Numerička simulacija toka goriva kroz sapnicu i pojave kavitacije uslijed visokog tlaka ubrizgavanja

Polančec, Mateo

Undergraduate thesis / Završni rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:755896

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-04

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mateo Polančec

Zagreb, 2016.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentor:

Student:

Prof. dr. sc. Neven Duić, dipl. ing.

Mateo Polančec

Zagreb, 2016.

Izjavljujem da sam ovaj rad izradio samostalno koristeći stečena znanja tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru prof.dr.sc. Nevenu Duiću te Zvonimiru Petranoviću, mag.ing.mech., na pomoći i korisnim savjetima bez kojih završni rad ne bi bilo moguće napraviti.

Također se zahvaljujem svojoj obitelji i djevojci na neizmjernoj podršci i razumijevanju te kolegama iz Powerlaba na korisnim informacijama.

Mateo Polančec

SVEUČILIŠTE U ZAGREBU

FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za završne ispite studija strojarstva za smjerove:

procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

	Sveučilište u Zagrebu
Fakul	iet strojarstva i brodogradnje
Datum	2 4 -02- 2016rilos
Kilasa:	602-04/16-63
Ur.broj:	15-12-53-16-86

ZAVRŠNI ZADATAK

Student:

Mateo Polančec

Mat. br.: 0035190494

Naslov rada na hrvatskom jeziku: Naslov rada na engleskom jeziku: Opis zadatka:

Numerička simulacija toka goriva kroz sapnicu i pojave kavitacije uslijed visokog tlaka ubrizgavanja

Numerical simulation of fuel flow and cavitation phenomena due to the high pressure fuel injection

Korištenje računalne dinamike fluida (RDF) u kombinaciji s eksperimentalnim pristupom postao je uobičajen pristup u razvoju različitih inženjerskih sustava. Postoji velik broj sustava gdje se tekuće gorivo ubrizgava velikom brzinom kroz sapnicu malog promjera. Uslijed utjecaja sila inercije, površinske napetosti i aerodinamičkih sila dolazi do raspadanja goriva na sitne kapljice, njihovog isparavanja te miješanja s određenim plinom ili sa smjesom plinova. Opisani proces, koji se naziva proces spreja, ima utjecaj na efikasnost sustava čije se povećanje može postići optimiranjem relevantnih matematičkih modela. Slijedom navedenog, potrebno je detaljno modelirati proces spreja sa što većom pouzdanošću, a to znači uključivanje različitih fizikalnih modela. Jedan od utjecajnih modela je pojava kavitacije unutar sapnice. Uzevši u obzir navedeno, u okviru završnog zadatka potrebno je:

- Opisati osnovne RDF-a te opisati jednadžbe korištene za opisivanje procesa spreja; prikazati uvod u problematiku ubrizgavanja tekućeg goriva s fokusom na karakteristične dimenzije sapnice, tlak ubrizgavanja i tlak u komori izgaranja;
- Prikazati numeričke metode koje će se koristiti za rješavanje problema;
- Objasniti korišteni matematički model za opisivanje procesa kavitacije;
- 4. Izračunati proces ubrizgavanja goriva kroz sapnicu uzimajući u obzir pojavu kavitacije uslijed pada tlaka unutar kanala sapnice. Potrebno je koristiti različite modele za opisivanje turbulencije (k-eps i k-zeta-f) te usporediti dobivene rezultate. Nadalje, potrebno je uzeti u obzir podizanje i spuštanje igle sapnice kreirajući pomičnu mrežu kontrolnih volumena. Simulacije će se izvršiti korištenjem RDF paketa FIRE®.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć. Sva literatura, modeli te ulazni i početni podaci za analizu slučaja bit će dostupni od strane mentora i neposrednog voditelja.

25. studenog 2015.

Zadatak zadao:

0-11

Prof. dr. sc. Neven Duić

Rok predaje rada: 1. rok: 25. veljače 2016 2. rok (izvanredni): 20. lipnja 2016. 3. rok: 17. rujna 2016. Predvideni datumi obrane: 1. rok: 29.2., 02. i 03.03. 2016. 2. rok (izvanredni): 30. 06. 2016. 3. rok: 19., 20. i 23. 09. 2016.

Predsjednik Povjerenstva:

Prof. dr. sc. Igor Balen

SADRŽAJ

SADRŽAJII
POPIS SLIKAIV
POPIS TABLICAV
POPIS OZNAKAVII
SAŽETAKX
SUMMARYXI
1. UVOD
1.1. Osnove CFD-a
1.1.2. Jednadžba očuvanja količine gibanja
1.1.3. Jednadžba očuvanja energije
1.2. Ubrizgavanje goriva
1.3. Erozija kao posljedica kavitacije u brizgaljkama5
2. Matematički model
2.1. Numeričke sheme
2.1.1. Upwind shema
2.1.2. Shema centralnih razlika
2.2. Višetazno strujanje
2.2.1. K- ϵ model turbulencije
2.2.2. K-zeta-1 model turbulencije
2.2.3.1. Linear Cavitation Model
2.2.3.2. Cavitation Drag Model
2.2.3.3. Gas Liquid System1 Model17
2.2.4. Jednadžbe gustoće broja mjehurića i veličine dodirne površine između faza 18
3. Rubni uvjeti i postavke simulacije
3.1. Ulazna granica
3.2. Izlazna granica
3.3. Ravnina simetrije
3.4. Početni uvjeti i postavke simulacije
3.5. Podrelaksacijski laktori
4 Degrateti simulacije
4. Rezultati simulacije
4.1. Osporedba rezultata la intezana sa raznetnih orojeni konacini votumena
4.2. Osporedu rezultata na selekciji outlet za $k = c$ i k zata f model turbulencije
+.2.1. If IKal 2D reductata ha screeciji outiet 2a k - c i k - zeta - j model turbulencije 31
4.2.2. Usporedba 3D rezultata za $k - \varepsilon$ i $k - zeta - f$ model turbulencije
4.2.3. Usporedni prikaz rezultata na selekciji outlet za $k - \varepsilon$ i $k - zeta - f$ model
turbulencije
5. Zaključak

Mateo Polančec	Završni rad
LITERATURA	
PRILOZI	

Slika 1 Slika 2 Slika 3	Prikaz direktnog ubrizgavanja goriva u komoru za izgaranje [2]
Slika 4	Promjena masenog protoka u ovisnosti o padu tlaka prema [5]6
Slika 5	Krivulja kavitacijske erozije. Prikaz brzine gubitka volumena materijala i ubrzanja
	gubitka volumena materijala uslijed kavitacijske erozije u ovisnosti o vremenu [6]
0111 6	7
Slika 6	Promjena brzine erozije tijekom vremena do uspostavljenoga MDPR-a [4]8
Slika 7	Prikaz rubnih uvjeta : 1.ravnina simetrije , 2. izlazna površina <i>Vol_outlet</i>
Slika 8	Prikaz rubnih uvjeta: 1.ravnina simetrije, 2.ulazna površina, 3.selekcija
Slika 9	Prikaz površine matematičkog modela <i>erosion</i>
Slika 10	Prikaz selekcija <i>arbi_ifc</i> te selekcije <i>outlet</i> korištene za prikaz 2D rezultata 23
Slika 11	Usporedni prikaz apsolutnih brzina faze 1 [m/s]27
Slika 12	Usporedba apsolutnog tlaka koji je jedina zajednička varijabla za sve tri faze 28
Slika 13	Usporedba volumnog udjela faze 2
Slika 14	Maseni protok faze 1 kroz selekciju <i>outlet</i>
Slika 15	Maseni protok faze 2 kroz selekciju <i>outlet</i>
Slika 16	Ukupan maseni protok kroz selekciju <i>outlet</i>
Slika 17	Prikaz podizanja igle u milimetrima u ovisnosti o kutu zakreta koljenastog vratila
Slika 18	Usporedni prikaz ukupnog masenog protoka kroz selekciju <i>outlet</i>
Slika 19	Usporedni prikaz masenog protoka faze 2 kroz selekciju <i>outlet</i>
Slika 20	Usporedni prikaz polja apsolutnog tlaka [Pa] za kut $\alpha = 140^{\circ}$
Slika 21	Usporedba volumnog udjela faze 2 za kut $\alpha = 140^{\circ}$
Slika 22	Usporedni prikaz polja turbulentne kinetičke energije faze 1 $[m^2/s^2]$ za
Slika 23	Usporedni prikaz polja apsolutne brzine faze 1 [m/s] za kut $\alpha = 140^{\circ}$
Slika 24	Usporedni prikaz polja brzine faze 1 za kut $\alpha = 140^{\circ}$ na selekciji <i>outlet</i> [m/s]35
Slika 25	Usporedni prikaz volumnog udjela faze 2 za kut $\alpha = 140^{\circ}$ na selekciji <i>outlet</i> 36
Slika 26	Usporedni prikaz turbulentne kinetičke energije faze 1 za kut $\alpha = 140^{\circ}$ na selekciji
	outlet
Slika 27	Usporedni prikaz turbulentne disipacije energije faze 1 za kut $\alpha = 140^{\circ}$ na selekciji
	outlet

POPIS TABLICA

Tablica 1	Postavke ulazne granice	20
Tablica 2	Postavke izlazne granice	21
Tablica 3	Postavke vremenskog koraka numeričke integracije	23
Tablica 4	Prikaz zadavanja promjene kuta alpha u ovisnosti o kutu zakreta koljenastog	
	vratila	23
Tablica 5	Prikaz početnih uvjeta za domenu brizgaljke	24
Tablica 6	Prikaz početnih uvjeta za domenu polucilindra	24
Tablica 7	Prikaz podrelaksacijskih faktora korištenih kod simulacije	25
Tablica 8	Kriteriji konvergencije	26
Tablica 9	Naziv mreža konačnih volumena prema broju konačnih volumena	29

POPIS OZNAKA

Oznaka	Jedinica	Opis
A'''	m^2	međufazna površina
C_1	-	empirijska konstanta k-ε modela turbulencije
C_2	-	empirijska konstanta k-ε modela turbulencije
C_3	-	empirijska konstanta k-ε modela turbulencije
C_4	-	empirijska konstanta k-ε modela turbulencije
C_{CR}	-	Faktor redukcije kondenzacije
C_D	-	koeficijent sile otpora
$C_{_E}$	-	Eglerov koeficijent
$C_{_{ph}}$	-	koeficijent zatvaranja <i>multfluid</i> modela
C_{rc}	-	koeficijent zatvaranja <i>multfluid</i> modela
C_{sato}	-	Satov koeficijent
C_{t1}	-	koeficijent zatvaranja <i>multfluid</i> modela
C_{TD}	-	koeficijent turbulentne disperzije
C_{μ}	-	empirijska konstanta k-ε modela turbulencije
C_{ε^1}	-	empirijska konstanta k-zeta-f modela turbulencije
C_{ε^2}	-	empirijska konstanta k-zeta-f modela turbulencije
C_1	-	empirijska konstanta k-zeta-f modela turbulencije
C_2	-	empirijska konstanta k-zeta-f modela turbulencije
C_T	-	empirijska konstanta k-zeta-f modela turbulencije
C_{μ}	-	empirijska konstanta k-zeta-f modela turbulencije
C_L	-	empirijska konstanta k-zeta-f modela turbulencije
C_η	-	empirijska konstanta k-zeta-f modela turbulencije
D_b	m	promjer mjehurića
D_{kl}	$kg/(ms^3)$	prijenos turbulentne disipacije energije na granici faza <i>k</i> i <i>l</i>
d_{nuc}	m	koeficijent zatvaranja multfluid modela
Ε	-	konstanta modela zidne funkcije
f	m/s^2	specifična masena sila
g	$kg m/s^2$	gravitacijska konstanta
k	m^2 / s^2	specifična turbulentna kinetička energija
$K_{_{kl}}$	$kg/(m s^3)$	prijenos turbulentne kinetičke energije na granici faza k i l
L	-	debljina otvrđenog površinskog sloja materijala
MDPR	m/s	stacionirana brzina erozije materijala u smjeru okomitom na plobu na kojoj grozija postupa
M_{ii}	$kg/(m^2 s^2)$	izmiena količine gibanja na granici faza k i l
N	-	broi udara kondenziranih miehurića no jedinici površine
. 1		oroj adara kondenzitarini injenarica po jedimer povisite

Fakultet strojarstva i brodogradnje

п	-	eksponent u jednadžbi Ludwiga
$N^{"'}$	-	gustoća broja mjehurića
n [‴]	-	funkcija distribucije mjehurića
р	Pa	tlak
Ph	$kg / m^3 s$	pomoćni član u <i>multifluid</i> modelu
$q_{\Phi}S$	$kg/(m s^2)$	izvor/ponor fizikalnog svojstva uslijed površinskih sila
$q_{\Phi}V$	$kg/(m^2 s^2)$	izvor/ponor fizikalnog svojstva uslijed masenih sila
r	m	vektor položaja
R	m	radijus mjehurića
Re_d	-	Reynoldsov broj s obzirom na promjer mjehurića
$R_{_{ph}}$	1 / <i>s</i>	izvorski član u <i>multifluid</i> modelu
R_{rc}	1/ <i>s</i>	izvorski član u <i>multifluid</i> modelu
R_{T1}	1/ <i>s</i>	izvorski član u <i>multifluid</i> modelu
S	-	jačina udara kondenziranih mjehurića
S_{Φ}	-	prijenos fizikalnog svojstva kroz međufaznu površinu
t	S	vrijeme
T_i	S	vrijeme inkubacije erozije
${U}_{ au}$	m/s	brzina trenja
v, u, U	m/s	brzina
We	-	Weberov broj
<i>x</i> , <i>y</i>	m	prostorna koordinata
α	-	volumni udio pojedine faze
Γ_{kl}	$kg/(m^3 s)$	izmjena mase na granici između faza k i l
$\delta_{_{ij}}$	-	Kroneckerov delta operator
Е	$m^2 s^3$	turbulentna disipacija energije
ε	-	virtualno rastezanje materijala nakon prekidne čvrstoće, računato prema jednadžbi Ludwiga
\mathcal{E}_U	-	deformacija kod prekidne čvrstoće
Θ	-	faktor oblika u jednadžbi koja opisuje raspodjelu
К	-	von Karmanova konstanta zidnih funkcija k-ε modela turbulencije
μ	Pa s	dinamički koeficijent molekularne viskoznosti
V	m^2 / s	kinematička viskoznost
ρ	kg / m^3	gustoća pojedine faze
$\sigma_{\scriptscriptstyle P}$	Ра	naprezanje u materijalu, s obzirom na imploziju mjehurića isparene faze
σ	-	empirijska konsanta k-ε modela turbulencije
$\sigma_{\scriptscriptstyle k}$	-	empirijska konsanta k-ε modela turbulencije
$\sigma_{_U}$	Pa	prekidna čvrstoća
$\sigma_{\scriptscriptstyle Y}$	Pa	granica elastičnosti
$\sigma_{\scriptscriptstylearepsilon}$	-	empirijska konsanta k-ε modela turbulencije

Fakultet strojarstva i brodogradnje

Mateo	Polančec	

$ au_{ij}$	N/m^2	tenzor molekularnih naprezanja
$ au_{\scriptscriptstyle W}$	N/m^2	naprezanje na stijenci
$\Phi_{_{ph}}$	m^2/s	izvorski član u multifluid modelu
Φ_{rc}	m^2/s	izvorski član u multifluid modelu
Φ_{T1}	m^2/s	izvorski član u multifluid modelu
ω	rad / s	kutna brzina

SAŽETAK

Tema ovog rada je usporedba rezultata numeričkih simulacija brizgaljke korištenjem $k - \varepsilon$ i k - zeta - f modela turbulencije. Diskretizirana je 1/12 modela brizgaljke te se područje interesa odnosi na izlazni dio sapnice. Za numeričke simulacije korišten je programski paket *FIRE*[®] ustupljen od strane AVL-a. Kao rezultat rada prikazana je promjena određenih fizikalnih veličina (tlak, brzina, volumni udio faza, itd.) u ovisnosti o zakretu koljenastog vratila za oba modela turbulencije. Prikazani su maseni protoci na izlazu iz brizgaljke te se pokazalo da su odstupanja između simulacija relativno mala. Najveće razlike odnose se na maseni protok isparene faze za koju $k - \varepsilon$ model turbulencije daje manje vrijednosti. Razlike ukupnog masenog protoka su neznatne, pošto je maseni protok isparene faze tri reda veličine manji od masenog protoka tekuće faze. Najbolje slaganje u rezultatima imamo kod prikaza polja apsolutne brzine, dok su najmanja slaganja uočena kod prikaza turbulentne kinetičke energije i energije disipacije.

SUMMARY

In this thesis the numerical simulations of in-nozzle multiphase flow was performed in CFD tool FIRE. The results were compared for two different turbulence models, $k-\varepsilon$ and k-zeta-f turbulence model. Discretization was done on a 1/12 piece of a whole injector model. The discussion was focused on results in the nozzle outlet region. Changes of some physical quantities (pressure, velocity...) were presented and described in dependence of crankangle and mass flow across outlet selection was presented on diagram. A relatively small differences could be noticed between the two simulations. The biggest differences in vapour phase development were demonstrated in the conclusion part. The $k-\varepsilon$ turbulence model results in lower values of vapour phase than the k-zeta-f model. The differences between the total mass flow are negligible because the values of vapour phase are three order of magnitude lower than values of the liquid phase. Similar results were obtained for velocity field whilst the big discrepancies were noticed for turbulence kinetic energy and dissipation rate.

1. UVOD

1.1. Osnove CFD-a

U skladu sa sve većim mogućnostima računala razvija se i numerička matematika te njena primjena u tehničke svrhe unutar koje se također razvijaju brojni algoritmi za numeričku analizu fizikalnih problema. Jedno od područja primjene je i računalna mehanika fluida koja se smatra teorijsko eksperimentalnom znanošću. Na temelju provedenih pokusa, pokušava se analitički opisati fizikalna pojava nekim matematičkim modelom. Naime, ako uspijemo analitički opisati neku fizikalnu pojavu automatski dobivamo njeno točno rješenje te promjenom bilo kojeg parametra uočavamo promjene koje se dešavaju u sustavu. Nažalost, u mehanici fluida strujanje je opisano nelinearnim parcijalnim diferencijalnim jednadžbama višeg reda za koje najčešće ne postoji analitičko rješenje. Iz tog razloga se danas sve više razvija numerika pomoću koje možemo opisati fizikalne pojave. Numerička rješenja možemo i moramo eksperimentalno provjeriti. Točnost numeričkog rješenja te njegova konvergencija uvelike ovisi o matematičkom modelu te metodi rješavanja samog problema. Dakle, izrazito je bitno dobro znati opisati fizikalnu pojavu, postaviti ispravan matematički model, odabrati numeričku metodu rješavanja te zadati početne i rubne uvjete. Sve to zahtjeva određenu količinu znanja samog inženjera. Računala, iako danas velikih resursa, još uvijek su ograničena na određen broj čvornih točaka u kojima se dobivaju rješenja pojedinih fizikalnih veličina (tlak, brzina, temperatura...). Zbog toga se fizikalni modeli pokušavaju pojednostaviti uvodeći neke pretpostavke. Na primjer, fluid često smatramo izotropnom i homogenom tvari što nije uvijek slučaj. Izotropan fluid ima jednaka svojstva u svim smjerovima dok homogen znači da ima jednaka svojstva u svim točkama prostora. Nadalje, fizikalna aproksimacija stvarnog svijeta koju mi koristimo je hipoteza kontinuuma koja kaže da fluid u potpunosti ispunjava prostor u kojem se nalazi te zadržava fizikalna svojstva i unutar infitezimalno malog volumena što u stvarnosti nije slučaj [1]. U stvarnosti kada promatramo problem na mikroskopskom nivou znamo da se između atoma i molekula nalazi međuprostor koji ne sadržava fizikalna svojstva tog fluida. Neke od pretpostavki koje uvelike štede računalne resurse su mogućnost prikazivanja trodimenzionalnog problema u ravnini uz uvjet simetričnosti, te stacionarno opisivanje nestacionarnog problema (uz uvjet da su te nestacionarnosti male i da ne utječu uvelike na konačan rezultat). Strujanje fluida u prirodi je najčešće turbulentno (izrazito nestacionarno strujanje sa slučajnim pulsacijama fizikalnih veličina pa se polja u turbulentnom strujanju ne mogu opisati analitički) dok se laminarno strujanje u prirodi pojavljuje samo pri niskim vrijednostima Reynoldsova broja. Postoje više načina rješavanja turbulentnog strujanja od najzahtjevnijeg DNS (direktnog rješavanja Navier-Stokesovih jednadžbi) pa sve do najpraktičnijeg i najčešće korištenog u inženjerskoj praksi RANS (Reynolds Averaged Navier Stokes) modela. U RANS modelima osrednjuju se Navier-Stokesove jednadžbe te se modeliraju pulsacije. U klasi RANS modela postoji više razina modela, od modela u kojima se rješavaju jednadžbe za turbulentna naprezanja (RSM-Reynolds stress models) do najjednostavnijih modela temeljenih na Boussinesqovoj hipotezi i modeliranju turbulentne viskoznosti [1]. U nastavku su prikazane osnovne jednadžbe mehanike fluida za višefazno strujanje.

1.1.1. Jednadžba kontinuiteta

Jednadžba kontinuiteta za višefazno strujanje prikazana je sljedećom jednadžbom:

$$\frac{\partial(\rho\alpha_k)}{\partial t} + \frac{\partial(\rho\nu_j\alpha_k)}{\partial x_j} = \sum_{\substack{l=1\\l\neq k}}^n \Gamma_{kl},$$
(1)

gdje α_k predstavlja volumni udio promatrane faze *k* ako govorimo o višefaznom modelu te mora biti zadovoljen uvjet:

$$\sum_{k=1}^{n} \alpha_k = 1 \tag{2}$$

1.1.2. Jednadžba očuvanja količine gibanja

Jednadžba očuvanja količine gibanja prikazana je sljedećom jednadžbom:

$$\frac{\partial \left(\rho_{k}\alpha_{k}v_{ki}\right)}{\partial t} + \frac{\partial \left(\rho_{k}v_{kj}\alpha_{k}v_{ki}\right)}{\partial x_{j}} = -\alpha_{k}\frac{\partial p}{\partial x_{i}} + \frac{\partial}{\partial x_{j}}\left(\alpha_{k}\left(\tau_{kij}+\tau_{kij}^{t}\right)\right) + \alpha_{k}\rho_{k}f_{i} + \sum_{\substack{l=1\\l\neq k}}^{n}M_{kli} + u_{ki}\sum_{\substack{l=1\\l\neq k}}^{n}\Gamma_{kl} \quad (3)$$

Svaki član u jednadžbi količine gibanja također sadrži volumni udio pojedine faze što znači da ćemo imati onoliko jednadžbi količine gibanja (isto vrijedi i za jednadžbu očuvanja mase i jednadžbu očuvanja energije) koliko imamo pojedinih faza u modelu. Prvi i drugi član s lijeve strane predstavljaju vremensku i prostornu (konvekcijski član) promjenu količine gibanja. Prvi član s desne strane predstavlja volumnu silu tlaka u kojoj se uzimaju vrijednosti tlaka s granica kontrolnog volumena i sile tlaka između pojedinih faza. Drugi član s desne strane sastoji se od viskoznih naprezanja sastavljenih od smičnog i Reynoldsovog naprezanja za svaku fazu zasebno. Turbulentna viskoznost nije fizikalno svojstvo fluida, već svojstvo toka fluida. Prema njoj možemo klasificirati strujanje. U strujanju pri visokom Re-broju turbulentna viskoznost je nekoliko reda veličine veća od molekularne te molekularnu viskoznost možemo zanemariti. U blizini stjenke unutar viskoznog podsloja turbulencije su prigušene te se molekularna viskoznost ne zanemaruje. Peti član predstavlja izmjenu količine gibanja uslijed masenih sila. Šesti i sedmi član u jednadžbi (3) predstavljaju izvorske članove gdje M predstavlja izmjenu količine gibanja između faze k i plinovite faze.

1.1.3. Jednadžba očuvanja energije

$$\frac{\partial}{\partial t} (\alpha \rho h)_{k} + \frac{\partial}{\partial x_{j}} (\alpha \rho h v_{j})_{k} = \frac{\partial}{\partial x_{j}} (\alpha_{k} (q_{kj} + q^{T}_{kj})) + (\alpha \rho \theta)_{k} + \alpha_{k} \delta_{k} f_{j} v_{ki} + \frac{\partial}{\partial x_{j}} (\alpha_{k} v_{ki} (\tau_{kij} + \tau^{T}_{kij})) + \alpha_{k} \frac{\partial p}{\partial t} + \sum_{l=1 \ l \neq k}^{n} H_{kl} + h_{k} \sum_{l=1 \ l \neq k}^{n} \Gamma_{kl}$$

$$\tag{4}$$

Prva dva člana s lijeve strane diferencijalne jednadžbe prikazuju izmjenu topline u vremenu i prostoru dok prva dva člana s desne strane se odnose na toplinski i turbulentni toplinski tok. Drugi član desne strane jednadžbe (4) predstavlja izvorski član specifične entalpije faze k. Treći član desne strane predstavlja izmjenu energije uslijed masenih sila. Četvrti član je izvorski član u kojem se u obzir uzimaju viskozna i Reynoldsova naprezanja. Peti član predstavlja promjenu tlaka u vremenu za pojedinu fazu. Šesti član je izvorski član koji predstavlja izmjenu energije između faza k i l dok posljednji član postoji uslijed izmjene energije zbog izmjene mase između pojedinih faza.

1.2. Ubrizgavanje goriva

Stalna težnja za što potpunijim izgaranjem i što manjom količinom čestica u ispušnim plinovima dovodi do sve većih tlakova ubrizgavanja. Naime, čestice se najvećim dijelom

sastoje od čađe, odnosno ne izgorjelog ugljika. Ako su tlakovi ubrizgavanja veći, kapljice goriva su manje, izmiješanost sa zrakom je bolja i izgaranje je potpunije, potrošnja i štetna emisija su niže a količina čađe je manja. Međutim, nepoželjna posljedica visokih tlakova ubrizgavanja, odnosno jako sitnih kapljica goriva je velika brzina izgaranja koja dovodi do naglog porasta tlaka u cilindru. To ima za posljedicu veliku buku. Jedno rješenje za sprječavanje buke je ubrizgavanje više mlazova prilikom čega se u cilindar najprije ubrizgava mala količina goriva u obliku finih kapljica, nakon čega slijedi glavni mlaz goriva. Ovakvim predubrizgavanjem i izgaranjem male količine goriva poveća se tlak i temperatura u cilindru pa izgaranje glavne količine započinje kod višega tlaka. Zadrži li se najveći tlak na istoj visini, gradijent porasta tlaka $\Delta p/\Delta \alpha$ (MPa/°KV) je niži pa je i buka izgaranja manja. Najdjelotvornije mjere za smanjenje emisije štetnih plinova i potrošnje goriva su veliki tlakovi ubrizgavanja i brizgaljke s više mlazova, a višestruko ubrizgavanje goriva u jednom radnom ciklusu za smanjivanje buke izgaranja. Broj mlazova kod osobnih automobila iznosi 4 do 5 ubrizganih mlazova unutar jednog radnog ciklusa [2]. Da bi kapljice bile što sitnije jedan od kriterija je da promjeri sapnica moraju biti što manji te danas iznose oko 0.15 mm. Tlakovi izgaranja su u stalnom porastu te danas dosežu i preko 2000 bar. Tlakovi ubrizgavanja najviše ovise o pumpi za ubrizgavanje te kod sustava sa razdjelnom pumpom dosežu oko 1850, kod sustava sa pumpom-brizgaljkom do 2000 te kod Common-Rail sustava sa spremnikom pod stalnim tlakom do 1800 bar. Brizgaljka mora omogućiti dobro raspršivanje goriva, a završetak ubrizgavanja mora biti brz i bez kapanja. Kod najmanjih brizgaljki promjer otvora iznosi svega 0.15 mm i manje pa je opasnost začepljivanja vrlo velika. Najnovije brizgaljke imaju konusni završetak te igla brtvi točno na izlaznim otvorima tako da je spriječeno kapanje goriva. Komprimiranjem zraka unutar komore izgaranja na 30-50 bar stvaraju se visoke temperature smjese plinova 700-900°C dovoljne za izgaranje svih kapljice goriva te je u cilindru od izuzetne važnosti imati višak kisika kao bi svaka kapljica imala mogućnost izgaranja. Gorivo treba biti raspršeno u što više sitnijih kapljica što je također postignuto oblikom prostora za izgaranje koji mora omogućavati što bolju vrtložnost. Na slici 1 prikazano je direktno ubrizgavanje u komoru za izgaranje te se na slici 2 vide dijelovi brizgaljke Diesel motora.

Slika 1 Prikaz direktnog ubrizgavanja goriva u komoru za izgaranje [2]

Slika 2 Prikaz brizgaljke Diesel motora [3]

1.3. Erozija kao posljedica kavitacije u brizgaljkama

Kavitacija se javlja pri visokim vrijednostima brzine strujanja fluida unutar sapnice te zbog pada tlaka, koji se smanjuje prema Bernulijevoj energetskoj jednadžbi. Uzrok visokih brzina strujanja fluida su velike razlike tlakova na ulazu u brizgaljku i izlazu fluida u područje komore za izgaranje. Spuštanje vrijednosti tlaka ispod tlaka para za određeni fluid prouzrokuje promjenu faze tj. prijelaz iz tekuće u plinovitu fazu. Tlakovi ubrizgavanja koji mogu izazvati kavitaciju nisu visoki pa je kavitacija prisutna tijekom cijelog vremena ubrizgavanja. Kavitacija može uzrokovati eroziju materijala. Implozijski udari na površini uzrokuju lokaliziranu deformaciju i mikroabraziju materijala. Oštećenja postupno napreduju te se povezuju uzrokujući hrapavost površine i eroziju materijala. Ovako nastala oštećenja se nazivaju kavitacijskim oštećenjima. Na slici 3 prikazana je implozija mjehurića na površini materijala.

Fakultet strojarstva i brodogradnje

Slika 3 Implozija mjehurića na površini materijala [4]

Pojavom mjehurića (parne faze), efektivni promjer sapnice se sužava, što dovodi do viših vrijednosti brzina strujanja fluida. Eksperimentalni podaci o masenom protoku na modelu brizgaljke dostupni su u [6], gdje je vidljivo da se maseni protok stacionira nakon što je postignuta dovoljno velika razlika tlaka na ulazu i izlazu iz brizgaljke, kao što je prikazano na slici 4.

Slika 4 Promjena masenog protoka u ovisnosti o padu tlaka prema [5]

Slika 5 Krivulja kavitacijske erozije. Prikaz brzine gubitka volumena materijala i ubrzanja gubitka volumena materijala uslijed kavitacijske erozije u ovisnosti o vremenu [6]

Prema slici 5 proces kavitacijske erozije možemo podijeliti u četiri faze. Prvi period je period inkubacije erozije, gdje gubitak volumena materijala nije moguće izmjeriti. Tijekom tog perioda materijal akumulira energiju i počinje plastična deformacija. Moguće su pojave pukotina u materijalu i povećanje njegove tvrdoće. Intenzivnije razaranje se primjećuje u drugoj fazi. Ova faza se prepoznaje po intenzivnom gubitku materijala koja u jednom trenutku dostiže svoj maksimum. Nakon toga slijedi faza usporavanja gubitka volumena materijala, a objašnjenje ove pojave je da tekuća faza popunjava mikroskopske rupice i time smanjuje udare implozije. Konačno, četvrta faza je faza konstantne brzine gubitka volumena materijala. Stacionarnu vrijednost intenziteta erozije možemo iskazati pomoću srednje dubine intenziteta erozije MDPR-a (eng. *Mean Depth of Penetration Rate*).

Slika 6 Promjena brzine erozije tijekom vremena do uspostavljenoga MDPR-a [4]

Slika (6) prikazuje promjenu brzine erozije tijekom vremena. S vremenom se brzina gubitka materijala ustaljuje te je izražena preko srednje dubine intenziteta erozije MDPR-a.

2. Matematički model

2.1. Numeričke sheme

2.1.1. Upwind shema

Pri modeliranju protoka kroz granicu, koji je definiran zbrojem konvekcije i difuzije

$$\Delta \mathfrak{I}_n = F \varphi_n - D \frac{\partial \varphi}{\partial n} \Big|_n$$
(5)

trebalo bi voditi računa o međudjelovanju ova dva transporta. U gotovo svim shemama se to ne čini, nego se difuzijski transport modelira kao da nema konvekcijskog, a konvekcijski kao da nema difuzijskog. Za modeliranje difuzije koristi se shema centralnih razlika oblika

$$-D\frac{\partial\varphi}{\partial n}\Big|_{n} = -D(\varphi_{N} - \varphi_{C})$$
(6)

dok se konvektivni član modelira za više slučaja:

a) za slučaj strujanja od čvora *C* prema čvoru *N*

$$\varphi_n = \varphi_C \qquad \text{za} \qquad F > 0 \tag{7}$$

b) za slučaj strujanja od čvora N prema čvoru C

$$\varphi_n = \varphi_N \qquad \text{za} \qquad F < 0 \tag{8}$$

te konačan izraz za Upwind shemu glasi:

$$\Delta \mathfrak{I}_{n} = F \varphi_{n} - D \frac{\partial \varphi}{\partial n} \Big|_{n} = F \varphi_{C} + D(\varphi_{C} - \varphi_{N})$$
(9)

Upwind shema daje približno točne rezultate za slučaj visokog lokalnog Pecletova broja što je u predočenom numeričkom modelu i slučaj. Prednost Upwind sheme leži u tome što je robusna i stabilna, dok joj je nedostatak što u matematički model unosi lažnu difuziju te je prvog reda točnosti.

2.1.2. Shema centralnih razlika

U ovoj numeričkoj shemi se pretpostavlja linearna promjena između čvorova C i N.

$$\Delta \mathfrak{I}_n = F \varphi_n - D \frac{\partial \varphi}{\partial n} \bigg|_n = F \frac{\varphi_C + \varphi_N}{2} + D(\varphi_C - \varphi_N)$$
(10)

Ova shema je formalno drugog reda točnosti, ali to ne znači da će za visoke vrijednosti lokalnog Pecletova broja davati bolje rezultate nego uzvodna shema diferencije. Treba napomenuti da će za lokalni Pecletov broj veći od dva davat negativne koeficijente što će rezultirati oscilacijama u rješenju, što vodi k nestabilnosti numeričke simulacije. Koristit će se samo kod rješavanja jednadžbe kontinuiteta.

2.2. Višefazno strujanje

Unutar programskog paketa FIRE za opis dvofaznog, nestlačivog, viskoznog i turbulentnog strujanja koristi se *Multiphase* modul [8], unutar kojeg postoje *Homogenous* (ravnotežni), VOF model slobodne površine te *Multifluid* model koji će biti nadalje razmatran. Kod *Multiphase* modula koristi se Eulerian-Eulerian pristup kod kojeg su jednadžbe tekuće i plinovite faze spregnute za razliku od Eulerian-Lagrangian pristupa gdje se rješavaju odvojeno. *Multifluid* model se koristi zbog pojave kavitacije tijekom koje tekuća faza prelazi u plinovitu. Pojavom parne faze nastaju mjehurići koji stvaraju razdjelnu površinu sa tekućom fazom i samim tim se javljaju dodatne sile površinske napetosti. U takvom strujanju se također definira brzina pretvorbe kapljevite faze u plinovitu i obrnuto te dodatno računamo volumne udijele pojedinih faza.

2.2.1. k-ε model turbulencije

Ukupna kinetička energija turbulentnog strujanja prema [10], sastoji se od kinetičke energije glavnog strujanja i kinetičke energije pulsacijskog dijela strujanja koja se naziva kinetičkom energijom turbulencije. Kaotično turbulentno strujanje sastoji se od mnoštva pulsacija različitih frekvencija i valnih duljina te amplituda. Glavnina kinetičke energije turbulencije sadržana je u pulsacijama velikih valnih duljina dok je s druge strane zbog malog *Re* broja kod pulsacija s manjim valnim duljinama izraženiji utjecaj viskoznosti tj. pretvorba kinetičke energije u unutrašnju. *Re* broj je definiran kao:

$$\operatorname{Re}_{\lambda} = \frac{\rho v_{\lambda} \lambda}{\mu} \quad , \tag{11}$$

gdje se *Re* broj odnosi na valnu duljinu λ , za koju je amplituda pulsacije brzine v_{λ} . Unutar turbulentnog strujanja postoji neprekidni tok energije kod kojeg se energija od glavnog strujanja oduzima i predaje pulsacijama velikih valnih duljina te nadalje predaje pulsacijama sa malim valnim duljinama na koje je utjecaj viskoznosti velik pa samim time se lako disipira u toplinu. Ovaj model turbulencije spada u skupinu diferencijalnih EVM (engl. *Eddy ViscosityModel*) modela sa dvije jednadžbe. EVM modeli su modeli prvog reda koji pretpostavljaju postojanje direktne analogije između molekularnog i turbulentnog toka količine gibanja (također i topline i vrsta) prema Boussinesq-ovom principu. Diferencijalnima se nazivaju zbog diferencijalnog karaktera jednadžbi koje čine taj model, što omogućava uzimanje u obzir vremensko razvijanje strujanja u nekoj proizvoljnoj točki s obzirom na uzvodne poremećaje ili poremećaje rubnih uvjeta. Unutar modela postoje dvije diferencijalne jednadžbe, a to su jednadžba turbulentne kinetičke energije i energije disipacije.

Turbulentna kinetička energija k predstavlja kinetičku energiju pulsirajuće brzine:

$$k = \frac{1}{2} \overline{v_i v_i} \quad . \tag{12}$$

Turbulentna disipacija energije ε je prema definiciji jednaka:

$$\varepsilon = v \frac{\partial v_i}{\partial x_j} \frac{\partial v_i}{\partial x_j} \quad .$$
(13)

Jednadžbu kinetičke energije glavnog (vremenski osrednjenog) strujanja dobijemo skalarnim množenjem jednadžbe količine gibanja za glavno strujanje s vremenski osrednjenenom brzinom. Oduzimanjem tih dviju jednadžbi dobiva se diferencijalna jednadžba turbulentne kinetičke energije koja glasi:

$$\frac{\partial}{\partial t}(\rho \bar{k}) + \frac{\partial}{\partial x_{j}}(\rho \bar{v_{j}} \bar{k}) = \rho \overline{f_{i} v_{i}} + \frac{\partial}{\partial x_{j}} \left(\mu \frac{\partial \bar{k}}{\partial x_{j}} - \rho \overline{v_{j} k'} - \overline{p v_{j}}\right) - \mu \frac{\partial v_{i}}{\partial x_{j}} \frac{\partial v_{i}}{\partial x_{j}} - \rho \overline{v_{i} v_{j}} \frac{\partial v_{i}}{\partial x_{j}}$$
(14)

Prva dva člana s lijeve strane se odnose na lokalnu i konvektivnu promjenu k, dok će članovi s desne strane biti posebno analizirani. Produkcija/destrukcija k putem masenih sila definirana je izrazom:

$$G = \rho f_i v_i^{'} \tag{15}$$

Difuzni transport *k* putem viskoznosti, pulsirajuće brzine i tlaka definiran je izrazom:

$$D = \frac{\partial}{\partial x_j} \left(\mu \frac{\partial \bar{k}}{\partial x_j} - \rho \overline{v_j k} - \overline{p v_j} \right)$$
(16)

Disipacija *k* u toplinu putem viskoznog (molekularnog) naprezanja definirana je izrazom:

$$\varepsilon = v \frac{\partial v_i}{\partial x_j} \frac{\partial v_i}{\partial x_j}$$
(17)

Produkcija k prijenosom energije strujanja u turbulentne fluktuacije putem Reynolds-ovih naprezanja definirana je izrazom:

$$P = \rho \overline{v_i v_j} \frac{\partial v_i}{\partial x_j}$$
(18)

Turbulentnu difuziju se modelira temeljem analogije s molekularnom difuzijom oblika

$$-\rho \overline{v_j k'} - \overline{p' v_j} = \Gamma^k \frac{\partial \overline{k}}{\partial x_j} = \frac{\mu_t}{\sigma^k} \frac{\partial \overline{k}}{\partial x_j}$$
(19)

pri čemu je koeficijent Γ^k turbulentne difuzije kinetičke energije turbulencije modeliran odnosom koeficijenta turbulentne viskoznosti i Prandtl-Schmitova broja, koji je po definiciji odnos koeficijenta viskoznosti i koeficijenta difuzije kinetičke energije turbulencije.

Analogno se modelira i turbulentna difuzija $\overline{\varepsilon}$:

$$-\rho \overline{v_j \varepsilon} - 2\mu \frac{\partial v_j}{\partial x_k} \frac{\partial p}{\partial x_k} = \Gamma^{\varepsilon} \frac{\partial \overline{\varepsilon}}{\partial x_j} = \frac{\mu_t}{\sigma^{\varepsilon}} \frac{\partial \overline{\varepsilon}}{\partial x_j}$$
(20)

dakle modelska jednadžba za k glasi:

$$\rho \frac{Dk}{Dt} = \rho \left(P + G - \varepsilon \right) + \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_i}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right]$$
(21)

Jednadžba za disipaciju kinetičke energije turbulencije će imati također oblik općeg zakona očuvanja, gdje su na lijevoj strani članovi lokalne i konvektivne promjene, a na desnoj molekularna i turbulentna difuzija te destrukcijski (ponor) i generativni (izvor) član. Modelska jednadžba je oblika:

$$\rho \frac{D\varepsilon}{Dt} = \left(C_1 P - C_2 \varepsilon + C_3 G + C_4 k \frac{\partial v_k}{\partial x_k} \right) \cdot \frac{\varepsilon}{k} + \frac{\partial}{\partial x_j} \left(\frac{\mu_t}{\sigma_\varepsilon} \frac{\partial \varepsilon}{\partial x_j} \right)$$
(22)

unutar koje je više stavljen naglasak na koeficijente zatvaranja koji ovise o empirijskim pretpostavkama, već na točne derivacije utjecajnih članova te član ε/k predstavlja recipročnu vrijednost karakteristične turbulentne vremenske veličine.

2.2.2. k-zeta-f model turbulencije

Ovaj model su 2004. godine razvili Hanjalic, Popovac i Hadžiabdic [11]. Autori su unaprijedili verziju modela turbulentne viskoznosti temeljene na Durbinovom elipticnom konceptu iz 1991. godine. Cilj je bio unaprijediti numeričku stabilnost izvornog $\overline{v^2} - f$ modela rješavanjem transportne jednadžbe za omjer $\zeta = \overline{v^2} / k$ umjesto za $\overline{v^2}$. Turbulentna viskoznost v_t je prikazana u obliku:

$$v_t = C_{\mu} \zeta \frac{k^2}{\varepsilon}$$
(23)

Članovi iz gornje jednadžbe dobiju se na sljedeći način. Turbulentna kinetička energija k :

$$\rho \frac{Dk}{Dt} = \rho(\mathbf{P}_k - \varepsilon) + \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right]$$
(24)

Disipacija turbulentne kinetičke energije ε :

$$\rho \frac{D\varepsilon}{Dt} = \rho \frac{C_{\varepsilon 1} P_k - C_{\varepsilon 2}}{T} + \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_j} \right]$$
(25)

Normirana karakteristična brzina ζ :

$$\rho \frac{D\zeta}{Dt} = \rho f - \rho \frac{\zeta}{k} + \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_\zeta} \right) \frac{\partial \zeta}{\partial x_j} \right]$$
(26)

gdje se eliptična funkcija f računa prema:

$$f - L^{2} \frac{\partial^{2} f}{\partial x_{j} \partial x_{j}} = \left(C_{1} + C_{2} \frac{P_{k}}{\zeta}\right) \frac{\left(2/3 - \zeta\right)}{T}$$
(27)

$$f - L^2 \frac{\partial^2 f}{\partial x_j \partial x_j} = \left(C_1 + C_2 \frac{P_k}{\zeta}\right) \frac{\left(2/3 - \zeta\right)}{T}$$
(28)

Slijedi produkcija turbulentne kinetičke energije P_k :

$$P_k = v_t S^2 \tag{29}$$

$$S = \sqrt{2S_{ij}S_{ij}} \tag{30}$$

Turbulentno vrijeme *T* :

$$T = \max\left[\min\left(\frac{k}{\varepsilon}, \frac{0.6}{\sqrt{6}C_{\mu}|S|\zeta}\right), C_{T}\left(\frac{\nu^{3}}{\varepsilon}\right)^{1/2}\right]$$
(31)

Turbulentna dužina L:

$$L = C_L \max\left[\min\left(\frac{k^{3/2}}{\varepsilon}\right), C_\eta\left(\frac{\nu^3}{\varepsilon}\right)^{1/4}\right]$$
(32)

2.2.3. Multifluid međupovršinski modeli

Unutar *Multifluid modela* [8] postoji nekoliko različitih modela međufazne interakcije, a neki od njih bit će ovdje prezentirani. Modeli korišteni za opis međusobne interakcije između tekuće i parne te parne faze i komprimiranog zraka s obzirom na kavitacijski tip višefaznog strujanja su *Linear Cavitation Model, Cavitation Drag Model* te *Gas-Liquid System1 Model. Linear Cavitation Model* (Linearni kavitacijski model) je korišten za međufaznu izmjenu mase, dok su *Cavitation Drag Model* i *Gas-Liquid System1 Model* korišteni za međufaznu izmjenu količine

Fakultet strojarstva i brodogradnje

gibanja između faza. Sva tri modela impliciraju postojanje dviju veličina koje zbog svojeg prostorno i vremenski promjenjivog karaktera zahtijevaju dvije dodatne diferencijalne transportne jednadžbe, a to su: gustoća broja mjehurića (*eng. Bubble number density*) i veličina dodirne površine (*eng. Interfacial area*).

2.2.3.1. Linear Cavitation Model

Međupovršinska izmjena mase u Linear Cavitation Modelu definira se prema izrazu:

$$\Gamma_c = \rho_d N'' 4R^2 \frac{\partial R}{\partial t} = -\Gamma_d$$
(33)

Vremenska derivacija radijusa mjehurića je dobivena iz Rayleigh-ove jednadžbe:

$$R\frac{\partial^2 R}{\left(\partial t\right)^2} + \frac{3}{2} \left(\frac{\partial R}{\partial t}\right)^2 = \frac{\Delta p}{\rho_c}$$
(34)

Linearizacijom gornje jednadžbe i zanemarivanjem inercijskog člana dobivamo:

$$\Gamma_{c} = \frac{1}{C_{CR}} sign(\Delta p) 3.85 \frac{\rho_{d}}{\sqrt{\rho_{c}}} (N^{"})^{1/3} (\alpha_{d})^{2/3} |\Delta p|^{1/2} = -\Gamma_{d}$$
(35)

Razlika tlaka Δp iznosi:

$$\Delta p = p_{isp} - \left(p - C_E \frac{2}{3} \rho_c k_c \right)$$
(36)

Koeficijent zatvarnja C_E , koji se naziva Eglerovim koeficijentom, ovisi o lokalnoj razini turbulencije. Faktor odgode kondenzacije C_{CR} je empirijski koeficijent koji se koristi za smanjenje kondenzacije isparene faze tijekom kavitacije.

Fakultet strojarstva i brodogradnje

2.2.3.2. Cavitation Drag Model

Međupovršinski izvori količine gibanja u *Multifluid* modelu općenito se sastoje od sile otpora i sile uslijed turbulentne disperzije:

$$\overline{M_c} = C_D \frac{1}{8} \rho_c A_i^{"} \overline{v_r} \left| \overline{v_r} \right| + C_{TD} \rho_c k_c \nabla \alpha_d = -\overline{M_d}$$
(37)

Relativna brzina v_r je definirana prema izrazu:

$$\overrightarrow{v_r} = \overrightarrow{v_d} - \overrightarrow{v_c}$$
(38)

Reynolds-ov broj definiran na promjeru mjehurića:

$$\operatorname{Re}_{d} = \frac{v_{r} D_{b}}{v_{c}}$$
(39)

Koeficijent otpora CD je funkcija Reynolds-ovog broja:

$$C_{D} = \begin{cases} \frac{192}{\text{Re}_{b}} \left(1 + 0.1 \text{Re}_{b}^{0.75}\right) & \text{Re}_{b} < 1000 \\ 0.438 & \text{Re}_{b} \ge 1000 \end{cases}$$
(40)

Koeficijent sile uslijed turbulentne disperzije C_{TD} opisuje difuziju parne faze uslijed turbulentnog miješanja i predstavlja još jedan empirijski faktor.

2.2.3.3. Gas Liquid System1 Model

Veličina dodirne površine mjehurića dana je izrazom:

$$A_i^{"} = \pi D_d^2 N^{"} = (36\pi)^{1/3} N^{"} \alpha_d^{2/3} = \frac{6\alpha_d}{D_d}$$
(41)

u kojem D_d predstavlja promjer mjehurića, a α_d udio parne faze. Koeficijent otpora C_D funkcija je Reynolds-ovog broja definiranog na promjeru mjehurića.

2.2.4. Jednadžbe gustoće broja mjehurića i veličine dodirne površine između faza Jednadžba gustoće broja mjehurića se računa prema izrazu

$$N^{"} = \int n^{"}(\mathbf{x}_{i}, \mathbf{M}_{i}, \mathbf{t}, \mathbf{r}) \, \mathrm{d}\mathbf{x}_{i} \, dM_{i} dt dr \tag{42}$$

u kojem $n^{"}$ označuje funkciju distribucije mjehurića koja je ovisna o prostornim koordinatama, vremenu, količini gibanja i pretpostavci da su mjehurići u obliku sfere. Transportna jednadžba za $n^{"}$ preko Liouville-ova teorema glasi:

$$\frac{\partial n^{"}}{\partial t} + \nabla \left(n^{"} M_{i} \right) + \frac{\partial}{\partial r} \left(n^{"} \frac{dr}{dt} \right) = \sum S_{j} + S_{ph}$$
(43)

u kojoj posljednja dva izvorska člana označuju izvor ili ponor uslijed interakcija između mjehurića te doprinos preko promjene faza. Slijede transportne jednadžbe za gustoću broja mjehurića i veličine dodirne površine između faza:

$$\frac{\partial N^{"}}{\partial t} + \nabla (N^{"}M_{0,i}) = \sum R_{j} + R_{ph}$$
(44)

$$\frac{\partial A}{\partial t} + \nabla (A^{"}M_{2,i}) = \sum \phi_{j2} + \phi_{ph2}$$
(45)

Izvorski članovi na desnoj strani prethodnih jednadžbi uključuju mehanizme sraščivanja mjehurića uslijed slučajnih sudara, raspad mjehurića uslijed utjecaja turbulencije te porast broja parnih mjehurića uslijed fazne promjene.

3. Rubni uvjeti i postavke simulacije

Diskretizacija prostora i računalne simulacije izvršene su u programskom paketu FIRE. Zbog smanjenja vremena potrebnog za računanje diskretizirana je 1/12 modela brizgaljke te jedna polovina modela komore za izgaranje. Na graničnim plohama postavlja se rubni uvjet simetrije, kao što će biti prikazano slikama 7 i 8. Volumen koji predstavlja komoru za izgaranje uveden je radi pravilne definicije izlazne granice te ima oblik polucilindra. U proračunskom modelu definirani su dolje navedeni rubni uvjeti.

3.1. Ulazna granica

Ulazna granica je područje u kojem fluid ulazi u domenu proračuna te se na njoj zadaje Dirichletov rubni uvjet. Iako se na ulaznoj granici ne nalaze faze 2 i 3, potrebno je definirati njihov volumni udio. Temperatura je definirana jednaka za cijelu domenu proračuna, za sve faze, te se neće rješavati energetska jednadžba. Postavke ulazne granice su navedene u tablici 1.

Faza 1 (tekuće gorivo)	varijabla	vrijednost	mjerna jedinica
	statički tlak	500	bar
	tur.kin.energija	0.1	m^2/s^2
	volumni udio faze	0.999998	-
	temperatura	293.15	K
Faza 2			
(ispareno gorivo)			
	tur.kin.energija	0.1	m^2/s^2
	volumni udio faze	0.000001	-
	temperatura	293.15	K
Faza 3			
(komprimirani zrak)			
	tur.kin.energija	0.1	m^2/s^2
	volumni udio faze	0.000001	-
	temperatura	293.15	K

Fablica 1	Postavke ulazne	granice
I abiica I	1 Ostavice uluzite	Similee

3.2. Izlazna granica

Kako bi bila pravilno odabrana izlazna granica mora biti podalje od izlaza iz sapnice. Za naše simulacije odabire se *face selection Vol_outlet* na modelu polucilindra, prema slici 7. Fizikalno gledajući to je slučaj granice kroz koju fluid napušta područje proračuna i na kojoj obično ne znamo vrijednost polja fizikalne veličine (npr. brzine) niti vrijednost njegove normalne

derivacije. Tu granicu treba birati tako da na njoj vrijede lokalni uvjeti paraboličnosti što znači da vrijednost na granici neće imati utjecaja na polje fizikalne veličine unutrašnjosti područja proračuna. Podaci birani za izlaznu granicu prikazani su tablicom (2).

	Faza 1	Faza 2	Faza 3
	(tekuće gorivo)	(ispareno gorivo)	(komprimirani zrak)
statički tlak	5 (bar)	5 (bar)	5 (bar)
volumni udio	0.000001	0.000001	0.999998

Tablica 2	Postavke izlazne	granice
-----------	------------------	---------

3.3. Ravnina simetrije

Kroz ravninu simetrije nema protoka fluida (F = 0), a zbog simetrije je $\frac{\partial \varphi}{\partial n} = 0$ te je i ukupni protok jednak nuli. Dijelovi brizgaljke te polucilindra označeni kao rubni uvjet simetrije prikazani su na slici 7 i slici 8.

Slika 7 Prikaz rubnih uvjeta : 1.ravnina simetrije , 2. izlazna površina Vol_outlet

Slika 8 Prikaz rubnih uvjeta: 1.ravnina simetrije, 2.ulazna površina, 3.selekcija *buffer*, 4. selekcija *needle_move*

Slika 9 Prikaz površine matematičkog modela *erosion*

Slika 10 Prikaz selekcija *arbi_ifc* te selekcije *outlet* korištene za prikaz 2D rezultata

Na slici 9 prikazana je selekcija *erosion* koja predstavlja dio stjenke brizgaljke za koju se računa stacionarna vrijednost intenziteta erozije. Na slici 10 prikazana je selekcija *outlet* na kojoj su dobiveni 2D rezultati masenog protoka.

3.4. Početni uvjeti i postavke simulacije

Promatramo nestacionarno, viskozno turbulentno strujanje unutar kojeg moramo zadati vremenski korak numeričke integracije. Vremenski korak je zadan preko kuta zakreta koljenastog vratila. Svaka promjena kuta preračunava se u vremenski korak numeričke simulacije. Postavke vremenskog koraka dane su tablicom 3 i 4.

početni kut	0	deg
kut završetka	360	deg
kutna brzina	30000	1/min

Tablica 3 Postavke vremenskog koraka numeričke integracije

	zakret koljenastog vratila	DeltaAlpha
do	1	0.005
do	7	0.01
do	355	0.05
do	360	0.01

Fakultet strojarstva i brodogradnje

Početni uvjeti su neophodni za rješavanje sustava diferencijalnih jednadžbi. Diskretizacijom parcijalnih diferencijalnih jednadžbi dobije se sustav nelinearnih algebarskih jednadžbi za čije rješavanje koristimo iterativne metode. Za njihovo rješavanje potrebni su nam početni uvjeti kojima se pretpostavlja početno stanje sustava. U korištenom proračunskom modelu početni uvjeti zadani su za cijeli model te je posebno provedena inicijalizacija za polucilindrični dio kako bi se dobila vjerodostojnija fizikalna interpretacija. Početni uvjeti prikazani su tablicom 5.

		1 5	0.0	
	faza 1	faza 2	faza 3	mjerne jedinice
tlak	500			bar
gustoća	830	7	1.1	kg/m^3
temperatura	293.15	293.15	293.15	K
turb.kinetička	0.1	0.1	0.1	m^2/s^2
energija				
brzina u smjeru	0	0	0	m/s
osi-x				
brzina u smjeru	0	0	0	m/s
osi-y				
brzina u smjeru	0	0	0	m/s
osi-z				
volumni udio	0.999998	0.000001	0.000001	

Tablica 5	Prikaz početnih uvieta za o	domenu brizgalike
I abiica J		Jointonu Unilganke

Tablica 6Prikaz početnih uvjeta za domenu polucilindra

	faza 1	faza 2	faza 3	mjerne jedinice
tlak	5			bar
gustoća	830	7	1.1	kg/m^3
temperatura	293.15	293.15	293.15	K

Mateo Polančec Završni rad 0.1 m^2/s^2 turb.kinetička 0.1 0.1 energija 0 0 0 brzina u smjeru m/sosi-x 0 0 0 brzina u smjeru m/sosi-y 0 0 0 brzina u smjeru m/sosi-z volumni udio 0.000001 0.000001 0.999998

U početnom trenutku unutar cilindra nalazi se zrak (faza 3) komprimiran na 5 bar te je potrebno inicijalizirati domenu polucilindra sa početnim uvjetima navedenim u tablici 6. Također je važno napomenuti da je domena polucilindra u početnom trenutku u potpunosti ispunjena zrakom, ali zbog mogućih numeričkih poteškoća tokom proračuna, moraju se zadati volumni udijeli faze 2 i 3. Prema tablici 6 vidi se da su volumni udijeli faza 2 i 3 u početnom trenutku u domeni polucilindra nekoliko reda veličine manji od volumnog udjela faze 3.

3.5. Podrelaksacijski faktori

Poradi moguće divergencije rješenja zadaju se podrelaksacijski faktori prikazani u tablici (7). Niže vrijednosti podrelaksacijskih faktora produžuju vrijeme računanja numeričke simulacije, ali pridonose stabilnosti numeričke simulacije.

	faza 1, 2, 3
moment	0.3
tlak	0.1
tur.kin.energija	0.15
tur.ener.disipacije	0.15
volumni udio	1

3.6. Kriteriji konvergencije

Rješavajući sustav nelinearnih algebarskih jednadžbi započinje se pretpostavkom rješenja te se traži da se određenim brojem iteracija reziduali približe nuli. Jasno je da pri numeričkom rješavanju nikada neće za sve jednadžbe biti jednaki nuli pa će se tražiti zadovoljenje uvjeta:

$$K_{\max} = \sum_{j} \left| r_{j}^{k} \right| = \sum_{j} \left| \left[A_{ji} \left(\varphi^{k} \right) \right] \left[\varphi_{i}^{k} \right] - \left[b_{j} \left(\varphi^{k} \right) \right] \right| \le \varepsilon_{sum}$$

$$(46)$$

gdje se suma odnosi po svim konačnim volumenima, A_{ji} predstavlja matricu koeficijenata, a φ_k vektor nepoznanica fizikalnog polja. Suma apsolutnih vrijednosti reziduala se normira sa nekom vrijednošću. Nakon što normalizirani reziduali padnu ispod tražene vrijednosti iteracijski postupak se zaustavlja. Kriteriji konvergencije brojčano su prikazani tablicom 8.

max.broj iteracija	100
min.broj iteracija	3
tlak	0.001
količina gibanja	0.001
turb.kin.energija	0.005
volumni udio	0.005

Tablica 8Kriteriji konvergencije

4. Rezultati simulacije

4.1. Usporedba rezultata na mrežama sa različitim brojem konačnih volumena

Diskretizirana je 1/12 modela te se uspoređuju rezultati simulacija za $k - \varepsilon$ model turbulencije na mrežama sa 56634, 65458 te 88750 konačnih volumena. Prikaz rezultata dan je u obliku slika sa prikazanim vrijednostima pojedinih fizikalnih veličina u težištu svakog pojedinog volumena. Rezultati su dani u ovisnosti o kutu zakreta koljenastog vratila koji se u toku simulacije preračunava u vremenski korak integracije. Prikaz slika dan je za kut $\alpha = 140^{\circ}$ te su mreže na slikama poredane od najgrublje do najfinije.

U toku strujanja kroz sapnicu prolaskom kroz selekciju *arbi_ifc* dolazi do naglog skretanja struje tekuće faze. Poradi naglog skretanja uz sam rub dolazi do naglog povećanja brzine te nedaleko od ruba do vrtloženja. Posljedica vrtloženja je pad brzine. Prikaz vrtloženja uz stjenku sapnice te nagli porast brzine vide se na slici 11.

Slika 11 Usporedni prikaz apsolutnih brzina faze 1 [m/s]

Slika 12 Usporedba apsolutnog tlaka koji je jedina zajednička varijabla za sve tri faze [Pa]

Slika 13 Usporedba volumnog udjela faze 2

Usporedbom slika 12 i 13 može se uočiti da padom tlaka u području skretanja fluida dolazi do kavitacije te je najveći udio isparene faze upravo na tom dijelu sapnice.

Tablica 9

Usporedbom rezultata na sve tri mreže može se uvidjeti njihova sličnost te smo zbog toga u mogućnosti izabrati računalnu mrežu koja daje dobre rezultate uz prihvatljivo vrijeme trajanja simulacije.

Na slikama 14 i 15 dijagramski su prikazani maseni protoci pojedinih faza kroz selekciju *outlet*. Nazivi mreža s određenim brojem konačnih volumena prikazani su u tablici 9:

Naziv mreža konačnih volumena prema broju konačnih volumena

Broj konačnih volumena	Naziv
56634	gruba
65458	normalna
88750	fina

4,50E-03 4,00E-03 3,50E-03 MASENI PROTOK [kg/s] 3,00E-03 2,50E-03 2,00E-03 1,50E-03 1,00E-03 5,00E-04 0,00E+00 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 ZAKRET KOLJENASTOG VRATILA U STUPNJEVIMA GRUBA - NORMALNA -— FINA -

Slika 14 Maseni protok faze 1 kroz selekciju outlet

Slika 15 Maseni protok faze 2 kroz selekciju outlet

Slika 16 Ukupan maseni protok kroz selekciju *outlet*

Kako bi se osigurala konvergencija rješenja profinjavanjem mreže približavamo se točnom rješenju. Na prikazanim slikama može se lako uočiti da daljnje profinjavanje mreže nije potrebno, pošto su rezultati na mrežama sa 65458 te 88750 konačnih volumena približno jednaki te su neznatna odstupanja u odnosu na mrežu sa 56634 konačnih volumena. Na slikama 14 i 16 može se uočiti da se profinjavanjem mreže maseni protok smanjuje. Također se može vidjeti da se za α u rasponu 30° < α < 340° maseni protok ustaljuje što se nikako ne može reći za maseni protok isparene faze (faza 2). Tijekom vremena protjecanja dvofaznog fluida kroz selekciju *outlet* stvaranje, srašćivanje te implozija mjehurića u dodiru sa stjenkom veoma je nepredvidiv i oscilatoran proces kakvim ga i prikazuje slika 15.

4.2. Usporedba rezultata $k - \varepsilon$ i k - zeta - f model turbulencije

4.2.1. Prikaz 2D rezultata na selekciji outlet za $k - \varepsilon$ i k - zeta - f model turbulencije

Nakon zatvaranja magnetskog ventila započinje porast tlaka. Kad se dostigne tlak otvaranja, igla sapnice se podiže i počinje ubrizgavanje. Dijagramski prikaz podizanja igle u ovisnosti o zakretu koljenastog vratila dan je slikom 17 te je potkrepljen rezultatima simulacije, slika 18.

ZAKRET KOLJENASTOG VRATILA U STUPNJEVIMA

Slika 17 Prikaz podizanja igle u milimetrima u ovisnosti o kutu zakreta koljenastog vratila

Slika 18 Usporedni prikaz ukupnog masenog protoka kroz selekciju outlet

Slika 19 Usporedni prikaz masenog protoka faze 2 kroz selekciju outlet

Uspoređivanjem slika 17 i 18 može se uočiti nagli porast masenog protoka kroz selekciju *outlet* uslijed naglog podizanja igle za oba modela turbulencije te naglog pada prilikom spuštanja igle. Na slici 19 može se uočiti značajnija razlika u masenim protocima faze 2 (isparene faze) za različite modele turbulencije. Parna faza nastaje uslijed isparavanja tekuće faze pri dovoljno niskom tlaku. Uslijed velike brzine strujanja pri visokom Re-broju značajna je turbulentna viskoznost koja mora u obzir uzeti i međupovršinsko djelovanje između faza, također se treba uzeti u obzir i gustoća broja mjehurića i veličina dodirne površine. Ukupni maseni protoci neznatno se razlikuju za promatrane simulacije. Razlog tome su zanemarive razlike u masenim protocima faze 1 čiji je maseni protok tri reda veličine veći od protoka faze 2.

4.2.2. Usporedba 3D rezultata za $k - \varepsilon$ i k - zeta - f model turbulencije

Usporedno su dobiveni rezultati za dva modela turbulencije za određeni kut koljenastog vratila α . Lijeva strana sljedećih slika prikazuje rezultate $k - \varepsilon$ simulacija, dok desna strana prikazuje rezultate dobivene za simulacije uz korištenje k - z - f modela turbulencije.

Slika 20 Usporedni prikaz polja apsolutnog tlaka [Pa] za kut $\alpha = 140^{\circ}$

Na slici 20 prikazani su rezultati polja tlaka dobiveni za dva modela turbulencije. Više vrijednosti polja tlaka dobivene su za $k - \varepsilon$ model turbulencije. U području najnižeg tlaka dobivene su najviše vrijednosti volumnog udjela isparene faze, slika 21. Naravno, to je i očekivano pošto je pokazano kako proces kavitacije nastaje u području dovoljno niskog tlaka.

Slika 21 Usporedba volumnog udjela faze 2 za kut $\alpha = 140^{\circ}$

Slika 22 Usporedni prikaz polja turbulentne kinetičke energije faze 1 $[m^2/s^2]$ za $\alpha = 140^{\circ}$

Najveće razlike turbulentne kinetičke energije faze 1, prema slici 22, dobivene su na selekciji *arbi_ifc*, prikazane na slici 10. Različite vrijednosti propagiraju duž uzdužne simetrale modela sapnice.

Fakultet strojarstva i brodogradnje

Slika 23 Usporedni prikaz polja apsolutne brzine faze 1 [m/s] za kut $\alpha = 140^{\circ}$

Usporedbom polja brzine slika 23, vidimo neznatne razlike u vrijednostima na samoj stjenci uz selekciju *arbi_ifc*, pri nagloj promjeni smjera strujanja.

4.2.3. Usporedni prikaz rezultata na selekciji outlet za $k - \varepsilon$ i k - zeta - f model turbulencije

Slika 24 Usporedni prikaz polja brzine faze 1 za kut $\alpha = 140^{\circ}$ na selekciji *outlet* [m/s]

Slika 24 prikazuje gotovo identičnu sliku polja brzine za oba modela turbulencije na selekciji *outlet*. Slični profili brzina na izlaznoj selekciji rezultat su sličnog opisivanja toka fluida za oba modela turbulencije. Kao što je opisano za sliku 23, polje brzina neznatno se razlikuje za obje simulacije.

Slika 25 Usporedni prikaz volumnog udjela faze 2 za kut $\alpha = 140^{\circ}$ na selekciji *outlet*

Na slici 25 mogu se uočiti razlike u volumnom udjelu isparene faze uz samu stjenku sapnice, gdje rezultati za $k - \varepsilon$ model turbulencije daju više vrijednosti. Kao što je navedeno u literaturi [12] k-zeta-f model bolje opisuje strujanje fluida u blizini rubnih uvjeta definiranih kao zid (eng. wall).

Slika 26 Usporedni prikaz turbulentne kinetičke energije faze 1 za kut $\alpha = 140^{\circ}$ na selekciji *outlet* $[m^2 / s^2]$

Slika 27 Usporedni prikaz turbulentne disipacije energije faze 1 za kut $\alpha = 140^{\circ}$ na selekciji *outlet* $[m^2 / s^3]$

Na slikama 26 i 27 mogu se uočiti razlike u vrijednostima turbulentne kinetičke energije i energije disipacije na selekciji *outlet* za dva modela turbulencije, iako se uprosječene vrijednosti razlikuju za neznatnih 0,1%. Najveće razlike su upravo u području najviših brzina strujanja fluida pa samim tim i najveće ukupne kinetičke energije. Rezultati $k - \varepsilon$ modela turbulencije

za obje fizikalne veličine daju više vrijednosti. Polja brzina prikazana na slici 24 se gotovo u potpunosti podudaraju, dok se rezultati za volumni udio faze 2 razlikuju na području stjenke sapnice.

Stalna težnja za što potpunijim izgaranjem i što manjom količinom čestica u ispušnim plinovima dovodi do sve većih tlakova ubrizgavanja. Naime, čestice se najvećim dijelom sastoje od čađe, odnosno ne izgorjelog ugljika. Ako su tlakovi ubrizgavanja veći, kapljice goriva su manje, izmiješanost sa zrakom je bolja i izgaranje je potpunije, potrošnja i štetna emisija su niže, a količina čađe je manja. Velike razlike tlakova utječu na povišenje brzine strujanja, a samim time i na povišenje masenog protoka. Pri velikim brzinama strujanja prema Bernulijevoj energetskoj jednadžbi dolazi do pada tlaka u toku strujanja. Najveći dio isparene faze u toku simulacije tj. ubrizgavanja propagira od ulaza u sapnicu prema njenom izlazu. Za oba modela turbulencije rezultati volumnog udjela isparene faze su približno jednaki uz neznatna odstupanja u vidu masenog protoka. Rezultat naglog pada tlaka je pojava kavitacije koja sa sobom nosi dobre i štetne posljedice. Uslijed kavitacije pojavljuju se mjehurići isparene faze koji dodatno pridonose boljoj raspršenosti kapljica goriva što je korisna posljedica, dok implozijski udari na stjenku sapnice su svakako štetna posljedica. Rezultati simulacija za grubu, normalnu i finu mrežu potvrđuju pravilan odabir računalne mreže. Usporedba $k - \varepsilon$ i k - z - fmodela turbulencije daje približno jednake rezultate za volumne udjele isparene faze te polja apsolutne brzine, dok se rezultati za polje tlaka te turbulentne kinetičke energije razlikuju. Naime, $k - \varepsilon$ model turbulencije daje više vrijednosti apsolutnog tlaka pri izlazu iz sapnice te kroz cijelo područje sapnice daje također više vrijednosti turbulentne kinetičke energije tekuće faze.

LITERATURA

- [1] Virag Z., Računalna dinamika fluida, FSB, skripta
- [2] Mahalec, Lulić, Kozarac, Motori s unutarnjim izgaranjem, FSB, skripta
- [3] http://www.autonet.hr/pic/920/32266/original.jpg
- [4] Greif D., Wang D.M., *Aspects Of Modelling Cavitation Effects Within Injecton Equipment Using Advanced Two-Fluid Techniques*, Turbulence, Heat and mass transfer 5
- [5] AVL FIRE, New Cavitation Model: a parametric variation of coefficients, AVL,Graz,2006
- [6] Dular M., Bachert B., Stoffel B., Sirok B.. Relationship between cavitation structures and cavitation damage, Wear, 2004
- [7] Badock C., Wirth R., Fath A., Leipertz A., Investigation of cavitation in real size diesel injection nozzles, International Journal of Heat and Fluid Flow, 1999
- [8] FIRE Eulerian Multiphase manual, AVL, GRAZ,2014
- [9] AVL FIRE v.8, Multiphase Flow, AVL, Graz, 2004
- [10] Perković L., Trodimenzionalna računalna simulacija strujanja unutar brizgaljke goriva za slučaj ubrizgavanja mineralnog dizel i alternativnih goriva,Diplomski rad,FSB,2008.
- [11] K. Hanjalic, M. Popovac, M. Hadžiabdic, A robust near-wall elliptic-relaxation eddyviscosity turbulence model for CFD, International Journal of Heat and Fluid Flow 25 (2004)
- [12] Petranović Z.,Računalna simulacija stvaranja spreja prilikom visokotlačnog ubrizgavanja goriva u dizel motor Diplomski rad, Fakultet Strojarstva i Brodogradnje, Sveučilište u Zagrebu, Zagreb, 2012.

PRILOZI

- I. CD-R disc
- II. Tehnička dokumentacija