Primjena optičkog mjernog sustava za ispitivanje točnosti pozicioniranja i provjeru geometrije alatnog stroja

Horvatek, Marko

Undergraduate thesis / Završni rad

2017

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:900845

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-11

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Marko Horvatek

Zagreb, 2017.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentori:

Doc. dr. sc. Gorana Baršić, dipl. ing.

Student:

Marko Horvatek

Zagreb, 2017

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se asistentima s Katedre za mjerenje i kontrolu, a posebno dr.sc. Vedranu Šimunoviću na svim savjetima i pruženoj pomoći tijekom rada.

Posebno se zahvaljujem tvrtki Topomatika d.o.o. na ustupljenoj opremi bez koje izrada ovog rada nebi bila moguća.

Veliko hvala direktoru tvrtke Tomislavu Hercigonji, te zaposlenicima Marku Horvatu, te posebno dr.sc. Nenadu Drvaru na nesebičnoj pomoći i savjetima oko izrade rada.

Najveće hvala mojoj djevojci Ivani na konstantnoj potpori i motivaciji tijekom izrade ovog rada.

Marko Horvatek

SVEUČILIŠTE U ZAGREBU

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za završne ispite studija strojarstva za smjerove:

proizvodno inženjerstvo, računalno inženjerstvo, industrijsko inženjerstvo i menadžment, inženjerstvo materijala i mehatronika i robotika

Sveučilište u Zagrebu				
Fakultet strojarstva i brodogradnje				
Datum Prilog				
Klasa:				
Ur.broj:				

ZAVRŠNI ZADATAK

Student:

Marko Horvatek

Mat. br.: 0035195667

Naslov rada na hrvatskom jeziku: Naslov rada na engleskom jeziku: Opis zadatka:

Primjena optičkog mjernog sustava za ispitivanje točnosti pozicioniranja i provjeru geometrije alatnog stroja Use of optical measurement system for positioning accuracy testing and geometry verification of the machine tool

Ispitivanje točnosti pozicioniranja i provjera geometrije alatnog stroja uobičajeni je dio održavanja, te nezaobilazan postupak pri nabavki novog ili rabljenog alatnog stroja. Ovim postupcima provjerava se ispunjava li alatni stroj zahtjeve propisane od proizvođača. Postupci potrebnih mjerenja propisani su normama obitelji ISO 230. Za provedbu mjerenja koristi se čitav niz mjernih uređaja, od ručnih mjerila do vrlo preciznih laserskih interferencijskih mjernih sustava. Razvojem optičkih mjernih sustava ukazala se mogućnost provedbe potrebnih mjerenja primjenom samo jednog mjernog uređaja. Cilj ovog završnog rada je dokazati opravdanost primjene optičkih mjernih sustava pri ispitivanju alatnih uređaja. U okviru završnog rada student ima sljedeće zadatke:

- 1. Opisati značajke numerički upravljanog alatnog stroja.
- 2. Opisati značajke optičkog mjernog uređaja.
- 3. Provesti mjerenja točnosti pozicioniranja alatnog stroja prema zahtjevima norme ISO 230-2:2006
- 4. Prema normi ISO 230-1:2012 odabrati barem dvije geometrijske značajke i izraditi plan mjerenja.
- 5. Provesti mjerenja geometrijskih značajki.
- 6. Analizirati mjerne rezultate i opisati prednosti i nedostatke mjernog postupka.

Zadatak zadan: 24. travnja 2017.

Zadatak zadao:

Doc. dr. sc. Gorana Baršić

Rok predaje rada: 2. rok (izvanredni): 28. lipnja 2017. 3. rok: 22. rujna 2017.

Predvideni datumi obrane: 2. rok (izvanredni): 30. 06. 2017. 3. rok: 25.9. - 29. 09. 2017.

Predsjednik Povjerenstva:

Izv. prof. dr. sc. Branko Bauer

SADRŽAJ

1. U	UVOD		. 1
1.1	1. 00	NC glodalicama	2
1.2	2. NC	/CNC upravljanje	2
2.	CNC glo	dalica LEO 9050	3
2	1 One	se karakteristike	3
2.1	1. Opt 2. Uni	ravliački programi za CNC glodalicu	5
2.3	2. Upi 3. Uni	avljačka jedinica	. 6
2.4	4. Sus	tav posmičnog gibania	7
2.5	5. Lin	earni ležajevi	10
2	MEDNI		10
5. T			12
3.	$\begin{array}{ccc} 1. & Poo\\ 2 & Oar \end{array}$	jela mjernih metoda	12
3.4	2.051	Este grometrice	13
	3.2.1.	Triongulacija	15 17
3 3	3.2.2. 3 Ras	noloživi sustavi za ontička 3D mierenja	15
5	3. Ras	Oncenito o tvrtki Tonomatika d o o	15
	332	ATOS Triple Scan	16
	333	ATOS Compact Scan	17
	3.3.4.	ATOS Core	19
	3.3.5.	TRITOP	21
	226	Odebia mililada og 2D akonoro	22
	5.5.0.		
4. I	9.9.0. PLANIR	ANJE MJERENJA	22
4. H	S.S.O. PLANIR 1 Prin	ANJE MJERENJA	23 23
4. I 4.1 4.2	5.5.0. PLANIR 1. Priț 2. Par	ANJE MJERENJA	23 23 24
4. H 4.1 4.2 4.3	PLANIR 1. Priț 2. Par 3. Tije	ANJE MJERENJA orema za mjerenja ametri i režim rada	23 23 23 24 24
4. H 4.1 4.2 4.3	9.3.3.0. PLANIR 1. Priț 2. Par 3. Tije 4.3.1.	ANJE MJERENJA orema za mjerenja ametri i režim rada ek ispitivanja Pokusno mjerenje uz korištenje skenera ATOS Core 500	23 23 24 24 24 28
4. H 4.1 4.2 4.3	9.3.3.0. PLANIR 1. Priț 2. Par 3. Tije 4.3.1. 4.3.2.	ANJE MJERENJA orema za mjerenja ametri i režim rada ek ispitivanja Pokusno mjerenje uz korištenje skenera ATOS Core 500 Pokusno mjerenje koristeći skener ATOS Compact Scan	23 23 24 24 24 28 29
4. H 4.1 4.2 4.3	 PLANIR PLANIR Prip Pario Tije 4.3.1. 4.3.2. 4.3.3. 	ANJE MJERENJA orema za mjerenja ametri i režim rada ek ispitivanja Pokusno mjerenje uz korištenje skenera ATOS Core 500 Pokusno mjerenje koristeći skener ATOS Compact Scan Pokusno mjerenje koristeći skener ATOS Triple Scan	23 23 24 24 24 28 29 30
4. H 4.1 4.2 4.3	 S.S.O. PLANIR Prip Par Tije 4.3.1. 4.3.2. 4.3.3. REZULT 	ANJE MJERENJA orema za mjerenja ametri i režim rada ek ispitivanja Pokusno mjerenje uz korištenje skenera ATOS Core 500 Pokusno mjerenje koristeći skener ATOS Compact Scan Pokusno mjerenje koristeći skener ATOS Triple Scan	23 23 24 24 24 28 29 30 31
 4. H 4.1 4.2 4.3 5. H 5. H 	PLANIR 1. Prip 2. Par 3. Tije 4.3.1. 4.3.2. 4.3.3. REZULT 1. Par	ANJE MJERENJA orema za mjerenja	23 23 24 24 24 28 29 30 31 31
 4. H 4.1 4.2 4.3 5. H 5.1 5.1 	PLANIR 1. Prip 2. Par 3. Tije 4.3.1. 4.3.2. 4.3.3. REZULT 1. Rez	ANJE MJERENJA orema za mjerenja	23 23 24 24 24 28 29 30 31 31 35
 4. H 4.1 4.2 4.3 5. H 5.1 5.2 5.3 	PLANIR 1. Prip 2. Par 3. Tije 4.3.1. 4.3.2. 4.3.3. REZULT 1. Rez 2. Rez 3. Geo	ANJE MJERENJA orema za mjerenja ametri i režim rada ek ispitivanja Pokusno mjerenje uz korištenje skenera ATOS Core 500 Pokusno mjerenje koristeći skener ATOS Compact Scan Pokusno mjerenje koristeći skener ATOS Triple Scan TATI ISPITIVANJA fultati pozicioniranja po X osi posi posi	23 23 24 24 28 29 30 31 31 35 39
 4. H 4.1 4.2 4.3 5. H 5.1 5.2 5.2 5.4 	PLANIR 1. Prip 2. Par 3. Tije 4.3.1. 4.3.2. 4.3.3. REZULT 1. Rez 2. Rez 3. Geo 4. Rez	ANJE MJERENJA orema za mjerenja	23 23 24 24 28 29 30 31 31 35 39 40
 4. H 4.1 4.2 4.2 4.3 5. H 5.1 5.2 5.4 	 PLANIR PLANIR Prip Par Tije 4.3.1. 4.3.2. 4.3.3. REZULI REZULI Rez Rez Rez Geo Rez 5.4.1. 	ANJE MJERENJA ametri i režim rada ametri i režim rada ek ispitivanja. Pokusno mjerenje uz korištenje skenera ATOS Core 500 Pokusno mjerenje koristeći skener ATOS Compact Scan Pokusno mjerenje koristeći skener ATOS Triple Scan. FATI ISPITIVANJA cultati pozicioniranja po X osi cultati pozicioniranja po Y osi cultati pozicioniranja po Y osi cultati pravocrtnosti osi X. Pravocrtnost u smjeru osi Y	23 23 24 24 28 29 30 31 31 35 39 40 40
 4. H 4.1 4.2 4.3 5. H 5.1 5.2 5.4 	 PLANIR PLANIR Prip Pario Tije 4.3.1. 4.3.2. 4.3.3. REZULT Rez Rez Rez Geo Rez 5.4.1. 5.4.2. 	ANJE MJERENJA porema za mjerenja ametri i režim rada ametri i režim rada ek ispitivanja Pokusno mjerenje uz korištenje skenera ATOS Core 500 Pokusno mjerenje koristeći skener ATOS Compact Scan Pokusno mjerenje koristeći skener ATOS Triple Scan FATI ISPITIVANJA rultati pozicioniranja po X osi pometrijske značajke stroja rultati pravocrtnosti osi X Pravocrtnost u smjeru osi Z	23 23 24 24 28 29 30 31 31 35 39 40 40 40
 4. H 4.1 4.2 4.3 5. H 5.1 5.2 5.4 	PLANIR PLANIR 1. Prip 2. Par 3. Tije 4.3.1. 4.3.2. 4.3.3. REZULT 1. Rez 2. Rez 3. Geo 4. Rez 5.4.1. 5.4.2. 5. Rez	ANJE MJERENJA prema za mjerenja ametri i režim rada ek ispitivanja Pokusno mjerenje uz korištenje skenera ATOS Core 500 Pokusno mjerenje koristeći skener ATOS Compact Scan Pokusno mjerenje koristeći skener ATOS Triple Scan FATI ISPITIVANJA cultati pozicioniranja po X osi cultati pozicioniranja po Y osi pravocrtnosti osi X Pravocrtnost u smjeru osi Z ultati pravocrtnosti osi X	23 23 24 24 28 29 30 31 31 35 39 40 40 43 45
 4. H 4.1 4.2 4.3 5. H 5.1 5.2 5.4 5.5 	PLANIR 1. Prip 2. Par 3. Tije 4.3.1. 4.3.2. 4.3.3. REZULT 1. Rez 2. Rez 3. Geo 4. Rez 5.4.1. 5.4.2. 5. Rez 5.5.1.	ANJE MJERENJA prema za mjerenja ametri i režim rada ek ispitivanja Pokusno mjerenje uz korištenje skenera ATOS Core 500 Pokusno mjerenje koristeći skener ATOS Compact Scan Pokusno mjerenje koristeći skener ATOS Triple Scan FATI ISPITIVANJA rultati pozicioniranja po X osi pometrijske značajke stroja pravocrtnosti osi X Pravocrtnost u smjeru osi Z pravocrtnost u smjeru osi X	23 23 24 24 28 29 30 31 31 35 39 40 40 43 45 45
 4. H 4.1 4.2 4.3 5. H 5.1 5.2 5.2 5.4 	PLANIR 1. Prip 2. Pari 3. Tije 4.3.1. 4.3.2. 4.3.3. REZULT 1. Rez 2. Rez 3. Geo 4. Rez 5.4.1. 5.4.2. 5. Rez 5.5.1. 5.5.2.	ANJE MJERENJA prema za mjerenja ametri i režim rada ametri i režim rada ek ispitivanja Pokusno mjerenje uz korištenje skenera ATOS Core 500 Pokusno mjerenje koristeći skener ATOS Compact Scan Pokusno mjerenje koristeći skener ATOS Triple Scan Pokusno mjerenje koristeći skener ATOS Triple Scan CATI ISPITIVANJA cultati pozicioniranja po X osi cultati provicioniranja po Y osi cultati pravocrtnosti osi X Pravocrtnost u smjeru osi Z cultati pravocrtnost i osi Y Pravocrtnost u smjeru osi Z Pravocrtnost u smjeru osi Z	223 23 24 24 28 29 30 31 31 35 39 40 40 43 45 45 48
 4. H 4.1 4.2 4.3 5. H 5.1 5.2 5.2 5.4 5.6 	PLANIR 1. Prip 2. Par 3. Tije 4.3.1. 4.3.2. 4.3.3. REZULT 1. Rez 2. Rez 3. Geo 4. Rez 5.4.1. 5.4.2. 5. Rez 5.5.1. 5.5.2. 6. Kut	ANJE MJERENJA ametri i režim rada ametri i režim rada Pokusno mjerenje uz korištenje skenera ATOS Core 500 Pokusno mjerenje koristeći skener ATOS Compact Scan Pokusno mjerenje koristeći skener ATOS Triple Scan Pokusno mjerenje koristeći skener ATOS Triple Scan TATI ISPITIVANJA multati pozicioniranja po X osi metrijske značajke stroja multati pravocrtnosti osi X Pravocrtnost u smjeru osi Y Pravocrtnost u smjeru osi Z multati pravocrtnost u smjeru osi Z multati pravocrtnost u smjeru osi Z me greške vođenja	23 23 24 24 28 29 30 31 31 35 39 40 40 43 45 45 48 50
 4. H 4.1 4.2 4.2 4.3 5. H 5.1 5.2 5.4 5.4 5.6 	 PLANIR PLANIR Prip Pari Tije 4.3.1. 4.3.2. 4.3.3. REZULT Rez Rez Rez S. Rez 5.4.1. S. Rez 5.5.1. 5.5.2. Kut 5.6.1. 	Odabi prikladnog SD skellera ANJE MJERENJA porema za mjerenja ametri i režim rada ek ispitivanja Pokusno mjerenje uz korištenje skenera ATOS Core 500 Pokusno mjerenje koristeći skener ATOS Compact Scan Pokusno mjerenje koristeći skener ATOS Triple Scan FATI ISPITIVANJA rultati pozicioniranja po X osi sultati pozicioniranja po Y osi ometrijske značajke stroja ultati pravocrtnosti osi X Pravocrtnost u smjeru osi Z rultati pravocrtnosti osi X Pravocrtnost u smjeru osi Z rultati pravocrtnost u smjeru osi X Pravocrtnost u smjeru osi Z ne greške vođenja No si X	23 23 24 24 28 29 30 31 31 35 39 40 40 43 45 45 45 50 51
 4. H 4.1 4.2 4.3 5. H 5.1 5.2 5.2 5.4 5.6 	 PLANIR PLANIR Prip Pari Tije 4.3.1. 4.3.2. 4.3.3. REZULT Rez Rez Rez S.4.1. S.4.2. Rez S.5.1. S.5.2. Kut S.6.1. S.6.2. 	Odabi prikladnog SD skellera ANJE MJERENJA porema za mjerenja	23 23 24 24 28 29 30 31 31 35 39 40 40 43 45 45 45 51 51

Ма	urko Horvatek	Završni rad
6.	ZAKLJUČAK	

IKA	
Vertikalna portalna glodalica [4]	3
Sučelje LinuxCNC [5]	5
Sučelje Mach3 [5]	6
Paralelno sučelje [16]	7
JP-6445A modul za upravljanje koračnim motorima [17]	8
Dimenzije SBR20 sustava ležajeva [9]	10
Specifikacije sustava kliznih ležaja THK RSR12 [10]	11
Podiela miernih metoda s obzirom na način definicije mierne točke [11]	12
Styaranie 3D prikaza iz niza fotografija [12]	13
Triangulacija položaja točke P primjenom dvije kamere [13]	14
Grafički prikaz dielatnosti klastera 3D grupe [18]	16
A TOS Trinlo Soon [19]	17
ATOS Compact Scan [10]	1 / 10
ATOS Compact Scall [19]	10
ATUS CORE [22]	20
	21
LEO 9050 pozicioniran na pod mjernog labortorija u Topomatici	23
Redoslijed pozicija pri ispitivanju točnosti pozicioniranja prema normi ISO 23	50-
2:2014 [21]	25
Praćene referentne točke na stroju	26
Korišteni adapteri	27
Smjerovi koordinatnih osi u programu ARAMIS Professional 2017	27
Praćenje pomaka pomoću skenera ATOS Core 500	29
Mjerno područje skenera ATOS Compact Scan 1200	30
Greške pozicioniranja u pozitivnom i negativnom smjeru osi X	32
Dvosmjerna greška pozicioniranja osi X	33
Vrijednosti točnosti pozicioniranja po osi X	34
Greške pozicioniranja u pozitivnom i negativnom smjeru osi Y	36
Dvosmjerna greška pozicioniranja osi X	37
Vrijednosti točnosti pozicioniranja po osi Y	38
Primier pomaka po osima X. Y i Z prilikom pomicania stroja	
Rasipanje vrijednosti pomaka pri 5 ponavljanja iz oba smjera	41
Usporedba prosiečnih vrijednosti odstupanja od pravocrtnosti iz dva smjera	1
nozicionirania	41
Rasinanie vrijednosti pomaka nakon ispravka pravcem naimanijih kvadrata	42
Rasipanje vrijednosti pomaka nri 5 ponavljanja iz oba smjera	+2 //3
Usporedba prosječnih vrijednosti odstupanja od pravocrtnosti iz dva smjera	דט
pozicioniranja	
Rasinanie vrijednosti pomaka nakon ispravka pravcem naimanijih kvadrata	44
Rasipanje vrijednosti pomaka pri 5 ponavljanja iz oba smjera	46
Usporedba prosiečnih vrijednosti odstupanja od pravocrtnosti iz dva smjera	10
pozicioniranja	47
Rasipanje vrijednosti pomaka nakon ispravka pravcem najmanjih kvadrata	47
Rasipanje vrijednosti pomaka pri 5 ponavljanja iz oba smjera	48
Usporedba prosječnih vrijednosti odstupanja od pravocrtnosti iz dva smjera	
pozicioniranja	49
Rasipanje vrijednosti pomaka nakon ispravka pravcem naimaniih kvadrata	49
Prikaz kutnih greški u programu ARAMIS 2017	50
	 KA Vertikalna portalna glodalica [4]

POPIS TABLICA

Tablica 1.	Karakteristike glodalice [2]	4
Tablica 2	Specifikacije Ametek HY200 koračnog motora [14]	8
Tablica 3	Specifikacije LIN 5718M koračnog motora [15]	9
Tablica 4	Propisane točnosti pozicioniranja stroja LEO 9050 [2]	9
Tablica 5	Duljina vodilica	10
Tablica 6	Tehničke karakteristike ATOS Triple Scan sustava [18]	17
Tablica 7	Karakteristike ATOS Compact Scan sustava [18]	18
Tablica 8	Karakteristike ATOS Core 500 sustava [18]	20
Tablica 9	Karakteristike TRITOP sustava [18]	22
Tablica 10	Propisani režimi rada pri ispitivanju točnosti za stroj LEO 9050	24
Tablica 11	Propisani parametri pri ispitivanju točnosti za stroj LEO 9050	24
Tablica 12	Pozicije po osima na kojima se izvodi mjerenje točnosti pozicioniranja	25
Tablica 13	Parametri pri ispitivanju točnosti pozicioniranja X osi	31
Tablica 14	Parametri pri ispitivanju točnosti pozicioniranja Y osi	35
Tablica 15	Parametri pri ispitivanju pravocrtnosti osi X	40
Tablica 16	Odstupanje od pravocrtnosti X osi u smjeru Y osi	42
Tablica 17	Odstupanje od pravocrtnosti X osi u smjeru Z osi	44
Tablica 18	Parametri pri ispitivanju pravocrtnosti osi Y	45
Tablica 19	Odstupanje od pravocrtnosti Y osi u smjeru X osi	47
Tablica 20	Odstupanje od pravocrtnosti Y osi u smjeru Z osi	49
Tablica 21	Rezultati kutne greške vođenja po osi X	51
Tablica 22	Rezultati kutne greške vođenja po osi Y	51
Tablica 23	Dopuštena i izmjerena odstupanja od položaja za alatni stroj LEO 9050	52
Tablica 24	Dopuštena i izmjerena odstupanja od pravocrtnosti za alatni stroj LEO 9050	52

SAŽETAK

Ukoliko želimo odrediti točnost alatnog stroja, potrebno je provesti provjeru točnosti pozicioniranja i provjeru geometrijskih značajki toga stroja. Tradicionalno korišteni uređaji su komparatori, libele, te laserski mjerni sustavi.

Posljednjih godina zabilježen je izrazit rast u primjeni tehnologija optičkog 3D skeniranja u svim granama industrije. Tomu je pridonio ubrzani razvoj računalne industrije kao i sve precizniji optički sustavi. Time je omogućena primjena optičkih mjernih sustava u mnogim do sad nekorištenim područjima.

U ovom radu dati će se alternativa klasičnom načinu provjere točnosti CNC strojeva uz pomoć 3D digitalizatora tvrtke GOM. U radu će biti opisan način rada sustava, te će se na konkretnom primjeru provjeriti točnost pozicioniranja i geometrijske značajke CNC glodalice uz pomoć 3D digitalizatora.

SUMMARY

In case when accuracy determination of tooling machine is needed, it is necessary to perform test of positioning of numerically controlled axis as well as geometrical accuracy tests. Traditionally used equipment for this operations are comparators, levels and laser measurement systems.

In the past couple of years there have been records of the exponentially increased use of optical 3D scanning technologies in all branches of the industry. These changes have been caused by the rapid development of the computer industry, which has been followed by increased accuracy of optical 3D scanning systems. That way new applications of optical measurement systems have been made possible.

In this assignment an alternative way of testing, CNC machine accuracy, using GOM 3D optical measurement equipment will be presented. Along with the explanation of the equipment's function, a series of tests measuring the CNC mill parameters will be performed.

1. UVOD

Konstruiranje i izrada novog CNC stroja dugotrajan je i zahtjevan posao. Postupak započinje konstruktorom koji dizajnira izgled stroja, određuje komponente od kojih će se on sastojati, te definira njegovu funkcionalnost. Konstrukcijska rješenja uvelike ovise o iskustvu i viziji samog konstruktora, te je često moguće vidjeti strojeve naizgled sličnih komponenti kojima se karakteristike uvelike razlikuju.

Osim samih konstrukcijskih rješenja, na kvalitetu, dugotrajnost i konačno na samu točnost stroja uvelike utječe i nesavršenost materijala, kao i rad tehničara koji stroj sastavlja.

Uz velik broj parametara o kojima ovisi konačno ponašanje novog CNC stroja, ne možemo sa sigurnošću tvrditi njegovu konačnu točnost iz samog proračuna, bez konkretnog ispitivanja sastavljenog stroja.

Ovim radom će se predstaviti mogućnost provjere pozicioniranja i geometrijskih značajke CNC stroja uz korištenje tehnologije optičkog 3D skeniranja. Pri tome će biti korišten GOM-ov 3D digitalizator serije ATOS, a provjeravani stroj će biti glodalica LEO 9050. Provjeravati će se točnost pozicioniranja X i Y osi, te dvije geometrijske značajke stroja. Mjerenja se provođe na zahtjev konstruktora stroja, čiji je zahtjev ispitati točnost pozicioniranja, pravocrtnost osi X i Y, te njihove kutne pogreške vođenja. Postupak provođenja mjerenja gdje god je moguće slijedi obitelj normi ISO 230 [21], no s obzirom na upotrebu mjerne opreme koja koristi potpuno drugačije principe i način rada od one opisane normom, u nekim dijelovima nije moguće u potpunosti se poistovjetiti s normom.

Ispitivani stroj je glodalica LEO 9050. Radi se o portalnoj CNC glodalici kućne izrade. Dizajnirana je i izrađena od Marka Horvateka 2017. godine. Glodalica je namijenjena glodanju drveta, polimera i mekih metala.

1.1. O CNC glodalicama

Glodanje je postupak obrade odvajanjem čestica obradnih površina proizvoljnih oblika. Izvodi se na alatnim strojevima, pretežno na glodalicama i obradnim centrima, pri čemu je glavno gibanje kružno kontinuirano i pridruženo je alatu. Posmično gibanje može biti pridruženo alatu ili obratku. [3]

Alat za glodanje naziva se glodalo, a sastoji se od više reznih oštrica postavljenih po obodnoj ili obodnoj i čeonoj strani glodala.

Glodalice se mogu podijeliti s obzirom na položaj radog vretena na horizontalne, vertikalne i kombinirane, te s obzirom na način upravljanja na klasične glodalice, kopirne glodalice i NC/CNC glodalice. [4]

1.2. NC/CNC upravljanje

Numeričko upravljanje (NC) obradnog stroja omogućava računalno upravljanje kretanjem obradnog stroja po osima, upravljanje glavnim vretenom, izmjenu alata, regulaciju SHIP sustava i niz drugih mogućnosti. Upravljanje se izvodi primjenom mikroračunala i programske podrške.

Kod NC sustava program koji se učita u upravljačku jedinicu stroja se izvodi na stroju bez mogućnosti modifikacije parametara. Sve potrebne izmjene moraju se obaviti izvan stroja, te je zatim potrebno ponovno učitati program u upravljačku jedinicu.

U CNC sustavu mikroprocesor upravljačke jedince omogućuje izmjenu programa na samom stroju. Također je moguće provoditi i određene izmjene tijekom obrade predmeta. Ovo omogućuje veću fleksibilnost u radu i uštedu u vremenu. [4]

2. CNC glodalica LEO 9050

2.1. Opće karakteristike

Ispitivanja će se provoditi na CNC upravljanoj glodalici LEO 9050. Radi se o troosnoj portalnoj glodalici, namijenjenoj primarno za obradu drveta. Glodalica ima vertikalno pozicioniranu glavu za glodanje [Slika 1]. [2]

Slika 1 Vertikalna portalna glodalica [4]

Namjena ispitivanja je da se izvrši prije puštanja u rad kako bi se utvrdila točnost stroja koju će nakon prodaje proizvođač garantirati. Glodalica je upravljana računalom koje procesuira G-kod i šalje upravljačke signale upravljačkoj jedinici stroja. Upravljačka jedinica sukladno primljenim signalima upravlja koračnim motorima i motorvretenom. Glodalica koristi 4 koračna motora za posmična gibanja. Dva motora se koriste za pogon X osi, i po jedan motor za pogon Y i Z osi.

Opće karakteristike glodalice LEO 9050 prikazane su u tablici 1:

LEO 9050	
Dimenzije	1200x850x300 mm
Težina	95 kg
Radna površina	900x500 mm
Obradivi materijali	Drvo, polimeri, aluminij
Maksimalna težina obratka	50 kg
RADNI STOL	
Dimenzije stola	1000x525 mm
Materijal	Aluminij EN AW 6063 / T66
Utori	8mm, T-utor
MOTORVRETENO	
Snaga	3 kW
Pogon	Direktni pogon
Minimalna brzina	3000 RPM
Maksimalna brzina	24000 RPM
Prihvat alata	ER20
SNAGA	
Napon	230 (jednofazno) / 480 (trofazno) V
Struja	18 A

Tablica 1. Karakteristike glodalice [2]

2.2. Upravljački programi za CNC glodalicu

Svrha upravljačkog programa je da čita prethodno generirani G-kod i šalje upravljačke signale upravljačkoj jedinici CNC stroja. Komunikacija se vrši preko DB-25 paralelnog sučelja.

Za upravljanje glodalicom moguće je koristiti programe LinuxCNC i Mach3.

LinuxCNC [Slika 2] je upravljački program otvorenog koda za CNC strojeve. Izvršava se na Linux operativnom sustavu. Veliku popularnost među CNC amaterima može zahvaliti činjenici što je besplatan i slobodan za modificiranje. Moguće ga je prilagoditi za cijeli niz različitih CNC strojeva, pa tako pogoni glodalice, tokarilice, 3D printere, robotske ruke, plazmene rezače... [5]

Slika 2. Sučelje LinuxCNC [5]

Za razliku od LinuxCNC, Mach3 [Slika 3] je program pod Windows operativnim sustavom. Razvijen je od strane Newfangled Solutions, te nije besplatan (trenutna cijena je 175\$). Usprkos cijeni popularniji je od LinuxCNC-a. Najveći razlozi za to su jednostavnost uporabe i službena korisnička podrška. [6]

Završni rad

Slika 3. Sučelje Mach3 [5]

Prilikom ispitivanja glodalica će biti upravljana program LinuxCNC.

2.3. Upravljačka jedinica

Upravljačka jedinica je mjesto koje povezuje upravljačko računalo sa ostalim komponenta CNC stroja. Sastoji se od paralelnog sučelja povezanog s računalom, modula za upravljanje koračnim motorima, napajanja, te VFD modula za upravljanje motorvretenom. Glodalica ima 6 osno paralelno sučelje [Slika 4]. Ono djeluje kao glavna upravljačka jedinica CNC-a. [7] Na njega se povezuju jedinice s ulaznim signalima (npr. senzori), kao jedinice koje zahtijevaju izlazne signale (npr. Upravljački moduli koračnih motora). [2]

u pravljanje koračnim modulima upravljanje VFD modulom

Slika 4 Paralelno sučelje [16]

2.4. Sustav posmičnog gibanja

Posmična gibanja na stroju ostvaruju se pomoću sustava koračnih motora. Stroj ima 4 neovisna modula za upravljanje kojima upravlja s 4 koračna motora. Sustav koračnih motora se temelji na kartezijevom koordinatnom sustavu. Dva motora zadužena su za posmična gibanja po X osi, te po jedan za gibanje po Y i po Z osi.

Upravljački moduli koračnih motora su JP-6445A [Slika 5], temeljeni na čipu THB6064AH. [7] To im omogućuje upravljanje koračnim motorima sa jakosti struje do 4.5 ampera i dijeljenje koraka ("microstepping") do 64 mikro koraka. Pri normalnom režimu rada upravljački moduli koračnih motora podešeni su na dijeljenje koraka na 16 dijelova, što omogućuje dovoljnu preciznost pozicioniranja kao i ostvarivanje traženog momenta zakretanja za ostvarivanje posmičnih gibanja. Jakost struje je u ovakvom režimu rada

Slika 5 JP-6445A modul za upravljanje koračnim motorima [17]

Za gibanje po *X* i *Y* osi korišteni su koračni motori Ametek MAE HY200 2240 0240. Specifikacija se može vidjeti u tablici 2.

HY200 2240 0240	
prirubnica	NEMA 23
duljina	102 mm
jačina struje (po fazi)	2,4 A
maksimalni napon	84 V
moment zakretanja (statični)	180 Ncm
moment zakretanja (dinamički)	11 Ncm
kut zakreta (po koraku)	1,8 °
najveće odstupanje od kuta zakreta	5 %
Klasa izolacije	B (130°)

 Tablica 2
 Specifikacije Ametek HY200 koračnog motora [14]

Za ostvarivanje posmičnih gibanja po *Z* osi korišten je koračni motor Lin Engineering 5718M-05E-05R0. Specifikacija motora je prikazana u tablici 3.

LIN 5718M	
-prirubnica	NEMA 23
duljina	56,4 mm
jačina struje (po fazi)	2 A
moment zakretanja (statični)	122 Ncm
moment zakretanja (dinamički)	10 Ncm
kut zakreta (po koraku)	1,8 °
najveće odstupanje od kuta zakreta	5 %

 Tablica 3 Specifikacije LIN 5718M koračnog motora [15]

Koračni motori su izravno vezani na navojna vretena koja pretvaraju rotacijsko gibanje motora u translacijsko gibanje. Korištena su kuglična navojna vretena SYDG SFU1605, klase C7. [8] Korak navoja kod ovih navojnih vretena je 5 mm, što znači da jedan korak zakreta koračnog motora uzrokuje pomak kuglična matica vretena za 0,025mm. S obzirom da je najveće dopušteno odstupanje od kuta zakreta koračnih motora 5% i da navojno vreteno ima najveće dopušteno odstupanje od pozicije +/-0.05mm na 300mm, konstruktorski propisana točnost pozicioniranja po osima dana je u tablici 4.

OS	duljina [mm]	dopušteno odstupanje od položaja [mm]	mrtvi hod [mm]
Х	900	0,2	0,05
Y	500	0,15	0,05
Z	200	0,15	0,05

 Tablica 4
 Propisane točnosti pozicioniranja stroja LEO 9050 [2]

2.5. Linearni ležajevi

Kako bi se osigurala pravocrtnost vođenja po osima u stroju su korišteni linearni ležajevi SBR20 s pripadnim vodilicama za X i Y osi, te RSR12 ležajevi za Z os. Dimenzije vodilica i ležajeva se mogu vidjeti na slici 6.

Slika 6 Dimenzije SBR20 sustava ležajeva [9]

Duljine vodilica i najveći mogući pomak stroja po određenoj osi mogu se vidjeti u tablici 5.

	duljina vodilica [mm]	najveći pomak po osi [mm]
SBR20		
х	1100	900
Y	690	500
RSR12		
Z	290	120

Tablica 5Duljina vodilica

Vodilice SBR20 i prateći ležajevi su proizvođača ZLWL. Prosječna preciznost vodilica linearnih ležajeva je oko +/-0,02 mm na udaljenosti od jednog metra [10], točne podatke nije moguće dobiti s obzirom da se radi o kineskom proizvođaču s kojim nije bilo moguće stupiti u kontakt.

Vodilice RSR12 proizvodi američki proizvođač THK. Podaci o odstupanjima preuzeti su s njihove stranice i prikazani na slici 7.

				Unit: µm						Unit: mm	
LM rail length (mm) Running Parallelism Values		LM rail length (mm) Running Parallelism Values				Accuracy	Normal	High- accuracy	recision		
Above	Orless	Normal	High-	Precision		Model No.	standards	grade	grade	grade	
	0.000	grade	grade	grade			ltem	No Symbol	н	Р	
	40	8	4	1			Dimensional toler-				
40	70	10	4	1		7 0 9 12 1 14 1	ance in height M	±0.04	±0.02	±0.01	
70	100	11	4	2			Difference in height M	0.02	0.016	0.007	
100	130	12	5	2			Difference in height M	0.03	0.015	0.007	
130	160	13	6	2			9 12	Dimensional toler-	+0.04	+0.025	+0.015
160	190	14	7	2				ance in width W ₂	10.04	10.020	10.010
190	220	15	7	3				Difference in width W ₂	0.03	0.02	0.01
220	250	16	8	3			Running parallelism				
250	280	17	0	3	1	20	of surface C against	AC (as a	hown in T	able32)	
280	310	17	9	3		20	surface A			uuluuu,	
310	340	18		3		20	Running parallelism				
340	370	18	10	3			of surface D anainst	AD (pe e	hown in T	able32)	
370	400	19	10	3	1		surface B	AD (85 8		abie52)	

Slika 7 Specifikacije sustava kliznih ležaja THK RSR12 [10]

3. MJERNI SUSTAV

Za sva provedena mjerenja korištena je mjerna oprema njemačkog proizvođača GOM. GOM razvija i proizvodi optičke mjerne sustave za mjerenje položaja i pomaka. U narednom poglavlju objasniti će se mogućnosti i princip rada sustava.

3.1. Podjela mjernih metoda

Općenito, mjerne je metode moguće podijeliti na aktivne i pasivne [Slika 8]. Kod aktivnih metoda dolazi do kontakta mjernog alata i predmeta mjerenja, na primjer kod trokoordinatnih mjernih uređaja dolazi do kontakta mjernog ticala s površinom mjerenog predmeta. Osim toga u aktivne mjerne metode ubrajamo mjerenje pomoću nekog oblika energije (projiciranog svjetla, infracrvenih, ultrazvučnih ili *X*-zraka).

Pri pasivnim metodama nema fizičkog kontakta s površinom predmeta ni na koji način. Informacije o položajima i pomacima se dobivaju snimanjem pomoću kamera koristeći se pritom specifičnim oznakama na površini mjerenog predmeta. [11]

GOM-ovi optički sustavi ATOS koriste metodu triangulacije kako bi definirali poziciju mjerne točke u prostoru.

3.2. Osnovna načela rada optičkih mjernih sustava

3.2.1. Fotogrametrija

Fotogrametrija je tehnika određivanja oblika, veličine ili položaja određenog objekta snimanjem i interpretacijom fotografskih snimaka. Postupak snimanja se sastoji od fotografiranja predmeta kamerom iz više položaja. Pri fotografiranju predmeta kamerom, na slikama dobivamo njegovu dvodimenzionalnu projekciju. Kako bi se dvodimenzionalne slike povezale i predmet rekonstruirao koriste se zajedničke točke pojedinih slika. Na primjeru prikazanom na slici 9 možemo vidjeti način stvaranja trodimenzionalnog prikaza od više slika. Na slici točka O' označava gledište kamere. Točka P označava promatranu točku na predmetu snimanja, a točka P' označava položaj promatrane točke na snimljenoj fotografiji. Na svakoj od fotografija možemo napraviti niz linija koje prolaze ishodištem i jednom od promatranih točaka. Kada se dva ili više pravaca koji prolaze kroz istu promatranu točku na svojoj slici presjeku dobivamo položaj te točke u prostoru. Na taj način dobivamo trodimenzionalni prikaz predmeta. [12]

Slika 9 Stvaranje 3D prikaza iz niza fotografija [12]

Marko Horvatek

3.2.2. Triangulacija

Kako bi iz dvodimenzionalnih slika predmeta dobili trodimenzionalni prikaz koristi se metoda triangulacije [Slika 10]. Metoda triangulacije koristi informacije o položaju kamera u prostoru kako bi spojila fotografije u cjelinu, tj. dodijelila određenim točkama sa slika trodimenzionalne koordinate.

Slika 10 Triangulacija položaja točke P primjenom dvije kamere [13]

Kako bi se triangulacija mogla provesti potrebno je poznavati orijentaciju kamera u prostoru, koordinate promatrane točke u ravnini i parametre modela iskrivljenja slike. Parametri koji su potrebni za opisivanje ravnine slike nazivaju se unutrašnji parametri kamere, a parametri za opisivanje orijentacije kamere u prostoru nazivaju se vanjski parametri kamere. Na slici 10 možemo vidjeti prikaz određivanja položaja točke P koristeći sustav od dvije kamere.

Kako bi triangulacijom bilo moguće odrediti koordinate točke P u prostoru potrebno je kalibracijom odrediti dodatne vanjske parametre za svaku kameru. Potrebni parametri su relativni položaji projekcijskih središta kamera (O_1 i O_2), duljina dućine baze snimanja (B) i prostorni kutovi orijentacije kamera. Kalibracija senzora provodi se snimanjem specijaliziranog planskog kalibracijskog objekta poznate geometrije.

Ako su poznati svi parametri, triangulacijom se dolazi do prostornih koordinata P (X, *Y*, Z). Pravac koji prolazi kroz slikovnu koordinatu točke P' i projekcijsko središte kamere O_1 , s pravcem koji prolazi točkama P'₂ i O_2 siječe se u objektnoj točki P. Ovakvim postupkom možemo odrediti tri prostorne koordinate za svaku točku vidljivu na obje slike kamere. [13]

Završni rad

3.3. Raspoloživi sustavi za optička 3D mjerenja

Potrebna mjerenja za završni rad provedena su u laboratoriju tvrtke Topomatika d.o.o. S obzirom da tvrtka posjeduje više sustava 3D skenera različitih mogućnosti, ukratko će se predstaviti karakteristike svakog od njih.

3.3.1. Općenito o tvrtki Topomatika d.o.o

Tvrtka Topomatika d.o.o. bavi se 3D-digitalizacijom odnosno 3D-skeniranjem, mjerenjem i kontrolom oblika, dimenzija, položaja i deformacija objekata veličine od desetak milimetara do nekoliko desetaka metara.

U tu svrhu koriste se suvremeni trodimenzionalni optički mjerni sustavi njemačkog proizvođača GOM mbH, čiji su i ekskluzivni zastupnici za Hrvatsku, Sloveniju, Srbiju, Bosnu i Hercegovinu, Makedoniju i Crnu Goru. S višegodišnjim iskustvom u 3D tehnologijama nude usluge u dizajnu i razvoju proizvoda te kontroli kvalitete, konstruiranju modela, alata i kalupa, kopiranja dijelova i proizvoda, rješavanju problema s montažom, izradi dokumentacije, arhiviranju i kompjuterskoj prezentaciji te u medicini, stomatologiji, arhitekturi, arheologiji, kiparstvu i dr.

Tvrtka djeluje unutar klastera 3D grupe, čiji su članovi osim Topomatike d.o.o., također i Izit d.o.o. i Tehnoprogres d.o.o. 3D grupa implementacijom 3D tehnologije podiže inovativnost i konkurentnost regionalne industrije te drugih djelatnosti vezanih uz razvoj i proizvodnju. Kao klaster, tvrtke nude također i usluge povratnog inženjerstva (Reverse Engineering), brze izrade prototipova, optimizacije proizvodnih procesa, CAD modeliranja, a rade i na popularizaciji 3D tehnologije u regiji. [18]

Slika 11 Grafički prikaz djelatnosti klastera 3D grupe [18]

3.3.2. ATOS Triple Scan

ATOS Triple Scan [Slika 12] je mobilni 3D digitalizator nove generacije. Sustav ATOS Triple Scan koristi posebnu mjernu i projekcijsku tehnologiju koju je razvio GOM. Korištenjem novih tehnologija ATOS Triple Scan mjeri sa visokom točnosti čak i sjajne površine. Daje potpune podatke o površini čak i za komplekse komponente sa dubokim rupama ili na oštrim rubovima turbinskih lopatica. Primjenom novih tehnologija omogućeno je smanjenje broja potrebnih skenova, te olakšano rukovanje sustavom. Karakteristike sustava mogu se vidjeti u narednoj tablici [

Tablica 6]. [13]

Slika 12 ATOS Triple Scan [18]

	-
Rezolucija kamera	2 X 8 MPx
Mjerna površina	38 X 29 - 2000 X 1500 mm ²
Razmak točaka	0,01 - 0,61 mm
Radna udaljenost	490 - 2000 mm
Kontrola senzora	Integrirana
Duljina kabla	do 30 m
Pozicioniranje senzora	industrijski stalak, automatsko s robotom
Pozicioniranje objekta	ručno ili automatskim rotacijskim stolom
Računalo za obradu slike	prenosivo ili High-End PC
Operacijski sustav	Windows 7
Program	prikupljanje podataka, obrada i kompletan nadzor
Završna obrada materijala	mjerenje sjajnih i tamnih površina, te kompleksne geometrije
Osvjetljenje ambijenta	niska osjetljivost na okolišne uvjete osvjetljenja
Vibracije okoliša	ne utječu zbog GOM-ovog dinamičkog referentnog sustava
Radna temperatura	5 – 40 °C, bez kondenzacije
Napajanje	90 - 230 V

Tablica 6 Tehničke karakteristike ATOS Triple Scan sustava [18]

3.3.3. ATOS Compact Scan

Nova lagana i kompaktna konstrukcija ATOS Compact Scan-a [Slika 13] otvara nova područja primjene i osigurava krajnju prilagodljivost za trodimenzionalno mjerenje komponenti kao što su kovani, lijevani ili brizgani dijelovi... Prednosti pred drugim sustavima su: jednostavan transport, senzor male težine, snažno prijenosno računalo za obradu slika, te sva oprema (stativ, sustav, mjerni volumeni i ručni rotacijski stolić) u jednoj lako prenosivoj kutiji. Podesivo mjerno područje omogućuje mjerenje velikih objekata, čak do više desetaka metara, kao i mjerenje malih dijelova od nekoliko centimetara velikom preciznošću. [13]

Karakteristike sustava mogu se vidjeti u narednoj tablici [Tablica 7].

Slika 13 ATOS Compact Scan [19]

Rezolucija kamera (pixel)	2 <i>X</i> 5 000 000
Mjerna površina	40 X 30 - 1200 X 900 mm ²
Razmak točaka	0,017 – 0,481 mm
Radna udaljenost	450 - 1200 mm
Dimenzije senzora	340 mm X 130 mm X 230 mm
Težina senzora	3,9 kg

 Tablica 7
 Karakteristike ATOS Compact Scan sustava [18]

Fakultet strojarstva i brodogradnje

Marko Horvatek	Završni rad				
Kontrola senzora	integrirana				
Dužina kabla	do 30 m				
Pozicioniranje senzora	lagani tronožac ili postolje senzora				
Pozicioniranje objekta	ručno ili automatskim rotacijskim stolom				
Računalo za obradu slika	prijenosno računalo ili stolni PC				
Operacijski sustav	Windows 7				
Software	prikupljanje podataka, obrada i kompletan nadzor				
Osvjetljenje ambijenta	niska osjetljivost na okolišne uvjete osvjetljenja				
Vibracije okoliša	ne utječu zbog GOM-ovog dinamičkog referentnog				
	sustava				
Radna temperatura	5 - 40 °C, bez kondenzacije				
Napajanje	90 - 230 V				

3.3.4. ATOS Core

ATOS Core [Slika 14] je specijaliziran za 3D skeniranje malih i srednjih objekata dimenzija do 500 mm. Koristi provjerene prednosti ATOS sustava kao što su tehnologija plave svjetlosti i GOM sustav stereo kamera. Funkcija samonadzora konfiguracije stereo kamera osigurava točno i pouzdano mjerenje. Jedinstvena tehnologija omogućuje preciznost i lakše mjerenje sjajnih površina, daje potpune precizne mjerne podatke kod složenih geometrija i zahtjevnih površina. Tehnologija plave svjetlosti, tj. uskopojasno plavo svjetlo iz projekcijske jedinice, omogućuje precizno mjerenje neovisno o uvjetima osvjetljenja okoline. Ove prednosti ATOS Core skenera smanjuju broj potrebnih pojedinačnih skeniranja, te olakšavaju rukovanje sustavom. [13]

ATOS Core može riješiti niz mjernih zadataka, u rasponu od jednostavnog ručnog 3D skeniranja, povratnog inženjerstva, do potpuno automatiziranog mjeriteljstva i inspekcije. [18]

ATOS Core sustav se nudi u sedam izvedbi različitih mjernih volumena i karakteristika, s obzirom da u ovome radu razmatramo mjerne volumene jediničnih dimenzija većih od 500 milimetara, jedini zadovoljavajući ATOS Core skener je onaj mjernog volumena 500. Iz tog razloga biti će navedene isključivo njegove karakteristike. [18]

Karakteristike sustava mogu se vidjeti u narednoj tablici [Tablica 8].

Marko Horvatek

Slika 14 ATOS Core [22]

Mjerno područje	500 X 380 mm
Radna udaljenost	440 mm
Razmak točaka	0,19 mm

Tablica 8 Karakteristike ATOS Core 500 sustava [18]

Razmak točaka	0,19 mm
Dimenzije senzora	361 X 205 X 64 mm
Težina senzora	2,9 kg
Napajanje	90 - 230 V
Radna temperatura	+ 5 °C up to + 40 °C, bez kondenzacije

Marko Horvatek

3.3.5. TRITOP

Prijenosni TRITOP^{CMM} [Slika 15] mjerni sustav brzo i precizno mjeri prostorne koordinate. Mjerne zadaće koje su tradicionalno bile provođene taktilnim trokoordinatnim mjernim uređajima (TMU) sada se jednostavno mogu provesti TRITOP^{CMM} mjernim sustavom. Prednost sustava je što nije potrebna nikakva kompleksna, teška ili oprema koja je zahtjevna za održavanje. [13]

Karakteristike sustava mogu se vidjeti u narednoj tablici [Tablica 9].

Identično kontaktnim trokoordinatnim mjernim uređajima TRITOPCMM mjeri koordinate i njihovu orijentaciju u prostoru za:

- točke na površini i presjeke
- geometrijske oblike
- rupe, provrte i rubove
- promjere, dužine, kutove...

Slika 15 TRITOP [19]

Rezolucija kamere	do 21 Mpx
Prijenos podataka	bežično ili preko flash kartice
Mjerna površina	0,1 X 0,1 do 10 X 10 m ²
Kalibracija	samokalibracija
Certifikat	VDI 2634/1
Radna temperatura	-40 do 120 °C

Tablica 9 Karakteristike TRITOP sustava [18]

3.3.6. Odabir prikladnog 3D skenera

Pomoću svih navedenih sustava moguće je provesti tražena ispitivanja na stroju LEO 9050. Pri odabiru sustava naglasak je bio postavljen na jednostavnosti i brzini provedbe ispitivanja, te na točnosti mjerenja. Sustav TRITOP je odmah odbačen, jer ne dopušta dinamičko mjerenje pomaka u vremenu, već je potrebno za svaki novi položaj izvršiti novu seriju mjerenja. Time se bitno produljuje i komplicira postupak mjerenja. Sustav ATOS Compact Scan je sustav s naglaskom na mobilnost, te nije predviđen za ispitivanja koja radimo. Njime je moguće provesti ispitivanja, no postoji mogućnost da ponovljivost rezultata mjerenja ne bude zadovoljavajuća.

Skeneri koji su prikladni za provođenje ispitivanja su ATOS Triple Scan i ATOS Core. Oba skenera imaju slične karakteristike. Najveća razlika je u mogućnosti izmjene objektiva na sustavu ATOS Triple Scan, što mu omogućava mjerenje cijelog niza objekata različitih veličina, od nekoliko milimetara, pa do nekoliko metara. Još jedna od razlika su napredni algoritmi procesuiranja podataka uz koje sustav Triple Scan može dobiti kvalitetnije rezultate. S obzirom da je mjerni prostor koji ispitujemo na stroju fiksan i nema potrebe za zamjenama mjernih volumena, moguće je ustvrditi da ATOS Core 500 mjerni sustav u teoriji zadovoljava naše zahtjeve, te će pokusno mjerenje biti provedeno ovim sustavom.

4. PLANIRANJE MJERENJA

Mjerenje se provodilo u laboratoriju tvrtke Topomatika d.o.o, na adresi Šetalište Nikole Fallera 22 u sklopu pogona Končar.

4.1. Priprema za mjerenja

Stroj LEO 9050 na kojem se provode mjerenja za potrebe transporta nalazi se na standardnoj drvenoj EURO paleti, te je sa stroja uklonjena glava glodala. Ostali dijelovi stroja nisu rastavljani tijekom transporta, te se stroj prevozio kao cjelina učvršćen na paletu vijcima.

Dana 3.7.2017. stroj je stigao u laboratorij Topomatike. Stroj je postavljen na pod mjernog laboratorija Topomatike [Slika 16] i odrađene su pripremne radnje za puštanje stroja u pogon. Pri tome je upravljačko računalo povezano s upravljačkom jedinicom, te upravljačka jedinica sa senzorima i motorima stroja. Zbog lakšeg ispitivanja glava glodala nije montirana na stroj.

Zbog povišene temperature stroja tijekom transporta stroj je ostavljen tijekom noći u klimatiziranom laboratoriju kako bi se uspostavila temperaturna ravnoteža.

Slika 16 LEO 9050 pozicioniran na pod mjernog labortorija u Topomatici

Važno je naglasiti da su svi skeneri prije prvog mjerenja toga dana kalibrirani odgovarajućim kalibracijskim objektima (ploče i križevi), pri kontroliranoj temperaturi.

4.2. Parametri i režim rada

Pri ispitivanjima, korištena su posmična gibanja s vrijednostima brzine i ubrzanja navedenim u tablici 10, te parametri navedeni u tablici 11.

Režim rada za ispitivanje točnosti	Х	Υ
Najveća brzina [mm/min]	1000	1000
Najveća akceleracija [mm2/min]	700	700

Tablica 10Propisani režimi rada pri ispitivanju točnosti za stroj LEO 9050

Parametri za ispitivanje točnosti LEO 9050				
Temperatura [°]	20°C ±4 °C			
Kompenzacije	sve isključene			
Zagrijavanje stroja (uključeni svi motori) [min]	30			

 Tablica 11
 Propisani parametri pri ispitivanju točnosti za stroj LEO 9050

4.3. Tijek ispitivanja

S obzirom na ograničenje mjernog volumena skenera, čija je širina 500 mm i duljina 380 mm, ispitivati će se točnost pozicioniranja samo dijela alatnog stroja. Ovakvim načinom ispitivanja saznati će se da li pozicioniranje značajnije odstupa od deklariranog na mjerenom području. S obzirom da su posmična gibanja izvedena pomoću koračnih motora i kugličnih navojnih vretena, moguće je pretpostaviti da ni na ostatku stroja točnost pozicioniranja neće značajnije odstupati od izmjerenih vrijednosti.

Duljine X i Y osi unutar mjernog volumena skenera podijeljene su na 8 pozicija. Z os nije ispitivana. Pozicije po osima prikazane su u tablici [Tablica 12].

Marko Horvatek

Završni rad

X os								
i	1	2	3	4	5	6	7	8
Pi [mm]	10	60	110	160	210	260	310	360
smjer pozicioniranja	$\leftrightarrow \rightarrow$	${\leftarrow}$	${\leftrightarrow}$	$\uparrow \downarrow$	$\leftrightarrow \rightarrow$	${\leftarrow}$	${\leftrightarrow}$	$\wedge \rightarrow$
Y os								
·	1	2	3	4	5	6	7	8
Pi [mm]	10	60	110	160	210	260	310	360
smjer pozicioniranja	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	$\uparrow \downarrow$

 Tablica 12
 Pozicije po osima na kojima se izvodi mjerenje točnosti pozicioniranja

Kao što je vidljivo u tablici 11 na svaku od pozicija pozicioniran je stroj iz dva smjera. Mjerenje je provedeno po normi ISO 230-2:2014.

Stroj je pri ispitivanju pozicioniran prema slici [17]. Slika je preuzeta iz norme 230-2_2014.

Slika 17 Redoslijed pozicija pri ispitivanju točnosti pozicioniranja prema normi ISO 230-2:2014 [21]

Prilikom ispitivanja praćeno je relativno gibanje 2 komponente stroja. Jednu komponentu su tvorile promatrane točke na radnoj površini alatnog stroja, a drugu komponentu točke na nosaču motorvretena. Na radnoj površini je prethodno nalijepljen veći broj referentnih točaka pomoću kojih je moguće odrediti poziciju radne površine u prostoru. Položaj radne površine je uzet kao referenca, u odnosu na koju su promatrani pomaci nosača motorvretena. Pozicija nosača motorvretena praćena je pomoću 16 prethodno postavljenih referentnih točaka. Pri tome su korištene referentne točke veličina 3 i 5 mm proizvođača GOM. Pozicije praćenih točaka moguće je vidjeti na slici 18.

Slika 18 Praćene referentne točke na stroju

Kako bi stvorili pravilno orijentirani koordinatni sustav u prostoru korišteni su GOM-ovi adapteri za vodilice s magnetnim prihvatom. Korišteni su adapteri GOM ADC05-3140 i GOM ADC03-3088 [Slika 19]. Pomoću njih su dobivene točke na poziciji središnje osi vodilice, koje su potom korištene za kreiranje koordinatnog sustava.

Slika 19 Korišteni adapteri

Koordinatni sustav je kreiran pomoću poravnanja 3-2-1 u programu ATOS Professional 2017. Smjer Z osi definiran je kao normala plohe radne površine stroja, smjer X osi dobiven je iz smjera vodilica pomoću navedenih adaptera za vodilice, a Y os je određena da se pruža u smjeru istom kao Y os stroja. Koordinatne osi su orijentirane u smjerovima identičnim s koordinatnim osima alatnog stroja. Postavljene osi koordinatnog sustava moguće je vidjeti na slici 20. Nakon što su je postavljen koordinatni sustav, pozicije točaka i orijentaciju koordinatnog sustava smo prebacili u program ARAMIS Professional, u kojem smo pratili pomake duž osi.

Slika 20 Smjerovi koordinatnih osi u programu ARAMIS Professional 2017

Prije samog ispitivanja, prateći normu ISO 230-2:2014, provedeno je nekoliko testova kako bi se utvrdio najpovoljniji uređaj za ispitivanje. Prvo je korišten ATOS Core 500 skener, nakon toga ATOS Compact Scan s mjernim volumenom 1200, te na kraju ATOS Triple Scan s mjernim volumenom 700.

4.3.1. Pokusno mjerenje uz korištenje skenera ATOS Core 500

Pri ispitivanju skenerom ATOS Core 500 pojavili su se problemi premalog mjernog volumena. Prvo pozicioniranje skenera je odrađeno tako da je on okomit na mjerenu os. Iako je mjerni volumen 500 mm dug, pojavio se problem da nije moguće pratiti kretanje stroja duž X osi na udaljenosti 500 mm zbog položaja kamera s obzirom na praćenu referentnu točku u prostoru. Pri kretanju stroja po X osi dolazi do pomicanja cijelog portala duž osi stroja. S obzirom da se prati referentna točka na prihvatu motorvretena, koje je pozicionirano na najnižu točku Z osi, tijekom ispitivanja dolazi do prekrivanja praćene točke na prihvatu od strane portala glodalice. Kako bi izbjegli ovaj problem, skener je potom pozicioniran pod kutom od 45° s obzirom na ispitivanu X os. Ovim postupkom eliminirali smo problem prekrivanja točaka.

Po obavljenom probnom mjerenju rezultati su pokazivali odstupanje od položaja na razini jednog milimetra, što je daleko iznad propisanih vrijednosti proizvođača [Tablica 4]. S obzirom da se postavljanjem skenera u okomit na mjereni predmet postižu najtočnija mjerenja, što pri ovom ispitivanju nije slučaj, postavilo se pitanje da li je moguće da se greška dešava zbog samog mjernog sustava. Kako bi se ispitala ova mogućnost, provedeno je ispitivanje iste osi sa skenerom ATOS Compact Scan na koji je moguće postaviti mjerni volumen 1200. Navedeni skener ima širinu vidnog polja 1200 mm, što znači da je njime moguće obuhvatiti čitav ispitivani hod stroja uz pozicioniranje okomito na promatranu os stroja.

Slika 21Praćenje pomaka pomoću skenera ATOS Core 5004.3.2.Pokusno mjerenje koristeći skener ATOS Compact Scan

Pri ispitivanju skenerom Compact Scan korišten je mjerni volumen 1200. Zahvaljujući većem mjernom volumenu uspješno je praćen hod stroja po *X* osi sa skenerom okomitim na pravac gibanja stroja bez problema s vidljivošću praćene točke na nosaču motorvretena. Na slici 22 je vidljivo mjerno područje skenera, te je moguće primijetiti da ono obuhvaća čitav radni prostor stroja.

Ispitivanje je pokazalo da stvarno postoji greška pozicioniranja po *X* osi u redu veličine milimetra. Nakon ovakvog rezultata pristupilo se provjeri parametara rada i geometrije stroja. Utvrđeno je da je jedan od vijaka na spojci koračnog motora otpušten, te je nakon njegovog zatezanja i provjere ostalih vijaka ponovljeno ispitivanje.

Slika 22 Mjerno područje skenera ATOS Compact Scan 1200

Pri ispitivanju ovim uređajem zamijećeno je rasipanje rezultata, na razini desetog dijela milimetra pri potpunom mirovanju stroja. Ponovljivost koju je pokazivao skener nije bila zadovoljavajuća, te s obzirom da skener ATOS Compact Scan nije namijenjen za ispitivanja na razini točnosti koju očekujemo od stroja odlučeno je da će ispitivanje biti ponovljeno sustavom ATOS Triple Scan, koji ima veću točnost i na koji je moguće postaviti mjerni volumen 700 koji bi trebao zadovoljiti potrebe naših mjerenja.

4.3.3. Pokusno mjerenje koristeći skener ATOS Triple Scan

ATOS Triple Scan koristi napredne algoritme skeniranja kako bi dobio rezultate veće točnosti od ostalih ATOS skenera. Uz kalibracijske parametre za kamere on uzima u obzir i parametre samog projektora, te na taj način dobiva rezultate bolje od ostalih uređaja. Pri radu s ovim uređajem korišten je mjerni volumen 700, koji se pokazao kao dobar kompromis veličine i preciznosti. S navedenim sustavom nije bilo problema s odstupanjem rezultata, kao kod skenera ATOS Compact Scan.

Za mjerenja čiji će rezultati biti prikazani u slijedećim poglavljima korišten je skener ATOS Triple Scan treće generacije.

5. REZULTATI ISPITIVANJA

Mjerenjem točnosti pozicioniranja po osima prikupljeni su podaci o teoretskoj (idealnoj) i stvarnoj postignutoj poziciji, u osam točaka duž osi *X* i *Y*. S obzirom na kreirani koordinatni sustav [4.3], za ispitivanje pozicioniranja uzet je samo pomak u smjeru ispitivane osi.

Rezultati ispitivanja prikazani su u obliku predloženim normom ISO 230-2:2014. Jedina razlika u odnosu na normu je što su grafički prikazani podaci razdvojeni u dva zasebna grafa zbog preglednosti.

5.1. Rezultati pozicioniranja po X osi

Mjerenja ispitivanja točnosti pozicioniranja X osi provođena su pri parametrima prikazanim tablicom [Tablica 13 Parametri pri ispitivanju točnosti pozicioniranja X *osi.* Rezultati mjerenja prikazani su grafovima na slikama [Slika 23, Slika 24], te tablično slikom [Slika 25].

Datum ispitivanja	10.07.2017.
lme ispitivača	Marko Horvatek
lme stroja, tip stroja, serijski broj	LEO 9050, troosna glodalica, ser. br. 00010
Mjerni instrument, serijski broj	GOM ATOS Triple Scan, MV700, ser. br. 151196
Testni parametri	
Ispitivana os	X
Sustav posmičnog gibanja	navojno vreteno i koračni motor
	praćenje relativnog pomaka s obzirom na podlogu
Korekcija	alatnog stroja
Posmična brzina	1000 mm/min
Vrijeme za uravnoteženje sustava na	
svakoj poziciji	5 s
kompenzacije	nisu korištene
Lokacija	
pozicije osi koje nisu testirane	<i>Y</i> = 250 mm; <i>Z</i> = 0 mm
Temperatura	
početna	23,5 °C
završna	23,3 °C

 Tablica 13
 Parametri pri ispitivanju točnosti pozicioniranja X osi

Slika 23 Greške pozicioniranja u pozitivnom i negativnom smjeru osi X

Slika 24 Dvosmjerna greška pozicioniranja osi X

Fakultet strojarstva i brodogradnje

Marko Horvatek

i	1	1 2			3		4		5		6		7		8	
Target position P _i (mm)	10	10		60		110		160		210		260		310)
Approach direction	↓ <i>′</i>	↓ ↑ √		\uparrow	↓ <i>′</i>	↓ <u>↑</u>		↓ ↑	\downarrow \uparrow	\uparrow	\downarrow \uparrow		\downarrow \uparrow		\downarrow \uparrow	
Positional deviation (mm) j=1	-0.021	-0.018	-0.032	-0.033	-0.025	-0.026	0.004	0.013	0.054	0.050	0.067	0.061	0.039	0.064	0.059	0.074
	2 -0.030	-0.020	-0.050	-0.034	-0.034	-0.018	0.007	0.010	0.046	0.043	0.060	0.072	0.058	0.055	0.056	0.060
	3 -0.026	-0.018	-0.047	-0.042	-0.038	-0.023	0.004	0.014	0.036	0.047	0.064	0.067	0.046	0.042	0.046	0.065
	4 -0.032	-0.026	-0.047	-0.041	-0.036	-0.026	0.004	0.000	0.048	0.050	0.061	0.073	0.046	0.051	0.055	0.061
	5 -0.023	-0.024	-0.044	-0.042	-0.035	-0.028	-0.005	0.005	0.045	0.044	0.056	0.066	0.045	0.044	0.045	0.067
Mean unidirectional positional deviation \overline{x}_i (mm)	-0.026	-0.021	-0.044	-0.038	-0.033	-0.024	0.003	0.009	0.046	0.047	0.062	0.068	0.047	0.051	0.052	0.065
Estimator of standard uncertainty s _i (mm)	0.005	0.004	0.007	0.004	0.005	0.004	0.005	0.006	0.006	0.003	0.004	0.005	0.007	0.009	0.006	0.006
2s _i (mm)	0.009	0.007	0.014	0.009	0.010	0.008	0.009	0.012	0.013	0.007	0.009	0.010	0.014	0.018	0.012	0.011
x _i -2s _i (mm)	-0.035	-0.028	-0.058	-0.047	-0.044	-0.032	-0.007	-0.004	0.033	0.040	0.053	0.058	0.033	0.034	0.040	0.054
x _i +2s _i (mm)	-0.017	-0.014	-0.030	-0.030	-0.023	-0.016	0.012	0.021	0.059	0.054	0.070	0.078	0.061	0.069	0.064	0.077
Unidirectional repeatability R _i =4s _i (mm)	0.019	0.014	0.027	0.017	0.020	0.016	0.019	0.025	0.025	0.014	0.017	0.019	0.028	0.035	0.024	0.022
Reversal value B _i (mm)	0.00	5	0.00	0.006 0.009		0.006 0.00		0.001 0.006		06	0.004		0.013			
Bidirectional repeatability R _i (mm)	0.02	1	0.02	28	0.02	28	0.02	28	0.020		0.025		0.036		0.037	
Mean bidirectional positional deviation \overline{x}_i (mm)	-0.02	24	-0.0	41	-0.0	29	0.00	06	5 0.046		0.065		0.049		0.059	
Axis deviation (mm)		Unidirectional \downarrow							Unidirectional ↑				Bidirectional			
Reversal value B	-								-					0.0	13	
Mean reversal value B	-								-				0.006			
Range mean bidirectional positional deviation M	-							-				0.106				
Systematic positional deviation E	0.106 (=0.0620.0			44)			0.106 (=0.0680.038)				0.112 (=0.0680.0			4)		
Repeatability of positioning R	0.035			35			0.035					0.037				
Accuracy A		0.128					0.125					0.135				

Slika 25	Vrijednosti točnosti pozicioniranja po osi X
Sina 25	v njednosti točnosti pozicionil anja po osi X

Marko Horvatek

5.2.

Rezultati pozicioniranja po Y osi

[Slika 23,Slika 24], te tablično slikom [Slika 25].

Datum ispitivanja	10.07.2017.
Ime ispitivača	Marko Horvatek
Ime stroja, tip stroja, serijski broj	LEO 9050, troosna glodalica, ser. br. 00010
Mjerni instrument, serijski broj	GOM ATOS Triple Scan, MV700, ser. br. 151196
Testni parametri	
Ispitivana os	Y
Sustav posmičnog gibanja	navojno vreteno i koračni motor
	praćenje relativnog pomaka s obzirom na podlogu
Korekcija	alatnog stroja
Posmična brzina	1000 mm/min
Vrijeme za urovnoteženje sustava na	
svakoj poziciji	5 s
kompenzacije	nisu korištene
Lokacija	
pozicije osi kje nisu testirane	<i>X</i> = 100 mm; <i>Z</i> = 0 mm
Temperatura	
početna	23,3 °C
završna	23,2 °C

Tablica 14Parametri pri ispitivanju točnosti pozicioniranja Y osi

prikazanim tablicom [Tablica 14]. Rezultati mjerenja prikazani su grafovima na slikama

Mjerenja ispitivanja točnosti pozicioniranja Y osi provođena su pri parametrima

Slika 26 Greške pozicioniranja u pozitivnom i negativnom smjeru osi *Y*

Završni rad

Slika 27 Dvosmjerna greška pozicioniranja osi *X*

Fakultet strojarstva i brodogradnje

Marko Horvatek

i		1	2	2	3		4	L .	5		e	6	7		8	
Target position P _i (mm)		10		60		110		160		210		260		310		0
Approach direction	_↓	\uparrow	\downarrow	\uparrow	\checkmark	\uparrow	\downarrow	\uparrow	\checkmark	\uparrow	\checkmark	\uparrow	\checkmark	\uparrow	\checkmark	\uparrow
Positional deviation (mm) j=1	-0.033	0.001	-0.041	-0.019	-0.020	-0.002	-0.012	0.006	0.000	0.008	-0.019	-0.011	-0.020	-0.008	-0.007	-0.004
	2 -0.030	0.006	-0.036	-0.011	-0.023	-0.001	-0.003	0.000	-0.004	0.001	-0.017	-0.013	-0.009	-0.013	-0.001	0.000
	3 -0.027	0.010	-0.032	-0.017	-0.017	-0.006	0.003	-0.001	-0.001	0.004	-0.010	-0.011	-0.014	-0.007	-0.010	0.002
	4 -0.022	0.005	-0.028	-0.019	-0.016	-0.006	0.001	0.005	-0.004	0.005	-0.008	-0.002	-0.008	-0.015	0.003	0.001
	5 -0.033	0.006	-0.027	-0.013	-0.005	0.004	0.002	0.005	0.006	0.005	0.001	0.004	-0.004	-0.004	0.003	0.005
Mean unidirectional positional deviation \overline{x}_i (mm)	-0.029	0.006	-0.033	-0.016	-0.016	-0.002	-0.002	0.003	0.000	0.005	-0.011	-0.007	-0.011	-0.009	-0.002	0.001
Estimator of standard uncertainty s _i (mm)	0.005	0.003	0.006	0.004	0.007	0.004	0.006	0.003	0.004	0.002	0.008	0.007	0.006	0.004	0.006	0.003
2s _i (mm)	0.010	0.006	0.012	0.007	0.014	0.008	0.012	0.007	0.009	0.005	0.016	0.014	0.012	0.009	0.012	0.006
x̄ _i -2s _i (mm)	-0.039	0.000	-0.044	-0.023	-0.030	-0.011	-0.014	-0.004	-0.009	0.000	-0.026	-0.021	-0.023	-0.018	-0.014	-0.006
x _i +2s _i (mm)	-0.019	0.011	-0.021	-0.008	-0.002	0.006	0.011	0.010	0.008	0.009	0.005	0.008	0.001	-0.001	0.009	0.007
Unidirectional repeatability R _i =4s _i (mm)	0.020	0.012	0.023	0.014	0.028	0.017	0.025	0.013	0.017	0.009	0.031	0.028	0.024	0.018	0.023	0.013
Reversal value B _i (mm)	0.	035	0.0	17	0.0	14	0.0	05	0.0	05	0.0	04	0.0	01	0.0	03
Bidirectional repeatability R _i (mm)	0.	050	0.0	36	0.0	36	0.0)24	0.0	18	0.0	34	0.0	22	0.0	21
Mean bidirectional positional deviation \overline{x}_i (mm)	-0	012	-0.0)24	-0.009 0.001		0.002 -0.009		009	-0.010		-0.001				
Axis deviation (mm)			Unidirect	tional 🗸					Unidirectional ↑			Bidirectional				
Reversal value B			-									0.0	035			
Mean reversal value B	-						-					0.0	010			
Range mean bidirectional positional deviation M	-					-				0.0		026				
Systematic positional deviation E		0.033 (=00.033)			0.022 (=0.0060.016)				0.039 (=0.06-0.033)							
Repeatability of positioning R			0.0	28				0.028				0.050				
Accuracy A			0.0	55			0.034			0.056						

Slika 28	Vrijednosti točnosti pozicioniranja po osi Y
----------	--

5.3. Geometrijske značajke stroja

Za razliku od mjerne libele ili laserskih mjernih sustava koji u jednom trenutku mjerenja daju informaciju o komponenti pomaka u samo jednom od smjerova koordinatnih osi, optičkim skenerima u jednom trenutku dobivamo komponente pomaka u smjerovima svih koordinatnih osi. Ova prednost optičkih skenera omogućuje da s jednom mjerenom serijom prikupimo informacije za koje bi tradicionalno bilo potrebno izvoditi više mjernih serija, čime se vrijeme ispitivanja uvelike smanjuje.

Koristeći rezultate proteklih mjerenja izračunati će se pravocrtnost koordinatnih osi *X* i *Y* za ispitivani stroj. Pri tome će se koristiti vrijednosti zabilježene na pozicijama ispitivanja pozicioniranja [Slika 29].

Slika 29 Primjer pomaka po osima *X*, *Y* i *Z* prilikom pomicanja stroja

5.4. Rezultati pravocrtnosti osi X

Kako bi se utvrdila pravocrtnost vodilica osi X praćene su promjene Y i Z komponente pomaka pri gibanju duž X osi.

Parametri pri kojima je izvođeno ispitivanje prikazani su tablicom [Tablica 15].

Datum ispitivanja	10.07.2017.
Ime ispitivača	Marko Horvatek
Ime stroja, tip stroja, serijski broj	LEO 9050, troosna glodalica, ser. br. 00010
Mjerni instrument, serijski broj	GOM ATOS Triple Scan, MV700, _ser. br. 151196
Testni parametri	
Ispitivana os	X
Sustav posmičnog gibanja	navojno vreteno i koračni motor
	praćenje relativnog pomaka s obzirom na podlogu
Korekcija	alatnog stroja
Posmična brzina	1000 mm/min
Vrijeme za urovnoteženje sustava na	
svakoj poziciji	5 s
kompenzacije	nisu korištene
Lokacija	
pozicije osi kje nisu testirane	<i>Y</i> = 250 mm; <i>Z</i> = 0 mm
Temperatura	
početna	23,5 °C
završna	23,3 °C

Tablica 15Parametri pri ispitivanju pravocrtnosti osi X

5.4.1. Pravocrtnost u smjeru osi Y

Rezultati dobiveni ovim postupkom prikazani su slikom [Slika 30]. Na njoj je moguće vidjeti rasipanje dobivenih vrijednosti pomaka u smjeru osi Y tijekom pet ponavljanja odrađenih iz oba smjera pozicioniranja. Iz rezultata je metodom najmanjih kvadrata dobiven pravac najmanjih kvadrata. Promatrajući njegov nagib moguće je odrediti kutno odstupanje od idealne linije vođenja koordinatne osi X. Slijedećim grafom [Slika 31] prikazane su srednje vrijednosti odstupanja na pojedinoj poziciji zasebno za svaki od smjerova pozicioniranja. Ovim grafom moguće je uvidjeti ako postoji histereza između podataka iz različitih smjerova pozicioniranja. Na slici [Slika 32] prikazano je rasipanje vrijednosti pomaka po osi Y na pojedinim pozicijama na osi X nakon ispravka podataka pravcem najmanjih kvadrata. Na samom grafu su označena najveća pozitivna i negativna vrijednost odstupanja, te je prema njima izračunata greška pravocrtnosti. Tablično prikazane podatke moguće je vidjeti u narednoj tablici [Tablica 16 Odstupanje od pravocrtnosti X osi u smjeru Y osi].

Slika 30 Rasipanje vrijednosti pomaka pri 5 ponavljanja iz oba smjera

Slika 31 Usporedba prosječnih vrijednosti odstupanja od pravocrtnosti iz dva smjera pozicioniranja

Slika 32 Rasipanje vrijednosti pomaka nakon ispravka pravcem najmanjih kvadrata

Tablica 16	Odstupanie od	pravocrtnosti X	osi u sm	ieru Y	osi
	o astapanje oa	P	001 4 011		00-

Najveće odstupanje u pozitivnom smjeru [mm]		
Najveće odstupanje u negativnom smjeru [mm]		
Greška pravocrtnosti [mm]	0,053	

5.4.2. Pravocrtnost u smjeru osi Z

Rezultati u smjeru osi Z dobiveni su identičnim postupkom kao i za os Y. Rezultati su prikazani grafički na narednim slikama [Slika 33, Slika 34, Slika 35]. Numeričke vrijednosti odstupanja od pravocrtnosti prikazane su u tablici [Tablica 17 Odstupanje od pravocrtnosti X osi u smjeru Z osi]. Na grafikonu prikazanom slikom [Slika 34 Usporedba prosječnih vrijednosti odstupanja od pravocrtnosti iz dva smjera pozicioniranja] moguće je vidjeti pojavu veće petlje histereze nego pri ispitivanju pravocrtnosti u smjeru osi Y. Od svih ispitivanih osi najveća greška pravocrtnosti dogodila se upravo pri mjerenju pravocrtnosti X osi u smjeru osi Z. Mogući razlog ovakve pojave je manje krut sustav vođenja nego za Y os, te izvođenje posmičnih gibanja korištenjem sustava od dva navojna vretena.

Slika 33 Rasipanje vrijednosti pomaka pri 5 ponavljanja iz oba smjera

Slika 34 Usporedba prosječnih vrijednosti odstupanja od pravocrtnosti iz dva smjera pozicioniranja

Tablica 17Odstupanje od pravocrtnosti X osi u smjeru Z osi

Najveće odstupanje u pozitivnom smjeru [mm]	0,035
Najveće odstupanje u negativnom smjeru [mm]	-0,027
Greška pravocrtnosti [mm]	0,062

5.5. Rezultati pravocrtnosti osi Y

Kako bi se utvrdila pravocrtnost vodilica osi *Y* praćene su promjene *X* i *Z* komponente pomaka pri gibanju duž *Y* osi.

Parametri pri kojima je izvođeno ispitivanje prikazani su tablicom [Tablica 18 Parametri pri ispitivanju pravocrtnosti osi *Y*].

Datum ispitivanja	10.07.2017.
lme ispitivača	Marko Horvatek
lme stroja, tip stroja, serijski broj	LEO 9050, troosna glodalica, ser. br. 00010
Mjerni instrument, serijski broj	GOM ATOS Triple Scan, MV700, ser. br. 151196
Testni parametri	
Ispitivana os	Y
Sustav posmičnog gibanja	navojno vreteno i koračni motor
	praćenje relativnog pomaka s obzirom na podlogu
Korekcija	alatnog stroja
Posmična brzina	1000 mm/min
Vrijeme za uravnoteženje sustava na	
svakoj poziciji	5 s
kompenzacije	nisu korištene
Lokacija	
pozicije osi koje nisu testirane	Y= 100 mm; Z=0 mm
Temperatura	
početna	23,3 °C
završna	23,2 °C

Tablica 18 Parametri pri ispitivanju pravocrtnosti osi Y

5.5.1. Pravocrtnost u smjeru osi X

Rezultati su dobiveni identično kao pri ispitivanju pravocrtnosti osi X. Dobiveni rezultati prikazani su slikom [Slika 36 Rasipanje vrijednosti pomaka pri 5 ponavljanja iz oba smjera]. Na njoj je moguće vidjeti rasipanje dobivenih vrijednosti pomaka u smjeru osi X tijekom pet ponavljanja odrađenih iz oba smjera pozicioniranja. Iz rezultata je metodom najmanjih kvadrata dobiven pravac najmanjih kvadrata. Promatrajući njegov nagib moguće je odrediti kutno odstupanje od idealne linije vođenja koordinatne osi Y. Slijedećim grafom [Slika 37] prikazane su srednje vrijednosti odstupanja na pojedinoj poziciji zasebno za svaki od smjerova pozicioniranja. Ovim grafom moguće je uvidjeti ako postoji histereza između podataka iz različitih smjerova pozicioniranja. Na slici Slika 38 prikazano je rasipanje vrijednosti pomaka po osi Y na pojedinim pozicijama na osi X nakon ispravka podataka

pravcem najmanjih kvadrata. Na samom grafu su označena najveća pozitivna i negativna vrijednost odstupanja, te je prema njima izračunata greška pravocrtnosti. Tablično prikazane podatke moguće je vidjeti u narednoj tablici [Tablica 16 Odstupanje od pravocrtnosti *X* osi u smjeru *Y* osi].

Slika 36 Rasipanje vrijednosti pomaka pri 5 ponavljanja iz oba smjera

Završni rad

Slika 37 Usporedba prosječnih vrijednosti odstupanja od pravocrtnosti iz dva smjera pozicioniranja

Tablica 19Odstupanje od pravocrtnosti Y osi u smjeru X osi

Najveće odstupanje u pozitivnom smjeru [mm]		
Najveće odstupanje u negativnom smjeru [mm]		
Greška pravocrtnosti [mm]	0,040	

Marko Horvatek

5.5.2. Pravocrtnost u smjeru osi Z

Rezultati u smjeru osi Z dobiveni su identičnim postupkom kao i za os Y. Rezultati su prikazani grafički na narednim slikama [Slika 39, Slika 40, Slika 41]. Numeričke vrijednosti odstupanja od pravocrtnosti prikazane su u tablici [Tablica 20]. Od svih ispitivanih osi najmanja greška pravocrtnosti dogodila se upravo pri mjerenju pravocrtnosti Y osi u smjeru osi Z. Razlog je krući sustav vođenja u odnosu na X os.

Slika 39 Rasipanje vrijednosti pomaka pri 5 ponavljanja iz oba smjera

Slika 40 Usporedba prosječnih vrijednosti odstupanja od pravocrtnosti iz dva smjera pozicioniranja

ousupunje ou pruvoer mostri osru	Sinjer a 2
Najveće odstupanje u pozitivnom smjeru [mm]	0,013
Najveće odstupanje u negativnom smjeru [mm]	-0,015
Greška pravocrtnosti [mm]	0,027

Fablica 20	Odstupanje od pravocrtr	nosti Y	osi u sm	jeru Z	osi
------------	-------------------------	---------	----------	--------	-----

5.6. Kutne greške vođenja

Uz pomoć optičkih skenera postupak ispitivanja kutnih grešaka bitno je jednostavniji s obzirom na tradicionalne metode. Kutne greške koje se javljaju pomicanjem duž *X* os stroja možemo neposredno mjeriti prateći kutove prethodno definiranih pravaca u odnosu na referentni koordinatni sustav. Pravci su definirani uz pomoć ravnine koju tvore referentne točke na nosaču motorvretena, a koordinatni sustav je definiran identično kao kod ispitivanja pozicioniranja po osima [vidi 4.3]. Kutne greške se prate s obzirom na referentno stanje u nultoj poziciji ispitivane osi. Program automatizirano prati promjene kuta za svaku poziciju i bilježi njihovo stanje [Slika 42]. Ovakvim postupkom mjerenja moguće je znatno ubrzati mjerenje kutnih grešaka, a prednost je i što zabilježene pozicije ostaju trajno memorirane, te je moguća kasnija obrada i promjena definicija pojedinih geometrijskih značajki koje mjerimo.

Slika 42 Prikaz kutnih greški u programu ARAMIS 2017

Marko Horvatek

5.6.1. Rezultati kutne greške vođenja po osi X

Greške vođenja ispitivane su na osam pozicija jednako udaljenih duž *X* osi stroja. Nakon mjerenja, u kojem su utvrđene greške za pojedine pozicije, pristupilo se obradi podataka, pri čemu su dobivene najveće pozitivne i negativne kutne greške s obzirom na pojedinu ravninu prethodno definiranog koordinatnog sustava. Potom je izračunata sama kutna greška vođenja oduzimanjem najvećeg pozitivnog od najvećeg negativnog odstupanja. Rezultati su prikazani u tablici 21.

Promatrana ravnina	XY	XZ	YZ
Najveće odstupanje [°]	0,002	0,003	0,001
Najmanje odstupanje [°]	-0,042	-0,037	-0,038
Kutna greška vođenja po osi X [°]	0,044	0,040	0,039

Tablica 21Rezultati kutne greške vođenja po osi X

5.6.2. Rezultati kutne greške vođenja po osi Y

Identičnim postupkom kao pri računanju greške vođenja po osi *X* dobivena je kutna greška vođenja po osi *Y*. Rezultati su prikazani u tablici 22.

	8	5 I	
Promatrana ravnina	XZ	ΥZ	XY
Najveće odstupanje [°]	0,011	0,038	0,011
Najmanje odstupanje [°]	-0,034	-0,002	-0,030
Kutna greška vođenja po osi Y [°]	0,045	0,040	0,041

Tablica 22Rezultati kutne greške vođenja po osi Y

Marko Horvatek

5.7. Tumačenje rezultata od strane konstruktora stroja

Isporučeni rezultati od velikog su značaja za mene kao konstruktora ispitivanog alatnog stroja. Ova povratna informacija omogućiti će daljnje poboljšanje konstrukcije kako bi budući alatni strojevi imali jednostavniji dizajn i veću točnost.

Najveća dopuštena i izmjerena odstupanja od položaja prikazana su u tablici [Tablica 23]. Iz nje je moguće vidjeti da izmjerene vrijednosti zadovoljavaju očekivane greške odstupanja od idealnog položaja alatnog stroja.

	duljina	najveće dopušteno odstupanje od položaja	izmjereno odstupanje od položaja
OS	[mm]	[mm]	[mm]
х	900	0,2	0,135
Y	550	0,15	0,056

Tablica 23Dopuštena i izmjerena odstupanja od položaja za alatni stroj LEO 9050

Očekivani rezultati za ispitivanje pravocrtnosti vođenja u smjeru koordinatnih osi su greške manje od 0.1 mm. U narednoj tablici moguće je vidjeti rezultate za sve 3 osi [Tablica 24]. S obzirom na navedene rezultate moguće je zaključiti da alatni stroj ispunjava postavljene kriterije.

OS	smjer	očekivana greška pravocrtnosti [mm]	izmjerena greška pravocrtnosti [mm]
х	Y	0,1	0,053
	Z	0,1	0,062
Y	Х	0,1	0,040
	Z	0,1	0,027

Tablica 24Dopuštena i izmjerena odstupanja od pravocrtnosti za alatni stroj LEO 9050

Ovim ispitivanjem uspješno su određene karakteristike stroja, koje sam kao naručitelj ispitivanja tražio. O mjernim uređajima traženi podaci dobiveni većom brzinom nego tradicionalnim metodama i zadovoljavajućom točnosti, te je moguće zaključiti da su optički mjerni sustavi pogodni za provođenje ovakvih tipova mjerenja.

Želio bi još napomenuti da je velika prednost ispitivanja optičkim skenerima moguća kasnija obrada dobivenih rezultata. Time je omogućeno da ukoliko imam potrebu da promijenim definiciju parametara mjerenja (npr. postavke koordinatnog sustava) mogu na jednostavan način kasnijom obradom rezultata ispitivanja dobiti željene rezultate, bez potrebe za ponovnim provođenjem fizičkog mjerenja.

6. ZAKLJUČAK

Ovim radom prikazana je alternativa klasičnim postupcima mjerenja točnosti pozicioniranja i pravocrtnosti vođenja alatnih strojeva. Postupak ispitivanja je uspješno proveden koristeći GOM-ovu treću seriju ATOS optičkih skenera. Mogućnosti skenera opisanih u ovome radu nadilaze do sad korištene metode ispitivanja geometrijskih značajki alatnih strojeva. Jednim uređajem moguće je provjeravati cijeli niz različitih značajki stroja, uz minimalne preinake u pozicioniranju sustava i prikupljanju rezultata.

Pri mjerenju sustavima optičkih skenera od velike je pomoći bila mogućnost snimanja koordinata svih promatranih točaka u prostoru. Time je omogućeno ne samo kasnije pregledavanje rezultata, veći i promatranje novih geometrijskih odnosa koji su definirani nakon samog snimanja. Ova funkcionalnost omogućava da podaci dobiveni iz jedne mjerne serije, na primjer ispitivanje točnosti pozicioniranja po osi X, budu korišteni kako bi se dobili pomaci u prostoru po osima Y i Z kojima se definira odstupanje od pravocrtnosti za os X.

Jedan od glavnih nedostataka korištenja optičkih skenera je njihova dosadašnja slaba primjena za ovakav tip mjerenja. Malo je primjera mjerenja u kojima se ispituje gibanje alatnih strojeva uz pomoć ovakvog tipa mjerne opreme. Razlog je uglavnom nedovoljna točnost optičkih skenera za ovakav tip primjene. Optički 3D skeneri nude mogućnost mjerenja pozicija s pogreškama u točnosti od nekoliko mikrometara. Problem nastaje pri tome što sami alatni strojevi često imaju deklariranu točnost koja je više razine od samog optičkog skenera, te mjerenja ovakve opreme nema smisla. Zbog malog broja primjera mjerenja strojeva optičkim skenerima pojavljuju se mnoge nedoumice oko najboljeg načina mjerenja. Na primjer, orijentacija koordinatnog sustava uvelike može promijeniti rezultate dobivene postupkom 3D skeniranja, a u literaturi nema preporuka na koji način kvalitetno i stabilno opisati orijentaciju koordinatnog sustava. Kao još jednu od ključnih nedefiniranih stavki prilikom mjerenja mogla bi se navesti količina praćenih referentnih točaka na podlozi i pomičnom dijelu. O broju praćenih točaka ovisi sama ponovljivost rezultata, te takav parametar ne bi trebao biti ostavljen na izbor samog mjeritelja.

Sukladno ovim napomenama, pri izvođenju ovog rada posvećena je posebna pozornost da se prati čim veći broj referentnih točaka u prostoru, te je u svakom trenutku mjerenja vidljivo najmanje 10 točaka na prihvatu motorvretena i najmanje 10 točaka na samoj podlozi alatnog

stroja. S obzirom da se stručno osoblje Topomatike svakodnevno susreće s problemom orijentacija koordinatnog sustava prilikom rješavanja ovog problema zatražena je njihova pomoć. Orijentacija koju sam napravio uz njihovu pomoć opisana je detaljno u poglavlju 4.3.

Sudeći po dosadašnjem brzom razvoju tehnologije optičke digitalizacije i velikom prostoru za napredak samih skenera, moguće je u skoroj budućnosti očekivati naprednije skenere s većom točnosti koji bi mogli u većoj mjeri poslužiti primjenama za ispitivanje alatnih strojeva.

S obzirom da je ispitivanje gdje god je bilo moguće slijedilo obitelj normi ISO 230, važno je naglasiti da ona ne uzima u obzir mogućnost ispitivanja alatnog stroja ovakvom vrstom mjerne opreme. S obzirom na uspješno provedena ispitivanja korištenjem optičkog skenera i mogućnost dobivanja određenih podataka o geometriji stroja na mnogo brži i jednostavniji način nego tradicionalnim metodama, postavlja se pitanje vremena kada će se optički skeneri početi učestalije koristiti za ovakve primjene. To će naravno potaknuti i određene promjene i proširenje obitelji normi ISO 230, s preporukama oko ispitivanja točnosti alatnih strojeva uz pomoć mjerne opreme koja se temelji na optičkim skenerima.

LITERATURA

- [1] Kraut, B.: Strojarski priručnik, Tehnička knjiga Zagreb, 1970.
- [2] Podaci konstruktora stroja
- [3] Materijali Katedre za alatne strojeve (16.5.2017.)
- [4] Nikola Blažević, "Proračun prigona vertikalnog obradnog centra" Završni rad, FSB Zagreb, 2013.
- [5] linuxcnc.org (16.5.2017.)
- [6] http://www.3d-mjerenje.com/ (16.5.2017.)
- [7] www.cnczone.com (16.5.2017.)
- [8] SYDG parts catalog
- [9] https://www.glacern.com/sbr (16.5.2017.)
- [10] https://tech.thk.com/en/products/pdf/en_a01_073.pdf (16.5.2017.)
- [11] N. Drvar, "Optički postupak digitalizacije oblika projiciranjem kodiranog svjetla" Doktorski rad, FSB Zagreb, 2007.
- [12] Filip Kardašić, "Mjerenje oblika, pomaka i deformacija objekata pomoću optičkih mjernih sustava", Završni rad, Strojarski fakultet u Slavonskom Brodu, 2016.
- [13] Danijel Ivšac, "Usporedba 3D mjernih postupaka u kontroli kvalitete", Diplomski rad, FSB Zagreb, 2014.
- [14] www.ametekfsm.com/download/Stepper-Catalog.pdf (23.5.2017)
- [15] http://www.linengineering.com/products/stepper-motors/5718-series/5718m-02p/ (23.5.2017)
- [16] http://www.instructables.com/id/6-Axis-CNC-MACH3-Engraving-Machine-Interface-Break/ (23.5.2017)
- [17] http://www.ebay.com/itm/Single-Axis-Stepper-Stepping-Motor-Driver-THB6064AH-JP-6445A-4-5A-Controller-/261520950313 (23.5.2017)
- [18] http://www.topomatika.hr (13.6.2017)
- [19] http://zebicon.com/en/metrology-systems/3d-scanner/atos-compact-scan.html (13.6.2017)
- [20] www.ids-studio.co.jp (13.6.2017)
- [21] Obitelj normi ISO 230
- [22] http://www.advanc3dtechnologies.com/industrias/ (13.6.2017)

PRILOZI

- I. Mjerni izvještaj Ispitivanje točnosti pozicioniranje X osi 1. serija
- II. Mjerni izvještaj Ispitivanje točnosti pozicioniranje Y osi 1. serija
- III. Mjerni izvještaj Ispitivanje kutnih grešaka vođenja X osi 1. Serija
- IV. Mjerni izvještaj Ispitivanje kutnih grešaka vođenja Y osi 1. Serija