Modeliranje kombiniranog Brayton-ORC Rankine postrojenja

Jugović, Antun

Master's thesis / Diplomski rad

2017

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:251677

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-31

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Antun Jugović

Zagreb, 2017.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentori:

Doc. dr. sc. Mislav Čehil, dipl. ing. stroj.

Student:

Antun Jugović

Zagreb, 2017.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se doc. dr. sc. Mislavu Čehilu dipl. ing. stroj. na stručnoj pomoći i ustupljenom vremenu tijekom izrade ovog rada.

Posebno se zahvaljujem dr. sc. Stjepku Katuliću dipl. ing. stroj. na velikoj pomoći i konzultacijama tijekom izrade rada, te pruženom stručnom znanju.

Zahvaljujem se i svojoj obitelji, prijateljima i kolegama koji su mi pružili veliku pomoć tijekom studiranja bez kojih moje obrazovanje ne bi bilo moguće.

Antun Jugović

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za diplomske ispite studija strojarstva za smjerove:

procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveuč Fakultet stro	ilište u Zagrebu jarstva i brodogradnje		
Datum Prilog			
Klasa:			
Ur. broj:			

DIPLOMSKI ZADATAK

Student:

Antun Jugović

Mat. br.: 0035183386

Naslov rada na hrvatskom jeziku: Naslov rada na engleskom jeziku:

Opis zadatka:

Modeliranje kombiniranog Brayton-ORC Rankine postrojenja

Modeling of combined Brayton-Organic Rankine cycle system

Kod plinskoturbinskog postrojenja dimni plinovi se, nakon ekspanzije u plinskoj turbini, ispuštaju u okoliš. Budući da je temperatura dimnih plinova na izlazu iz plinske turbine osjetno viša u odnosu na temperaturu okoliša, postoji mogućnost dodatnog iskorištavanja topline dimnih plinova primjenom organskih radnih medija.

U radu je potrebno u programskom paketu Matlab izraditi matematički model kombiniranog plinskoturbinskog i parnoturbinskog postrojenja gdje će u parnoturbinskom dijelu postrojenja radni medij biti voda odnosno organski fluid. Potrebno je izvršiti detaljnu analizu kako odabir radnog medija utječe na termodinamičku iskoristivost kombiniranog postrojenja.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan: 28. rujna 2017.

Zadatak zadao:

Datum predaje rada: 30. studenog 2017. Predvideni datum obrane: 6., 7. i 8. prosinca 2017. Predsjednica Povjerenstva:

Prof. dr. sc. Tanja Juřčević Lulić

doc. dr. sc. Mislav Čehil anno

SADRŽAJ

SADRŽAJI
POPIS SLIKAII
POPIS TABLICAIV
POPIS OZNAKA
POPIS KRATICA
SAŽETAKVII
SUMMARY VIII
1. UVOD
2. KOMBINIRANA POSTROJENJA
 2.1. Općenito o kombiniranim postrojenjima
3. ORGANSKI RANKINEOV CIKLUS
3.1. Općenito o Organskom Rankineovom ciklusu 8 3.2. Primjena Organskog Rankineovog procesa 8 3.2.1. ORC na otpadnu toplinu 8 3.2.2. Geotermalne elektrane 8 3.2.3. Solarne termalne elektrane 9 2.2.4 Elektrane ne biomeseu 9
3.2.4. Elektrane na biomasu 9 3.3. Radni mediji u ORC 10 3.3.1. Toluen 11 3.3.2. Aceton 11 3.3.3. Cikloheksan 11
4. MATEMATIČKI MODEL KOMBINIRANOG POSTROJENJA 12
4.1. Matematički model plinsko-turbinskog postrojenja
5. ANALIZA REZULTATA205.1. Toluen kao radni medij u ORC-u205.2. Aceton kao radni medij u ORC-u315.3. Cikloheksan kao radni medij u ORC-u39
6. ZAKLJUČAK
LITERATURA
PRILOZI

POPIS SLIKA

Slika 1. Shema kombiniranog postrojenja	. 2
Slika 2. T-s dijagram kombiniranog postrojenja	. 3
Slika 3. Shema Braytonovog ciklusa	.4
Slika 4. T-s dijagram Braytonovog ciklusa	. 5
Slika 5. Shema Rankineovog ciklusa[6]	. 6
Slika 6. T-s dijagram Rankineovog ciklusa[7]	.7
Slika 7. Shema ORC postrojenja koje za gorivo koristi biomasu[8]	.9
Slika 8. T-s dijagrami za mokre, izentropske i suhe tekućine [9]	10
Slika 9. Shema kombiniranog postrojenja	13
Slika 10. T-s dijagram Braytonovog ciklusa	14
Slika 11. T-s dijagram ORC-a	17
Slika 12. Ovisnost termodinamičkih iskoristivosti o radnom tlaku u ORC-u (toluen)	20
Slika 13. Ovisnost snage, toplinskog toka i masenog protoka o radnom tlaku u ORC-u	
(toluen)	21
Slika 14. Ovisnost spec. snage, spec. toplinskog toka i masenog protoka o radnom tlaku u	
ORC-u (toluen)	22
Slika 15. Ovisnost masenog protoka, toplinskog toka isparivača i latentne topline o radnom	
tlaku ORC-a (toluen)	24
Slika 16. Ovisnost termodinamičkih iskoristivosti o radnom tlaku u ORC-u (toluen)	25
Slika 17. Ovisnost snage, toplinskog toka i masenog protoka o radnom tlaku u ORC-u	
(toluen)	26
Slika 18. Ovisnost spec. snage, spec. toplinskog toka i masenog protoka o radnom tlaku u	
ORC-u (toluen)	27
Slika 19. Ovisnost masenog protoka, toplinskog toka isparivača i latentne topline o radnom	
tlaku ORC-a (toluen)	27
Slika 20. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlak	u
ORC-a i temperaturi na ulazu u plinsku turbinu Braytonovog ciklusa (toluen) ?	28
Slika 21. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlak	u
ORC-a i temperaturi pinch točke u isparivaču (toluen)	29
Slika 22. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlak	u
ORC-a i temperaturi pinch točke u isparivaču (toluen)	30
Slika 23. Ovisnost termodinamičkih iskoristivosti o radnom tlaku u ORC-u (aceton)	31
Slika 24. Ovisnost snage, toplinskog toka i masenog protoka o radnom tlaku u ORC-u	
(aceton)	32
Slika 25. Ovisnost spec. snage, spec. toplinskog toka i masenog protoka o radnom tlaku u	
ORC-u (aceton)	32
Slika 26. Ovisnost masenog protoka, toplinskog toka isparivača i latentne topline o radnom	
tlaku ORC-a (aceton)	33
Slika 27. Ovisnost termodinamičkih iskoristivosti o radnom tlaku u ORC-u (aceton)	34
Slika 28. Ovisnost snage, toplinskog toka i masenog protoka o radnom tlaku u ORC-u	
(aceton)	34
Slika 29. Ovisnost spec. snage, spec. toplinskog toka i masenog protoka o radnom tlaku u	
ORC-u (aceton)	35

Slika 30. Ovisnost masenog protoka, toplinskog toka isparivača i latentne topline o radnom
tlaku ORC-a (aceton)
Slika 31. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlaku
ORC-a i temperaturi na ulazu u plinsku turbinu Braytonovog ciklusa (aceton) 36
Slika 32. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlaku
ORC-a i temperaturi pinch točke u isparivaču (aceton)
Slika 33. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlaku
ORC-a i temperaturi pinch točke u isparivaču (aceton)
Slika 34. Ovisnost termodinamičkih iskoristivosti o radnom tlaku u ORC-u (cikloheksan) 39
Slika 35. Ovisnost snage, toplinskog toka i masenog protoka o radnom tlaku u ORC-u
(cikloheksan)
Slika 36. Ovisnost spec. snage, spec. toplinskog toka i masenog protoka o radnom tlaku u
ORC-u (cikloheksan)40
Slika 37. Ovisnost masenog protoka, toplinskog toka isparivača i latentne topline o radnom
tlaku ORC-a (cikloheksan)41
Slika 38. Ovisnost termodinamičkih iskoristivosti o radnome tlaku u ORC-u (cikloheksan). 41
Slika 39. Ovisnost snage, toplinskog toka i masenog protoka o radnome tlaku u ORC-u
(cikloheksan)
Slika 40. Ovisnost spec. snage, spec. toplinskog toka i masenog protoka o radnome tlaku u
ORC-u (cikloheksan)
Slika 41. Ovisnost masenog protoka, toplinskog toka isparivača i latentne topline o radnom
tlaku ORC-a (cikloheksan)43
Slika 42. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlaku
ORC-a i temperaturi na ulazu u plinsku turbinu Braytonovog ciklusa
(cikloheksan)
Slika 43. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlaku
ORC-a i temperaturi pinch točke u isparivaču (cikloheksan)
Slika 44. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlaku
ORC-a i temperaturi pinch točke u isparivaču (cikloheksan)

POPIS TABLICA

Tablica 1. Ulazne varijable matematičkog modela	. 13	3
---	------	---

POPIS OZNAKA

Oznaka	Jedinica	Opis
η	-	termodinamička iskoristivost
Е	-	kompresijski omjer
Ż	kW	toplinski tok
h	kJ/kg	specifična entalpija
Р	kW	snaga
Т	Κ	temperatura
p	bar	tlak
q_m	kg/s	maseni protok
W	J	rad

Diplomski rad

POPIS KRATICA

Oznaka	Opis
В	braytonov proces
D	dovedeno u dogrijavanju
Dov	ukupno dovedeno
Ε	ekonomajzer
Isp	isparivač
is	izentropski
Κ	kompresor
KI	komora izgaranja
Kombi	kombinirani proces
Kond	kondenzator
ORC	Organski Rankineov ciklus
Р	pumpa
pp	pinch točka
r	Rankineov ciklus
Tur	turbina
ul	na ulazu

SAŽETAK

U ovom radu opisan je i analiziran kombinirani proces u kojemu se otpadna toplina iz plinsko-turbinskog ciklusa koristi kao ogrjevni spremnik za potrebe parno-turbinskog Organskog Rankineovog ciklusa. Nakon opisa osnovnih kružnih procesa, objašnjen je Organski Rankineov ciklus i specifikacije radnih medija koje se koriste. Matematičkim modelom opisan je Braytonov proces s dvostupanjskom kompresijom i dvostupanjskom ekspanzijom te Organski Rankineov ciklus. Analiza rezultata pokazuje kako vrsta radnog medija, temperatura na ulazu u plinsku turbinu i tlak u Organskom Rankineovom ciklusu utječu na termodinamičku iskoristivost kombiniranog postrojenja.

Ključne riječi: Braytonov ciklus, Organski Rankineov ciklus, kombinirani ciklus

SUMMARY

Within the scope of this Master Thesis a combined cycle is described and analyzed in which waste heat from a gas turbine cycle is used as a heating reservoir for the steam turbine organic Rankine cycle. Brayton and the organic Rankine cycle are described as well as the properties of the organic fluid which are used as working fluids. A mathematical model is made for the organic Rankine cycle and a two stage compressor and turbine Brayton cycle. The analysis of results show how the type of working fluid, the inlet temperature in the gas turbine and the pressure in the organic Rankine cycle influence the thermodynamic efficiency of the combined cycle.

Key words: Brayton cycle, Organic Rankine cycle, combined cycle

1. UVOD

Potrebe za energijom rastu, stoga se javljaju izazovi kako zadovoljiti potražnju za njom. S druge strane ekološki izazovi, kao što su globalno zatopljenje, su aktualni predmet znanstvenih rasprava. Kao jedna od mjera smanjenja globalnog zatopljenja je korištenje obnovljivih izvora energije za dobivanje električne energije. Iako je udio električne energije dobivene iz obnovljivih izvora u porastu i dalje postrojenja koja koriste fosilno gorivo zauzimaju značajan postotak u ukupnoj proizvodnji električne energije. Skupa tehnologija i ovisnost o meteorološkim prilikama predstavljaju glavne prepreke za energetsku tranziciju ka obnovljivim izvorima energije. Stoga se pribjegava povećanju termodinamičke iskoristivosti postrojenja koja proizvode električnu energiju iz fosilnih goriva. Takva postrojenja nazivamo termoelektranama a dijelimo ih na:

- parno-turbinske termoelektrane,
- plinsko-turbine termoelektrane,
- kombinirane termoelektrane,

Upravo potonja predstavljaju optimalno rješenje kada je riječ o povećanju termodinamičke iskoristivosti. U ovom radu opisan je kombinirani proces u kojemu se otpadna toplina iz plinsko-turbinskog Braytonovog ciklusa iskorištava za potrebe Organskog Rankineovog parno-turbinskog ciklusa. Organski Rankineov ciklus predstavlja idealno rješenje kada je riječ o iskorištavanju otpadne topline pri nižim temperaturama. Specifičnost organskih radnih medija jest u tome što imaju vrlo niske kritične temperature pa otpadni dimni plinovi, temperatura do 600 °C, predstavljaju prihvatljiv izvor topline. Implementacijom Organskog Rankineovog ciklusa u kombinirano postrojenje ukupna termodinamička iskoristivost se povećava. [4]

2. KOMBINIRANA POSTROJENJA

2.1. Općenito o kombiniranim postrojenjima

Kombinirana postrojenja su ona postrojenja koja u plinsko-turbinskom i parnoturbinskom procesu proizvode mehanički rad kojime je pogonjen električni generator. Osnovna namjena i cilj kombiniranih postrojenja jest iskorištavanje otpadne topline dimnih plinova iz plinsko-turbinskog dijela postrojenja. Dimni plinovi na ulazu u plinsku turbinu najčešće dosežu temperature u rasponu od 1200 °C do 1500 °C, a na izlazu iz turbine oko 600 °C. Ispuštanje dimnih plinova tako visoke temperature u okoliš predstavlja veliki termodinamički gubitak. Kako bi se ti gubitci izbjegli, otpada toplina dimnih plinova koristi se kao izvor topline u parno-turbinskom ciklusu. [2]

Slika 1. Shema kombiniranog postrojenja

U plinsko-turbinskom ciklusu (Braytonov proces) izgaranjem mješavine plinskog goriva i zraka nastaju dimni plinove visoke temperature koji na izlazu iz plinske turbine i dalje imaju visoku temperaturu. Po izlasku iz plinske turbine, dimni plinovi se šalju u generator pare na otpadnu toplinu. Para proizvedena u generatoru pare ulazi u parnu turbinu gdje ekspandira te predaje mehanički rad generatoru električne energije. Ovakvim kombiniranim procesom (Slika 1.) uvelike se povećava termodinamička iskoristivost postrojenja koja može doseći i preko 60%. [3]

Slika 2. T-s dijagram kombiniranog postrojenja

Dobiveni rad kombiniranog ciklusa (Slika 2.) jednak je zbroju radova generiranih u plinskoturbinskom postrojenju (W_1) i parno-turbinskom postrojenju (W_2). Toplina dovedena u kombiniranom ciklusu jednaka je toplini dovedenoj u plinsko-turbinskom ciklusu (toplina dovedena gorivom) (Q), dok je ukupna termodinamička iskoristivost kombiniranog ciklusa (η_{kc}) jednaka:

$$\eta_{Kombi} = \frac{W_1 + W_2}{Q} \tag{2.1}$$

2.2. Braytonov ciklus

Plinsko-turbinski ciklus u kombiniranom postrojenju opisan je Braytonovim ciklusom. Braytonov ciklus je idealni proces koji služi kao polazišna točka pri proračunu plinskoturbinskih postrojenja. U termodinamičkom smislu, proces se odvija između dvije izobare i dvije izentrope. Shema postrojenja koje se sastoji od kompresora, ogrjevnog spremnika, plinske turbine i rashladnog spremnika kao što je prikazano na slici 3. U stvarnosti komora izgaranja zamjenjuje ogrjevni spremnik a dimni plinovi po izlasku iz turbine ispuštaju se u okoliš ili daljnje iskorištavanje u nekom drugom procesu.

Slika 3. Shema Braytonovog ciklusa

Princip rada Braytonovog procesa je takav da se prvo zrak tlaka p_1 i temperature T_1 komprimira na zadani tlak p_2 , koji je i najveći tlak kružnog procesa plinske turbine i na temperaturu T_2 . U realnom plinsko-turbinskom procesu ova promjena stanja zraka nije izentropska, kao što je u slučaju Braytonovog ciklusa, zbog gubitaka u kompresoru uzrokovanih turbulencijama i trenjem. Komprimirani zrak stanja 2 zatim se odvodi u komoru izgaranja gdje se miješa s plinovitim gorivom te izgara. U idealnim uvjetima ova promjena bila bi izobarna, ali zbog trenja događa se mali pad tlaka. Nakon procesa izgaranja dimni plinovi temperature T_3 i tlaka (p_3) ekspandiraju u plinskoj turbini predajući okretni moment vratilu turbine. Procesom u plinskoj turbini toplinska energija se pretvara u mehaničku.

Dobivena mehanička energija koristi se za pogon električnog generatora i za pogon kompresora. Zbog trenja u plinskoj turbini proces nije izentropski. Nakon izlaska iz turbine dimni plinovi tlaka p_4 i temperature T_4 se ispuštaju u okoliš u slučaju mlaznih motora, dok se kod plinskih turbina u elektro-energetskim postrojenjima otpadna toplina sadržana u dimnim plinovima stanja 4 iskorištava u daljnjim procesima kombiniranog postrojenja kako je već prethodno navedeno. Slika 4. prikazuje promjene stanja zraka i dimnih plinova u T-s dijagramu.

Termodinamička iskoristivost procesa (η_B) jednaka je omjeru dobivenog rada (W) i dovedene topline Q. Termodinamička iskoristivost Braytonovog procesa se također može izraziti i preko temperature prije ulaska u kompresor T_1 i temperature nakon izlaska iz kompresora T_2 . [5]

$$\eta_B = \frac{W}{Q} \tag{2.2}$$

$$\eta_B = 1 - \frac{T_1}{T_2} \tag{2.3}$$

2.3. Rankineov ciklus

Rankineov ciklus je termodinamički proces koji pretvara toplinsku energiju u koristan rad. To je ujedno i kružni proces na kojemu se zasniva rad parno-turbinskih postrojenja. Prema njemu se računaju izmijenjeni toplinski tokovi, termodinamička iskoristivost i generirana snaga takvih procesa. Kako bi se povećala termodinamička iskoristivost procesa, uvedene su mnoge modifikacije u Rankineov ciklus, međutim ovdje će biti opisan osnovni proces (Slika 5.).

Slika 5. Shema Rankineovog ciklusa[6]

Glavni dijelovi postrojenja su: generator pare, parna turbina, generator električne energije, kondenzator i napojna pumpa. Proces se odvija tako što se voda pri konstantnom tlaku u generatoru pare pregrijava na visoku temperaturu nakon čega ulazi u parnu turbinu. Ekspanzijom pare u turbini generira se koristan rad na vratilu koje pogoni električni generator. Nakon ekspanzije pare u turbinu do kondenzatorskog tlaka kondenzat se napojnom pumpom odvodi natrag u generator pare.

Slika 6. T-s dijagram Rankineovog ciklusa[7]

Slika 6 prikazuje Rankineov ciklus u T-s dijagramu. Napojna pumpa dobavlja vodu stanja 1 do stanja 2 nakon čega u generatoru pare te pregrijaču nastaje pregrijana para stanja 3. Vodena para stanja 3 ulazi u parnu turbinu te ekspandira do kondenzatorskog tlaka p_4 . Termodinamička iskoristivost procesa jednaka je omjeru dobivenog rada koji je jednak razlici entalpija u 3 i 4, te dovedene topline koja je jednaka razlici entalpija u točkama 3 i 2. [5]

3. ORGANSKI RANKINEOV CIKLUS

3.1. Općenito o Organskom Rankineovom ciklusu

Organski Rankineov Ciklus (ORC) radi na istom principu kao i klasični Rankineov ciklus ali za radni medij koristi organsku tvar umjesto vode. Glavna značajka organskih tvari jest da imaju nižu temperaturu zasićenja od vode pa time zahtijevaju i nižu temperaturu ogrjevnog spremnika. Organski Rankineov proces pogodan je za rješenja kada je temperatura ogrjevnog spremnika od 80 °C do 350 °C. [1]

3.2. Primjena Organskog Rankineovog procesa

ORC je unazad nekoliko godina postao vrlo primjenjiva tehnologija te je instalirano nešto više od 2,7 GW širom svijeta [1]. Kako se pretvorba toplinske u električnu energiju vrši pri niskim temperaturama, ORC se smatra ekološki prihvatljivim procesom te se očekuje još veća njegova primjena u budućnosti. Najčešća primjena ORC-a je u:

- iskorištavanje otpadne topline iz drugih procesa,
- geotermalne elektrane,
- solarne termalne elektrane,
- elektrane na biomasu.

3.2.1. ORC na otpadnu toplinu

Iskorištavanje otpadne topline iz drugih procesa, kao što je parno-turbinski ciklus u plinskoj termoelektrani, najčešći je oblik uporabe ORC-a. Otpadna toplina iz plinskoturbinskog ciklusa iskorištava se kao ogrjevni spremnik ORC-a. Takav oblik postrojenja naziva se kombinirano postrojenje kao što je već prethodno objašnjeno. Analiza jednog takvog kombiniranog procesa je i tema ovog rada.

3.2.2. Geotermalne elektrane

Temperatura vode iz geotermalnih izvora varira između 50 °C i 350 °C što predstavlja idealan izvor topline za ORC. Za geotermalne izvore s temperaturom vode nižom od 100 °C termodinamička iskoristivost procesa je niska te je upitna isplativost izgradnje.

3.2.3. Solarne termalne elektrane

Solarne termalne elektrane su izvori električne energije koje pretvaraju solarnu energiju prvo u toplinsku koja se kasnije koristi u nekom kružnom procesu za generiranje električne energije. Vrste solarnih termalnih elektrana dijele se prema zrcalima i cjelokupnoj izvedbi pa tako razlikujemo: parabolične kolektore, solarne tornjeve, solarne tanjure, fresnel reflektore i solarne uzgonske elektrane. Najčešći kružni proces koji vrši pretvorbu toplinske u električnu energiju jest upravo ORC.

3.2.4. Elektrane na biomasu

Iako je biomasa najraširenije gorivo na Zemlji te se može koristi za male i srednje elektrane, problem predstavljaju visoki investicijski troškovi poput generatora pare. Stoga Organski Rankineov Ciklus predstavlja idealno rješenje tog problema zbog niskog radnog tlaka. Prednost je također dug radni vijek postrojenja zbog karakteristika radne tvari koje ne erodiraju i ne uzrokuju koroziju cijevi, ventila i turbine. Na slici 7 prikazana je shema ORC postrojenja koje koristi biomasu kao gorivo. [1]

Slika 7. Shema ORC postrojenja koje za gorivo koristi biomasu[8]

3.3. Radni mediji u ORC

Specifičnost Organskog Rankineovog Ciklusa je upravo ta što radni medij nije voda već neka organska tvar. Prema temperaturi ogrjevnog spremnika određuje se odgovarajuća organska tvar za radni medij. Organske radne medije možemo podijeliti u tri skupine (Slika 8):

- a) Mokre fluide imaju negativan nagib krivulje koja označava stanje suhozasićene pare u T-s dijagramu te također ih odlikuje mala molarna masa
- b) Izentropske fluide imaju skoro vertikalnu krivulju koja označava stanje suhozasićene pare u T-s dijagramu, a obično su srednje molarne mase
- c) Suhe fluide imaju pozitivan nagib linije koja označava stanje suhozasićene pare u Ts dijagramu te su uglavnom tvari velike molarne mase [9]

Slika 8. T-s dijagrami za mokre, izentropske i suhe tekućine [9]

Kako se ORC koristi za različite vrste postrojenja, tako i izbor radne tvari varira radi li se o postrojenjima na biomasu, geotermalnim postrojenjima ili solarno termalnim postrojenjima. Neki od kriterija za izbor radne tvari u ORC postrojenju su:

- temperature ogrjevnog spremnika iz kojega će se dovoditi toplina procesu,
- termodinamičkim svojstvima radne tvari,
- sigurnosnim zahtjevima: korozijska reakcija s materijalom postrojenja, nezapaljivost, netoksičnost,
- isplativost i životni vijek.

Za potrebe simulacije postrojenja koje će analizirati u ovom radu izabrani su radni mediji: toluen, aceton i cikloheksan.

3.3.1. Toluen

Toluen je aromatski ugljikovodik(C_7H_8 , $C_6H_5CH_3$) koji je po svojstvima sličan benzenu. Bezbojna je zapaljiva tekućina ugodnoga mirisa, a temperatura vrelišta mu je 111 °C. Izvor toluena jest nafta i kameni ugljen te se dobiva ekstrakcijom ili destilacijom benzina, suhom destilacijom kamenog ugljena i frakcijskom destilacijom katrana kamenog ugljena. Spada u skupinu suhih tekućina prema podjeli radne tvari u ORC-u. Toluen odlikuju vrlo dobra termodinamička svojstva ali je zapaljiv i otrovan.[10] Temperatura samozapaljenja iznosi 530 °C. [11]

3.3.2. Aceton

Aceton je alifatski keton(C_3H_6O). Bezbojna je, lako hlapljiva, zapaljiva tekućina i karakterističnog mirisa. Neki od načina dobivanja acetona su: suhom destilacijom kalcijeva acetata, dehidrogenacijom izopropanola i provođenjem octene kiseline i alkohola. Spada u skupinu suhih tekućina prema podjeli radne tvari u ORC-u.[10] Temperatura vrelišta mu je 56.3 °C, a temperatura samozapaljenja 465 °C. [11]

3.3.3. Cikloheksan

Cikloheksan je cikloalkan(C_6H_{12}). Koristi se u kemijskoj industriji kao otapalo i kao sredstvo za uklanjanje boja i lakova. [10] Temperatura vrelišta mu je 81 °C, a temperatura samozapaljenja 245 °C. [11]

4. MATEMATIČKI MODEL KOMBINIRANOG POSTROJENJA

U ovom diplomskom radu napravljen je matematički model kombiniranog Brayton-ORC postrojenja. Matematički model napisan je u programskom paketu MATLAB. Model se sastoji od dva djela: Braytonovog plinsko-turbinskog i parno-turbinskog ORC ciklusa. Za radni medij u plinsko-turbinskom djelu odabran je zrak kao radna tvar, dok se kao radna tvar u ORC ciklusu koriste organski fluidi: toluen, aceton i cikloheksan. Termodinamička svojstva radnih tvari računata su pomoću NIST REFPROP kalkulatora kojeg je moguće implementirati u Matlab program.

U Braytonovom ciklusu okolišni zrak stanja p_1 i T_1 komprimira se adijabatski u prvom stupnju kompresora do tlaka p_2 , nakon čega se hladi do temperature T_3 predajući toplinu pri konstantnom tlaku radnom mediju ORC procesa u ekonomajzeru 1. Daljnjim hlađenjem u hladnjaku zrak se dovodi na temperaturu T_4 . Zrak zatim ulazi u drugi stupanj kompresora gdje se adijabatski komprimira na radni tlak p_2 . Prije ulaska u komoru izgaranja, zrak se zagrijava u regeneratoru do temperature T_6 . Zrak po izlasku iz komore izgaranja temperature T_7 ulazi u prvi stupanj plinske turbine te ekspandira do tlaka p_8 i temperature T_8 , nakon čega se dogrijava ponovno do temperature T_9 koja je jednaka temperature T_{13} predajući toplinu ORC procesu kroz ekonomajzer 2 i isparivač.

Organski Rankineov Ciklus sastoji se od napojne pumpe, dva ekonomajzera, isparivača, turbine te kondenzatora. Radna medij stanja 1 ulazi u napojnu pumpa koja ga komprimira na tlak p_{r2} . Radni medij, stanja 2, zagrijava se u prvo u ekonomajzeru 1 do temperature T_{r3} , a nakon toga i do temperature zasićenja T_{r4} u ekonomajzeru 2. Radni medij zatim ulazi u isparivač pri čemu dolazi do stanja suhozasićene pare. Nakon toga medij ekspandira u parnoj turbini do tlaka p_{r6} koji je jednak tlaku p_{r1} , pri čemu se generira koristan rad. Pregrijana para stanja 6 kondenzira do temperature T_{r1} predajući toplinu rashladnom mediju u kondenzatoru. Shema kombiniranog procesa prikazana je na slici 8.

Rankineov Organski ciklus služi kao rashladni spremnik te iskorištava otpadnu toplinu iz Braytonovog ciklusa pa time povećava ukupnu termodinamičku iskoristivost postrojenja. Iz sheme je vidljivo koja su to energetska stanja gdje dolazi do izmijene topline između dva ciklusa. U tablici 1. dani su ulazni radni parametri postrojenja.

Slika 9.	Shema	kombiniranog	postrojenja
----------	-------	--------------	-------------

Varijable	Iznos	
Temperatura na ulazu u prvi stupanj kompresora T_1		
Tlak na ulazu u prvi stupanj kompresora p_1		
Kompresijski stupanj prvog stupnja kompresora ε_1		
Kompresijski stupanj drugog stupnja kompresora ε_2	5	
Iskoristivost kompresora u Braytonovom ciklusu η_K		
Iskoristivost turbina u Braytonovom ciklusu η_{Tur}		
Iskoristivost regeneratora η_{Reg}	80%	
Efikasnost napojne pumpe u ORC-u $\eta_{P,ORC}$	80%	
Efikasnost turbine u ORC-u $\eta_{Tur,ORC}$		
Temperaturna razlika u ORC ekonomajzeru i Braytonovom hladnjaku T_2 - T_{r_3}		

Tablica	1.	Ulazne	vari	iable	matematià	Kog	mode	ela
Laonca		Ciuziic		Junic	matematic	mog	mou	

4.1. Matematički model plinsko-turbinskog postrojenja

U ovome poglavlju bit će opisane polazne jednadžbe koje su korištene za izradu matematičkog modela plinsko-turbinskog ciklusa. Slika 10. predstavlja opis ciklusa u T-s dijagramu. Maseni protok radnog medija uzet je kao jedinični (1 kg/s).

Slika 10. T-s dijagram Braytonovog ciklusa

Tlak u točki 2 izračunava se preko kompresijskog omjera prema sljedećoj jednadžbi:

$$\varepsilon_1 = \frac{p_2}{p_1} \tag{4.1}$$

Tlak u točki 5 izračunava se preko kompresijskog omjera prema sljedećoj jednadžbi:

$$\varepsilon_2 = \frac{p_5}{p_4} \tag{4.2}$$

Entalpija h_2 nakon prvog stupnja kompresora izračunava se iz jednadžbe (4.3) koja predstavlja izentropsku iskoristivost prvog stupnja kompresora a dana je jednadžbom:

$$\eta_K = \frac{h_{2is} - h_1}{h_2 - h_1} \tag{4.3}$$

gdje h_{2is} predstavlja entalpiju pri tlaku p_2 za izentropsku promjenu stanja zraka.

Snaga prvog stupnja kompresora jednaka je razlici entalpija u točki 1 i 2 a dana je jednadžbom:

$$P_{K1} = q_m (h_2 - h_1) \tag{4.4}$$

Entalpija nakon drugog stupnja kompresora h_5 izračunava se izentropskom jednadžbom efikasnosti drugog stupnja kompresora a dana je izrazom:

$$\eta_K = \frac{h_{5is} - h_4}{h_5 - h_4} \tag{4.5}$$

Snaga drugog stupnja kompresora jednaka je razlici entalpija u točki 5 i 4 a dana je jednadžbom:

$$P_{K2} = q_m (h_5 - h_4) \tag{4.6}$$

Entalpija na izlazu iz prvog stupnja turbine (h_8) dobiva se jednadžbom izentropske iskoristivosti prvog stupnja turbine:

$$\eta_{Tur} = \frac{h_7 - h_8}{h_7 - h_{8is}} \tag{4.7}$$

gdje h_{8is} predstavlja entalpiju pri tlaku p_8 za izentropsku promjenu stanja zraka.

Entalpija na izlazu iz drugog stupnja turbine (h_{10}) dobiva se jednadžbom izentropske iskoristivosti drugog stupnja turbine:

$$\eta_{Tur} = \frac{h_9 - h_{10}}{h_9 - h_{10is}} \tag{4.8}$$

gdje h_{10s} predstavlja entalpiju pri tlaku p_8 za izentropsku promjenu stanja zraka.

Snaga prvog stupnja turbine jednaka je razlici entalpija u točkama 7 i 8 a dana je jednadžbom:

$$P_{Tur1} = q_m (h_7 - h_8) \tag{4.9}$$

Snaga drugog stupnja turbine jednaka je razlici entalpija u točkama 9 i 10 a dana je jednadžbom:

$$P_{Tur2} = q_m (h_9 - h_{10}) \tag{4.10}$$

Neto snaga Braytonovog plinsko-turbinskog ciklusa jednaka je razlici snaga oba stupnja turbina i oba stupnja kompresora a dana je jednadžbom:

$$P_{neto,B} = (P_{Tur1} + P_{Tur2}) - (P_{K1} + P_{K2})$$
(4.11)

Toplinski tok doveden u komori izgaranja jednaka je razlici entalpija u točkama 7 i 6, a dana je jednadžbom:

$$\dot{Q}_{KI} = q_m (h_7 - h_6) \tag{4.12}$$

Toplinski tok doveden u dogrijavanju (naknadnom izgaranju) jednaka je razlici entalpija u točkama 8 i 9, a dana je izrazom:

$$\dot{Q}_D = q_m (h_9 - h_8) \tag{4.13}$$

Termodinamička efikasnost Braytonovog plinsko-turbinskog ciklusa jednaka je omjeru neto snage ciklusa i utrošenog toplinskog toka a računa se jednadžbom:

$$\eta_B = \frac{P_{neto,B}}{\dot{Q}_{KI} + \dot{Q}_D} \tag{4.14}$$

4.2. Matematički opis ORC

U ovome poglavlju bit će opisane polazne jednadžbe koje su korištene za izradu matematičkog modela parno-turbinskog ORC ciklusa. Slika 11. predstavlja opis ciklusa u T-s dijagramu.

Slika 11. T-s dijagram ORC-a

Entalpija h_{r6} nakon napojne pumpe izračunava se iz jednadžbe (4.15) koja predstavlja izentropsku efikasnost turbine a dana je jednadžbom:

$$\eta_{Tur,ORC} = \frac{h_{r5} - h_{r6}}{h_{r5} - h_{r6is}} \tag{4.15}$$

gdje h_{r6is} predstavlja entalpiju pri tlaku p_6 za izentropsku promjenu stanja zraka.

Toplinski tok dovedena u isparivaču definirana je kao razlika entalpija u točkama 4 i 5, dana je jednadžbom:

$$\dot{Q}_{Isp} = q_{mr}(h_{r5} - h_{r4}) \tag{4.16}$$

Snaga generirana na parnoj turbini jednaka je razlici entalpija u točkama 5 i 6, a dana je jednadžbom:

$$P_{Tur,ORC} = q_{mr}(h_{r5} - h_{r6}) \tag{4.17}$$

Toplinski tok odveden kondenzatorom jednak je razlici entalpija u točkama 1 i 6, a dan je izrazom:

$$\dot{Q}_{Kond} = q_{mr}(h_{r6} - h_{r1}) \tag{4.18}$$

Entalpija na izlaznu iz napojne pumpe (h_{r2}) dobiva se iz jednadžbe napojne pumpe koja je definirana jednadžbom:

$$\eta_{P,ORC} = \frac{h_{r2is} - h_{r1}}{h_{r2} - h_{r1}} \tag{4.19}$$

Snaga napojne pumpe jednaka je razlici entalpija u točkama 1 i 2 a dana je izrazom:

$$P_{P,ORC} = q_{mr}(h_{r2} - h_{r1}) \tag{4.20}$$

Toplinski tok doveden ekonomajzerima 1 i 2 iz plinsko-turbinskog ciklusa radnoj tvari u ORC-u jednaka je razlikama entalpija točaka 2 i 3 te 3 i 4, a izrazi su definirani kao:

$$\dot{Q}_{E1} = q_{mr}(h_{r3} - h_{r2}) \tag{4.21}$$

$$\dot{Q}_{E2} = q_{mr}(h_{r4} - h_{r3}) \tag{4.22}$$

Neto snaga ORC ciklusa jednaka je razlici snage generirane turbinom i utrošene napojnom pumpom, a dana je jednadžbom:

$$P_{neto,ORC} = P_{Tur,ORC} - P_{P,ORC} \tag{4.23}$$

Termodinamička iskoristivost ORC ciklusa definirana je kao omjer neto snage ciklusa i topline dovedene ekonomajzerima i isparivaču, a dana je jednadžbom:

$$\eta_{ORC} = \frac{P_{neto,ORC}}{\dot{Q}_{Isp} + \dot{Q}_{E1} + \dot{Q}_{E2}}$$
(4.24)

Neto snaga kombiniranog procesa jednaka je zbroju neto snaga Braytonovog plinsko-turbinskog i ORC parno-turbinskog ciklusa:

$$P_{neto,K} = P_{neto,ORC} + P_{neto,B} \tag{4.25}$$

Termodinamička iskoristivost kombiniranog procesa jednaka je omjeru neto snage kombiniranog procesa i dovedenog toplinskog toka (zbroj toplinskih tokova dovedenih u komori izgaranja i dogrijaču), a računa se jednadžbom:

$$\eta_{Kombi} = \frac{P_{neto,K}}{\dot{Q}_{KI} + \dot{Q}_D} \tag{4.26}$$

5. ANALIZA REZULTATA

U ovom poglavlju prikazani su rezultati simulacije rada kombiniranog postrojenja. Kao što je prethodno navedeno analiza je provedena za zrak kao radni medij u Braytonovom plinsko-turbinskom ciklusu dok u ORC-u analiza je provedena s tri radna medija: toluen, aceton i cikloheksan. Analiza pokazuje kako na termodinamičku iskoristivost kombiniranog postrojenja, te pojedinačno Braytonovog i ORC utječu:

- temperatura na ulazu u plinsku turbinu u Braytonovom ciklusu T_{ul} ,
- radni tlak u ORC-u p_{ORC} ,
- temperatura pinch točke u isparivaču ΔT_{pp} .

5.1. Toluen kao radni medij u ORC-u

Analiza rezultata s toluenom kao radnom tvari prikazani su i opisani u ovom poglavlju. Na slici 12. prikazana je ovisnost termodinamičke iskoristivosti Braytonovog, ORC i kombiniranog ciklusa o p_{ORC} pri temperaturi na ulazu u plinsku turbinu 900 °C. Simulacija je provedena za tlakove u rasponu od 5 do 30 bar u ORC-u i 15 bar u Braytonovom ciklusu.

Slika 12. Ovisnost termodinamičkih iskoristivosti o radnom tlaku u ORC-u (toluen)

Iz dijagrama na slici 12. se uočava da pri tlakovima višim od otprilike 10 bar dolazi do smanjenja termodinamičke iskoristivosti kombiniranog postrojenja dok η_{Kombi} , termodinamička iskoristivost ORC-a η_{ORC} raste. Ovakvo ponašanje η_{ORC} pri temperaturi 900 °C, na ulazu u plinsku turbinu Braytonovog ciklusa, može se objasniti dijagramom na slici 13. Dijagram prikazuje dovedeni toplinski tok ORC-u, generiranu snagu na turbini ORC-a te maseni protok u ovisnosti o p_{ORC} pri temperaturi na ulazu u plinsku turbinu od 900 °C. Vidljivo je da dovedeni toplinski tok u ORC $\dot{Q}_{Dov,ORC}$ i dobivena snaga $P_{neto,ORC}$ padaju povećanjem p_{ORC} . Međutim gradijent pada dovedenog toplinskog toka veći je od gradijenta pada dobivene snage, stoga je razumljivo da η_{ORC} raste ako znamo da se η_{ORC} računa se prema jednadžbi:

$$\eta_{ORC} = \frac{P_{neto,ORC}}{\dot{Q}_{Dov,ORC}} \tag{5.1}$$

Slika 13. Ovisnost snage, toplinskog toka i masenog protoka o radnom tlaku u ORC-u (toluen)

Pad η_{Kombi} pri tlakovima nižim od 10 bar može se objasniti ako pogledamo dijagram na slici 13. i jednadžbu kojom se računa η_{Kombi} :

$$\eta_{Kombi} = \frac{P_{neto,ORC} + P_{neto,B}}{\dot{Q}_{Dov,B}}$$
(5.2)

Snaga Braytonovog ciklusa ($P_{neto,B}$), dovedeni toplinski tok u komoru izgaranja i dogrijaču $\dot{Q}_{Dov,B}$ ne ovise o p_{ORC} dok $P_{neto,ORC}$ ovisi. Sasvim je jasno da što je veća $P_{neto,ORC}$ da je veća i η_{Kombi} . Iz dijagrama na slici 13. vidljivo je da $P_{neto,ORC}$ raste do vrijednosti p_{ORC} od 10 bar nakon čega pada pri višim tlakovima.

Razlog zašto snaga dobivena na turbini ORC-a pada s porastom p_{ORC} može se objasniti dijagramom na slici 14. Na dijagramu su prikazane vrijednosti specifične snage dobivene na turbini ORC-a, dovedeni specifični toplinski tok ciklusu te maseni protok u ovisnosti o p_{ORC} . Uočava se da porastom p_{ORC} , specifična snaga i specifični toplinski tok rastu, dok maseni protok pada. Kako je snaga jednaka umnošku specifične snage i masenog protoka, jasno je da zbog velikog gradijenta pada masenog protoka dolazi i do pada Pneto, ORC (slika 13.).

Slika 14. Ovisnost spec. snage, spec. toplinskog toka i masenog protoka o radnom tlaku u ORCu (toluen)

Razlog pada masenog protoka u području p_{ORC} do 15 bar, identičan je kao u cijelome području ranog tlaka ORC-a pri temperaturi na ulazu u plinsku turbinu Braytonovog ciklusa od 900 °C gdje pri porastu tlaka, gradijent pada toplinskog toka dovedenog isparivaču veći, nego što je gradijent pada latentne topline $(h_{r5} - h_{r4})$. Zbog toga dolazi do pada masenog protoka povećanjem p_{ORC} . Na dijagramu su prikazani dovedeni toplinski tok od strane Braytonovog ciklusa u isparivaču, specifična latentna toplina toluena $(h_{r5} - h_{r4})$ i maseni protok u ovisnosti o p_{ORC} . Toplina dovedena u isparivaču od iz Braytonovog ciklusa dana je jednadžbom:

$$\dot{Q}_{isp} = q_m (h_{11} - h_{12}) \tag{5.3}$$

Entalpija h_{11} ne ovisi o p_{ORC} , dok entalpija h_{12} ovisi o iznosu zadane pinch temperature i p_{ORC} . Toplina koju radni medij primi u ORC-u u isparivaču dana je jednadžbom:

$$\dot{Q}_{isp} = q_{mr}(h_{r5} - h_{r4}) \tag{5.4}$$

Temperatura T_{12} , o kojoj ovisi entalpija h_{12} , ovisna je o temperaturi T_{r4} . Veza te dvije veličine dana je jednadžbom:

$$T_{12} = T_{r4} + \Delta T_{pp} \tag{5.5}$$

gdje je ΔT_{pp} pinch temperatura isparivača.

Za viši p_{ORC} , viša je i temperatura zasićenja T_{r4} a prema tome viša je temperatura T_{12} iz čega slijedi i viša entalpija h_{12} . Prema jednadžbi (5.3) slijedi da se povećanjem entalpije h_{12} smanjuje izmijenjena toplina u isparivaču. Također, porastom p_{ORC} , smanjuje se latentna toplina isparavanja radnog medija ($h_{r5} - h_{r4}$). Maseni protok ORC-a računa se jednadžbom:

$$q_{mr} = \frac{\dot{Q}_{isp}}{(h_{r5} - h_{r4})}$$
(5.6)

Iz dijagrama na slici 15. može se zaključiti da pri porastu tlaka ORC-a, gradijent pada toplinskog toka dovedenog isparivaču veći, nego što je gradijent pada latentne topline $(h_{r5} - h_{r4})$. Iz toga proizlazi pad masenog protoka povećanjem p_{ORC} .

Slika 15. Ovisnost masenog protoka, toplinskog toka isparivača i latentne topline o radnom tlaku ORC-a (toluen)

Termodinamička iskoristivost pri Tul=1400°C 0.65 0.6 Termodinamička iskoristivost Brayton 0.55 ORC Kombinirano 0.5 0.45 0.4 0.35 0.3 0.25 0.2 5 10 15 20 25 30 ORC tlak, bar

U slučaju kada je temperatura na ulazu u plinsku turbinu Braytonovog ciklusa 1400 °C, η_{ORC} i η_{Kombi} rastu s porastom p_{ORC} kako je i vidljivo iz dijagrama na slici 16.

Slika 16. Ovisnost termodinamičkih iskoristivosti o radnom tlaku u ORC-u (toluen)

Termodinamička iskoristivost kombiniranog procesa η_{Kombi} prelazi 60 % za temperaturu na ulazu u plinsku turbinu od 1400 °C, dok za temperaturu 900 °C η_{Kombi} ne prelazi 50 %. Dijagram na slici 17. prikazuje ovisnost dovedenog toplinskog toka, dobivene snage na parnoj turbini i maseni protok ORC-a u ovisnosti o p_{ORC} . Iz dijagrama je vidljivo da dovedeni toplinski tok ORC-u i snaga generirana na turbini rastu porastom tlaka. Maseni protok ORC-a pada do tlaka 15 bar, a nakon toga raste daljnjim porastom tlaka.

Slika 17. Ovisnost snage, toplinskog toka i masenog protoka o radnom tlaku u ORC-u (toluen)

U usporedbi sa slučajem gdje je temperatura na ulazu u plinsku turbinu 900 °C, ovdje snaga ne pada porastom tlaka ORC-a. Iako u području p_{ORC} do 15 bara, maseni protok pada, snaga raste. To se objašnjava dijagramom 18. gdje su prikazane su ovisnosti specifične snage, specifičnog toplinskog toka i masenog protoka ORC-a u ovisnosti o p_{ORC} . Utjecaj pada masenog protoka znatno je manji od utjecaja specifične snage, stoga raste i ukupna snaga u tome području.

Razlog pada masenog protoka u području p_{ORC} do 15 bar, identičan je kao u cijelome području ranog tlaka ORC-a pri temperaturi na ulazu u plinsku turbinu Braytonovog ciklusa od 900 °C gdje pri porastu tlaka, gradijent pada toplinskog toka dovedenog isparivaču veći, nego što je gradijent pada latentne topline ($h_{r5} - h_{r4}$). Dijagramom na slici 19. prikazano je ponašanje latentne topline, toplinskog toka dovedenog isparivaču od strane Braytonovog ciklusa i masenog protoka u ovisnosti o p_{ORC} .

Slika 18. Ovisnost spec. snage, spec. toplinskog toka i masenog protoka o radnom tlaku u ORCu (toluen)

Slika 19. Ovisnost masenog protoka, toplinskog toka isparivača i latentne topline o radnom tlaku ORC-a (toluen)

Termodinamička iskoristivost kombiniranog postrojenja η_{Kombi} u ovisnosti o temperaturi na ulazu u plinsku turbinu i p_{ORC} prikazana je dijagramom na slici 20. Vidljivo je kako postrojenje postiže najveću iskoristivost pri temperaturi na ulazu u plinsku turbinu 1400 °C i p_{ORC} 30 bar. Ispod temperature na ulazu u turbinu od 1050 °C postoji maksimum η_{Kombi} pri nekom p_{ORC} koji je manji od 30 bar, dok za temperaturu iznad 1050 °C maksimalan η_{Kombi} se postiže pri tlaku od 30 bar.

Slika 20. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlaku ORC-a i temperaturi na ulazu u plinsku turbinu Braytonovog ciklusa (toluen)

Dijagramima na slikama 21. i 22. prikazane su ovisnosti termodinamičke iskoristivosti kombiniranog postrojenja o p_{ORC} i temperaturi pinch točke u isparivaču. Dijagram na slici 21. prikazuje ovisnost kada je temperatura na ulazu u plinsku turbinu 900 °C, te je iz njega vidljivo da je najveća η_{Kombi} pri p_{ORC} 10 bar i temperaturi pinch točke 5 °C. Razlog zašto je najveća η_{Kombi} pri tlaku 10 bar objašnjena je prethodno i prikazano dijagramom na slici 12. Rast termodinamičke iskoristivosti kombiniranog postrojenja pri nižim temperaturama pinch točke dolazi zbog veće termodinamičke iskoristivosti ORC-a. Nižom temperaturom pinch točke više je topline izmijenjeno u isparivaču pa prema tome radni medij ORC-a je primio više topline, te se zbog toga dobiva i veća snaga na turbini.

Slika 21. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlaku ORC-a i temperaturi pinch točke u isparivaču (toluen)

Pri temperaturi na ulazu u plinsku turbinu 1400 °C, η_{Kombi} raste porastom p_{ORC} i pri nižim temperaturama pinch točke. Rast zbog povećanja tlaka prethodno je objašnjen i prikazan dijagramom na slici 16. Utjecaj temperature pinch točke identičan je kao i u slučaju temperature na ulazu u plinsku turbinu 900 °C.

Slika 22. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlaku ORC-a i temperaturi pinch točke u isparivaču (toluen)

5.2. Aceton kao radni medij u ORC-u

Analiza rezultata s acetonom kao radnom tvari prikazana je i opisana u ovome poglavlju. Na slici 23. prikazan je dijagram ovisnosti termodinamičke iskoristivosti Braytonovog, ORC i kombiniranog ciklusa o p_{ORC} pri temperaturi na ulazu u plinsku turbinu 900 °C. Simulacija je provedena za tlakove u rasponu od 5 do 30 bar u ORC-u i 15 bar u Braytonovom ciklusu kao i za slučaj toluena.

Termodinamička iskoristivost pri Tul=900°C

Slika 23. Ovisnost termodinamičkih iskoristivosti o radnom tlaku u ORC-u (aceton)

Iz dijagrama je vidljivo da sve tri iskoristivosti rastu porastom p_{ORC} . Dijagram na slici 24. prikazuje ovisnost masenog protoka, dobivene snage i dovedenog toplinskog toka ORC-a u ovisnosti o p_{ORC} . Iz dijagrama je vidljivo da snaga i toplinski tok rastu porastom p_{ORC} . Međutim maseni protok pada pri o p_{ORC} nižem od 15 bar, nakon čega raste. Pad masenog protoka događa se iz istog razloga kao i slučaju gdje je toluen radni medij.

Slika 24. Ovisnost snage, toplinskog toka i masenog protoka o radnom tlaku u ORC-u (aceton)

Slika 25. Ovisnost spec. snage, spec. toplinskog toka i masenog protoka o radnom tlaku u ORCu (aceton)

Na slici 25. dijagramom je prikazana ovisnost masenog protoka, specifične snage i specifičnog toplinskog toka o p_{ORC} . Gradijent pada masenog protoka manji je od gradijenta porasta specifične snage pa prema tome snaga raste s porastom p_{ORC} . Razlog pada masenog protoka u području p_{ORC} do 15 bar, identičan je kao u cijelome području radnog tlaka ORC-a za toluen kao radni medij, pri T_{ul} 900 °C. Porastom tlaka, gradijent pada toplinskog toka dovedenog isparivaču je veći, nego što je gradijent pada latentne topline $(h_{r5} - h_{r4})$ (jednadžba 5.6). Zbog toga dolazi do pada masenog protoka povećanjem p_{ORC} . Dijagramom na slici 26. prikazana je ovisnost toplinskog toka dovedenog isparivaču, latentne topline $(h_{r5} - h_{r4})$ i masenog protoka o p_{ORC} .

Slika 26. Ovisnost masenog protoka, toplinskog toka isparivača i latentne topline o radnom tlaku ORC-a (aceton)

Slika 27. prikazuje dijagram ovisnosti η_{Kombi} , η_B i η_{ORC} o p_{ORC} . U usporedbi sa slučajem gdje je T_{ul} 900 °C, termodinamička iskoristivost svih triju ciklusa postiže mnogo bolje rezultate. Iz dijagrama je vidljivo kako ona doseže čak 60 % pri tlaku p_{ORC} od 30 bar. Na slici 28. prikazan je dijagram gdje snaga, toplinski tok te maseni protok rastu porastom p_{ORC} .

Slika 27. Ovisnost termodinamičkih iskoristivosti o radnom tlaku u ORC-u (aceton)

Slika 28. Ovisnost snage, toplinskog toka i masenog protoka o radnom tlaku u ORC-u (aceton)

Dijagram na slici 29. prikazuje ovisnost specifičnog toplinskog toka, masenog protoka i snage u ORC-u o p_{ORC} . Sve tri veličine rastu porastom p_{ORC} . Dijagramom na slici 28. prikazano je ponašanje latentne topline, toplinskog toka dovedenog isparivaču od strane Braytonovog ciklusa i masenog protoka u ovisnosti o p_{ORC} . Iz dijagrama je vidljivo kako na cijelom području masni protok raste cijelim područjem povećanja tlaka p_{ORC} , što nije slučaj kada je T_{ul} =900 °C.

Specifična snaga i specifični dovedeni toplinski tok pri Tul=1400°C

Slika 29. Ovisnost spec. snage, spec. toplinskog toka i masenog protoka o radnom tlaku u ORCu (aceton)

Slika 30. Ovisnost masenog protoka, toplinskog toka isparivača i latentne topline o radnom tlaku ORC-a (aceton)

Slika 31. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlaku ORC-a i temperaturi na ulazu u plinsku turbinu Braytonovog ciklusa (aceton)

Termodinamička iskoristivost kombiniranog postrojenja η_{Kombi} u ovisnosti o temperaturi na ulazu u plinsku turbinu i p_{ORC} prikazana je dijagramom na slici 31. Vidljivo je kako postrojenje postiže najveću iskoristivost pri temperaturi na ulazu u plinsku turbinu 1400 °C i p_{ORC} 30 bar.

Slika 32. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlaku ORC-a i temperaturi pinch točke u isparivaču (aceton)

Dijagramima na slikama 32. i 33. prikazane su ovisnosti termodinamičke iskoristivosti kombiniranog postrojenja o p_{ORC} i temperaturi pinch točke u isparivaču. Prvi dijagram prikazuje ovisnost pri temperaturi T_{ul} =900 °C, a drugi T_{ul} =1400 °C. Iz oba dijagrama je vidljivo kako termodinamička iskoristivost η_{Kombi} je najviša pri višim tlakovima p_{ORC} i nižom temperaturom pinch točke.

Slika 33. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlaku ORC-a i temperaturi pinch točke u isparivaču (aceton)

5.3. Cikloheksan kao radni medij u ORC-u

Analiza rezultata s cikloheksanom kao radnom tvari prikazani su i opisani u ovome poglavlju. Simulacija je provedena za tlakove u rasponu od 5 do 30 bar u ORC-u i 15 bar u Braytonovom ciklusu kao i za slučaj toluena i acetona.

Slika 34. Ovisnost termodinamičkih iskoristivosti o radnom tlaku u ORC-u (cikloheksan)

Na slici 34. prikazana je ovisnost termodinamičke iskoristivosti Braytonovog, ORC i kombiniranog ciklusa o p_{ORC} pri temperaturi na ulazu u plinsku turbinu T_{ul} =900 °C. Vidljivo je kako je η_{Kombi} viša u usporedbi sa slučajem kada su radni mediji u ORC-u toluen i aceton pri T_{ul} =900 °C. Dovedeni toplinski tok, snaga i maseni protok u ovisnosti o p_{ORC} ponašaju se vrlo slično kao i kada je radni medij toluen, a to se može vidjeti na slici 35. Razlika je u tome što maseni protok doseže najmanju vrijednost pri tlaku od oko 23 bar. Ponašanje specifičnog toplinskog toka, specifične snage, latentne topline i toplinskog toka isparivača u ovisnosti o p_{ORC} , za T_{ul} =900 °C, prikazano je dijagramima na slikama 36 i 37.

Slika 35. Ovisnost snage, toplinskog toka i masenog protoka o radnom tlaku u ORC-u (cikloheksan)

Slika 36. Ovisnost spec. snage, spec. toplinskog toka i masenog protoka o radnom tlaku u ORCu (cikloheksan)

Slika 37. Ovisnost masenog protoka, toplinskog toka isparivača i latentne topline o radnom tlaku ORC-a (cikloheksan)

Slika 38. Ovisnost termodinamičkih iskoristivosti o radnome tlaku u ORC-u (cikloheksan)

Na slici 38 prikazana je ovisnost termodinamičke iskoristivosti Braytonovog, ORC i kombiniranog ciklusa o p_{ORC} pri temperaturi na ulazu u plinsku turbinu T_{ul} 1400 °C. Vidljivo je kako η_{Kombi} pri T_{ul} =1400 °C doseže čak 65 % za tlak p_{ORC} =30 bar. Može se zaključiti da cikloheksan postiže najveću termodinamičku iskoristivost kombiniranog postrojenja η_{Kombi} u usporedbi s acetonom i toluenom. Iz dijagrama na slici 39 vidljivo je kako se snaga, toplinski tok i maseni protok ORC-a ponašaju vrlo slično kao i kada je aceton radni medij. To se može zaključiti i iz dijagrama na slikama 40 i 41 gdje su prikazane ovisnosti masenog protoka, specifičnog toplinskog toka, specifične snage, toplinskog toka isparivača i latentne topline u ovisnosti u p_{ORC} .

Slika 39. Ovisnost snage, toplinskog toka i masenog protoka o radnome tlaku u ORC-u (cikloheksan)

Slika 40. Ovisnost spec. snage, spec. toplinskog toka i masenog protoka o radnome tlaku u ORC-u (cikloheksan)

Slika 41. Ovisnost masenog protoka, toplinskog toka isparivača i latentne topline o radnom tlaku ORC-a (cikloheksan)

Slika 42. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlaku ORC-a i temperaturi na ulazu u plinsku turbinu Braytonovog ciklusa (cikloheksan)

Dijagram na slici 42 prikazuje ovisnosti η_{Kombi} o radnome tlaku p_{ORC} i ulaznoj temperaturi u plinsku turbinu T_{ul} . Iz ovog dijagrama jasno je prikazano kako η_{Kombi} doseže 65 % kada je cikloheksan radni medij u ORC-u.

Dijagramima na slikama 43. i 44. prikazane su ovisnosti termodinamičke iskoristivosti kombiniranog postrojenja o p_{ORC} i temperaturi pinch točke u isparivaču. Prvi dijagram prikazuje ovisnost pri temperaturi T_{ul} =900 °C, a drugi T_{ul} =1400 °C. Iz oba dijagrama je vidljivo kako termodinamička iskoristivost η_{Kombi} je najviša pri višim tlakovima p_{ORC} i nižom temperaturom pinch točke. Ponašanje η_{Kombi} vrlo je slična za slučaj kada je radni medij aceton, no cikloheksan postiže višu η_{Kombi} .

Slika 43. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlaku ORC-a i temperaturi pinch točke u isparivaču (cikloheksan)

Slika 44. Termodinamička iskoristivost kombiniranog postrojenja u ovisnosti o radnom tlaku ORC-a i temperaturi pinch točke u isparivaču (cikloheksan)

6. ZAKLJUČAK

U ovom radu modelirano je kombinirano postrojenje koje se sastoji od Braytonovog plinsko-turbinskog ciklusa i ORC parno-turbinskog ciklusa. Simulacija je provedena za tri organske tvari: toluen, aceton i cikloheksan. Rezultati simulacije prikazuju kako različite organske tvari kao radni mediji u ORC-u se ponašaju pri promjeni parametara:

- Tlaka u ORC-u *p*_{ORC}
- Temperature na ulazu u plinsku turbinu u Braytonovom ciklusu T_{ul}
- Temperature pinch točke u isparivaču ΔT_{pp}

Pri temperaturi T_{ul} =1400 °C, cikloheksan pokazuje najvišu termodinamičku iskoristivost kombiniranog postrojenja od 65 % pri tlaku p_{ORC} od 30 bar. Za istu temperaturu i p_{ORC} =30 bar, η_{Kombi} za toluen iznosi 63 % a za aceton 60 %. Kada je temperatura T_{ul} =900 °C, cikloheksan također ima najvišu η_{Kombi} koja iznosi oko 46 % pri tlaku p_{ORC} 30 bar, dok za aceton iznosi 43 %. Toluen kao radna tvar u ORC-u pri temperaturi T_{ul} =900 °C najvišu termodinamičku iskoristivost ima za tlak p_{ORC} od 10 bar.

LITERATURA

- [1] https://en.wikipedia.org/wiki/Organic_Rankine_cycle
- [2] Andrijević S.: Diplomski rad, Zagreb, 2015.
- [3] Bogdan, Ž.: Termoenergetska postrojenja, Zagreb, 2012.
- [4] https://hr.wikipedia.org/wiki/Termoelektrane
- [5] Galović A.: Termodinamika I, Zagreb, 2008.
- [6] https://www.calnetix.com/access-energy-thermapower-orc-systems
- [7] <u>http://file.scirp.org/Html/4-6401034_3326.htm</u>
- [8] <u>http://studenttimes.fesb.unist.hr/razvojno-istrazivacki-projekt-sigurnija-i-ucinkovitija-kogeneracijska-trigeneracijska-postrojenja/</u>
- [9] Qiu G.:Selection of working fluids for micro-CHP systems with ORC, 2012.
- [10] http://www.enciklopedija.hr/
- [11] https://www.engineeringtoolbox.com/fuels-ignition-temperatures-d_171.html

PRILOZI

I. CD-R disc