Pandža, Dominik

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:459718

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-09-25

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Dominik Pandža

Zagreb, 2018.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentori:

Student:

Doc. dr. sc. Matija Hoić, mag. ing.

Dominik Pandža

Zagreb, 2018.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se Doc.dr.sc. Matiji Hoiću što mi je omogućio izradu diplomskog rada. Također se zahvaljujem na svim korisnim savjetima, prijedlozima i uputama prilikom pisanja rada.

Također se zahvaljujem svim kolegama i prijateljima koji su mi pomogli prilikom studiranja i pisanja diplomskog rada.

Dominik Pandža

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za diplomske ispite studija strojarstva za smjerove: procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveučil	ište u Zagrebu
Fakultet stroj	arstva i brodogradnje
Datum Prilog	
Klasa:	
Ur. broj:	

Mat. br.: 1191221609

DIPLOMSKI ZADATAK

Student:

Jednokraki dohvatnik za brodogradilište

Dominik Pandža

Naslov rada na hrvatskom jeziku: Naslov rada na

Single boom crane for a shipyard

engleskom jeziku: Opis zadatka:

Potrebno je konstruirati jednokraki dohvatnik za rad s kukom za potrebe brodogradilišta. Konfiguracija terena oko brodogradilišta minimizira utjecaj vjetra te stoga nije potrebno vršiti proračun opterećenja vjetrom. Ciljano konstrukcijsko rješenje jednokrakog dohvatnika mora imati sljedeće karakteristike:

- 1) Najveći teret: 10 t,
- 2) Najveći dohvat: 22 m,
- 3) Visina portala: 15 m,
- 4) Brzina dizanja tereta: 16 m/min,
- 5) Brzina okretanja dohvatnika: 1 okr/min,
- 6) Brzina vožnje portala: 13 m/min.

Rad treba sadržavati:

- 1) Uvodni pregled granika s jednokrakim dohvatnikom,
- 2) Kratki opis razmatranih koncepcija rješenja te obrazloženje odabira rješenja,
- 3) Analizu i sintezu konstrukcijskog rješenja jednokrakog dohvatnika,
- 4) Proračun mehanizama za dizanje, promjenu dohvata i vožnju granika,
- 5) Proračun nosive konstrukcije,
- 6) Sklopni crtež granika s jednokrakim dohvatnikom s potrebnim presjecima i detaljima,
- Sklopne crteže ili detalje na glavnom sklopnom crtežu mehanizama za dizanje, promjenu dohvata i vožnje granika.

Pri projektiranju treba rabiti važeće tehničke propise za transportne uređaje.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

18. siječnja 2018. Zadatak zadao: Datum predaje rada: 22. ožujka 2018. Predviđeni datum obrane:

28., 29. i 30. ožujka 2018.

Predsjednica Povjerenstva:

le -

Loic Doc. dr. sc. Matija Hoić

Prof. dr. sc. Tanja Jurčević Lulić

SADRŽAJ

SADRŽAJ	I
POPIS SLIKA	V
POPIS TABLICA	VIII
POPIS TEHNIČKE DOKUMENTACIJE	IX
POPIS OZNAKA	X
SAŽETAK	XIV
SUMMARY	XV
1. UVOD	1
1.1. Jednokraki dohvatnik	2
1.2. Pregled postojećih rješenja	4
1.2.1. Jednokraki dohvatnik tvrtke Kranunion	4
1.2.2. Jednokraki dohvatnik tvrtke Sumitomo	5
1.2.3. Jednokraki dohvatnika tvrtke Ganz	6
1.3. Usporedba	7
2. KONCEPTUALNA RJEŠENJA	8
2.1. Koncept 1	
2.2. Koncept 2	9
2.3. Koncept 3	10
2.4. Koncept 4	11
2.5. Odabir koncepta za konstrukcijsku razradu	12
3. ODABIR POGONSKE I PODIZNE GRUPE	13
4. ODREĐIVANJE DINAMIČKOG FAKTORA φ_2	14
5. ELEMENTI ZA PRIHVAT I DIZANJE TERETA	15
5.1. Dimenzioniranje i izbor kuke	

5.1.1.	Provjera čvrstoće kuke	
5.1.2.	Provjera čvrstoće nosača kuke	
5.1.3.	Provjera površinskog pritiska nosivih limova	
5.1.4.	Izbor aksijalnog ležaja kuke	
5.2. Stu	apanj djelovanja koloturnika	
5.3. Di	menzioniranje i izbor užeta	
5.4. Sk	lop kuke	
5.4.1.	Proračun osovine užnice	
5.4.2.	Provjera površinskog pritiska nosivih limova	
5.4.3.	Provjera valjnih ležajeva užnice	
6. MEHA	NIZAM ZA DIZANJE TERETA	
6.1. Bu	banj	
6.1.1.	Osnovne dimenzije bubnja	
6.1.2.	Provjera napadnog kuta užeta	
6.1.3.	Proračun stjenke bubnja	
6.1.4.	Provjera zavara na spoju vijenca i bubnja	
6.1.5.	Veza vijenca s bubnjem	
6.1.6.	Veza čelne ploče i bubnja	
6.1.7.	Proračun osovine bubnja	
6.1.8.	Veza užeta s bubnjem	
6.1.9.	Odabir ležaja bubnja	
6.2. Od	labir pogona za podizanje tereta	
6.2.1.	Provjera kočnog momenta elektromotora	
6.2.2.	Provjera radijalne sile na izlaznom vratilu	
7. PROR	AČUN DOHVATNIKA I MEHANIZMA ZA PROMJENU DOHVATA.	
7.1. Sir	nteza mehanizma promjene dohvata jednokrakog dohvatnika	
7.1.1.	Krajnji položaj dohvatnika	

7.1.2.	Položaj točke B	. 39
7.1.3.	Strukturalna greška	. 39
7.2. Dir	nenzioniranje protuutega, izračun sile potrebne za promjenu dohvata i pri	ikaz
opterećen	ja dohvatnika	. 40
7.2.1.	Dimenzioniranje protuutega i izračun sile potrebne za promjenu dohvata	. 40
7.2.2.	Odabir elemenata za mehanizam za promjenu dohvata	. 45
7.2.3.	Provjera ležaja zubne letve	. 47
7.2.4.	Dimenzioniranje osovine zubne letve i glave vodilice	. 50
7.2.5.	Provjera kočnog momenta motora	. 52
7.2.6.	Provjera radijalne sile na izlaznom vratilu	. 53
7.2.7.	Dimenzioniranje kotača protuutega dohvatnika	. 53
7.2.8.	Opterećenja dohvatnika	. 55
7.3. Pro	vjera čvrstoće dohvatnika	. 57
7.4. Pro	vjera stabilnosti dohvatnika	. 59
7.5. Dir	nenzioniranje skretnih užnica na dohvatniku	. 60
7.5.1.	Proračun osovine skretne užnice	. 60
7.5.2.	Kontrola površinskog pritiska osovine i nosivih limova	. 62
7.5.3.	Proračun zavara nosivog lima osovine skretnih užnica na dohvatniku	. 63
8. PRORA	AČUN GLAVNOG STUPA	. 66
8.1. Dir	nenzioniranje okretišta dohvatnika	. 70
8.1.1.	Odabir ležaja i proračun osovine dohvatnika	. 70
8.1.2.	Kontrola površinskog pritiska osovine i nosivih limova	. 72
8.2. Dir	nenzioniranje skretnih užnica na dohvatniku	73
8.2.1.	Proračun osovine skretne užnice	73
8.2.2.	Kontrola površinskog pritiska osovine i nosivih limova	75
8.2.3.	Proračun zavara nosivog lima osovine skretnih užnica na dohvatniku	76
8.2.4.	Proračun hvatišta užeta na protuutegu	78

9.	DIM	IENZIONIRANJE PROTUUTEGA GRANIKA I MEHANIZMA ZA OKRETANJ	Έ
	82		
9	.1.	Dimenzioniranje protuutega granika8	32
9	.2.	Dimenzioniranje mehanizma za okretanje8	33
	9.2.	1. Proračun osovine okretišta	34
	9.2.2	2. Odabir ležajeva osovine okretišta8	35
	9.2.3	3. Proračun glavine portala	36
	9.2.4	4. Proračun pogona za okretanje dohvatnika	38
9	.3.	Proračun vijaka i zavara9)5
	9.3.	1. Proračun vijaka velikog zupčanika na većem promjeru9)5
	9.3.2	2. Proračun zavara velikog zupčanika9)6
	9.3.3	3. Proračun zavara osovine okretišta9)7
10.	DI	MENZIONIRANJE PORTALA)0
1	0.1.	Opterećenje oslonaca)0
1	0.2.	Dimenzioniranje mehanizma za vožnju10)0
1	0.3.	Dimenzioniranje gornjeg dijela noge portala10)3
1	0.4.	Dimenzioniranje donjeg dijela noge portala10)7
1	0.5.	Provjera ukrute portala11	.0
11.	SI	GURNOST OD PREVRTANJA11	.3
12.	ZA	AKLJUČAK	5
LIT	'ERA'	TURA11	.6
PRI	LOZI	[7

POPIS SLIKA

Slika 1. Jednokraki dohvatnik tvrtke Konecranes [1]	1
Slika 2. Dvokraki dohvatnik tvrtke Konecranes [1]	2
Slika 3. Jednokraki dohvatnik tvrtke Stonimage [3]	3
Slika 4. Prikaz jednokrakih dohvatnika tvrtke Liebherr u nekom brodogradilištu [4]	4
Slika 5. Kranich 500 [5]	5
Slika 6. TL 1.800 [6]	6
Slika 7. Jednokraki dohvatnik tvrtke Ganz [7]	6
Slika 8. Skica koncepta 1	8
Slika 9. Koncept 1 - prikaz koloturnika za kompenzaciju užeta [8]	9
Slika 10. Skica koncepta 2	9
Slika 11. Koncept 2 - skica mehanizma za okretanje1	0
Slika 12. Skica koncepta 3 1	0
Slika 13. Skica koncepta 4 1	1
Slika 14. Koncept 4 - prikaz koloturnika za kompenzaciju užeta [8] 1	1
Slika 15. Oznake mjera jednokrake kuke kovane u kalupu [8] 1	6
Slika 16. Izgled i dimenzije zamjenskog trapeza [8]1	17
Slika 17. Spoj nosivog lima i nosača kuke [8] 1	9
Slika 18. Dijagrami opterećenja osovine užnice2	22
Slika 19. Osnovne dimenzije profila žlijeba bubnja [8]2	25
Slika 20. Ostale mjere bubnja [8]2	26
Slika 21. Napadni kut užeta2	27
Slika 22. Osnovne mjere i dimenzije bubnja [8]2	29
Slika 23. Opterećenje osovine bubnja	32
Slika 24. Skica sinteze mehanizma za promjenu dohvata [8]	38
Slika 25. Prikaz strukturalne greške mehanizma za promjenu dohvata44	10
Slika 26. Skica opterećenja dohvatnika4	10
Slika 27. Dijagram momenta na dohvatniku s protuutegom od 20759 kg u ovisnosti o ku	tu
nagiba dohvatnika4	12
Slika 28. Dijagram momenta na dohvatniku s protuutegom od 14750 kg u ovisnosti o ku	tu
nagiba dohvatnika4	13

Slika 29. Skica mjesta postavljanja zubne letve mehanizma za promjenu dohvata 44
Slika 30. Dijagram potrebne sile u zubnoj letvi u ovisnosti o kutu nagiba dohvatnika
Slika 31. Skica opterećenja ležajnih jedinica na stupu dohvatnika 48
Slika 32. Skica opterećenja ležaja vodilice zubne letve
Slika 33. Skica opterećenja osovine zubne letve
Slika 34. Prikaz opterećenja osovine zubne letve
Slika 35. Dijagram ovisnosti normalne sile u dohvatniku s obzirom na kut nagiba dohvatnika
Slika 36. Dijagram ovisnosti poprečne sile u dohvatniku s obzirom na kut nagiba dohvatnika
Slika 37. Dijagram ovisnosti momenta savijanja u dohvatniku s obzirom na kut nagiba
dohvatnika
Slika 38. Skica poprečnog presjeka dohvatnika57
Slika 39. Skica opterećenja osovine skretnih užnica na dohvatniku 60
Slika 40. Dijagrami opterećenja osovine skretnih užnica na dohvatniku
Slika 41. Skica zavara nosivog lima na dohvatniku i prikaz opterećenja
Slika 42. Skica opterećenja glavnog dohvatnika
Slika 43. Skica poprečnog presjeka glavnog stupa
Slika 44. Skica poprečnog presjeka zavara glavnog stupa 69
Slika 45. Skica opterećenja i oslanjanja osovine okretišta dohvatnika
Slika 46. Skica opterećenja osovine skretnih užnica na dohvatniku
Slika 47. Dijagrami opterećenja osovine skretnih užnica na dohvatniku
Slika 48. Skica zavara nosivog lima na dohvatniku i prikaz opterećenja
Slika 49. Dijagrami opterećenja osovine
Slika 50. Dijagrami opterećenja osovine okretišta
Slika 51. Skica ležajnog mjesta A
Slika 52. Dijagrami opterećenja glavine portala
Slika 53. Dijagram faktora Y _F [18]91
Slika 54. Dijagram faktora oblika boka [18]93
Slika 55. Skica zavara velikog zupčanika
Slika 56. Skica zavara osovine okretišta
Slika 57. Prikaz opterećenja oslonca u ovisnosti o kutu zakreta dohvatnika 100
Slika 58. Skica portala
Slika 59. Skica opterećenja gornjeg dijela noge portala

Slika 60. Skica opterećenja donjeg dijela noge portala	107
Slika 61. Skica modela prevrtanja	113

POPIS TABLICA

Tablica 1. Usporedba osnovnih parametara jednokrakih dohvatnika	7
Tablica 2. Usporedba normi pogonskih grupa [8]	. 13
Tablica 3. Mjere jednokrake kuke kovane u kalupu [8]	. 15
Tablica 4. Karakteristike elektromotora s reduktorom	. 35
Tablica 5. Karakteristike elektromotora s reduktorom	. 47
Tablica 6. Karakteristike elektromotora s reduktorom	. 94
Tablica 7. Karakteristike elektromotora s reduktorom1	102

POPIS TEHNIČKE DOKUMENTACIJE

- 2018-0-0 Jednokraki dohvatnik
- 2018-1-0 Sklop kuke
- 2018-2-0 Sklop skretnih užnica na grani
- 2018-3-0 Sklop skretnih užnica na stupu
- 2018-4-0 Sklop pogona za promjenu dohvata
- 2018-5-0 Sklop pogona za dizanje

POPIS OZNAKA

Oznaka	Jedinica	Opis
a_{w}	mm	Potrebni osni razmak
a	m/s^2	Ubrzanje granika
A_{j}	mm^2	Površina poprečnog presjeka vijka
A_{t}	mm^2	Površina zamjenskog trapeza kuke
$A_{\rm zav}$	mm^2	Površina poprečnog presjeka zavara
b	mm	Širina
С	mm	Zračnost zupčanika
C_0	Ν	Dopušteno opterećenje ležaja
C_1	Ν	Opterećenje ležaja
<i>c</i> _p	-	Faktor broja pregiba užeta
d	mm	Promjer užeta
D	mm	Vanjski promjer bubnja
d_{a}	mm	Tjemeni promjer zupčanika
D_{b}	mm	Promjer bubnja
d_{b}	mm	Promjer temeljne kružnice zupčanika
d_2	mm	Nazivni promjer užnice
$d_{ m f}$	mm	Podnožni promjer zupčanika
$D_{ m kot}$	mm	Promjer kotača
$d_{ m os}$	mm	Promjer osovine
$d_{ m w}$	mm	Kinematski promjer zupčanika
$e_{\rm k}$	mm	Ekscentricitet
Ε	N/mm ²	Modul elastičnosti
$F_{\rm a}$	Ν	Aksijalna sila
F_{A}	Ν	Sila u osloncu A
F_{Aa}	Ν	Aksijalna sila u osloncu A
$F_{ m adh\ min}$	Ν	Najmanja adhezijska sila na kotaču
$F_{\rm Ar}$	Ν	Radijalna sila u osloncu A
$F_{\rm B}$	Ν	Sila u osloncu B
$F_{\rm Br}$	Ν	Radijalna sila u osloncu B
$F_{ m dop}$	Ν	Dopuštena sila
$F_{\rm k}$	Ν	Kritična sila
$F_{ m kot}$	Ν	Sila na kotaču
$F_{\rm max}$	Ν	Maksimalna sila
F_{\min}	Ν	Minimalna sila
F _n	Ν	Normalna sila
F_{p}	Ν	Poprečna sila

$F_{\rm r}$	Ν	Radijalna sila
$F_{\rm Rn}$	Ν	Rezultantna normalna sila
F_{Rp}	Ν	Rezultantna poprečna sila
$F_{ m tw}$	Ν	Tangencijalna sila na obodu zupčanika
$F_{ m u\check{z}}$	Ν	Sila u užetu
F_{zub}	Ν	Sila u zubnoj letvi
g	m/s^2	Gravitacijsko ubrzanje
$G_{ m doh}$	Ν	Težina grane dohvatnika
$G_{ m protuut}$	Ν	Težina protuutega
$HN_{\rm pot}$	-	Potreban broj kuke
i	mm	Polumjer tromosti
$\dot{i}_{ m red}$	-	Prijenosni omjer reduktora
I_{y}	mm^4	Aksijalni moment tromosti oko osi y
Iz	mm^4	Aksijalni moment tromosti oko osi z
J	kgm ²	Dinamički moment tromosti
l	mm	Dužina
$L_{10h \min}$	h	Nazivni vijek trajanja
l _b	mm	Ukupna dužina bubnja
$l_{ m doh}$	mm	Dužina grane dohvatnika
l_0	mm	Slobodna duljina izvijanja
<i>l</i> _r	mm	Radna duljina bubnja
$l_{ m zub}$	mm	Duljina zubne letve
m	mm	Modul zupčanika
$m_{ m doh}$	kg	Masa grane dohvatnika
$M_{ m EM}$	Nmm	Moment na vratilu elektromotora
$M_{ m in}$	Nmm	Moment inercije
$M_{ m k}$	Nmm	Maksimalni moment kočenja
$M_{\rm max}$	Nmm	Maksimalni moment savijanja
m _{nos}	kg	Masa nosača
$M_{ m pot}$	Nmm	Potrebni moment
m _{protuut}	kg	Masa protuutega
$M_{ m s}$	Nmm	Moment savijanja
m _{stu}	kg	Masa stupa
$m_{\rm t}$	kg	Masa tereta
$M_{ m ute}$	Nmm	Moment utega
m _{ute}	kg	Masa utega
$M_{ m y}$	Nmm	Moment savijanja oko osi y
n	-	Potreban broj
<i>n</i> _m	\min^{-1}	Brzina vrtnje u minutama
n _{red}	min ⁻¹	Brzina vrtnje na izlazu iz reduktora
р	N/mm ²	Površinski pritisak

$p_{ m dop}$	N/mm ²	Dopušteni površinski pritisak
$P_{\rm pot}$	W	Potrebna snaga
Pr	Ν	Ekvivalentno dinamičko radijalno opterećenje
$Q_{ m p}$	Ν	Proračunsko opterećenje
R _e	N/mm ²	Granica tečenja
$R_{\rm max}$	mm	Maksimalni dohvat
S	mm	Debljina lima
S	-	Faktor sigurnosti
T_2	Nmm	Okretni moment na izlazu iz reduktora
u	-	Prijenosni omjer zupčanika
V _{diz}	m/s	Brzina dizanja tereta
W	mm	Progib
W _{dop}	mm	Dopušteni progib
$W_{ m os}$	mm ³	Moment otpora presjeka osovine
$W_{ m y}$	mm ³	Moment otpora presjeka oko osi y
$W_{ m z}$	mm ³	Moment otpora presjeka oko osi z
X	mm	Koordinata
У	mm	Koordinata

Grčke oznake:

Oznaka	Jedinica	Opis
$\alpha_{\rm s}$	deg	Kut užeta za dizanje tereta
β	deg	Nagib zubne letve
γ	deg	Napadni kut
γ _{max}	deg	Dopušteni napadni kut
δ	mm	Debljina stjenke
$\varDelta_{\rm h}$	mm	Promjena visine
3	-	Eksponent vijeka trajanja za kuglične ležajeve
\mathcal{E}_{α}	-	Stupanj prekrivanja
η_0	-	Iskoristivost valjnih ležajeva
$\eta_{ m k}$	-	Iskoristivost koloturnika
$\eta_{ m red}$	-	Iskoristivost reduktora
λ	-	Vitkost
μ	-	Faktor trenja
π	-	Pi
σ	N/mm ²	Naprezanje
$\sigma_{ m dop}$	N/mm ²	Dopušteno naprezanje
$\sigma_{ m Dtdop}$	N/mm ²	Dopušteno dinamičko tlačno naprezanje
$\sigma_{ m Dvdop}$	N/mm ²	Dopušteno dinamičko vlačno naprezanje

$\sigma_{ m ekv}$	N/mm ²	Ekvivalentno naprezanje
σ_{x}	N/mm ²	Normalno naprezanje
$\sigma_{ m xdop}$	N/mm ²	Dopušteno normalno naprezanje
$\sigma_{ m \phi}$	N/mm ²	Cirkularno naprezanje
$\sigma_{ m \phi dop}$	N/mm ²	Dopušteno cirkularno naprezanje
τ	N/mm ²	Smično naprezanje
Φ	-	Dinamički faktor
φ	deg	Nagib dohvatnika
ψ	deg	Zakret dohvatnika
ω	s ⁻¹	Kutna brzina

SAŽETAK

U ovome radu će se konstruirati jednokraki okretni granik za rad s kukom maksimalne nosivosti od 10 t, maksimalnog dohvata 22 m, te visine portala 15 m. Pogonska grupa granika biti će 2m, dok je zbog geografskog smještaja samog granika utjecaj vjetra zanemaren. Područje rada dohvatnika je od 30° - 60°, a promjena dohvata izvesti će se pomoću zubne letve.

U uvodnom dijelu rada govoriti će se općenito o jednokrakom graniku te o postojećim rješenjima. U nastavku rada provesti će se sinteza dohvatnika i proračun nosive konstrukcije, mehanizma za dizanje tereta, mehanizma za promjenu dohvata, mehanizma za vožnju, mehanizma za okretanje, te će se napraviti tehnička dokumentacija.

Ključne riječi: granik, jednokraki dohvatnika.

SUMMARY

In this paper, a single boom crane with maximum load capacitiy of 10 t, maximum reach of 22 m and a portal height of 15 m will be constructed. The operating group of crane will be 2m, while due to the geographic location of the crane, the influence of the wind is neglected. The working incline of the crane is between 30° and 60°, and the change of incline will be carried out using the dental lobe.

In the introductory part of the paper, we will talk about single boom in general and about existing solutions. In the sequel of the paper we will conduct synthesis of the crane and calculation of supporting structure, the lifting mechanism, mechanism for changing inclination, the driving mechanism, the turning mechanism and the technical documentation will be made.

Key words: crane, single boom crane.

1. UVOD

Granici su uređaji kojima se unutar određenog prostora teret diže, vodoravno prenosi i spušta po različitim putanjama. Vodoravni prijenos tereta, sipkog ili komadnog, postiže se kretanjem cijelog granika, jednog dijela ili voznog mehanizma. Glavna karakteristika granika je rad u ciklusima, odnosno prekidni transportni proces. Područje primjene granika je izuzetno široko: strojogradnja, metalurgija, građevinarstvo, drvna industrija, brodogradilišta, luke, a primjenjuju se kada transportne količine ne opravdavaju primjenu konvejera u pogledu dimenzija i težine. Granici se najčešće dijele prema obliku i izvedbi same konstrukcije:

- Mosne
- Portalne i poluportalne
- Toranjske
- Ovjesne
- Mobilne
- Brodske i ploveće
- Konzolne
- Dohvatne

Slika 1. Jednokraki dohvatnik tvrtke Konecranes [1]

Dohvatni granici se dijele na jednokrake i dvokrake te se po svom glavnom dijelu, dohvatniku, najčešće nazivaju jednokrakim odnosno dvokrakim dohvatnikom. [2]

Slika 2. Dvokraki dohvatnik tvrtke Konecranes [1]

1.1. Jednokraki dohvatnik

Različite vrste jednokrakih dohvatnika razlikuju se prema svojim glavnim dijelovima, a to su dohvatnik, okretište i postolje. Jednokraki dohvatnici se mogu rotirati oko svoje vertikalne osi, a stabilnost se postiže dodavanjem balasta u noge portala, razmicanjem istih te dodavanjem raznih protuutega. Područje rada jednokrakog dohvatnika je ploha omeđena malom kružnicom, najmanji dohvat kada je dohvatnik u gornjem položaju, te velikom kružnicom, najveći dohvat kada je dohvatnik u donjem položaju.

Slika 3. Jednokraki dohvatnik tvrtke Stonimage [3]

Tipična konstrukcijska rješenja dohvatnika rezultiraju vertikalnim pomakom tereta prilikom promjene dohvata. Ovaj pomak naziva se strukturalnom greškom, a rezultira povećanjem potrebne snage mehanizma za promjenu dohvata te otežanim upravljanjem teretom. Odgovarajućim konstrukcijskim rješenjima i njihovim rasporedom u prostoru moguće je svesti strukturalnu grešku na prihvatljiv iznos. Postupak određivanja takve konstrukcije naziva se sintezom dohvatnika.

Neke od glavnih karakteristika jednokrakog dohvatnika uz sintezu samog dohvatnika su: okretište jednokrakog dohvatnika koje može biti izvedeno pomoću okretnog ležaja ili seta radijalnih i aksijalnog ležaja, konstrukcija postolja te mehanizam za promjenu dohvata koji može biti izveden pomoću užadi, navojnog vretena, hidrauličkog cilindra i zubne letve.

Slika 4. Prikaz jednokrakih dohvatnika tvrtke *Liebherr* u nekom brodogradilištu [4]

1.2. Pregled postojećih rješenja

Kako na tržištu postoji puno različitih izvedbi jednokrakih dohvatnika, različitih konstrukcija i radnih parametara, prikazani jednokraki dohvatnici odabrani su tako da njihovi radni parametri budu slični onima zadanim zadatkom.

1.2.1. Jednokraki dohvatnik tvrtke Kranunion

Kranunion u svojoj ponudi jednokrakih dohvatnika ima tri standardna modela, *Kranich 500, Kranich 1000* i *Kranich 3000* maksimalne nosivosti od 7,5 tona do 160 tona te maksimalnim dohvatom od 16 metara do 52,5 metara. Model *Kranich 500* prikazan na slici 5. je najsličniji zadanim radnim parametrima. Ima maksimalnu nosivost od 7,5 tona i maksimalni dohvat od 16 metara, brzinu dizanja tereta do 50 m/min, brzinu okretanja dohvatnika do 1,5 okr/min te brzinu vožnje portala do 40 m/min. Na slici 4. prikazano je rješenje sa dvostrukim krakom izrađeno kutijastim profilima, no u ovom slučaju radi se o jednostrukom kraku rešetkaste konstrukcije gdje je teret ovješen o jednom užetu s prijenosnim omjerom 1 i prijenosnim omjerom 3 u koloturniku za kompenzaciju užeta. Mehanizam za promjenu dohvata je užetni dok je okretište izvedeno s okretnim ležajem. [5]

Slika 5. Kranich 500 [5]

1.2.2. Jednokraki dohvatnik tvrtke Sumitomo

Ponuda jednokrakih dohvatnika tvrtke *Sumitomo* je serija *TL 1.800 - TL 12.000* raspona maksimalne nosivosti od 25 tona do 300 tona i maksimalnog dohvata od 20 metara do 65 metara s brzinama dizanja tereta do 20 m/min, brzinama okretanja dohvatnika do 0,33 okr/min i brzinama vožnje portala do 30 m/min. Model *TL 1.800* prikazan na slici 6. je najsličniji zadanim parametrima s maksimalnom nosivosti od 25 tona te maksimalnim dohvatom od 20 metara. Kao u prethodnom slučaju dohvatnik je jednostruki rešetkaste konstrukcije, a teret je ovješen s ukupnim prijenosnim omjerom 2 dok bi prijenosni omjer u koloturniku za kompenzaciju užeta mogao biti 5/2 ili 3. Mehanizam za promjenu dohvata je užetni dok je okretište izvedeno s okretnim ležajem. [6]

Slika 6. TL 1.800 [6]

1.2.3. Jednokraki dohvatnika tvrtke Ganz

Tvrtka *Ganz* proizvodi po narudžbi specijalne jednokrake dohvatnike raznih maksimalnih nosivosti i raznih maksimalnih dohvata. Na slici 7. prikazan je portalni jednokraki dohvatnik konstruiran za brodogradilište u Egiptu, maksimalne nosivosti 12 tona i maksimalnog dohvata 21 metar, brzinom dizanja tereta od 20 m/min, brzinom okretanja dohvatnika od 1,5 okr/min te brzinom vožnje portala od 32 m/min. U ovom slučaju dohvatnik je također jednostruki rešetkaste konstrukcije, a teret je ovješen na dva užeta s ukupnim prijenosnim omjerom 1 te prijenosnim omjerom 3 u koloturniku za kompenzaciju užeta. Mehanizam za promjenu dohvata je užetni dok je okretište izvedeno s okretnim ležajem. [7]

Slika 7. Jednokraki dohvatnik tvrtke Ganz [7]

1.3. Usporedba

Prethodno pokazana tri primjera jednokrakih dohvatnika su usporedno pokazana u tablici 1. Uspoređene su njihove maksimalne nosivosti i dohvati, brzine dizanja, okretanja dohvatnika i vožnje portala, konstrukcijska izvedba dohvatnika, ukupni prijenosni omjeri i prijenosni omjeri u koloturniku za kompenzaciju užeta, mehanizam za promjenu dohvata te mehanizam za okretanje. Ovom usporedbom dobili smo uvid u trenutno postojeće izvedbe jednokrakih dohvatnika i njihove radne parametre.

Proizvođač	Kranunion	Sumitomo	Ganz,		
Nosivost [t]	7,5	25	12		
Maksimalni dohvat [m]	16	20	21		
Brzina dizanja tereta [m/min]	do 50	do 20	do 20		
Brzina okretanja dohvatnika [okr/min]	do 1,5	do 0,33	do 1,5		
Brzina vožnje portala [m/min]	do 40	do 30	do 32		
Konstrukcija dohvatnika	rešetkasta	rešetkasta	rešetkasta		
Ukupni prijenosni omjer	1	2	1		
Prijenosni omjer u koloturniku za kompenzaciju užeta	3	5/2 ili 3	3		
Mehanizam za promjenu dohvata	užetni	užetni	užetni		
Mehanizam za okretanje	okretni ležaj	okretni ležaj	okretni ležaj		

Tablica 1. Usporedba osnovnih parametara jednokrakih dohvatnika

Konstrukcija dohvatnika u sva tri prikazana slučaja je rešetkasta ali ne mora biti tako, dohvatnik može biti konstruiran s kutijastim profilom, također mehanizam za promjenu dohvata je u sva tri prikazana slučaja užetni ali on se odabire tokom proračuna samog dohvatnika i ovisi o ukupnom momentu na dohvatniku, stoga ovisno o konstrukciji može biti i zubna letva, hidraulički cilindar te navojno vreteno. Mehanizam za okretanje također može biti izveden pomoću para radijalnih te jednog aksijalnog ležaja naspram okretnog ležaja prikazanog u sva tri prethodna primjera. Stoga će se u daljnjoj konceptualnoj razradi razmatrati jednokraki dohvatnici različite konstrukcije dohvatnika, različitom izvedbom mehanizma za promjenu dohvata i različitom konstrukcijskom izvedbom okretišta.

2. KONCEPTUALNA RJEŠENJA

U nastavku će biti prikazana konceptualna rješenja koja mogu zadovoljiti zadane parametre: nosivost, maksimalni dohvat, visina portala, brzina dizanja tereta, brzina okretanja dohvatnika i brzina vožnje portala.

2.1. Koncept 1

Na slici 8. je prikaz koncepta 1. Dohvatnik je dvostruki konstruiran s dva kutijasta profila međusobno povezana, promjena dohvata vrši se pomoću krute veze, zubne letve, dok je donje postolje izvedeno kao portal s četiri noge. Okretni mehanizam izveden je pomoću okretnog ležaja. Teret je ovješen na jedno uže s ukupnim prijenosnim omjerom 1 dok je prijenosni omjer u koloturniku za kompenzaciju užeta 3, što je prikazano na slici 9.

Slika 8. Skica koncepta 1

Slika 9. Koncept 1 - prikaz koloturnika za kompenzaciju užeta [8]

2.2. Koncept 2

Na slici 10. je prikazan koncept 2. Dohvatnik je jednostruki konstruiran s kutijastim profilom, promjena dohvata vrši se kao u prethodnom konceptu pomoću krute veze, zubne letve, dok je donje postolje također izvedeno kao portal s četiri noge. Okretni mehanizam izveden je pomoću para radijalnih i jednog aksijalnog ležaja prikazanih na slici 11. Teret je ovješen na dva užeta s ukupnim prijenosnim omjerom 2 dok je prijenosni omjer u koloturniku za kompenzaciju užeta 6.

Slika 10. Skica koncepta 2

Slika 11. Koncept 2 - skica mehanizma za okretanje

2.3. Koncept 3

Na slici 12. je prikazan koncept 3. Dohvatnik je jednostruki rešetkaste konstrukcije, promjena dohvata vrši se pomoću užadi dok je donje postolje izvedeno kao portal na dvije široke stope. Okretni mehanizam je izveden pomoću para radijalnih i jednog aksijalnog ležaja prikazanih na prethodnoj slici 11. Teret je ovješen na dva užeta ukupnog prijenosnog omjera 2 dok je prijenosni omjer u koloturniku za kompenzaciju užeta 5/2.

Slika 12. Skica koncepta 3

2.4. Koncept 4

Slika 13. Skica koncepta 4

Na slici 13. je prikazan koncept 4. Dohvatnik je jednostruki rešetkaste konstrukcije, promjena dohvata vrši se također kao u prethodnom konceptu pomoću užadi dok je donje postolje izvedeno kao portal s tri noge. Okretni mehanizam izveden je pomoću okretnog ležaja. Teret je ovješen na dva užeta ukupnog prijenosnog omjera 2 dok je prijenosni omjer koloturnika za kompenzaciju užeta 3 kao na slici 14.

Slika 14. Koncept 4 - prikaz koloturnika za kompenzaciju užeta [8]

2.5. Odabir koncepta za konstrukcijsku razradu

Nakon analize i proračuna koncepata provedenih u projektnom zadatku "Projekt Motori i Vozila" odabrani koncept za daljnju konstrukcijsku razradu u ovom radu je koncept 2, koji je s obzirom na postavljene radne parametre pokazao najviše prednosti usporedno s ostalim konceptima. Stoga će se koncept 2 detaljno proračunati, izraditi će se CAD model te tehnička dokumentacija istoga.

3. ODABIR POGONSKE I PODIZNE GRUPE

Pogonska i podizna grupa odabiru se na temelju zadanih pogonskih uvjeta rada granika, vrsti zahvatnog sredstva, te načinu podizanja i spuštanja tereta. Prema [9] za *Lučke okretne granike s dohvatnikom* slijedi podizna grupa HC2 (prema HMI normi), te teški uvjeti rada. Za navedeno prema [10] dodjeljuje se pogonska grupa S5 (HRN EN 13001-1), odnosno pogonska grupa B5 (DIN 15018). Prema [11] ekvivalent prethodno odabrane pogonske grupe u ISO normi je pogonska grupa M5, koja prema [12], odnosno tablici 2. odgovara pogonskoj grupi 2_m (FEM).

		TEORLJSKO RADNO VRLJEME													
T_1 , h; ukupn	io (ISO)	≤100	≤ 200	≤400	≤ 800	≤1600	≤ 3200	≤ 6300	≤12500	≤25000					
T _{1d} , h/dan	(DIN)	≤ 0,063	≤ 0,125	≤ 0,25	≤ 0,5	≤ 1	≤2	≤4	≤ 8	≤16					
Pogonske	DIN	1Dm	1Cm	1Bm	1A _m	2m	3m	4m	5m	•					
grupe	ISO	M1	M2	M3	M4	M5	M6	M7	M8						

Tablica 2. Usporedba normi pogonskih grupa [8]

4. ODREĐIVANJE DINAMIČKOG FAKTORA φ_2

Utjecaj dinamičkog opterećenja prilikom podizanja tereta obuhvaćen je dinamičkim faktorom φ_2 kojim se množi težina ovješenog tereta. Prema [8] dinamički faktor φ_2 za podizne grupe (HC_i; i = 1...4) izračunava se prema izrazu:

$$\phi_{2,i} = 1 + 0,05 \cdot i + 0,17 \cdot i \cdot v_{diz}$$
(4.1)

Brzina dizanja u m/s iznosi:

$$v_{\rm diz} = \frac{16}{60} = \frac{4}{15} \frac{\rm m}{\rm s} \tag{4.2}$$

Traženi dinamički faktor φ_2 tada iznosi:

$$\phi_{2,2} = 1 + 0,05 \cdot 2 + 0,17 \cdot 2 \cdot \frac{4}{15} = 1,19$$
 (4.3)

5. ELEMENTI ZA PRIHVAT I DIZANJE TERETA

5.1. Dimenzioniranje i izbor kuke

Proračunsko opterećenje iznosi:

$$Q_{\rm p} = m_{\rm t} \cdot \phi_2 \cdot g = 10000 \cdot 1,19 \cdot 9,81 = 116739 \text{ N}$$
 (5.1.1)

Izraz za izračunavanje potrebnog broja kuke glasi:

$$HN_{\rm pot} \cong \frac{Q_{\rm p}}{R_{\rm e}} \cdot \nu_{\rm n} \tag{5.1.2}$$

Gdje je prema [8] za odabrani materijal kuke StE355 razreda čvrstoće P, te za pogonsku grupu 2_m , vrijednosti granice tečenja i potrebnog faktora sigurnosti za proračun kuke iznose:

$$R_{\rm e} = 31.5 \, \frac{\rm kN}{\rm cm^2}$$
 (5.1.3)

$$v_{\rm n} = 2$$
 (5.1.4)

Prema tome, potreban broj kuke iznosi:

$$HN_{\rm pot} = \frac{116,739}{31,5} \cdot 2 = 7,4 \tag{5.1.5}$$

Odabrana je kuka HN = 8. Na slici 15. prikazane su oznake i mjere kuke kovane u kalupu, dok su u tablici 3. prikazane sve potrebne dimenzije.

Tablica 3. Mjere jednokrake kuke kovane u kalupu [8]

Broj kuke	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	b_1	b_2	d_1	Navoj kuke	e ₁	e ₂	e3	h_1	h_2	<i>i</i> 1	f_1	gı	<i>r</i> ₁	r_2	<i>r</i> ₃	r ₄	<i>r</i> 5	16	<i>r</i> ₇	Masa ≈ kg
6	90	71	101	80	67	60	Rd50x6	218	240	185	100	85	374	57	18	10	16	90	190	190	131	112	17,1

Slika 15. Oznake mjera jednokrake kuke kovane u kalupu [8]

5.1.1. Provjera čvrstoće kuke

Kontrola naprezanja u vratu kuke

1) Provjera najmanjeg promjera vrata kuke

$$\sigma_{\rm vr} = \frac{4 \cdot Q_{\rm p}}{\pi \cdot d_4^2} = \frac{4 \cdot 116739}{\pi \cdot 48^2} = 64,5 \ \frac{\rm N}{\rm mm^2} < \sigma_{\rm dop} = \frac{R_e}{2,2 \cdot \nu_{\rm n}} = \frac{315}{2,2 \cdot 2} = 71,6 \frac{\rm N}{\rm mm^2} \ (5.1.1.1)$$

2) Smično naprezanje u donjem navoju kuke

$$\tau_{\rm n} = \frac{Q_{\rm p}}{\pi \cdot d_5 \cdot h_3} = \frac{116739}{\pi \cdot 49, 4 \cdot 6} = 125, 4 \frac{\rm N}{\rm mm^2} < \tau_{\rm dop} = \frac{R_e}{1, 25 \cdot \nu_{\rm n}} = \frac{315}{1, 25 \cdot 2} = 126 \frac{\rm N}{\rm mm^2} (5.1.1.2)$$

Naprezanja u vratu kuke su manja od dopuštenih, stoga odabrana kuka zadovoljava.

Kontrola naprezanja u glavnom presjeku A - B

Zbog kompleksnog poprečnog presjeka kuke u promatranom presjeku proračun naprezanja izvršen je pomoću metode zamjenskog trapeza. Dimenzije zamjenskog trapeza dane su u nastavku.

Slika 16. Izgled i dimenzije zamjenskog trapeza [8]

$$b_{1t} = 0,932 \cdot b_1 = 0,932 \cdot 90 = 83,88 \text{ mm}$$
 (5.1.1.3)

$$\mathbf{b}_{2t} = 0,43 \cdot b_1 = 0,43 \cdot 90 = 38,7 \text{ mm}$$
 (5.1.1.4)

$$h_{1t} = h_1 = 112 \text{ mm}$$
(5.1.1.5)

Odgovarajući polumjeri zakrivljenosti:

$$\rho_1 = \frac{a_1}{2} = \frac{100}{2} = 50 \text{ mm}$$
 (5.1.1.6)

$$\rho_2 = \frac{a_1}{2} + h_{\rm tt} = \frac{100}{2} + 112 = 162 \,\,\rm mm$$
(5.1.1.7)

Površina zamjenskog trapeza:

$$A_{t} = \frac{b_{1t} + b_{2t}}{2} \cdot h_{1t} = \frac{83,88 + 38,7}{2} \cdot 112 = 6864,5 \text{ mm}^{2}$$
(5.1.1.8)

Položaj težišta S je na udaljenosti e_s :

$$e_{\rm s} = \frac{h_{\rm lt}}{3} \cdot \frac{b_{\rm lt} + 2 \cdot b_{\rm 2t}}{b_{\rm lt} + b_{\rm 2t}} = \frac{112}{3} \cdot \frac{83,88 + 2 \cdot 38,7}{83,88 + 38,7} = 49,12 \text{ mm}$$
(5.1.1.9)

Položaj neutralne linije:

$$r_{n} = \frac{h_{1t}}{2} \cdot \frac{1 + \frac{b_{2t}}{b_{1t}}}{\frac{\rho_{2}}{\rho_{1}} - \frac{b_{2t}}{b_{1t}}} \cdot \ln \frac{\rho_{2}}{\rho_{1}} + \frac{b_{2t}}{b_{1t}} - 1}{\frac{\rho_{2}}{\rho_{1}} - 1} = \frac{112}{2} \cdot \frac{1 + \frac{38,7}{83,88}}{\frac{162}{50} - \frac{38,7}{83,88}} \cdot \ln \frac{162}{50} + \frac{38,7}{83,88} - 1 \quad (5.1.1.10)$$

= 88,99 mm

$$r_{\rm s} = \frac{a_{\rm 1}}{2} + e_{\rm s} = \frac{100}{2} + 49,12 = 99,12 \text{ mm}$$
 (5.1.1.11)

Maksimalna naprezanja σ_1 i σ_2 iznose:

$$\sigma_{1} = \frac{Q_{p}}{A_{t}} \cdot \frac{\frac{r_{s}}{\rho_{1}} - 1}{\frac{r_{s}}{r_{n}} - 1} = \frac{116739}{6864,48} \cdot \frac{\frac{99,12}{50} - 1}{\frac{99,12}{88,99} - 1} = 146,8 \frac{N}{mm^{2}} < \frac{R_{e}}{v_{n}} = \frac{315}{2} = 157,5 \frac{N}{mm^{2}}$$
(5.1.1.12)

$$\sigma_{2} = \frac{Q}{A_{t}} \cdot \frac{\frac{r_{s}}{\rho_{2}} - 1}{\frac{r_{s}}{r_{n}} - 1} = \frac{116739}{6864, 48} \cdot \frac{\frac{99,12}{162} - 1}{\frac{99,12}{88, 99} - 1} = -57,99 \frac{N}{mm^{2}}$$
(5.1.1.13)

$$\left|\sigma_{2}\right| = 57,99 \frac{N}{mm^{2}} < \frac{R_{e}}{2,5 \cdot v_{n}} = \frac{315}{2,5 \cdot 2} = 63 \frac{N}{mm^{2}}$$
 (5.1.1.14)

5.1.2. Provjera čvrstoće nosača kuke

Razmak nosivih limova:

$$l = b_1 + 2\left(\frac{b_4 - c}{2}\right) = 140 + 2\left(\frac{29 - 10}{2}\right) = 159 \text{ mm}$$
 (5.1.2.1)

Najveći moment savijanja:

$$M_{\text{max}} = \frac{Q_{\text{p}} \cdot l}{4} = \frac{116739 \cdot 159}{4} = 4640375 \text{ Nmm}$$
 (5.1.2.2)

Moment otpora presjeka nosača kuke:

$$W = \frac{1}{6} (b_1 - d_2) \cdot h_1^2 = \frac{1}{6} (140 - 58) \cdot 55^2 = 41342 \text{ mm}^3$$
(5.1.2.3)

Najveće naprezanje nosača kuke:

$$\sigma = \frac{M_{\text{max}}}{W} = \frac{4640375}{41342} = 112, 2 \frac{\text{N}}{\text{mm}^2}$$
(5.1.2.4)

Prema [13] slijedi da je dopušteno naprezanje jednako:

$$\sigma_{\rm dop} = 120 \, \frac{\rm N}{\rm mm^2} \tag{5.1.2.5}$$

$$\sigma = 112, 2 \frac{N}{mm^2} < \sigma_{dop} = 120 \frac{N}{mm^2}$$
 (5.1.2.6)

Kako su najveća naprezanja nosača kuke manja od dopuštenih vrijednosti, odabrani nosač kuke zadovoljava.

5.1.3. Provjera površinskog pritiska nosivih limova

Površinski pritisak između nosivih limova i nosača kuke izračunava se prema sljedećem izrazu:

$$p = \frac{Q_{\rm p}}{2 \cdot d_5 \cdot s} \tag{5.1.3.1}$$

gdje su dimenzije d_5 i *s* prikazane na slici 17., te iznose:

$$d_5 = 50 \text{ mm}$$
 (5.1.3.2)

$$s=b_4-c+1=29-10+1=20 \text{ mm}$$
 (5.1.3.3)

Slika 17. Spoj nosivog lima i nosača kuke [8]

Prema tome, površinski pritisak iznosi:

$$p = \frac{116739}{2 \cdot 50 \cdot 20} = 58,4 \frac{\text{N}}{\text{mm}^2}$$
(5.1.3.4)

Prema [13] dopušteni površinski pritisak iznosi:

$$p_{\rm dop} = 120 \, \frac{\rm N}{\rm mm^2}$$
 (5.1.3.5)

$$p = 58, 4 \frac{N}{mm^2} < p_{dop} = 120 \frac{N}{mm^2}$$
 (5.1.3.6)

Površinski pritisak između nosivih limova i nosača kuke manji je od dopuštenih vrijednosti, stoga proračun zadovoljava.

5.1.4. Izbor aksijalnog ležaja kuke

Aksijalno opterećenje ležaja iznosi:

$$F_{\rm a} = Q_{\rm p} = 116739 \text{ N} \tag{5.1.4.1}$$

Aksijalni ležaj kuke provjerava se s obzirom na statičku nosivost. Statičko opterećenje ležaja računa se prema izrazu:

$$C_1 = F_a \cdot f_s \tag{5.1.4.2}$$

Gdje je:

$$f_{\rm s} = 1,5$$
 (5.1.4.3)

Pa slijedi:

$$C_1 = 116739 \cdot 1,5 = 175109 \text{ N} = 175,1 \text{ kN}$$
 (5.1.4.4)

Odabire se jednosmjerni aksijalni kuglični ležaj 51216, proizvođača SKF, statičke nosivosti $C_0 = 208 \text{ kN} > C_1 = 175,1 \text{ kN}$, stoga odabrani ležaj zadovoljava.

5.2. Stupanj djelovanja koloturnika

Stupanj djelovanja koloturnika uz iskoristivost valjnih ležajeva užnica $\eta_0 = 0.98$ iznosi:

$$\eta_{k} = \frac{1 + \eta_{0}}{2} \cdot \eta_{0}^{n} = \frac{1 + 0.98}{2} \cdot 0.98^{7} = 0.8594$$
(5.2.1)

5.3. Dimenzioniranje i izbor užeta

Maksimalna sila u užetu koja se može javiti u pogonu iznosi:

$$F_{\rm u\check{z}} = \frac{Q_{\rm p}}{i_{\rm k} \cdot \eta_{\rm k}} = \frac{116739}{2 \cdot 0.8594} = 67919 \text{ N}$$
(5.3.1)

Potreban promjer užeta računa se prema sljedećem izrazu:

$$d \ge \sqrt{\frac{4 \cdot S \cdot F_{u\check{z}}}{f \cdot \pi \cdot R_{\rm m}}} \tag{5.3.2}$$

Odabrano je normalno pleteno uže (N.P.) 6x7, faktora ispune f = 0,47. Prema [8] slijedi da je čelik užeta vlačne čvrstoće $R_{\rm m} = 1570$ N/mm², a potrebni faktor sigurnosti za pogonsku grupu $2_{\rm m}$ jednak je S = 4,5.

$$d \ge \sqrt{\frac{4 \cdot 4, 5 \cdot 67919}{0, 47 \cdot \pi \cdot 1570}} \tag{5.3.3}$$

$$d \ge 22,96 \text{ mm}$$
 (5.3.4)

Na temelju minimalno potrebnog promjera užeta odabire se prvi veći normirani promjer užeta koji iznosi d = 24 mm.

5.4. Sklop kuke

Kako bi se osigurala potrebna trajnost užeta potreban je određeni promjer užnice. Minimalni potrebni promjer užnice izračunava se prema sljedećem izrazu:

$$D \ge \left(\frac{D}{d}\right)_{\min} c_{p} \cdot d \tag{5.4.1}$$

Minimalni potrebni odnos promjera užnice u odnosu na promjer užeta za pogonsku grupu 2m prema [8] iznosi:

$$\left(\frac{D}{d}\right)_{\min} = 20 \tag{5.4.2}$$

Dok faktor ovisan o broju pregiba užeta prema [8] iznosi:

$$c_{\rm p} = 1,25$$
 (5.4.3)

Prema tome minimalni potrebni promjer užnice iznosi:

$$D \ge 20.1, 25.24 = 600 \text{ mm}$$
 (5.4.4)

Na temelju potrebnog promjera užnice mjerenog kroz središnjicu užeta D izračunava se nazivni promjer užnice d_2 .

$$d_2 = D - d = 600 - 24 = 576 \text{ mm} \tag{5.4.5}$$

Odabrani nazivni promjer užnice prema [8] iznosi $d_2 = 630$ mm.

5.4.1. Proračun osovine užnice

Slika 18. Dijagrami opterećenja osovine užnice

Najveći moment savijanja:

$$M_{\text{max}} = \frac{Q_{\text{p}}}{2} \cdot \frac{l}{2} = \frac{116739}{2} \cdot \frac{159}{2} = 4640375 \text{ Nmm}$$
 (5.4.1.1)

Moment otpora osovine:

$$W_{\rm os} = \frac{d_5^3 \cdot \pi}{32} = \frac{100^3 \cdot \pi}{32} = 98175 \text{ mm}^3$$
 (5.4.1.2)

Najveće naprezanje osovine užnice:

$$\sigma = \frac{M_{\text{max}}}{W_{\text{os}}} = \frac{4640375}{98175} = 47,3 \frac{\text{N}}{\text{mm}^2}$$
(5.4.1.3)

Prema [13] dopušteno naprezanje za materijal Č.0545 iznosi:

$$\sigma_{\rm dop} = 90 \,\frac{\rm N}{\rm mm^2} \tag{5.4.1.4}$$

$$\sigma = 47,3 \frac{N}{mm^2} < \sigma_{dop} = 90 \frac{N}{mm^2}$$
 (5.4.1.5)

Kako je najveće naprezanje manje od dopuštenih vrijednosti naprezanja, osovina užnice zadovoljava.

5.4.2. Provjera površinskog pritiska nosivih limova

Površinski pritisak između nosivih limova i osovine užnice izračunava se prema sljedećem izrazu:

$$p = \frac{Q_{\rm p}}{2 \cdot d_5 \cdot s} \tag{5.4.2.1}$$

Gdje je:

 $d_5 = 95 \text{ mm}$ - promjer osovine užnice

s = 20 mm - debljina nosivog lima

Prema tome, površinski pritisak iznosi:

$$p = \frac{116739}{2.95.14} = 30,7 \frac{N}{mm^2}$$
(5.4.2.2)

Prema [13] dopušteni površinski pritisak iznosi:

$$p_{\rm dop} = 100 \, \frac{\rm N}{\rm mm^2}$$
 (5.4.2.3)

$$p = 30,7 \ \frac{N}{mm^2} < p_{dop} = 100 \ \frac{N}{mm^2}$$
 (5.4.2.4)

Površinski pritisak između nosivih limova i osovine užnice manji je od dopuštenih vrijednosti, stoga proračun zadovoljava.

5.4.3. Provjera valjnih ležajeva užnice

Odabran je jednoredni radijalni kuglični ležaj 6220, proizvođača SKF, dinamičke nosivosti C = 127 kN.

Ekvivalentno dinamičko radijalno opterećenje ležaja iznosi:

$$P_{\rm r} = \frac{Q_{\rm p}}{2} = \frac{116739}{2} = 58370 \text{ N}$$
 (5.4.3.1)

Dinamičko opterećenje ležajeva računa se prema sljedećem izrazu:

$$C_{1} = P_{\rm r} \left(\frac{60 \cdot n_{\rm m} \cdot L_{\rm 10h\,min}}{10^{6}} \right)^{\frac{1}{\varepsilon}}$$
(5.4.3.2)

Gdje je:

$$n_{\rm m} = \frac{\omega}{2\pi} = \frac{v}{2\pi \frac{D}{2}} = \frac{v_{\rm diz} \cdot i_{\rm kol}}{D \cdot \pi} = \frac{16 \cdot 2}{0,63 \cdot \pi} = 16,17 \text{ min}^{-1} - \text{brzina vrtnje u min}^{-1}$$

 ε =3 - eksponent vijeka trajanja za kuglične ležajeve

 $L_{10h\min} = 10000 h$ - zahtijevani nazivni vijek trajanja u satima

Stoga slijedi:

$$C_1 = 58370 \left(\frac{60 \cdot 16, 17 \cdot 10000}{10^6}\right)^{\frac{1}{3}} = 124492 \,\mathrm{N} = 124, 5 \,\mathrm{kN}$$
(5.4.3.3)

Kako je dinamička nosivost odabranog ležaja veća od dinamičkog opterećenja ležaja, odnosno C = 127 kN > $C_1 = 124,5$ kN, odabrani ležaj zadovoljava.

6. MEHANIZAM ZA DIZANJE TERETA

6.1. Bubanj

6.1.1. Osnovne dimenzije bubnja

Minimalni potrebni promjer bubnja izračunava se prema sljedećem izrazu:

$$D_{\rm b} \ge \left(\frac{D}{d}\right)_{\rm min} \cdot c_{\rm p} \cdot d \tag{6.1.1.1}$$

Minimalni potrebni odnos promjera bubnja u odnosu na promjer užeta za pogonsku grupu 2_m prema [8] iznosi:

$$\left(\frac{D}{d}\right)_{\min} = 18\tag{6.1.1.2}$$

Dok faktor ovisan o broju pregiba užeta, kao i za slučaj užnice iznosi:

$$c_{\rm p} = 1,25$$
 (6.1.1.3)

Prema tome minimalni potrebni promjer bubnja iznosi:

$$D \ge 18 \cdot 1, 25 \cdot 24 = 540 \text{ mm}$$
 (6.1.1.4)

Na temelju minimalnog potrebnog promjera bubnja odabire se bešavna cijev vanjskog promjera D = 711 mm, debljine stjenke $\delta = 25$ mm proizvođača *Vallourec* prema [14].

Prema [8] slijede osnovne dimenzije profila žlijeba bubnja:

Slika 19. Osnovne dimenzije profila žlijeba bubnja [8]

$$0,375d \le h \le 0,4d$$

$$0,375 \cdot 24 \le h \le 0,4 \cdot 24$$

$$9 \le h \le 9,6$$

$$h=9 \text{ mm}$$

(6.1.1.5)

$$r_1 \cong 0,53 \cdot d = 0,53 \cdot 24 = 12,72 \text{ mm} = 12,5 \text{ mm}$$
 (6.1.1.6)

$$t \cong 1,15 \cdot d = 1,15 \cdot 24 = 27,6 \text{ mm} = 27,5 \text{ mm}$$
 (6.1.1.7)

$$r_2 = 0.8 \text{ mm}$$
 (6.1.1.8)

Promjer bubnja bitan za daljnji proračun iznosi:

$$D_{\rm b} = D + d_{\rm u\check{z}} - 2 \cdot h = 711 + 24 - 2 \cdot 9 = 717 \text{ mm}$$
(6.1.1.9)

Ostale mjere bubnja izračunavaju se kako slijedi:

$$s_1 = t + (40 \text{ do } 50) = t + 42, 5 = 27, 5 + 42, 5 = 70 \text{ mm}$$
 (6.1.1.10)

$$s_2 \cong t = 27,5 \text{ mm}$$
 (6.1.1.11)

$$s_3 = 4 \cdot t = 4 \cdot 27, 5 = 110 \text{ mm}$$
 (6.1.1.12)

$$s_4 = (2,5 \text{ do } 3,5) \cdot t = 3 \cdot t = 3 \cdot 27, 5 = 82,5 \text{ mm}$$
 (6.1.1.13)

$$s_5 = (2 \text{ do } 3) \cdot t = 3 \cdot t = 3 \cdot 27, 5 = 82, 5 \text{ mm}$$
 (6.1.1.14)

Slika 20. Ostale mjere bubnja [8]

Radna dužina bubnja:

$$l_{\rm r} = \frac{i_{\rm kol} \cdot H}{D_{\rm b} \cdot \pi} \cdot t = \frac{2 \cdot 40 \cdot 10^3}{717 \cdot \pi} \cdot 27,5 = 976,7 \text{ mm} = 977 \text{ mm}$$
(6.1.1.15)

Ukupna dužina bubnja:

$$l_{\rm b} = l_{\rm r} + s_1 + s_2 + s_3 + s_4 + 30 = 977 + 70 + 27,5 + 110 + 82,5 + 30 = 1297 \text{ mm} (6.1.1.16)$$

6.1.2. Provjera napadnog kuta užeta

Napadni kut užeta predstavlja otklon užeta koji treba biti unutar dozvoljenih granica od $\gamma_{max} = 4^{\circ}$. Kao što je prikazano na skici u nastavku napadni kut dohvatnika izračunava se prema sljedećem izrazu:

Slika 21. Napadni kut užeta

$$tg \gamma = \frac{\frac{l_r}{2}}{L} = \frac{\frac{977}{2}}{7500}$$
(6.1.2.1)

$$\gamma = \operatorname{arc} tg\left(\frac{\frac{977}{2}}{7500}\right) = 3,73^{\circ} < \gamma_{\max} = 4^{\circ}$$
 (6.1.2.2)

Proizlazi da je napadni kut manji od maksimalno dopuštenog napadnog kuta, odnosno da je otklon užeta unutar dopuštenih granica.

6.1.3. Proračun stjenke bubnja

Debljina stjenke odabranog bubnja iznosi:

$$s = \delta - h = 25 - 9 = 16 \text{ mm}$$
 (6.1.3.1)

Naprezanje stjenke bubnja

1) Normalno naprezanje (od lokalnog savijanja stjenke na mjestu namatanja)

$$\sigma_{\rm x} = 0,96 \cdot F_{\rm už} \sqrt{\frac{1}{D_{\rm b} \cdot s^3}} = 0,96 \cdot 67919 \sqrt{\frac{1}{717 \cdot 16^3}} = 38 \frac{\rm N}{\rm mm^2}$$
(6.1.3.2)

Dopušteno normalno naprezanje za Č.0361 iznosi:

$$\sigma_{\rm xdop} = 50 \, \frac{\rm N}{\rm mm^2} \tag{6.1.3.3}$$

$$\sigma_{\rm x} = 38 \, \frac{\rm N}{\rm mm^2} < \sigma_{\rm x\,dop} = 50 \, \frac{\rm N}{\rm mm^2}$$
 (6.1.3.4)

2) Cirkularno (tlačno) naprezanje

$$\sigma_{\varphi} = -0.5 \frac{F_{u\bar{z}}}{t \cdot s} = -0.5 \frac{67919}{27.5 \cdot 16} = -77.2 \frac{N}{mm^2}$$
(6.1.3.5)

Dopušteno cirkularno naprezanje za Č.0361 iznosi:

$$\left|\sigma_{\varphi dop}\right| = 100 \,\frac{\mathrm{N}}{\mathrm{mm}^2} \tag{6.1.3.6}$$

$$\left|\sigma_{\varphi}\right| = 77, 2 \frac{N}{mm^2} < \left|\sigma_{\varphi dop}\right| = 100 \frac{N}{mm^2}$$
 (6.1.3.7)

Kako su normalna naprezanja i cirkularna naprezanja manja od dopuštenih vrijednosti, bubanj odabrane debljine zadovoljava.

6.1.4. Provjera zavara na spoju vijenca i bubnja

Glavna naprezanja iznose:

$$\sigma_1 = \sigma_x = 38 \frac{N}{mm^2} \tag{6.1.4.1}$$

$$\sigma_2 = 0 \tag{6.1.4.2}$$

$$\sigma_3 = \sigma_{\varphi} = -77, 2 \frac{N}{mm^2}$$
 (6.1.4.3)

Granica tečenja za materijal Č.0361 prema [15] iznosi $R_e = 235$ N/mm², dok potrebni faktor sigurnosti prema [8] iznosi S = 2.

Na temelju toga dopušteno naprezanje iznosi:

$$\sigma_{\rm dop} = \frac{R_{\rm e}}{S} = \frac{235}{2} = 117,5 \ \frac{\rm N}{\rm mm^2}$$
(6.1.4.4)

Ekvivalentno naprezanje iznosi:

$$\sigma_{\rm ekv} = \sigma_1 - \sigma_3 = 38 - (-77, 2) = 115, 2 \frac{N}{mm^2} < \sigma_{\rm dop} = 117, 5 \frac{N}{mm^2}$$
 (6.1.4.5)

Ekvivalentno naprezanje manje je od dopuštenog naprezanja, stoga proračun zadovoljava.

Prema [8] za najveći moment na bubnju od $M_{\text{max}} = 24,35$ kNm, odnosno najveću obodnu silu na bubnju od $F_{uz} = 67,92$ kN slijede osnovne mjere i dimenzije bubnja, prikazane na slici 22. u nastavku.

$$d_{1} = 140 \text{ mm}$$

$$d_{2} = 134,9 \text{ mm}$$

$$d_{3} = 195 \text{ mm}$$

$$d_{4} = 85 \text{ mm}$$

$$d_{5} = 100 \text{ mm}$$

$$d_{6} = D_{bu} + 10 = 717 + 10 = 727 \text{ mm}$$

$$d_{7} = D_{bu} + (85 \text{ do } 100) = 717 + 93 = 810 \text{ mm}$$

$$d_{8} = d_{7} + 50 = 810 + 10 = 860 \text{ mm}$$
(6.1.4.6)

Slika 22. Osnovne mjere i dimenzije bubnja [8]

6.1.5. Veza vijenca s bubnjem

Potrebna debljina čelne ploče bubnja, za bubanj u zavarenoj izvedbi, računa se prema sljedećem izrazu prema [8]:

$$\sigma = 1,44 \left(1 - \frac{2}{3} \frac{D_1}{D_{\text{bu}}} \right) \frac{F_{\text{H}}}{w^2} \le \sigma_{\text{dop}} = \frac{R_e}{S}$$
(6.1.5.1)

Iz čega se dobiva izraz:

$$w \ge \sqrt{1,44\left(1-\frac{2}{3}\frac{D_{\rm l}}{D_{\rm bu}}\right)\frac{F_{\rm H}}{\sigma_{\rm dop}}}$$
 (6.1.5.2)

Gdje je:

 $D_1 = d_3 = 195 \text{ mm}$ - promjer glavine bubnja

Prema [8] dobivaju se i preostale potrebne veličine:

$$F_{\rm H} = 0, 1 \cdot F = 0, 1 \cdot 67919 = 6792 \text{ N}$$
 (6.1.5.3)

$$\sigma_{\rm dop} = 100 \,\frac{\rm N}{\rm mm^2} \tag{6.1.5.4}$$

Prema tome, potrebna debljina čelne ploče bubnja iznosi:

$$w \ge \sqrt{1,44\left(1 - \frac{2}{3}\frac{195}{717}\right)\frac{6792}{100}} = 8,95 \text{ mm}$$
 (6.1.5.5)

Na temelju prethodnog izraza odabire se debljina čelne ploče bubnja w = 15 mm.

6.1.6. Veza čelne ploče i bubnja

Veza čelne ploče i bubnja ostvaruje se vijčanim spojem. Odabiru se vijci M16, kvalitete 8.8. U proračunu potrebnog broja vijaka pretpostavlja se prijenos okretnog momenta trenjem između bubnja i čelne ploče. Prema tome proračun se provodi prema sljedećem izrazu:

$$F \cdot \frac{D}{2} \le n \cdot \mu \cdot F_{\rm N} \frac{d_7}{2} \tag{6.1.6.1}$$

Gdje je:

 $\mu = 0,2$ - faktor trenja čelik/čelik prema [15]

$$F_{\rm N} = \sigma_{\rm dop} \cdot A_{\rm j} \tag{6.1.6.2}$$

Odabrani vijci M16, kvalitete 8.8. imaju granicu tečenja $R_e = 640 \text{ N/mm}^2$, te površinu jezgre vijka $A_j = 144 \text{ mm}^2$ prema [15]. Uz odabranu pogonsku sigurnost S = 2,5 dobiva se dopušteno naprezanje vijaka:

$$\sigma_{\rm dop} = \frac{R_{\rm e}}{S} = \frac{640}{2.5} = 256 \,\frac{\rm N}{\rm mm^2} \tag{6.1.6.3}$$

Na temelju toga dobiva se potreban broj vijaka:

$$n \ge \frac{F \cdot D}{\mu \cdot \sigma_{dop} \cdot A_{j} \cdot d_{7}}$$
(6.1.6.4)

$$n \ge \frac{67919 \cdot 711}{0, 2 \cdot 256 \cdot 144 \cdot 810} \tag{6.1.6.5}$$

$$n \ge 8,09$$
 (6.1.6.6)

Odabrano je 10 vijaka M16 kvalitete 8.8.

6.1.7. Proračun osovine bubnja

Potrebni promjer osovine bubnja izračunava se na sljedeći način:

$$d_{\rm os} \ge \sqrt{\frac{32 \cdot c_{\rm A} \cdot F_{\rm BMAX}}{\pi \cdot \sigma_{\rm dop}}}$$
(6.1.7.1)

Prema [13] slijedi:

$$c_{\rm A} = 1, 5...2 \rightarrow c_{\rm A} = 1, 5$$
 (6.1.7.2)

$$\sigma_{\rm dop} = 100 \,\frac{\rm N}{\rm mm^2} \tag{6.1.7.3}$$

 F_{Bmax} je najveće moguće opterećenje ležaja u osloncu B koje se izračunava iz jednadžbi statike prema slici 23.

Slika 23. Opterećenje osovine bubnja

Gdje je:

$$L_{\rm A} = 1187,5 \text{ mm}$$

 $L_{\rm B} = 212,5 \text{ mm}$ (6.1.7.4)

$$\sum M_{\rm A} = 0 \qquad F_{\rm B} = \frac{F \cdot L_{\rm A}}{L_{\rm A} + L_{\rm B}} = \frac{67919 \cdot 1187, 5}{1187, 5 + 212, 5} = 57610 \text{ N}$$
(6.1.7.5)

Uvrštavanjem dobivenih vrijednosti dobiva se potrebni promjer osovine bubnja.

$$d_{\rm os} \ge \sqrt{\frac{32 \cdot 1, 5 \cdot 57610}{\pi \cdot 100}} \tag{6.1.7.6}$$

$$d_{\rm os} \ge 93.8 \text{ mm}$$
 (6.1.7.7)

Iz prethodne relacije vidi se da prethodno odabrani promjer osovine bubnja $d_5 = 100$ mm zadovoljava.

6.1.8. Veza užeta s bubnjem

Veza užeta i bubnja ostvarena je pomoću pritisne pločice sa zaobljenim žlijebom i vijaka M16. Kod najnižeg položaja kuke trebaju na bubnju ostati još dva navoja užeta, ne računajući pri tom navoje koji služe za pričvršćivanje tako da je prije ulaska u vijčanu vezu maksimalna sila u užetu umanjena za iznos užetnog trenja dva namotaja. Koeficijent trenja između bubnja i užeta prema [8] iznosi $\mu = 0,1$, dok je obuhvatni kut za spomenuta dva namotaja jednak $\alpha = 4\pi$ rad. Sila u užetu pred ulazom u vijčanu vezu iznosi:

$$F_{\rm v} = \frac{F}{e^{\mu \cdot \alpha}} = \frac{F}{e^{0.1 \cdot 4\pi}} = 0,285 \cdot F_{\rm uz} = 0,285 \cdot 67919 = 19357 \text{ N}$$
(6.1.8.1)

Formula za izračunavanje potrebne normalne sile u 1 vijku glasi:

$$F_{\rm N} = 2F_{\rm un} = 2\frac{F_{\rm V}}{\left(\mu + \mu_1\right)\left(e^{\mu \cdot \alpha} + 1\right)}$$
(6.1.8.2)

Gdje je:

 $\mu_1 = \mu = 0, 1 - \text{ekvivalentni koeficijent trenja zaobljenog žlijeba prema [8]}$

$$F_{\rm N} = 2 \frac{0,285F_{\rm u\check{z}}}{\left(0,1+0,1\right)\left(e^{0,1\cdot4\pi}+1\right)} = 0,631\cdot F_{\rm u\check{z}} = 0,631\cdot 67919 = 42857 \text{ N}$$
(6.1.8.3)

Potreban broj vijaka prema opterećenju na vlak i savijanje izračunava se prema sljedećem izrazu:

$$z \ge \frac{F_N}{\sigma_{dop}} \left(\frac{1,3}{A_j} + \frac{32 \cdot \mu_1 \cdot h}{\pi \cdot d_1^3} \right)$$
(6.1.8.4)

Odabrani su vijci M16, kvalitete 8.8., granice tečenja 640 N/mm², promjera jezgre $d_1 =$ 13,835 mm, te površine jezgre $A_j = 144 \text{ mm}^2$ čije dopušteno naprezanje iznosi:

$$\sigma_{\rm dop} = \frac{R_{\rm e}}{S} = \frac{640}{2.5} = 256 \,\frac{\rm N}{\rm mm^2} \tag{6.1.8.5}$$

h = 34 mm - debljina pritisne pločice zajedno s promjerom užeta

$$z \ge \frac{42857}{256} \left(\frac{1,3}{144} + \frac{32 \cdot 0,1 \cdot 34}{\pi \cdot 13,835^3} \right)$$
(6.1.8.6)

$$z \ge 3,7$$
 (6.1.8.7)

Veza užeta s bubnjem ostvariti će se pomoću 4 vijka što je više od minimalno zahtijevanog broja.

Prema [8] vijci se postavljaju po obodu bubnja na razmaku:

$$l_{\rm v} \ge 5 \cdot d = 5 \cdot 24 = 120 \text{ mm}$$
 (6.1.8.8)

Iz čega proizlazi potreban kut između pritisnih pločica:

$$\gamma = \frac{2 \cdot l_v}{D} = \frac{2 \cdot 120}{711} = 0,34 \text{ rad} = 19,5^{\circ}$$
 (6.1.8.9)

6.1.9. Odabir ležaja bubnja

Ekvivalentno dinamičko radijalno opterećenje ležaja bubnja iznosi:

$$P_{\rm r} = F_{\rm BMAX} = 57610 \text{ N}$$
 (6.1.9.1)

Odabire se ležajna jedinica SYJ 100 TF, proizvođača SKF, dinamičke nosivosti C = 124 kN.

Dinamičko opterećenje ležajeva C_1 izračunava se prema sljedećem izrazu:

$$C_{1} = P \left(\frac{60 \cdot n_{\rm m} \cdot L_{10\rm h\,min}}{10^{6}} \right)^{\frac{1}{c}}$$
(6.1.9.2)

Gdje je:

$$n_{\rm m} = \frac{\omega}{2\pi} = \frac{v}{2\pi \cdot \frac{D_{\rm bu}}{2}} = \frac{v}{D_{\rm bu} \cdot \pi} = \frac{v_{\rm diz} \cdot i_{\rm kol}}{D_{\rm bu} \cdot \pi} = \frac{16 \cdot 2}{0,717 \cdot \pi} = 14,2 \text{ min}^{-1} - \text{brzina vrtnje u min}^{-1}$$

 ε =3 - eksponent vijeka trajanja za kuglične ležajeve

 $L_{10h\min} = 10000 h$ - zahtijevani nazivni vijek trajanja u satima

Prema tome slijedi:

$$C_1 = 57610 \left(\frac{60 \cdot 14, 2 \cdot 10000}{10^6}\right)^{\frac{1}{3}} = 117664 \,\mathrm{N} = 118 \,\mathrm{kN}$$
(6.1.9.3)

Kako je dinamička nosivost odabranog ležaja veća od dinamičkog opterećenja ležaja, odnosno C = 124 kN > $C_1 = 118$ kN, odabrani ležaj zadovoljava.

6.2. Odabir pogona za podizanje tereta

Potrebna snaga elektromotora za dizanje može se odrediti iz poznatog potrebnog momenta na bubnju i potrebnog broja okretaja na bubnju. U izračun potrebne snage motora, moraju se uključiti i gubitci u reduktoru. U tu svrhu, pretpostavlja se stupanj korisnog djelovanja reduktora:

$$\eta_{\rm red} = 0,97$$
 (6.2.1)

Potrebna snaga elektromotora iznosi:

$$P_{\text{pot}} = \frac{M_{\text{bu}} \cdot 2 \cdot \pi \cdot n_{\text{m}}}{60 \cdot \eta_{\text{red}}} = \frac{24349 \cdot 2 \cdot \pi \cdot 14, 2}{60 \cdot 0,97} = 37,3 \text{ kW}$$
(6.2.2)

Potrebna brzina vrtnje na izlazu iz reduktora iznosi:

$$n_{\rm red} = n_{\rm m} = 14, 2 \, {\rm min}^{-1}$$
 (6.2.3)

Prema tome odabran je elektromotor s reduktorom i ugrađenom kočnicom oznake *K* 167R107 DRN 225S4, proizvođača Sew Eurodrive, karakteristika prikazanih u tablici 4. u nastavku.

Nazivna snaga elektromotora	Р	37 kW
Brzina vrtnje na izlazu iz reduktora	<i>n</i> ₂	14 min ⁻¹
Okretni moment na izlazu iz reduktora	T_2	26400 Nm
Prijenosni odnos	$i_{\rm red}$	118
Maksimalna radijalna sila	$F_{\rm max}$	150 kN
Maksimalni moment kočenja	M _K	500 Nm

Tablica 4. Karakteristike elektromotora s reduktorom

6.2.1. Provjera kočnog momenta elektromotora

Moment na vratilu elektromotora iznosi:

$$M_{\rm EM} = \frac{M_{\rm bu}}{i} = \frac{24349}{118} = 206 \text{ Nm} \le M_{\rm K} = 500 \text{ Nm}$$
 (6.2.1.1)

Pošto je najveći moment na elektromotoru manji od maksimalne vrijednosti momenta kočenja, proračun zadovoljava.

6.2.2. Provjera radijalne sile na izlaznom vratilu

Može se pretpostaviti da je najveća radijalna sila koja se javlja na izlaznom vratilu iz reduktora jednaka sili u užetu:

$$F_{\rm r} = F_{\rm už} = 67919 \text{ N} \le 150000 \text{ N}$$
 (6.2.2.1)

Pošto je najveća radijalna sila na izlaznom vratilu iz reduktora manja od maksimalne dozvoljene radijalne sile, proračun zadovoljava.

7. PRORAČUN DOHVATNIKA I MEHANIZMA ZA PROMJENU DOHVATA

7.1. Sinteza mehanizma promjene dohvata jednokrakog dohvatnika

7.1.1. Krajnji položaj dohvatnika

Iz projektnih zahtjeva očitava se potrebni najveći dohvat:

$$R_{\rm max} = 22000 \ {\rm mm}$$
 (7.1.1.1)

Najveći dohvat ostvaruje se pri kutu nagiba dohvatnika od horizontalne osi:

$$\varphi_{\min} = 30^{\circ}$$
 (7.1.1.2)

Dok se nagib dohvatnika kreće u rasponu od:

$$\varphi = 30^{\circ} \dots 60^{\circ}$$
 (7.1.1.3)

Potrebna duljina dohvatnika da bi se ostvario potrebni dohvat izračunava se prema sljedećem izrazu:

$$l_{\rm doh} = \frac{R_{\rm max} - \frac{D_{\rm u\ddot{z}}}{2}}{\cos 30^{\circ}} = \frac{22000 - \frac{630}{2}}{\cos 30^{\circ}} = 25040 \text{ mm}$$
(7.1.1.4)

Na slici 24. prikazana je skica sinteze mehanizma za promjenu dohvata. Koordinate *x* točkama sinteze izabrane su u nekoliko iteracija na način da se smanji ukupna strukturalna greška na cijelom mogućem rasponu kuta dohvatnika.

Koordinate x krajnjih točaka te dvije točke u kojima se provodi sinteza su:

$$x_{1} = R_{\max} - \frac{D_{u\bar{z}}}{2} = 22000 - \frac{630}{2} = 21685 \text{ mm}$$

$$x_{2} = 19500 \text{ mm}$$

$$x_{3} = 13000 \text{ mm}$$

$$x_{4} = l_{doh} \cdot \cos(\varphi_{max}) = 25040 \cdot \cos(60^{\circ}) = 12520 \text{ mm}$$
(7.1.1.5)

Koordinate y izračunavaju se iz Pitagorinog poučka kako slijedi:

$$y_{1} = \sqrt{l_{doh}^{2} - x_{1}^{2}} = \sqrt{25040^{2} - 21658^{2}} = 12520 \text{ mm}$$

$$y_{2} = \sqrt{l_{doh}^{2} - x_{2}^{2}} = \sqrt{25040^{2} - 19500^{2}} = 15708 \text{ mm}$$

$$y_{3} = \sqrt{l_{doh}^{2} - x_{3}^{2}} = \sqrt{25040^{2} - 13000^{2}} = 21401 \text{ mm}$$

$$y_{4} = \sqrt{l_{doh}^{2} - x_{4}^{2}} = \sqrt{25040^{2} - 12520^{2}} = 21685 \text{ mm}$$
(7.1.1.6)

Iz toga se mogu izračunati pripadni kutevi φ :

$$\varphi_{2} = \arctan\left(\frac{y_{2}}{x_{2}}\right) = \arctan\left(\frac{15708}{19500}\right) = 38,85^{\circ}$$

$$\varphi_{3} = \arctan\left(\frac{y_{3}}{x_{3}}\right) = \arctan\left(\frac{21401}{13000}\right) = 58,72^{\circ}$$
(7.1.1.7)

7.1.2. Položaj točke B

U točkama sinteze izračunavaju se kutevi φ_s :

$$\varphi_{s2} = \varphi_2 - \arcsin\left(\frac{\cos(\varphi_2)}{n}\right) = 38,85^\circ - \arcsin\left(\frac{\cos(38,85^\circ)}{\frac{6}{2}}\right) = 23,8^\circ$$

$$\varphi_{s3} = \varphi_3 - \arcsin\left(\frac{\cos(\varphi_3)}{n}\right) = 58,72^\circ - \arcsin\left(\frac{\cos(58,72^\circ)}{\frac{6}{2}}\right) = 48,75^\circ$$
(7.1.2.1)

Pri čemu n = 6/2 predstavlja prijenosni omjer mehanizma promjene dohvata.

Iz izračunatih kuteva mogu se dobiti koordinate točke B, prema sljedećim izrazima:

$$\tan(\varphi_{s2}) = \frac{y_2 - y_B}{x_2 - x_B} \qquad \tan(\varphi_{s3}) = \frac{y_3 - y_B}{x_3 - x_B}$$

$$x_B = \frac{x_3 \cdot \tan(\varphi_{s3}) - y_3 + y_2 - x_2 \cdot \tan(\varphi_{s2})}{\tan(\varphi_{s3}) - \tan(\varphi_{s2})} =$$

$$= \frac{13000 \cdot \tan(48,75^\circ) - 21401 + 15708 - 19500 \cdot \tan(23,8^\circ)}{\tan(48,75^\circ) - \tan(23,8^\circ)} = 758 \text{ mm}$$

$$y_B = y_2 - (x_2 - x_B) \cdot \tan(\varphi_{s2}) = 15708 - (19500 - 758) \cdot \tan(23,8^\circ) = 7442 \text{ mm}$$

7.1.3. Strukturalna greška

Strukturalna greška ovog mehanizma prikazana je dijagramom na slici 25. Iz dijagrama se može primijetiti kako se ekstremi strukturalne greške nalaze u točkama sinteze što je i očekivano, a najveća amplituda greške iznosi oko 30 mm.

Veličine strukturalne greške mogu se bezdimenzijski pokazati:

- u odnosu na dužinu kraka

$$\frac{\Delta y_{\text{max}}}{l} = \frac{30}{25040} = 0,0012 = 0,12 \%$$
(7.1.3.1)

- u odnosu na dužinu približno horizontalnog vođenja tereta

$$\frac{\Delta y_{\text{max}}}{x_{\text{max}} - x_{\text{min}}} = \frac{30}{21685 - 12520} = 0,0033 = 0,33\%$$
(7.1.3.2)

Slika 25. Prikaz strukturalne greške mehanizma za promjenu dohvata

7.2. Dimenzioniranje protuutega, izračun sile potrebne za promjenu dohvata i prikaz opterećenja dohvatnika

7.2.1. Dimenzioniranje protuutega i izračun sile potrebne za promjenu dohvata

Sila F_1 na slici 26. predstavlja silu koju treba ostvariti mehanizam za promjenu dohvata, dok sila $G_{\text{protuutega}}$ predstavlja težinu protuutega koji se dodaje u svrhu uravnoteženja dohvatnika i smanjenja sila u mehanizmu za promjenu dohvata, a sila Q predstavlja najveću dopuštenu težinu tereta uvećanu za dinamički faktor, što je zapravo jednako sili Q_p .

Približna masa protuutega za uravnoteženje dohvatnika i smanjenje potrebne sile u mehanizmu za promjenu dohvata može se izračunati iz izjednačavanja radova koje obave težina protuutega i težina kraka dohvatnika pri promjeni od najmanjeg do najvećeg kuta nagiba dohvatnika tj.:

$$G_{\text{protuntega}} \cdot \Delta h_{\text{protuntega}} = G_{\text{doh}} \cdot \Delta h_{\text{doh}}$$
(7.2.1.1)

Pri čemu Δh_{doh} predstavlja promjenu visine težišta dohvatnika.

Iz CAD modela je očitana ukupna masa cijelog dohvatnika, zajedno sa svi elementima spojenim s dohvatnikom (skretne užnice, nosivi limovi skretnih užnica, itd.) te iznosi:

$$m_{\rm doh} = 9580 \ \rm kg$$
 (7.2.1.2)

A djeluje na kraku:

$$\Delta l_{\rm doh} = 12520 \text{ mm}$$
 (7.2.1.3)

Mjereno uzduž dohvatnika, iz čega slijedi da je promjena visine težišta jednaka:

$$\Delta h_{\text{doh}} = \Delta l_{\text{doh}} \cdot \left(\sin\left(\varphi_{\text{max}}\right) - \sin\left(\varphi_{\text{min}}\right) \right) =$$

= 12520 \cdot (\sin(60°) - \sin(30°)) = 4583 mm (7.2.1.4)

Iz konstrukcije i smještaja protuutega određena je promjena visine težišta protuutega koja iznosi:

$$\Delta h_{\rm protuutega} = 2115 \text{ mm}$$
(7.2.1.5)

Pa slijedi:

$$m_{\text{protuutega}} = \frac{m_{\text{doh}} \cdot \Delta h_{\text{doh}}}{\Delta h_{\text{protuutega}}} = \frac{9580 \cdot 4583}{2115} = 20759 \text{ kg}$$
 (7.2.1.6)

Potom je napravljen precizniji proračunski model dohvatnika gdje se s uključenom najvećom dopuštenom težinom tereta izračunao moment potreban za promjenu dohvata i dobiven je dijagram ovisnosti momenta o kutu nagiba dohvatnika prikazan na slici 27.

Slika 27. Dijagram momenta na dohvatniku s protuutegom od 20759 kg u ovisnosti o kutu nagiba dohvatnika

Potom je u više iteracija kalibrirana masa protuutega kako bi se dobila što povoljnija ovisnost momenta o kutu nagiba dohvatnika, te je s masom protuutega

$$m_{\rm protuut} = 14750 \text{ kg}$$
 (7.2.1.8)

dobiven dijagram na slici 28.

Slika 28. Dijagram momenta na dohvatniku s protuutegom od 14750 kg u ovisnosti o kutu nagiba dohvatnika

Udaljenost hvatišta zubne letve mehanizma za promjenu dohvata na dohvatniku od okretišta dohvatnika (kako je prikazano na slici 29.) iznosi:

$$l_{\rm meh\ doh} = 2000\ {\rm mm}$$
 (7.2.1.9)

dok udaljenost mjesta dodira zubne letve i zupčanika na glavnom stupu od okretišta dohvatnika iznosi jednako:

$$l_{\rm meh\,stu} = 2000 \,\,\mathrm{mm}$$
 (7.2.1.10)

Potom je korištenjem sinusovog i kosinusovog poučka napravljen proračunski model gdje je uključena ovisnost duljine zubne letve između oslonca i dodira s zupčanikom o kutu nagiba dohvatnika l_{zub} , kao i promjena kuta nagiba zubne letve β .

$$l_{zub}(\varphi) = \sqrt{l_{meh stu}^{2} + l_{meh doh}^{2} - 2 \cdot l_{meh stu} \cdot l_{meh doh} \cdot \cos(\alpha(\varphi))}$$

$$\beta(\varphi) = \arcsin\left(\frac{l_{meh stu}}{l_{zub}(\varphi)} \cdot \sin(\alpha(\varphi))\right)$$
(7.2.1.11)

Gdje je kut α prikazan na slici 29.

Slika 29. Skica mjesta postavljanja zubne letve mehanizma za promjenu dohvata

Ovisnost sile koju je potrebno ostvariti u zubnoj letvi o kutu nagiba dohvatnika izračunava se iz izraza:

$$F_{zub}(\varphi) = \frac{M(\varphi)}{l_{meh doh} \cdot \sin(\beta(\varphi))}$$
(7.2.1.12)

i prikazana je na slici 30.

Slika 30. Dijagram potrebne sile u zubnoj letvi u ovisnosti o kutu nagiba dohvatnika

Najveća sila u zubnoj letvi potrebna za promjenu dohvata je pri kutu nagiba dohvatnika od 30° i s najvećim teretom to iznosi:

$$F_{\text{zub max}} = 33430 \text{ N}$$
 (7.2.1.13)

7.2.2. Odabir elemenata za mehanizam za promjenu dohvata

Odabrana je zubna letva s zupčanikom (s kaljenim zubima) tvrtke *Güdel* sljedećih karakteristika:

$$m=8 \text{ mm}$$

 $F_{N \max} = 109734 \text{ N}$ (7.2.2.1)
 $T_{N \max} = 9315 \text{ Nm}$

Potrebna normalna sila na zubnoj letvi manja je od najveće dozvoljene podijeljene s faktorom sigurnosti S = 2, preporučenim od proizvođača, stoga proračun zadovoljava, tj.:

$$F_{\text{zub max}} = 33430 \text{ N} \le \frac{F_{\text{N max}}}{S} = \frac{109734}{2} = 54867 \text{ N}$$
 (7.2.2.2)

Također, važno je provjeriti zubnu letvu na izvijanje. Na stranu sigurnosti, u proračunu se pretpostavlja da najveća tlačna sila koja se javlja prilikom promjene dohvata djeluje kada je udaljenost između uležištenja zubne letve i mjesta dodira s zupčanikom najveća (iako je u stvarnosti znatno manja od toga,a li zbog velike štete u slučaju izvijanja na ovaj način je u proračunu povećana sigurnost).

Najveća tlačna sila (po apsolutnom iznosu) koja se javlja u zubnoj letvi iznosi:

$$F_{\text{zub t}} = 32695 \text{ N}$$
 (7.2.2.3)

a najveći razmak između oslonaca jednak je:

$$l_{\text{zub max}} = 1822 \text{ mm}$$
 (7.2.2.4)

Za ovaj slučaj oslanjanja i opterećenja slobodna duljina izvijanja iznosi:

$$l_0 = l_{\text{zub max}} = 1822 \text{ mm}$$
(7.2.2.5)

Poprečni presjek zubne letve može se promatrati kao pravokutni presjek širine jednake ukupnoj širini zubne letve, a visine umanjene za visinu zuba, iz čega proizlaze dimenzije (prema katalogu proizvođača):

$$b = 80 \text{ mm}$$

 $h = 52,34 \text{ mm}$ (7.2.2.6)

Najmanji aksijalni moment tromosti presjeka iznosi:

$$I_{\min} = \frac{80 \cdot 52, 34^3}{12} = 955894 \text{ mm}^4 \tag{7.2.2.7}$$

Površina poprečnog presjeka iznosi:

$$A = 80.52, 34 = 4187, 2 \text{ mm}^2 \tag{7.2.2.8}$$

Pa slijedi polumjer tromosti:

$$i = \sqrt{\frac{I_{\min}}{A}} = \sqrt{\frac{955894}{4187,2}} = 15,1 \text{ mm}$$
 (7.2.2.9)

Vitkost zubne letve jednaka je:

$$\lambda = \frac{l_0}{i} = \frac{1822}{15,1} = 120,7 \tag{7.2.2.10}$$

Zbog toga što je $\lambda \ge 105$ kritična sila izvijanja računa se kao:

$$F_{\rm K} = \pi^2 \cdot \frac{E \cdot I_{\rm min}}{l_0^2} = \pi^2 \cdot \frac{210000 \cdot 955894}{1822^2} = 596804 \text{ N}$$
(7.2.2.11)

pri čemu E = 210000 Mpa, predstavlja modul elastičnosti čelika.

Sigurnost od izvijanja jednaka je

$$S_{\rm izv} = \frac{F_{\rm K}}{F_{\rm zubt}} = \frac{596804}{32695} = 18,2 \tag{7.2.2.12}$$

Sklop motora i reduktora je dimenzioniran tako da nominalna brzina kretanja zubne letve bude $v_{zub} = 0,1$ m/s, iz čega proizlazi potrebna brzina vrtnje na izlazu iz reduktora:

$$n_{\rm red} = \frac{60 \cdot v_{\rm zub}}{\pi \cdot d_{\rm z}} = \frac{60 \cdot 0.1}{\pi \cdot 0.18577} = 10.3 \,\,{\rm min^{-1}}$$
(7.2.2.13)

Gdje d_z predstavlja diobeni promjer zupčanika (prema katalogu proizvođača).

U izračun potrebne snage elektromotora, moraju se uključiti i gubitci u reduktoru. U tu svrhu, pretpostavlja se stupanj korisnog djelovanja reduktora:

$$\eta_{\rm red} = 0,97$$
 (7.2.2.14)

Pa potrebna snaga elektromotora iznosi:

$$P_{\rm pot} = \frac{F_{\rm zub\,max} \cdot v_{\rm zub}}{\eta_{\rm red}} = \frac{32695 \cdot 0.1}{0.97} = 3,37 \text{ kW}$$
(7.2.2.15)

Prema tome odabran je elektromotor s reduktorom i ugrađenom kočnicom oznake *F* 107 DRN 132S4, proizvođača Sew Eurodrive, karakteristika prikazanih u tablici 5. u nastavku.

Nazivna snaga elektromotora	Р	5,5 kW
Brzina vrtnje na izlazu iz reduktora	n_2	10 min ⁻¹
Okretni moment na izlazu iz reduktora	T_2	5260 Nm
Prijenosni odnos	$i_{\rm red}$	146,49
Maksimalna radijalna sila	$F_{\rm max}$	55,7 kN
Maksimalni moment kočenja	M _K	80 Nm

Tablica 5. Karakteristike elektromotora s reduktorom

7.2.3. Provjera ležaja zubne letve

Ležajna jedinica na grani dohvatnika

Ekvivalentno statično opterećenje ležaja iznosi polovicu ukupne sile potrebne za promjenu dohvata, to ono iznosi:

$$P_0 = \frac{F_{\text{zub max}}}{2} = \frac{33430}{2} = 16,7 \text{ kN}$$
(7.2.3.1)

Potrebna vrijednost statičke nosivosti ležaja određuje se iz izraza:

$$C_{0,\min} = s_0 \cdot P_0 \tag{7.2.3.2}$$

gdje je $s_0 = 1,5$, pa slijedi:

$$C_{0,\min} = 1,5 \cdot 16,7 = 25,1 \text{ kN}$$
 (7.2.3.3)

Odabrano je ležajno mjesto SYJ 80 TF, proizvođača SKF s pripadnom statičnom nosivosti:

$$C_0 = 53 \,\mathrm{kN}$$
 (7.2.3.4)

Kako je maksimalna statička nosivost veća od izračunate, proračun zadovoljava tj:

$$C_{0,\min} = 25,1 \text{ kN} \le C_0 = 53 \text{ kN}$$
 (7.2.3.5)

Ležajna jedinica na stupu dohvatnika

Opterećenje ležajnog mjesta prikazano je na slici 31.

Slika 31. Skica opterećenja ležajnih jedinica na stupu dohvatnika

Gdje je:

$$l_1 = 208 \text{ mm}$$

 $l_2 = 134 \text{ mm}$ (7.2.3.6)

Pa slijedi:

$$F_{\rm A} = \frac{F_{\rm zub\,max} \cdot (l_1 + l_2)}{l_2} = \frac{34430 \cdot (208 + 134)}{134} = 87874 \text{ N}$$
(7.2.3.7)

Zbog male brzine vrtnje, ležajna jedinica se proračunava statički.

Ekvivalentno statičko opterećenje iznosi:

$$P_0 = F_{\rm A} = 87874 \ \rm N \tag{7.2.3.8}$$

Potrebna vrijednost statičke nosivosti ležaja se izračunava:

$$C_{0,\min} = s_0 \cdot P_0 \tag{7.2.3.9}$$

gdje je $s_0 = 1,5$, pa slijedi:

$$C_{0 \min} = 1,5 \cdot 87874 = 131,2 \text{ kN}$$
 (7.2.3.10)

Odabrano je ležajno mjesto SYNT 100 L, proizvođača SKF, s pripadnom statičnom nosivosti:

$$C_0 = 490 \text{ kN}$$
 (7.2.3.11)

Kako je maksimalna statička nosivost veća od izračunate, proračun zadovoljava, tj.:

$$C_{0,\min} = 131,2 \text{ kN} \le C_0 = 490 \text{ kN}$$
 (7.2.3.12)

Ležaj vodilice zubne letve

Slika 32. Skica opterećenja ležaja vodilice zubne letve

Opterećenje ležaja prikazano je na slici 32.:

Gdje je:

$$l_1 = 91 \text{ mm}$$

 $l_2 = 59 \text{ mm}$ (7.2.3.13)
 $F = F_{\text{zubmax}} \cdot \tan(20^\circ) = 33430 \cdot \tan(20^\circ) = 12532 \text{ N}$

Pa slijedi:

$$F_{\rm A} = \frac{F \cdot (l_1 + l_2)}{l_2} = \frac{12532 \cdot (91 + 59)}{59} = 31861 \text{ N}$$
(7.2.3.14)

Potrebna vrijednost statičke nosivosti ležaja se izračunava:

$$C_{0,\min} = s_0 \cdot P_0 \tag{7.2.3.15}$$

gdje je $s_0 = 1,5$, pa slijedi:

$$C_{0,\min} = 1,5 \cdot 31861 = 47792 \text{ N}$$
 (7.2.3.16)

Odabran je radijalni ležaj 6414, proizvođača SKF, s pripadnom statičkom nosivosti:

$$C_0 = 104 \text{ kN}$$
 (7.2.3.17)

Kako je maksimalna statička nosivost veća od izračunate, proračun zadovoljava, tj.:

$$C_{0,\min} = 47,8 \text{ kN} \le C_0 = 104 \text{ kN}$$
 (7.2.3.18)

7.2.4. Dimenzioniranje osovine zubne letve i glave vodilice

Osovina zubne letve

Slika 33. Skica opterećenja osovine zubne letve

Prikaz opterećenja osovine zubne letve prikazan je na slici 33.

Gdje je:

$$l = 300 \text{ mm}$$

 $F = F_{\text{zub max}} = 33430 \text{ N}$
(7.2.4.1)

Najveći moment savijanja iznosi:

$$M = \frac{F}{2} \cdot \frac{l}{2} = \frac{33430}{2} \cdot \frac{300}{2} = 2507250 \text{ Nmm}$$
(7.2.4.2)

Maksimalno naprezanje tada se izračunava pomoću:

$$\sigma = \frac{32 \cdot M}{\pi \cdot d^3} \tag{7.2.4.3}$$

Gdje je d = 70 mm, pa slijedi:

$$\sigma = \frac{32 \cdot 2507250}{\pi \cdot 70^3} = 74,5 \frac{N}{mm^2}$$
(7.2.4.4)

Posto je maksimalno naprezanje manje od dopuštenog, koje prema [15] iznosi, proračun zadovoljava, tj.:

$$\sigma_{\rm dop} = 100 \, \frac{\rm N}{\rm mm^2}$$
 (7.2.4.5)

Diplomski rad

$$\sigma = 74,5 \frac{N}{mm^2} \le \sigma_{dop} = 100 \frac{N}{mm^2}$$
 (7.2.4.6)

Kontrola dodirnog pritiska

Površinski pritisak koji se javlja između nosivog lima i osovine zubne letve izračunava se prema izrazu:

$$p = \frac{F}{d \cdot s} \tag{7.2.4.7}$$

Gdje je:

s = 20 mm - debljina nosivog lima

prema tome, površinski pritisak iznosi:

$$p = \frac{F}{d \cdot s} = \frac{33430}{70 \cdot 20} = 23,9 \frac{N}{mm^2}$$
(7.2.4.8)

Prema [13] dopušteni površinski pritisak iznosi:

$$p_{\rm dop} = 100 \, \frac{\rm N}{\rm mm^2}$$
 (7.2.4.9)

Pošto je maksimalni površinski pritisak između nosivog lima i osovine zubne letve manji od dopuštenog proračun zadovoljava, tj.:

$$p = 23.9 \frac{\text{N}}{\text{mm}^2} \le p_{\text{dop}} = 100 \frac{\text{N}}{\text{mm}^2}$$
 (7.2.4.10)

Osovina vodilice zubne letve

Na slici 34. prikazano je opterećenje osovine vodilice zubne letve.

Slika 34. Prikaz opterećenja osovine zubne letve

Gdje je:

$$l_1 = 91 \text{ mm}$$

 $F = 12532 \text{ N}$ (7.2.4.11)

Najveći moment savijanja iznosi:

$$M = F \cdot l_1 = 12532 \cdot 91 = 1140412 \text{ Nmm}$$
(7.2.4.12)

Maksimalno naprezanje tada se izračunava pomoću:

$$\sigma = \frac{32 \cdot M}{\pi \cdot d^3} \tag{7.2.4.13}$$

Gdje je d = 70 mm, pa slijedi:

$$\sigma = \frac{32 \cdot 1140412}{\pi \cdot 70^3} = 33.9 \frac{N}{mm^2}$$
(7.2.4.14)

Pošto je maksimalno naprezanje manje od dopuštenog, koje prema [15] iznosi, proračun zadovoljava, tj.:

$$\sigma_{\rm dop} = 100 \, \frac{\rm N}{\rm mm^2}$$
 (7.2.4.15)

$$\sigma = 33.9 \frac{N}{mm^2} \le \sigma_{dop} = 100 \frac{N}{mm^2}$$
 (7.2.4.16)

7.2.5. Provjera kočnog momenta motora

Moment na vratilu elektromotora iznosi:
$$M_{\rm EM} = \frac{F_{\rm zub\ max} \cdot d_z}{2 \cdot i} = \frac{32695 \cdot 0,18577}{2 \cdot 146,49} = 20,7\ \rm Nm$$
(7.2.5.1)

Kako je moment na vratilu elektromotora manji od kočnog momenta elektromotora proračun zadovoljava tj.:

$$M_{\rm EM} = 20,7 \,\,{\rm Nm} \le M_{\rm K} = 80 \,{\rm Nm}$$
 (7.2.5.2)

7.2.6. Provjera radijalne sile na izlaznom vratilu

Najveća radijalna sila na izlazu iz reduktora jednaka je:

$$F_{\rm r} = F_{\rm zub\ max} = 32695\ {\rm N}$$
 (7.2.6.1)

Kako je maksimalna radijalna sila koja se javlja na izlazu iz reduktora manja od dozvoljene proračun zadovoljava, tj.:

$$F_{\rm r} = 32695 \text{ N} \le F_{\rm max} = 55700 \text{ N}$$
 (7.2.6.2)

7.2.7. Dimenzioniranje kotača protuutega dohvatnika

Protuuteg dohvatnika oslonjen je na četiri kotača koja se voze po tračnici postavljenoj na glavom stupu. Ukupna normalna sila koja djeluje na kotače iznosi:

$$F_{\rm N\,uk} = m_{\rm protuut} \cdot g \cdot \sin(20^\circ) = 14750 \cdot 9,81 \cdot \sin(20^\circ) = 49490 \text{ N}$$
(7.2.7.1)

jer je kut nagiba tračnica prema vertikalnoj ravnini jednak 20°.

Normalna sila na jednom kotaču jednaka je:

$$F_{\rm N \, kot} = \frac{F_{\rm N \, uk}}{4} = \frac{49490}{4} = 12373 \text{ N}$$
(7.2.7.2)

Odabran je cilindrični kotač, a proračun se provodi prema [8]. Promjer kotača je:

$$D_{\rm kot} = 100 \,\,{\rm mm}$$
 (7.2.7.3)

Širina dodira kotača i tračnice jednaka je:

$$b = 36 \text{ mm}$$
 (7.2.7.4)

Za cilindrični čelični kotač i ravnu čeličnu tračnicu, najveća veličina Striebeckovog pritiska jednaka je:

$$p_{\rm s} = \frac{F_{\rm N\,kot}}{D_{\rm kot} \cdot b} = \frac{12373}{100 \cdot 36} = 3,44 \,\frac{\rm N}{\rm mm^2}$$
(7.2.7.5)

Kako je maksimalni pritisak manji od dopuštenog pritiska između kotača i tračnice proračun zadovoljava, tj.:

$$p_{\rm s} = 3,44 \ \frac{\rm N}{\rm mm^2} \le p_{\rm s\,dop} = 5,6 \ \frac{\rm N}{\rm mm^2}$$
 (7.2.7.6)

Odabir ležaja kotača protuutega

Ekvivalentno dinamičko radijalno opterećenje ležaja iznosi:

$$P_{\rm r} = \frac{F_{\rm N\,kot}}{2} = 6187 \,\,{\rm N} \tag{7.2.7.7}$$

Dinamičko opterećenje ležajeva izračunava se prema sljedećem izrazu:

$$C_{1} = P \left(\frac{60 \cdot n_{\rm m} \cdot L_{10\rm h\,min}}{10^{6}}\right)^{\frac{1}{c}}$$
(7.2.7.8)

Gdje je:

$$n_{\rm m} = \frac{v}{2\pi \frac{D}{2}} = \frac{v}{D \cdot \pi} = \frac{1,2}{0,1 \cdot \pi} = 3,8 \text{ min}^{-1} - \text{brzina vrtnje u min}^{-1}$$

 $\varepsilon\!=\!3$ - eksponent vijeka trajanja za kuglične ležajeve

 $L_{\rm 10h\,min}=10000\,{\rm h}$ - zahtijevani nazivni vijek trajanja u satima

Stoga slijedi:

$$C_1 = 6187 \left(\frac{60 \cdot 3, 8 \cdot 10000}{10^6}\right)^{\frac{1}{3}} = 8143 \,\mathrm{N} = 8,1 \,\mathrm{kN}$$
 (7.2.7.9)

Odabran je ležaj 6008, proizvođača SKF s vrijednošću dinamičke nosivosti ležaja:

$$C = 17,8 \text{ kN}$$
 (7.2.7.10)

Kako je dinamička nosivost odabranog ležaja veća od maksimalnog dinamičkog opterećenja, odabrani ležaj zadovoljava, tj.:

$$C_1 = 8,1 \text{ kN} \le C = 17,8 \text{ kN}$$
 (7.2.7.11)

7.2.8. Opterećenja dohvatnika

Opterećenja na vrhu dohvatnika prikazana na slici 26. mogu se rastaviti na normalnu silu koja djeluje prema okretištu dohvatnika, te na poprečnu silu (tako da pozitivna komponenta poprečne sile radi pozitivan moment oko okretišta).

Sila Q predstavlja najveću dopuštenu težinu tereta uvećanu za dinamički faktor

$$Q = Q_{\rm p} = 116739 \text{ N} \tag{7.2.8.1}$$

Najveća normalna sila na dohvatniku u ovisnosti o kutu nagiba dohvatnika izračunava se iz izraza:

$$F_{\rm N}(\varphi) = Q \cdot \sin(\varphi) + (3 \cdot Q + G_{\rm protuut}) \cdot \cos(\delta(\varphi)) + G_{\rm doh} \cdot \sin(\varphi)$$
(7.2.8.2)

a rezultati su prikazani dijagramom na slici 35.

Slika 35. Dijagram ovisnosti normalne sile u dohvatniku s obzirom na kut nagiba dohvatnika

Poprečna sila na vrhu dohvatnika izračunava se prema izrazu:

$$F_{\rm p}(\varphi) = -Q \cdot \cos(\varphi) + (3 \cdot Q + G_{\rm protuut}) \cdot \sin(\delta(\varphi))$$
(7.2.8.3)

a rezultati su prikazani dijagramom na slici 36.

Slika 36. Dijagram ovisnosti poprečne sile u dohvatniku s obzirom na kut nagiba dohvatnika

Najveći moment savijanja javlja se na mjestu prihvata mehanizma za promjenu dohvata i računa se prema izrazu:

$$M_{\rm s}(\varphi) = F_{\rm p}(\varphi) \cdot (l - l_{\rm meh \ doh}) - G_{\rm doh} \cdot \cos(\varphi) \cdot (\Delta l_{\rm doh} - l_{\rm meh \ doh})$$
(7.2.8.4)

a rezultati su prikazani dijagramom na slici 37.

Slika 37. Dijagram ovisnosti momenta savijanja u dohvatniku s obzirom na kut nagiba dohvatnika

7.3. Provjera čvrstoće dohvatnika

Karakteristike poprečnog presjeka odabranog profila dohvatnika, prikazanog na slici 38., su:

Slika 38. Skica poprečnog presjeka dohvatnika

$$A = 2 \cdot (t_1 \cdot b + t \cdot h_t) = 2 \cdot (16 \cdot 750 + 10 \cdot 818) = 40360 \text{ mm}^2$$

$$I_y = \frac{2 \cdot t \cdot h_t^3}{12} + t_1 \cdot b \cdot \frac{h_s^2}{2} + b \cdot \frac{t_1^3}{6} =$$

$$= \frac{2 \cdot 10 \cdot 818^3}{12} + 16 \cdot 750 \cdot \frac{834^2}{2} + 750 \cdot \frac{16^3}{6} = 5086087053 \text{ mm}^4$$

$$I_z = \frac{2 \cdot t_1 \cdot b^3}{12} + t \cdot h_t \cdot \frac{b_s^2}{2} = \frac{2 \cdot 16 \cdot 750^3}{12} + 10 \cdot 818 \cdot \frac{650^2}{2} =$$

$$= 2853025000 \text{ mm}^4$$

$$W_y = \frac{I_y}{h} \cdot 2 = \frac{5086087053}{850} \cdot 2 = 11967264 \text{ mm}^3$$

$$W_z = \frac{I_z}{b} \cdot 2 = \frac{2853025000}{750} \cdot 2 = 7608067 \text{ mm}^3$$

Kao što je vidljivo u dijagramu na slici 35. najveća normalna sila je pri kutu nagiba dohvatnika od 60° i iznosi:

$$F_{\rm N \, pro} = 670545 \,\,{\rm N}$$
 (7.3.2)

Kao što je vidljivo u dijagramu na slici 37. najveći moment savijanja javlja se pri kutu nagiba dohvatnika od 47° i iznosi:

$$M_{\rm s\,pro} = 120495 \,\,{\rm Nm}$$
 (7.3.3)

Kako se pri povećanju kuta dohvatnika od 47° prema 60° normalna sila povećava uz istodobno smanjivanje momenta savijanja, teško je sa sigurnošću odrediti točan kut nagiba dohvatnika pri kojemu je reducirano naprezanje najveće, pa će se u proračunu razmatrati istodobno djelovanje najvećeg momenta savijanja i najveće normalne sile (iako to u stvarnosti nije slučaj) u svrhu povećanja sigurnosti.

Ukupno najveće normalno naprezanje dohvatnika stoga se izračunava:

$$\sigma = \frac{F_{\rm N \, pro}}{A} + \frac{M_{\rm s \, pro}}{W_{\rm y}} = \frac{670545}{40360} + \frac{120495000}{11967264} = 26,7 \,\frac{\rm N}{\rm mm^2}$$
(7.3.4)

Dopušteno naprezanje prema [13] dohvatnika za čelik S235JR iznosi:

$$\sigma_{\rm dop} = 100 \,\frac{\rm N}{\rm mm^2} \tag{7.3.5}$$

Kako je maksimalno naprezanje dohvatnika manje od dopuštenog naprezanja proračun zadovoljava, tj.:

$$\sigma = 26, 7 \frac{N}{mm^2} \le \sigma_{dop} = 100 \frac{N}{mm^2}$$
 (7.3.6)

7.4. Provjera stabilnosti dohvatnika

Najmanji aksijalni moment tromosti presjeka dohvatnika iznosi:

$$I_{\min} = I_z = 2853025000 \text{ mm}^4 \tag{7.4.1}$$

Polumjer tromosti jednak je:

$$i = \sqrt{\frac{I_{\min}}{A}} = \sqrt{\frac{2853025000}{40360}} = 265,9 \text{ mm}$$
 (7.4.2)

Slobodna duljina izvijanja za ovaj slučaj opterećenja jednaka je:

$$l_0 = l_{doh} = 25040 \text{ mm}$$
 (7.4.3)

Vitkost dohvatnika tada iznosi:

$$\lambda = \frac{l_0}{i} = \frac{25040}{265,9} = 94,2 \tag{7.4.4}$$

Granična vitkost stupa određena je izrazom:

$$\lambda_{\rm p} = \pi \cdot \sqrt{\frac{E}{R_{\rm e}}} = \pi \cdot \sqrt{\frac{210000}{250}} = 91$$
 (7.4.5)

Gdje je:

 $E=210000~{\rm Mpa}$ - modul elastičnosti za čelik

 $R_{\rm e} = 250 \text{ N/mm}^2 - \text{granica tečenja za čelik S235JR}$

Budući je vitkost štapa veća od granične vitkosti može se primijeniti Eulerova jednadžba za elastično izvijanje. Prema toj jednadžbi kritična sila iznosi:

$$F_{\rm K} = \pi^2 \cdot \frac{E \cdot I_{\rm min}}{l_0^2} = \pi^2 \cdot \frac{210000 \cdot 2853025000}{25040^2} = 9430961 \,\,{\rm N}$$
(7.4.6)

Uz potrebnu sigurnost za čelične konstrukcije S = 5, najveća dozvoljena sila iznosi:

$$F_{\rm dop} = \frac{F_{\rm K}}{S} = \frac{9430961}{5} = 1886192 \text{ N}$$
(7.4.7)

Pošto je dozvoljena sila veća od najveće tlačne sile koja se može pojaviti, neće doći do izvijanja, tj.:

$$F_{\rm dop} = 1886192 \text{ N} \ge F_{\rm N \, pro} = 670545 \text{ N}$$
 (7.4.8)

7.5. Dimenzioniranje skretnih užnica na dohvatniku

7.5.1. Proračun osovine skretne užnice

Skretne užnice jednakih su dimenzija kao užnica korištena u sklopu kuke. Za razliku od te osovine, opterećenje osovine skretnih užnica je nešto drugačije, prikazano na slici. 39.

Od ranije su poznate veličine:

$$Q_{\rm p} = 116739 \text{ N}$$

 $G_{\rm protuut} = 144698 \text{ N}$
(7.5.1.1)

Slika 39. Skica opterećenja osovine skretnih užnica na dohvatniku

Zbog pojednostavljenja proračuna i u svrhu povećanja sigurnosti, pretpostavlja se da je osovina opterećena kao što je prikazano na slici 40., jednom silom F_R na polovini svoje duljine.

Slika 40. Dijagrami opterećenja osovine skretnih užnica na dohvatniku

Gdje je $F_{\rm R}$ jednako:

$$F_{\rm R} = 2 \cdot Q_{\rm P} + 4 \cdot \frac{Q_{\rm P}}{2} + G_{\rm protuut} = 2 \cdot 116739 + 4 \cdot \frac{116739}{2} + 144698 = 611654 \text{ N}$$
 (7.5.1.2)

Reaktivne sile u osloncima A i B jednake su:

$$F_{\rm A} = F_{\rm B} = \frac{F_{\rm R}}{2} = \frac{611654}{2} = 305827 \text{ N}$$
 (7.5.1.3)

Najveći moment savijanja tada iznosi:

$$M_{y_{\text{max}}} = F_{\text{A}} \cdot \frac{l}{2} = 305827 \cdot \frac{555}{2} = 84866993 \text{ Nmm}$$
 (7.5.1.4)

Moment otpora osovine vanjskog promjera D = 250 mm, a unutarnjeg d = 143 mm iznosi:

$$W = \frac{\left(D^3 - d^3\right) \cdot \pi}{32} = \frac{\left(250^3 - 143^3\right) \cdot \pi}{32} = 1246897 \text{ mm}^3$$
(7.5.1.5)

Najveće naprezanje osovine skretnih užnica na dohvatniku iznosi:

$$\sigma = \frac{M_{\text{ymax}}}{W} = \frac{84866993}{1246897} = 68.1 \frac{\text{N}}{\text{mm}^2}$$
(7.5.1.6)

Dopušteno naprezanje prema [13] za materijal Č 0545 iznosi:

$$\sigma_{\rm dop} = 90 \,\frac{\rm N}{\rm mm^2} \tag{7.5.1.7}$$

Kako je maksimalno naprezanje osovine manje od dopuštenog naprezanja proračun zadovoljava, tj.:

$$\sigma = 68.1 \frac{N}{mm^2} \le \sigma_{dop} = 90 \frac{N}{mm^2}$$
 (7.5.1.8)

Treba napomenuti da je stvarno naprezanje manje zbog pojednostavljenja kod računanja rezultantne sile $F_{\rm R}$.

7.5.2. Kontrola površinskog pritiska osovine i nosivih limova

Površinski pritisak koji se javlja između nosivih limova i osovine skretnih užnica izračunava se prema izrazu:

$$p = \frac{F_{\rm R}}{2 \cdot d \cdot s} \tag{7.5.2.1}$$

Gdje je:

d = 250 mm - promjer osovine skretnih užnica

s = 15 mm - debljina nosivog lima

prema tome, površinski pritisak iznosi:

$$p = \frac{F_{\rm R}}{2 \cdot d \cdot s} = \frac{611654}{2 \cdot 250 \cdot 15} = 81,55 \,\frac{\rm N}{\rm mm^2}$$
(7.5.2.2)

Prema [13] dopušteni površinski pritisak iznosi:

$$p_{\rm dop} = 100 \, \frac{\rm N}{\rm mm^2}$$
 (7.5.2.3)

Pošto je maksimalni površinski pritisak između nosivih limova i osovine skretnih užnica manji od dopuštenog proračun zadovoljava, tj.:

$$p = 81,55 \frac{\text{N}}{\text{mm}^2} \le p_{\text{dop}} = 100 \frac{\text{N}}{\text{mm}^2}$$
 (7.5.2.4)

Treba napomenuti da je stvarni površinski pritisak manji zbog pojednostavljenja kod računanja rezultantne sile $F_{\rm R}$.

7.5.3. Proračun zavara nosivog lima osovine skretnih užnica na dohvatniku

Zavar pričvršćuje nosivi lim osovine skretnih užnica za dohvatnik. Zavar je opterećen dvjema silama koje su posljedica djelovanja sila u užadi. Njihov prikaz i dimenzije zavara prikazani su na slici 41. u nastavku.

Slika 41. Skica zavara nosivog lima na dohvatniku i prikaz opterećenja

Iznos sila koje opterećuju zavar je:

$$F_1 = 294817 \text{ N}$$

 $F_2 = 19156 \text{ N}$
(7.5.3.1)

Pošto ove sile svoje maksimalne vrijednosti imaju na različitim nagibima dohvatnika i u stvarnosti nikada neće djelovati u isto vrijeme, zbog povećanja sigurnosti uzimamo da obe djeluju istovremeno. Također u proračunu će se u obzir uzeti samo vertikalni zavar (na slici zavar II). Na taj način provesti će se jednostavniji proračun na strani sigurnosti.

Opterećenje silom *F*₁

Sila F_1 vertikalni zavar opterećuje na savijanje i na tlak.

Iznos momenta savijanja izračunava se iz izraza:

$$M = F_1 \cdot (225 + 412, 5) = 294817 \cdot 637, 5 = 187945838 \text{ Nmm}$$
(7.5.3.2)

Aksijalni moment tromosti zavara iznosi:

$$I_{y} = \frac{35 \cdot 850^{3}}{12} - \frac{15 \cdot 850^{3}}{12} = 1023541667 \text{ mm}^{4}$$
(7.5.3.3)

Najveće savojno naprezanje tada iznosi:

$$\sigma_{\rm f}^{\rm F_l} = \frac{M}{I_{\rm v}} \cdot z = \frac{187945838}{1023541667} \cdot 412, 5 = 75, 4 \frac{\rm N}{\rm mm^2}$$
(7.5.3.4)

Površina presjeka zavara koja je tlačno opterećena iznosi:

$$A = 2 \cdot 10 \cdot 850 = 17000 \text{ mm}^2 \tag{7.5.3.5}$$

Tlačno naprezanje tada je jednako:

$$\sigma_{\rm t} = \frac{F_{\rm 1}}{A} = \frac{294817}{17000} = 17,3 \,\frac{\rm N}{\rm mm^2} \tag{7.5.3.6}$$

Opterećenje silom *F*₂

Sila F_2 vertikalni zavar opterećuje na savijanje i na smik.

Iznos savojnog momenta uslijed djelovanja sile F_2 :

$$M = F_2 \cdot 1400 = 19156 \cdot 1400 = 26818400 \text{ Nmm}$$
(7.5.3.7)

Aksijalni moment tromosti zavara već je prethodno izračunat tako da je najveće savojno naprezanje jednako:

$$\sigma_{\rm f}^{\rm F_2} = \frac{M}{I_{\rm y}} \cdot z = \frac{26818400}{1023541667} \cdot 412, 5 = 10, 8 \frac{\rm N}{\rm mm^2}$$
(7.5.3.8)

Površina je također prethodno izračunata tako da smično naprezanje iznosi:

$$\tau = \frac{F_2}{A} = \frac{19156}{17000} = 1,1 \frac{N}{mm^2}$$
(7.5.3.9)

Ukupno savojno naprezanje zavara dobiva se superpozicijom dvaju, prethodno izračunatih, savojnih naprezanja.

$$\sigma_{\rm f} = \sigma_{\rm f}^{\rm F_1} + \sigma_{\rm f}^{\rm F_2} = 75, 4 + 10, 8 = 86, 2 \,\frac{\rm N}{\rm mm^2}$$
 (7.5.3.10)

Ekvivalentno tlačno naprezanje jednako je:

$$\sigma_{\text{ekv TLAK}} = \sqrt{\left(\sigma_{\text{f}} + \sigma_{\text{t}}\right)^2 + 3 \cdot \tau^2} = \sqrt{\left(86, 2 + 17, 3\right)^2 + 3 \cdot 1, 1^2} = 103, 5 \frac{\text{N}}{\text{mm}^2} \quad (7.5.3.11)$$

Ekvivalentno vlačno naprezanje jednako je:

$$\sigma_{\rm ekv \ VLAK} = \sqrt{\left(\sigma_{\rm f} - \sigma_{\rm t}\right)^2 + 3 \cdot \tau^2} = \sqrt{\left(86, 2 - 17, 3\right)^2 + 3 \cdot 1, 1^2} = 68,9 \ \frac{\rm N}{\rm mm^2}$$
(7.5.3.12)

Zavar je opterećen dinamički. Za odnos graničnih naprezanja može se uzeti da je $\kappa = 0$. Stoga je riječ o čistom istosmjernom opterećenju. Dopušteno vlačno naprezanje zavara za takav slučaj opterećenja prema [16] za slučaj zareznog djelovanja K4, te pogonsku grupu B5 iznosi:

$$\sigma_{\rm Dv(0)dop} = 90 \text{ N/mm}^2$$
 (7.5.3.13)

Dok dopušteno tlačno naprezanje zavara za takav slučaj opterećenja prema [16] za slučaj zareznog djelovanja K4, te pogonsku grupu B5 iznosi:

$$\sigma_{\rm Dt(0)dop} = 108 \,\rm N/mm^2 \tag{7.5.3.14}$$

Kako su najveća naprezanja koja se javljaju u zavaru manja od dopuštenih naprezanja, proračun zadovoljava, tj.:

$$\sigma_{\rm ekv \, TLAK} = 103,5 \, \text{N/mm}^2 \le \sigma_{\rm Dv(0)dop} = 108 \, \text{N/mm}^2$$
 (7.5.3.15)

$$\sigma_{\rm ekv \, VLAK} = 68,9 \, \text{N/mm}^2 \le \sigma_{\rm Dv(0)dop} = 90 \, \text{N/mm}^2$$
 (7.5.3.16)

Treba još jednom naglasiti kako su uzete u obzir maksimalne sile koje nikada u stvarnosti neće djelovati zajedno i kako se proračunavao samo jedan od ukupno dva zavara, tako da je ukupno naprezanje znatno manje od izračunatog i sigurnost zavara je puno veća.

8. PRORAČUN GLAVNOG STUPA

Na slici 42. prikazana je skica glavnog stupa s prikazanim opterećenjima. Kritični slučaj opterećenja je pri nagibu dohvatnika od 30° jer su tada krakovi sila najveći.

Slika 42. Skica opterećenja glavnog dohvatnika

Sila Q i ovdje predstavlja najveću dopuštenu težinu tereta uvećanu za dinamički faktor:

$$Q = Q_p = 116739 \text{ N}$$
 (8.1)

Sile F_{RN} i F_{RP} predstavljaju reakcije u osloncu dohvatnika i za kut nagiba dohvatnika 30° iznose:

$$F_{\rm RN} = Q \cdot \sin(30^{\circ}) + (3 \cdot Q + G_{\rm protuut} \cdot \cos(20^{\circ})) \cdot \cos(\delta(30^{\circ})) + + G_{\rm doh} \cdot \sin(30^{\circ}) + F_{\rm 1} \cdot \cos(\beta(30^{\circ})) = = 116739 \cdot \sin(30^{\circ}) + (3 \cdot 116739 + 144698 \cdot \cos(20^{\circ})) \cdot \cos(14,65^{\circ}) + + 93980 \cdot \sin(30^{\circ}) + 33500 \cdot \cos(62,91^{\circ}) = = 590997 \text{ N}$$
(8.2)

$$F_{\rm RP} = Q \cdot \cos(30^{\circ}) - (3 \cdot Q + G_{\rm protuut} \cdot \cos(20^{\circ})) \cdot \sin(\delta(30^{\circ})) + + G_{\rm doh} \cdot \cos(30^{\circ}) - F_{\rm l} \cdot \sin(\beta(30^{\circ})) = = 116739 \cdot \cos(30^{\circ}) - (3 \cdot 116739 + 144698 \cdot \cos(20^{\circ})) \cdot \sin(14,65^{\circ}) + + 93980 \cdot \cos(30^{\circ}) - 33500 \cdot \sin(62,91^{\circ}) = = 29699 \text{ N}$$
(8.3)

Točni kutevi pod kojima djeluje sila i krakovi na kojima ostvaruju moment očitani su iz CAD modela. Ukupna normalna sila koja se javlja u podnožju stupa jednaka je:

$$F_{Nuk} = (3 \cdot Q + G_{protuut} \cdot \sin(20^{\circ})) \cdot \sin(15, 36^{\circ}) - (Q + G_{protuut} \cdot \sin(20^{\circ})) \cdot \cos(20^{\circ}) - G_{protuut} \cdot \sin^{2}(20^{\circ}) - F_{\Gamma} \cdot \cos(67, 59^{\circ}) - F_{RN} \cdot \sin(30^{\circ}) - F_{RP} \cdot \cos(30^{\circ}) = (3 \cdot 116739 + 144698 \cdot \sin(20^{\circ})) \cdot \sin(15, 36^{\circ}) - (116739 + 144698 \cdot \sin(20^{\circ})) \cdot \cos(20^{\circ}) - 144698 \cdot \sin^{2}(20^{\circ}) - 33500 \cdot \cos(67, 59^{\circ}) - 590997 \cdot \sin(30^{\circ}) - 29699 \cdot \cos(30^{\circ}) = -401245 \text{ N}$$

$$(3.4)$$

Pri čemu negativan predznak označava tlačno djelovanje rezultantne sile na presjek profila zavara.

Ukupna poprečna sila u podnožju stupa jednaka je:

$$F_{P_{uk}} = (3 \cdot Q + G_{protuut} \cdot \sin(20^{\circ})) \cdot \cos(15, 36^{\circ}) - (Q + G_{protuut} \cdot \sin(20^{\circ})) \cdot \sin(20^{\circ}) + G_{protuut} \cdot \sin(20^{\circ}) \cdot \cos(20^{\circ}) + F_{1} \cdot \sin(67, 59^{\circ}) - F_{RN} \cdot \cos(30^{\circ}) + F_{RP} \cdot \sin(30^{\circ}) = (3 \cdot 116739 + 144698 \cdot \sin(20^{\circ})) \cdot \cos(15, 36^{\circ}) - (116739 + 144698 \cdot \sin(20^{\circ})) \cdot \sin(20^{\circ}) + 144698 \cdot \sin(20^{\circ}) \cdot \cos(20^{\circ}) + 33500 \cdot \sin(67, 59^{\circ}) - 590997 \cdot \cos(30^{\circ}) + 29699 \cdot \sin(30^{\circ}) = = -90918 \text{ N}$$

$$(8.5)$$

Rezultantni moment savijanja u podnožju glavnog stupa iznosi:

$$\begin{split} M_{s} &= -\left(3 \cdot Q + G_{\text{protuut}} \cdot \sin(20^{\circ})\right) \cdot \cos(15, 36^{\circ}) \cdot 8092 + \\ &+ \left(Q + G_{\text{protuut}} \cdot \sin(20^{\circ}) \cdot \cos(20^{\circ}) \cdot 4005 - F_{1} \cdot \sin(67, 59^{\circ}) \cdot 2685 + \\ &+ G_{\text{protuut}} \cdot \sin(20^{\circ}) \cdot 650 - F_{\text{RP}} \cdot \sin(30^{\circ}) \cdot 650 + \\ &+ \left(3 \cdot Q + G_{\text{protuut}} \cdot \sin(20^{\circ})\right) \cdot \sin(15, 36^{\circ}) \cdot 2062 - \\ &- \left(Q + G_{\text{protuut}} \cdot \sin(20^{\circ})\right) \cdot \cos(20^{\circ}) \cdot 2062 - \\ &- G_{\text{protuut}} \cdot \sin(20^{\circ}) \cdot \sin(20^{\circ}) \cdot 160 - F_{1} \cdot \cos(67, 59^{\circ}) \cdot 1366 - \\ &- F_{\text{RN}} \cdot \sin(30^{\circ}) \cdot 1304 - F_{\text{RP}} \cdot \cos(30^{\circ}) \cdot 1304 = \\ &= -\left(3 \cdot 116739 + 144698 \cdot \sin(20^{\circ})\right) \cdot \cos(15, 36^{\circ}) \cdot 8092 + \\ &+ \left(116739 + 144698 \cdot \sin(20^{\circ})\right) \cdot \sin(20^{\circ}) \cdot 8092 - \\ &- 144698 \cdot \sin(20^{\circ}) \cdot \cos(20^{\circ}) \cdot 4005 - 33500 \cdot \sin(67, 59^{\circ}) \cdot 2685 + \\ &+ 590997 \cdot \cos(30^{\circ}) \cdot 650 - 29699 \cdot \sin(30^{\circ}) \cdot 650 + \\ &+ \left(3 \cdot 116739 + 144698 \cdot \sin(20^{\circ})\right) \cdot \sin(15, 36^{\circ}) \cdot 2062 - \\ &- \left(116739 + 144698 \cdot \sin(20^{\circ})\right) \cdot \cos(20^{\circ}) \cdot 2062 - \\ &- \left(116739 + 144698 \cdot \sin(20^{\circ})\right) \cdot \cos(20^{\circ}) \cdot 2062 - \\ &- \left(116739 + 144698 \cdot \sin(20^{\circ})\right) \cdot \cos(20^{\circ}) \cdot 2062 - \\ &- \left(116739 + 144698 \cdot \sin(20^{\circ})\right) \cdot \cos(30^{\circ}) \cdot 2062 - \\ &- \left(14698 \cdot \sin(20^{\circ}) \cdot \sin(20^{\circ}) \cdot 160 - 33500 \cdot \cos(67, 59^{\circ}) \cdot 1366 - \\ &- 590997 \cdot \sin(30^{\circ}) \cdot 1304 - 29699 \cdot \cos(30^{\circ}) \cdot 1304 = \\ &= - 3148012679 \text{ Nmm} \end{split}$$

Potrebno je provjeriti naprezanja u presjeku stupa i u presjeku zavara.

Skica poprečnog presjeka stupa prikazana je na slici 43.

Slika 43. Skica poprečnog presjeka glavnog stupa

Potrebne karakteristike poprečnog presjeka su:

$$A = 1540 \cdot 1450 - 1500 \cdot 1410 = 118000 \text{ mm}^2 \tag{8.7}$$

$$W_{\rm y} = \frac{\frac{1540^3 \cdot 1450}{12} - \frac{1500^3 \cdot 1410}{12}}{770} = 58120433 \text{ mm}^3$$
(8.8)

Najveće normalno naprezanje u presjeku iznosi

$$\sigma = \frac{\left|F_{\text{Nuk}}\right|}{A} + \frac{\left|M_{\text{s}}\right|}{W_{\text{y}}} = \frac{\left|-401245\right|}{118000} + \frac{\left|-3148012679\right|}{58120433} = 57,6 \frac{\text{N}}{\text{mm}^2}$$
(8.9)

Posmično naprezanje uslijed poprečne sile u odnosu na normalno naprezanje je zanemarivo malo, pa stoga najveće normalno naprezanje uspoređujemo s dopuštenim naprezanjem, koje za čelik S235JR, prema [15] iznosi:

$$\sigma_{\rm dop} = 100 \,\frac{\rm N}{\rm mm^2} \tag{8.10}$$

Kako je maksimalno normalno naprezanje u presjeku glavnog stupa manje od dopuštenog naprezanja proračun zadovoljava, tj.:

$$\sigma = 57, 6 \frac{N}{mm^2} \le \sigma_{dop} = 100 \frac{N}{mm^2}$$
 (8.11)

Skica poprečnog presjeka zavara glavnog stupa prikazana je na slici 44.

Slika 44. Skica poprečnog presjeka zavara glavnog stupa

Potrebne karakteristike poprečnog presjeka su:

$$A = 1550 \cdot 1460 - 1510 \cdot 1420 = 118800 \text{ mm}^2$$
(8.12)

$$W_{\rm y} = \frac{\frac{1550^3 \cdot 1460}{12} - \frac{1510^3 \cdot 1420}{12}}{775} = 58910439 \text{ mm}^3$$
(8.13)

Najveće normalno naprezanje u presjeku iznosi

$$\sigma = \frac{\left|F_{\text{Nuk}}\right|}{A} + \frac{\left|M_{\text{s}}\right|}{W_{\text{y}}} = \frac{\left|-401245\right|}{118800} + \frac{\left|-3148012679\right|}{58910439} = 56,8 \frac{\text{N}}{\text{mm}^2}$$
(8.14)

Posmično naprezanje uslijed poprečne sile u odnosu na normalno naprezanje je zanemarivo malo, pa stoga najveće normalno naprezanje uspoređujemo s dopuštenim naprezanjem, koje za zavar čelika S235JR, [16] iznosi:

$$\sigma_{\rm dop} = 100 \,\frac{\rm N}{\rm mm^2} \tag{8.15}$$

Kako je maksimalno normalno naprezanje u presjeku glavnog stupa manje od dopuštenog naprezanja proračun zadovoljava, tj.:

$$\sigma = 56.8 \frac{N}{mm^2} \le \sigma_{dop} = 100 \frac{N}{mm^2}$$
 (8.16)

8.1. Dimenzioniranje okretišta dohvatnika

8.1.1. Odabir ležaja i proračun osovine dohvatnika

Dohvatnik se oslanja preko dva ležajna mjesta na glavni stup. Ukupna radijalna sila koju ležajna mjesta moraju preuzeti izračunava se:

$$F_{\rm R} = \sqrt{F_{\rm RN}^2 + F_{\rm RP}^2} = \sqrt{590997^2 + 29699^2} = 591743 \text{ N}$$
 (8.1.1.1)

Iz čega slijedi da je ekvivalentno statičko opterećenje jednog ležajnog mjesta jednako:

$$P_0 = \frac{F_{\rm R}}{2} = \frac{591743}{2} = 295872 \text{ N}$$
(8.1.1.2)

Potrebna vrijednost statičke nosivosti ležaja izračunava se:

$$C_{0 \min} = s_0 \cdot P_0 \tag{8.1.1.3}$$

Gdje je:

$$s_0 = 1,5$$
 (8.1.1.4)

Pa slijedi:

$$C_{0 \min} = 1,5 \cdot 295872 = 443808 \text{ N}$$
 (8.1.1.5)

Odabrano je ležajno mjesto SNL 3060 s pripadajućim ležajem 23060 CCK/W33 s vrijednošću statičke nosivosti:

$$C_0 = 3450 \text{ kN}$$
 (8.1.1.6)

Kako je maksimalna statička nosivost ležaja manja od dopuštene proračun zadovoljava, tj.:

$$C_{0\min} = 444 \,\mathrm{kN} \le C_0 = 3450 \,\mathrm{kN} \tag{8.1.1.7}$$

Dok je vrijednost nosivosti kućišta ležaja:

$$P_0 = 1430 \text{ kN}$$
 (8.1.1.8)

Kako je maksimalna statička nosivost ležaja manja od dopuštene proračun zadovoljava, tj.:

$$C_{0\min} = 444 \,\mathrm{kN} \le P_0 = 1430 \,\mathrm{kN} \tag{8.1.1.9}$$

Na slici 45. Prikazana je skica oslanjanja i opterećenja osovine okretišta dohvatnika.

Slika 45. Skica opterećenja i oslanjanja osovine okretišta dohvatnika

Gdje je sila F jednaka sili $F_{\rm R}$.

$$F = F_{\rm R} = 591743 \text{ N}$$
 (8.1.1.10)

Najveći moment savijanja izračunava se:

$$M = \frac{F}{2} \cdot \frac{l}{2} = \frac{591743}{2} \cdot \frac{1060}{2} = 156811895 \text{ Nmm}$$
(8.1.1.11)

Gdje je:

$$l = 1060 \text{ mm}$$
 (8.1.1.12)

Odabrana je šuplja osovina vanjskog promjera 280 mm i unutarnjeg promjera 124 mm, pa je stoga naprezanje jednako:

$$\sigma = \frac{32 \cdot M}{\pi \cdot \left(d_{v}^{3} - d_{u}^{3}\right)} = \frac{32 \cdot 156811895}{\pi \cdot \left(280^{3} - 124^{3}\right)} = 79,7 \frac{N}{mm^{2}}$$
(8.1.1.13)

Kako dopušteno naprezanje, prema [15] iznosi:

$$\sigma_{\rm dop} = 100 \, \frac{\rm N}{\rm mm^2}$$
 (8.1.1.14)

Proračun zadovoljava odnosno:

$$\sigma = 79,7 \frac{N}{mm^2} \le \sigma = 100 \frac{N}{mm^2}$$
 (8.1.1.15)

8.1.2. Kontrola površinskog pritiska osovine i nosivih limova

Površinski pritisak koji se javlja između nosivih limova i glavine okretišta dohvatnika izračunava se prema izrazu:

$$p = \frac{F_{\rm R}}{2 \cdot d \cdot s} \tag{8.1.2.1}$$

Gdje je:

d = 356 mm - promjer osovine skretnih užnica

s = 10 mm - debljina nosivog lima

prema tome, površinski pritisak iznosi:

$$p = \frac{F_{\rm R}}{2 \cdot d \cdot s} = \frac{591743}{2 \cdot 356 \cdot 10} = 83.1 \,\frac{\rm N}{\rm mm^2}$$
(8.1.2.2)

Prema [13] dopušteni površinski pritisak iznosi:

$$p_{\rm dop} = 100 \, \frac{\rm N}{\rm mm^2}$$
 (8.1.2.3)

Pošto je maksimalni površinski pritisak između nosivih limova i glavine okretišta dohvatnika manji od dopuštenog proračun zadovoljava, tj.:

$$p = 83.1 \frac{N}{mm^2} \le p_{dop} = 100 \frac{N}{mm^2}$$
 (8.1.2.4)

8.2. Dimenzioniranje skretnih užnica na dohvatniku

8.2.1. Proračun osovine skretne užnice

Skretne užnice jednakih su dimenzija kao užnica korištena u sklopu kuke. Za razliku od te osovine, opterećenje osovine skretnih užnica je nešto drugačije, prikazano na slici. 46.

Od ranije su poznate veličine:

$$Q_{\rm p} = 116739 \text{ N}$$

 $G_{\rm protuut} = 144698 \text{ N}$
(8.2.1.1)

Slika 46. Skica opterećenja osovine skretnih užnica na dohvatniku

Zbog pojednostavljenja proračuna i u svrhu povećanja sigurnosti, pretpostavlja se da je osovina opterećena kao što je prikazano na slici 47., jednom silom F_R na polovini svoje duljine.

Slika 47. Dijagrami opterećenja osovine skretnih užnica na dohvatniku

Gdje je $F_{\rm R}$ jednako:

$$F_{\rm R} = 2 \cdot Q_{\rm P} + 3 \cdot \frac{Q_{\rm P}}{2} + 2 \cdot G_{\rm protuut} = 2 \cdot 116739 + 3 \cdot \frac{116739}{2} + 2 \cdot 144698 = 697983 \text{ N} \quad (8.2.1.2)$$

Reaktivne sile u osloncima A i B jednake su:

$$F_{\rm A} = F_{\rm B} = \frac{F_{\rm R}}{2} = \frac{697983}{2} = 348992 \text{ N}$$
 (8.2.1.3)

Najveći moment savijanja tada iznosi:

$$M_{ymax} = F_A \cdot \frac{l}{2} = 348992 \cdot \frac{672}{2} = 117261312 \text{ Nmm}$$
 (8.2.1.4)

Moment otpora osovine vanjskog promjera D = 250 mm, a unutarnjeg d = 140 mm iznosi:

$$W = \frac{\left(D^3 - d^3\right) \cdot \pi}{32} = \frac{\left(250^3 - 113^3\right) \cdot \pi}{32} = 1392325 \text{ mm}^3$$
(8.2.1.5)

Najveće naprezanje osovine skretnih užnica na dohvatniku iznosi:

$$\sigma = \frac{M_{\text{ymax}}}{W} = \frac{117261312}{1392325} = 84, 2 \frac{\text{N}}{\text{mm}^2}$$
(8.2.1.6)

Dopušteno naprezanje prema [13] za materijal Č 0545 iznosi:

$$\sigma_{\rm dop} = 90 \, \frac{\rm N}{\rm mm^2} \tag{8.2.1.7}$$

Kako je maksimalno naprezanje osovine manje od dopuštenog naprezanja proračun zadovoljava, tj.:

$$\sigma = 84, 2 \frac{N}{mm^2} \le \sigma_{dop} = 90 \frac{N}{mm^2}$$
 (8.2.1.8)

Treba napomenuti da je stvarno naprezanje manje zbog pojednostavljenja kod računanja rezultantne sile $F_{\rm R}$.

8.2.2. Kontrola površinskog pritiska osovine i nosivih limova

Površinski pritisak koji se javlja između nosivih limova i osovine skretnih užnica izračunava se prema izrazu:

$$p = \frac{F_{\rm R}}{2 \cdot d \cdot s} \tag{8.2.2.1}$$

Gdje je:

d = 250 mm - promjer osovine skretnih užnica

s = 15 mm - debljina nosivog lima

prema tome, površinski pritisak iznosi:

$$p = \frac{F_{\rm R}}{2 \cdot d \cdot s} = \frac{697983}{2 \cdot 250 \cdot 15} = 93.1 \frac{\rm N}{\rm mm^2}$$
(8.2.2.2)

Prema [13] dopušteni površinski pritisak iznosi:

$$p_{\rm dop} = 100 \, \frac{\rm N}{\rm mm^2}$$
 (8.2.2.3)

Pošto je maksimalni površinski pritisak između nosivih limova i osovine skretnih užnica manji od dopuštenog proračun zadovoljava, tj.:

$$p = 93.1 \frac{N}{mm^2} \le p_{dop} = 100 \frac{N}{mm^2}$$
 (8.2.2.4)

Treba napomenuti da je stvarni površinski pritisak manji zbog pojednostavljenja kod računanja rezultantne sile $F_{\rm R}$.

8.2.3. Proračun zavara nosivog lima osovine skretnih užnica na dohvatniku

Zavar pričvršćuje nosivi lim osovine skretnih užnica za dohvatnik. Zavar je opterećen dvjema silama koje su posljedica djelovanja sila u užadi. Njihov prikaz i dimenzije zavara prikazani su na slici 48. u nastavku.

Slika 48. Skica zavara nosivog lima na dohvatniku i prikaz opterećenja

Iznos sila koje opterećuju zavar je:

$$F_1 = 283364 \text{ N}$$

 $F_2 = 320210 \text{ N}$
(8.2.3.1)

Pošto ove sile svoje maksimalne vrijednosti imaju na različitim nagibima dohvatnika i u stvarnosti nikada neće djelovati u isto vrijeme, zbog povećanja sigurnosti uzimamo da obe djeluju istovremeno. Također u proračunu će se u obzir uzeti samo zavar II. Na taj način provesti će se jednostavniji proračun na strani sigurnosti.

Opterećenje silom *F*₁

Sila F_1 zavar II opterećuje na savijanje i na tlak.

Iznos momenta savijanja izračunava se iz izraza:

$$M = F_1 \cdot (475 + 425) = 283364 \cdot 900 = 255027600 \text{ Nmm}$$
(8.2.3.2)

Aksijalni moment tromosti zavara iznosi:

$$I_{y} = \frac{35 \cdot 850^{3}}{12} - \frac{5 \cdot 850^{3}}{12} = 1535312500 \text{ mm}^{4}$$
(8.2.3.3)

Najveće savojno naprezanje tada iznosi:

$$\sigma_{\rm f}^{\rm F_l} = \frac{M}{I_{\rm y}} \cdot z = \frac{255027600}{1535312500} \cdot 425 = 74, 7 \,\frac{\rm N}{\rm mm^2} \tag{8.2.3.4}$$

Površina presjeka zavara koja je tlačno opterećena iznosi:

$$A = 2 \cdot 15 \cdot 850 = 25500 \text{ mm}^2 \tag{8.2.3.5}$$

Tlačno naprezanje tada je jednako:

$$\sigma_{t} = \frac{F_{1}}{A} = \frac{283364}{25500} = 11.1 \frac{N}{mm^{2}}$$
(8.2.3.6)

Opterećenje silom *F*₂

Sila F_2 zavar II opterećuje na savijanje i na smik.

Iznos savojnog momenta uslijed djelovanja sile F_2 :

$$M = F_2 \cdot 105 = 320210 \cdot 105 = 33622050 \text{ Nmm}$$
(8.2.3.7)

Aksijalni moment tromosti zavara već je prethodno izračunat tako da je najveće savojno naprezanje jednako:

$$\sigma_{\rm f}^{\rm F_2} = \frac{M}{I_{\rm y}} \cdot z = \frac{33622050}{1535312500} \cdot 425 = 9,3 \,\frac{\rm N}{\rm mm^2} \tag{8.2.3.8}$$

Površina je također prethodno izračunata tako da smično naprezanje iznosi:

$$\tau = \frac{F_2}{A} = \frac{320210}{25500} = 12,6 \frac{N}{mm^2}$$
(8.2.3.9)

Ukupno savojno naprezanje zavara dobiva se superpozicijom dvaju, prethodno izračunatih, savojnih naprezanja.

$$\sigma_{\rm f} = \sigma_{\rm f}^{\rm F_1} + \sigma_{\rm f}^{\rm F_2} = 74, 7+9, 3 = 84 \frac{\rm N}{\rm mm^2}$$
 (8.2.3.10)

Ekvivalentno tlačno naprezanje jednako je:

$$\sigma_{\text{ekv TLAK}} = \sqrt{\left(\sigma_{\text{f}} + \sigma_{\text{t}}\right)^2 + 3 \cdot \tau^2} = \sqrt{\left(84 + 11, 1\right)^2 + 3 \cdot 12, 6^2} = 97, 6 \frac{\text{N}}{\text{mm}^2} \quad (8.2.3.11)$$

Ekvivalentno vlačno naprezanje jednako je:

$$\sigma_{\text{ekv VLAK}} = \sqrt{\left(\sigma_{\text{f}} - \sigma_{\text{t}}\right)^2 + 3 \cdot \tau^2} = \sqrt{\left(84 - 11, 1\right)^2 + 3 \cdot 12, 6^2} = 76, 1 \frac{\text{N}}{\text{mm}^2} \quad (8.2.3.12)$$

Zavar je opterećen dinamički. Za odnos graničnih naprezanja može se uzeti da je $\kappa = 0$. Stoga je riječ o čistom istosmjernom opterećenju. Dopušteno vlačno naprezanje zavara za takav slučaj opterećenja prema [16] za slučaj zareznog djelovanja K4, te pogonsku grupu B5 iznosi:

$$\sigma_{\rm Dv(0)dop} = 90 \text{ N/mm}^2$$
 (8.2.3.13)

Dok dopušteno tlačno naprezanje zavara za takav slučaj opterećenja prema [16] za slučaj zareznog djelovanja K4, te pogonsku grupu B5 iznosi:

$$\sigma_{\rm Dt(0)dop} = 108 \,\rm N/mm^2$$
 (8.2.3.14)

Kako su najveća naprezanja koja se javljaju u zavaru manja od dopuštenih naprezanja, proračun zadovoljava, tj.:

$$\sigma_{\text{ekv TLAK}} = 97,6 \text{ N/mm}^2 \le \sigma_{\text{Dv}(0)\text{dop}} = 108 \text{ N/mm}^2$$
 (8.2.3.15)

$$\sigma_{\rm ekv \, VLAK} = 76,1 \, \text{N/mm}^2 \le \sigma_{\rm Dv(0)dop} = 90 \, \text{N/mm}^2$$
 (8.2.3.16)

Treba još jednom naglasiti kako su uzete u obzir maksimalne sile koje nikada u stvarnosti neće djelovati zajedno i kako se proračunavao samo jedan od ukupno dva zavara, tako da je ukupno naprezanje znatno manje od izračunatog i sigurnost zavara je puno veća.

8.2.4. Proračun hvatišta užeta na protuutegu

Proračun vijaka

Vijci su opterećeni na vlak silom iznosa:

$$F = Q_{\rm p} + G_{\rm protuut} \cdot \cos(20^{\circ}) = 116739 + 144698 \cdot \cos(20^{\circ}) = 252711 \text{ N}$$
(8.2.4.1)

Odabiru se vijci M16, kvalitete 8.8. granice tečenja 640 N/mm², površine jezgre $A_j = 144 \text{ mm}^2$ čije dopušteno naprezanje, prema [15] iznosi:

$$\sigma_{\rm dop} = \frac{R_{\rm e}}{S} = \frac{640}{2.5} = 256 \,\frac{\rm N}{\rm mm^2} \tag{8.2.4.2}$$

Kako su vijci opterećeni na vlak, proračun se provodi prema sljedećem izrazu:

$$\sigma_{\rm dop} \ge \frac{F}{A_{\rm i} \cdot n} \tag{8.2.4.3}$$

Iz kojega onda slijedi:

$$n \ge \frac{F}{\sigma_{\rm dop} \cdot A_{\rm j}} \tag{8.2.4.4}$$

$$n \ge \frac{252711}{256 \cdot 144} \tag{8.2.4.5}$$

$$n \ge 6,8$$
 (8.2.4.6)

Odabrano je 8 vijaka M16 kvalitete 8.8.

Provjera dodirnog pritiska

Površinski pritisak između limova i osovine izračunava se prema sljedećem izrazu:

$$p = \frac{F}{2 \cdot d \cdot s} \tag{8.2.4.7}$$

gdje je:

d = 100 mm - promjer osovine

$$s = 15 \text{ mm} - \text{debljina lima}$$

Prema tome, površinski pritisak iznosi:

$$p = \frac{252711}{2 \cdot 100 \cdot 15} = 84, 2 \frac{N}{mm^2}$$
(8.2.4.8)

Dopušteni površinski pritisak, prema [13] iznosi:

$$p_{\rm dop} = 100 \, \frac{\rm N}{\rm mm^2} \tag{8.2.4.9}$$

Površinski pritisak između limova i osovine manji je od dopuštenog, dakle proračun zadovoljava, tj.:

$$p = 84, 2 \frac{N}{mm^2} < p_{dop} = 100 \frac{N}{mm^2}$$
 (8.2.4.10)

Provjera čvrstoće osovine

Na slici 49. prikazano je opterećenje osovine.

Slika 49. Dijagrami opterećenja osovine

Gdje je:

$$\frac{Q}{2} = \frac{F}{2} = \frac{252711}{2} = 126356 \text{ N}$$
(8.2.4.11)

$$l = 115 \text{ mm}$$
 (8.2.4.12)

Najveći moment savijanja:

$$M_{\text{max}} = \frac{Q}{2} \cdot \frac{l}{2} = 126356 \cdot \frac{115}{2} = 7265470 \text{ Nmm}$$
 (8.2.4.13)

Moment otpora osovine:

$$W_{\rm os} = \frac{d^3 \cdot \pi}{32} = \frac{100^3 \cdot \pi}{32} = 98175 \text{ mm}^3$$
 (8.2.4.14)

Najveće naprezanje osovine:

$$\sigma = \frac{M_{\text{max}}}{W_{\text{os}}} = \frac{7265470}{98175} = 74 \frac{\text{N}}{\text{mm}^2}$$
(8.2.4.15)

Dopušteno naprezanje za materijal Č.0545 prema [13] iznosi:

$$\sigma_{\rm dop} = 90 \, \frac{\rm N}{\rm mm^2}$$
 (8.2.4.16)

Kako je maksimalno naprezanje manje od dopuštenog naprezanja osovine, proračun zadovoljava, tj:

$$\sigma = 74 \frac{N}{mm^2} < \sigma_{dop} = 90 \frac{N}{mm^2}$$
 (8.2.4.17)

9. DIMENZIONIRANJE PROTUUTEGA GRANIKA I MEHANIZMA ZA OKRETANJE

9.1. Dimenzioniranje protuutega granika

Protuuteg na okretnom dijelu granika služi za smanjivanje momenta savijanja u stupu i određuje se tako da moment od utega bude jednak srednjoj vrijednosti između maksimalnog i minimalnog momenta savijanja u stupu bez protuutega.

Mase i udaljenosti njihovih težišta od osi stupa za slučaj najvećeg momenta savijanja (najveći teret na najvećem dohvatu) su:

$$\begin{split} m_{\rm doh} &= 9580 \text{ kg}, l_{\rm doh \max} = 11407 \text{ mm} \\ m_{\rm stu} &= 7790 \text{ kg}, l_{\rm stu \max} = 858 \text{ mm} \\ m_{\rm protuut} &= 14750 \text{ kg}, l_{\rm protuut \max} = -144 \text{ mm} \\ m_{\rm nos} &= 7725 \text{ kg}, l_{\rm nos \max} = -1715 \text{ mm} \\ m_{\rm ter} &= 10000 \text{ kg}, l_{\rm ter \max} = 22000 \text{ mm} \end{split}$$

Mase i udaljenosti njihovih težišta od osi stupa za slučaj najmanjeg momenta savijanja (bez tereta na najmanjem kraku) su:

$$m_{doh} = 9580 \text{ kg}, l_{doh \max} = 6968 \text{ mm}$$

 $m_{stu} = 7790 \text{ kg}, l_{stu \max} = 858 \text{ mm}$
 $m_{protuut} = 14750 \text{ kg}, l_{protuut \max} = -893 \text{ mm}$
 $m_{nos} = 7725 \text{ kg}, l_{nos \max} = -1715 \text{ mm}$
(9.1.2)

Potreban moment od utega stoga je jednak:

$$M_{\text{ute}} = \frac{\begin{pmatrix} m_{\text{doh}} \cdot (l_{\text{doh max}} + l_{\text{doh min}}) + m_{\text{stu}} \cdot (l_{\text{stu max}} + l_{\text{stu min}}) + m_{\text{ter}} \cdot l_{\text{ter}} + \\ + m_{\text{protuut}} \cdot (l_{\text{protuut max}} + l_{\text{protuut min}}) + m_{\text{nos}} \cdot (l_{\text{nos max}} + l_{\text{nos min}}) \end{pmatrix}}{2} \cdot g = \\ = \frac{\begin{pmatrix} 9580 \cdot (11407 + 6968) + 7790 \cdot (858 + 858) + 10000 \cdot 22000 + \\ + 14750 \cdot (-144 - 893) + 7725 \cdot (-1715 - 1715) \end{pmatrix}}{2} \cdot 9,81 = (9.1.3) \\ = 1870663995 \text{ Nmm}$$

Jedan dio nosive konstrukcije (5,02 m³) napuniti će se betonom (gustoća 2400 kg/m³) nakon čega je potrebno još ostvariti moment:

$$M_{\text{ute 2}} = M_{\text{ute }} - V_{\text{ute 1}} \cdot \rho_{\text{bet}} \cdot g \cdot l_{\text{ute 1}} =$$

= 1870663995 - 5,02 \cdot 2400 \cdot 9,81 \cdot 2960 = (9.1.4)
= 1520818990 Nmm

Taj ostatak potrebnog momenta postići će se dodavanjem čeličnih ploča. Potrebna dodatna masa čeličnih ploča iznosi:

$$m_{\text{ute 2}} = \frac{M_{\text{ute 2}}}{g \cdot l_{\text{ute 2}}} = \frac{1520818990}{9,81 \cdot 3250} = 47700 \text{ kg}$$
(9.1.5)

Masa betonskog utega iznosi:

$$m_{\text{ute 1}} = \rho_{\text{bet}} \cdot V_{\text{ute 1}} = 2400 \cdot 5,02 = 12048 \text{ kg}$$
 (9.1.6)

Tako je ukupna masa utega jednaka:

$$m_{\text{ute}} = m_{\text{ute}1} + m_{\text{ute}2} = 12048 + 47700 = 59748 \text{ kg}$$
 (9.1.7)

9.2. Dimenzioniranje mehanizma za okretanje

Opterećenje koje ležajevi moraju preuzeti sastoji se od aksijalne sile i momenta savijanja koji iznose:

$$F_{a} = (m_{doh} + m_{stu} + m_{protuut} + m_{nos} + m_{ter} + m_{ute}) \cdot g =$$

= (9580 + 7790 + 14750 + 7725 + 10000 + 59748) \cdot 9,81 = (9.2.1)
= 1075107 N

$$M = m_{doh} \cdot l_{doh \max} \cdot g + m_{stu} \cdot l_{stu \max} \cdot g + m_{protuut} \cdot l_{protuut \max} \cdot g + m_{nos} \cdot l_{nos \max} \cdot g + m_{ter} \cdot l_{ter} \cdot g - M_{ute} =$$

$$= 9580 \cdot 11407 \cdot 9,81 + 7790 \cdot 858 \cdot 9,81 + 14750 \cdot (-144) \cdot 9,81 + (9.2.2)$$

$$+ 7725 \cdot (-1715) \cdot 9,81 + 10000 \cdot 22000 \cdot 9,81 - 1870663995 =$$

$$= 1274328859 \text{ Nmm}$$

9.2.1. Proračun osovine okretišta

Slika 50. Dijagrami opterećenja osovine okretišta

Osovina okretišta izrađena je od cijevi vanjskog promjera D = 559 mm, te unutarnjeg promjera d = 359 mm. Kritični presjek u kojemu se javljaju najveće vrijednosti naprezanja nalazi se na mjestu oslonca B. Vanjski promjer cijevi na tom mjestu iznosi D = 530 mm. Prema tome aksijalni moment tromosti presjeka osovine na tom mjestu iznosi:

$$I = \frac{D^4 \cdot \pi}{64} - \frac{d^4 \cdot \pi}{64} = \frac{530^4 \cdot \pi}{64} - \frac{359^4 \cdot \pi}{64} = 3057874012 \text{ mm}^4$$
(9.2.1.1)

Moment otpora presjeka osovine okretišta jednak je:

$$W = \frac{I}{\frac{D}{2}} = \frac{3057874012}{\frac{530}{2}} = 11539147 \text{ mm}^3$$
(9.2.1.2)

Površina poprečnog presjeka iznosi:

$$A = \frac{D^2 \cdot \pi}{4} - \frac{d^2 \cdot \pi}{4} = \frac{530^2 \cdot \pi}{4} - \frac{359^2 \cdot \pi}{4} = 119395 \text{ mm}^2$$
(9.2.1.3)

Tlačno naprezanje jednako je:

$$\sigma_{\rm t} = \frac{F}{A} = \frac{1075107}{119395} = 9 \frac{\rm N}{\rm mm^2}$$
(9.2.1.4)

Naprezanje uslijed savijanja iznosi:

$$\sigma_{\rm f} = \frac{M}{W} = \frac{1274328859}{11539147} = 110, 4 \frac{\rm N}{\rm mm^2}$$
(9.2.1.5)

Ukupno naprezanje tada je jednako:

$$\sigma = \sigma_{t} + \sigma_{f} = 9 + 110, 4 = 119, 4 \frac{N}{mm^{2}}$$
 (9.2.1.6)

Trajna dinamička čvrstoća za istosmjerno savojno opterećenje za materijal C 15 (Č 1220) prema [15] iznosi:

$$\sigma_{\rm fDI} = 275 \, \frac{\rm N}{\rm mm^2}$$
 (9.2.1.7)

Pa slijedi:

$$\sigma_{\rm dop} = \frac{\sigma_{\rm fDI}}{S} = \frac{275}{1.5} = 183,33 \,\frac{\rm N}{\rm mm^2} \tag{9.2.1.8}$$

Gdje je S = 1,5 potrebna sigurnost.

Kako je normalno naprezanje manje od dopuštenog naprezanja, odabrana cijev zadovoljava, tj.:

$$\sigma = 119, 4 \frac{N}{mm^2} \le \sigma_{dop} = 183, 33 \frac{N}{mm^2}$$
 (9.2.1.9)

9.2.2. Odabir ležajeva osovine okretišta

Zbog malog broja okretaja osovine stupa kod odabira ležaja ograničenje će biti statička, a ne dinamička nosivost. Ležajno mjesto je izvedeno s dva radijalna i jednom aksijalnim ležajem. Odabrani ležajevi moraju biti samopodesivi kako bi se u pogonu omogućila deformacija osovine okretišta. Također, na ležajnom mjestu A radijalni i aksijalni ležaj moraju biti postavljeni tako da se rotiraju oko iste točke kako ne bi došlo do uklinjenja stupa i oštećenja konstrukcije, kao na slici 51.

$$F_{Aa} = F_a = 1075107 \text{ N}$$

 $F_{Ar} = F_{Br} = \frac{M}{640} = \frac{1274328859}{640} = 1991139 \text{ N}$
(9.2.2.1)

Slika 51. Skica ležajnog mjesta A

Kao radijalni ležaj u osloncu A odabran je dvoredni samopodesivi bačvast ležaj 24892 CAMA/W20, proizvođača SKF, statičke nosivosti $C_0 = 4900$ kN. Kako je maksimalno opterećenje ležaja manje od dopuštenog proračun zadovoljava, tj.:

$$C_{\min} = F_{Ar} = 1991 \text{ kN} \le C_0 = 4900 \text{ kN}$$
 (9.2.2.2)

Kao aksijalni ležaj u osloncu A odabran je ležaj 29280, proizvođača *SKF*, statičke nosivosti $C_0 = 8000$ kN. kako je maksimalno opterećenje ležaja manje od dopuštenog proračun zadovoljava, tj.:

$$C_{\min} = F_{Aa} = 1075 \text{ kN} \le C_0 = 8000 \text{ kN}$$
 (9.2.2.3)

Kao radijalni ležaj u osloncu B odabran je dvoredni samopodesivi bačvasti ležaj 248/530 CAMA/W20, proizvođača SKF, statičke nosivosti $C_0 = 5300$ kN. kako je maksimalno opterećenje ležaja manje od dopuštenog proračun zadovoljava, tj.:

$$C_{\min} = F_{Br} = 1991 \text{ kN} \le C_0 = 5300 \text{ kN}$$
 (9.2.2.4)

9.2.3. Proračun glavine portala

Glavina portala služi kao ležajno mjesto osovini okretišta. Vanjski promjer iznosi D = 711 mm, dok je unutarnji promjer na mjestu ležajnog oslonca A jednak d = 580 mm.

Kao što je vidljivo iz dijagrama na slici 52. Najveće naprezanje javlja se u ležajnom mjestu A, pa prema tome aksijalni moment tromosti presjeka glavine portala iznosi:

$$I = \frac{D^4 \cdot \pi}{64} - \frac{d^4 \cdot \pi}{64} = \frac{711^4 \cdot \pi}{64} - \frac{580^4 \cdot \pi}{64} = 6989382027 \text{ mm}^4$$
(9.2.3.1)

Slika 52. Dijagrami opterećenja glavine portala

Moment otpora presjeka glavine portala jednak je:

$$W = \frac{I}{\frac{D}{2}} = \frac{6989382027}{\frac{711}{2}} = 19660709 \text{ mm}^3$$
(9.2.3.2)

Naprezanje uslijed savijanja jednako je:

$$\sigma_{\rm f} = \frac{M}{W} = \frac{1274328859}{19660709} = 64,8 \,\frac{\rm N}{\rm mm^2} \tag{9.2.3.3}$$

Trajna dinamička čvrstoća za naizmjenično savojno opterećenje prema [15] za čelik R St 37-2 (Č 0361) iznosi:

$$\sigma_{\rm fDN} = 190 \, \frac{\rm N}{\rm mm^2}$$
 (9.2.3.4)

Pa dopušteno naprezanje iznosi:

$$\sigma_{\rm dop} = \frac{\sigma_{\rm fDN}}{S} = \frac{190}{1.5} = 126,67 \,\frac{\rm N}{\rm mm^2} \tag{9.2.3.5}$$

Gdje je S = 1,5 potrebna sigurnost.

Kako je maksimalno naprezanje koje se javlja u glavini portala manje od dopuštenog naprezanja proračun zadovoljava, tj.:

$$\sigma_{\rm f} = 64.8 \, \frac{\rm N}{\rm mm^2} \le \sigma_{\rm dop} = 126,67 \, \frac{\rm N}{\rm mm^2}$$
 (9.2.3.6)

9.2.4. Proračun pogona za okretanje dohvatnika

Otpori ustaljene vožnje

Otpor ustaljene vožnje uzrokuje trenje u ležajevima koje se javlja zbog kotrljanja valjnih tijela. Srednji promjer valjne staze radijalnih ležajeva iznosi $d_{\rm sr A} = 505$ mm, odnosno $d_{\rm sr B} = 573$ mm, dok je srednji promjer valjne staze aksijalnog ležaja jednak $d_{\rm sr A^*} = 460$ mm. Faktor trenja u ležajevima prema [17] iznosi $\mu = 0,002$. Prema tome moment trenja u ležajevima iznosi:

$$M_{\rm tr} = \frac{\mu}{2} \cdot \left(F_{\rm Aa} \cdot d_{\rm srA^*} + F_{\rm Ar} \cdot d_{\rm srA} + F_{\rm Br} \cdot d_{\rm srB} \right)$$
(9.2.4.1)

$$M_{\rm tr} = \frac{0,002}{2} \cdot \left(1075107 \cdot 460 + 1991139 \cdot 505 + 1991139 \cdot 573\right)$$
(9.2.4.2)

$$M_{\rm tr} = 2640997 \,\,{\rm Nmm}$$
 (9.2.4.3)

Moment inercije M_{in}

Prilikom pokretanja iz stanja mirovanja, odnosno tijekom ubrzavanja motor za okretanje dohvatnika mora osim momenta trenja u ležajevima savladati i silu inercije svih masa koje kutno ubrzavaju.

Dinamički moment tromosti dobiva se koristeći formulu za moment tromosti koncentrirane mase na najvećem ostvarivom dohvatu.

$$J = \sum m_{i} \cdot r_{i}^{2} = m_{ter} \cdot r_{ter} + m_{doh} \cdot r_{doh} + m_{stu} \cdot r_{stu} + m_{protuut} \cdot r_{protuut} + m_{nos} \cdot r_{nos} + m_{ute 1} \cdot r_{ute 1} + m_{ute 2} \cdot r_{ute 2} =$$

$$= 10000 \cdot 22^{2} + 9580 \cdot 11,407^{2} + 7790 \cdot 0,858^{2} + 14750 \cdot 0,144^{2} + 7725 \cdot 1,715^{2} + 12048 \cdot 2,96^{2} + 47700 \cdot 3,25^{2} = 6724699 \text{ kg m}^{2}$$

$$(9.2.4.4)$$

Prema [13] vrijeme potrebno da dohvatnik postigne maksimalnu brzinu okretanja iznosi t = 5 s. Kutno ubrzanje dohvatnika tada iznosi:

$$\mathcal{E}_{\rm D} = \frac{\omega_{\rm gr}}{t} = \frac{1 \cdot \pi}{5 \cdot 30} = 0,0209 \,\frac{\rm rad}{\rm s^2}$$
 (9.2.4.5)
Kada je poznato kutno ubrzanje može se izračunati traženi moment inercije.

$$M_{\rm in} = J \cdot \varepsilon_{\rm D} = 6724699 \cdot 0,0209 = 140546 \text{ Nm}$$
 (9.2.4.6)

Ukupni okretni moment

Potrebni okretni moment pogona za okretanje dohvatnika dobiva se zbrajanjem momenta trenja u ležajevima i momenta inercije.

$$M_{\text{potr}} = M_{\text{tr}} + M_{\text{in}} = 2641 + 140546 = 143187 \text{ Nm}$$
 (9.2.4.7)

Proračun zupčanog para

Pogon za okretanje dohvatnika ostvaren je na način da je reduktor s elektromotorom smješten na pomični dio dohvatnika. Na izlazno vratilo reduktora postavljen je manji zupčanik Z_1 dok je veći zupčanik Z_2 postavljen na glavinu portala koja je nepomična, odnosno fiksno vezan za portal.

Odabrani modul zupčanika je m = 12 mm. Broj zubi manjeg zupčanika iznosi $z_1 = 36$, dok je broj zubi većeg zupčanika $z_2 = 198$. Odabrana širina zupčanika iznosi b = 225 mm. Zahvatni kut je standardni i iznosi $\alpha = 20^{\circ}$. Potrebni razmak osi vratila iznosi $a_w = 1404$ mm.

Postojeći razmak osi vratila iznosi:

$$a = m \cdot \frac{z_1 + z_2}{2} = 12 \cdot \frac{36 + 198}{2} = 1404 \text{ mm}$$
 (9.2.4.8)

Budući da je postojeći razmak osi vratila jednak potrebnom razmaku, nije potrebno izvršiti pomak profila zubi zupčanika. Pogonski zahvatni kut računa se prema sljedećem izrazu:

$$\alpha_{\rm w} = \arccos\left(\frac{a}{a_{\rm w}} \cdot \cos\alpha\right) = \arccos\left(\frac{1404}{1404} \cdot \cos 20^\circ\right) = 20^\circ \tag{9.2.4.9}$$

Dimenzije zupčanika

Za daljnji proračun potrebno je izračunati tjemeni d_a , kinematski d_w i podnožni promjer d_f , te promjer temeljne kružnice d_b zupčanika z_1 i z_2 .

$$d_{1} = z_{1} \cdot m = 36 \cdot 12 = 432 \text{ mm}$$

$$d_{a1} = d_{1} + 2 \cdot m(1 + x_{1}) = 432 + 2 \cdot 12(1 + 0) = 456 \text{ mm}$$

$$d_{w1} = d_{1} \cdot \frac{\cos \alpha}{\cos \alpha_{w}} = 432 \cdot \frac{\cos 20^{\circ}}{\cos 20^{\circ}} = 432 \text{ mm}$$

$$d_{f1} = d_{1} - 2 \cdot m(1, 25 - x_{1}) = 432 - 2 \cdot 12(1, 25 - 0) = 402 \text{ mm}$$

$$d_{b1} = d_{w1} \cdot \cos \alpha_{w} = 432 \cdot \cos 20^{\circ} = 405, 95 \text{ mm}$$

(9.2.4.10)

$$d_{2} = z_{2} \cdot m = 198 \cdot 12 = 2376 \text{ mm}$$

$$d_{a2} = d_{2} + 2 \cdot m(1 + x_{2}) = 2376 + 2 \cdot 12(1 + 0) = 2400 \text{ mm}$$

$$d_{w2} = d_{2} \cdot \frac{\cos \alpha}{\cos \alpha_{w}} = 2376 \cdot \frac{\cos 20^{\circ}}{\cos 20^{\circ}} = 2376 \text{ mm}$$

$$d_{f2} = d_{2} - 2 \cdot m(1, 25 - x_{2}) = 2376 - 2 \cdot 12(1, 25 - 0) = 2346 \text{ mm}$$

$$d_{b2} = d_{w2} \cdot \cos \alpha_{w} = 2376 \cdot \cos 20^{\circ} = 2232, 71 \text{ mm}$$

(9.2.4.11)

Kontrola tjemene zračnosti

Postojeća tjemena zračnost izračunava se prema sljedećem izrazu:

$$c = a_{\rm w} - \frac{d_{\rm a1} + d_{\rm f2}}{2} = 1404 - \frac{432 + 2346}{2} = 15 \text{ mm}$$
 (9.2.4.12)

Minimalna potrebna tjemena zračnost iznosi:

$$c_{\min} = 0, 12 \cdot m = 0, 12 \cdot 12 = 1, 44 \text{ mm}$$
 (9.2.4.13)

Pošto je postojeća zračnost veća od minimalno potrebne zračnosti nije potrebno skraćenje tjemena.

Kontrola naprezanja zupčanika

Manji zupčanik izrađen je od kaljenog čelika za cementiranje oznake Č 1220. Pošto je riječ o kaljenom zupčaniku, kontrola zupčanika provoditi će se s obzirom na savojno naprezanje u korijenu zuba i na Hertzov pritisak. Trajna dinamička čvrstoća materijala zupčanika na Hertzov pritisak prema [18] iznosi $\sigma_{H,lim} = 1400 \text{ N/mm}^2$, a na savijanje iznosi $\sigma_{F,lim} = 400 \text{ N/mm}^2$.

Kontrola savojnog naprezanja u korijenu zuba

$$\sigma_{\rm F,dop} = \frac{0,7 \cdot \sigma_{\rm Flim}}{S_{\rm F}} = \frac{0,7 \cdot 400}{2} = 140 \,\frac{\rm N}{\rm mm^2} \tag{9.2.4.14}$$

Gdje je $S_F = 2$, prema [18].

Izraz za izračunavanje naprezanja u korijenu zuba glasi:

$$\sigma_{\rm F} = \frac{F_{\rm tw}}{b \cdot m} \cdot Y_{\rm F} \cdot Y_{\epsilon} \cdot K_{\rm F\alpha} \tag{9.2.4.15}$$

Maksimalna tangencijalna sila na obodu zupčanika iznosi:

$$F_{\rm tw} = \frac{2 \cdot M_{\rm potr}}{d_{\rm w2}} = \frac{2 \cdot 143187 \cdot 10^3}{2376} = 120528 \text{ N}$$
(9.2.4.16)

Faktor Y_F iščitavamo iz sljedećeg dijagrama na slici 53.

Slika 53. Dijagram faktora Y_F [18]

Iz dijagrama slijedi $Y_{\rm F} = 2,45$.

Da bi se izračunao faktor stupnja prekrivanja prvo je potrebno izračunati stupanj prekrivanja. Stupanj prekrivanja računa se pomoću sljedećeg izraza:

$$\varepsilon_{\alpha} = \frac{\sqrt{\left(\frac{d_{a1}}{2}\right)^{2} - \left(\frac{d_{b1}}{2}\right)^{2}} + \sqrt{\left(\frac{d_{a2}}{2}\right)^{2} - \left(\frac{d_{b2}}{2}\right)^{2}} - a_{w} \cdot \sin(\alpha_{w})}{m \cdot \pi \cdot \cos(\alpha)} = \frac{\sqrt{\left(\frac{456}{2}\right)^{2} - \left(\frac{405,95}{2}\right)^{2}} + \sqrt{\left(\frac{2400}{2}\right)^{2} - \left(\frac{2232,71}{2}\right)^{2}} - 1404 \cdot \sin(20^{\circ})}{12 \cdot \pi \cdot \cos(20^{\circ})} = (9.2.4.17)$$
$$= 1,802$$

Faktor stupnja prekrivanja tada je jednak:

$$Y_{\varepsilon} = \sqrt{\frac{4 - \varepsilon_{\alpha}}{3}} = \sqrt{\frac{4 - 1,802}{3}} = 0,86$$
(9.2.4.18)

Također prema dijagramu [18] određen je faktor $K_{F\alpha} = 1,2$

Poznavanjem svih potrebnih parametara možemo izračunati naprezanje u korijenu zuba:

$$\sigma_{\rm F} = \frac{120528}{225 \cdot 12} \cdot 2,45 \cdot 0,86 \cdot 1,2 = 112,9 \frac{\rm N}{\rm mm^2}$$
(9.2.4.19)

Kako je maksimalno naprezanje u korijenu zuba manje od dopuštenog naprezanja proračun zadovoljava, tj.:

$$\sigma_{\rm F} = 112,9 \ \frac{\rm N}{\rm mm^2} \le \sigma_{\rm dop} = 140 \ \frac{\rm N}{\rm mm^2}$$
 (9.2.4.20)

Kontrola Hertzovog pritiska

$$\sigma_{\rm H,dop} = \frac{\sigma_{\rm Hlim}}{S_{\rm H}} = \frac{1400}{1.3} = 1076.9 \,\frac{\rm N}{\rm mm^2} \tag{9.2.4.21}$$

Gdje je $S_{\rm H} = 1,3$, prema [18].

Izraz za izračunavanje Hertzovog dodirnog pritiska glasi:

$$\sigma_{\rm H} = Z_{\rm M} \cdot Z_{\rm H} \cdot Z_{\varepsilon} \cdot \sqrt{\frac{u+1}{u} \cdot \frac{F_{\rm tw}}{b \cdot d_{\rm w1}}} \cdot K_{\rm H\alpha}$$
(9.2.4.22)

Parametar u predstavlja omjer broja zubi zupčanika z_1 i z_2 što je ujedno i prijenosni omjer zupčanog para.

$$u = \frac{z_2}{z_1} = \frac{198}{36} = 5,5 \tag{9.2.4.23}$$

Maksimalna tangencijalna sila na obodu zupčanika iznosi:

$$F_{\rm tw} = \frac{2 \cdot M_{\rm potr}}{d_{\rm w2}} = \frac{2 \cdot 143187 \cdot 10^3}{2376} = 120528 \text{ N}$$
(9.2.4.24)

Faktor materijala za zupčani par izrađen od čelika iznosi:

$$Z_{\rm M} = 189,5 \,\sqrt{\rm N/mm^2} \tag{9.2.4.25}$$

Faktor oblika boka Z_H ovisi o odnosu faktora pomaka profila i broja zubi zupčanika, te iznosi:

Slika 54. Dijagram faktora oblika boka [18]

Iz dijagrama prikazanog na slici 54. može se očitati vrijednost faktora oblika boka $Z_{\rm H} = 2,5$.

Da bi se izračunao faktor stupnja prekrivanja prvo je potrebno izračunati stupanj prekrivanja. Stupanj prekrivanja računa se pomoću sljedećeg izraza:

$$\varepsilon_{\alpha} = \frac{\sqrt{\left(\frac{d_{a1}}{2}\right)^{2} - \left(\frac{d_{b1}}{2}\right)^{2}} + \sqrt{\left(\frac{d_{a2}}{2}\right)^{2} - \left(\frac{d_{b2}}{2}\right)^{2}} - a_{w} \cdot \sin(\alpha_{w})}{m \cdot \pi \cdot \cos(\alpha)} = \frac{\sqrt{\left(\frac{432}{2}\right)^{2} - \left(\frac{405,95}{2}\right)^{2}} + \sqrt{\left(\frac{2400}{2}\right)^{2} - \left(\frac{2232,71}{2}\right)^{2}} - 1404 \cdot \sin(20^{\circ})}{12 \cdot \pi \cdot \cos(20^{\circ})} = (9.2.4.27)$$
$$= 1,802$$

Faktor stupnja prekrivanja tada je jednak:

$$Z_{\varepsilon} = \sqrt{\frac{4 - \varepsilon_{\alpha}}{3}} = \sqrt{\frac{4 - 1,802}{3}} = 0,86$$
(9.2.4.28)

Faktor raspodjele opterećenja $K_{H\alpha}$ ovisi jedino o prethodno izračunatom faktoru stupnja prekrivanja, te se može analitički izračunati pomoću sljedećeg izraza:

$$K_{\rm H\alpha} = 1 + 2 \cdot (1 - 0, 5) \cdot \left(\frac{1}{Z_{\varepsilon}} - 1\right) = 1 + 2 \cdot (1 - 0, 5) \cdot \left(\frac{1}{0, 86} - 1\right) = 1,16 \qquad (9.2.4.29)$$

Poznavanjem svih potrebnih parametara može se izračunati Hertzov dodirni pritisak.

$$\sigma_{\rm H} = 189, 5 \cdot 2, 5 \cdot 0, 86 \cdot \sqrt{\frac{5, 5+1}{5, 5} \cdot \frac{120528}{225 \cdot 432} \cdot 1, 16} = 531, 2 \frac{\rm N}{\rm mm^2}$$
(9.2.4.30)

Hertzov dodirni pritisak je manji od dopuštene vrijednosti, stoga zupčani par zadovoljava pogonske uvjete,tj.:

$$\sigma_{\rm H} = 531, 2 \, \frac{\rm N}{\rm mm^2} \le \sigma_{\rm dop} = 1076, 9 \, \frac{\rm N}{\rm mm^2}$$
 (9.2.4.31)

Odabir pogona za okretanje dohvatnika

Najveći potrebni okretni moment na izlaznom vratilu reduktora može iznositi:

$$M_{\text{max,red}} = \frac{M_{\text{potr}}}{u} = \frac{143187}{5,5} = 26034 \text{ Nm}$$
 (9.2.4.32)

Na temelju poznate brzine vrtnje osovine stupa lako se može izračunati brzina vrtnje izlaznog vratila reduktora.

$$n_{\rm red} = n_{\rm os} \cdot u = 1 \cdot 8 = 8 \text{ min}^{-1}$$
 (9.2.4.33)

Prema tome potrebna snaga elektromotora, uz zanemarivanje mehaničkih gubitaka, iznosi:

$$P_{EM} = M_{max,red} \cdot \frac{\pi \cdot n_{red}}{30} = 26034 \cdot \frac{\pi \cdot 8}{30} = 21810 \text{ W} = 22 \text{ kW}$$
(9.2.4.34)

Prema tome odabran je elektromotor s reduktorom oznake *K 167R107 DRN 180L4*, proizvođača *Sew Eurodrive*, karakteristika prikazanih u tablici 6. danoj u nastavku.

Nazivna snaga elektromotora	Р	22 kW
Brzina vrtnje na izlazu iz reduktora	n_2	$7,2 \min^{-1}$
Okretni moment na izlazu iz reduktora	T_2	27200 Nm
Prijenosni odnos	$i_{\rm red}$	206

Tablica 6. Karakteristike elektromotora s reduktorom

Maksimalna radijalna sila	$F_{\rm max}$	150 kN
Maksimalni moment kočenja	M_{K}	300 Nm

Provjera kočnog momenta motora

Moment na vratilu elektromotora iznosi:

$$M_{\rm EM} = \frac{M_{\rm potr}}{i \cdot u} = \frac{143187}{206 \cdot 5,5} = 126,4 \text{ Nm}$$
(9.2.4.35)

Kako je moment na vratilu elektromotora manji od kočnog momenta elektromotora proračun zadovoljava tj.:

$$M_{\rm EM} = 126,4\,{\rm Nm} \le M_{\rm K} = 300\,{\rm Nm}$$
 (7.2.4.36)

Provjera radijalne sile na izlaznom vratilu

Najveća radijalna sila na izlazu iz reduktora jednaka je:

$$F_{\rm r} = \frac{M_{\rm max\,red} \cdot 2}{d_{\rm w\,1}} = \frac{26034 \cdot 2}{0,432} = 120528 \text{ N}$$
(9.2.4.37)

Kako je maksimalna radijalna sila koja se javlja na izlazu iz reduktora manja od dozvoljene proračun zadovoljava, tj.:

$$F_{\rm r} = 120528 \text{ N} \le F_{\rm max} = 150000 \text{ N}$$
 (9.2.4.38)

9.3. Proračun vijaka i zavara

9.3.1. Proračun vijaka velikog zupčanika na većem promjeru

Veza ploče velikog zupčanika i velikog zupčanika ostvaruje se vijčanim spojem. Odabiru se vijci M20, kvalitete 8.8. U proračunu potrebnog broja vijaka pretpostavlja se prijenos okretnog momenta trenjem između ploče i zupčanika. Prema tome proračun se provodi prema sljedećem izrazu:

$$F \cdot \frac{D}{2} \le n \cdot \mu \cdot F_{\rm N} \frac{d_7}{2} \tag{9.3.1.1}$$

Gdje je:

 $\mu = 0,2$ - faktor trenja za čelik/čelik prema [15]

$$F_{\rm N} = \sigma_{\rm dop} \cdot A_{\rm j} \tag{9.3.1.2}$$

Odabrani vijci M20, kvalitete 8.8 imaju granicu tečenja $R_e = 640 \text{ N/mm}^2$, te površinu jezgre vijka $A_j = 225 \text{ mm}^2$ prema [15]. Uz odabranu pogonsku sigurnost S = 2,5 dobiva se dopušteno naprezanje vijaka:

$$\sigma_{\rm dop} = \frac{R_{\rm e}}{S} = \frac{640}{2.5} = 256 \,\frac{\rm N}{\rm mm^2} \tag{9.3.1.3}$$

Na temelju toga dobiva se potreban broj vijaka:

$$n \ge \frac{F \cdot D}{\mu \cdot \sigma_{dop} \cdot A_{j} \cdot d_{7}}$$
(9.3.1.4)

$$n \ge \frac{120528 \cdot 2376}{0,2 \cdot 256 \cdot 225 \cdot 1950} \tag{9.3.1.5}$$

$$n \ge 12,7$$
 (9.3.1.6)

Odabrano je 16 vijaka M20 kvalitete 8.8.

9.3.2. Proračun zavara velikog zupčanika

Veze ploče velikog zupčanika i glavine ostvaruje se zavarenim spojem. Kako je prikazano na slici 55.

Slika 55. Skica zavara velikog zupčanika

Zavar je opterećen momentom uvijanja, pa slijedi:

Polarni moment tromosti zavara iznosi:

$$I_{\rm ZAV} = \frac{D^4 \cdot \pi}{32} - \frac{d^4 \cdot \pi}{32} = \frac{721^4 \cdot \pi}{32} - \frac{711^4 \cdot \pi}{32} = 1441518203 \text{ mm}^4$$
(9.3.2.1)

Najveća udaljenost presjeka zavara od promatrane osi:

$$\rho = \frac{D}{2} = \frac{721}{2} = 360,5 \text{ mm}$$
 (9.3.2.2)

Torzijsko naprezanje tada je jednako:

$$\tau = \frac{T}{I_{ZAV}} \cdot \rho = \frac{26034000}{1441518203} \cdot 360, 5 = 6,5 \frac{N}{mm^2}$$
(9.3.2.3)

Zavar je opterećen dinamički. U ovom slučaju riječ je o dinamičkom naizmjeničnom opterećenju kod kojeg je odnos graničnih naprezanja približno jednak $\kappa = -1$. Dopušteno naprezanje zavara za takav slučaj opterećenja prema [16] za slučaj zareznog djelovanja K4, te pogonsku grupu B5 iznosi:

$$\tau_{\rm D(-1)dop} = 22,1 \text{ N/mm}^2$$
 (9.3.2.4)

Kako je najveće naprezanje koje se javlja u zavaru manje od dopuštenog naprezanja, proračun zadovoljava, tj.:

$$\tau = 6,5 \text{ N/mm}^2 \le \tau_{D(-1)dop} = 22,1 \text{ N/mm}^2$$
 (9.3.2.5)

9.3.3. Proračun zavara osovine okretišta

Zavar osovine okretišta povezuje osovinu okretišta s nosačem dohvatnika. Zavar je opterećen uzdužnom silom koja je posljedica težine tereta, težine protuutega i vlastite težine dohvatnika, te momentom torzije jer zavar mora prenijeti rotacijsko gibanje s portala na nosač dohvatnika. Zavar je prikazan na slici 56. u nastavku.

Slika 56. Skica zavara osovine okretišta

I u ovom slučaju provest će se donekle pojednostavljen proračun, na strani sigurnosti. Proračun će biti napravljen kao da postoji samo donji kutni zavar koji nosi sve opterećenje.

Opterećenje uzdužnom silom

Površina poprečnog presjeka zavara iznosi:

$$A_{\rm ZAV} = \frac{D^2 \cdot \pi}{4} - \frac{d^2 \cdot \pi}{4} = \frac{579^2 \cdot \pi}{4} - \frac{559^2 \cdot \pi}{4} = 17876 \text{ mm}^2$$
(9.3.3.1)

Uzdužna sila donji kutni zavar opterećuje na tlak. Prema tome, tlačno naprezanje iznosi:

$$\sigma_{\rm t} = \frac{F}{A_{\rm ZAV}} = \frac{1075107}{17876} = 60.1 \,\frac{\rm N}{\rm mm^2} \tag{9.3.3.2}$$

Opterećenje momentom uvijanja

Polarni moment tromosti zavara iznosi:

$$I_{\rm ZAV} = \frac{D^4 \cdot \pi}{32} - \frac{d^4 \cdot \pi}{32} = \frac{579^4 \cdot \pi}{32} - \frac{559^4 \cdot \pi}{32} = 1447307459 \text{ mm}^4$$
(9.3.3.3)

Najveća udaljenost presjeka zavara od promatrane osi:

$$\rho = \frac{D}{2} = \frac{579}{2} = 289,5 \text{ mm}$$
 (9.3.3.4)

Torzijsko naprezanje tada je jednako:

$$\tau = \frac{T}{I_{ZAV}} \cdot \rho = \frac{143187264}{1447307459} \cdot 289, 5 = 28, 6 \frac{N}{mm^2}$$
(9.3.3.5)

Ekvivalentno naprezanje dobiva se prema sljedećem izrazu:

$$\sigma_{\rm ekv} = \sqrt{\sigma_{\rm t}^2 + 3 \cdot \tau^2} = \sqrt{60, 1^2 + 3 \cdot 28, 6^2} = 77,9 \,\frac{\rm N}{\rm mm^2} \tag{9.3.3.6}$$

Zavar je opterećen dinamički. Za odnos graničnih naprezanja može se uzeti da je $\kappa = 0$. Stoga je riječ o čistom istosmjernom opterećenju. Dopušteno vlačno naprezanje zavara za takav slučaj opterećenja prema [16] za slučaj zareznog djelovanja K4, te pogonsku grupu B5 iznosi:

$$\sigma_{\rm D(0)dop} = 90 \text{ N/mm}^2$$
 (9.3.3.7)

Kako je najveće naprezanje koje se javlja u zavaru manje od dopuštenog naprezanja, proračun zadovoljava, tj.:

$$\sigma_{\rm ekv} = 77.9 \,\,{
m N/mm^2} \le \sigma_{\rm Dv(0)dop} = 90 \,\,{
m N/mm^2}$$
(9.3.3.8)

10. DIMENZIONIRANJE PORTALA

10.1. Opterećenje oslonaca

Izračun opterećenja oslonaca provodi se prema Andreeovoj metodi. Prema [8] opterećenje u svakom od oslonaca se u ovisnosti o kutu zakreta granika računa pomoću izraza:

$$F_{i}(\psi) = F_{a} \cdot \frac{A_{i}(\psi)}{a^{2}} + \frac{m_{por} \cdot g}{4}$$
(10.1.1)

Gdje m_{por} predstavlja masu portala koja u ovom slučaju iznosi 16710 kg (očitano iz CAD modela). Ovisnost tako izračunatog opterećenja o kutu zakreta dohvatnika prikazana je dijagramom na slici 57.

Iz dijagrama se može očitati najveće i najmanje opterećenje oslonca:

$$F_{\text{max}} = 618839 \text{ N}$$

 $F_{\text{min}} = 272753 \text{ N}$ (10.1.2)

10.2. Dimenzioniranje mehanizma za vožnju

Portal dohvatnika prikazan je na slici 58.

Slika 58. Skica portala

Proračunsko opterećenje kotača prema [8] iznosi:

$$F_{\rm kot} = \frac{F_{\rm min} + 2 \cdot F_{\rm max}}{3} = \frac{272753 + 2 \cdot 618839}{3} = 503477 \text{ N}$$
(10.2.1)

Izabrana je tračnica prema standardu DIN 1017 širine 100 mm (materijala St 70).

Odabrani su kotači *DWS 630 A 110/170 F NA*, proizvođača *Demag*. Najveće dopušteno opterećenje kotača prema katalogu je veće od proračunskog pa proračun zadovoljava, tj.:

$$F_{\rm dop} = 588600 \text{ N} \ge F_{\rm kot} = 503477 \text{ N}$$
 (10.2.2)

Sila otpora vožnje jednaka je:

$$F_{v} = (m_{ter} + m_{doh} + m_{stu} + m_{protuut} + m_{nos} + m_{ute} + m_{por}) \cdot g \cdot f =$$

= (10000 + 9580 + 7790 + 14750 + 7725 + 59748 + 16710) \cdot 9,81 \cdot 0,01 = (10.2.3)
= 12390 N

Pri čemu f = 0,01 predstavlja specifični otpor vožnje.

Moment na kotaču potreban za savladavanje otpora vožnje jednak je:

$$M_{\rm k} = F_{\rm v} \cdot \frac{D_{\rm k}}{2} = 12390 \cdot \frac{0.63}{2} = 3903 \text{ Nm}$$
 (10.2.4)

Stupanj korisnog djelovanja se pretpostavlja:

$$\eta = 0.97$$
 (10.2.5)

Nominalna brzina vrtnje izračunava se iz projektnih parametara:

$$n_{\rm mot} = \frac{v_{\rm gr}}{D_{\rm k} \cdot \pi} = \frac{13}{0,63 \cdot \pi} = 6,57 \,\,{\rm min}^{-1}$$
(10.2.6)

Nominalna snaga motora za ustaljenu vožnju iznosi

$$P_{\rm mot} = \frac{M_{\rm k} \cdot 2 \cdot \pi \cdot n_{\rm mot}}{\eta} = \frac{3903 \cdot 2 \cdot \pi \cdot 6,57}{0,97 \cdot 60} = 2768 \text{ W}$$
(10.2.7)

Sila na kotaču potrebna za pokretanje granika s ubrzanjem:

$$a = 0.3 \frac{\mathrm{m}}{\mathrm{s}^2}$$
 (10.2.8)

iznosi:

$$F_{\rm p} = F_{\rm v} + 1, 2 \cdot \left(m_{\rm ter} + m_{\rm doh} + m_{\rm stu} + m_{\rm protuut} + m_{\rm nos} + m_{\rm ute} + m_{\rm por} \right) \cdot a =$$

=12390 + 1, 2 \cdot (10000 + 9580 + 7790 + 14750 + 7725 + 59748 + 16710) \cdot 0, 3 = (10.2.9)
=57859 N

Iz čega slijedi potreban moment na kotaču:

$$M_{\rm p} = F_{\rm p} \cdot \frac{D_{\rm k}}{2} = 57859 \cdot \frac{0.63}{2} = 18226 \text{ Nm}$$
 (10.2.10)

Nominalna snaga motora potrebna za pokretanje jednaka je:

$$P_{\rm mot} = \frac{M_{\rm p} \cdot 2 \cdot \pi \cdot n_{\rm mot}}{1, 6 \cdot \eta} = \frac{18226 \cdot 2 \cdot \pi \cdot 6, 57}{60 \cdot 1, 6 \cdot 0, 97} = 8080 \text{ W}$$
(10.2.11)

Zbog opasnosti od proklizavanja postavljaju se četiri motora s nepovezanim radom motora. Izabrani su elektromotori s reduktorom oznake AUV 90 TD B14.0/110/1 218 ZBA 112 A 4 B050, proizvođača Demag. Karakteristika prikazanih u sljedećoj tablici 7.

Tablica 7. Karakteristike elektromotora s reduktorom

Nazivna snaga elektromotora	Р	4 kW
Brzina vrtnje na izlazu iz reduktora	n_2	$6,6 \min^{-1}$

Okretni moment na izlazu iz reduktora	T_2	5777 Nm
Prijenosni odnos	$i_{\rm red}$	218
Maksimalna radijalna sila	$F_{\rm max}$	85 kN
Maksimalni moment kočenja	M _K	50 Nm

Ukupna snaga motora iznosi:

$$P_{\rm uk} = P \cdot 2 = 4 \cdot 4 = 16 \text{ kW} \tag{10.2.12}$$

Što je veće od potrebne pa proračun zadovoljava.

Potrebno je svaki kotač na koji je spojen motor provjeriti na proklizavanje. Kako je već prije izračunato, najmanja sila koja se može javiti na kotaču iznosi:

$$F_{\min} = 272753 \text{ N}$$
 (10.2.13)

Najmanja dostupna adhezijska sila na kotaču iznosi:

$$F_{\text{adh min}} = f_{\text{adh}} \cdot F_{\text{min}} = 0,15 \cdot 272753 = 40913 \text{ N}$$
 (10.2.14)

Gdje je $f_{adh} = 0,15$ - faktor adhezije.

Odabrani motor ostvaruje pogonski moment na kotaču:

$$M_{\rm mot} = 5777 \ \rm Nm$$
 (10.2.15)

Iz čega slijedi sila na kotaču:

$$F_{\rm kot} = \frac{2 \cdot M_{\rm mot}}{D_{\rm kot}} = \frac{2 \cdot 5777}{0.63} = 18340 \text{ N}$$
(10.2.16)

Što je manje od minimalne adhezijske sile na kotaču, odnosno može se zaključiti da neće doći do proklizavanja, tj. da proračun zadovoljava.

$$F_{\text{min adh}} = 40913 \text{ N} \ge F_{\text{kot}} = 18340 \text{ N}$$
 (10.2.17)

10.3. Dimenzioniranje gornjeg dijela noge portala

Gornji dio portala opterećen je silom F kao što je prikazano na slijedećoj slici 59.

Slika 59. Skica opterećenja gornjeg dijela noge portala

Gdje je sila *F* jednaka:

$$F = 618839 \text{ N}$$
 (10.3.1)

Poprečni presjek dimenzija je 400 mm x 400 mm x 15 mm te su njegove karakteristike:

$$A=23100 \text{ mm}$$

 $I_y = 163181732700 \text{ mm}^4$ (10.3.2)
 $W_y = 57256748 \text{ mm}^3$

Proračun profila gornjeg dijela noge portala

Maksimalni moment koji opterećuje poprečni presjek izračunava se:

$$M = F \cdot 2650 = 618839 \cdot 2650 = 1639923350 \text{ Nmm}$$
(10.3.3)

Pa slijedi:

$$\sigma_{\rm y} = \frac{M}{W_{\rm y}} = \frac{1639923350}{57256748} = 28,6 \,\frac{\rm N}{\rm mm^2} \tag{10.3.4}$$

Tlačno naprezanje izračunava se:

$$\sigma_{\rm t} = \frac{F}{A} = \frac{618839}{23100} = 26.8 \,\frac{\rm N}{\rm mm^2} \tag{10.3.5}$$

Pa ukupno naprezanje iznosi:

$$\sigma_{\rm ekv} = \sigma_{\rm y} + \sigma_{\rm t} = 28,6 + 26,8 = 55,4 \,\frac{\rm N}{\rm mm^2}$$
 (10.3.6)

Kako je maksimalno naprezanje manje od dopuštenog naprezanja, koje prema [13] iznosi:

$$\sigma_{\rm dop} = 90 \, \frac{\rm N}{\rm mm^2} \tag{10.3.7}$$

Proračun zadovoljava, tj.:

$$\sigma_{\rm ekv} = 55.4 \, \frac{\rm N}{\rm mm^2} \le \sigma_{\rm dop} = 90 \, \frac{\rm N}{\rm mm^2}$$
 (10.3.8)

Proračun zavara gornjeg dijela portala

Poprečni presjek zavara dimenzija je 420 mm x 420 mm x 10 mm te su njegove karakteristike:

$$A=16400 \text{ mm}$$

 $I_y=115628746700 \text{ mm}^4$ (10.3.9)
 $W_y=40429632 \text{ mm}^3$

Maksimalni moment koji opterećuje poprečni presjek zavara izračunava se:

$$M = F \cdot 2650 = 618839 \cdot 2650 = 1639923350 \text{ Nmm}$$
(10.3.10)

Pa slijedi:

$$\sigma_{y} = \frac{M}{W_{y}} = \frac{1639923350}{40429632} = 40,6 \frac{N}{mm^{2}}$$
(10.3.11)

Tlačno naprezanje izračunava se:

$$\sigma_{t} = \frac{F}{A} = \frac{618839}{16400} = 37,7 \frac{N}{mm^{2}}$$
(10.3.12)

Pa ukupno naprezanje iznosi:

$$\sigma_{\rm ekv} = \sigma_{\rm y} + \sigma_{\rm t} = 40, 6 + 37, 7 = 78, 3 \,\frac{\rm N}{\rm mm^2}$$
 (10.3.13)

Kako je maksimalno naprezanje manje od dopuštenog naprezanja, koje prema [16] iznosi:

$$\sigma_{\rm dop} = 108 \, \frac{\rm N}{\rm mm^2} \tag{10.3.14}$$

Proračun zadovoljava, tj.:

$$\sigma_{\rm ekv} = 78,3 \, \frac{\rm N}{\rm mm^2} \le \sigma_{\rm dop} = 108 \, \frac{\rm N}{\rm mm^2}$$
 (10.3.15)

Provjera stabilnosti gornjeg dijela portala

Kontrola stabilnosti podrazumijeva provjeru izvijanja stupa usred djelovanja tlačnog opterećenja. Duljina gornjeg dijela portala iznosi:

$$l = 8400 \text{ mm}$$
 (10.3.16)

Prema prvoj formi izvijanja slobodna duljina izvijanja iznosi:

$$l_0 = 2 \cdot l = 2 \cdot 8400 = 16800 \text{ mm}$$
 (10.3.17)

Moment tromosti iznosi:

$$I_{\min} = \frac{400^4}{12} - \frac{370^4}{12} = 571532500 \text{ mm}^4$$
(10.3.18)

Na temelju prethodno poznatih veličina dobiva se polumjer tromosti:

$$i = \sqrt{\frac{I_{\min}}{A}} = \sqrt{\frac{571532500}{23100}} = 157,3 \text{ mm}$$
 (10.3.19)

Konačno dobivamo vitkost koja iznosi:

$$\lambda = \frac{l_0}{i} = \frac{16800}{157,4} = 106,7 \tag{10.3.20}$$

Pošto je $\lambda = 106,7 > \lambda_{gr} = 105$ može se primijeniti Eulerova jednadžba za elastično izvijanje, pema toj jednadžbi kritična sila iznosi:

$$F_{\rm kr} = \pi^2 \cdot \frac{E \cdot I_{\rm min}}{l_0^2} = \pi^2 \cdot \frac{210000 \cdot 571532500}{16800^2} = 4197024 \text{ N}$$
(10.3.21)

Uz potrebnu sigurnost S = 5, najveća dozvoljena sila iznosi:

$$F_{\rm dop} = \frac{F_{\rm kr}}{S} = \frac{4197024}{5} = 839405 \text{ N}$$
 (10.3.22)

Pošto je dozvoljena sila veća od najveće tlačne sile koja se može javiti, neće doći do izvijanja, tj.:

$$F = 618839 \text{ N} \le F_{dop} = 839405 \text{ N}$$
(10.3.23)

Treba napomenuti da je proveden pojednostavljeni proračun, te kako su u stvarnosti naprezanja manja.

10.4. Dimenzioniranje donjeg dijela noge portala

Donji dio portala opterećen je silom F kao što je prikazano na slijedećoj slici 60.

Gdje je sila *F* jednaka:

$$F = 618839 \text{ N}$$
(10.4.1)

Slika 60. Skica opterećenja donjeg dijela noge portala

Poprečni presjek dimenzija je 400 mm x 400 mm x 16 mm te su njegove karakteristike:

$$A = 24576 \text{ mm}$$

 $I_{x,y} = 154205028400 \text{ mm}^4$ (10.4.2)
 $W_{x,y} = 57112973 \text{ mm}^3$

Proračun profila donjeg dijela noge portala

Maksimalni moment koji opterećuje poprečni presjek izračunava se:

$$M = F \cdot 2500 = 618839 \cdot 2500 = 1547097500 \text{ Nmm}$$
(10.4.3)

Pa slijedi:

$$\sigma_{y} = \frac{M}{W_{y}} = \frac{1547097500}{57112973} = 27.1 \frac{N}{mm^{2}}$$
(10.4.4)

$$\sigma_{\rm x} = \frac{M}{W_{\rm x}} + \frac{F_{\rm kot} \cdot 5500}{W_{\rm x}} = \frac{1547097500}{57112973} + \frac{18340 \cdot 5500}{57112973} = 28,9 \frac{\rm N}{\rm mm^2}$$
(10.4.5)

Tlačno naprezanje izračunava se:

$$\sigma_{t} = \frac{F}{A} = \frac{618839}{24576} = 25, 2 \frac{N}{mm^{2}}$$
(10.4.6)

Pa ukupno naprezanje iznosi:

$$\sigma_{\rm ekv} = \sigma_{\rm y} + \sigma_{\rm x} + \sigma_{\rm t} = 27, 1 + 28, 9 + 25, 2 = 81, 2 \frac{\rm N}{\rm mm^2}$$
 (10.4.7)

Kako je maksimalno naprezanje manje od dopuštenog naprezanja, koje prema [13] iznosi:

$$\sigma_{\rm dop} = 90 \, \frac{\rm N}{\rm mm^2} \tag{10.4.8}$$

Proračun zadovoljava, tj.:

$$\sigma_{\rm ekv} = 81, 2 \, \frac{\rm N}{\rm mm^2} \le \sigma_{\rm dop} = 90 \, \frac{\rm N}{\rm mm^2}$$
 (10.4.9)

Proračun zavara donjeg dijela portala

Poprečni presjek zavara dimenzija je 420 mm x 420 mm x 15 mm te su njegove karakteristike:

$$A = 24300 \text{ mm}$$

 $I_{x,y} = 152540212500 \text{ mm}^4$ (10.4.10)
 $W_{x,y} = 56236023 \text{ mm}^3$

Maksimalni moment koji opterećuje poprečni presjek zavara izračunava se:

$$M = F \cdot 2500 = 618839 \cdot 2500 = 1547097500 \text{ Nmm}$$
(10.4.11)

Pa slijedi:

$$\sigma_{\rm x,y} = \frac{M}{W_{\rm x,y}} = \frac{1547097500}{56236023} = 27,5 \,\frac{\rm N}{\rm mm^2}$$
(10.4.12)

Tlačno naprezanje izračunava se:

$$\sigma_{t} = \frac{F}{A} = \frac{618839}{24300} = 25,5 \frac{N}{mm^{2}}$$
(10.4.13)

Pa ukupno naprezanje iznosi:

$$\sigma_{\rm ekv} = \sigma_{\rm x} + \sigma_{\rm y} + \sigma_{\rm t} = 27,5 + 27,5 + 25,5 = 80,5 \frac{\rm N}{\rm mm^2}$$
 (10.4.14)

Kako je maksimalno naprezanje manje od dopuštenog naprezanja, koje prema [16] iznosi:

$$\sigma_{\rm dop} = 108 \, \frac{\rm N}{\rm mm^2}$$
 (10.4.15)

Proračun zadovoljava, tj.:

$$\sigma_{\rm ekv} = 80.5 \ \frac{\rm N}{\rm mm^2} \le \sigma_{\rm dop} = 108 \ \frac{\rm N}{\rm mm^2}$$
 (10.4.16)

Provjera stabilnosti donjeg dijela portala

Kontrola stabilnosti podrazumijeva provjeru izvijanja stupa usred djelovanja tlačnog opterećenja. Duljina donjeg dijela portala iznosi:

$$l = 5500 \text{ mm}$$
 (10.4.17)

Prema prvoj formi izvijanja slobodna duljina izvijanja iznosi:

$$l_0 = 2 \cdot l = 2 \cdot 5500 = 11000 \text{ mm}$$
 (10.4.18)

Moment tromosti iznosi:

$$I_{\min} = \frac{400^4}{12} - \frac{368^4}{12} = 608028352 \text{ mm}^4$$
(10.4.19)

Na temelju prethodno poznatih veličina dobiva se polumjer tromosti:

$$i = \sqrt{\frac{I_{\min}}{A}} = \sqrt{\frac{608028352}{24576}} = 157,3 \text{ mm}$$
 (10.4.20)

Konačno dobivamo vitkost koja iznosi:

$$\lambda = \frac{l_0}{i} = \frac{11000}{157,3} = 69,9 \tag{10.4.21}$$

Pošto je $\lambda = 69,9 < \lambda_{gr} = 105$ može se primijeniti Tetmaerova jednadžba za neelastično izvijanje, pema toj jednadžbi kritična sila iznosi:

$$F_{\rm kr} = (310 - 1, 14 \cdot \lambda) \cdot A = (310 - 1, 14 \cdot 69, 9) \cdot 24576 = 5660197 \text{ N}$$
(10.4.22)

Uz potrebnu sigurnost S = 5, najveća dozvoljena sila iznosi:

$$F_{\rm dop} = \frac{F_{\rm kr}}{S} = \frac{5660197}{5} = 1132039 \text{ N}$$
 (10.4.23)

Pošto je dozvoljena sila veća od najveće tlačne sile koja se može javiti, neće doći do izvijanja, tj.:

$$F = 618839 \text{ N} \le F_{dop} = 1132039 \text{ N}$$
(10.4.24)

Provjera progiba donjeg dijela portala

Dopušteni progib izračunava se:

$$w_{\rm dop} = \frac{l}{600} = \frac{5500}{600} = 9,2 \text{ mm}$$
 (10.4.25)

Progib se dobiva iz slijedeće jednadžbe:

$$w = \frac{F_{\text{kot}} \cdot l^3}{3 \cdot E \cdot I} = \frac{18340 \cdot 5500^3}{3 \cdot 210000 \cdot 605028352} = 8 \text{ mm}$$
(10.4.26)

Kako je maksimalni progib manji od dopuštenog proračun zadovoljava.

Treba napomenuti kako je proveden pojednostavljeni proračun, te kako su u stvarnosti naprezanja manja.

10.5. Provjera ukrute portala

Proračun profila ukrute portala

Ukruta portala opterećena je silom F_{kot} .

Poprečni presjek dimenzija je 300 mm x 300 mm x 15 mm te su njegove karakteristike:

$$A=17100 \text{ mm}$$

 $I_y=232132500 \text{ mm}^4$ (10.5.1)
 $W_y=1547550 \text{ mm}^3$

Maksimalni moment koji opterećuje poprečni presjek izračunava se:

$$M = F_{\rm kot} \cdot 5500 = 18348 \cdot 5500 = 100914000 \text{ Nmm}$$
(10.5.2)

Pa slijedi:

$$\sigma_{\rm y} = \frac{M}{W_{\rm y}} = \frac{100914000}{1547550} = 65, 2 \,\frac{\rm N}{\rm mm^2} \tag{10.5.3}$$

Vlačno naprezanje izračunava se:

$$\sigma_{\rm v} = \frac{F_{\rm kot}}{A} = \frac{18348}{17100} = 1.1 \,\frac{\rm N}{\rm mm^2} \tag{10.5.4}$$

Pa ukupno naprezanje iznosi:

$$\sigma_{\rm ekv} = \sigma_{\rm y} + \sigma_{\rm t} = 65, 2 + 1, 1 = 66, 3 \, \frac{\rm N}{\rm mm^2}$$
 (10.5.5)

Kako je maksimalno naprezanje manje od dopuštenog naprezanja, koje prema [13] iznosi:

$$\sigma_{\rm dop} = 90 \, \frac{\rm N}{\rm mm^2} \tag{10.5.6}$$

Proračun zadovoljava, tj.:

$$\sigma_{\rm ekv} = 66.3 \, \frac{\rm N}{\rm mm^2} \le \sigma_{\rm dop} = 90 \, \frac{\rm N}{\rm mm^2}$$
 (10.5.7)

Proračun zavara ukrute portala

Poprečni presjek zavara dimenzija je 320 mm x 320 mm x 10 mm te su njegove karakteristike:

$$A=12400 \text{ mm}$$

 $I_y = 198813333 \text{ mm}^4$ (10.5.8)
 $W_y = 1242583 \text{ mm}^3$

Maksimalni moment koji opterećuje poprečni presjek zavara izračunava se:

$$M = F_{\rm kot} \cdot 5500 = 18348 \cdot 5500 = 100914000 \text{ Nmm}$$
(10.5.9)

Pa slijedi:

$$\sigma_{\rm y} = \frac{M}{W_{\rm y}} = \frac{100914000}{1242583} = 81,2 \,\frac{\rm N}{\rm mm^2} \tag{10.5.10}$$

Vlačno naprezanje izračunava se:

$$\sigma_{\rm v} = \frac{F_{\rm kot}}{A} = \frac{18348}{12400} = 1.5 \,\frac{\rm N}{\rm mm^2} \tag{10.5.11}$$

Pa ukupno naprezanje iznosi:

$$\sigma_{\rm ekv} = \sigma_{\rm y} + \sigma_{\rm t} = 81, 2 + 1, 5 = 82, 7 \, \frac{\rm N}{\rm mm^2}$$
 (10.5.12)

Kako je maksimalno naprezanje manje od dopuštenog naprezanja, koje prema [16] iznosi:

$$\sigma_{\rm dop} = 90 \, \frac{\rm N}{\rm mm^2} \tag{10.5.13}$$

Proračun zadovoljava, tj.:

$$\sigma_{\rm ekv} = 82,7 \ \frac{\rm N}{\rm mm^2} \le \sigma_{\rm dop} = 90 \ \frac{\rm N}{\rm mm^2}$$
 (10.5.14)

Treba napomenuti kako je proveden pojednostavljeni proračun, te kako su u stvarnosti naprezanja manja.

11. SIGURNOST OD PREVRTANJA

Najnepovoljniji slučaj opterećenja je opterećenje najvećim dozvoljenim teretom na najvećem dohvatu, prikazano na slici 61.

Za granik postavljen na najvećem dohvatu bez tereta, moment i aksijalna sila na okretištu dohvatnika iznose:

$$F_{a} = (m_{doh} + m_{stu} + m_{protuut} + m_{nos} + m_{ute}) \cdot g =$$

= (9580 + 7790 + 14750 + 7725 + 59748) \cdot 9,81 = (11.1)
= 977007 N

$$M = m_{doh} \cdot l_{doh \max} \cdot g + m_{stu} \cdot l_{stu \max} \cdot g + m_{protuut} \cdot l_{protuut \max} \cdot g + m_{nos} \cdot l_{nos \max} \cdot g - M_{ute} =$$

$$= 9580 \cdot 11407 \cdot 9,81 + 7790 \cdot 858 \cdot 9,81 + 14750 \cdot (-144) \cdot 9,81 + (11.2) + 7725 \cdot (-1715) \cdot 9,81 - 1870663995 =$$

$$= -883871141 \text{ Nmm}$$

Slika 61. Skica modela prevrtanja

Što se može zamijeniti aksijalnom silom s ekscentricitetom

$$e_{\rm k} = \frac{M}{F_{\rm a}} = \frac{-883871141}{977007} = -904 \text{ mm}$$
(11.3)

Razmak kotača iznosi:

$$a = 4500 \text{ mm}$$
 (11.4)

Potrebna sigurnost od prevrtanja iznosi S = 1,5, pa se računska statička stabilnost granika računa pomoću izraza:

$$\frac{M_{\text{sta}}}{M_{\text{pre}}} = \frac{F_{\text{a}} \cdot \left(\frac{a}{2} - e_{\text{k}}\right) + m_{\text{por}} \cdot g \cdot \frac{a}{2}}{S \cdot m_{\text{ter}} \cdot g \cdot \left(R_{\text{max}} - \frac{a}{2}\right)} =$$

$$= \frac{977007 \cdot \left(\frac{4,5}{2} + 0,904\right) + 16710 \cdot 9,81 \cdot \frac{4,5}{2}}{1,5 \cdot 10000 \cdot 9,81 \cdot \left(22 - \frac{4,5}{2}\right)} = 1,2 \ge 1$$
(11.5)

Iz čega se zaključuje da je sigurnost od prevrtanja granika veća od potrebne i da nije potrebno dodavati balast za povećanje stabilnosti.

12. ZAKLJUČAK

Prema prethodno obavljenom proračunu projektiran je i konstrukcijski razrađen okretni jednokraki dohvatnik. Konstrukcija dohvatnika, osim što treba biti u skladu s proračunom, mora biti i u skladu s važećim zakonima i pravilnicima u Republici Hrvatskoj.

Granik se sastoji od grane dohvatnika, stupa, platforme, okretišta, portala, protuutega i utega. Grana dohvatnika, stup, platforma te portal konstruirani su od limova u kutijastoj izvedbi. Kutijasta konstrukcija dohvatnika predstavlja alternativno rješenje rešetkastoj konstrukciji, koja je mnogo kompliciranija i treba duže vremena za izradu iste. Za okretište dohvatnika izabrana su dva radijalna te jedan aksijalni ležaj koji prenose sva opterećenja na portal, naspram momentnog ležaja koji predstavlja konstrukcijski jednostavnije ali novčano skuplje rješenje. Portal je konstruiran s četiri noge zbog povećanja sigurnosti od prevrtanja dohvatnika i izbjegavanja dodavanja dodatnog balasta u sami portal. Protuuteg je izveden od čeličnih limova, dok je uteg jednim dijelom također izveden od čeličnih limova dok je drugi dio utega dobiven ispunjavanjem platforme betonom.

LITERATURA

- [1] <u>http://www.konecranes.com/equipment/shipyard-cranes</u>
- [2] <u>https://www.fsb.unizg.hr/atlantis/upload/newsboard/24_04_2013_18782_TRANSPO</u> <u>RTNI_SUSTAVI_1.pdf</u>
- [3] <u>http://www.stonimage.com/shipbuilding-jib-crane-1-p.html</u>
- [4] <u>http://www.nauticexpo.com/prod/liebherr-international-deutschland/product-30468-</u> 265780.html
- [5] <u>http://www.kranunion.de/en/ardelt/products/jib-cranes/kranich/</u>
- [6] <u>http://www.shi.co.jp/shi-mh/english/technical/shipbuilding.html</u>
- [7] <u>http://www.ganztrading.hu/presentations.php</u>
- [8] Ščap, D.: Transportni uređaji (Podloge uz predavanja), Zagreb 2004.
- [9] Ščap, D., Herold, Z.: Transportni uređaji (Vrste opterećenja)
- [10] Primjeri podjele granika u podizne i pogonske grupe
- [11] Rules for the design of hoisting appliance classification. FEM 1.001 1998.
- [12] Ščap, D., Herold, Z.: Transportni uređaji (Pogonska čvrstoća)
- [13] Ščap, D.: Prenosila i dizala (Podloga za konstrukciju i proračun), Zagreb, 1990.
- [14] <u>http://www.vallourec.com/NUCLEARPOWER/Lists/Brochures/Attachments/4/V_B0</u> <u>1B0006B-GB.pdf</u>
- [15] Kraut, B.: Strojarski priručnik, Sajema, Zagreb, 2009.
- [16] Decker, K., H.: Elementi strojeva, Golden marketing tehnička knjiga, Zagreb, 2006.
- [17] <u>http://www.amroll.com/friction-frequency-factors.html</u>
- [18] Opalić, M., Rakamarić, P.: Reduktor (Proračun i konstrukcija jednostupanjskog zupčanog prijenosnika), Zagreb, 2001.

PRILOZI

- I Pogon za dizanje tereta
- II Pogon za promjenu dohvata
- III Pogon za okretanje granika
- IV Pogon za vožnju
- V Tehnička dokumentacija
- VI CD-R disc

Prilog I.

Pogon za dizanje tereta

Catalog designation

K167R107DRN225S4

Product data

Rated motor speed	[1/min] : 1482
Output speed	[1/min] : 13
Overall gear ratio	: 118,00
Output torque	[Nm] : 26400
Service factor SEW-FB	: 1,20
Mounting position	: M1A
Base / top coat	: 3020 Traffic Red (52630200)
Position of connector/terminal box	[°] : 0
Cable entry/connector position	: X
Output shaft	[mm] : 160x250
Permitted output overhung load with	[N] : 150000
n=1400	
Lubricant quantity 1st gear unit	[Liter] : 33
Lubricant quantity 2nd gear unit	[Liter] : 6,3
Motor power	[kW] : 37
Duration factor	: S1-100%
Efficiency class	: IE3
Efficiency (50/75/100% Pn)	[%] : 94,34 / 94,39 / 93,9
CE mark	: Yes
Motor voltage	[V] : 400/690
Wiring diagram	: R13
Frequency	[Hz] : 50
Rated current	[A] : 64 / 37
Cos Phi	: 0,88
Thermal class	: 130(B)
Motor protection type	: IP54
Design requirement	: IEC
Motor mass moment of inertia	[10 ^{-₄} kgm²] : 4328,90
Net weight	[Kg] : 1570

Additional feature Output shaft: 160x250 mm Color: 3020 Traffic Red (52630200)

Prilog II.

Pogon za promjenu dohvata

Catalog designation

F107DRN132S4

Product data

Rated motor speed Output speed Overall gear ratio Output torque Service factor SEW-FB Mounting position Base / top coat Position of connector/terminal box Cable entry/connector position Output shaft Permitted output overhung load with n=1400 Lubricant quantity 1st gear unit Motor power Duration factor Efficiency class Efficiency (50/75/100% Pn) CE mark Motor voltage Wiring diagram Frequency Rated current Cos Phi Thermal class Motor protection type Design requirement Motor mass moment of inertia Net weight

[1/min] : 1461 [1/min] : 10 : 146,49 [Nm] : 5260 : 1,45 : M1 : 3020 Traffic Red (52630200) [°] : 0 : X [mm] : 90x170 [N]: 55700 [Liter] : 24,5 [kW] : 5,5 : S1-100% : IE3 [%] : 90,59 / 90,64 / 89,6 : Yes [V]: 230/400 : R13 [Hz] : 50 [A] : 18,2 / 10,5 : 0,84 : 130(B) : IP54 : IEC [10⁻⁴ kgm²] : 240,75 [Kg] : 325

Additional feature Output shaft: 90x170 mm Color: 3020 Traffic Red (52630200)

Prilog III.

Pogon za okretanje granika

Product information

Catalog designation

K167R107DRN180L4

Product data

Rated motor speed Output speed Overall gear ratio Output torque Service factor SEW-FB Mounting position Base / top coat Position of connector/terminal box Cable entry/connector position Output shaft Permitted output overhung load with n=1400 Lubricant quantity 1st gear unit Lubricant quantity 2nd gear unit Motor power Duration factor Efficiency class Efficiency (50/75/100% Pn) CE mark Motor voltage Wiring diagram Frequency Rated current Cos Phi Thermal class Motor protection type Design requirement Motor mass moment of inertia Net weight

[1/min] : 1477 [1/min] : 7,2 206,00 [Nm]: 27200 : 1,15 : M1A : 3020 Traffic Red (52630200) [°] : 0 : X [mm]: 160x250 [N] : 150000 [Liter] : 33 [Liter] : 6,3 [kW] : 22 S1-100% : IE3 [%]: 93,43 / 93,57 / 93 : Yes [V] : 400/690 : R13 [Hz] : 50 [A]: 38,5 / 22,5 : 0,87 130(B) IP54 : IEC [10⁻⁴ kgm²] : 1951,03 [Kg] : 1420

1

Additional feature Output shaft: 160x250 mm Color: 3020 Traffic Red (52630200)

Prilog IV.

Pogon za vožnju
Geared motor AUV 90 TD-B14.0-110-1-218 ZBA 112 A 4 B050

Basic product

Gearbox type Housing type	A - Offset gearbox U - Universal design
Output shaft type	V - Solid shaft with key, cover side
Gearbox size	90
Number of stages	T - three-stage
Input type	D - Direct drive input
Model code	B14.0
Output shaft code	110
Terminal box position	1 - right
Transmission ratio	218
Motor type	Z cylindrical-rotor motor
Motor design	B - with brake
Motor application	A - standard motor
Motor frame size	112
Rating class	A
Number of poles	4
Brake	B050

Basic price

Options

Included in the basic price	
Control module GE control module	
Motor shaft end Inner cone (with pinion)	
- Equipment	
Finish coat (C2), 2K waterborne paint Colour = azure blue , RAL = 5009	no extra price
Reduced-noise design	no extra price
Gearbox venting valve Gearbox venting valve	no extra price
Preservation Short-term preservation	no extra price
Lubricant Standard oil filling	no extra price
Enclosure IP 54	no extra price
Temperature class Insulation to temperature class F	no extra price

Total price

On request

On request

Configured by:

\$InternetEN,19/03/2018,17:07.41,0040004,01

Technical data

Stamped data Motor

Number of poles	4
Duty factor	60 %
Motor power	4 kW
Operating voltage (D)	220 V / 230 V
Operating voltage (Y)	380 V / 400 V
Line frequency	50 Hz
Current (D/Y)	14.9 A / 8.6 A
Rated speed	1440 min⁻¹

Max. ambient temperature Geared motor	-10 °C / 50 °C
Rated torque	26.5 Nm
Brake torque	50 Nm
Brake voltage	400 V (AC) / 180 V (DC)
Duty factor fB	1.99
Output torque	5777 Nm
Output speed	6.6 min ⁻¹
Input speed	1450 (4-pole with 50 Hz) min ⁻¹
Radial force	85000 N

Wheel set

DWS-630-A-110/170-F-NA R60 R63 R82 R89

Basic product

Wheel block	DWS 630	
Travel wheel type	A - double-sided flange	
Travel wheel tread	110 mm	
Wheel width	170 mm	
Elange type	F - Flanschlager für Ecklager-	
Flange type	oder Kastenträgereinbau	
Antriebsausführung Getriebeart/Wellenausführung	NA - ohne Antrieb -	
Basic price		On request
Options		
 Included in the basic price Flange bearing sub-assembly Anti-friction bearing sub-assembly Travel wheel sub-assembly Wheel set shaft sub-assembly 	,	
Equipment		0
Einish coat (C2) 2K waterborne p	aint (P82) Colour name = azure blue PAL =	On request
5009	ant (Roz) Colour name - azure blue , RAL -	On request
Preservation Long-term preservat	ive applied to bare parts (R89)	On request
Wheel set for corner-bearing insta	Illation, 5 fittings (R60)	no extra price
Standard lubricant for -20 °C up to	0 °C	no extra price
Sum Options		On request
Total price		On request
Configured by:	\$InternetEN,19/03/2018,17:09.51,0040004,01	
Technical data		
Travel wheel diameter	630	
Group of mechanisms	1Bm / M3	
Travel wheel material	Spheroidal-graphite cast iron GJS 700-2 (GGG70)	
Ambient temperature	-20 +70 °C	
max, wheel lead per wheel	60000 kg / under the standard conditions specified in	the technical

F C	Matica M24			8	DIN 555	8	Vijci Kranjec	
52	Vijak M24x75	x34		4	DIN 6914	8.8.	Vijci Kranjec	
51	Vijak M24x10	0x37		4	DIN 6914	8.8.	Vijci Kranjec	
50	Semering 550)x610x25 H	IDS2 R	1			SKF	
49	Poklopac al	avine por	tala	1	2018-0-22	S235JRG2	Ø720x30	25,8 kg
48	Vijak M10x4)		8	DIN 6921	8.8.	Viici Kraniec	
17				1	DIN 3055	0.0.		
4/	Vijak M10v2			30		8.8	Viici Kraniec	
40				52		0.0.		0.71
45	Рокіорас рі	attorme		2	2018-0-21	5235JRG2	650X350X5	8,7 kg
44	Manji poklop	pac stupa		2	2018-0-20	S235JRG2	650x550x5	13,7 kg
43	Veći poklop	ac stupa		2	2018-0-19	S235JRG2	700x300x5	7,1 kg
42	Poklopac ar	ane		2	2018-0-18	S235JRG2	600x400x5	9,2 kg
41	Svorniak			4	2018-0-17	S235JRG2	Ø 22x80	0,2 kg
40	Matica M20			20	DIN 6923	8	Viici Kraniec	
20	Vijak M20v20	10×52		16		88	Vijci Kranjec	
20				10		0.0.		
30		\sim				0.0.		
37	Vijak M42x I d	50		4	DIN 931	8.8.	Vijci Kranjec	
36	Podložna pla	očica 34		6	DIN 1441		Vijci Kranjec	
35	Vijak M30x50)		6	DIN 961	8.8.	Vijci Kranjec	
34	Podložna pla	očica 36 A	4	4	DIN 7989		Viici Kraniec	
33	Matica M30		•	<u> </u>	DIN 555	8	Viici Kraniec	
20	Matica M36			-		0		
	NULLU MISE	×1		0		0		
31	roalozna ple			8	DIN 1440		vijci kranjec	
30	Vijak M36x28	30x97		8	DIN 931	8.8.	Vijci Kranjec	
29	Vijak M22x60	Dx32		4	DIN 6914	8.8.	Vijci Kranjec	
28	Vijak M20x10)0		4	DIN 6921	8.8.	Viici Kraniec	
27	Vijak M10x2	5		8	DIN 6921	8.8	Viici Kraniec	
26	<u>Osigurač</u> skl	, ona užnic	0		2018-0-16	\$235 IPC2	$360 \times 45 \times 10$	1.2 kg
20	Congorae ski			4	2010-0-10	SZSSJKGZ	107/20012/00	1,2 Kg
25	Skiop kolucu I		VOZNJU	4	2010-0-13	0005 1000	12/00021000	725,6 Kg
24	Distanthi prs	ien			2018-0-14	5235JRG2	ψ 520x177	62,8 kg
23	Aksijalni leza	j 29280					SKF	
22	Radijalni ležaj 248	92 CAMA/W2	20	1			SKF	
21	Radijalni ležaj 248	/530 CAMA/V	V20	2			SKF	
20	Ploča veliko	g zupčani	ika	1	2018-0-13	S235JRG2	Ø 2100x25	613,1 kg
19	Poklopac m	aloa zupč	anika	1	2018-0-12	S235JRG2	Ø 200x15	2,8 kg
18	Veliki zupča	nik		1	2018-0-11	C15	Ø2400x225	347.9 kg
17	Mali zupčan	ik		i	2018-0-10	C15	Ø 456x225	29.8 kg
17	Sklan nagar		tania	1	2010 0 10		ψ $+30 \lambda 223$	27,0 kg
10	Skiep poger		lanje	1	2010-0-7	00051500		850 Kg
15	Usigurac ute	ega			2018-0-8	\$235JRG2	ψ 30x2307	12,5 kg
1 1 1				4	2018-0-7	S235JRG2	1/32x2560x1400	60115 kg
14	luieg		•		2010 0 /		0107 0010 000	oon o kg
14 13	Sklop pogor	na za dizal	nje	4	2018-5-0		2137x2013x930	2264,5 kg
14 13 12	Sklop pogor Osovina gra	na za dizal ne dohva	nje Itnika	4	2018-5-0 2018-0-6	S235JRG2	2137x2013x930 Ø280x1290	2264,5 kg 491,6 kg
14 13 12 11	Sklop pogor Osovina gra Ležajna jedi	na za diza ne dohva nica SNL 3	nje Itnika 8060 TS	4 1 2	2018-5-0 2018-0-6	S235JRG2	2137x2013x930 Ø280x1290 SKF	2264,5 kg 491,6 kg
14 13 12 11 10	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi	na za dizal ne dohva nica SNL 3 nica SYJ 7	nje Itnika 8060 TS 0 TF	4 1 2 1	2018-5-0 2018-0-6	S235JRG2	2137x2013x930 Ø280x1290 SKF SKF	2264,5 kg 491,6 kg
14 13 12 11 10 9	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne	na za diza ne dohva nica SNL 3 nica SYJ 7 letve	nje Inika 8060 TS 0 TF	4 1 2 1 4	2018-5-0 2018-0-6 2018-0-5	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101	2264,5 kg 491,6 kg 81,3 kg
14 13 12 11 10 9 8	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona ze	na za diza ne dohva nica SNL 3 nica SYJ 7 letve a promienu c	nje Itnika 060 TS 0 TF dohvata	4 1 2 1 4 2	2018-5-0 2018-0-6 2018-0-5 2018-0-5 2018-4-0	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450	2264,5 kg 491,6 kg 81,3 kg 300 kg
14 13 12 11 10 9 8 7	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona za Sklop pogona za	na za dizal ne dohva nica SNL 3 nica SYJ 7 letve a promjenu o teaa	nje Itnika 060 TS 0 TF Iohvata	4 1 2 1 4 2 4	2018-5-0 2018-0-6 2018-0-5 2018-4-0 2018-0-4	S235JRG2	2137x2013x930 Ø 280x1290 SKF 1500x205x101 709x899x450 2129x1800x596	2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg
14 13 12 11 10 9 8 7 6	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona z Sklop protuu Sklop protuu	na za diza ne dohva nica SNL 3 nica SYJ 7 letve a promjenu c tega	nje Itnika 3060 TS 0 TF dohvata	4 1 2 1 4 2 4 2	2018-5-0 2018-0-6 2018-0-5 2018-4-0 2018-0-4 2018-0-3	S235JRG2	2137x2013x930 Ø 280x1290 SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179	 2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 17522 kg
14 13 12 11 10 9 8 7 6 5	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona za Sklop portuu Sklop portuu Sklop portala	na za diza ne dohva nica SNL 3 nica SYJ 7 letve promjenu c tega konstrukc	nje Itnika 3060 TS 0 TF Johvata	4 1 2 1 4 2 4 2 2	2018-5-0 2018-0-6 2018-0-5 2018-0-5 2018-0-4 2018-0-4 2018-0-3 2018-0-2	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x260	30113 kg 2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 17522 kg 14116 5 kg
14 13 12 11 10 9 8 7 6 5 4	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona z Sklop protu Sklop portal Sklop nosive	na za diza ne dohva nica SNL 3 nica SYJ 7 letve a promjenu o tega konstruko atnika	nje Itnika 3060 TS 0 TF dohvata	4 1 2 1 4 2 4 2 2 1	2018-5-0 2018-0-6 2018-0-5 2018-0-5 2018-0-4 2018-0-4 2018-0-3 2018-0-2 2018-0-1	S235JRG2	2137x2013x930 Ø 280x1290 SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850v750	80110 kg 2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 17522 kg 14116,5 kg
14 13 12 11 10 9 8 7 6 5 4 3	Sklop pogor Osovina gra Ležajna jedi Sklop zubne Sklop pogona z Sklop protuu Sklop portale Sklop nosive Grana dohv	na za dizal ne dohva nica SNL 3 nica SYJ 7 letve a promjenu c tega konstrukc atnika	nje Itnika 3060 TS 0 TF dohvata	4 1 2 1 4 2 4 2 2 1 1	2018-5-0 2018-0-6 2018-0-5 2018-0-5 2018-0-4 2018-0-3 2018-0-2 2018-0-1 2018-3	S235JRG2	2137x2013x930 Ø 280x1290 SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x737	80115 kg 2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 17522 kg 14116,5 kg 7884,8 kg 923 7 kg
14 13 12 11 10 9 8 7 6 5 4 3 2	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona za Sklop portuu Sklop portuu Sklop nosive Grana dohv Sklop skretnih u	na za dizal ne dohva nica SNL 3 nica SYJ 7 letve a promjenu o tega konstruko atnika užnica na struko	nje Itnika 3060 TS 0 TF dohvata cije	4 1 2 1 4 2 4 2 2 1 1 1	2018-5-0 2018-0-6 2018-0-5 2018-4-0 2018-0-4 2018-0-3 2018-0-2 2018-0-1 2018-3-0 2018-3-0	S235JRG2	2137x2013x930 Ø 280x1290 SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x737 Ø 705x737	80113 kg 2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 17522 kg 14116,5 kg 7884,8 kg 923,7 kg
$ \begin{array}{r} 14 \\ 13 \\ 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \end{array} $	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona za Sklop portuu Sklop portuu Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u	na za dizal ne dohva nica SNL 3 nica SYJ 7 letve a promjenu o tega konstruko atnika užnica na stu užnica na g	nje Itnika 3060 TS 0 TF dohvata dohvata zije upu rani	4 1 2 1 4 2 4 2 2 1 1 1 1	2018-5-0 2018-0-6 2018-0-6 2018-0-5 2018-0-5 2018-0-4 2018-0-3 2018-0-3 2018-0-2 2018-0-1 2018-3-0 2018-2-0	S235JRG2	2137×2013×930 Ø 280×1290 SKF SKF 1500×205×101 709×899×450 2129×1800×596 15000×6594×5179 10161×6153×2600 22862×850×750 Ø 705×737 Ø 705×620	30113 kg 2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 17522 kg 14116,5 kg 7884,8 kg 923,7 kg 851,2 kg
$ \begin{array}{r} 14 \\ 13 \\ 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 1 \end{array} $	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona za Sklop portuu Sklop portuu Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u	na za diza ne dohva nica SNL 3 nica SYJ 7 letve a promjenu c tega konstrukc atnika užnica na st užnica na g	nje Itnika 3060 TS 0 TF dohvata dohvata cije upu rani	4 1 2 1 4 2 4 2 2 1 1 1 1 1	2018-5-0 2018-0-6 2018-0-6 2018-0-5 2018-0-5 2018-0-4 2018-0-3 2018-0-3 2018-0-2 2018-0-1 2018-3-0 2018-2-0 2018-2-0	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x737 Ø 705x620 500x750x280	 2264,5 kg 491,6 kg 2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 17522 kg 14116,5 kg 7884,8 kg 923,7 kg 851,2 kg 430,6 kg
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz.	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona z Sklop protu Sklop portale Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop kuke	na za dizaj ne dohva nica SNL 3 nica SYJ 7 letve a promjenu o tega konstruko atnika užnica na stu užnica na gu užnica na gu	nje Itnika 3060 TS 0 TF dohvata cije upu rani	4 1 2 4 2 2 1 1 1 1 1 1 1 5 Kom.	2018-5-0 2018-0-6 2018-0-6 2018-0-5 2018-0-5 2018-0-4 2018-0-3 2018-0-3 2018-0-2 2018-0-1 2018-3-0 2018-2-0 2018-1-0 Crtež broj Norma	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x737 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač	 2264,5 kg 491,6 kg 2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 17522 kg 14116,5 kg 7884,8 kg 923,7 kg 851,2 kg 430,6 kg Masa
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz.	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona z Sklop portuu Sklop portuu Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop kuke	na za dizaj ne dohva nica SNL 3 nica SYJ 7 letve a promjenu c tega konstrukc atnika užnica na str užnica na str užnica na g	nje Itnika 3060 TS 0 TF Johvata zije upu rani	4 1 2 4 2 4 2 2 1 1 1 1 1 1 5 Kom.	2018-5-0 2018-0-6 2018-0-6 2018-0-5 2018-0-4 2018-0-4 2018-0-3 2018-0-2 2018-0-1 2018-0-1 2018-3-0 2018-2-0 2018-1-0 Crtež broj Norma	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x737 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač	30113 kg 2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 17522 kg 14116,5 kg 7884,8 kg 923,7 kg 851,2 kg 430,6 kg Masa
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz. Br	Sklop pogor Osovina gra Ležajna jedi Sklop zubne Sklop pogona z Sklop portuu Sklop portuu Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop kuke Na	na za dizaj ne dohva nica SNL 3 nica SYJ 7 letve promjenu o tega konstruko atnika užnica na str užnica na str užnica na g	nje Itnika 2060 TS 0 TF dohvata cije upu rani	4 1 2 1 4 2 4 2 2 1 1 1 1 1 1 1 1 5 6 0 0	2018-5-0 2018-0-6 2018-0-6 2018-0-5 2018-0-5 2018-0-4 2018-0-3 2018-0-3 2018-0-2 2018-0-1 2018-3-0 2018-2-0 2018-2-0 2018-1-0 Crtež broj Norma Ime i prezime minik Pondžo	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač	00113 kg 2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 14502 kg 14116,5 kg 7884,8 kg 923,7 kg 851,2 kg 430,6 kg Masa
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz. Br	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona za Sklop portuu Sklop portala Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u	na za dizaj ne dohva nica SNL 3 nica SYJ 7 letve a promjenu o tega konstruko atnika užnica na st užnica na st užnica na st užnica na st užnica na st užnica na st	nje Itnika 2060 TS 0 TF Johvata cije upu rani 13.3.2018.	4 1 2 4 2 4 2 2 1 1 1 1 1 1 1 0 0 0000000000	2018-5-0 2018-0-6 2018-0-6 2018-0-5 2018-0-5 2018-0-4 2018-0-3 2018-0-3 2018-0-3 2018-0-2 2018-0-1 2018-3-0 2018-2-0 2018-1-0 Crtež broj Norma Ime i prezime minik Pandža minik Pandža	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač	2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 14800 kg 14116,5 kg 7884,8 kg 923,7 kg 851,2 kg 430,6 kg Masa
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz. Br	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona za Sklop portuu Sklop portala Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop kuke Na	na za dizaj ne dohva nica SNL 3 nica SYJ 7 letve a promjenu c tega xonstrukc atnika užnica na st užnica na st	nje tnika 3060 TS 0 TF dohvata ije Upu rani 13.3.2018. 13.3.2018. 13.3.2018.	4 1 2 4 2 2 1 1 1 1 1 1 0 0 Do Do	2018-5-0 2018-0-6 2018-0-6 2018-0-5 2018-0-4 2018-0-4 2018-0-3 2018-0-3 2018-0-2 2018-0-1 2018-3-0 2018-2-0 2018-1-0 Crtež broj Norma Ime i prezime minik Pandža minik Pandža minik Pandža	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x737 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač	2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 14800 kg 14800 kg 14116,5 kg 923,7 kg 851,2 kg 430,6 kg Masa
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz. Br	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona z Sklop protu Sklop portala Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop kuke Na	na za dizaj ne dohva nica SNL 3 nica SYJ 7 letve a promjenu c tega konstrukc atnika jžnica na str jžnica str jžnica na str jžnica na str jžnica s	nje tnika 3060 TS 0 TF dohvata cije Upu rani 13.3.2018. 13.3.2018.	4 1 2 4 2 2 1 1 1 1 1 1 0 0 Do Do Do Do Doc.	2018-5-0 2018-0-6 2018-0-6 2018-0-5 2018-0-5 2018-0-4 2018-0-3 2018-0-2 2018-0-1 2018-0-1 2018-3-0 2018-2-0 2018-1-0 Crtež broj Norma Ime i prezime minik Pandža minik Pandža minik Pandža dr.sc. Matija Hoić	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x737 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač	2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 14800 kg 14800 kg 14116,5 kg 923,7 kg 851,2 kg 430,6 kg Masa
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz. Br	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona z Sklop protuu Sklop portala Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop kuke Na	na za dizaj ne dohva nica SNL 3 nica SYJ 7 letve a promjenu c tega konstrukc atnika jžnica na st jžnica na st	nje tnika 3060 TS 0 TF dohvata cije upu rani 13.3.2018. 13.3.2018.	4 1 2 4 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	2018-5-0 2018-0-6 2018-0-6 2018-0-5 2018-0-4 2018-0-4 2018-0-3 2018-0-2 2018-0-1 2018-0-1 2018-3-0 2018-2-0 2018-1-0 Crtež broj Norma Ime i prezime minik Pandža minik Pandža minik Pandža dr.sc. Matija Hoić dr.sc. Matija Hoić	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x737 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač FSB Z	2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 14800 kg 14800 kg 14116,5 kg 7884,8 kg 923,7 kg 851,2 kg 430,6 kg Masa
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz. Br	Sklop pogor Osovina gra Ležajna jedi Sklop zubne Sklop pogona z Sklop portuu Sklop portuu Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u	a za dizal ne dohva nica SNL 3 nica SYJ 7 letve promjenu o tega xonstrukc atnika užnica na strukc atnika užnica na strukc užnica na strukc atnika užnica na strukc atnika užnica na strukc atnika užnica na strukc užnica na strukc užni strukc užnica na strukc užnica na struk	nje Inika 2060 TS 0 TF Johvata ije Upu rani 13.3.2018. 13.3.2018.	4 1 2 4 2 4 2 2 1 1 1 1 1 1 1 1 0 0 Do Do Doc. Doc.	2018-5-0 2018-0-6 2018-0-6 2018-0-6 2018-0-5 2018-0-4 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-1 2018-0-1 2018-3-0 2018-2-0 2018-1-0 Crtež broj Norma Ime i prezime minik Pandža minik Pandža minik Pandža dr.sc. Matija Hoić dr.sc. Matija Hoić	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač FSB Z 2018-0-0	2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 14800 kg 14116,5 kg 7884,8 kg 923,7 kg 851,2 kg 430,6 kg Masa
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz. Br	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona za Sklop portuu Sklop portuu Sklop portala Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u	a za dizal ne dohva nica SNL 3 nica SYJ 7 letve promjenu o tega konstrukc atnika užnica na str užnica na str ušnica str ušnica na str ušnica str uš str ušnica str uš str uš str uš str uš str uš str uš str uš str uš	nje Inika 2060 TS 0 TF Iohvata ije UpU rani 13.3.2018. 13.3.2018. 13.3.2018.	4 1 2 4 2 4 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	2018-5-0 2018-0-6 2018-0-6 2018-0-6 2018-0-5 2018-0-4 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-1 2018-0-1 2018-0-1 2018-3-0 2018-2-0 2018-1-0 Crtež broj Norma Ime i prezime minik Pandža minik Pandža minik Pandža dr.sc. Matija Hoić dr.sc. Matija Hoić	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač FSB Z 2018-0-0	2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 14800 kg 14116,5 kg 7884,8 kg 923,7 kg 851,2 kg 430,6 kg Masa
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz. Br	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona za Sklop portuu Sklop portala Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop kuke Na Toj naziva - code	a za dizal ne dohva nica SNL 3 nica SYJ 7 letve a promjenu o tega konstruko atnika užnica na stu užnica stu užni stu užnica stu stu stu stu stu stu stu stu stu stu	nje tnika 3060 TS 0 TF dohvata ije Upu rani 13.3.2018. 13.3.2018. 13.3.2018.	4 1 2 4 2 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	2018-5-0 2018-0-6 2018-0-6 2018-0-5 2018-0-4 2018-0-4 2018-0-3 2018-0-3 2018-0-2 2018-0-1 2018-0-1 2018-3-0 2018-2-0 2018-1-0 Crtež broj Norma Ime i prezime minik Pandža minik Pandža minik Pandža dr.sc. Matija Hoić dr.sc. Matija Hoić	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač FSB Z 2018-0-0	2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 14800 kg 14116,5 kg 7884,8 kg 923,7 kg 851,2 kg 430,6 kg Masa
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz. Br	Sklop pogor Osovina gra Ležajna jedi Ležajna jedi Sklop zubne Sklop pogona za Sklop portu Sklop portala Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u	a za diza ne dohva nica SNL 3 nica SYJ 7 letve a promjenu c tega konstrukc atnika jžnica na st jžnica na st	nje tnika 3060 TS 0 TF dohvata Dije Upu rani 13.3.2018. 13.3.2018. 13.3.2018.	4 1 2 4 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	2018-5-0 2018-0-6 2018-0-6 2018-0-5 2018-0-4 2018-0-4 2018-0-3 2018-0-2 2018-0-1 2018-0-2 2018-0-1 2018-3-0 2018-2-0 2018-2-0 2018-1-0 Crtež broj Norma Ime i prezime minik Pandža minik Pandža minik Pandža dr.sc. Matija Hoić dr.sc. Matija Hoić	S235JRG2 S235JRG2 Materijal Objekt broj: R. N. broj:	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x737 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač FSB Z 2018-0-0	00110 kg 2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 17522 kg 14116,5 kg 923,7 kg 851,2 kg 430,6 kg
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz. Br	Sklop pogor Osovina gra Ležajna jedii Sklop zubne Sklop pogona za Sklop portuu Sklop portuu Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u	a za dizaj ne dohva nica SNL 3 nica SYJ 7 letve a promjenu c tega konstrukc atnika jžnica na st jžnica na st	nje tnika 3060 TS 0 TF dohvata cije upu rani 13.3.2018. 13.3.2018. 13.3.2018.	4 1 2 4 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	2018-0-5 2018-0-6 2018-0-6 2018-0-6 2018-0-4 2018-0-4 2018-0-3 2018-0-2 2018-0-2 2018-0-1 2018-3-0 2018-2-0 2018-2-0 2018-1-0 Crtež broj Norma Ime i prezime minik Pandža minik Pandža minik Pandža dr.sc. Matija Hoić dr.sc. Matija Hoić	S235JRG2 S235JRG2 Materijal Objekt broj: R. N. broj:	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x737 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač Proizvođač	80113 kg 2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 14800 kg 14116,5 kg 923,7 kg 851,2 kg 430,6 kg Masa
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz. Br	Sklop pogor Osovina gra Ležajna jedi Sklop zubne Sklop pogona z Sklop portuu Sklop portuu Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u	a za dizaj ne dohva nica SNL 3 nica SYJ 7 letve promjenu o tega xonstrukc atnika jžnica na str jžnica na str jžni str jžnica na str jžnica na	nje tnika 3060 TS 0 TF dohvata zije upu rani 13.3.2018. 13.3.2018. 13.3.2018.	4 1 2 4 2 4 2 2 1 1 1 1 1 1 1 0 0 Do Do Doc. Doc. ki dC	2018-5-0 2018-0-6 2018-0-6 2018-0-5 2018-0-4 2018-0-4 2018-0-3 2018-0-2 2018-0-1 2018-0-1 2018-3-0 2018-2-0 2018-2-0 2018-1-0 Crtež broj Norma Ime i prezime minik Pandža minik Pandža dr.sc. Matija Hoić dr.sc. Matija Hoić dr.sc. Matija Hoić	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač Proizvođač 2018-0-0	2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 14800 kg 14116,5 kg 7884,8 kg 923,7 kg 851,2 kg 430,6 kg Masa
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz. Br	Sklop pogor Osovina gra Ležajna jedi Sklop zubne Sklop pogona z Sklop portuu Sklop portuu Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u	a za dizal ne dohva nica SNL 3 nica SYJ 7 letve promjenu o tega xonstrukc atnika užnica na str užnica	nje Inika 3060 TS 0 TF Johvata Datum 13.3.2018. 13.3.2018. 13.3.2018.	4 1 2 4 2 4 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	2018-0-5 2018-0-6 2018-0-6 2018-0-6 2018-0-5 2018-0-4 2018-0-3 2018-0-3 2018-0-3 2018-0-2 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-3 2018-0-4 2018-0-4 2018-0-4 2018-0-4 2018-0-5 2018-0-5 2018-0-5 2018-0-5 2018-0-5 2018-0-5 2018-0-5 2018-0-5 2018-0-5 2018-0-5 2018-0-5 2018-0-5 2018-0-5 2018-0-4 2018-0-3 2018-0-2 2018-0-1 2018-1-0 Crtež broj Norma Ime i prezime minik Pandža minik Pandža dr.sc. Matija Hoić dr.sc. Matija Hoić Masa: 110519 kg	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač Proizvođač 2018-0-0	2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 14800 kg 14116,5 kg 7884,8 kg 923,7 kg 851,2 kg 430,6 kg Masa
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz. Br	Sklop pogor Osovina gra Ležajna jedii Ležajna jedii Sklop zubne Sklop pogona za Sklop portuu Sklop portala Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop kuke Na oj naziva - code	a za dizal ne dohva nica SNL 3 nica SYJ 7 letve a promjenu o tega konstrukc atnika užnica na stu žnica na stu šnica na stu stu šnica na stu stu šnica na stu stu šnica na stu stu šnica na stu šnica na stu stu šnica na stu šnica na stu šnica na stu šnica na stu šnica na stu šnica na stu stu šnica na stu stu šnica na stu stu stu stu stu stu stu stu stu stu	nje Inika 060 TS 0 TF lohvata 	4 1 2 1 4 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	2018-0-5 2018-0-6 2018-0-6 2018-0-6 2018-0-5 2018-0-4 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-1-0 Crtež broj Norma Ime i prezime minik Pandža minik Pandža minik Pandža dr.sc. Matija Hoić dr.sc. Matija Hoić dr.sc. Matija Hoić dr.sc. Matija Hoić	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x737 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač Proizvođač Proizvođač Proizvođač FSB Z	2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 14800 kg 14116,5 kg 7884,8 kg 923,7 kg 851,2 kg 430,6 kg Masa
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz. Br	Sklop pogor Osovina gra Ležajna jedii Ležajna jedii Sklop zubne Sklop pogona za Sklop portuu Sklop portala Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u	a za dizaj ne dohva nica SNL 3 nica SYJ 7 letve a promjenu c tega konstrukc atnika jžnica na str jžnica na str jžn	nje Itnika 3060 TS 0 TF dohvata Dije Upu rani 13.3.2018. 13.3.2018. 13.3.2018. 13.3.2018. dnokra	4 1 2 1 4 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	2018-0-5 2018-0-6 2018-0-6 2018-0-6 2018-0-4 2018-0-4 2018-0-3 2018-0-2 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-4 2018-0-2 2018-0-1 2018-0-2 2018-0-1 2018-0-2 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač Proizvođač Proizvođač FSB Z 2018-0-0	2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 14800 kg 14800 kg 14116,5 kg 7884,8 kg 923,7 kg 851,2 kg 430,6 kg Masa
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz. Br	Sklop pogor Osovina gra Ležajna jedii Sklop zubne Sklop pogona za Sklop portuu Sklop portuu Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u	a za dizaj ne dohva nica SNL 3 nica SYJ 7 letve promjenu c tega x konstrukc atnika jžnica na str jžnica na str jžn	nje tnika 3060 TS 0 TF dohvata bije Upu rani 13.3.2018. 13.3.2018. 13.3.2018. 13.3.2018. 13.3.2018.	4 1 2 4 2 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	2018-0-5 2018-0-6 2018-0-6 2018-0-6 2018-0-5 2018-0-4 2018-0-3 2018-0-2 2018-0-1 2018-0-2 2018-0-1 2018-2-0 2018-2-0 2018-1-0 Crtež broj Norma Ime i prezime minik Pandža minik Pandža minik Pandža dr.sc. Matija Hoić dr.sc. Matija Hoić dr.sc. Matija Hoić dr.sc. Matija Hoić dr.sc. Matija Hoić dr.sc. Matija Hoić	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x737 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač Proizvođač Proizvođač FSB Z	2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 14800 kg 14800 kg 17522 kg 14116,5 kg 7884,8 kg 923,7 kg 851,2 kg 430,6 kg Masa
14 13 12 11 10 9 8 7 6 5 4 3 2 1 Poz. Br	Sklop pogor Osovina gra Ležajna jedi Sklop zubne Sklop pogona z Sklop portuu Sklop portuu Sklop nosive Grana dohv Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u Sklop skretnih u	a za dizal ne dohva nica SNL 3 nica SYJ 7 letve promjenu o tega xonstrukc atnika jžnica na str jžnica	nje tnika 3060 TS 0 TF dohvata zije Upu rani 13.3.2018. 13.3.2018. 13.3.2018. 13.3.2018. dnokra	4 1 2 4 2 4 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	2018-0-5 2018-0-6 2018-0-6 2018-0-6 2018-0-3 2018-0-4 2018-0-3 2018-0-2 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-3 2018-0-4 2018-0-4 2018-0-4 2018-0-5 2018-0-4 2018-0-4 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-3 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-0-1 2018-1-0 Crtež broj Norma Ime i prezime minik Pandža dr.sc. Matija Hoić dr.sc. Matija Hoić dr.sc. Matija Hoić dr.sc. Matija Hoić dr.sc. Matija Hoić dr.sc. Matija Hoić dr.sc. Matija Hoić	S235JRG2	2137x2013x930 Ø 280x1290 SKF SKF 1500x205x101 709x899x450 2129x1800x596 15000x6594x5179 10161x6153x2600 22862x850x750 Ø 705x737 Ø 705x620 500x750x280 Sirove dimenzije Proizvođač Proizvođač Proizvođač FSB Z 2018-0-0	2264,5 kg 491,6 kg 81,3 kg 300 kg 14800 kg 14800 kg 14800 kg 14116,5 kg 7884,8 kg 923,7 kg 851,2 kg 430,6 kg Masa

/	/ Radijalni lezaj 61852					8
6	6 Semering 260x280x16 HMS1 V					8
5 Rukavac ležaja					4	
4	Osov	ina	-			1
3	Poklo	pac lež	aja			8
2	Vijak	M10x20	3			32
1	Užnic	a				4
Poz.		Nazi	v dijela			Kom
Bro	j naziva	- code		D	atum	
	-		Projektirao	13.3	3.2018.	D
			Razradio	13.	3.2018.	D
			Crtao	13.	3.2018.	D
			Pregledao			Doc
<u> </u>	<u></u>		Mentor			Doc
	SO - tole		Objekt:	مارم		اہ نا
Ø32	0K7/f8	+0,168	Jednokraki			
		+0,022	Nanamanai			
Ø2	260k6	+0,038				
		+0.187				
Ø 250	0H8/h9	0.000	Materijal:			
					Naziv:	
			$\Box \Psi$		CI/I	
			Mjerilo origina	ala	JKI	οp
			1:10		Crtež	broj:
$\overline{\mathbf{v}}$				-	[mm

24	Osigu	rač mati	ce za leža	j MB 12	1			SKF	
23	Osov	ina			1	2018-5-7	S235JRG2	Ø24x142	0,3 kg
22	2 Vijak M16x80x38			1	DIN 6912	8.8.	Vijci Kranjec		
21	Semering 90x110x10 HMS5 RG			1			SKF		
20) Veći poklopac			1	2018-5-6	S235JRG2	Ø 57x7	0,07 kg	
19	Radijo	alni leža	j 6414		1			SKF	
18	Radij	alni leža	j 6412		1			SKF	
17	Manji	i poklop	ac		1	2018-5-5	S235JRG2	Ø 49 x11	0,1 kg
16	Matic	ca za lež	iaj KMK 1	2	1			SKF	
15	Distai	ntni prste	en		1	2018-5-4	S235JRG2	Ø23x16	0,01 kg
14	Vijak	M10x30			4	DIN 933	8.8.	Vijci Kranjec	
13	Vijak	M10x20			4	DIN 933	8.8.	Vijci Kranjec	
12	Sklop	nosivoc	g lima		1	2018-5-3		525x250x20	18,5 kg
11	Pero		-		2	DIN 6885-1	E335	160x25x14	
10	Klizni le	ežaj PBMF	10512550 1	41G1	1			SKF	
9	Matic	ca M24			4	DIN 555	8	Vijci Kranjec	
8	Pločio	ca za pr	ipasavar	nje	4	2018-5-2	S235JRG2	410x120x20	7,4 kg
7	Vijak	M24x10	5x37		4	DIN 6914	8.8.	Vijci Kranjec	
6	Nosa	č ležajn	e jedinice	Э	2	2018-5-1		410x120x80	13,1 kg
5	Ležaj	na jedin	ica SYNT	100 L	2			SKF	
4	Glave	a vodilic	e		1			Güdel	
3	Zupčanik			1			Güdel		
2	2 Elastična spojka			1			SKF		
1 Elektromotor's reduktorom		1			Sew Eurodrive				
Poz.		Naz	iv dijela		Kom	Crtež broj Norma	Materijal	Sirove dimenzije Proizvođač	Masa
Bro	oj naziva	a - code		Datum		lme i prezime	Potpis		
			Projektirao	13.3.2018.	Dominik Pandža				aarab
			Crtao	13.3.2018.		Dominik Pandža FSB 2			agrep
			Pregledao	10.0.2010.	Doc.	dr.sc. Matija Hoić			
			Mentor		Doc.	dr.sc. Matija Hoić			
15	SO - tole	erancije	Objekt:	مايم ماريدم	الأرمام		Objekt broj:	2018-0-0	
Ø18	0K7/f8	+0,118	Je	anokra	KI ac	nvatnik	R N broi:		
	-	+0,015	Nanomena [.]						Kopiia
Ø15	0K7/f8	+0,015	rtaponiona.						
Ø90	H7/h6	+0,057 0,000	Materijal:			Masa: 380,7 kg			
Ø	70k6	+0,021 +0.002	$\Box \oplus$	Haziv:				Pozicija: Forn	nat: A2
Ø	60k6	+0,021	Mjerilo origin	ala	poc	jona za pror	njenu doh	Listo	ova: 1
		5,002	1:10	Crtež	ź broj:	2018-	-4-0	List:	1
	I			[0	10 20 30	40 50		90 10

 \triangleleft

