.1.3 Provjera površinskog pritiska nosivih limova

Površinski pritisak između nosivih limova i nosača kuke izračunava se prema sljedećem izrazu:

$$p = \frac{Q}{2 \cdot d_5 \cdot s} \tag{6.24}$$

Gdje je: $d_5 = 100 \text{ mm}$ $s = b_4 - c = 48 - 12 = 36 \text{ mm}$

Slika 12. Spoj nosivog lima i nosača kuke

Prema tome, površinski pritisak iznosi:

$$p = \frac{441,37 \cdot 10^3}{2 \cdot 100 \cdot 36} = 61,30 \frac{\text{N}}{\text{mm}^2}$$
(6.25)

Dopušteni površinski pritisak prema [12] iznosi $p_{dop} = 100 \text{ N/mm}^2$. Dakle, vrijedi:

$$p = 61,30 \frac{N}{mm^2} < p_{dop} = 100 \frac{N}{mm^2}$$
 (6.26)
Kako je površinski pritisak između nosivih limova i nosača kuke manji od dopuštene vrijednosti, odabrane dimenzije zadovoljavaju proračun.

6.1.4 Izbor aksijalnog ležaja kuke

Aksijalno opterećenje ležaja F_a iznosi:

$$F_{\rm a} = Q = 441370 \text{ N}$$
 (6.27)

Aksijalni ležaj kuke provjerava se s obzirom na statičku nosivost. Statičko opterećenje ležaja računa se prema izrazu:

$$C_1 = F_a \cdot f_s \tag{6.28}$$

Za normalne zahtjeve faktor sigurnosti f_s kreće se od 1,0 do 1,5. Za ovaj slučaj odabire se vrijednost $f_s = 1,5$. Prema tome, statičko opterećenje ležaja iznosi:

$$C_1 = 441370 \cdot 1,5 = 662055 \text{ N} = 662,1 \text{ kN}$$
 (6.29)

Odabran je jednosmjerni aksijalni kuglični ležaj oznake 51232 M proizvođača *SKF*, dimenzija 160 x 225 x 51 statičke nosivosti $C_0 = 830$ kN. Kako je statička nosivost odabranog ležaja veća od statičkog opterećenja, odabrani ležaj zadovoljava.

6.2 Stupanj djelovanja koloturnika

Sklop koloturnika izveden je kao udvojeni koloturnik 8/2 prikazan na slici u nastavku.

Slika 13. Shematski izgled izvedbe udvojenog faktorskog koloturnika 8/2 [11]

Prijenosni odnos koloturnika iznosi:

$$i_{\rm k} = \frac{u_{\rm k}}{u_{\rm b}} = \frac{8}{2} = 4 \tag{6.30}$$

Fakultet strojarstva i brodogradnje

Gdje je:

 $u_{\rm k} = 8 - broj nosivih užeta$

 $u_{\rm b} = 2 - broj$ užeta koji se namataju na bubanj

Stupanj djelovanja koloturnika uz iskoristivost valjnih ležajeva užnica $\eta_0 = 0.98$ iznosi:

$$\eta_{\rm kol} = \frac{1}{i_{\rm k}} \cdot \frac{1 - \eta_0^{i_{\rm k}}}{1 - \eta_0} = \frac{1}{4} \cdot \frac{1 - 0.98^4}{1 - 0.98} = 0.97 \tag{6.31}$$

6.3 Dimenzioniranje i izbor užeta

Maksimalna sila u užetu koja se može javiti u pogonu iznosi:

$$F_{\rm u} = \frac{Q}{u_{\rm k} \cdot \eta_{\rm kol}} = \frac{441370}{8 \cdot 0.97} = 56878 \text{ N}$$
(6.32)

Potrebni promjer užeta računa se prema sljedećem izrazu:

$$d \ge \sqrt{\frac{4 \cdot S \cdot F_{\rm u}}{f \cdot \pi \cdot R_{\rm m}}} \tag{6.33}$$

Odabrano je normalno pleteno uže 6 x 7, faktora ispune f = 0,47. Prema [11] slijedi da vlačna čvrstoća užeta iznosi $R_{\rm m} = 1570$ N/mm². U nastavku je dana tablica 7. koja prikazuje minimalno potrebne faktore sigurnosti za pojedine pogonske grupe. Prema tome, potrebni faktor sigurnosti za pogonsku grupu $2_{\rm m}$ iznosi S = 4,5.

Tablica 7. Minimalno potrebni faktori sigurnosti za pogonsku užad [11]

Pogonska grupa	1D _m	1C _m	$1B_m$	1A _m	2 _m	3 _m	4 _m	5 _m
Faktor sigurnosti S ≥	2,8	3,15	3,55	4	4,5	5,6	7,1	9

Uvrštavanjem svih veličina dobiva se minimalno potrebni promjer užeta:

$$d \ge \sqrt{\frac{4 \cdot 4, 5 \cdot 56878}{0, 47 \cdot \pi \cdot 1570}}$$

$$d \ge 21,02 \text{ mm}$$
(6.34)

Na temelju minimalno potrebnog promjera užeta odabire se prvi veći normirani promjer užeta koji iznosi d = 22 mm.

6.4 Užnica pomičnog bloka

Kako bi se osigurala potrebna trajnost užeta potreban je određeni promjer užnice ili bubnja. Minimalni potrebni promjer užnice izračunava se prema sljedećem izrazu:

$$D \ge \left(\frac{D}{d}\right)_{\min} c_{\rm p} \cdot d \tag{6.35}$$

Minimalni potrebni odnos promjera užnice ili bubnja u odnosu na promjer užeta $(D/d)_{min}$ za razne pogonske grupe prikazuje tablica 8.

Pogonska	$(D/d)_{\min}$ za							
grupa	bubanj		u	žnica	izravnavajuća užnica			
1D _m	11,2	$(12,5)^{1}$	12,5	$(14)^{1)}$	11,2	$(12,5)^{1)}$		
$1C_{m}$	12,5	(14)	14	(16)	12,5	(14)		
$1B_{m}$	14	(16)	16 ²⁾	(18)	12,5	(14)		
1A _m	16	(18)	18	(20)	14	(16)		
2 _m	18	(20)	20	(22,4)	14	(16)		
3 _m	20	(22,4)	22,4	(25)	16	(18)		
4 _m	22,4	(25)	25	(28)	16	(18)		
5 _m	25	(28)	28	(31,5)	18	(20)		

Tablica 8. Minimalni potrebni odnosi promjera [11]

¹⁾ Vrijednosti u zagradama su za višeslojnu užad (užad s 2 ili 3 sloja pramena). Ukoliko se izborom konstrukcije višeslojnog užeta postiže dovoljna trajnost, mogu se koristiti koeficijenti za jednoslojnu užad. ²⁾ Užnice u grabilicama, bez obzira na stvarnu pog. grupu, mogu se dimenzionirati prema $(D/d)_{min}$ za grupu $1B_m$.

Minimalni potrebni odnos promjera užnice u odnosu na promjer užeta za pogonsku grupu 2_m iznosi $(D/d)_{min} = 20$. Na potrebni minimalni promjer utječe i faktor ovisan o broju pregiba užeta c_p . Broj pregiba užeta za udvojeni faktorski koloturnik 8/2, kao što prikazuje slika 13, iznosi $b_p = 7$. Prema tablici danoj u nastavku koeficijent c_p za 7 pregiba užeta iznosi $c_p = 1,12$.

Tablica 9. Koeficijent broja pregiba $c_{\rm p}$ [11]

Broj pregiba b _p	≤ 5	6 do 9	≥10
Koeficijent c _p	1	1,12	1,25

Prema tome, minimalni potrebni promjer užnice iznosi:

$$D_{\text{užnice}} \ge 20 \cdot 1, 12 \cdot 22$$

$$D_{\text{užnice}} \ge 492, 8 \text{ mm}$$
(6.36)

Odabrani nazivni promjer užnice prema [11] iznosi $D_{užnice} = 500$ mm.

6.4.1 Proračun osovine užnice

Na slici u nastavku prikazana je proračunska shema osovine s 4 užnice te pripadni dijagrami opterećenja.

Slika 14. Dijagrami opterećenja osovine užnice

Dimenzije sa skice potrebne za daljnji proračun iznose:

$$e_3 = 140 \text{ mm}$$

 $a = 89 \text{ mm}$ (6.37)

Prema tome, najveći moment savijanja iznosi:

$$M_{\text{max}} = \frac{Q}{4} \cdot e_3 + \frac{Q}{2} \cdot a = \frac{441370}{4} \cdot 140 + \frac{441370}{2} \cdot 89 = 35088915 \text{ Nmm}$$
(6.38)

Moment otpora osovine užnice iznosi:

$$W_{\rm os} = \frac{d_5^3 \cdot \pi}{32} = \frac{170^3 \cdot \pi}{32} = 482333 \text{ mm}^3$$
 (6.39)

Najveće naprezanje osovine užnice jednako je:

$$\sigma = \frac{M_{\text{max}}}{W_{\text{os}}} = \frac{35088915}{482333} = 72,75 \frac{\text{N}}{\text{mm}^2}$$
(6.40)

Dopušteno naprezanje za materijal St 50-2 prema [12] iznosi $\sigma_{dop} = 90 \text{ N/mm}^2$. Dakle, vrijedi:

$$\sigma = 72,75 \ \frac{N}{mm^2} < \sigma_{dop} = 90 \ \frac{N}{mm^2}$$
 (6.41)

Kako je najveće naprezanje koje se javlja u osovini užnice manje od dopuštenog naprezanja, osovina užnice zadovoljava proračun.

6.4.2 Odabir valjnih ležajeva užnice

Odabran je jednoredni radijalni kuglični ležaj oznake 6034 proizvođača *SKF*, dimenzija 170 x 260 x 42 dinamičke nosivosti C = 168 kN.

Ekvivalentno dinamičko radijalno opterećenje ležaja P_r iznosi:

$$P_{\rm r} = \frac{\frac{Q}{4}}{2} = \frac{Q}{8} = \frac{441370}{8} = 55171 \,\,{\rm N} \tag{6.42}$$

Dinamičko opterećenje ležaja C_1 izračunava se prema sljedećem izrazu:

$$C_{1} = P_{\rm r} \left(\frac{60 \cdot n_{\rm m} \cdot L_{10h\,\rm min}}{10^{6}} \right)^{\frac{1}{s}}$$
(6.43)

Gdje je:

$$n_{\rm m} = \frac{v_{\rm d} \cdot i_{\rm k}}{D \cdot \pi} = \frac{4 \cdot 4}{0.5 \cdot \pi} = 10,2 \text{ min}^{-1} - \text{brzina vrtnje u min}^{-1}$$

 $\varepsilon = 3 - \text{eksponent vijeka trajanja za kuglične ležajeve}$

 $L_{10h \text{ min}} = 10\ 000\ h - \text{zahtijevani nazivni vijek trajanja u satima}$

Prema tome, dinamičko opterećenje ležaja iznosi:

$$C_1 = 55171 \left(\frac{60 \cdot 10, 2 \cdot 10000}{10^6}\right)^{\frac{1}{3}} = 100916 \,\mathrm{N} = 100, 92 \,\mathrm{kN}$$
(6.44)

Kako je dinamička nosivost odabranog ležaja veća od dinamičkog opterećenje ležaja, odnosno $C = 168 \text{ kN} > C_1 = 100,92 \text{ kN}$, odabrani ležaj zadovoljava.

6.5 Izravnavajuća užnica

Minimalni potrebni promjer izravnavajuće užnice izračunava se prema izrazu (6.35).

Minimalni potrebni odnos promjera izravnavajuće užnice u odnosu na promjer užeta za pogonsku grupu 2_m prema tablici 8. iznosi $(D/d)_{min} = 14$, dok koeficijent broja pregiba c_p ostaje nepromijenjen te iznosi $c_p = 1,12$. Prema tome, minimalni potrebni promjer užnice za izravnavanje iznosi:

$$D_{\text{iz.užnice}} \ge 14 \cdot 1, 12 \cdot 22$$

$$D_{\text{iz.užnice}} \ge 345 \text{ mm}$$
(6.45)

Odabrani nazivni promjer izravnavajuće užnice prema [11] iznosi $D_{iz. užnice} = 355 \text{ mm.}$

6.5.1 Proračun osovine izravnavajuće užnice

Na slici 15. prikazana je proračunska shema osovine izravnavajuće užnice te pripadni dijagrami opterećenja.

Slika 15. Dijagrami opterećenja osovine izravnavajuće užnice

Najveći moment savijanja tada iznosi:

$$M_{\rm max} = \frac{Q}{8} \cdot 50 = \frac{441370}{8} \cdot 50 = 2758563 \text{ Nmm}$$
(6.46)

Moment otpora osovine izravnavajuće užnice iznosi:

$$W_{\rm os} = \frac{d_5^3 \cdot \pi}{32} = \frac{70^3 \cdot \pi}{32} = 33674 \text{ mm}^3$$
 (6.47)

Najveće naprezanje osovine izravnavajuće užnice tada je jednako:

$$\sigma = \frac{M_{\text{max}}}{W_{\text{os}}} = \frac{2758563}{33674} = 81,92 \frac{\text{N}}{\text{mm}^2}$$
(6.48)

Dopušteno naprezanje za materijal St 50-2 prema [12] iznosi $\sigma_{dop} = 90 \text{ N/mm}^2$. Dakle, vrijedi:

$$\sigma = 81,92 \frac{N}{mm^2} < \sigma_{dop} = 90 \frac{N}{mm^2}$$
 (6.49)

Kako je najveće naprezanje koje se javlja u osovini izravnavajuće užnice manje od dopuštenog naprezanja, osovina zadovoljava proračun.

6.5.2 Odabir valjnih ležajeva izravnavajuće užnice

Odabire se jednoredni radijalni kuglični ležaj oznake 6316 proizvođača *SKF*, dimenzija 80 x 170 x 39 dinamičke nosivosti C = 130 kN.

Ekvivalentno dinamičko radijalno opterećenje ležaja P_r kao i u prethodnom slučaju iznosi:

$$P_{\rm r} = \frac{\frac{Q}{4}}{2} = \frac{Q}{8} = \frac{441370}{8} = 55171 \text{ N}$$
(6.50)

Dinamičko opterećenje ležaja C_1 izračunava se prema poznatom izrazu:

$$C_{1} = P_{\rm r} \left(\frac{60 \cdot n_{\rm m} \cdot L_{10h\,\rm min}}{10^{6}} \right)^{\frac{1}{\varepsilon}}$$
(6.51)

Gdje je:

$$n_{\rm m} = \frac{v_{\rm d} \cdot i_{\rm k}}{D \cdot \pi} = \frac{4 \cdot 4}{0,355 \cdot \pi} = 14,4 \text{ min}^{-1} - \text{brzina vrtnje u min}^{-1}$$

 $\varepsilon = 3 - \text{eksponent vijeka trajanja za kuglične ležajeve}$ $L_{10h \min} = 10\ 000\ h - \text{zahtijevani nazivni vijek trajanja u satima}$ Prema tome, dinamičko opterećenje ležaja iznosi:

$$C_1 = 55171 \left(\frac{60 \cdot 14, 4 \cdot 10000}{10^6}\right)^{\frac{1}{3}} = 113209 \,\mathrm{N} = 113, 21 \,\mathrm{kN}$$
(6.52)

Kako je dinamička nosivost odabranog ležaja veća od dinamičkog opterećenje ležaja, odnosno $C = 130 \text{ kN} > C_1 = 113,21 \text{ kN}$, odabrani ležaj zadovoljava.

6.5.3 Provjera površinskog pritiska nosivih limova

Površinski pritisak između nosivih limova i osovine izravnavajuće užnice izračunava se prema sljedećem izrazu:

$$p = \frac{\frac{Q}{4}}{2 \cdot d_5 \cdot s} \tag{6.53}$$

Gdje je:

 $d_5 = 70 \text{ mm} - \text{promjer osovine izravnavajuće užnice}$

s = 15 mm - debljina nosivih limova

Prema tome, površinski pritisak iznosi:

$$p = \frac{\frac{441,37 \cdot 10^3}{4}}{2 \cdot 70 \cdot 15} = 52,54 \frac{\text{N}}{\text{mm}^2}$$
(6.54)

Dopušteni površinski pritisak prema [12] iznosi $p_{dop} = 100 \text{ N/mm}^2$. Dakle, vrijedi:

$$p = 52,54 \frac{\text{N}}{\text{mm}^2} < p_{\text{dop}} = 100 \frac{\text{N}}{\text{mm}^2}$$
 (6.55)

Kako je površinski pritisak između nosivih limova i osovine izravnavajuće užnice manji od dopuštene vrijednosti, odabrane dimenzije zadovoljavaju proračun.

6.6 Užnica nepomičnog bloka

Nazivni promjer užnice nepomičnog bloka isti je kao i nazivni promjer prethodno izračunate užnice pomičnog bloka. Dakle, $D_{užnice} = 500$ mm.

Dimenzije osovine užnice nepomičnog bloka iste su kao dimenzije osovine izravnavajuće užnice.

Za ležajeve užnica nepomičnog bloka odabrani su identični ležajevi kao kod užnice za izravnavanje. Dakle, odabiru se jednoredni radijalni kuglični ležajevi 6316, proizvođača *SKF*, dimenzija 80 x 170 x 39 dinamičke nosivosti C = 130 kN.

6.7 Proračun nosive grede i elemenata za prihvat tereta

Konstrukcijska izvedba nosive grede prikazana je na slici u nastavku. Nosivi limovi dvaju kuka mogu se pomicati tako da međusobna udaljenost kuka može varirati od 3 do 5 metara ovisno o potrebi. Nosiva greda se vješa na kuku pomičnog bloka preko pripadnog prihvatnog elementa.

Slika 16. Konstrukcijska izvedba nosive grede

6.7.1 Dimenzioniranje i izbor kuke nosive grede

Izraz za izračunavanje potrebnog broja kuke glasi:

$$HN_{\rm pot} \cong \frac{\frac{m_{\rm t}}{4} \cdot g \cdot \phi_2}{R_{\rm e}} \cdot v_{\rm n} \tag{6.56}$$

Za materijal kuke odabran je sitnozrnati čelik oznake StE355, razreda čvrstoće P, granice tečenja $R_e = 31,5$ kN/cm². Ovisnost potrebnog faktora sigurnosti o pogonskim grupama prikazana je u tablici 4.. Za razmatrani slučaj potrebni faktor sigurnosti za proračun kuke iznosi $v_n = 2$.

Prema tome, potrebni broj kuke iznosi:

$$HN_{\rm pot} = \frac{\frac{70}{4} \cdot 9,81 \cdot 1,184}{31,5} \cdot 2 = 12,91 \tag{6.57}$$

Odabire se kuka broj HN = 16. Na slici 10. prikazane su oznake i mjere slobodno kovane jednokrake kuke, a u tablici 10. u nastavku prikazane su sve potrebne dimenzije kuke.

Tablica 10. Mjere slobodno kovane jednokrake kuke [11]

Broj kuke	<i>a</i> 1	<i>a</i> ₂	a 3	<i>b</i> ₁	<i>b</i> ₂	d_1	Navoj kuke	<i>e</i> ₁	<i>e</i> ₂	<i>e</i> ₃	h_1	h_2	l_1	r_1	r_2	r ₃	r_4	<i>r</i> ₅	r ₆	<i>r</i> ₇	$\begin{array}{c} Masa\\\approx\\ kg \end{array}$
16	140	112	160	125	106	95	Rd 80x10	325	357	280	160	132	595	16	25	80	210	300	204	180	77

Kuka pomičnog bloka već je prethodno detaljno proračunata, te se pokazalo da zadovoljava proračun. S obzirom da je broj dvaju odabranih kuka nosive grede u pola manji od broja kuke pomičnog bloka, a dvije kuke nosive grede su u pola manje opterećene od kuke pomičnog bloka, može se zaključiti da će i dvije kuke nosive grede zadovoljiti proračun te ih nije potrebno detaljno analizirati.

U nastavku će se stoga provest proračun nosača kuke na savijanje, kontrolirat će se dodirni pritisak između nosača kuke i nosivog lima, te će se odabrati odgovarajući aksijalni ležaj kuke.

6.7.2 Provjera čvrstoće nosača kuke

Nosač kuke proračunava se kao nosač na dva oslonca opterećen na savijanje silom iznosa:

$$Q_{t} = \frac{m_{t}}{4} \cdot g \cdot \phi_{2} = \frac{70}{4} \cdot 9,81 \cdot 1,184 = 203,26 \text{ kN}$$
(6.58)

Razmak nosivih limova nosača kuke iznosi:

$$l = b_1 + 2\left(\frac{b_4 - c}{2}\right) = 200 + 2\left(\frac{36 - 12}{2}\right) = 224 \text{ mm}$$
(6.59)

Najveći moment savijanja iznosi:

$$M_{\rm max} = \frac{Q_{\rm t} \cdot l}{4} = \frac{203, 26 \cdot 10^3 \cdot 224}{4} = 11382560 \text{ Nmm}$$
(6.60)

Moment otpora presjeka nosača kuke jednak je:

$$W = \frac{1}{6} (b_1 - d_2) \cdot h_1^2 = \frac{1}{6} (200 - 82) \cdot 88^2 = 152299 \text{ mm}^3$$
(6.61)

Prema tome, najveće naprezanje nosača kuke iznosi:

$$\sigma = \frac{M_{\text{max}}}{W} = \frac{11382560}{152299} = 74,74 \frac{\text{N}}{\text{mm}^2}$$
(6.62)

Dopušteno naprezanje nosača kuke za materijal C35 prema [12] iznosi $\sigma_{dop} = 100 \text{ N/mm}^2$.

$$\sigma = 74,74 \frac{N}{mm^2} < \sigma_{dop} = 100 \frac{N}{mm^2}$$
 (6.63)

Kako je najveće naprezanje nosača kuke manje od dopuštenog naprezanja, odabrani nosač kuke zadovoljava proračun čvrstoće.

6.7.3 Provjera površinskog pritiska nosivih limova

Površinski pritisak između nosivih limova i nosača kuke izračunava se prema sljedećem izrazu:

$$p = \frac{Q_{\rm t}}{2 \cdot d_5 \cdot s} \tag{6.64}$$

Gdje je:

 $d_5 = 70 \text{ mm}$

$$s = b_4 - c = 36 - 12 = 24 \text{ mm}$$

Prema tome, površinski pritisak iznosi:

$$p = \frac{203, 26 \cdot 10^3}{2 \cdot 70 \cdot 24} = 60, 49 \frac{\text{N}}{\text{mm}^2}$$
(6.65)

Dopušteni površinski pritisak prema [12] iznosi $p_{dop} = 100 \text{ N/mm}^2$. Dakle, vrijedi:

$$p = 60,49 \frac{\text{N}}{\text{mm}^2} < p_{\text{dop}} = 100 \frac{\text{N}}{\text{mm}^2}$$
 (6.66)

Kako je površinski pritisak između nosača kuke i nosivih limova manji od dopuštene vrijednosti, odabrane dimenzije zadovoljavaju proračun.

6.7.4 Izbor aksijalnog ležaja kuke

Aksijalno opterećenje ležaja F_a iznosi:

$$F_{\rm a} = Q_{\rm t} = 203260 \ \rm N \tag{6.67}$$

Aksijalni ležaj kuke provjerava se s obzirom na statičku nosivost. Statičko opterećenje ležaja računa se prema izrazu:

$$C_1 = F_a \cdot f_s \tag{6.68}$$

Za normalne zahtjeve faktor sigurnosti f_s kreće se od 1,0 do 1,5. Za ovaj slučaj odabire se vrijednost $f_s = 1,5$. Prema tome, statičko opterećenje ležaja iznosi:

$$C_1 = 203260 \cdot 1,5 = 304890 \text{ N} = 304,9 \text{ kN}$$
 (6.69)

Odabran je jednosmjerni aksijalni kuglični ležaj oznake 51222 proizvođača *SKF*, dimenzija 110 x 160 x 38 statičke nosivosti $C_0 = 365$ kN. Kako je statička nosivost odabranog ležaja veća od statičkog opterećenja, odabrani ležaj zadovoljava.

6.7.5 Proračun nosivog lima

Na slici 17. prikazan je nosivi lim nosive grede, te način na koji je nosivi lim opterećen. Nosivi lim debljine t = 24 mm vlačno je opterećen silom $Q_t/2$. S obzirom da se naslanja na nosivu gredu, osim što će se proračunati vlačno naprezanje, kontrolirat će se i naprezanje na smik, te dodirni pritisak između nosivih limova i nosive grede. Materijal nosivog lima je konstrukcijski čelik oznake RSt 37-2 čija trajna dinamička čvrstoća za istosmjerno opterećenje prema [13] iznosi $\sigma_{\text{DI}} = 220 \text{ N/mm}^2$.

Prema tome, dopušteno vlačno naprezanje nosivog lima iznosi:

$$\sigma_{\rm dop} = \frac{\sigma_{\rm DI}}{S} = \frac{220}{2} = 110 \,\frac{\rm N}{\rm mm^2} \tag{6.70}$$

Dopušteno smično naprezanje može se približno izračunati iz sljedećeg izraza:

$$\tau_{\rm dop} = 0, 6 \cdot \sigma_{\rm dop} = 0, 6 \cdot 110 = 66 \frac{\rm N}{\rm mm^2}$$
 (6.71)

Dopušteni površinski pritisak nosivog lima prema [12] iznosi $p_{dop} = 100 \text{ N/mm}^2$.

Slika 17. Izgled i opterećenje nosivog lima

Najveće vlačno naprezanje nosivog lima iznosi:

$$\sigma_{\rm vl} = \frac{\frac{Q_{\rm t}}{2}}{A} = \frac{\frac{203260}{2}}{2 \cdot 100 \cdot 24} = 21,17 \frac{\rm N}{\rm mm^2} < \sigma_{\rm dop} = 110 \frac{\rm N}{\rm mm^2}$$
(6.72)

Smično naprezanje računa se iz izraza:

$$\tau = \frac{\frac{Q_{\rm t}}{2}}{A} = \frac{\frac{203260}{2}}{2 \cdot 100 \cdot 24} = 21,17 \frac{\rm N}{\rm mm^2} < \tau_{\rm dop} = 66 \frac{\rm N}{\rm mm^2}$$
(6.73)

Površinski pritisak između nosivih limova i nosive grede iznosi:

$$p = \frac{\frac{Q_{\rm t}}{2}}{A} = \frac{\frac{203260}{2}}{300 \cdot 24} = 14,12 \frac{\rm N}{\rm mm^2} < p_{\rm dop} = 100 \frac{\rm N}{\rm mm^2}$$
(6.74)

Kako su sva naprezanja manja od dopuštenih vrijednosti, nosivi lim zadovoljava proračun.

6.7.6 Proračun čvrstoće nosive grede

Nosiva greda ima mogućnost regulacije širine hvata od 3 do 5 metara ovisno o širini vozila koje se podiže, stoga će se kod proračuna čvrstoće i krutosti analizirati najnepovoljniji slučaj savojnog opterećenja grede kada se dvije kuke za prihvat vozila nalaze na međusobnoj udaljenosti od 5 m. Takav slučaj savojnog opterećenja nosive grede prikazan je na slici 18.

Slika 18. Dijagrami opterećenja nosive grede

Najveći moment savijanja nosive grede iznosi:

$$M_{\text{max}} = Q_{\text{t}} \cdot \frac{l}{2} = 203260 \cdot \frac{5000}{2} = 508150000 \text{ Nmm}$$
 (6.75)

Materijal nosive grede je konstrukcijski čelik oznake RSt 37-2 čija trajna dinamička čvrstoća za istosmjerno savojno (fleksijsko) opterećenje prema [13] iznosi $\sigma_{fDI} = 260 \text{ N/mm}^2$. Prema tome, dopušteno naprezanje nosive grede iznosi:

Fakultet strojarstva i brodogradnje

Diplomski rad

$$\sigma_{\rm dop} = \frac{\sigma_{\rm fDI}}{S} = \frac{260}{2} = 130 \ \frac{\rm N}{\rm mm^2} \tag{6.76}$$

Za izradu nosive grede koristit će se toplo valjani čelični profil HE550B čije su dimenzije i svojstva prikazane u tablici 11.

HE550B							
	Geometrija	Karakteristike presjeka					
h = 550 mm	b	Os y	Os z				
b = 300 mm	<u>y</u> s 1	$I_y = 1,37E+9 \text{ mm}^4$	$I_z = 1,31E + 8 \text{ mm}^4$				
$t_{\rm f} = 29 \ \rm mm$		$W_{y,el} = 4,97E+6 \text{ mm}^3$	$W_{z,el} = 8,72E+5 \text{ mm}^3$				
$t_w = 15 mm$		$W_{y,p1} = 5,60E+6 \text{ mm}^3$	$W_{z,pl} = 1,33E+6 \text{ mm}^3$				
$\mathbf{r}_1 = 27 \ \mathbf{mm}$		$i_y = 232,0 \text{ mm}$	i _z = 71,70 mm				
$y_s = 150 \text{ mm}$	≤	$S_y = 2,80E+6 \text{ mm}^3$	$S_z = 6,65E+5 \text{ mm}^3$				
d = 438 mm	\$						
$A = 25410 \text{ mm}^2$							
$G = 199 \text{ kgm}^{-1}$	2						

Tablica 11. Dimenzije i karakteristike profila HE550B [14]

Profil se savija oko osi y, stoga pripadajući moment otpora iznosi $W_{y,\text{HE550B}} = 4,97 \cdot 10^6 \text{ mm}^3$. Najveće savojno naprezanje nosive grede tada je jednako:

$$\sigma_{\rm f} = \frac{M_{\rm max}}{W_{\rm y, \rm HE550B}} = \frac{508150000}{4,97 \cdot 10^6} = 102,24 \ \frac{\rm N}{\rm mm^2} < \sigma_{\rm dop} = 130 \ \frac{\rm N}{\rm mm^2}$$
(6.77)

Kako je najveće savojno naprezanje nosive grede manje od dopuštenog naprezanja, odabrani profil zadovoljava proračun čvrstoće.

6.7.7 Proračun krutosti nosive grede

Statički model i način opterećenja nosive grede prikazan je prethodno na slici 17. Nosiva greda promatrat će se kao greda na dva oslonca, opterećena koncentriranom silom F_k koja je po iznosu jednaka:

$$F_{\rm k} = 2 \cdot Q_{\rm f} = 2 \cdot 203260 = 406520 \text{ N} \tag{6.78}$$

Najveći progib nosive grede uslijed djelovanja sile F_k izračunava se prema sljedećem izrazu [15]:

$$w_{\rm B}^{\rm F_k} = \frac{F_{\rm k} \cdot l^3}{48EI_{\rm v}} = \frac{406520 \cdot 5000^3}{48 \cdot 210000 \cdot 1,37 \cdot 10^9} = 3,68 \text{ mm}$$
(6.79)

Progib nosive grede uslijed djelovanja njezine vlastite težine, zbog zanemarivo malog iznosa, može se zanemariti.

Fakultet strojarstva i brodogradnje

Dopušteni progib nosive grede iznosi:

$$w_{\rm dop} = \frac{l}{600} = \frac{5000}{600} = 8,33 \text{ mm}$$
 (6.80)

Kako je najveći progib razmatrane nosive grede manji od dopuštenog progiba, odnosno $w_B = 3,68 \text{ mm} < w_{dop} = 8,33 \text{ mm}$, odabrani profil zadovoljava kriterij krutosti.

6.7.8 Proračun zavara prihvatnog elementa nosive grede

Prihvatni element nosive grede i način na koji je prihvatni element opterećenje prikazan je na slici 19. Na mjestu spoja prihvatnog elementa za nosivu gredu nalazi se dvostrani kutni zavar debljine a = 5 mm. Zavar je opterećen na vlak silom $F_k = 406520$ N, a duljina prihvatnog elementa iznosi b = 900 mm. Osim spomenutog zavara, prihvatni element je s nosivom gredom povezan i preko četiri rebra, no radi jednostavnosti proračuna rebra neće biti uzeta u obzir.

Slika 19. Izvedba i opterećenje prihvatnog elementa nosive grede

Vlačno naprezanje u zavaru tada je jednako:

$$\sigma_{\rm vl} = \frac{F_{\rm k}}{2 \cdot a \cdot b} = \frac{406520}{2 \cdot 5 \cdot 900} = 45,17 \,\frac{\rm N}{\rm mm^2} \tag{6.81}$$

Zavar je opterećen istosmjerno dinamički, a odnos graničnih naprezanja približno iznosi $\kappa = 0,1$. Dopušteno naprezanje zavara za takav slučaj opterećenja prema [16] za osnovni materijal RSt 37-2, slučaj zareznog djelovanja K4 i pogonsku grupu B4 iznosi $\sigma_{D(0,1)dop} = 97 \text{ N/mm}^2$. Kako je najveće naprezanje u zavaru manje od dopuštenog naprezanja odabrane dimenzije zavara zadovoljavaju proračun.

6.7.9 Provjera površinskog pritiska prihvatnog elementa nosive grede

Površinski pritisak između prihvatnog elementa nosive grede i kuke pomičnog bloka izračunava se iz sljedećeg izraza:

$$p = \frac{F_{\rm k}}{b_2 \cdot t} = \frac{406520}{150 \cdot 35} = 77,43 \,\frac{\rm N}{\rm mm^2} \tag{6.82}$$

Gdje je:

 $b_2 = 150 \text{ mm} - \text{širina}$ odabrane kuke pomičnog bloka na mjestu dodira s prihvatnim elementom nosive grede

t = 35 mm - debljina prihvatnog elementa nosive grede

Dopušteni površinski pritisak prema [12] iznosi $p_{dop} = 100 \text{ N/mm}^2$. Dakle, vrijedi:

$$p = 77,43 \frac{N}{mm^2} < p_{dop} = 100 \frac{N}{mm^2}$$
 (6.83)

Kako je površinski pritisak između prihvatnog elementa nosive grede i kuke pomičnog bloka manji od dopuštene vrijednosti, odabrane dimenzije zadovoljavaju proračun.

7. MEHANIZAM ZA DIZANJE TERETA

7.1 Bubanj

7.1.1 Osnovne dimenzije bubnja

Bubanj služi za pogon užeta i kao spremnik potrebne dužine užeta. Namatanje užeta treba izvesti tako da se spriječi zapletanje užeta na bubnju. To se u uglavnom postiže namatanjem na ožljebljeni bubanj. Na bubanj se može namatati jedno uže (jednoužetni bubanj) ili dva užeta (dvoužetni bubanj). Žljebovi na bubnju čuvaju uže i osiguravaju jednakomjerno namatanje užeta.

Minimalni potrebni promjer bubnja izračunava se prema poznatom izrazu (6.35).

Minimalni potrebni odnos promjera bubnja u odnosu na promjer užeta za pogonsku grupu 2_m prema tablici 8. iznosi $(D/d)_{min} = 18$, dok koeficijent broja pregiba užeta, kao i za slučaj užnica, iznosi $c_p = 1,12$. Prema tome, minimalni potrebni promjer bubnja iznosi:

$$D_{\rm b} \ge 18 \cdot 1, 12 \cdot 22$$

 $D_{\rm b} \ge 443, 52 \text{ mm}$
(7.1)

Na temelju minimalno potrebnog promjera bubnja odabire se toplo valjana čelična bešavna cijev vanjskog promjera D = 660 mm debljine stjenke $\delta = 28$ mm proizvođača *Strojopromet* prema [17].

U nastavku su dane osnovne dimenzije ožljebljenog bubnja i profila žlijeba bubnja [11].

Slika 20. Dimenzije ožljebljenog bubnja i profila žlijeba [11]

Visina profila žlijeba prema preporuci [11] iznosi:

$$0,375d \le h \le 0,4d$$

$$0,375 \cdot 22 \le h \le 0,4 \cdot 22$$

$$8,25 \le h \le 8,8$$

(7.2)

Gdje je:

d = 22 mm - promjer užeta

Odabrana visina profila žlijeba iznosi h = 8,5 mm.

Radijus profila žlijeba r_1 iznosi:

$$r_1 = 0,53 \cdot d$$

 $r_1 = 0,53 \cdot 22$ (7.3)
 $r_1 = 11,66 \text{ mm}$

Odabrani radijus profila žlijeba iznosi $r_1 = 12$ mm.

U tablici 12. prikazane se preporučene vrijednosti radijusa profila žlijeba bubnja r_2 u ovisnosti o promjeru užeta. Za promjer užeta d = 22 mm radijus profila žlijeba iznosi $r_2 = 0,8$ mm.

Tablica 12. Preporučene vrijednosti radijusa žlijeba u ovisnosti o promjeru užeta [11]

<i>d</i> , mm	3 do 9	10 do 28	29 do 37	38 do 44	45 do 54	56,58	60
r_2 , mm	0,5	0,8	1,3	1,6	2	2,5	3

Potrebni korak užeta na bubnju iznosi:

$$t \cong 1,15 \cdot d$$

$$t \cong 1,15 \cdot 22 \tag{7.4}$$

$$t \cong 25,3 \text{ mm}$$

Odabrani korak užeta iznosi t = 25 mm.

Ostale mjere bubnja, prikazane na slici u nastavku, izračunavaju se kako slijedi:

Slika 21. Ostale mjere bubnja [11]

$$s_1 = t + (40...50) = 25 + (40...50) = 65...75 = 65 \text{ mm}$$
 (7.5)

$$s_2 \cong t = 25 \text{ mm} \tag{7.6}$$

$$s_3 = 4 \cdot t = 4 \cdot 25 = 100 \text{ mm}$$
 (7.7)

33

$$s_4 = (2, 5...3, 5) \cdot t = (2, 5...3, 5) \cdot 25 = 62, 5...87, 5 = 63 \text{ mm}$$
 (7.8)

$$s_5 = (2...3) \cdot t = (2...3) \cdot 25 = 50...75 = 50 \text{ mm}$$
 (7.9)

7.1.2 Ukupna i radna dužina bubnja

Na radni dio bubnja treba se namotati uže u dužini $i_k \cdot H$. Radi rasterećenja veze užeta s bubnjem trebaju se osigurati dodatna 2 do 3 namotaja te za samu vezu 1 do 2 namotaja. Radna dužina bubnja iznosi:

$$l_{\rm r} = \frac{i_{\rm k} \cdot H}{D \cdot \pi} \cdot t = \frac{4 \cdot 12000}{660 \cdot \pi} \cdot 25 = 578,8 \text{ mm} = 579 \text{ mm}$$
(7.10)

Gdje je:

 $i_k = 4 - prijenosni odnos koloturnika$ $H = 12\ 000\ mm - visina dizanja$

D = 660 mm - promjer bubnja

t = 25 mm - korak užeta na bubnja

Ukupna dužina bubnja iznosi:

$$l_{\rm b} = l_{\rm r} + s_1 + s_2 + s_3 + s_4 + s_5 = 579 + 65 + 25 + 100 + 63 + 50 = 882 \text{ mm}$$
(7.11)

7.1.3 Provjera napadnog kuta užeta

Napadni kut užeta predstavlja otklon užeta koji treba biti unutar dozvoljene granice od γ_{max} = 4° kako bi se produljio vijek trajanja užeta. Otklon užeta kontrolirat će se u dva krajnja položaja tereta, kada je teret u najvišoj i najnižoj točki.

Slika 22. Napadni kut užeta

Teret u najvišoj točki

Napadni kut užeta za ovaj slučaj izračunava se prema sljedećem izrazu:

$$\gamma = \operatorname{arc} tg\left(\frac{560 - 376}{h_{\min}}\right)$$

$$\gamma = \operatorname{arc} tg\left(\frac{560 - 376}{2650}\right)$$

$$\gamma = 3,97^{\circ} < \gamma_{\max} = 4^{\circ}$$
(7.12)

Proizlazi da je napadni kut manji od maksimalno dopuštene vrijednosti, odnosno da je otklon užeta za ovaj položaj tereta unutar dopuštenih granica.

Teret u najnižoj točki

Za slučaj kada se teret nalazi u najnižoj točki napadni kut užeta računa se na sljedeći način:

$$\gamma = \arccos tg\left(\frac{(560 - 376) + l_{\rm r}}{H + h_{\rm min}}\right)$$

$$\gamma = \arccos tg\left(\frac{(560 - 376) + 579}{12000 + 2650}\right)$$

$$\gamma = 2,98^{\circ} < \gamma_{\rm max} = 4^{\circ}$$
(7.13)

I u ovom slučaju otklon užeta je unutar dopuštenih granica pa se može zaključiti da proračun napadnog kuta užeta zadovoljava.

7.1.4 Proračun stjenke bubnja

Stjenka bubnja opterećena je na uvijanje, savijanje i prolom. Opterećenje uvijanjem može se zanemariti jer je torzijsko naprezanje najčešće jako malo. Opterećenje uslijed savijanja bubnja dolazi do izražaja kod dugačkih bubnjeva, dok prolom predstavlja opterećenje nastalo namatanjem opterećenog užeta na bubanj čime se stjenka bubnja steže, slično djelovanju vanjskog tlaka. Stjenka bubnja dimenzionira se prvenstveno prema naprezanjima uslijed namatanja užeta.

Promjer bubnja relevantan za daljnji proračun iznosi:

$$D_{\rm b} = D - 2 \cdot h = 660 - 2 \cdot 8,5 = 643 \text{ mm}$$
(7.14)

Nosiva debljina stjenke bubnja jednaka je:

$$s = \delta - h = 28 - 8,5 = 19,5 \text{ mm}$$
 (7.15)

Naprezanje uslijed namatanja užeta

Slika 23. Naprezanje elementa stjenke bubnja i lokalno savijanje ljuske bubnja [11]

1) Cirkularno (tlačno) naprezanje

$$\sigma_{\varphi} = -0.5 \frac{F}{t \cdot s} = -0.5 \frac{56878}{25 \cdot 19.5} = -58.34 \frac{N}{mm^2}$$
(7.16)

Dopušteno cirkularno naprezanje na materijal RSt 37-2 iznosi $|\sigma_{\varphi dop}| = 100 \text{ N/mm}^2$.

$$\left|\sigma_{\varphi}\right| = 58,34 \frac{N}{mm^{2}} < \left|\sigma_{\varphi dop}\right| = 100 \frac{N}{mm^{2}}$$
(7.17)

2) Normalno naprezanje (od lokalnog savijanja stjenke na mjestu namatanja)

$$\sigma_{\rm x} = 0.96 \cdot F \sqrt{\frac{1}{D_{\rm b} \cdot s^3}} = 0.96 \cdot 56878 \sqrt{\frac{1}{643 \cdot 19.5^3}} = 25.01 \frac{\rm N}{\rm mm^2}$$
(7.18)

Dopušteno normalno naprezanja na RSt 37-2 iznosi $\sigma_{xdop} = 50 \text{ N/mm}^2$.

$$\sigma_{\rm x} = 25,01 \, \frac{\rm N}{\rm mm^2} < \sigma_{\rm x\,dop} = 50 \, \frac{\rm N}{\rm mm^2}$$
(7.19)

Kako su cirkularna i normalna naprezanja manja od dopuštenih vrijednosti naprezanja, odabrana debljina stjenke bubnja zadovoljava.

Glavna naprezanja na mjestu namatanja užeta su:

$$\sigma_{1} = \sigma_{x} = 25,01 \frac{N}{mm^{2}}$$

$$\sigma_{2} = 0 \qquad (7.20)$$

$$\sigma_{3} = \sigma_{\varphi} = -58,34 \frac{N}{mm^{2}}$$

Ekvivalentno naprezanje tada iznosi:

$$\sigma_{\rm ekv} = \sigma_1 - \sigma_3 = 25,01 - (-58,34) = 83,35 \,\frac{\rm N}{\rm mm^2}$$
(7.21)

Dopušteno naprezanje iznosi:

$$\sigma_{\rm dop} = \frac{R_{\rm e}}{S} = \frac{235}{2,5} = 94 \,\frac{\rm N}{\rm mm^2} \tag{7.22}$$

Gdje je: Fakultet strojarstva i brodogradnje $R_{\rm e} = 235 \text{ N/mm}^2 - \text{granica tečenja za materijal RSt 37-2 prema [18]}$ S = 2,5 - potrebni faktor sigurnosti prema [11]

$$\sigma_{\rm ekv} = 83,35 \, \frac{\rm N}{\rm mm^2} < \sigma_{\rm dop} = 94 \, \frac{\rm N}{\rm mm^2}$$
 (7.23)

Kako je ekvivalentno naprezanje manje od dopuštenog naprezanja cijev bubnja zadovoljava.

Naprezanje uslijed savijanja bubnja

Najnepovoljniji slučaj naprezanja bubnja uslijed savojnog opterećenja ostvaruje se kada se teret nalazi na polovici maksimalne visine dizanja, odnosno kada se kraj užeta nalazi na polovici između dva oslonca kao što je prikazano na slici 24. Radi jednostavnosti proračuna bubanj će se razmatrati kao greda konstantnog kružnog poprečnog presjeka oslonjena na dva oslonca. Također, težina bubnja može se zanemariti budući da je opterećenje užetom mnogostruko veće.

Slika 24. Proračun stjenke bubnja uslijed savijanja

Moment savijanja tada iznosi:

$$M_{\text{max}} = \frac{F_{\text{u}}}{2} \cdot \frac{997}{2} = \frac{56878}{2} \cdot \frac{997}{2} = 14176842 \text{ Nmm}$$
 (7.24)

Moment otpora presjeka bubnja računa se prema sljedećem izrazu:

$$W_{\rm b} = \frac{I_{\rm b}}{\frac{D}{2}} = \frac{\frac{D_{\rm b}^4 \cdot \pi}{64} - \frac{d_{\rm u}^4 \cdot \pi}{64}}{\frac{D}{2}} = \frac{\pi}{32 \cdot D} \left(D_{\rm b}^4 - d_{\rm u}^4 \right)$$
(7.25)

Unutarnji promjer bubnja iznosi:

$$d_{\rm u} = D - 2 \cdot \delta = 660 - 2 \cdot 28 = 604 \text{ mm}$$
(7.26)

37

Fakultet strojarstva i brodogradnje

Prema tome, moment otpora presjeka bubnja iznosi:

$$W_{\rm b} = \frac{\pi}{32 \cdot 660} \left(643^4 - 604^4 \right) = 5630079 \,\,\mathrm{mm^3} \tag{7.27}$$

Konačno, naprezanje uslijed savijanja bubnja iznosi:

$$\sigma_{\rm f} = \frac{M_{\rm max}}{W_{\rm b}} = \frac{14176842}{5630079} = 2,52 \,\frac{\rm N}{\rm mm^2} \tag{7.28}$$

Zbog relativno malog iznosa naprezanje uzrokovano savijanjem bubnja može se zanemariti.

7.1.5 Osnovne mjere i dimenzije bubnja

Prema [11] za najveći moment na bubnju od $M_{\text{max}} = 37,54$ kNm odnosno najveću obodnu silu na bubnju od $F_{\text{b}} = F_{\text{u}} = 56,88$ kN slijede osnovne mjere i dimenzije bubnja prikazane na slici u nastavku.

7.1.6 Provjera čeone ploče bubnja

Potrebna debljina čeone ploče bubnja, za bubanj u zavarenoj izvedbi, računa se iz sljedećeg izraza [11]:

$$\sigma = 1,44 \left(1 - \frac{2}{3} \frac{D_1}{D} \right) \frac{F_{\rm H}}{w^2} \le \sigma_{\rm dop} = \frac{R_e}{S}$$
(7.29)

Iz čega se dobiva izraz:

Diplomski rad

$$w \ge \sqrt{1,44\left(1-\frac{2}{3}\frac{D_{\rm l}}{D}\right)\frac{F_{\rm H}}{\sigma_{\rm dop}}} \tag{7.30}$$

Gdje je:

 $D_1 = d_3 = 260 \text{ mm} - \text{promjer glavine bubnja}$

D = 660 mm - vanjski promjer bubnja

 $F_{\rm H} = 0.1 \cdot F = 0.1 \cdot 56878 = 5688 \text{ N} - \text{iznos horizontalne sile prema [11]}$

 $\sigma_{dop} = 94 \text{ N/mm}^2 - \text{dopušteno naprezanje za materijal RSt 37-2}$

Prema tome, potrebna debljina čeone ploče bubnja je:

$$w \ge \sqrt{1,44\left(1-\frac{2}{3}\cdot\frac{260}{660}\right)\frac{5688}{94}} = 8,02 \text{ mm}$$
 (7.31)

Odabrana debljina čeone ploče bubnja je w = 18 mm zbog tehnoloških razloga.

7.1.7 Veza čeone ploče i bubnja

Veza čeone ploče i bubnja ostvaruje se vijčanim spojem. Kod proračuna potrebnog broja vijaka pretpostavljen je da se prijenos okretnog momenta ostvaruje isključivo trenjem između čeone ploče i bubnja koje je posljedica pritezanja vijaka. Prema tome proračun se provodi prema sljedećem izrazu:

$$F_{\rm u} \cdot \frac{D}{2} \le n \cdot \mu \cdot F_{\rm N} \frac{d_7}{2} \tag{7.32}$$

Gdje je:

 $\mu = 0,2 - \text{faktor trenja za čelik/čelik prema [18]}$

 $F_{\rm N} = \sigma_{\rm dop} \cdot A_{\rm j} - {\rm normalna \ sila}$

Odabiru se vijci M16, kvalitete 8.8. koji imaju granicu tečenja $R_e = 640 \text{ N/mm}^2$, te prema [18] površinu jezgre vijka $A_j = 144 \text{ mm}^2$. Uz odabranu pogonsku sigurnost S = 2,5 dobiva se dopušteno naprezanje vijka:

$$\sigma_{\rm dop} = \frac{R_{\rm e}}{S} = \frac{640}{2.5} = 256 \,\frac{\rm N}{\rm mm^2} \tag{7.33}$$

Na temelju toga dobiva se potreban broj vijaka:

$$n \ge \frac{F \cdot D}{\mu \cdot \sigma_{dop} \cdot A_{j} \cdot d_{7}}$$

$$n \ge \frac{56878 \cdot 660}{0, 2 \cdot 256 \cdot 144 \cdot 750}$$

$$n \ge 6,79$$

$$(7.34)$$

Odabrano je ukupno 8 vijaka M16 kvalitete 8.8.

7.1.8 Proračun osovine bubnja

Potrebni promjer osovine bubnja računa se iz sljedećeg izraza:

$$d_{\rm os} \ge \sqrt[3]{\frac{32 \cdot l_{\rm B} \cdot F_{\rm B,max}}{\pi \cdot \sigma_{\rm dop}}}$$
(7.35)

Gdje je:

 $l_{\rm B} = 90 \text{ mm} - \text{udaljenost}$ ležajne jedinice bubnja od čeone ploče

 $\sigma_{dop} = 75...100 \text{ N/mm}^2 = 80 \text{ N/mm}^2 - dopušteno naprezanje osovine bubnja prema [11]$ $<math>F_{B,max}$ je najveće opterećenje ležaja u osloncu B koje se izračunava iz jednadžbi statike prema slici 26.

Slika 26. Opterećenje osovine bubnja

$$F_{\rm B,max} = (F_{\rm B})_{\rm b} = \frac{F_{\rm u} \cdot 712}{712 + 285} = \frac{56878 \cdot 712}{712 + 285} = 40619 \text{ N}$$
 (7.36)

Uvrštavanjem svih vrijednosti dobiva se potrebni promjer osovine bubnja:

$$d_{\rm os} \ge \sqrt[3]{\frac{32 \cdot 90 \cdot 40619}{\pi \cdot 80}}$$

 $d_{\rm os} \ge 77,50 \text{ mm}$
(7.37)

Može se zaključiti da prethodno odabrani promjer osovine bubnja $d_5 = 90 \text{ mm}$ zadovoljava proračun.

7.1.9 Veza užeta s bubnjem

Slika 27. Veza užeta s bubnjem [11]

Veza užeta i bubnja ostvaruje se pomoću pritisnih pločica sa zaobljenim žlijebom i odgovarajućih vijaka. U najnižem položaju tereta na bubnju trebaju ostati još dva navoja užeta, ne računajući pri tom navoje koji služe za pričvršćenje tako da je prije ulaska u vijčanu vezu maksimalna sila u užetu umanjena za iznos užetnog trenja dva namotaja. Koeficijent trenja između bubnja i užeta prema [11] iznosi $\mu = 0,1$ dok je obuhvatni kut za spomenuta dva namotaja jednak $\alpha = 4\pi$ rad. Sila u užetu pred ulazom u vijčanu vezu iznosi:

$$F_{\rm v} = \frac{F}{e^{\mu \cdot \alpha}} = \frac{F}{e^{0.1 \cdot 4\pi}} = 0,285 \cdot F = 0,285 \cdot 56878 = 16210 \text{ N}$$
(7.38)

Ukupna normalna sila koja mora djelovati na uže iznosi:

$$F_{\rm N} = 2 \cdot \frac{F_{\rm V}}{(\mu + \mu_1)(e^{\mu \cdot \alpha} + 1)} = 2 \cdot \frac{16210}{(0, 1 + 0, 1)(e^{0, 1 \cdot 2\pi} + 1)} = 56393 \text{ N}$$
(7.39)

Gdje je:

 $\mu_1 = \mu = 0, 1 - \text{ekvivalentni koeficijent trenja zaobljenog žlijeba prema [11]}$

 $\alpha = 2\pi$ – obuhvatni kut užeta nakon ulaska u vijčanu vezu

Potreban broj vijaka prema opterećenju na vlak i savijanje izračunava se prema sljedećem izrazu:

$$z \ge \frac{F_N}{\sigma_{dop}} \left(\frac{1,3}{A_j} + \frac{32 \cdot \mu_1 \cdot h}{\pi \cdot d_1^3} \right)$$
(7.40)

Odabiru se vijci M16, kvalitete 8.8 granice tečenja 640 N/mm², promjera jezgre $d_1 = 13,835$ mm, te površine jezgre $A_j = 144 \text{ mm}^2$ čije dopušteno naprezanje iznosi:

$$\sigma_{\rm dop} = \frac{R_{\rm e}}{S} = \frac{640}{2.5} = 256 \,\frac{\rm N}{\rm mm^2} \tag{7.41}$$

Odabrana vrijednost veličine h prema slici 23. iznosi h = 28 mm. Prema tome, potreban broj vijaka veze užeta i bubnja iznosi:

$$z \ge \frac{56393}{256} \left(\frac{1,3}{144} + \frac{32 \cdot 0,1 \cdot 28}{\pi \cdot 13,835^3} \right)$$

$$z \ge 4,36$$
(7.42)

Veza užeta s bubnjem ostvarit će se pomoću 5 vijka M16 kvalitete 8.8.

Vijci se postavljaju po obodu bubnja na razmaku $l_v \ge 5 \cdot d = 5 \cdot 22 = 110$ mm iz čega proizlazi potreban kut između pritisnih pločica:

$$\gamma = \frac{2 \cdot l_v}{D} = \frac{2 \cdot 110}{660} = 0,33 \text{ rad} = 19,10^{\circ}$$
 (7.43)

7.1.10 Odabir ležajne jedinice bubnja

Ekvivalentno dinamičko radijalno opterećenje ležaja bubnja P_r iznosi:

$$P_{\rm r} = F_{\rm Bmax} = 38702 \text{ N} \tag{7.44}$$

Iz konstrukcijskih razloga kao ležajno mjesto bubnja odabran je samopodesivi ležaj s kućištem oznake SYJ 90 TF proizvođača *SKF*, dinamičke nosivosti C = 95,6 kN.

Dinamičko opterećenje ležajeva C_1 izračunava se prema sljedećem izrazu:

$$C_{1} = P_{\rm r} \left(\frac{60 \cdot n_{\rm m} \cdot L_{\rm 10h\,min}}{10^{6}} \right)^{\frac{1}{c}}$$
(7.45)

Gdje je:

 $n_{\rm m} = \frac{v_{\rm d} \cdot i_{\rm k}}{D \cdot \pi} = \frac{4 \cdot 4}{0,660 \cdot \pi} = 7,72 \text{ min}^{-1} - \text{brzina vrtnje u min}^{-1}$

 $\varepsilon = 3$ - eksponent vijeka trajanja za kuglične ležajeve $L_{10h \min} = 10\ 000\ h - zahtijevani nazivni vijek trajanja u satima$ Prema tome, dinamičko opterećenje ležaja iznosi:

$$C_1 = 38702 \left(\frac{60 \cdot 7, 72 \cdot 10000}{10^6}\right)^{\frac{1}{3}} = 64514 \,\mathrm{N} = 64,51 \,\mathrm{kN}$$
(7.46)

Kako je dinamička nosivost odabranog ležaja veća od dinamičkog opterećenje ležaja, odnosno C = 95,6 kN > $C_1 = 64,51$ kN, odabrani ležaj zadovoljava.

7.2 Odabir pogona mehanizma za dizanje tereta

Potrebna snaga elektromotora za podizanje tereta može se izračunati iz potrebne sile za podizanje tereta i poznate brzine podizanja tereta.

$$P_{\rm EM} = \frac{Q \cdot v_{\rm d}}{\eta_{\rm uk}} \tag{7.47}$$

Brzina dizanja tereta iznosi $v_d = 4$ m/min = 0,0667 m/s, dok se ukupna iskoristivost mehanizma za dizanje tereta η_{uk} dobiva množenjem pojedinačnih stupnjeva djelovanja koloturnika, bubnja, reduktora i kočnice. Stupanj korisnog djelovanja koloturnika već je ranije izračunat i iznosi $\eta_{kol} = 0,97$. Pretpostavljene vrijednosti stupnja djelovanja bubnja, reduktora i kočnice iznose redom $\eta_b = 0,98$, $\eta_{red} = 0,96$, $\eta_k = 0,99$. Ukupna iskoristivost mehanizma za dizanje tereta tada iznosi:

$$\eta_{\rm uk} = \eta_{\rm kol} \cdot \eta_{\rm b} \cdot \eta_{\rm red} \cdot \eta_{\rm k} = 0,97 \cdot 0,98 \cdot 0,96 \cdot 0,99 = 0,90 \tag{7.48}$$

Prema tome, potrebna snaga elektromotora za podizanje tereta iznosi:

$$P_{\rm EM} = \frac{441370 \cdot 0,0667}{0,90} = 32694 \text{ W} = 32,69 \text{ kW}$$
(7.49)

Iz kataloga proizvođača *SEW – EURODRIVE* [19] odabran je sklop elektromotora s reduktorom i ugrađenom kočnicom, oznake K 187R107 DRN 225S4 čije su karakteristike prikazane u tablici koja slijedi.

Nazivna snaga elektromotora	Р	37 kW
Nazivna brzina vrtnje elektromotora	n_1	1482 min ⁻¹
Inercija sklopa elektromotora	$J_{ m EM}$	$4580 \cdot 10^{-4} \text{ kgm}^2$
Maksimalni moment kočenja kočnice	$M_{ m k}$	500 Nm
Brzina vrtnje izlaznog vratila reduktora	n_2	$7,7 \text{ min}^{-1}$
Okretni moment izlaznog vratila reduktora	M_2	43100 Nm
Prijenosni omjer reduktora	$\dot{i}_{ m red}$	193
Dopušteno radijalno opterećenje izlaznog vratila reduktora	$F_{\rm Ra}$	190000 N
Ukupna masa sklopa elektromotora	m _{uk}	2110 kg

Tablica 13. Karakteristike odabranog elektromotora s reduktorom za dizanje tereta

7.2.1 Provjera odabrane pogonske jedinice s obzirom na izlazni moment

Najveći potrebni okretni moment na izlaznom vratilu reduktora dobiva se iz maksimalne sile u užetu i odgovarajućeg promjera bubnja. Treba uzeti u obzir da kod udvojenih faktorskih koloturnika postoje dva užeta koja se namataju na bubanj, stoga potrebni okretni moment na izlazu iz reduktora iznosi:

$$M_{2\text{potr}} = 2 \cdot F_{\text{u}} \cdot \frac{D_{\text{b}}}{2} = 2 \cdot 56878 \cdot \frac{0,660}{2} = 37540 \text{ Nm} < M_2 = 43100 \text{ Nm}$$
 (7.50)

Iz prethodne relacije vidi se da je raspoloživi moment na izlazu iz reduktora M_2 veći od potrebnog momenta M_{2potr} stoga odabrani sklop elektromotora i reduktora zadovoljava.

7.2.2 Provjera ugrađene kočnice

Potrebni moment kočenja može se izračunati prema sljedećem izrazu:

$$M_{\rm k_potr} = M_{\rm st} \cdot v_{\rm k} \tag{7.51}$$

Statički moment $M_{\rm st}$ dobiva se iz izraza:

$$M_{\rm st} = Q \cdot \frac{v_{\rm d}}{\omega_{\rm l}} \cdot \eta_{\rm koc}$$

$$M_{\rm st} = Q \cdot \frac{v_{\rm d}}{2\pi \cdot \frac{n_{\rm l}}{60}} \left(2 - \frac{1}{\eta_{\rm uk}}\right)$$
(7.52)

Uvrštavanjem svih veličina statički moment $M_{\rm st}$ iznosi:

$$M_{\rm st} = 441370 \cdot \frac{0,0667}{2\pi \cdot \frac{1482}{60}} \left(2 - \frac{1}{0,90}\right)$$
(7.53)

$$M_{\rm st} = 168,53 \,\,{\rm Nm}$$

1

Faktor sigurnosti v_k potreban za usporenje masa u gibanju određuje se prema tablici 14. ovisno o vrsti pogonskog mehanizma i mjestu primjene.

Tablica 14. Ovisnost faktor	a sigurnosti v _k o	vrsti mehanizma i	mjestu primjene [11]
-----------------------------	-------------------------------	-------------------	----------------------

$v_{ m k}$	Vrsta mehanizma, primjena
1,3 do 1,5	ručni pogon
1,5 do 1,75	mehanizmi vožnje, okretanja i promjene dohvata
1,75 do 2,5	mehanizmi dizanja na električni pogon (laki do vrlo teški uvjeti rada)
2,0 do 4,0	s teškim zahvatnim sredstvom (grabilica, magnet), granici u ljevaonicama i sl.

Za mehanizme dizanja na električni pogon vrijednost faktora sigurnosti kreće se od 1,75 do 2,5 ovisno o uvjetima rada. Za konkretan slučaj odabran je faktor sigurnosti $v_k = 2$.

Prema tome, potrebni moment kočenja iznosi:

$$M_{\rm k \ potr} = 168,53 \cdot 2 = 337,06 \ \rm Nm < M_{\rm k} = 500 \ \rm Nm$$
 (7.54)

Raspoloživi moment kočenja na kočnici je veći od maksimalno potrebnog momenta u pogonu, stoga odabrana kočnica zadovoljava proračun.

7.2.3 Provjera opterećenosti ležaja reduktora

Za odabranu izvedbu bubnja s jednim ležajem i zglobnim oslanjanjem na vratilo reduktora potrebno je provjeriti da li ležajevi reduktora mogu podnijeti opterećenje na bubnju. Najveće radijalno opterećenje izlaznog vratila reduktora izračunava se iz jednadžbi statike prema slici u nastavku.

Slika 28. Najveće radijalno opterećenje vratila reduktora

$$F_{\rm r} = \left(F_{\rm A}\right)_{\rm b} = \frac{F_{\rm u} \cdot 864}{133 + 864} = \frac{56878 \cdot 864}{133 + 864} = 49290 \text{ N}$$
(7.55)

Prema katalogu [19] dopušteno radijalno opterećenje na sredini izlaznog vratila odabranog reduktora iznosi $F_{Ra} = 190000$ N.

S obzirom da je postojeće radijalno opterećenje izlaznog vratila reduktora manje od dopuštenog opterećenja, odnosno $F_r = 49290$ N $< F_{Ra} = 190000$ N, ležajevi odabranog reduktora zadovoljavaju.

8. PRORAČUN OKVIRA VITLA

Na slici 29. prikazana je konstrukcijska izvedba okvira vitla. Za uzdužne i poprečne nosače korišteni su toplo valjani čelični profili HE320B, dok nosače izravnavajuće užnice čine dva profila UPN320. Na poprečni nosač zavarena je ploča koja služi kao nosač reduktora mehanizma za dizanje tereta, te pripadni nosači užnica nepomičnog bloka.

Slika 29. Konstrukcijska izvedba okvira vitla

Na slici 30. prikazan je pojednostavljeni statički model okvira vitla pomoću kojeg će biti izvršen proračun pojedinih dijelova nosive konstrukcije. Točke C, D, R i U predstavljaju mjesta na kojima se okvir vitla oslanja na kotače. Točke I i M su mjesta na kojima su nosači užnica nepomičnog bloka zavareni za poprečni nosač. Točke O i P su mjesta gdje se izravnavajuća užnica preko odgovarajuće osovinice oslanja na nosače izravnavajuće užnice. Zbog pojednostavljenja proračuna, sila užeta F_u nije zakrenuta u prostoru kao što je slučaj u stvarnosti, nego je usmjerena vertikalno. Točke E, G i K predstavljaju mjesta na kojima se nosač ležaja bubnja i reduktor mehanizma za dizanje oslanjaju na nosivu konstrukciju vitla.

Slika 30. Pojednostavljeni statički model okvira vitla

Sila u užetu već je prethodno izračunata i iznosi $F_u = 56878$ N.

Sila u točkama E i G jednaka je sili koja se preko osovine bubnja prenosi na ležajnu jedinicu bubnja. Ta sila je po iznosu najveća kada se teret nalazi u najnižoj točki. Vrijednost te sile prethodno je izračunata u točki 7.1.8 te iznosi $F_{\rm E} = F_{\rm G} = (F_{\rm B})_{\rm b} = 40619$ N.

Sila u točki K jednaka je zbroju dvaju sila koje se preko vratila reduktora prenose na poprečni nosač okvira vitla. Ta sila je po iznosu najveća kada je teret u najvišem položaju. Vrijednost te sile također je prethodno izračunata u točki 7.2.3 a iznosi $F_{\rm K} = 2 \cdot (F_{\rm A})_{\rm b} = 2 \cdot 49290 =$ 98580 N.

U svrhu pojednostavljenja proračuna, nosiva konstrukcija vitla razmatrat će se kao štapna konstrukcija u kojoj se na mjestu čvorova prenose samo sile, a ne i momenti. Radi takve pretpostavke i zanemarivanja vlastite težine okvira vitla i težine sklopa bubnja, faktor sigurnosti bit će povećan s preporučenih S = 1,5 na S = 2.

Zbog simetričnosti okvira vitla s obzirom na koordinatnu os y razmatrat će se samo jedna polovica okvira vitla.

Cjelokupni okvir vitla izrađen je od čelika oznake RSt 37-2 čija trajna dinamička čvrstoća za istosmjerno savojno (fleksijsko) opterećenje prema [13] iznosi $\sigma_{fDI} = 260 \text{ N/mm}^2$. Prema tome, dopušteno naprezanje okvira vitla iznosi:

$$\sigma_{\rm dop} = \frac{\sigma_{\rm fDI}}{S} = \frac{260}{2} = 130 \ \frac{\rm N}{\rm mm^2}$$
(8.1)

8.1 Proračun čvrstoće okvira vitla

8.1.1 Proračun grede JS

Slika u nastavku prikazuje statički model grede JS te način na koji je greda opterećena.

Slika 31. Statički model grede JS

Jednadžbama statičke ravnoteže dobivaju se reaktivne sile u osloncima J i S.

$$F_{\rm s} = \frac{F_{\rm u} \cdot 375}{1286} = \frac{56878 \cdot 375}{1286} = 16586 \text{ N}$$
(8.2)

$$F_{\rm J} = F_{\rm u} - F_{\rm S} = 56878 - 16586 = 40292 \text{ N}$$
(8.3)

Najveći moment savijanja javlja se na mjestu točke O i iznosi:

$$M_{\rm O} = F_{\rm J} \cdot 375 = 40292 \cdot 375 = 15109500 \text{ Nmm}$$
(8.4)

Slika 32. prikazuje izgled poprečnog presjeka nosača izravnavajuće užnice na mjestu točke O.

Slika 32. Presjek nosača izravnavajuće užnice na mjestu točke O

Kod računanja aksijalnog momenta tromosti presjeka oko osi x uzet će se u obzir samo površina horizontalnih pojaseva UPN profila ispod i iznad osovinice izravnavajuće užnice. Kako se debljina pojasa UPN profila mijenja u ovisnosti o osi x, kod proračuna aksijalnog

momenta tromosti uzet će se srednja vrijednost debljine pojasa od 17,5 mm. Aksijalni moment tromosti presjeka oko osi *x* tada iznosi:

$$I_{x,0} = 2 \cdot \left(\frac{100 \cdot 17,5^3}{12} + \left(\frac{320}{2} - \frac{17,5}{2}\right)^2 \cdot 100 \cdot 17,5\right) = 80157292 \text{ mm}^4$$
(8.5)

Najveće savojno naprezanje grede JS javlja se na mjestu točke O te iznosi:

$$\sigma_{\rm O} = \frac{M_{\rm O}}{I_{\rm x,O}} \cdot z_{\rm max} = \frac{15109500}{80157292} \cdot \frac{320}{2} = 30,16 \frac{\rm N}{\rm mm^2} < \sigma_{\rm dop} = 130 \frac{\rm N}{\rm mm^2}$$
(8.6)

8.1.2 Proračun grede HN

Slika 33. prikazuje statički model grede HN i način na koji je greda opterećena.

Slika 33. Statički model grede HN

Jednadžbama statičke ravnoteže mogu se dobiti reaktivne sile u osloncima H i N. Budući da sve sile koje opterećuju razmatranu gredu HN djeluju simetrično s obzirom na točku K, vrijedi:

$$F_{\rm H} = F_{\rm N} = \frac{2F_{\rm u} + F_{\rm J} + F_{\rm K} + F_{\rm L} + 2F_{\rm u}}{2}$$

$$F_{\rm H} = F_{\rm N} = \frac{2 \cdot 56878 + 40292 + 98580 + 40292 + 2 \cdot 56878}{2}$$

$$F_{\rm H} = F_{\rm N} = 203338 \text{ N}$$
(8.7)

Najveći moment savijanja javlja se na sredini grede, odnosno u točki K a iznosi:

$$M_{\rm K} = F_{\rm H} \cdot 968 + (F_{\rm H} - 2F_{\rm u}) \cdot 174 + (F_{\rm H} - 2F_{\rm u} - F_{\rm J}) \cdot 132$$

$$M_{\rm K} = 203338 \cdot 968 + (203338 - 2 \cdot 56878) \cdot 174 + (203338 - 2 \cdot 56878 - 40292) \cdot 132 \quad (8.8)$$

 $M_{\rm K} = 218924732$ Nmm

U tablici u nastavku prikazane su dimenzije i svojstva profila HE320B.

Tablica 15. Dimenzije i karakteristike profila HE320B [20]

Fakultet strojarstva i brodogradnje

	HE320B			
	Geometrija	Karakteristike presjeka		
h = 320 mm	t b	Os y	Os z	
b = 300 mm	<u>y</u>	$I_y = 3,08E+8 mm^4$	$I_z = 9,24E+7 \text{ mm}^4$	
$t_{\rm f} = 20,5 \ {\rm mm}$		$W_{y,el} = 1,93E+6 \text{ mm}^3$	$W_{z,el} = 6,16E+5 \text{ mm}^3$	
$t_{w} = 11,5 mm$		$W_{y,p1} = 2,14E+6 \text{ mm}^3$	$W_{z,pl} = 9,43E+5 \text{ mm}^3$	
$\mathbf{r}_1 = 27 \ \mathbf{mm}$	C,C,	$i_y = 138,0 \text{ mm}$	$i_z = 75,70 \text{ mm}$	
$y_s = 150 \text{ mm}$	⊆ ▼ - · - · - · - · - · →	$S_y = 1,07E+6 \text{ mm}^3$	$S_z = 4,67E+5 \text{ mm}^3$	
d = 225 mm	5			
$A = 16100 \text{ mm}^2$				
$G = 127 \text{ kgm}^{-1}$	2			

Profil se savija oko osi y, stoga pripadajući moment otpora iznosi $W_{y,HE320B} = 1,93 \cdot 10^6 \text{ mm}^3$. Najveće naprezanje razmatrane grede HN javlja se na sredini grede u točki K te iznosi:

$$\sigma_{\rm K} = \frac{M_{\rm K}}{W_{\rm y, HE320B}} = \frac{218924732}{1,93 \cdot 10^6} = 113,43 \ \frac{\rm N}{\rm mm^2} < \sigma_{\rm dop} = 130 \ \frac{\rm N}{\rm mm^2}$$
(8.9)

8.1.3 Proračun grede RU

Slika 34. prikazuje statički model grede RU i način na koji je greda opterećena.

Slika 34. Statički model grede RU

Jednadžbama statičke ravnoteže dobivaju se reaktivne sile u osloncima R i U. Kao i u prethodnom slučaju greda je simetrično opterećena, stoga su reaktivne sile jednake i iznose:

$$F_{\rm R}^* = F_{\rm U} = \frac{F_{\rm S} + F_{\rm T}}{2} = \frac{16586 + 16586}{2} = 16586 \text{ N}$$
 (8.10)

Najveći moment savijanja na razmatranoj gredi iznosi:

$$M_{\rm S} = M_{\rm T} = F_{\rm R}^* \cdot 1142 = 16586 \cdot 1142 = 18941212 \text{ Nmm}$$
 (8.11)

Najveće naprezanje grede RU tada je jednako:

$$\sigma_{\rm S} = \sigma_{\rm T} = \frac{M_{\rm S}}{W_{\rm y, HE320B}} = \frac{18941212}{1,93 \cdot 10^6} = 9,81 \frac{\rm N}{\rm mm^2} < \sigma_{\rm dop} = 130 \frac{\rm N}{\rm mm^2}$$
(8.12)

Fakultet strojarstva i brodogradnje

8.1.4 Proračun grede AV

Posljednja greda koja će se razmatrati je greda AV. Na slici 35. prikazan je statički model grede i način na koji je greda opterećena.

Slika 35. Statički model grede AV

Jednadžbama statičke ravnoteže dobivaju se reaktivne sile u osloncima C i R.

$$F_{\rm R} = \frac{F_{\rm E} \cdot 334 + F_{\rm H} \cdot (334 + 100) + F_{\rm R}^* \cdot (334 + 100 + 1286)}{334 + 100 + 1286}$$

$$F_{\rm R} = \frac{40619 \cdot 334 + 203338 \cdot (334 + 100) + 16586 \cdot (334 + 100 + 1286)}{334 + 100 + 1286}$$

$$F_{\rm R} = 75781 \text{ N}$$

$$F_{\rm C} = F_{\rm E} + F_{\rm H} + F_{\rm R}^* - F_{\rm R}$$

$$F_{\rm C} = 40619 + 203338 + 16586 - 75781$$

$$F_{\rm C} = 184762 \text{ N}$$
(8.14)

Najveći moment savijanja javlja se na mjestu točke H i iznosi:

$$M_{\rm H} = F_{\rm C} \cdot 334 + (F_{\rm C} - F_{\rm E}) \cdot 100$$

$$M_{\rm H} = 184762 \cdot 334 + (184762 - 40619) \cdot 100$$
(8.15)

 $M_{\rm H} = 76124808$ Nmm

Najveće naprezanje razmatrane grede AV stoga iznosi:

$$\sigma_{\rm H} = \frac{M_{\rm H}}{W_{\rm y, HE320B}} = \frac{76124808}{1,93 \cdot 10^6} = 39,44 \frac{\rm N}{\rm mm^2} < \sigma_{\rm dop} = 130 \frac{\rm N}{\rm mm^2}$$
(8.16)

8.2 Proračun krutosti okvira vitla

Proračun krutosti provest će se samo za najopterećeniji, te ujedno i najdulji dio okvira vitla, odnosno za poprečni nosač HN. Statički model i opterećenje spomenutog nosača prikazano je na slici 33. Ukupni progib nosača izračunat će se na način da će se zasebno analizirati progib

nosača uslijed djelovanja sile $F_{\rm K}$, zatim uslijed djelovanja dvaju sila $F_{\rm J}$ i $F_{\rm L}$, te konačno uslijed dvaju sila $2F_{\rm u}$ koje djeluju u točkama I i M. Zbrajanjem dobivenih progiba u točki K dobit će se ukupni progib nosača HN koji mora biti manji od dopuštene vrijednosti.

Progib nosača uslijed djelovanja sile $F_{\rm K}$

Slika 36. Progib nosača HN uslijed djelovanja sile $F_{\rm K}$

Progib nosača HN uslijed djelovanja sile $F_{\rm K}$ izračunava se prema sljedećem izrazu [15]:

$$w_{\rm K}^{\rm F_{\rm K}} = \frac{F_{\rm K} \cdot l^3}{48EI_{\rm y}} = \frac{98580 \cdot 2548^3}{48 \cdot 210000 \cdot 3,08 \cdot 10^8} = 0,53 \,\,\rm{mm}$$
(8.17)

Gdje je:

l = 2548 mm - dužina promatranog nosača

 $E = 210000 \text{ N/mm}^2 - \text{modul elastičnosti čelika}$

 $I_y = 3,08 \cdot 10^8 \text{ mm}^4$ – moment tromosti presjeka nosača (prema tablici 13.)

Progib nosača uslijed djelovanja dvaju sila $F_{\rm J}$ i $F_{\rm L}$

Slika 37. Progib nosača HN uslijed djelovanja dvaju sila $F_{\rm J}$ i $F_{\rm L}$

Progib nosača HN uslijed djelovanja dvaju sila F_J i F_L izračunava se prema sljedećem izrazu [15]:

$$w_{\rm K}^{\rm F_J,F_L} = \frac{F_{\rm J} \cdot a}{24EI_{\rm y}} \left(3l^2 - 4a^2\right) = \frac{40292 \cdot 1142}{24 \cdot 210000 \cdot 3,08 \cdot 10^8} \left(3 \cdot 2548^2 - 4 \cdot 1142^2\right) = 0,42 \text{ mm} (8.18)$$

Gdje je:

a = 1142 mm - udaljenost dvaju sila F_{J} i F_{L} od oslonaca H i N

Progib nosača uslijed djelovanja dvaju sila $2F_{\rm u}$

Slika 38. Progib nosača HN uslijed djelovanja dvaju sila $2F_{\rm u}$

Progib nosača HN uslijed djelovanja dvaju sila $2F_u$ izračunava se prema sljedećem izrazu [15]:

$$w_{\rm K}^{2\rm F_{u}} = \frac{2F_{\rm u} \cdot a}{24EI_{\rm y}} \left(3l^2 - 4a^2\right) = \frac{2 \cdot 56878 \cdot 968}{24 \cdot 210000 \cdot 3,08 \cdot 10^8} \left(3 \cdot 2548^2 - 4 \cdot 968^2\right) = 1,12 \text{ mm} \quad (8.19)$$

Gdje je:

a = 968 mm - udaljenost dvaju sila $2F_{\text{u}}$ od oslonaca H i N

Ukupni progib nosača HN

Ukupni progib nosača HN u točki K dobiva se zbrajanjem prethodno izračunatih progiba. Prema tome, najveći progib razmatranog nosača iznosi:

$$w_{\rm K} = w_{\rm K}^{\rm F_{\rm K}} + w_{\rm K}^{\rm F_{\rm I},\rm F_{\rm L}} + w_{\rm K}^{\rm 2F_{\rm u}} = 0,53 + 0,42 + 1,12 = 2,07 \,\,\rm{mm}$$
(8.20)

Dopušteni progib promatrane grede HN iznosi:

$$w_{\rm dop} = \frac{l}{600} = \frac{2548}{600} = 4,25 \text{ mm}$$
 (8.21)

Kako je ukupni progib razmatranog nosača manji od dopuštenog progiba, odnosno $w_{\rm K} = 2,07$ mm $< w_{\rm dop} = 4,25$ mm, odabrani profil zadovoljava kriterij krutosti.

8.3 Proračun nosivog lima izravnavajuće užnice

Slika 39. Izvedba i opterećenje nosivog lima izravnavajuće užnice

Konstrukcijsko rješenje i opterećenje nosivog lima izravnavajuće užnice prikazuje slika 39. Provrt na nosivom limu za prihvat osovine na koju se oslanja izravnavajuća užnica stvara efekt zareznog djelovanja na nosivi lim što znači da je naprezanje u neposrednoj blizini provrta nekoliko puta veće od srednjeg naprezanja koje se dobije proračunom. Dijagram na slici 40. prikazuje faktora zareznog djelovanja u ovisnosti o dimenzijama ploče i provrta i to za slučaj kada je ploča konstantne debljine.

Slika 40. Određivanje faktora zareznog djelovanja [21]

Dimenzije potrebne za daljnji proračun naznačene su na slici 39. a iznose: $P = F_u = 56878$ N, b = 200 mm, d = 70 mm, h = 15 mm. Prema dijagramu na slici 40. faktor zareznog djelovanja za ostvareni odnos d/b = 70/200 = 0.35 iznosi $K_t \approx 3.1$.

Prema tome, naprezanje nosivog lima u blizini provrta iznosi:

$$\sigma_{\rm pr} = K_{\rm t} \frac{F_{\rm u}}{(b-d)h} = 3.1 \cdot \frac{56878}{(200-70)\cdot 15} = 90.42 \frac{\rm N}{\rm mm^2}$$
(8.22)

Nosivi lim izravnavajuće užnice izrađen je o konstrukcijskog čelika oznake RSt 37-2 čija trajna dinamička čvrstoća za istosmjerno opterećenje prema [13] iznosi $\sigma_{DI} = 220 \text{ N/mm}^2$. Prema tome, dopušteno naprezanje nosivog lima iznosi:

$$\sigma_{\rm dop} = \frac{\sigma_{\rm DI}}{S} = \frac{220}{2} = 110 \,\frac{\rm N}{\rm mm^2} \tag{8.23}$$

Fakultet strojarstva i brodogradnje

Kako je najveće naprezanje nosivog lima u blizini provrta manje od dopuštenog naprezanja, nosivi lim zadovoljava proračun.

Nosivi lim užnice nepomičnog bloka istog je oblika i dimenzija, te je na isti način opterećen kao prethodno analizirani nosivi lim užnice za izravnavanje, stoga se može zaključiti da nosivi lim užnice nepomičnog bloka također zadovoljava kriterij čvrstoće.

8.4 Proračun osovinice izravnavajuće užnice

Osovinica izravnavajuće užnice prikazana je na slici 32. Na osovinicu se oslanja prethodno analizirani nosivi lim izravnavajuće užnice te je pri tome savojno opterećuje. Prema [17] odabrana je toplo valjana čelična bešavna cijev vanjskog promjera $D_v = 133$ mm, unutarnjeg promjera $d_u = 101$ mm, proizvođača *Strojopromet*. Materijal cijevi je čelik oznake RSt 37-2 čija trajna dinamička čvrstoća za istosmjerno savojno opterećenje prema [13] iznosi $\sigma_{fDI} = 260$ N/mm², tako da dopušteno naprezanje cijevi iznosi:

$$\sigma_{\rm dop} = \frac{\sigma_{\rm fDI}}{S} = \frac{260}{2} = 130 \,\frac{\rm N}{\rm mm^2} \tag{8.24}$$

Najveći moment savijanja javlja se na sredini osovinice te iznosi:

$$M_{\rm max} = F_{\rm u} \cdot \frac{264}{2} = 56878 \cdot \frac{264}{2} = 7507896 \text{ Nmm}$$
 (8.25)

Moment otpora cijevi jednak je:

$$W = \frac{\frac{D_{v}^{4} \cdot \pi}{64} - \frac{d_{u}^{4} \cdot \pi}{64}}{\frac{D_{v}}{2}} = \frac{\frac{133^{4} \cdot \pi}{64} - \frac{101^{4} \cdot \pi}{64}}{\frac{133}{2}} = 154156 \text{ mm}^{3}$$
(8.26)

Najveće naprezanje tada iznosi:

$$\sigma = \frac{M_{\text{max}}}{W} = \frac{7507896}{154156} = 48,70 \ \frac{\text{N}}{\text{mm}^2} < \sigma_{\text{dop}} = 130 \ \frac{\text{N}}{\text{mm}^2}$$
(8.27)

Iz prethodnog izraza zaključuje se da odabrana cijev zadovoljava proračun.

Osovinice dvaju užnica nepomičnog bloka istih su dimenzija i isto su opterećene kao prethodno analizirana osovinica izravnavajuće užnice stoga ih nije potrebno posebno proračunavati.

8.5 Proračun nosača užnice nepomičnog bloka

Na slici u nastavku prikazan je nosač užnice nepomičnog bloka, te način na koji je nosač opterećen.

Slika 41. Izvedba i opterećenje nosača užnice nepomičnog bloka

Kao i kod nosivog lima izravnavajuće užnice, i u ovom je slučaju potrebno kontrolirati najveće naprezanje koje se javlja u blizini provrta. Dimenzije potrebne za daljnji proračun naznačene su na slici 41, dok faktor zareznog djelovanja za postojeći odnos d/b = 133/300 = 0,44 prema dijagramu na slici 40. iznosi $K_t \approx 2,6$.

Naprezanje nosača u blizini provrta iznosi:

$$\sigma_{\rm pr} = K_{\rm t} \frac{F_{\rm u}}{(b-d)h} = 2,6 \cdot \frac{56878}{(300-133)\cdot 15} = 59,04 \frac{\rm N}{\rm mm^2}$$
(8.28)

Nosač užnice nepomičnog bloka izrađen je o konstrukcijskog čelika oznake RSt 37-2 čija trajna dinamička čvrstoća za istosmjerno opterećenje prema [13] iznosi $\sigma_{DI} = 220 \text{ N/mm}^2$. Prema tome, dopušteno naprezanje nosača iznosi:

$$\sigma_{\rm dop} = \frac{\sigma_{\rm DI}}{S} = \frac{220}{2} = 110 \,\frac{\rm N}{\rm mm^2} \tag{8.29}$$

Najveće naprezanje nosača u blizini provrta je manje od dopuštenog naprezanja, stoga nosač zadovoljava proračun čvrstoće.

8.6 Proračun zavara nosača užnice nepomičnog bloka

Kao što je prikazano na slici 41. na mjestu spoja nosača užnice nepomičnog bloka za nosivu konstrukciju vitla nalazi se dvostrani kutni zavar debljine a = 5 mm.

Vlačno naprezanje u zavaru iznosi:

$$\sigma_{\rm vl} = \frac{F_{\rm u}}{2 \cdot a \cdot b} = \frac{56878}{2 \cdot 5 \cdot 300} = 18,96 \,\frac{\rm N}{\rm mm^2} \tag{8.30}$$

Zavar je opterećen istosmjerno dinamički, a odnos graničnih naprezanja približno iznosi $\kappa = 0,1$. Dopušteno naprezanje zavara za takav slučaj opterećenja prema [16] za osnovni materijal RSt 37-2, slučaj zareznog djelovanja K4 i pogonsku grupu B4 iznosi $\sigma_{D(0,1)dop} = 97 \text{ N/mm}^2$. Kako je najveće naprezanje u zavaru manje od dopuštenog naprezanja odabrane dimenzije zavara zadovoljavaju proračun.

9. ODABIR KOTAČA I POGONA ZA VOŽNJU VITLA

Vožnja vitla ostvaruje se preko dva pogonska kotača na koja su izravno pričvršćena dva elektromotora s odgovarajućim reduktorom i ugrađenom kočnicom. Odabir sklopa kotača vršit će se prema katalogu proizvođača *Demag* ovisno o opterećenju kotača.

9.1 Odabir sklopa kotača vitla

Da bi se izračunalo ukupno opterećenje pojedinih kotača vitla najprije je potrebno izračunati opterećenje pojedinih kotača uslijed djelovanja vlastite težine pomičnog bloka i sklopa vitla, zatim dobiveno opterećenje zbrojiti s već izračunatim reaktivnim silama u točkama C, D, R i U koje predstavljaju opterećenje kotača vitla uslijed djelovanja težine tereta. Masa pomičnog bloka i sklopa vitla, ne uzimajući u obzir masu nosive grede koja se vješa na kuku, iznosi m_{pb} + $m_v = 1065 + 5920 = 6985$ kg.

Nakon modeliranja pomičnog bloka i vitla u programskom paketu *SolidWorks*, korištenjem navedenog programskog paketa određeno je težište sklopa vitla. Položaj težišta sklopa vitla prikazan je na slici 42.

Slika 42. Položaj težišta sklopa vitla

Očekivano, zbog simetričnosti vitla s obzirom na koordinatnu os y, težište se nalazi na liniji simetrale vitla. Iz tog razloga problem raspodjele vlastite težine pomičnog bloka i sklopa vitla po kotačima postaje ravninski problem koji se jednostavno rješava postavljanjem jednadžbi ravnoteže. Na slici 43. prikazan je statički model uzdužnog nosača vitla i način na koji je nosač opterećen uslijed djelovanja vlastite težine pomičnog bloka i sklopa vitla.

Slika 43. Reaktivne sile u kotačima vitla uslijed djelovanja vlastite težine sklopa vitla Svaki uzdužni nosač vitla preuzima polovicu ukupne težine pomičnog bloka i sklopa vitla, tako da opterećenje uzdužnog nosača iznosi:

$$\frac{G}{2} = \frac{G_{\rm pb} + G_{\rm v}}{2} = \frac{\left(m_{\rm pb} + m_{\rm v}\right) \cdot g}{2} = \frac{\left(1065 + 5920\right) \cdot 9,81}{2} = 34261 \text{ N}$$
(9.1)

Jednadžbama statičke ravnoteže dobivaju se reaktivne sile u osloncima C i R.

$$F_{\rm R}^{\rm G} = \frac{\frac{G}{2} \cdot 636}{1720} = \frac{34261 \cdot 636}{1720} = 12669 \text{ N}$$
(9.2)

$$F_{\rm C}^{\rm G} = \frac{G}{2} - F_{\rm R}^{\rm G} = 34261 - 12669 = 21592 \text{ N}$$
 (9.3)

Zbrajanjem reaktivnih sila u osloncima vitla uslijed djelovanja težine tereta i uslijed djelovanja vlastite težine pomičnog bloka i sklopa vitla dobiva se ukupno opterećenje pojedinih kotača vitla.

Ukupno opterećenje pogonskih kotača u osloncima C i D iznosi:

$$F_{\rm C,uk} = F_{\rm D,uk} = F_{\rm C} + F_{\rm C}^{\rm G} = 184762 + 21592 = 206354 \text{ N}$$
 (9.4)

Ukupno opterećenje nepogonskih kotača u osloncima R i U iznosi:

$$F_{\rm R,uk} = F_{\rm U,uk} = F_{\rm R} + F_{\rm R}^{\rm G} = 75781 + 12669 = 88450 \text{ N}$$
 (9.5)

Budući da je u katalogu dopušteno opterećenje kotača izraženo u kilogramima, naredna tablica prikazuje masene ekvivalente sila koje opterećuju kotače.

Oslonac okvira vitla	Opterećenje [N]	Maseni ekvivalent [kg]
С	206354	21035
D	206354	21035
R	88450	9016
U	88450	9016

Tablica 16. Opterećenje pojedinih kotača vitla

Iz tablice je vidljivo da su najopterećeniji pogonski kotači u osloncima C i D. Iz kataloga [22] proizvođača *Demag* odabran je kotač oznake DRS 315, nosivosti 22000 kg, nazivnog promjera $d_k = 315$ mm. Materijal odabranog kotača je nodularni lijev oznake GGG70, dok je odabrani materijal tračnice konstrukcijski čelik oznake St 70-2. Tračnice koje je potrebno koristiti su ravne tračnice od plosnatih čeličnih profila dimenzija 70 mm x 50 mm. Dimenzije sklopa kotača prikazane su u nastavku.

Slika 44. Sklop kotača za vožnju vitla [22] Tablica 17. Dimenzije sklopa kotača za vožnju vitla [22]

Oznaka	Nosivost	Nazivni promjer kotača	Masa	Dimenzije [mm]				
-	kg	mm	kg	a_1	b_1	b_2	c_1	h_1
DRS 315	22000	315	117	470	90	130	180	349,5

9.2 Odabir pogona za vožnju vitla

Sila potrebna za ustaljenju vožnju vitla F_v proporcionalna je ukupnom opterećenju kotača vitla a izračunava se prema sljedećem izrazu:

$$F_{\rm v} = m_{\rm tr,v} \cdot g \cdot f_{\rm e} \tag{9.6}$$

Gdje je:

 $m_{\rm tr,v}$ - ukupna translacijska masa vitla

 $f_e = 0,01 - vrijednost ekvivalentnog koeficijenta otpora vožnje za kotače s valjnim ležajevima prema [11]$

Ukupna translacijska masa vitla iznosi:

$$m_{\rm tr,v} = \frac{m_{\rm t}}{2} + m_{\rm ng} + m_{\rm pb} + m_{\rm v} = \frac{70000}{2} + 1939 + 1065 + 5920 = 43924 \text{ kg}$$
(9.7)

Gdje je:

 $m_{\rm t} = 70000 \ {\rm kg} - {\rm masa}$ tereta

 $m_{\rm ng} = 1939 \text{ kg} - \text{masa nosive grede}$

 $m_{\rm pb} = 1065 \text{ kg} - \text{masa pomičnog bloka}$

 $m_{\rm v} = 5920 \text{ kg} - \text{masa sklopa vitla}$

Uvrštavanjem dobivenih vrijednosti u izraz (9.6) dobiva se sila potrebna za ustaljenu vožnju vitla:

$$F_{v} = 43924 \cdot 9,81 \cdot 0,01 = 4309 \text{ N}$$
(9.8)

Snaga potrebna za ustaljenu vožnju vitla iznosi:

$$P_{\rm v} = \frac{F_{\rm v} \cdot v_{\rm v}}{\eta_{\rm vit}} \cdot k = \frac{4309 \cdot 0,25}{0,97} \cdot 0,5 = 555 \text{ W} = 0,56 \text{ kW}$$
(9.9)

Gdje je:

 $F_v = 4309 \text{ N} - \text{potrebna sila za ustaljenu vožnju vitla}$

 $v_v = 15 \text{ m/min} = 0,25 \text{ m/s} - \text{brzina vožnje vitla}$

 $\eta_{\rm vit} = 0.97 - stupanj$ korisnosti mehanizma za vožnju vitla

k = 0.5 - koeficijent ukupnog broja pogonskih kotača (2 pogonska kotača)

Sila potrebna za pokretanje vitla F_p dobiva se zbrajanjem sile potrebne za ustaljenu vožnju vitla i sile inercije ukupne translacijske mase vitla.

$$F_{\rm p} = F_{\rm v} + \beta \cdot m_{\rm tr,v} \frac{v_{\rm v}}{t_{\rm p}} = 4309 + 1, 2 \cdot 43924 \cdot \frac{0, 25}{4} = 7603 \text{ N}$$
(9.10)

Gdje je:

 $\beta = 1,2 - faktor kojim se uzimaju u obzir rotacijske mase$

 $t_p = 4 \text{ s} - \text{odabrano vrijeme pokretanja mehanizma za vožnju vitla prema [12]}$

S obzirom da odnos momenta pokretanja i nominalnog momenta asinkronog elektromotora uobičajeno iznosi $M_p/M_n = 1,7...2$, posljedično je omjer sile kod pokretanja vitla i nominalne sile koju će kotač vitla imati na raspolaganju pri ustaljenoj brzini vožnje jednak $F_p/F_n = 1,7...2$. Iz toga proizlazi da je nominalna sila vožnje jednaka:

$$F_{\rm n} = (0, 5...0, 6) F_{\rm p} = 0, 6 \cdot F_{\rm p} = 0, 6 \cdot 7603 = 4562$$
 N (9.11)

Prema tome, potrebna nominalna snaga elektromotora iznosi:

$$P_{\rm n} = \frac{F_{\rm n} \cdot v_{\rm v}}{\eta_{\rm vit}} \cdot k = \frac{4562 \cdot 0, 25}{0,97} \cdot 0, 5 = 588 \text{ W} = 0,59 \text{ kW}$$
(9.12)

Potrebna brzina vrtnje kotača vitla pri ustaljenoj vožnji iznosi:

$$n_{\rm k} = \frac{v_{\rm v}}{d_{\rm k} \cdot \pi} = \frac{15}{0.315 \cdot \pi} = 15,16 \,\,{\rm min^{-1}} \tag{9.13}$$

Na temelju potrebne nominalne snage elektromotora i potrebne brzine vrtnje kotača vitla odabire se iz kataloga proizvođača *DEMAG* [23] sklop elektromotora s reduktorom i ugrađenom kočnicom, oznake WUE 50DD ZBA 80 A 4 B007 čije su karakteristike prikazane u tablici u nastavku.

Nazivna snaga elektromotora	Р	0,55 kW
Nazivna brzina vrtnje elektromotora	n_1	1420 min ⁻¹
Inercija sklopa elektromotora	$J_{\rm EM}$	$1,49 \cdot 10^{-3} \text{ kgm}^2$
Maksimalni moment kočenja kočnice	M _k	7,6 Nm
Brzina vrtnje izlaznog vratila reduktora	n_2	15 min ⁻¹
Okretni moment izlaznog vratila reduktora	M_2	304 Nm
Prijenosni omjer reduktora	$i_{ m red}$	94,3
Dopušteno radijalno opterećenje izlaznog vratila reduktora	$F_{\rm Ra}$	14000 N
Ukupna masa sklopa elektromotora	m _{uk}	58 kg

Tablica 18. Karakteristike odabranog elektromotora s reduktorom za vožnju vitla

Na temelju odabranog elektromotora i reduktora može se izračunati stvarna brzina vožnje vitla:

$$v_{\rm v} = n_{\rm k} \cdot d_{\rm k} \cdot \pi = 15 \cdot 0,315 \cdot \pi = 14,84 \ \frac{\rm m}{\rm min} = 0,247 \ \frac{\rm m}{\rm s}$$
 (9.14)

9.2.1 Provjera elektromotora obzirom na pokretanje

Kod pokretanja mehanizma za vožnju vitla elektromotor treba ostvariti određeni moment pokretanja.

$$M_{\rm p} = M_{\rm st} + M_{\rm ub} \tag{9.15}$$

Gdje je:

 $M_{\rm st}$ – moment potreban za savladavanje otpora ustaljene vožnje

 $M_{\rm p}$ – moment potreban za ubrzanje rotacijskih i translacijskih masa

Moment potreban za savladavanje otpora ustaljene vožnje iznosi:

$$M_{\rm st} = \frac{F_{\rm v}}{\eta_{\rm vit}} \cdot \left(\frac{v_{\rm v}}{\omega_{\rm EM}}\right) = \frac{4309}{0.97} \cdot \left(\frac{0.247}{148,7}\right) = 7,38 \text{ Nm}$$
(9.16)

Gdje je:

Fakultet strojarstva i brodogradnje

$$\omega_{\rm EM} = \frac{2\pi \cdot n_1}{60} = \frac{2\pi \cdot 1420}{60} = 148,7 \text{ s}^{-1}$$
 - kutna brzina elektromotora

Moment potreban za ubrzanje rotacijskih i translacijskih masa vitla izračunava se iz sljedećeg izraza:

$$M_{ub} = \left(J_{rot} + J_{tr}\right) \cdot \varepsilon$$

$$M_{ub} = \left(\beta \cdot J_{EM} + \frac{m_{tr,v}}{\eta_{vit}} \left(\frac{v_v}{\omega_{EM}}\right)^2\right) \cdot \frac{\omega_{EM}}{t_p}$$

$$M_{ub} = \left(1, 2 \cdot 1, 49 \cdot 10^{-3} + \frac{43924}{0,97} \left(\frac{0,247}{148,7}\right)^2\right) \cdot \frac{148,7}{4}$$

$$M_{ub} = 4,71 \text{ Nm}$$
(9.17)

Gdje je:

 $\beta = 1,2 - faktor kojim se uzimaju u obzir ostale rotacijske mase$

 $J_{\rm EM} = 1,49 \cdot 10^{-3} \, \rm kgm^2 - inercija \, \rm sklopa \, elektromotora$

 $m_{\rm tr,v} = 43924 \text{ kg}$ - ukupna translacijska masa vitla

1

 $\eta_{\rm vit} = 0.97 - {\rm stupanj}$ korisnosti mehanizma za vožnju vitla

 $v_v = 0,247 \text{ m/s} - \text{brzina vožnje vitla}$

 $\omega_{\rm EM} = 148.7 \text{ s}^{-1} - \text{kutna brzina elektromotora}$

 $t_p = 4 \text{ s} - \text{odabrano vrijeme pokretanja mehanizma za vožnju vitla}$

Uvrštavanjem dobivenih momenata u izraz (9.15) dobiva se potrebni moment pokretanja elektromotora:

$$M_{\rm p} = 7,38 + 4,71 = 12,09 \text{ Nm}$$
 (9.18)

Nominalni moment elektromotora iznosi:

$$M_{\rm n} = \frac{P}{\omega_{\rm EM}} = \frac{0,55 \cdot 10^3}{148,7} = 3,70 \text{ Nm}$$
 (9.19)

Slijedi da je odnos momenta pokretanja i nominalnog momenta oba elektromotora jednak:

$$\frac{M_{\rm p}}{2 \cdot M_{\rm n}} = \frac{12,09}{2 \cdot 3,7} = 1,63 < 1,7...2$$
(9.20)

iz čega se zaključuje da odabrani elektromotor zadovoljava.

9.2.2 Provjera elektromotora obzirom na proklizavanje kotača

Provjerom elektromotora obzirom na proklizavanje treba tvrditi da li postoji mogućnost u kojoj je najveća pogonska sila na kotaču, koja se javlja kod momenta pokretanja M_p , veća od

sile koja se može prenijeti s kotača na tračnicu. Provjera proklizavanja vrši se za slučaj najmanje sile adhezije, odnosno za slučaj neopterećenog vitla gdje se u obzir uzima samo težina pomičnog bloka i sklopa vitla.

Faktor β_v sada se može izračunati jer je poznat moment inercije rotora elektromotora:

$$\beta_{v} = 1 + \frac{\beta \cdot J_{EM}}{m_{pb} + m_{v}} \left(\frac{\omega_{EM}}{v_{v}}\right)^{2} \cdot \eta_{vit}$$

$$\beta_{v} = 1 + \frac{1, 2 \cdot 1, 49 \cdot 10^{-3}}{1065 + 5920} \cdot \left(\frac{148, 7}{0, 247}\right)^{2} \cdot 0,97 \qquad (9.21)$$

$$\beta_{v} = 1,09$$

Adhezijska težina koja otpada na pogonske kotače za slučaj vitla bez tereta iznosi:

$$G_{\rm a} = F_{\rm C}^{\rm G} + F_{\rm D}^{\rm G} = 21592 + 21592 = 43184 \text{ N}$$
 (9.22)

Otpor ustaljenje vožnje nepogonskih kotača za slučaj vitla bez tereta iznosi:

$$W_{\rm vk} = \left(F_{\rm R}^{\rm G} + F_{\rm U}^{\rm G}\right) \cdot f_{\rm e} = \left(12669 + 12669\right) \cdot 0,01 = 253 \text{ N}$$
(9.23)

Koeficijent adhezije za suhe tračnice u zatvorenom prostoru prema [12] iznosi $\mu_a = 0,2$. Minimalno vrijeme pokretanja vitla bez tereta iznosi:

$$t_{\min} = 1, 2 \cdot \left(\frac{\beta_{v} \cdot \left(m_{pb} + m_{v} \right) \cdot v_{v}}{\mu_{a} \cdot G_{a} - W_{vk}} \right) = 1, 2 \cdot \left(\frac{1,09 \cdot \left(1065 + 5920 \right) \cdot 0,247}{0,2 \cdot 43184 - 253} \right) = 0,27 \text{ s}$$
(9.24)

Inercija rotacijskih i translacijskih masa za slučaj pokretanja vitla bez tereta iznosi:

$$J_{uk} = J_{rot} + J_{tr} = \beta \cdot J_{EM} + \frac{\left(m_{pb} + m_{v}\right)}{\eta_{vit}} \left(\frac{\nu_{v}}{\omega_{EM}}\right)^{2}$$
$$J_{uk} = 1, 2 \cdot 1, 49 \cdot 10^{-3} + \frac{\left(1065 + 5920\right)}{0,97} \left(\frac{0,247}{148,7}\right)^{2}$$
$$J_{uk} = 0,0217 \text{ kgm}^{2}$$
(9.25)

Otpor ustaljene vožnje za slučaj vožnje vitla bez tereta iznosi:

$$W_{\rm v} = \left(m_{\rm pb} + m_{\rm v}\right) \cdot g \cdot f_{\rm e} = \left(1065 + 5920\right) \cdot 9,81 \cdot 0,01 = 685 \text{ N}$$
(9.26)

Moment potreban za ustaljenu vožnju iznosi:

$$M_{\rm st} = \frac{W_{\rm v}}{\eta_{\rm vit}} \cdot \frac{v_{\rm v}}{\omega_{\rm EM}} = \frac{685}{0.97} \cdot \frac{0.247}{148.7} = 1,17 \text{ Nm}$$
(9.27)

Moment pokretanja kojim bi se vitlo ubrzalo u vremenu t_{min} iznosi:

$$M_{\rm p} = J_{\rm uk} \cdot \frac{\omega_{\rm EM}}{t_{\rm min}} + M_{\rm st} = 0,0217 \cdot \frac{148,7}{0,27} + 1,17 = 13,12 \text{ Nm}$$
(9.28)

Srednji moment pokretanja dvaju odabranih elektromotora jednak je:

$$M_{\rm p,sr} \cong 2 \cdot (1, 5 \cdot M_{\rm n}) = 2 \cdot (1, 5 \cdot 3, 70) = 11,1 \text{ Nm}$$
 (9.29)

Kako je srednji moment pokretanja elektromotora $M_{p,sr}$ manji od momenta pokretanja M_p , odnosno vrijedi izraz:

$$M_{\rm p,sr} = 11,1 \,\mathrm{Nm} < M_{\rm p} = 13,12 \,\,\mathrm{Nm}$$
 (9.30)

neće doći do proklizavanja kotača.

9.2.3 Provjera kočnice elektromotora

Potrebni moment kočenja $M_{k_{potr}}$ iznosi:

$$M_{k_potr} = \eta_{ko\check{c}} \cdot m_{tr,v} \cdot g \cdot \frac{v_v}{\omega_{EM}} \left(\frac{\beta_v}{g} \cdot \frac{v_v}{t_z} - \frac{f_e}{1000} \right)$$
$$M_{k_potr} = 0,97 \cdot 43924 \cdot 9,81 \cdot \frac{0,247}{148,7} \left(\frac{1,09}{9,81} \cdot \frac{0,247}{2,7} - \frac{0,01}{1000} \right)$$
(9.31)

$$M_{k_{potr}} = 7,05 \text{ Nm}$$

Gdje je:

$$\eta_{\text{koč}} = \left(2 - \frac{1}{\eta_{\text{vit}}}\right) = \left(2 - \frac{1}{0,97}\right) = 0,97$$
 - iskoristivost mehanizma za vožnju vitla kod kočenja

 $m_{\rm tr,v} = 43924 \text{ kg} - \text{ukupna translacijska masa vitla}$

 $v_v = 0,247 \text{ m/s} - \text{brzina vožnje vitla}$

 $\omega_{\rm EM} = 148.7 \text{ s}^{-1} - \text{kutna brzina elektromotora}$

 $\beta_v = 1,09 - faktor kojim se uzima u obzir ubrzavanje rotacijskih masa$

$$t_z = \frac{\beta_v \cdot v_v}{g \cdot f_e} = \frac{1,09 \cdot 0,247}{9,81 \cdot 0,01} = 2,7 \text{ s-potrebno vrijeme zaustavljanja vitla bez kočenja}$$

 $f_e = 0,01$ - ekvivalentni koeficijent otpora vožnje za kotače s valjnim ležajevima Ukupni moment kočenja dvaju ugrađenih kočnica iznosi:

$$M_{\rm k,EM} = 2 \cdot M_{\rm k} = 2 \cdot 7,6 = 15,2 \text{ Nm}$$
 (9.32)

Budući da je raspoloživi moment kočenja ugrađenih kočnica veći od potrebnog momenta kočenja, odnosno $M_{k_EM} = 15,2 \text{ Nm} > M_{k_potr} = 7,05 \text{ Nm}$, odabrana kočnica zadovoljava.

10. PRORAČUN NOSIVE KONSTRUKCIJE MOSNOG GRANIKA

Na slici 45. prikazana je konstrukcijska izvedba nosive konstrukcije mosnog granika koju čine dva glavan i dva čeona nosača. I glavni i čeoni nosači izrađeni su od zatvorenih kutijastih profila. Duž glavnih nosača postavljene su tračnice za vožnju vitla, a na krajevima tračnica nalaze se graničnici.

Slika 45. Konstrukcijska izvedba nosive konstrukcije mosnog granika

Nosiva konstrukcija mosnog granika opterećena je pokretnim opterećenjem (težina vitla i tereta), te kontinuiranim opterećenjem (vlastita težina). U nastavku će se odabrati odgovarajući kutijasti profili glavnog i čeonog nosača, te će se provesti proračun čvrstoće i krutosti nosača.

10.1 Glavni nosač mosta

10.1.1 Dimenzioniranje presjeka glavnog nosača

Na slici 46. dane su osnovne mjere i dimenzije kutijastog profila glavnog nosača mosta.

Slika 46. Kutijasti profil glavnog nosača mosta

Aksijalni moment tromosti presjeka odabranog kutijastog profila oko osi y iznosi:

$$I_{y} = \left(\frac{650 \cdot 1000^{3}}{12} - \frac{650 \cdot 964^{3}}{12}\right) + \left(\frac{600 \cdot 964^{3}}{12} - \frac{576 \cdot 964^{3}}{12}\right) = 7433609888 \text{ mm}^{4} \quad (10.1)$$

Najveća udaljenost presjeka od promatrane osi y jednaka je:

$$z = \frac{1000}{2} = 500 \text{ mm} \tag{10.2}$$

Površina poprečnog presjeka razmatranog presjeka iznosi:

$$A = 46536 \text{ mm}^2$$
 (10.3)

Kontinuirano opterećenje uslijed vlastite težine glavnog nosača mosta iznosi:

$$q_{\rm GN} = \rho \cdot A \cdot g = 7850 \cdot \frac{46536}{10^6} \cdot 9,81 = 3584 \frac{\rm N}{\rm m} = 3,584 \frac{\rm N}{\rm mm}$$
 (10.4)

Gdje je:

 $\rho = 7850 \text{ kg/m}^3 - \text{gustoća čelika}$

 $A = 46536 \text{ mm}^2 - \text{površina poprečnog presjeka glavnog nosača}$

10.1.2 Provjera čvrstoće glavnog nosača

Na slici 47. prikazan je statički model glavnog nosača mosnog granika te opterećenje nosača uslijed djelovanja težine vitla i tereta (sile F_1 i F_2) kao i opterećenje uslijed djelovanja vlastite težine glavnog nosača (kontinuirano opterećenje q_{GN}). Kod proračuna čvrstoće i krutosti glavnog nosača razmatran je najnepovoljniji položaj kada se dva vitla nalaze na najmanjoj

mogućoj međusobnoj udaljenosti od 6 m i to za slučaj kada su oba vitla podjednako udaljena od sredine nosača, odnosno točke C.

Slika 47. Statički model glavnog nosača mosta i pripadni dijagrami opterećenja

Opterećenje silom F_1 odgovara ukupnom opterećenju pogonskih kotača vitla:

$$F_1 = F_{C,uk} = F_{D,uk} = 206354 \text{ N}$$
(10.5)

Opterećenje silom F₂ odgovara ukupnom opterećenju nepogonskih kotača vitla:

$$F_2 = F_{\rm R,uk} = F_{\rm U,uk} = 88450 \text{ N}$$
(10.6)

Jednadžbama statičke ravnoteže mogu se dobiti reaktivne sile u osloncima A i B. Budući da sve sile koje opterećuju razmatrani nosač djeluju simetrično s obzirom na točku C, vrijedi:

$$F_{\rm A} = F_{\rm B} = \frac{F_2 + F_1 + q_{\rm GN} \cdot l + F_1 + F_2}{2}$$

$$F_{\rm A} = F_{\rm B} = \frac{88450 + 206354 + 3,584 \cdot 15000 + 206354 + 88450}{2}$$

$$F_{\rm A} = F_{\rm B} = 321684 \text{ N}$$
(10.7)

Nakon što su poznate reaktivne sile u osloncima A i B može se izračunati vrijednost najvećeg momenta savijanja na sredini nosača:

$$M_{\rm v} = 1403227711 \,\,{\rm Nmm}$$
 (10.8)

Prema tome, savojno naprezanje glavnog nosača iznosi:

$$\sigma = \frac{M_y}{I_y} \cdot z = \frac{1403227711}{7433609888} \cdot 500 = 94,38 \frac{N}{mm^2}$$
(10.9)

Fakultet strojarstva i brodogradnje

Glavni nosač izrađen je od konstrukcijskog čelika oznake RSt 37-2 čija trajna dinamička čvrstoća za istosmjerno savojno (fleksijsko) opterećenje prema [13] iznosi $\sigma_{fDI} = 260 \text{ N/mm}^2$. Prema tome, dopušteno naprezanje glavnog nosača mosta iznosi:

$$\sigma_{\rm dop} = \frac{\sigma_{\rm fDI}}{S} = \frac{260}{2} = 130 \ \frac{\rm N}{\rm mm^2} \tag{10.10}$$

Kako je najveće savojno naprezanje glavnog nosača mosta manje od dopuštenog naprezanja, odabrani kutijasti profil zadovoljava proračun čvrstoće.

10.1.3 Provjera krutosti glavnog nosača

Ukupni progib glavnog nosača izračunat će se na način da će se zasebno analizirati progib nosača uslijed djelovanja dvaju sila F_1 , zatim uslijed djelovanja dvaju sila F_2 , te konačno uslijed djelovanja vlastite težine nosača. Zbrajanjem dobivenih progiba na sredini nosača, odnosno u točki C dobit će se ukupni progib glavnog nosača mosta koji mora biti manji od dopuštene vrijednosti.

Progib glavnog nosača uslijed djelovanja dvaju sila F₁

Slika 48. Progib glavnog nosača uslijed djelovanja dvaju sila F_1

Progib glavnog nosača uslijed djelovanja dvaju sila F_1 izračunava se prema izrazu [15]:

$$w_{\rm C}^{\rm F_{\rm I}} = \frac{F_{\rm I} \cdot a}{24 E I_{\rm y}} \left(3l^2 - 4a^2 \right)$$
$$w_{\rm C}^{\rm F_{\rm I}} = \frac{206354 \cdot 4934}{24 \cdot 210000 \cdot 7433609888} \left(3 \cdot 15000^2 - 4 \cdot 4934^2 \right)$$
(10.11)
$$w_{\rm C}^{\rm F_{\rm I}} = 15,70 \text{ mm}$$

Gdje je:

l = 15000 mm – dužina promatranog nosača

a = 4934 mm - udaljenost dvaju sila F_1 od oslonaca A i B

 $E = 210000 \text{ N/mm}^2 - \text{modul elastičnosti čelika}$

 $I_y = 7433609888 \text{ mm}^4 - \text{moment tromosti presjeka nosača}$

Progib glavnog nosača uslijed djelovanja dvaju sila F_2

Slika 49. Progib glavnog nosača uslijed djelovanja dvaju sila F_2

Progib glavnog nosača uslijed djelovanja dvaju sila F_2 izračunava se prema izrazu [15]:

$$w_{\rm C}^{\rm F_2} = \frac{F_2 \cdot a}{24 E I_y} \left(3l^2 - 4a^2 \right)$$
$$w_{\rm C}^{\rm F_2} = \frac{88450 \cdot 3214}{24 \cdot 210000 \cdot 7433609888} \left(3 \cdot 15000^2 - 4 \cdot 3214^2 \right)$$
(10.12)
$$w_{\rm C}^{\rm F_2} = 4,81 \text{ mm}$$

Gdje je:

 $a = 3214 \text{ mm} - \text{udaljenost} \text{ dvaju sila } F_2 \text{ od oslonaca A i B}$

Progib glavnog nosača uslijed djelovanja njegove vlastite težine

Slika 50. Progib glavnog nosača uslijed djelovanja kontinuiranog opterećenja q_{GN}

Progib glavnog nosača uslijed djelovanja kontinuiranog opterećenja q_{GN} dobiva se iz sljedećeg izraza [15]:

$$w_{\rm C}^{\rm q_{\rm GN}} = \frac{5}{384} \cdot \frac{q \cdot l^4}{EI_{\rm v}} = \frac{5}{384} \cdot \frac{3,584 \cdot 15000^4}{210000 \cdot 7433609888} = 1,51 \,\,\rm{mm}$$
(10.13)

Ukupni progib glavnog nosača

Ukupni progib glavnog nosača u točki C dobiva se zbrajanjem prethodno dobivenih progiba. Prema tome, najveći progib razmatranog nosača iznosi:

$$w_{\rm C} = w_{\rm C}^{\rm F_1} + w_{\rm C}^{\rm F_2} + w_{\rm C}^{\rm q_{\rm GN}} = 15,70 + 4,81 + 1,51 = 22,02 \text{ mm}$$
 (10.14)

Dopušteni progib glavnog nosača mosta iznosi:

$$w_{\rm dop} = \frac{l}{600} = \frac{15000}{600} = 25 \text{ mm}$$
 (10.15)

Kako je ukupni progib glavnog nosača mosta manji od dopuštenog progiba, odabrani kutijasti profil zadovoljava proračun krutosti.

10.1.4 Provjera stabilnost limova glavnog nosača

Dijelovi limova tankostjenih nosača, tlačno opterećenih, mogu kod prevelikih tlačnih naprezanja izgubiti svoju lokalnu stabilnost izbacivanjem lima iz njegove ravnine, stoga je potrebno provesti provjeru stabilnosti limova nosača. Stabilnost limova provjerit će se na sredini glavnog nosača gdje je normalno naprezanje σ najveće, a tangencijalno naprezanje τ zanemarivo malo. Skica proračunskog elementa prikazana je na slici u nastavku.

Slika 51. Skica proračunskog elementa glavnog nosača

Normalna naprezanja σ_1 i σ_2 iznose:

$$\sigma_1 = -\frac{M_y}{I_y} \cdot \frac{b}{2} = -\frac{1403227711}{7433609888} \cdot \frac{964}{2} = -90,99 \frac{N}{mm^2} = -9,10 \frac{kN}{cm^2}$$
(10.16)

$$\sigma_2 = \frac{M_y}{I_y} \cdot \frac{b}{2} = \frac{1403227711}{7433609888} \cdot \frac{964}{2} = 90,99 \frac{N}{mm^2} = 9,10 \frac{kN}{cm^2}$$
(10.17)

Tangencijalno naprezanje τ jednako je nuli jer je poprečna sila Q na sredini glavnog nosača jednaka nuli.

Odnos naprezanja za razmatrani slučaj iznosi:

$$\psi = \frac{\sigma_2}{\sigma_1} = \frac{9,10}{-9,10} = -1 \tag{10.18}$$

Potrebna sigurnost S_{BN} za proračunsko opterećenje I (A) tada iznosi:

$$S_{\rm BN} = 1,71+0,18(\psi-1) = 1,71+0,18(-1-1) = 1,35$$
(10.19)

Ekvivalentno naprezanje iznosi:

Diplomski rad

$$\sigma_{\rm ekv} = \sqrt{\sigma_1^2 + 3 \cdot \tau^2} = \sqrt{\left(-9, 10\right)^2 + 3 \cdot 0^2} = 9,10 \,\frac{\rm kN}{\rm cm^2} \tag{10.20}$$

Vitkost lima iznosi:

$$\lambda_{\rm bt} = \frac{b}{t} = \frac{964}{12} = 80,33 \tag{10.21}$$

Gdje je:

t = 12 mm - debljina stojnog lima kutijastog profila glavnog nosača Eulerovo kritično naprezanje računa se iz izraza:

$$\sigma_{\rm E} = \left(\frac{137,7}{\lambda_{\rm bt}}\right)^2 = \left(\frac{137,7}{80,33}\right)^2 = 2,938 \,\frac{\rm kN}{\rm cm^2} \tag{10.22}$$

Omjer dužine i visine razmatranog proračunskog elementa (pravokutnog polja) iznosi:

$$\alpha = \frac{a}{b} = \frac{1375}{964} = 1,43 \tag{10.23}$$

Gdje je:

a = 1375 mm - dužina proračunskog elementa

b = 964 mm - visina proračunskog elementa

Za izračunati odnos naprezanja ψ i omjer α , faktor nestabilnosti od normalnog naprezanja k_{σ} prema dijagramu na slici 52. iznosi:

$$k_{\sigma} = 23,9$$
 (10.24)

Slika 52. Faktor nestabilnosti k_{σ} za $\alpha \ge 1, -1 \le \psi \le 0$ [24]

Faktor nestabilnosti od tangencijalnog naprezanja k_{τ} za $\alpha \ge 1$ prema [24] iznosi:

$$k_{\tau} = 5,34 + \frac{4}{\alpha^2} = 5,34 + \frac{4}{1,43^2} = 7,3$$
 (10.25)

Karakteristično naprezanje ploče iznosi:

$$\sigma_{k\psi} = \frac{1+\psi}{4} \cdot \frac{\sigma_{1}}{k_{\sigma}} + \sqrt{\left(\frac{3-\psi}{4} \cdot \frac{\sigma_{1}}{k_{\sigma}}\right)^{2} + \left(\frac{\tau}{k_{\tau}}\right)^{2}}$$

$$\sigma_{k\psi} = \frac{1+(-1)}{4} \cdot \frac{(-9,10)}{23,9} + \sqrt{\left(\frac{3-(-1)}{4} \cdot \frac{(-9,10)}{23,9}\right)^{2} + \left(\frac{0}{7,3}\right)^{2}}$$

$$\sigma_{k\psi} = 0,381 \frac{kN}{cm^{2}}$$
(10.26)

Idealno usporedno naprezanje jednako je:

$$\sigma_{\rm ui} = \sigma_{\rm E} \cdot \frac{\sigma_{\rm ekv}}{\sigma_{\rm k\psi}} = 2,938 \cdot \frac{9,10}{0,381} = 70,17 \,\frac{\rm kN}{\rm cm^2} \tag{10.27}$$

Odnos naprezanja κ_i iznosi:

$$\kappa_{\rm i} = \frac{\sigma_{\rm ui}}{R_{\rm e}} = \frac{70,17}{23,5} = 2,99$$
(10.28)

Gdje je:

 $R_{\rm e} = 235 \text{ N/mm}^2 = 23,5 \text{ kN/cm}^2 - \text{granica tečenja za čelik RSt 37-2 prema [18]}$ Faktor $f_{\rm i}$ za $\kappa_{\rm i} > 0,8$ izračunava se iz sljedećeg izraza:

$$f_{i} = \frac{20 \cdot \kappa_{i} + \sqrt{25 \cdot \kappa_{i}^{2} - 15}}{1 + 25 \cdot \kappa_{i}^{2}} = \frac{20 \cdot 2,99 + \sqrt{25 \cdot 2,99^{2} - 15}}{1 + 25 \cdot 2,99^{2}} = 0,33$$
(10.29)

Faktor sigurnosti od izbacivanja lima tada iznosi:

$$S_{\rm B} = f_{\rm i} \cdot \frac{\sigma_{\rm ui}}{\sigma_{\rm ekv}} = 0,33 \cdot \frac{70,17}{9,10} = 2,55 > S_{\rm BN} = 1,35$$
(10.30)

Granična vitkost lima iznosi:

$$\left(\frac{b}{t}\right)_{\rm gr} = 137, 7 \cdot \sqrt{\frac{f_{\rm i}}{S_{\rm BN} \cdot \sigma_{\rm k\psi}}} = 137, 7 \cdot \sqrt{\frac{0,33}{1,35 \cdot 0,381}} = 110,30 > \frac{b}{t} = 80,33 \tag{10.31}$$

Na temelju izraza (10.31) i (10.32) može se zaključiti da je stabilnost limova glavnog nosača zadovoljavajuća.

10.2 Čeoni nosač mosta

10.2.1 Dimenzioniranje presjeka čeonog nosača

Na slici koja slijedi dane su osnovne mjere i dimenzije kutijastog profila čeonog nosača mosta.

Slika 53. Kutijasti profil čeonog nosača mosta

Aksijalni moment tromosti presjeka odabranog kutijastog profila oko osi y iznosi:

$$I_{y} = \left(\frac{350 \cdot 700^{3}}{12} - \frac{350 \cdot 684^{3}}{12}\right) + \left(\frac{300 \cdot 684^{3}}{12} - \frac{284 \cdot 684^{3}}{12}\right) = 1097124139 \text{ mm}^{4} \quad (10.32)$$

Najveća udaljenost presjeka od promatrane osi y jednaka je:

$$z = \frac{700}{2} = 350 \text{ mm}$$
(10.33)

Površina poprečnog presjeka razmatranog presjeka iznosi:

$$A = 16544 \text{ mm}^2$$
 (10.34)

Kontinuirano opterećenje uslijed vlastite težine čeonog nosača mosta iznosi:

$$q_{\rm \check{C}N} = \rho \cdot A \cdot g = 7850 \cdot \frac{16544}{10^6} \cdot 9,81 = 1274 \frac{\rm N}{\rm m} = 1,274 \frac{\rm N}{\rm mm}$$
(10.35)

Gdje je:

 $ho = 7850 \text{ kg/m}^3 - \text{gustoća čelika}$

 $A = 16544 \text{ mm}^2 - \text{površina poprečnog presjeka čeonog nosača}$

10.2.2 Provjera čvrstoće čeonog nosača

Na slici u nastavku prikazan je statički model čeonog nosača mosnog granika te opterećenje nosača uslijed djelovanja težine tereta i vlastite težine glavnog nosača (dvije sile *F*) kao i opterećenje uslijed djelovanja vlastite težine čeonog nosača (kontinuirano opterećenje q_{CN}).

Slika 54. Statički model čeonog nosača mosta i pripadni dijagrami opterećenja

Opterećenje silom F odgovara reakcijama u osloncima A i B glavnog nosača mosta koje su prethodno izračunate:

$$F = F_{\rm A} = F_{\rm B} = 321684 \text{ N} \tag{10.36}$$

Jednadžbama ravnoteže dobivaju se reaktivne sile u osloncima čeonog nosača. Budući da sve sile koje opterećuju razmatrani nosač djeluju simetrično s obzirom na točku G, vrijedi:

$$F_{\rm D} = F_{\rm E} = \frac{F + q_{\rm CN} \cdot l + F}{2}$$

$$F_{\rm D} = F_{\rm E} = \frac{321684 + 1,274 \cdot 4300 + 321684}{2}$$

$$F_{\rm D} = F_{\rm E} = 324423 \text{ N}$$
(10.37)

Nakon što su poznate reaktivne sile u osloncima D i E može se izračunati vrijednost najvećeg momenta savijanja na sredini nosača:

$$M_{\rm v} = 236486891 \,\rm Nmm$$
 (10.38)

Prema tome, savojno naprezanje čeonog nosača iznosi:

$$\sigma = \frac{M_y}{I_y} \cdot z = \frac{236486891}{1097124139} \cdot 350 = 75,44 \frac{\text{N}}{\text{mm}^2}$$
(10.39)

Čeoni nosač također je izrađen od konstrukcijskog čelika oznake RSt 37-2 čija trajna dinamička čvrstoća za istosmjerno savojno (fleksijsko) opterećenje prema [13] iznosi $\sigma_{fDI} = 260 \text{ N/mm}^2$, tako da dopušteno naprezanje čeonog nosača mosta iznosi:

$$\sigma_{\rm dop} = \frac{\sigma_{\rm fDI}}{S} = \frac{260}{2} = 130 \,\frac{\rm N}{\rm mm^2} \tag{10.40}$$

Savojno naprezanje čeonog nosača mosta manje je od dopuštenog naprezanja, stoga odabrani kutijasti profil zadovoljava proračun čvrstoće.

10.2.3 Provjera krutosti čeonog nosača

Kao i u slučaju glavnog nosača, ukupni progib čeonog nosača izračunat će se na način da će se zasebno analizirati progib uslijed djelovanja dvaju sila *F*, te progib uslijed djelovanja vlastite težine nosača. Zbrajanjem dobivenih progiba na sredini nosača dobit će se ukupni progib čeonog nosača mosta koji mora biti manji od dopuštene vrijednosti.

Progib čeonog nosača uslijed djelovanja dvaju sila F

Slika 55. Progib čeonog nosača uslijed djelovanja dvaju sila F

Progib čeonog nosača uslijed djelovanja dvaju sila F izračunava se iz sljedećeg izraza [15]:

$$w_{\rm G}^{\rm F} = \frac{F \cdot a}{24EI_{\rm y}} \left(3l^2 - 4a^2\right)$$
$$w_{\rm G}^{\rm F} = \frac{321684 \cdot 726}{24 \cdot 210000 \cdot 1097124139} \left(3 \cdot 4300^2 - 4 \cdot 726^2\right)$$
(10.41)
$$w_{\rm G}^{\rm F} = 2,25 \text{ mm}$$

Gdje je:

l = 4300 mm - dužina promatranog nosača

a = 726 mm - udaljenost dvaju sila F od oslonaca D i E

 $E = 210000 \text{ N/mm}^2 - \text{modul elastičnosti čelika}$

 $I_y = 1097124139 \text{ mm}^4 - \text{moment tromosti presjeka nosača}$

Progib čeonog nosača uslijed djelovanja njegove vlastite težine

Slika 56. Progib čeonog nosača uslijed djelovanja kontinuiranog opterećenja q_{CN}

Progib čeonog nosača uslijed djelovanja kontinuiranog opterećenja q_{CN} dobiva se iz sljedećeg izraza [15]:

$$w_{\rm G}^{\rm q_{\rm CN}} = \frac{5}{384} \cdot \frac{q \cdot l^4}{EI_{\rm v}} = \frac{5}{384} \cdot \frac{1,274 \cdot 4300^4}{210000 \cdot 1097124139} = 0,03 \text{ mm}$$
(10.42)

Ukupni progib čeonog nosača

Ukupni progib čeonog nosača u točki G dobiva se zbrajanjem prethodno dobivenih progiba. Prema tome, najveći progib razmatranog nosača iznosi:

$$w_{\rm G} = w_{\rm G}^{\rm F} + w_{\rm G}^{\rm q_{\rm cN}} = 2,25 \pm 0,03 = 2,28 \text{ mm}$$
 (10.43)

Dopušteni progib čeonog nosača mosta računa se iz sljedećeg izraza:

$$w_{\rm dop} = \frac{l}{600} = \frac{4300}{600} = 7,17 \,\rm{mm}$$
 (10.44)

Kako je ukupni progib čeonog nosača mosta manji od dopuštenog progiba, odabrani kutijasti profil zadovoljava proračun krutosti.

10.2.4 Provjera stabilnosti limova čeonog nosača

Stabilnost limova provjerit će se također i na krajevima čeonog nosača mosta, odnosno na prvom proračunskom elementu između prvog i drugog poprečnog ukrućenja gdje je normalno naprezanje σ relativno malo, dok tangencijalno naprezanje τ dolazi više do izražaja. Moment savijanja na mjestu prvog poprečnog ukrućenja iznosi $M_y = 204133545$ Nmm, dok je poprečna sila na mjestu prvog ukrućenja jednaka Q = 323620 N. Skica proračunskog elementa prikazana je na slici u nastavku.

Diplomski rad

Slika 57. Skica proračunskog elementa čeonog nosača

Normalna naprezanja σ_1 i σ_2 iznose:

$$\sigma_{1} = -\frac{M_{y}}{I_{y}} \cdot \frac{b}{2} = -\frac{204133545}{1097124139} \cdot \frac{684}{2} = -63,63 \frac{N}{mm^{2}} = -6,36 \frac{kN}{cm^{2}}$$
(10.45)

$$\sigma_2 = \frac{M_y}{I_y} \cdot \frac{b}{2} = \frac{204133545}{1097124139} \cdot \frac{684}{2} = 63,63 \frac{N}{mm^2} = 6,36 \frac{kN}{cm^2}$$
(10.46)

Tangencijalno naprezanje τ računa se prema sljedećem izrazu:

$$\tau \cong \frac{Q}{b \cdot t} = \frac{323620}{684 \cdot 8} = 59,14 \frac{N}{mm^2} = 5,91 \frac{kN}{cm^2}$$
(10.47)

Gdje je:

 $t=8~\mathrm{mm}-\mathrm{debljina}$ stojnog lima kutijastog profila če
onog nosača

Odnos naprezanja za razmatrani slučaj iznosi:

$$\psi = \frac{\sigma_2}{\sigma_1} = \frac{6,36}{-6,36} = -1 \tag{10.48}$$

Potrebna sigurnost S_{BN} za proračunsko opterećenje I (A) tada iznosi:

$$S_{\rm BN} = 1,71+0,18(\psi-1) = 1,71+0,18(-1-1) = 1,35$$
(10.49)

Ekvivalentno naprezanje iznosi:

$$\sigma_{\rm ekv} = \sqrt{\sigma_1^2 + 3 \cdot \tau^2} = \sqrt{\left(-6, 36\right)^2 + 3 \cdot 5, 91^2} = 12,05 \,\frac{\rm kN}{\rm cm^2} \tag{10.50}$$

Vitkost lima iznosi:

$$\lambda_{\rm bt} = \frac{b}{t} = \frac{684}{8} = 85,5 \tag{10.51}$$

Eulerovo kritično naprezanje računa se iz izraza:

$$\sigma_{\rm E} = \left(\frac{137,7}{\lambda_{\rm bt}}\right)^2 = \left(\frac{137,7}{85,5}\right)^2 = 2,594 \,\frac{\rm kN}{\rm cm^2} \tag{10.52}$$

Omjer dužine i visine razmatranog proračunskog elementa (pravokutnog polja) iznosi:

$$\alpha = \frac{a}{b} = \frac{1000}{684} = 1,46\tag{10.53}$$

Gdje je:

a = 1000 mm - dužina proračunskog elementa

b = 684 mm - visina proračunskog elementa

Za izračunati odnos naprezanja ψ i omjer α , faktor nestabilnosti od normalnog naprezanja k_{σ} prema dijagramu na slici 52. iznosi:

$$k_{\sigma} = 23,9$$
 (10.54)

Faktor nestabilnosti od tangencijalnog naprezanja k_{τ} za $\alpha \ge 1$ prema [24] iznosi:

$$k_{\tau} = 5,34 + \frac{4}{\alpha^2} = 5,34 + \frac{4}{1,46^2} = 7,2$$
 (10.55)

Karakteristično naprezanje ploče dobiva se iz izraza:

$$\sigma_{k\psi} = \frac{1+\psi}{4} \cdot \frac{\sigma_{1}}{k_{\sigma}} + \sqrt{\left(\frac{3-\psi}{4} \cdot \frac{\sigma_{1}}{k_{\sigma}}\right)^{2} + \left(\frac{\tau}{k_{\tau}}\right)^{2}}$$

$$\sigma_{k\psi} = \frac{1+(-1)}{4} \cdot \frac{(-6,36)}{23,9} + \sqrt{\left(\frac{3-(-1)}{4} \cdot \frac{(-6,36)}{23,9}\right)^{2} + \left(\frac{5,91}{7,2}\right)^{2}}$$

$$\sigma_{k\psi} = 0,863 \frac{kN}{cm^{2}}$$
(10.56)

Idealno usporedno naprezanje jednako je:

$$\sigma_{\rm ui} = \sigma_{\rm E} \cdot \frac{\sigma_{\rm ekv}}{\sigma_{\rm kw}} = 2,594 \cdot \frac{12,05}{0,863} = 36,22 \frac{\rm kN}{\rm cm^2}$$
(10.57)

Odnos naprezanja κ_i iznosi:

$$\kappa_{\rm i} = \frac{\sigma_{\rm ui}}{R_{\rm e}} = \frac{36,22}{23,5} = 1,54$$
(10.58)

Gdje je:

 $R_{\rm e} = 235 \text{ N/mm}^2 = 23,5 \text{ kN/cm}^2 - \text{granica tečenja za čelik RSt 37-2 prema [18]}$ Faktor $f_{\rm i}$ za $\kappa_{\rm i} > 0,8$ izračunava se iz sljedećeg izraza:

$$f_{i} = \frac{20 \cdot \kappa_{i} + \sqrt{25 \cdot \kappa_{i}^{2} - 15}}{1 + 25 \cdot \kappa_{i}^{2}} = \frac{20 \cdot 1,54 + \sqrt{25 \cdot 1,54^{2} - 15}}{1 + 25 \cdot 1,54^{2}} = 0,62$$
(10.59)

Fakultet strojarstva i brodogradnje

Faktor sigurnosti od izbacivanja lima tada iznosi:

$$S_{\rm B} = f_{\rm i} \cdot \frac{\sigma_{\rm ui}}{\sigma_{\rm ekv}} = 0,62 \cdot \frac{36,22}{12,05} = 1,86 > S_{\rm BN} = 1,35$$
(10.60)

Granična vitkost lima iznosi:

$$\left(\frac{b}{t}\right)_{\rm gr} = 137, 7 \cdot \sqrt{\frac{f_{\rm i}}{S_{\rm BN} \cdot \sigma_{\rm k\psi}}} = 137, 7 \cdot \sqrt{\frac{0,62}{1,35 \cdot 0,863}} = 100, 45 > \frac{b}{t} = 85,5 \tag{10.61}$$

Na temelju izraza (10.60) i (10.61) može se zaključiti da je stabilnost limova čeonog nosača zadovoljavajuća.

10.3 Proračun zavarenog spoja glavnog i čeonog nosača

Glavni i čeoni nosač mosnog granika spojeni su zavarivanjem na način prikazan na slici 58.

Slika 58. Obuhvatni spoj glavnog i čeonog nosača u zavarenoj izvedbi

10.3.1 Veza 1

Ova veza prenosi poprečnu silu Q koja je jednaka reaktivnoj sili u osloncu glavnog nosača. Dakle, vrijedi:

$$Q = F_{\rm A} = F_{\rm B} = 321684 \text{ N}$$
(10.62)

Tangencijalno naprezanje u vezi 1 tada iznosi:

$$\tau_{\parallel} = \frac{Q}{2 \cdot a \cdot l_1} = \frac{321684}{2 \cdot 5 \cdot 600} = 53,61 \frac{N}{mm^2}$$
(10.63)

Gdje je:

a = 5 mm - debljina zavara

 $l_1 = 600 \text{ mm} - \text{duljina zavara}$

Ekvivalentno naprezanje prema ISO-hipotezi tada iznosi:

$$\sigma_{\rm ekv} = \sqrt{1,8\cdot\tau_{\parallel}^2} = \sqrt{1,8\cdot53,61^2} = 71,93\,\frac{\rm N}{\rm mm^2}$$
(10.64)

Dopušteno naprezanje za čvrstoću spoja za I proračunsko opterećenje i materijal RSt 37-2 iznosi:

$$\sigma_{\rm dop} = \frac{R_{\rm e}}{S} = \frac{235}{1.5} = 157 \,\frac{\rm N}{\rm mm^2} \tag{10.65}$$

Gdje je:

 $R_{\rm e} = 235 \text{ N/mm}^2 - \text{granica tečenja za materijal RSt 37-2 prema [18]}$ S = 1,5 - potrebna sigurnost za I proračunsko opterećenjeDopušteno naprezanje zavara računa se prema izrazu:

Dopusteno naprezanje zavara računa se prema izrazu:

$$\sigma_{z,dop} = \beta \cdot \sigma_{dop} = 0,96 \cdot 157 = 150 \frac{N}{mm^2}$$
 (10.66)

Gdje je:

$$\beta = 0.8 \left(1 + \frac{1}{a_z}\right) = 0.8 \left(1 + \frac{1}{5}\right) = 0.96$$
 - faktor korekcije dopuštenog naprezanja zavara

S obzirom da je ekvivalentno naprezanje zavara manje od dopuštenog naprezanja zavara, odnosno $\sigma_{\text{ekv}} = 71,93 \text{ N/mm}^2 < \sigma_{z,\text{dop}} = 150 \text{ N/mm}^2$, može se zaključiti da odabrane dimenzije zavara zadovoljavaju proračun.

10.3.2 Veza 2

Ova veza prenosi moment savijanja spoja $M_{\rm sp}$, pa vrijedi:

$$M_{\rm sp} = F_{\rm A} \cdot l_{\rm A} = F_2 \cdot h_2 \tag{10.67}$$

Iz prethodnog izraza slijedi:

$$F_2 = F_A \cdot \frac{l_A}{h_2} = 321684 \cdot \frac{150}{700} = 68932 \text{ N}$$
 (10.68)

Fakultet strojarstva i brodogradnje

Gdje je:

 $l_{\rm A} = 150 \text{ mm} - \text{udaljenost zavara od djelovanja hvatišta sile}$

 $h_2 = 700 \text{ mm} - \text{visina}$ čeonog nosača

Ukoliko je ispunjen uvjet:

$$0, 5 \cdot l_3 < l_2 \le 1, 5 \cdot l_3$$

$$0, 5 \cdot 620 < 315 \le 1, 5 \cdot 620$$

$$310 < 315 \le 930$$

(10.69)

Prema Tehničkim propisima za zavarene čelične konstrukcije [25] uzima se da su bočni zavari iskorišteni u potpunosti a čeoni s 1/3 nosivosti. Prema tome, ukupna nosiva površina zavara iznosi:

$$A_{2} = 2 \cdot a \left(l_{2} - 2 \cdot a \right) + \frac{1}{3} \cdot a \left(l_{3} - 2 \cdot a \right)$$

$$A_{2} = 2 \cdot 5 \cdot \left(315 - 2 \cdot 5 \right) + \frac{1}{3} \cdot 5 \cdot \left(620 - 2 \cdot 5 \right)$$

$$A_{2} = 4067 \text{ mm}^{2}$$
(10.70)

Tangencijalno naprezanje bočnog zavara tada iznosi:

$$\tau_{\parallel} = \frac{F_2}{A_2} = \frac{68932}{4067} = 16,95 \frac{\text{N}}{\text{mm}^2} \tag{10.71}$$

Ekvivalentno naprezanje bočnog zavara prema ISO-hipotezi jednako je:

$$\sigma_{\rm ekv} = \sqrt{1.8 \cdot \tau_{\parallel}^2} = \sqrt{1.8 \cdot 16.95^2} = 22,74 \ \frac{\rm N}{\rm mm^2} < \sigma_{\rm z,dop} = 150 \ \frac{\rm N}{\rm mm^2}$$
(10.72)

Ukupno naprezanje čeonog zavara iznosi:

$$\sigma_{z} = \frac{F_{2}}{A_{2}} = \frac{68932}{4067} = 16,95 \frac{N}{mm^{2}}$$
(10.73)

Komponente tog naprezanja su:

$$\sigma_{\perp} = \tau_{\perp} = \frac{\sqrt{2}}{2} \cdot \sigma_{z} = \frac{\sqrt{2}}{2} \cdot 16,95 = 11,99 \frac{N}{mm^{2}}$$
(10.74)

Ekvivalentno naprezanje čeonog zavara prema ISO-hipotezi iznosi:

$$\sigma_{ekv} = \sqrt{\sigma_{\perp}^2 + 1.8 \cdot \tau_{\perp}^2} = \sqrt{11.99^2 + 1.8 \cdot 11.99^2} = 20,06 \frac{N}{mm^2} < \sigma_{z,dop} = 150 \frac{N}{mm^2}$$
(10.75)

Kako su ekvivalentna naprezanja bočnog i čeonog zavara manja od dopuštenog naprezanja zavara, može se zaključiti da odabrane dimenzije zavara zadovoljavaju.

11. ODABIR KOTAČA I POGONA ZA VOŽNJU MOSNOG GRANIKA

Vožnja mosnog granika ostvaruje se preko dva pogonska kotača na koja su izravno pričvršćena dva elektromotora s odgovarajućim reuktorom i kočnicom. Odabir sklopa kotača vršit će se prema katalogu proizvođača *Demag* ovisno o opterećenju kotača.

11.1 Izračun opterećenja i odabir kotača mosnog granika

Da bi se odabrali kotači mosnog granika potrebno je najprije izračunati opterećenje kotača mosnog granika F_k koje je prema DIN 15070 definirano sljedećim izrazom:

$$F_{\rm k} = \frac{F_{\rm k,min} + 2 \cdot F_{\rm k,max}}{3} \tag{11.1}$$

Gdje je:

 $F_{k,min}$ – opterećenje kotača s najvećim dozvoljenim teretom, u najpovoljnijem položaju vitla $F_{k,max}$ – opterećenje kotača s najvećim dozvoljenim teretom, u najnepovoljnijem položaju vitla

Da bi se izračunale tražene veličine $F_{k,min}$ i $F_{k,max}$ u nastavku će se analizirati dva različita slučaja u kojima se vitla nalaze na krajnjim, odnosno ekstremnim položajima.

11.1.1 Opterećenje kotača na strani oslonaca A u najnepovoljnijem položaju vitla

U prvom se slučaju dva vitla, na međusobnom rasponu od 6 m, nalaze u krajnjem lijevom položaju, dakle u situaciji u kojoj su kotači lijevog vitla naslonjeni na graničnik. U takvoj će se situaciji većina opterećenja prenositi na oslonac A pa će dva kotača koja se nalaze na toj strani mosnog granika biti više opterećena od nasuprotna dva. Takav slučaj opterećenja prikazan je na slici 59.

Slika 59. Opterećenje kotača na strani oslonca A u najnepovoljnijem položaju vitla

Postavljanjem jednadžbi ravnoteže dobiva se tražena reaktivna sila u osloncu A:

$$F'_{A} = \frac{F_{2} \cdot 5876 + F_{1} \cdot 7596 + \frac{q_{GN} \cdot l^{2}}{2} + F_{1} \cdot 12728 + F_{2} \cdot 14448}{15000}$$

$$F'_{A} = \frac{88450 \cdot 5876 + 206354 \cdot 7596 + \frac{3,584 \cdot 15000^{2}}{2} + 206354 \cdot 12728 + 88450 \cdot 14448}{15000} (11.2)$$

$$F'_{A} = 426320 \text{ N}$$

Opterećenje kotača u najnepovoljnijem položaju vitla tada iznosi:

$$F_{\rm k,max} = F_{\rm A}' + \frac{q_{\rm \acute{C}N} \cdot l}{2} = 426320 + \frac{1,274 \cdot 4300}{2} = 429059 \text{ N}$$
(11.3)

11.1.2 Opterećenje kotača na strani oslonaca A u najpovoljnijem položaju vitla

U drugom se slučaju dva vitla, također na međusobnom rasponu od 6 m, nalaze u krajnjem desnom položaju, odnosno u situaciji u kojoj su kotači desnog vitla naslonjeni na graničnik. U takvoj se situaciji većina opterećenja prenosi na oslonac B pa će kotači koji se nalaze na strani oslonca A biti manje opterećeni od nasuprotna dva. Takav slučaj opterećenja prikazan je na slici 60.

Slika 60. Opterećenje kotača na strani oslonca A u najpovoljnijem položaju vitla Postavljanjem jednadžbi ravnoteže dobiva se tražena reaktivna sila u osloncu A:

$$F_{A}'' = \frac{F_{2} \cdot 552 + F_{1} \cdot 2272 + \frac{q_{GN} \cdot l^{2}}{2} + F_{1} \cdot 7404 + F_{2} \cdot 9124}{15000}$$

$$F_{A}'' = \frac{88450 \cdot 552 + 206354 \cdot 2272 + \frac{3,584 \cdot 15000^{2}}{2} + 206354 \cdot 7404 + 88450 \cdot 9124}{15000} \quad (11.4)$$

$$F_{A}'' = 217048 \text{ N}$$

Opterećenje kotača u najpovoljnijem položaju vitla tada je jednako:

Diplomski rad

$$F_{\rm k,min} = F_{\rm A}'' + \frac{q_{\rm \check{C}N} \cdot l}{2} = 217048 + \frac{1,274 \cdot 4300}{2} = 219787 \text{ N}$$
(11.5)

11.1.3 Opterećenje kotača mosnog granika

Nakon što su izračunata opterećenja kotača u najpovoljnijim i najnepovoljnijim položajima vitla, dobivene vrijednosti se uvrštavaju u izraz (11.1), te se dobiva proračunsko opterećenje koje vrijedi za sve kotače mosnog granika:

$$F_{\rm k} = \frac{219787 + 2.429059}{3} = 359302 \text{ N}$$
(11.6)

11.1.4 Odabir sklopa kotača mosnog granika

Opterećenje kotača mosnog granika izraženo u kilogramima iznosi:

$$F_{\rm K} = \frac{359302}{9,81} = 36626 \text{ kg} \tag{11.7}$$

Iz kataloga [22] proizvođača *Demag* odabran je kotač oznake DRS 500, nosivosti 40000 kg, nazivnog promjera $d_k = 500$ mm. Materijal odabranog kotača je nodularni lijev oznake GGG70, dok je odabrani materijal tračnice konstrukcijski čelik oznake St 70-2. Tračnice koje će se koristiti su ravne tračnice od plosnatih čeličnih profila dimenzija 90 mm x 60 mm. Dimenzije sklopa kotača prikazane su u nastavku.

Slika 61. Sklop kotača za vožnju mosnog granika [22] Tablica 19. Dimenzije sklopa kotača za vožnju mosnog granika [22]

Oznaka	Nosivost	Nazivni promjer kotača	Masa	Dimenzije [mm]					
-	kg	mm	kg	a_1	b_1	b_2	<i>C</i> ₁	h_1	
DRS 500	40000	500	352	700	110	170	240	566	

Fakultet strojarstva i brodogradnje

Napomena: Kotači mosnog granika odabrani su prema proračunskom opterećenju, odnosno normi DIN 15070. Prije naručivanja kotača potrebno je kontaktirati proizvođača kako bi se utvrdilo da li su kotači proizvođača *Demag* također proračunati i dimenzionirani prema navedenoj normi.

11.2 Odabir pogona za vožnju mosnog granika

Sila potrebna za ustaljenju vožnju granika F_v proporcionalna je ukupnom opterećenju kotača granika a izračunava se prema sljedećem izrazu:

$$F_{\rm v} = m_{\rm tr,g} \cdot g \cdot f_{\rm e} \tag{11.8}$$

Gdje je:

 $m_{\rm tr,g}$ - ukupna translacijska masa mosnog granika

 $f_e = 0.01 - vrijednost ekvivalentnog koeficijenta otpora vožnje za kotače s valjnim ležajevima prema [11]$

Ukupna translacijska masa mosnog granika iznosi:

$$m_{\rm tr,g} = 2 \cdot m_{\rm tr,v} + m_{\rm m} = 2 \cdot 43924 + 15093 = 102941 \,\rm kg$$
 (11.9)

Gdje je:

 $m_{\rm tr,v} = 43924 \text{ kg} - \text{ukupna translacijska masa vitla}$

 $m_{\rm m} = 15093 \text{ kg} - \text{masa mosta}$

Uvrštavanjem dobivenih vrijednosti u izraz (11.8) dobiva se sila potrebna za ustaljenu vožnju mosnog granika:

$$F_{\rm v} = 102941 \cdot 9,81 \cdot 0,01 = 10099 \text{ N}$$
 (11.10)

Snaga potrebna za ustaljenu vožnju granika tada iznosi:

$$P_{\rm v} = \frac{F_{\rm v} \cdot v_{\rm g}}{\eta_{\rm g}} \cdot k = \frac{10099 \cdot 0.333}{0.97} \cdot 0.5 = 1735 \text{ W} = 1.74 \text{ kW}$$
(11.11)

Gdje je:

 $F_v = 10099 \text{ N} - \text{potrebna sila za ustaljenu vožnju granika}$

 $v_{\rm g} = 20 \text{ m/min} = 0,333 \text{ m/s} - \text{brzina vožnje granika}$

 $\eta_{\rm g} = 0.97 -$ stupanj korisnog djelovanja mehanizma za vožnju granika

k = 0,5 -koeficijent ukupnog broja pogonskih kotača (2 pogonska kotača)

Sila potrebna za pokretanje mosnog granika F_p dobiva se zbrajanjem sile potrebne za ustaljenu vožnju granika i sile inercije ukupne translacijske mase granika.

$$F_{\rm p} = F_{\rm v} + \beta \cdot m_{\rm tr,g} \frac{v_{\rm g}}{t_{\rm p}} = 10099 + 1,2 \cdot 102941 \cdot \frac{0,333}{5} = 18334 \text{ N}$$
(11.12)

Gdje je:

 $\beta = 1,2 - faktor kojim se uzimaju u obzir rotacijske mase$ $<math>t_p = 5 \text{ s} - \text{odabrano vrijeme pokretanja mehanizma za vožnju mosta prema [12]}$ S obzirom da odnos momenta pokretanja i nominalnog momenta asinkronog elektromotora uobičajeno iznosi $M_p/M_n = 1,7...2$, posljedično je omjer sile kod pokretanja mosnog granika i nominalne sile koju će kotač granika imati na raspolaganju pri ustaljenoj brzini vožnje jednak $F_p/F_n = 1,7...2$. Iz toga proizlazi da je nominalna sila vožnje jednaka:

$$F_{\rm n} = (0, 5...0, 6) F_{\rm p} = 0, 6 \cdot F_{\rm p} = 0, 6 \cdot 18334 = 11000 \text{ N}$$
 (11.13)

Prema tome, potrebna nominalna snaga elektromotora iznosi:

$$P_{\rm n} = \frac{F_{\rm n} \cdot v_{\rm v}}{\eta_{\rm vit}} \cdot k = \frac{11000 \cdot 0,333}{0,97} \cdot 0,5 = 1890 \text{ W} = 1,89 \text{ kW}$$
(11.14)

Potrebna brzina vrtnje kotača mosnog granika pri ustaljenoj vožnji iznosi:

$$n_{\rm k} = \frac{v_{\rm v}}{d_{\rm k} \cdot \pi} = \frac{20}{0.5 \cdot \pi} = 12,73 \,\,{\rm min^{-1}} \tag{11.15}$$

Na temelju potrebne nominalne snage elektromotora i potrebne brzine vrtnje kotača granika odabire se iz kataloga proizvođača *DEMAG* [23] sklop elektromotora s reduktorom i ugrađenom kočnicom, oznake ADE 60TD ZBA 100 AL 4 B050 čije su karakteristike prikazane u tablici u nastavku.

Nazivna snaga elektromotora	Р	2,2 kW
Nazivna brzina vrtnje elektromotora	n_1	1415 min ⁻¹
Moment inercije sklopa elektromotora	$J_{ m EM}$	$6,21 \cdot 10^{-3} \text{ kgm}^2$
Maksimalni moment kočenja kočnice	$M_{\rm k}$	33 Nm
Brzina vrtnje izlaznog vratila reduktora	n_2	13 min ⁻¹
Okretni moment izlaznog vratila reduktora	M_2	1584 Nm
Prijenosni omjer reduktora	$\dot{i}_{ m red}$	107
Dopušteno radijalno opterećenje izlaznog vratila reduktora	F_{Ra}	20000 N
Ukupna masa sklopa elektromotora	m _{uk}	101 kg

Tablica 20. Karakteristike odabranog elektromotora s reduktorom za vožnju granika

Na temelju odabranog elektromotora i reduktora može se izračunati stvarna brzina vožnje granika:

$$v_{\rm g} = n_{\rm k} \cdot d_{\rm k} \cdot \pi = 13 \cdot 0, 5 \cdot \pi = 20, 42 \ \frac{\rm m}{\rm min} = 0, 34 \ \frac{\rm m}{\rm s}$$
 (11.16)

11.2.1 Provjera elektromotora obzirom na pokretanje

Kod pokretanja mehanizma za vožnju mosnog granika elektromotor treba ostvariti određeni moment pokretanja koji se računa prema izrazu:

$$M_{\rm p} = M_{\rm st} + M_{\rm ub} \tag{11.17}$$

Gdje je:

 $M_{\rm st}$ – moment potreban za savladavanje otpora ustaljene vožnje

 $M_{\rm p}$ – moment potreban za ubrzanje rotacijskih i translacijskih masa

Moment potreban za savladavanje otpora ustaljene vožnje iznosi:

$$M_{\rm st} = \frac{F_{\rm v}}{\eta_{\rm g}} \cdot \left(\frac{v_{\rm g}}{\omega_{\rm EM}}\right) = \frac{10099}{0.97} \cdot \left(\frac{0.34}{148,2}\right) = 23,89 \text{ Nm}$$
(11.18)

Gdje je:

 $\omega_{\rm EM} = \frac{2\pi \cdot n_1}{60} = \frac{2\pi \cdot 1415}{60} = 148, 2 \text{ s}^{-1}$ - kutna brzina elektromotora

Moment potreban za ubrzanje rotacijskih i translacijskih masa granika izračunava se iz sljedećeg izraza:

$$M_{ub} = (J_{rot} + J_{tr}) \cdot \varepsilon$$

$$M_{ub} = \left(\beta \cdot J_{EM} + \frac{m_{tr,g}}{\eta_g} \left(\frac{v_g}{\omega_{EM}}\right)^2\right) \cdot \frac{\omega_{EM}}{t_p}$$

$$M_{ub} = \left(1, 2 \cdot 6, 21 \cdot 10^{-3} + \frac{102941}{0,97} \left(\frac{0,34}{148,2}\right)^2\right) \cdot \frac{148,2}{5}$$

$$M_{ub} = 16,78 \text{ Nm}$$
(11.19)

Gdje je:

 $\beta = 1,2 - \text{faktor kojim se uzimaju u obzir ostale rotacijske mase}$ $J_{\text{EM}} = 6,21 \cdot 10^{-3} \text{ kgm}^2 - \text{inercija sklopa elektromotora}$ $m_{\text{tr,g}} = 102941 \text{ kg} - \text{ukupna translacijska masa mosnog granika}$ $\eta_{\text{g}} = 0,97 - \text{stupanj korisnosti mehanizma za vožnju granika}$ $v_{\text{g}} = 0,34 \text{ m/s} - \text{brzina vožnje granika}$

Fakultet strojarstva i brodogradnje

 $\omega_{\rm EM} = 148.2 \text{ s}^{-1} - \text{kutna brzina elektromotora}$

 $t_p = 5 \text{ s} - \text{odabrano vrijeme pokretanja mehanizma za vožnju granika}$

Uvrštavanjem dobivenih momenata u izraz (11.17) dobiva se potrebni moment pokretanja elektromotora:

$$M_{\rm p} = 23,89 + 16,78 = 40,67 \ {\rm Nm}$$
 (11.20)

Nominalni moment elektromotora iznosi:

$$M_{\rm n} = \frac{P}{\omega_{\rm EM}} = \frac{2, 2 \cdot 10^3}{148, 2} = 14,85 \text{ Nm}$$
 (11.21)

Prema tome, odnos momenta pokretanja i nominalnog momenta oba elektromotora iznosi:

$$\frac{M_{\rm p}}{2 \cdot M_{\rm p}} = \frac{40,67}{2 \cdot 14,85} = 1,37 < 1,7...2$$
(11.22)

iz čega se zaključuje da odabrani elektromotor zadovoljava.

11.2.2 Provjera elektromotora obzirom na proklizavanje kotača

Provjerom elektromotora obzirom na proklizavanje kotača treba tvrditi da li postoji mogućnost u kojoj je najveća pogonska sila na kotaču, koja se javlja kod momenta pokretanja M_p , veća od sile koja se može prenijeti s kotača na tračnicu. Provjera proklizavanja vrši se za slučaj najmanje sile adhezije, odnosno za slučaj kad su oba vitla neopterećena pa se u obzir uzima samo težina dva pomična bloka i dva sklopa vitla, te težina mosta. Translacijska masa mosnog granika u tom slučaju iznosi:

$$m_{\rm tr,g}^{\rm G} = m_{\rm m} + 2 \cdot \left(m_{\rm v} + m_{\rm pb}\right) = 15093 + 2 \cdot (5920 + 1065) = 29063 \text{ kg}$$
 (11.23)

Opterećenje svakog pojedinog kotača mosnog granika u tom slučaju iznosi:

$$F_{k}^{G} = \left(\frac{1}{4} \cdot m_{m} + \frac{1}{2} \cdot (m_{v} + m_{pb})\right) \cdot g$$

$$F_{k}^{G} = \left(\frac{1}{4} \cdot 15093 + \frac{1}{2} \cdot (5920 + 1065)\right) \cdot 9,81$$

$$F_{k}^{G} = 71277 \text{ N}$$
(11.24)

Faktor β_v sada se može izračunati jer je poznat moment inercije rotora elektromotora:
$$\beta_{v} = 1 + \frac{\beta \cdot J_{EM}}{m_{tr,g}^{G}} \left(\frac{\omega_{EM}}{v_{g}}\right)^{2} \cdot \eta_{g}$$

$$\beta_{v} = 1 + \frac{1, 2 \cdot 6, 21 \cdot 10^{-3}}{29063} \cdot \left(\frac{148, 2}{0, 34}\right)^{2} \cdot 0,97 \qquad (11.25)$$

$$\beta_{v} = 1,05$$

Adhezijska težina koja otpada na dva pogonska kotača za slučaj kad su oba vitla bez tereta može se izračunati iz sljedećeg izraza:

$$G_{\rm a} = F_{\rm k}^{\rm G} + F_{\rm k}^{\rm G} = 71277 + 71277 = 142554 \text{ N}$$
 (11.26)

Otpor ustaljenje vožnje nepogonskih kotača za slučaj kad su oba vitla bez tereta iznosi:

$$W_{\rm vk} = \left(F_{\rm k}^{\rm G} + F_{\rm k}^{\rm G}\right) \cdot f_{\rm e} = \left(71277 + 71277\right) \cdot 0, 01 = 1426 \text{ N}$$
(11.27)

Koeficijent adhezije za suhe tračnice u zatvorenom prostoru prema [12] iznosi $\mu_a = 0,2$. Minimalno vrijeme pokretanja mosnog granika bez tereta iznosi:

$$t_{\min} = 1, 2 \cdot \left(\frac{\beta_{v} \cdot m_{tr,g}^{G} \cdot v_{g}}{\mu_{a} \cdot G_{a} - W_{vk}} \right)$$

$$t_{\min} = 1, 2 \cdot \left(\frac{1,05 \cdot 29063 \cdot 0,34}{0,2 \cdot 142554 - 1426} \right)$$

$$t_{\min} = 0,46 \text{ s}$$

(11.28)

Inercija rotacijskih i translacijskih masa za slučaj pokretanja granika bez tereta iznosi:

$$J_{uk} = J_{rot} + J_{tr} = \beta \cdot J_{EM} + \frac{m_{tr,g}^{G}}{\eta_{g}} \left(\frac{v_{g}}{\omega_{EM}}\right)^{2}$$
$$J_{uk} = 1, 2 \cdot 6, 21 \cdot 10^{-3} + \frac{29063}{0,97} \left(\frac{0,34}{148,2}\right)^{2}$$
$$J_{uk} = 0,165 \text{ kgm}^{2}$$
(11.29)

Otpor ustaljene vožnje za slučaj vožnje granika bez tereta iznosi:

$$W_{\rm v} = m_{\rm tr,g}^{\rm G} \cdot g \cdot f_{\rm e} = 29063 \cdot 9,81 \cdot 0,01 = 2851 \text{ N}$$
(11.30)

Moment potreban za ustaljenu vožnju iznosi:

$$M_{\rm st} = \frac{W_{\rm v}}{\eta_{\rm g}} \cdot \frac{v_{\rm g}}{\omega_{\rm EM}} = \frac{2851}{0.97} \cdot \frac{0.34}{148.2} = 6,74 \text{ Nm}$$
(11.31)

Moment pokretanja kojim bi se granik ubrzao u vremenu t_{\min} iznosi:

$$M_{\rm p} = J_{\rm uk} \cdot \frac{\omega_{\rm EM}}{t_{\rm min}} + M_{\rm st} = 0,165 \cdot \frac{148,2}{0,46} + 6,74 = 59,90 \text{ Nm}$$
 (11.32)

Srednji moment pokretanja odabranog elektromotora jednak je:

$$M_{\rm p,sr} \cong 2 \cdot (1, 5 \cdot M_{\rm n}) = 2 \cdot (1, 5 \cdot 14, 85) = 44,55 \text{ Nm}$$
 (11.33)

Kako je srednji moment pokretanja elektromotora $M_{p,sr}$ manji od momenta pokretanja M_p , odnosno vrijedi izraz:

$$M_{\rm p,sr} = 44,55 \,\rm Nm < M_{\rm p} = 59,90 \,\rm Nm$$
 (11.34)

do proklizavanja kotača neće doći.

11.2.3 Provjera kočnice elektromotora

Potrebni moment kočenja $M_{k_{potr}}$ iznosi:

$$M_{k_{potr}} = \eta_{koč} \cdot m_{tr,g} \cdot g \cdot \frac{v_g}{\omega_{EM}} \left(\frac{\beta_v}{g} \cdot \frac{v_g}{t_z} - \frac{f_e}{1000} \right)$$
$$M_{k_{potr}} = 0,97 \cdot 102941 \cdot 9,81 \cdot \frac{0,34}{148,2} \left(\frac{1,05}{9,81} \cdot \frac{0,34}{3,6} - \frac{0,01}{1000} \right)$$
(11.35)

$$M_{\rm k_{\rm potr}} = 22,70 \,\,{\rm Nm}$$

Gdje je:

$$\eta_{\text{koč}} = \left(2 - \frac{1}{\eta_{\text{g}}}\right) = \left(2 - \frac{1}{0,97}\right) = 0,97$$
 - iskoristivost mehanizma za vožnju granika kod kočenja

 $m_{\rm tr,g} = 102941 \text{ kg} - \text{ukupna translacijska masa mosnog granika}$

 $v_{\rm g} = 0.34$ m/s – brzina vožnje granika

 $\omega_{\rm EM} = 148.2 \text{ s}^{-1} - \text{kutna brzina elektromotora}$

 $\beta_v = 1,05 - faktor kojim se uzima u obzir ubrzavanje rotacijskih masa$

$$t_z = \frac{\beta_v \cdot v_v}{g \cdot f_e} = \frac{1,05 \cdot 0,34}{9,81 \cdot 0,01} = 3,6 \text{ s- potrebno vrijeme zaustavljanja mosnog granika bez kočenja}$$

 $f_e = 0,01$ - ekvivalentni koeficijent otpora vožnje za kotače s valjnim ležajevima Ukupni moment kočenja dvaju ugrađenih kočnica iznosi:

$$M_{\rm k EM} = 2 \cdot M_{\rm k} = 2 \cdot 33 = 66 \text{ Nm}$$
(11.36)

Budući da je raspoloživi moment kočenja ugrađenih kočnica veći od potrebnog momenta kočenja, odnosno $M_{k_{\rm EM}} = 66 \text{ Nm} > M_{k_{\rm potr}} = 22,70 \text{ Nm}$, odabrana kočnica zadovoljava.

12. ZAKLJUČAK

U ovom diplomskom radu prikazan je postupak projektiranja mosnog granika za podizanje teških vozila prema traženim projektnim parametrima. U uvodnom dijelu rada objašnjeno je zašto je, za podizanje i premještanje vozila unutar industrijske hale, bilo nužno koristiti mosni granik, a ne neku drugu vrstu transportnog sredstva. Nakon toga provedena je kratka analiza postojećih konstrukcijskih rješenja mosnih granika s posebnim naglaskom na mosne granike s operativnim parametrima, u pogledu nosivosti i raspon mosta, koji su slični traženim. Spomenutom analizom dobio se uvid o tome na koji se način najčešće izrađuje nosiva konstrukcija mosta kada je riječ o mosnim granicima velike nosivosti. U nastavku je za odabrano konceptualno rješenje proveden detaljan proračun elemenata za prihvat i dizanje tereta, zatim proračun nosive konstrukcije vitla i mosta, te je izvršen odabir odgovarajućih pogonskih jedinica mehanizma za dizanje tereta, vožnju vitla i vožnju mosta. Prilikom konstruiranja svih komponenti mosnog granika nastojalo se koristiti gotove profile i poluproizvode u cilju smanjenja troškova izrade. Na kraju je izrađena potrebna tehnička dokumentacija.

Za izradu popratnih skica u proračunu, te izradu CAD modela i tehničke dokumentacije korišten je programski paket SolidWorks.

LITERATURA

- [1] http://www.handling.com/all-solutions/whiting-electric-railcar-jacks/
- [2] <u>https://www.dallasnews.com/business/jobs/2017/07/27/general-electric-move-locomotive-production-jobs-fort-worth-erie-pa</u>
- [3] Serdar, J.: Prenosila i dizala Izvadak iz Tehničke enciklopedije, Leksikografski zavod "Miroslav Krleža", Zagreb, 1995.
- [4] <u>http://www.abuscranes.com/cranes/overhead-travelling-cranes/single-girder-overhead-travelling-crane</u>
- [5] <u>http://www.abuscranes.com/cranes/overhead-travelling-cranes/double-girder-overhead-travelling-crane</u>
- [6] <u>http://www.cnellsen.com/overhead-crane/double-girder-overhead-crane/casting-overhead-crane/</u>
- [7] <u>http://www.konecranes.com/equipment/overhead-cranes/open-winch-cranes/smarton-open-winch-crane</u>
- [8] <u>http://www.demagcranes.com/sites/default/files/media/documents/21368144_EN_DE_1</u> 10228_0.pdf
- [9] Pandža, M.: Programski zadatak iz kolegija Projekt MiV, Zagreb, 2017.
- [10] <u>https://tiger-lastaufnahmemittel.de/content/3926/231/lasttraversen-</u> krantraversen/balken-traversen/sonder-balkentraversen
- [11] Ščap, D.: Transportni uređaji Podloge uz predavanja, Fakultet strojarstva i brodogradnje, Zagreb, 2004.
- [12] Ščap, D.: Prenosila i dizala Podloga za konstrukciju i proračun, Fakultet strojarstva i brodogradnje, Zagreb, 1990.
- [13] Horvat, Z. i suradnici: Vratilo Proračun, Zagreb
- [14] http://www.staticstools.eu/en/profile-heb/HE550B/mm/show
- [15] <u>http://www.awc.org/pdf/codes-standards/publications/design-aids/AWC-DA6-</u> BeamFormulas-0710.pdf
- [16] Decker, K. H.: Elementi strojeva, Golden marketing Tehnička knjiga, Zagreb, 2006.
- [17] <u>http://www.strojopromet.com/</u>
- [18] Kraut, B.: Strojarski priručnik, Sajema d.o.o., Zagreb, 2009.
- [19] https://download.sew-eurodrive.com/download/pdf/21933189.pdf

Fakultet strojarstva i brodogradnje

- [20] <u>http://www.staticstools.eu/en/profile-heb/HE320B/mm/show</u>
- [21] http://allaboutmetallurgy.com/wp/wp-content/uploads/2016/12/The-Fundamentals-of-Machine-Component-Design-by-Juvinall-and-Marshek.pdf
- [22] <u>http://www.demag.nl/sites/default/files/downloads/Wielblokken%20Radspektrum%20E</u> <u>N.pdf</u>
- [23] http://www.demag-doku.de/DDS/getPDF/20315144.pdf
- [24] Ščap, D.: Podloge uz predavanja, Fakultet strojarstva i brodogradnje, Zagreb, 2009.
- [25] Zbirka tehničkih propisa u građevinarstvu, Građevinska knjiga, Beograd, 1980.

PRILOZI

- I. Aksijalni ležaj kuke pomičnog bloka
- II. Radijalni ležaj užnice pomičnog bloka
- III. Radijalni ležaj izravnavajuće užnice i užnice nepomičnog bloka
- IV. Aksijalni ležaj kuke nosive grede
- V. Ležajna jedinica bubnja
- VI. Pogonska jedinica mehanizma za dizanje tereta
- VII. Pogonska jedinica mehanizma za vožnju vitla
- VIII. Pogonska jedinica mehanizma za vožnju mosnog granika
- IX. Tehnička dokumentacija
- X. CD-R disk

Prilog I.

Aksijalni ležaj kuke pomičnog bloka

SKF.

► 51232 M

Popular item

Dimensions

d		160	mm
D		225	mm
Н		51	mm
d ₁		222	mm
D ₁		163	mm
r _{1,2}	min.	1.5	mm

Abutment dimensions

d _a	min.	199	mm	
D _a	max.	186	mm	
r _a	max.	1.5	mm	

Calculation data				
Basic dynamic load rating	С	238	kN	
Basic static load rating	C ₀	830	kN	
Fatigue load limit	P _u	22.4	kN	
Reference speed		1200	r/min	
Limiting speed		1700	r/min	
Minimum load factor	А	3.8		
Mass				
Mass bearing (including seat washer where applicable)			6.55	kg

Prilog II.

Radijalni ležaj užnice pomičnog bloka

SKF.

6034

Dimensions

d		170	mm
D		260	mm
В		42	mm
d ₁		198.8	mm
D ₁		231.2	mm
r _{1,2}	min.	2.1	mm

Abutment dimensions

d _a	min.	180	mm
D _a	max.	250	mm
r _a	max.	2	mm

Calculation data

Basic dynamic load rating	С	168	kN
Basic static load rating	C ₀	173	kN
Fatigue load limit	P _u	5	kN
Reference speed		5300	r/min
Limiting speed		3200	r/min
Calculation factor	k _r	0.025	
Calculation factor	f ₀	15.8	
Mass			
Mass bearing		7	kg

Prilog III.

Radijalni ležaj izravnavajuće užnice i užnice nepomičnog bloka

SKF.

► 6316

Popular item SKF Explorer

Dimensions

Abutment dimensions

d		80	mm
D		170	mm
В		39	mm
d ₁		108	mm
D ₂		146.9	mm
r _{1,2}	min.	2.1	mm

d _a	min.	92	mm
D _a	max.	158	mm
r _a	max.	2	mm

Calculation data			
Basic dynamic load rating	С	130	kN
Basic static load rating	C ₀	86.5	kN
Fatigue load limit	P _u	3.25	kN
Reference speed		8500	r/min
Limiting speed		5300	r/min
Calculation factor	k _r	0.03	
Calculation factor	f ₀	13.3	
Mass			
Mass bearing		3.63	kg

Prilog IV.

Aksijalni ležaj kuke nosive grede

SKF.

► 51222

Popular item

Dimensions

d		110	mm
D		160	mm
Н		38	mm
d ₁		160	mm
D ₁		113	mm
r _{1,2}	min.	1.1	mm

Abutment dimensions

d _a	min.	140	mm
D _a	max.	130	mm
r _a	max.	1	mm

Calculation data				
Basic dynamic load rating	С	125	kN	
Basic static load rating	C ₀	365	kN	
Fatigue load limit	P _u	11.6	kN	
Reference speed		1700	r/min	
Limiting speed		2400	r/min	
Minimum load factor	А	0.79		
Mass				
Mass bearing (including seat washer where applicable)			2.4	kg

Prilog V.

Ležajna jedinica bubnja

SKF.

SYJ 90 TF

Material

Dimensions

d		90	mm
А		88	mm
A ₁		54	mm
В		89	mm
Н		200.5	mm
Н 1		101.6	mm
H_2		33	mm
J		262	mm
J	max.	270	mm
J	min.	254	mm
L		327	mm
Ν		35	mm
N ₁		27	mm
s 1		54	mm

Cast iron

Threaded hole

_! H₂ ↓

R _G	1/4-28 UNF	
R ₁	8.5	mm
R	45	0

Grease fitting

D _N	6.5	mm
SW _N	7	mm
G _N	1/4-28 SAE-LT	

Dowel pins

J ₆	303	mm
J ₇	32	mm
N ₄	4	mm

Calculation data

Diplomski rad

Basic dynamic load rating	С	95.6	kN	
Basic static load rating	C ₀	72	kN	
Fatigue load limit	P _u	2.7	kN	
Limiting speed		2000	r/mi	n
(with shaft tolerance h6)				
Mass				
Mass bearing unit		12.7	kį	g
Mounting information				
Hexagonal key size for grub screw		Ν	6	mm
Recommended tightening torque for grub screw			28.5	N·m
Recommended diameter for attachment bolts, mm		G	22	mm
Recommended diameter for attachment bolts, inch		G	0.875	in
Appertaining products				
Housing		SY	J 518	
Bearing		YA	AR 218-2F	

Mario Pandža

Prilog VI.

Pogonska jedinica mehanizma za dizanje tereta

Product information

Catalog designation

K187R107DRN225S4

Product data

Rated motor speed	
Output speed	
Overall gear ratio	
Output torque	
Service factor SEW-FB	
Mounting position	
Base / top coat	
Position of connector/terminal box	
Cable entry/connector position	
Output shaft	
Permitted output overhung load with	
n=1400	
Lubricant quantity 1st gear unit	
Lubricant quantity 2nd gear unit	
Motor power	
Duration factor	
Efficiency class	
Efficiency (50/75/100% Pn)	
CE mark	
Motor voltage	
Wiring diagram	
Frequency	
Rated current	
Cos Phi	
Thermal class	
Motor protection type	
Design requirement	
Motor mass moment of inertia	[1
Net weight	

[1/min]: 1482 [1/min] : 7.7 : 193.00 [Nm] : 43100 : 1.15 : M1AB : 3020 Traffic Red (52630200) [°] : 0 : X [mm] : 190x320 [N] : 190000 [Liter] : 53 [Liter] : 6.3 [kW] : 37 : S1-100% : IE3 [%] : 94.34 / 94.39 / 93.9 : Yes [V] : 230/400 : R13 [Hz] : 50 [A] : 111 / 64 : 0.88 : 155(F) : IP55 : IEC 10-4 kgm²] : 4328.90 [Kg] : 2170

Prilog VII.

Pogonska jedinica mehanizma za vožnju vitla

Geared motor

WUE 50 DD-B14.0-65-1-94.3 ZBA 80 A 4 B007

Basic product

Gearbox type	W - Angular gearbox
Housing type	U - Universal design
Output shaft type	E - Solid shaft with splined profile
Gearboxsize	50
Number of stages	D - two-stage
Input type	D - Direct drive input
Model code	B14.0
Output shaft code	65
Terminal box position	1 - right
Transmission ratio	94.3
Motor type	Z cylindrical-rotor motor
Motor design	B - with brake
Motor application	A - standard motor
Motor frame size	80
Rating class	A
Number of poles	4
Brake	B007

Basic price

Options

⊟ Included in the basic price

- Control module GE control module
- Motor shaft end Inner cone (with pinion)

Equipment

Finish coat (C2), 2K waterborne paint Colour = azure blue , RAL = 5009	no extra price
Gearbox venting valve Gearbox venting valve	no extra price
Preservation Short-term preservation	no extra price
Lubricant Standard oil filling	no extra price
Enclosure IP 54	no extra price
Temperature class Insulation to temperature class F	no extra price

Total price

On request

On request

Configured by:

\$InternetEN,19/03/2018,20:26.37,0040004,01

Technical data

Stamped data Motor

Number of poles	4
Duty factor	60 %
Motor power	0.55 kW
Operating voltage (D)	220 V/230 V
Operating voltage (Y)	380 V/400 V
Line frequency	50 Hz
Current (D/Y)	3.4 A/1.95 A
Rated speed	1420 min⁻¹

Other data

Max. ambient temperature Geared motor	-10 °C / 50 °C
Rated torque	3.7 Nm
Brake torque	7.6 Nm
Brake voltage	400 V (AC) / 180 V (DC)
Duty factor fB	2.64
Output torque	304 Nm
Output speed	15 min⁻¹
Inputspeed	1450 (4-pole with 50 Hz) min ⁻¹
Brake voltage Duty factor fB Output torque Output speed Input speed	400 V (AC) / 180 V (DC) 2.64 304 Nm 15 min ⁻¹ 1450 (4-pole with 50 Hz) min ⁻¹

Prilog VIII.

Pogonska jedinica mehanizma za vožnju mosnog granika

Geared motor

ADE 60 TD-D1.0-75-1-107 ZBA 100 AL 4 B050

Basic product

Gearbox type	A - Offset gearbox
Housing type	D - Torque bracket
Output shaft type	E - Solid shaft with splines, cover side
Gearboxsize	60
Number of stages	T - three-stage
Input type	D - Direct drive input
Model code	D1.0
Output shaft code	75
Terminal box position	1 - right
Transmission ratio	107
Motor type	Z cylindrical-rotor motor
Motor design	B - with brake
Motor application	A - standard motor
Motor frame size	100
Rating class	AL
Number of poles	4
Brake	B050

Basic price

Options

options	
Included in the basic price	
Control module GE control module	
Motor shaft end Inner cone (with pinion)	
⊟ Equipment	
Finish coat (C2), 2K waterborne paint Colour = azure blue , RAL = 5009	no extra price
Reduced-noise design	no extra price
Gearbox venting valve Gearbox venting valve	no extra price
Preservation Short-term preservation	no extra price
Lubricant Standard oil filling	no extra price
Enclosure IP 54	no extra price
Temperature class Insulation to temperature class F	no extra price

On request

On request

Total price

Configured by:

\$InternetEN,19/03/2018,20:36.28,0040004,01

Technical data

Stamped data Motor

Number of poles	4
Duty factor	60 %
Motor power	2.2 kW
Operating voltage (D)	220 V/230 V
Operating voltage (Y)	380 V/400 V
Line frequency	50 Hz
Current (D/Y)	8.8 A/5.1 A

Rated speed

1415 min⁻¹

Other data

-10 °C / 50 °C
14.8 Nm
33 Nm
400 V (AC) / 180 V (DC)
1.33
1584 Nm
13 min⁻¹
1450 (4-pole with 50 Hz) min ⁻¹

1		$ \land $										
7	8			9		10			11		12	
774												
						Y (1:2	2)					
					27	,		[11///	\supset		
	Ø				26					27		
					20							
					25			Í	\sim			
					24		$\sqrt{\Gamma}$	\leftarrow				
							\mathbb{A}	\triangleright	~4K~	$\rightarrow 1 \bigcirc$		Ţ
		/				-ED						
1			\mathbf{N}		00		+					
Œ					23		λ	2				→
				$\langle $	22						}	
	23				21			Ł				
					<u> </u>			4			/H8	
				•	20		23	3			· / 189	9 20 0
	22									22 22	65	1/2
	20			/	19			/	F8/	8		
•	20			/		54		8	55	2		$\left \begin{array}{c} \mathcal{D} \\ \mathcal{D} \\$
						X			$\frac{\partial}{\partial 1}$	9	· · · ·	
1							\searrow					
			9/		18	_						
		//	/									
	0											
		15										
		<u></u>										
			27	Vijak M8	3x25			32	DIN 7984	8.8	Vijci Kranjec	-
			26	Radiialn	i ležo	2010 ni 6034		<u>8</u>	DR18-MP-10217	RST 37-2	<u> <i>Φ</i>310x19</u> SKE	4,51 kg
			23	Semerinc	190	x225x15 HMS	5 RG	8	_	_	SKF	- 7,0 kg
			23	Vijak Mé	x10			8	DIN 6921	8.8	Vijci Kranjec	
			22	Poklopa	c za	štitnog lima		2	DR18-MP-10216	RSt 37-2	Ø220x36	2,59 kg
			21	Viiak	cah 2v20	ura		2	DR18-MP-10215	KST 37-2	ψ 1/0x121	3,54 kg
			<u>∠</u> ∪ 19	Distanta	i nrst	ten		4	DIN 6921 DR18-MP-10214	0.0 RSt 37-2		0,10 ka
			18	Središnic	a čal	hura		2	DR18-MP-10213	RSt 37-2	Ø 190x51	2,68 kg
			17	Nosač z	aštitr	nog lima		2	DR18-MP-10212	RS† 37-2	Ø774x2	6,76 kg
			16	Matica I	M6			22	ISO 4034	8	Vijci Kranjec	
			15	Vijak M6	$\frac{0}{12}$			24	DIN 6921	8.8	Vijci Kranjec	
/			14	Ukruta n	Osivil	, h limova		∠ 1	DIN 6921 DR18-MP-10211	0.0 RSt 37-2		- 1.40 kg
			12	Unutarni	ačc	ahura		2	DR18-MP-10210	RSt 37-2	Ø 190x26	1,10 kg
• /			11	Užnica p	omi	čnog bloka		4	DR18-MP-10209	RS† 37-2	Ø 570x100	90,61 kg
/			10	Zaštitni li	m ž		-1-	2	DR18-MP-10208	-	Ø774x294	16,0 kg
/			9 2	Osigura		pomicnog bl		1	DR18-MP-10207	St 50-2	ψ 180X900	154,5 kg
/			7	Nosivi lin	, מ <u>ו</u> טנ ו			2	DR18-MP-10205	RSt 37-2	587x260x34	29,48 ka
	\square	\ [6	Matica k	uke			1	DR18-MP-10204	C35	Ø240x124	26,56 kg
/		/	5	Vijak M1	2x30			6	DIN 6921	8.8	Vijci Kranjec	_
/	/		4	Osigurad		Sivog lima		2	DR18-MP-10203	RS† 37-2	140x110x12	0,90 kg
/	/		3	Nosač k	iezaj uke	51232 M		1	- DR18-MP-10202	-	372x260v120	6,55 Kg
/	/		1	Kuka HN	132			1	DR18-MP-10201	StE355	1258x560x180) 244,6 kg
/		\	Poz.		Naz	iv diiela		Kom	Crtež broj	Materiial	Sirove dimenzije	Masa
\ /			Bro	pi naziva – c	ode	,	atum		Ime i prezime	Potois		
\setminus /				,		Projektirao 15.0	3.2018	Μ	ario Pandža	·		7
	/					Raziadio 15.0 Crtao 15.0	3.2018. 3.2018	M	ario Pandza ario Pandža			.ayreD
	/					Pregledao		Doc.d	r.sc. Matija Hoić			
	/		IS	0 – toleranc	ije	nientor Ohiekt:	[boc.d	r.sc. matija Hoic	Objekt brei	1	
	/		Ø 26	0K7/f8 +0,	153	1 M	osni	gг	anik			
			<i>d</i> 477	+0, +0,	020 103	Napomena:		-		н. н. шој:		Kopija
			φ if	UF8/K0 +0,	015				1			
	ISO - tole	erancije	Ø 15	5F8/h8 +0,	043	Materijal:			Masa: 1065 kg			
	120h11	+0,000	Ø 16'	5F8/h8 +0,	169	$\square \oplus \square$	Naziv:				Pozicija: Fo	rmat: A2
	<u>()</u> 110Ц9 /50	+0,141	(Ma	+U, 25F0 +0.	215	Mjerilo originala		(Sklop k	uke	2	+
	ע ווע⊓ט/חאַ -	+0,000	ψ	20E9 +0,	100	1. L			I		Lis	rova: 1
	otin 160j6	-0,014	Ø 100)H8/h9 +0, +0	000	ر ۱۰	Crtež	Ьгој:	DR18-	-MP-10200	Lis	,t: 1
												

0 10 20 30 40 50 60 70 80 90 100

	ISO 4017	8.8	Vijc	i Kranje	ЭС	-		
	DR18-MP-10607	RS† 37-2	Ø 220x15			2,10	kg	
	_	-		SKF		-		
	DR18-MP-10606	RSt 37-2	RSt 37-2 Ø 100x25					
	-	-		SKF		3,63	kg	
	DR18-MP-10605	RSt 37-2	¢	92x85		0,82	kg	
	DR18-MP-10604	RS† 37-2	Ø	425x90)	50,8	8 kg	
	DR18-MP-10603	RSt 37-2	557	x240x1	63	29,78	3 kg	
	DIN 6921 8.8 Viici Kraniec							
	DR18-MP-10602	RS† 37-2	14	10x40x1	0	0,4	kg	
	DR18-MP-10601	St 50-2	Ø	70x203	3	5,96	kg	
۱.	Crtež broj Norma	Materijal	Sira P	zije	Mas	sa		
	me i prezime	Potpis		>				
M	ario Pandža		7					
M	ario Pandža			2 F 2 R	Za	дге	D	
M	ario Pandza noc Matiia Hoić							
u h	r.sc. Matija Hoić							
		Nhiekt hroi [.]						
Г (anik	D. N. broit						
		R. N. Droj:						
						www. Plidr	***	
	Masa: 101 kg							
				Pozicija:	Form	∞∞∞∞ at:	∞∞∞ A 3	
D	izravnava	iuće užr	6					
		,		0	Listo	va:	1	
j: DR18-MP-10600 List							1	
1			60	70 0		90	1	
1	0 20 30	40 30	00	10 0	v	20		

	ISO 4017	8.8	ci Kranje	эс	-			
	DR18-MP-10707	RS† 37-2	Ø220x15			2,10 kg		
	-	- SKF				-		
	DR18-MP-10706	RS† 37-2	Ø	5100x25	5	0,54 kg		
	-	-		SKF		3,63 kg		
	DR18-MP-10705	RS† 37-2	(⊅92x85		0,82 kg		
	DR18-MP-10704	RS† 37-2	Ø	570x90)	102,2 kg		
	DR18-MP-10703	RS† 37-2	64	7x240x	163	34,77 kg		
	DIN 6921 8.8 Vijci Kranjec -							
	DR18-MP-10702	RS† 37-2	1.	40x40x1	0	0,4 kg		
	DR18-MP-10701	St 50-2	5,96 kg					
۱.	Crtež broj Norma	Materijal	Sir I	Masa				
	me i prezime	Potpis		<u> </u>				
M	ario Pandža][7-			
M M	ario Pandza				۲q	yreb		
d	r.sc. Matija Hoić							
dı	r.sc. Matija Hoić							
- 2	anik	Objekt broj:						
		R. N. broj:						
					K (opija XXXXXXXXX		
	Masa: 157 kg							
			ملاء	Pozicija: 7	Form	at: A3		
						ova: 1		
: DR18-MP-10700 List:								