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Nomenclature

Greek letters

γ Diffusion coefficient m2/s

ν Kinematic viscosity m2/s

ω Angular frequency 1/s

Latin letters

R̂RR Discrete time domain residual field m/s

ÛUU Discrete time domain velocity field m/s

Q Scalar field in time domain -

QQQ Matrix of variable Q in discrete time instants -

R Scalar transport equation residual in time domain -

RRR Matrix of variable R in discrete time instants -

RRR Time domain residual field m/s

UUU Time domain velocity field m/s

UUU o Time domain velocity field from previous iteration m/s

A Coefficient matrix -

E Transformation matrix from time to frequency domain -

E−1 Transformation matrix from frequency to time domain -

Q Fourier coefficient matrix -

R Fourier coefficient matrix -

u Velocity vector m/s

uo Velocity field from the previous iteration m/s

u0 Mean value Fourier coefficient for velocity expansion m/s

uN Neighbouring cell velocity m/s
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uP Cell velocity m/s

uCn Fourier coefficient for velocity expansion multiplying cosine term m/s

uSn Fourier coefficient for velocity expansion multiplying sine term m/s

ut j Velocity field in time instant t j m/s

Pi Coefficient substituting the summation term -

Q0 Scalar field, zeroth harmonic of Fourier series -

QCn Scalar field, Fourier coefficient of nth harmonic multiplying the cosine term -

QSn Scalar field, Fourier coefficient of nth harmonic multiplying the sine term -

R0 Residual, zeroth harmonic of Fourier series -

RCn Residual, Fourier coefficient of nth harmonic multiplying the cosine term -

RSn Residual, Fourier coefficient of nth harmonic multiplying the sine term -

A Scalar coefficient, sine wave amplitude -

a0 First term of Fourier series, mean value -

aN Matrix coefficient corresponding to the neighbour N -

an Fourier coefficient of nth harmonic multiplying cosine term -

A2
n Energy of the nth harmonic -

aP Central coefficient -

B Scalar coefficient, cosine wave amplitude -

bn Fourier coefficient of nth harmonic multiplying sine term -

F Mass flux through the face m3/s

f Frequency of the period Hz

fcos Cosine wave frequency Hz

fsin Sine wave frequency Hz

k Summation index -
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n Number of harmonic in Fourier series -

P Period in Fourier series -

p Kinematic pressure m2/s2

qv Sources and sinks of scalar field -

Qtn Discrete variable Q in the nth time step within a period -

S Face area -

T Scalar field -

t Time s

Tj Scalar field corresponding to time instant t j -

tn nth time step within a period s

x Argument of the function decomposed in Fourier series -

x0 Initial point of the period -
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Abstract

Gregor Cvijetić

ANALYSIS AND IMPLEMENTATION OF THE HARMONIC BALANCE METHOD
IN COMPUTATIONAL FLUID DYNAMICS

In this thesis the Harmonic Balance Method for non-linear periodic flows is presented.

Assumption of a time-periodic flow allows us to formulate 2n + 1 coupled steady state

problems. By solving 2n+ 1 steady state problems, a transient flow field is obtained. Fourier

series expansion is the core of the Harmonic Balance Method, therefore the accuracy of the

method depends on the number of harmonics specified, n. Accuracy of the method also

depends on the periodic nature of the problem.

The method was first derived for a passive scalar transport and implemented in

OpenFOAM. Validation has been carried out on 4 test cases concerning forced periodic

behaviour at the inlet of the rectangular 2D domain. The first test case was a sine wave, which

was fully resolved with 1 harmonic. The second case was a linear combination of sine and

cosine waves with different frequencies, resolved with 2 harmonics. After successful

validation of harmonic waves, robustness and accuracy test was carried out on two square

waves. Square waves are numerically more difficult and more demanding, which was also

shown in the convergence study carried out using 3, 5, 7 and 10 harmonics. Harmonic

Balance Method results were compared to transient simulation for all of the test cases.

After validation of the passive scalar transport, pressure-velocity system for the Harmonic

Balance Method was derived and implemented. Validation of NACA2412 pitching airfoil was

presented together with performance comparison of transient solver and harmonic balance.

Keywords: Harmonic Balance, CFD, OpenFOAM, Fourier series, harmonic, periodic, non-

linear, NACA, airfoil pitching
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Sažetak
(ABSTRACT IN CROATIAN)

Gregor Cvijetić

ANALIZA I IMPLEMENTACIJA METODE HARMONIČKE RAVNOTEŽE U
PRORAČUNSKOJ MEHANICI FLUIDA

U ovom radu predstavljena je metoda harmoničke ravnoteže za nelinearna periodična

strujanja. Pretpostavka o periodičnosti strujanja omogućuje dobivanje 2n + 1 spregnutih

stacionarnih problema iz jedne tranzijentne transportne jednadžbe. Rješavanjem 2n + 1

stacionarnih problema dobiva se tranzijentno polje strujanja. Metoda harmoničke ravnoteže

temelji se na Fourierovom razvoju funkcije u red što znači da točnost metode ovisi o broju

korištenih harmonika n. Osim broja harmonika, točnost metode takod̄er ovisi i o prirodi

periodičnog problema.

Metoda je prvo izvedena za pasivni prijenos skalara i implementirana u OpenFOAM.

Validacija je izvedena koristeći 4 slučaja u kojima su mijenjani rubni uvjeti na ulazu domene.

Korištena je 2D pravokutna domena. U prvom slučaju nametnut je ulazni signal u obliku

sinusnog vala, za čije je rješavanje potreban 1 harmonik. Drugi slučaj validacije pasivnog

prijenosa skalara pokazao je Fourierovu prirodu metode: nametnut je signal u obliku linearne

kombinacije dva harmonijska vala različitih frekvencija. Pokazano je da su za rješavanje

takvog složenog vala potrebna dva harmonika. Posljednja dva slučaja izvedena su kako bi se

pokazala otpornost i preciznost metode te su nametnuti pravokutni valovi. Budući da

pravokutni val predstavlja izazov u numeričkom smislu, prikazana je konvergencija s

porastom broja harmonika i to za slučajeve s 3, 5, 7 i 10 harmonika. Rezultati svih slučajeva

dobiveni metodom harmoničke ravnoteže uspored̄eni su s rezultatima konvencionalne

tranzijentne simulacije.

Nakon uspješne validacije metode za pasivni prijenos skalara, metoda harmoničke

ravnoteže proširena je na rješavanje sustava jednadžbi za tlak i brzinu. Validacija metode

harmoničke ravnoteže za Navier-Stokesove jednadžbe napravljena je na slučaju NACA 2412

aeroprofila koji mijenja napadni kut. Naposljetku, napravljena je usporedba učinkovitosti

izmed̄u tranzijentnog rješavača i rješavača za metodu harmoničke ravnoteže.

Ključne riječi: metoda harmoničke ravnoteže, računalna dinamika fluida, Fourierov razvoj,

harmonik, periodično strujanje, NACA, CFD
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Prošireni sažetak
(EXTENDED ABSTRACT IN CROATIAN)

U ovom radu predstavljena je metoda harmoničke ravnoteže za nelinearna periodična

strujanja. Pretpostavka o periodičnosti strujanja omogućuje dobivanje 2n + 1 spregnutih

stacionarnih problema iz jedne tranzijentne transportne jednadžbe. Rješavanjem 2n + 1

stacionarnih problema dobivaju se rješenja u diskretnim vremenskim trenucima tijekom

reprezentativnog perioda. Metoda je implementirana u OpenFOAM, koristeći metodu

konačnih volumena drugog reda točnosti.

Matematički model

Matematički model metode harmoničke ravnoteže dan je u nastavku, te primijenjen na skalarnu

transportnu jednadžbu. Nakon validacije, metoda je proširena na Navier-Stokesove jednadžbe.

Skalarna transportna jednadžba

Pasivni prijenos skalara Q odred̄en je brzinom u i koeficijentom difuzije γ , a definiran je

konvekcijsko-difuzijskom jednadžbom:

∂Q
∂ t

+R = 0 , (1)

gdje R predstavlja konvekcijski i difuzijski transport te izvorne članove:

R = ∇•(uQ )−∇•(γ∇Q )−SQ . (2)

Za nastavak potrebno je prikazati varijablu Q u obliku konačnog Fourierovog reda s n

harmonika:

Q (t) = Q0 +
n

∑
k=1

QSk sin(kωt)+QCk cos(kωt) . (3)

Treba primijetiti da se za varijablu u vremenskoj domeni koristi notacija Q , dok se varijabla

Q nalazi u frekvencijskoj domeni. Fourierov razvoj od R jednak je razvoju danom u

jednadžbi (3), pri čemu je Q zamijenjen s R. Ako vremenski član u jednadžbi (1) zamijenimo

derivacijom razvoja Q iz jednadžbe (3) i Fourierovim razvojem varijable R u izvornu

transportnu jednadžbu (1), dobivamo:

xi



n

∑
k=1

iω
(
QSk cos(kωt)−QCk sin(kωt)

)
+

n

∑
k=1

(
RCk cos(kωt)+RSk sin(kωt)

)
= R0 . (4)

Jednadžba (4) predstavlja skalarnu transportnu jednadžbu u frekvencijskoj domeni, gdje

su Fourierovi koeficijenti QSk i QCk nepoznati. Svaki od navedenih Q i R je polje varijable,

točnije, nezavisan Fourierov razvoj za svaku točku u prostoru, uz pretpostavku jednake osnovne

frekvencije. Prema tome, rješenje je harmonijsko u svakoj točki neovisno o koeficijentima

ostalih točaka. Grupiramo li koeficijente s istim harmonijskim članovima u jednadžbi (4),

dobivamo 2n+1 jednadžbi:

−kωQCk +RSk = 0→ n jednadžbi uz sinus, za k = 1 . . .n ,

R0 = 0→ 1 jednadžba za srednju vrijednost

kωQSk +RCk = 0→ n jednadžbi uz kosinus, za k = 1 . . .n .

(5)

Jednadžba (5) može se napisati u sažetom matričnom obliku:

ωAQ+R = 0 , (6)

gdje:

A =



0 −1

0 −2

0 . −3

.
. . .

. −n

0 0 0 · · · 0 0 0 · · · 0 0 0

1 .

2 .

3 . 0
. . . 0

n 0



, Q =



QS1

QS2

QS3
...

QSn

Q0

QC1

QC2

QC3
...

QCn



, R =



RS1

RS2

RS3
...

RSn

R0

RC1

RC2

RC3
...

RCn



.

(7)

Rješavanjem (6) dobili bi se Fourierovi koeficijenti za varijablu Q , no takav postupak nije

poželjan budući da R sadrži diferencijalne operatore koje bi trebalo prilagoditi za

frekvencijsku domenu.

Stoga, nastavlja se u smjeru definiranja matrice koja ima ulogu direktne Fourierove
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transformacije (DFT) kako bi se omogućio jednostavan prelazak iz vremenske u frekvencijsku

domenu i obrnuto. Da bismo imali jednoznačno jedan–na–jedan mapiranje, diskretni vektor

varijableQQQ u vremenskoj domeni definiramo kao:

QQQ T =
[
Q t1 Q t2 Q t3 · · · Q t2n+1

]
, (8)

gdje tn označava:

ti =
iT

2n+1
, za i = 1 . . .2n+1 . (9)

DFT koji služi za transformaciju iz vremenske domene varijableQQQ u frekvencijsku domenu Q
može se zapisati:

Q = EQQQ , (10)

matrica E ima oblik:

E =
2

2n+1



sin(ωt1) sin(ωt2) . . . sin(ωt2n+1)

sin(2ωt1) sin(2ωt2) . . . sin(2ωt2n+1)
...

...
...

sin(nωt1) sin(nωt2) . . . sin(nωt2n+1)

1
2

1
2

. . .
1
2

cos(ωt1) cos(ωt2) . . . cos(ωt2n+1)

cos(2ωt1) cos(2ωt2) . . . cos(2ωt2n+1)
...

...
...

cos(nωt1) cos(nωt2) . . . cos(nωt2n+1)



. (11)

Množenjem jednadžbe (10) matricom E−1 s lijeva, dobiva se transformacija iz frekvencijske u

vremensku domenu:

QQQ = E−1 Q , (12)

pri čemu je inverzna matrica jednaka:

E−1 =



sin(ωt1) . . . sin(nωt1) 1 cos(ωt1) . . . cos(nωt1)

sin(ωt2) . . . sin(nωt2) 1 cos(ωt2) . . . cos(nωt2)
...
...

sin(ωt2n+1) . . . sin(nωt2n+1) 1 cos(ωt2n+1) . . . cos(nωt2n+1)


. (13)
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Korištenjem matrica transformacije E i E−1, nastavit će se oblikovanje skalarne

transportne jednadžbe u frekvencijskoj domeni, jednadžba (6). Ako zamijenimo izraz u

jednadžbi (6) izrazom (10), dobivamo jednadžbu u frekvencijskoj domeni izraženu preko

varijableQQQ u vremenskoj domeni:

ωAEQQQ +ERRR = 0 , (14)

Ista transformacija je primijenjena na RRR iQQQ . Iako bi rješavanje (linearnih) jednadžbi u ovom

obliku bilo moguće, dobivanje izvornih članova i protoka kroz stranicu kontrolnih volumena

bilo bi skupo u pogledu računalnih resursa. U skladu s navedenim, jednadžbu (14)

transformiramo natrag u vremensku domenu. Jednadžbu (14) množimo s lijeva matricom E−1

iz čega slijedi:

ωE−1 AEQQQ +RRR = 0 . (15)

Dobivena jednadžba predstavlja spregnuti sustav 2n+1 stacionarnih problema. Uspored̄ujući

jednadžbu (15) s originalnom skalarnom transportnom jednadžbom (1), mogu se uočiti dvije

bitne karakteristike:

• R je zamijenjen diskretnom varijablom RRR , pri čemu upućuje da su rješenja dobivena u

odred̄enom broju diskretnih vremenskih trenutaka. Broj vremenskih trenutaka odred̄en

je korištenim brojem harmonika n, prema izrazu (8).

• Vremenski član zamijenjen je spregnutim izvornim članovima koji med̄usobno

povezuju različite vremenske trenutke. Takav pristup istovjetan je računanju derivacije

harmonijskog signala po vremenu u 2n + 1 ekvidistantnih vremenskih trenutaka,

uključujući i rješenje srednje vrijednosti.

Matrica E−1 AE koja množiQQQ u jednadžbi (15) ima slijedeći oblik:

E−1 AE =
2

2n+1



0 P1 P2 P3 . . . . . . P2n

−P1 0 P1 P2 P3
...

−P2 −P1 0 P1 P2
...

−P3 −P2 −P1 0 P1
...

... . . . P2

... . . . P1

−P2n . . . . . . −P3 −P2 −P1 0


, (16)
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gdje je Pi definiran kao:

Pi =
n

∑
k=1

k sin(ikωt1) , za i = 1 . . .2n . (17)

Koeficijenti Pi ovise samo o osnovnoj frekvenciji i korištenom broju harmonika, a oboje se

odred̄uje unaprijed. Prema tome, budući da su koeficijenti Pi konstantni, dovoljno ih je

izračunati i spremiti samo jednom, uz zanemariv trošak računalnih resursa u odnosu na trošak

simulacije.

Koristeći (16) zajedno s jednadžbom (15), prošireni oblik spregnutih jednadžbi za skalarni

transport u formi metode harmoničke ravnoteže moguće je zapisati:

∇•(uQ t j)−∇•
(
γ∇Q t j

)
−SQ t j

=− 2ω

2n+1

(
2n

∑
i=1

Pi− jQ ti

)
, za j = 1 . . .2n+1 , (18)

pri čemu je sprega rješenja u različitim vremenskim trenucima t j postignuta matricom Pi− j

kojom se modelira član vremenske derivacije kao dodatni izvorni član. Dakle, jedna

tranzijentna jednadžba dana izrazom (1) pretvorena je u sustav od 2n + 1 spregnutih

stacionarnih jednadžbi, izraz (18).

Navier-Stokesove jednadžbe

U nastavku je dan izvod metode harmoničke ravnoteže za Navier-Stokesove jednadžbe.

Nestlačivo, laminarno, jednofazno strujanje opisano je jednadžbom kontinuiteta te

momentnom jednadžbom:

∇•u = 0 , (19)

∂u
∂ t

+∇•(uu)−∇•(ν∇u) =−∇p
ρ

, (20)

gdje ν označava kinematičku viskoznost, ρ je gustoća, a p polje tlaka.

Analizirajući metodu harmoničke ravnoteže za skalarnu transportnu jednadžbu, moguće

je zaključiti da se član vremenske derivacije u transportnoj jednadžbi zamjenjuje spregnutim

izvornim članovima: konvekcijski, difuzijski i drugi izvorni članovi ostaju nepromijenjeni.

Prema tome, može se pokazati da jednadžba kontinuiteta zadržava svoj oblik, uz zamjenu

brzine u svojim diskretnim oblikom ut j :

∇•ut j = 0 . (21)

Jednadžba (21) pokazuje da jednadžba kontinuiteta mora biti zadovoljena u svakom diskretnom

vremenskom trenutku t j. Momentna jednadžba u formi metode harmoničke ravnoteže dobiva
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se analogno derivaciji skalarne transportne jednadžbe, te glasi:

∇•(ut jut j)−∇•
(
ν∇ut j

)
=−∇pt j −

2ω

2n+1

(
2n

∑
i=1

Pi− juti

)
, za j = 1 . . .2n+1 . (22)

Jednadžbe (21) i (22) predstavljaju 2n + 1 spregnutih sustava tlak–brzina uz nametnuto

periodično ponašanje odred̄enom osnovnom frekvencijom ω i brojem harmonika n.

Validacija

U nastavku su dani rezultati dobiveni metodom harmoničke ravnoteže. Metoda je prvo

validirana za pasivni prijenos skalara. Dobiveni rezultati uspored̄eni su s rezultatima

tranzijentne simulacije, a nakon validacije metode harmoničke ravnoteže za skalarni transport,

validirana je metoda za Navier-Stokesove jednadžbe.

Za validaciju pasivnog transporta skalara metodom harmoničke ravnoteže, korištena je 2D

pravokutna domena. Domena je dimenzija 10 m×7 m, diskretizirana sa 6 633 heksaedarskih

ćelija. Pretpostavljeno je uniformno polje brzine, u = 10 m/s, a koeficijent difuzije jednak je

γ = 1,5 ·10−5 m2/s.

Kako bi usporedba rezultata metode harmoničke ravnoteže i tranzijentne simulacije bila

moguća, dijagrami prikazuju vrijednosti skalara Q t j po uzdužnoj sredini domene (x ∈ [0 m,10

m], y = 0) za sve slučajeve.

Jedan sinusni val

Prvi slučaj validacije odnosi se na jedan sinusni val. Rubni uvjeti su modelirani tako da se

vrijednost skalara na ulazu mijenja po sinusnom zakonu kroz vrijeme:

Q (t) = Asin(2π f t) , (23)

gdje je A = 5 amplituda vala, a f = 2 Hz frekvencija vala. Za tranzijentnu simulaciju koristi se

promjenjivi rubni uvjet, dok je za metodu harmoničke ravnoteže korišten rubni uvjet konstantne

vrijednosti koja odgovara izrazuQ t j = Asin(2π f t j) za svaki vremenski trenutak t j. Na ostalim

granicama kao rubni uvjet postavljen je iznos gradijenta na nula. Budući da je nametnuti val

sinusnog oblika, samo jedan harmonik je dovoljan, n= 1. Slika 1 prikazuje usporedbu rezultata

metode harmoničke ravnoteže s rezultatima tranzijentne simulacije. Na slici 1a prikazana je

vizualizacija domene kroz koju propagiraju dva vala. Slike 1b do 1d daju usporedbu rezultata
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u različitim vremenskim trenucima.

(a) Dva sinusna vala u domeni,
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(c) Q 2T/3 (t j = 2T/3),
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Slika 1: Vizualizacija domene te usporedba metode harmoničke ravnoteže i
konvencionalnog tranzijentnog rješavača.

Linearna kombinacija sinusnog i kosinusnog vala

Drugi validacijski slučaj modelira rubne uvjete tako da odgovaraju zbroju sinusnog i

kosinusnog vala:

Q (t) = Asin(2π f (t−φ))+Bcos(2π2 f (t−φ)) , (24)

pri čemu je A = 3 amplituda sinusnog vala, B = 5 amplituda kosinusnog vala, a f = 1 Hz

osnovna frekvencija. Za pozicioniranje vala tako da se skalarna vrijednost nule poklopi sa

t = 0 korišten je fazni pomak φ = 0.35. Frekvencija kosinusnog vala jednaka je dvostrukoj

frekvenciji sinusnog vala, zbog čega su potrebna n = 2 harmonika. Ostali rubni uvjeti

definirani su jednako kao i u prethodnom slučaju. Slika 2 prikazuje usporedbu rezultata

dobivenih metodom harmoničke ravnoteže s rezultatima tranzijentne simulacije u različitim

vremenskim trenucima.
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(a) Q T/5 (t j = T/5),
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(b) Q 2T/5 (t j = 2T/5),
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(c) Q 3T/5 (t j = 3T/5),
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Slika 2: Usporedba metode harmoničke ravnoteže s tranzijentnom simulacijom za
kombinaciju sinusnog i kosinusnog vala.

Pravokutni val

Prethodni validacijski slučajevi predstavili su sposobnost metode harmoničke ravnoteže da

prikaže harmonijski poremećaj. Kako bi testirali rješavač na zahtjevnijim slučajevima,

simuliraju se pravokutni valovi, budući da takvi poremećaji i inače predstavljaju izazov

numeričkim algoritmima.
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(a) Pravokutni val nametnut na ulazu,
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(b) Q T (t j = T ) za različit broj harmonika.

Slika 3: Usporedba metode harmoničke ravnoteže i tranzijentne simulacije za pravokutni val.

Slika 3a prikazuje signal nametnut na ulazu u obliku pravokutnog vala. Umjesto rješenja u

različitim vremenskim trenucima, ovdje je dan prikaz konvergencije rezultata s povećanjem
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broja harmonika, slika 3b. Može se uočiti da se korištenjem više harmonika rezultat približava

rezultatu tranzijentne simulacije.

Složeni pravokutni val

Posljednji validacijski slučaj za pasivni prijenos skalara modelira složeni pravokutni val s n =

3,5,7 i 10 harmonika. Slika 4a prikazuje složeni pravokutni val nametnut na ulazu u domenu.

Usporedba profila vala na kraju perioda za različit broj harmonika prikazana je na slici 4b.

Rješenje konvergira rješenju tranzijentne simulacije kako se povećava broj harmonika.
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(c) Greška metode harmoničke ravnoteže
naspram tranzijentnog rješenja.

Slika 4: Usporedba metode harmoničke ravnoteže i tranzijentne
simulacije za složeni pravokutni val.

Na slici 4c prikazano je odstupanje rezultata dobivenih koristeći n = 3,5,7 i 10 harmonika od

rezultata tranzijentne simulacije. Stupci pri dnu dijagrama prikazuju apsolutnu vrijednost

odstupanja u logaritamskom mjerilu pri čemu zelena boja označava 10 harmonika, a crvena 7.

Stupci su dodani kako bi prikazali male razlike izmed̄u simulacije sa 7 i 10 harmonika. S

druge strane, simulacija sa 7 harmonika uključuje 15 spregnutih jednadžbi, dok se za 10
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harmonika rješava 21 spregnuta jednadžba, što je nepotrebni, ali značajni računalni trošak.

Oscilirajući NACA 2412 aeroprofil

U ovom poglavlju predstavljena je validacija nestlačivog, laminarnog strujanja oko NACA

2412 aeroprofila dobivenog metodom harmoničke ravnoteže. Duljina tetive iznosi 1 m, brzina

na ulazu je 1 m/s, a napadni kut varira izmed̄u ±3deg. Računalna domena sastoji se od 6 060

heksaedarskih ćelija. Rezultati metode harmoničke ravnoteže uspored̄eni su s tranzijentnom

simulacijom u kojoj se zakretanjem mreže modelira promjena napadnog kuta aeroprofila.

Promjena napadnog kuta kod metode harmoničke ravnoteže modelirana je promjenom rubnih

uvjeta, pri čemu svaki vremenski trenutak ima zadanu konstantnu brzinu pri promijenjenom

kutu u odnosu na prethodni vremenski trenutak. U nastavku su dani rezultati za jedan

korišteni harmonik. Slika 5 prikazuje konture tlaka na površini aeroprofila. Os apscisa

predstavlja razmotanu površinu aeroprofila, a vrijednosti označavaju broj ćelije. Vrijednosti 0

i 100 su izlazni bridovi aeroprofila pri čemu od 0-50 označava donju površinu krila dok

50-100 označava gornju površinu krila. Rezultati su dani za 3 vremenska trenutka dobivena

korištenjem jednog harmonika.
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(b) Usporedba u 2/3 perioda.
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(c) Usporedba na kraju perioda.

Slika 5: Usporedba rezultata metode harmoničke ravnoteže i tranzijentne simulacije.
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1 Introduction

A fascination with the natural world of fluids and flows dates back since the beginning of

civilisation. In antiquity, it was approached in a philosophical sense (Heraclitus „Everything

flows“), and centuries were needed to give the ideas focused to fluid flow phenomena a

scientific character in the form of Newtonian physical equations. In the 19th century, two

important scientists, Navier and Stokes emerged and developed the famous Navier-Stokes

equation, the first requirement for the development of computational fluid dynamics. It was

not until the evolution of high-speed computers that the modern day computational fluid

dynamics (CFD) developed and became an indispensable part of the design process for indeed

any craft or manufacturing process that mankind has devised.

Over the several past decades, computational fluid dynamics has brought a major

break-through in the development of technology and industry. It is a highly interdisciplinary

research area that provides a qualitative and sometimes even quantitative prediction of fluid

flows based on mathematical modelling, numerical methods and software tools. It enables

scientists and engineers perform computer simulations of fluid flow that are used as a reliable

tool in commercial research and development centres. In modern industry applications it is

becoming a common part of the design process and is routinely used in a wide variety of

industries, such as automotive, aerospace, marine, power generation manufacturing, etc. In

many of these fields, CFD is associated with the occurrence of periodic phenomena, and in

order to analyse and predict them the Harmonic Balance Method [1] has been developed. Its

deployment in computational fluid dynamics is on the continuous increase and it is an efficient

tool for tackling periodic problems where base frequency is known.

Compared to the Harmonic balance Method, conventional transient simulations are long

and computationally expensive, especially for periodic problems: there are cases where up

to 100 periods have to be simulated to obtain accurate results. Steady-state simulations as a

significantly cheaper option, offer insight into the flow field but cannot resolve the transient

effects. In order to avoid long transient simulations and maintain the CPU efficiency of steady-

state simulations, a new method has been proposed. The main goal is to offer savings in

time while concurrently reproduce transient effects. Hence, Harmonic Balance Method is a

quasi steady-state method developed for simulating non-linear temporally periodic flows. The

Harmonic Balance Method is based on the assumption that primitive variables can be accurately

represented by a Fourier series in time. Additional source terms are introduced by replacing

a time derivative term in transport equations with Fourier series derivative. Therefore, instead

of time derivative term, all the time instants are coupled in source terms, resulting in a set of

steady-state equations for a set of time instants within a period. Such approach offers both the

temporal accuracy by calculating more than one time instant within a period, and the spatial
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accuracy by resolving transient effects. Additionally, it offers CPU time reduction.

In this thesis, the Harmonic Balance Method is introduced, derived and validated. The

work covered by the thesis can be briefly summarised by sections, as follows: Section 2,

Mathematical Model, introduces the scalar transport equation and Navier-Stokes equations

that are later modelled in terms of Harmonic Balance Method. During its development,

Harmonic Balance Method was first tested to solve scalar transport equation only, which

explains the reason for introduction of scalar transport. Afterwards, Harmonic Balance

Method was expanded for calculations of both pressure and velocity, which resulted in solving

Navier-Stokes equations.

Section 3 deals with the derivation of the Harmonic Balance Method and introduces the

Fourier series expansion on which harmonic balance is based. The Section ends with an

example for one harmonic, explaining the algorithm and presenting the equations in its

expanded form. The derived mathematical model is implemented in foam-extend, a fork of

the open source software OpenFOAM [2].

Sections 4 and 5 describe the process of validation. Section 4 deals with the validation of

scalar transport equation using four test cases. First test case demonstrates the ability of the

Harmonic Balance Method using one harmonic. Signal imposed at inlet resembles the sine

wave, varying the scalar value in time and it is successfully resolved using one harmonic.

Second test case imposes a signal consisting of two harmonic waves for which two harmonics

are used. Ramped square wave and a complex square wave are imposed at inlet in test cases 3

and 4. Third and fourth test case present the convergence of solution for higher number of

harmonics used. Section 5 presents validation of Harmonic Balance for Navier-Stokes

equations. First test case is a NACA 2412 pitching airfoil. The pitch angle is periodically

changed in time for two inlet velocities: one yielding high Re number and the other yielding

low Re number. For both velocities results obtained using 1, 3 and 6 harmonics are compared

with transient solution. The last subsection deals with the test cases for phenomena in which

the base frequency is not known in advance: laminar vortex shedding behind a cylinder [3]

and the edge tone noise [4]. The two cases are used to show the problems that may occur in

Harmonic Balance approach for non-typical phenomena. All the results are compared to

transient simulation.
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2 Mathematical Model

2.1 Introduction

In this thesis two models of transport equations are presented. First model describes passive

scalar transport, while the second deals with Navier–Stokes equations. Scalar transport

equation is presented in the first subsection. Equations for incompressible laminar flow of a

viscous fluid is given in the second subsection. Last subsections explains boundary conditions.

2.2 Scalar Transport Equation

Scalar transport equation Eq. (1) models a combination of the diffusion and convection

transport for passive scalar [5]:

∂Q
∂ t

+∇•(uQ )−∇•(γ∇Q ) = qv, (1)

where Q is a passive scalar being transported (e.g. species concentration), γ is a diffusion

coefficient, qv represents sources or sinks of the quantity Q and u is the convective velocity

field. Sources and sinks account for non-transport effects (not described by convection or

diffusion) such as local volume production or destruction of Q .

In order of appearance, terms in Eq. (1) are:

• Temporal derivative describing inertia of the system;

• Convection term, representing transport with the fluid velocity field;

• Diffusion term, representing transport due to the gradient of a passive scalar;

• Sources and sinks.

The convection term is of hyperbolic nature: information comes from the vicinity and it is

defined by the direction of velocity. The diffusion term is an elliptic term: every point in the

domain feels the influence of every other point instantaneously.

Faculty of Mechanical Engineering and Naval Architecture 3
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2.3 Navier–Stokes Equations

Incompressible flow of a fluid is described by a set of partial differential equations [6]:

continuity equation Eq. (2) and Navier–Stokes equations Eq. (3):

∇•u = 0, (2)

∂u
∂ t

+∇•(uu)−∇•(ν∇u) =−∇p, (3)

where u is the velocity, ν is the kinematic viscosity and p is the kinematic pressure. In

Navier-Stokes equations velocity is both the transported property and the transporting

quantity. Transient and convective terms are also called inertial terms, while diffusion and

pressure gradient terms represent the divergence of the stress tensor field.

The Navier–Stokes equations contain four independent variables: the x, y and z spatial

coordinates and time t. There are four dependent variables: the kinematic pressure p and three

components of the velocity vector field, where all four of dependent variables are functions

of the remaining three variables. Therefore, the system of equations is closed and coupled.

Solution will be shown in section 3.4.

2.4 Boundary Conditions

A unique solution for a set of partial differential equations is obtained by specifying boundary

conditions. Boundary conditions are prescribed on the boundary of the domain for each

dependent variable.

There are two main types of boundary conditions: Dirichlet boundary condition and

generalised von Neumman boundary condition. Dirichlet boundary condition specifies the

value of the variable at the boundary of a domain. Generalised von Neumman boundary

condition specifies the surface normal gradient of a variable at the boundary. There are also

many other types of boundary conditions: they represent a combination of the two mentioned

here.

The types of boundaries used most often in computational fluid dynamics are: inlet, outlet,

wall and symmetry plane. Depending on the problem, the Dirichlet and generalised von

Neumman boundary conditions are generally used in pair when solving Navier–Stokes

equations. For example, inlet boundary is usually specified with Dirichlet boundary condition

for velocity, and von Neumman boundary condition for pressure. Outlet boundary is usually

modelled with von Neumman boundary condition for velocity and Dirichlet boundary

condition for pressure. Wall is a boundary where velocity is equal to zero: there is no flux
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through the wall. Consequently, von Neumman boundary condition is specified for pressure.

Symmetry plane is used to reduce computational efforts as it allows smaller domain provided

that symmetry of the solution can be guaranteed. It is necessary that the imposed boundary

conditions are physically correct and reflect the real situation as much as possible.

2.5 Closure

In this section an overview of the scalar transport equation and Navier–Stokes equations for

incompressible laminar flow of a viscous fluid was given. The next section deals with the

derivation of the mathematical model for the Harmonic Balance Method. The method will be

explained thoroughly and derived for both scalar transport equation and Navier–Stokes

equations.
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3 Harmonic Balance Method

A wide area of Computational Fluid Dynamics (CFD) problems where periodic behaviour

occurs, explain the extensive effort towards developing a method that utilizes both the features

of transient and steady-state simulations. Transient simulations offer temporal accuracy and

give insight into transient flow behaviour, but require increased CPU time compared to

steady-state simulations. Steady-state simulations offer savings in time, but they are not able

to reproduce transient effects. The Harmonic Balance Method consists of a coupled set of

steady-state equations, where the temporal term is modelled as additional source terms.

Hence, it offers savings in CPU time compared to transient simulation and gives better

temporal accuracy in comparison to steady-state simulation. The assumption of temporal

periodic flow makes it valid for periodic problems only.

3.1 Introduction

Harmonic balance is a quasi steady-state method developed for simulation of non–linear

temporally periodic flows. The main assumption on which harmonic balance is based

concerns the primitive variables. We assume that each primitive variable can be accurately

represented by a Fourier series in time, using first n harmonics and the mean value. Such

assumption allows replacing the time derivative term in transport equations with additional

source terms, thus transforming the transient equations into a coupled set of steady-state

equations. When compared to other steady-state methods, the improvement is that harmonic

balance is able to describe the transient effects of the periodic flow. Because of the nature of

Fourier expansion, in Harmonic Balance Method the snapshots of a flow field in certain time

steps within one period are obtained. Other time steps can be reconstructed as a post

processing step. In most of the cases, the Harmonic Balance Method should reduce the

computational time, but the method is bound to use more memory.

Applications of harmonic balance are widely used in turbomachinery [7], [8] and [9]

where the influence of rotor wakes passing on to the stator can be resolved without the need of

conventional transient simulation; for solving problems such as vortex shedding and edge tone

noise; for reproducing waves in marine engineering, etc. Hydrodynamic problems with

prescribed wave motion are a perfect example of a periodic case. Practically, any temporally

periodic problem can be simulated.

Turbomachinery, pitching airfoil [10], [11], [13] and all the problems with well-defined

base frequency are significantly simpler than problems where the non–linear nature of the flow

field is causing periodic instabilities (such as cylinder vortex shedding). The base frequency

must be prescribed as an input parameter for harmonic balance. In an unsteady problem such

Faculty of Mechanical Engineering and Naval Architecture 6
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as cylinder vortex shedding, frequency can also be calculated using the Strouhal and Reynolds

number, but it is only the approximate rather than the exact value. So far, there exists only a

limited number of examples in literature other than pitching airfoils and turbomachinery, which

means that other areas of application have not been explored. Therefore, Harmonic Balance

Method is not yet deployed in practical simulations for these purposes .

The scalar transport equation and Navier–Stokes equations presented in the previous

section will be extended to harmonic balance form in this section. Before getting to the

derivation of the Harmonic Balance Method, Fourier series expansion will be presented to

facilitate understanding of the method as it is the core of the Harmonic Balance Method.

3.2 Fourier Series Expansion

The Harmonic Balance Method is based on Fourier series expansion of a periodic function.

Fourier series expansion [12] is a decomposition of any periodic function into an infinite series

of sine and cosine functions. Sine and cosine terms vary in amplitude and frequency, allowing

their sum to closely approximate the original function.

If f (x) is a function of the real variable x and it is integrable on an interval [x0,x0 +P],

where P is the repeating period of f (x), then the Fourier expansion reads:

f (x) = a0 +
∞

∑
n=1

(
an cos

(
2πnx

P

)
+bn sin

(
2πnx

P

))
, x ∈ [x0,x0 +P]. (4)

Because of periodicity of the function, the function repeats with period P before and after

the interval [x0,x0 +P], consequently the expansion is invariant of the interval chosen.

Coefficients an and bn are called Fourier coefficients and can be calculated if f (x) is known:

an =
2
P

∫ x0+P

x0

f (x) · cos
(

2πnx
P

)
dx,

bn =
2
P

∫ x0+P

x0

f (x) · sin
(

2πnx
P

)
dx.

(5)

Expression in Eq. (4) shows that the sum is infinite which is inconvenient for practical use:

we are able to calculate only a finite series with N sine and cosine terms. This implies that we

are introducing an error to our approximation and by reducing the number of sine and cosine

terms in Fourier expansion, our result is approximating more and more loosely the original

function f (x). Also, if the function f (x) is not continuous on the interval [x0,x0 +P], then

Fourier expansion will not converge at the discontinuities.

To obtain satisfactory results, a suitable number of terms should be chosen so that both the
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calculation time and error introduced are small enough depending on the purpose:

f (x)≈ a0 +
N

∑
n=1

(
an cos

(
2πnx

P

)
+bn sin

(
2πnx

P

))
, x ∈ [x0,x0 +P]. (6)

The upper limit of the summation, N, is also called the number of harmonics, while the nth

term of the Fourier series is called the nth harmonic:

fn(x) = an cos
(

2πnx
P

)
+bn sin

(
2πnx

P

)
. (7)

For N = 0, only the zeroth harmonic (the a0 term) is accounted for and it represents the

mean value. In general, expansion with N harmonics will have 2N +1 terms: N sine terms, N

cosine and the mean value.

The amplitude of the nth harmonic is:

An =
√

a2
n +b2

n, (8)

and its square A2
n is called the energy of the nth harmonic.

A graphical example of a Fourier expansion is given in Figure 1. The function represents

a square-wave. It is used to demonstrate convergence of approximation with an increase in the

number of harmonics, and also to show how discontinuities affect the Fourier expansion. The

example is given for approximations with 1, 3, 5, 7 ,11 and 15 harmonics.

Figure 1: Step function approximated with different number of harmonics [12].
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3.3 Harmonic Balance for Scalar Transport

After introducing the Fourier series expansion that will be used in harmonic balance derivation,

several points should still be noted. By assuming that each primitive variable can be accurately

represented by a Fourier series in time, using first n harmonics and mean value, a certain error

is introduced. As it was stated in the previous section, the more harmonics we use, the greater

accuracy of the solution. If we use n harmonics, perturbations occurring with frequency order

higher than nth harmonic will not be resolved. On the other hand, the more harmonics we use,

the longer the calculation time: we will show in the sequel that harmonic balance method solves

2n+ 1 steady-state problems rather than just one transient problem. The computational time

between two harmonics can vary greatly with results being very close. It should also be noted

that in the Harmonic Balance Method, Fourier coefficients vary in space and are calculated for

each cell (a numerical approximation for a field).

The derivation of the Harmonic Balance Method for scalar transport will be given here. It

starts from the scalar transport equation presented in Eq. (1) written in following form:

∂Q
∂ t

+R = 0. (9)

Here, R stands for the convection and diffusion transport and source/sink terms of the transport

equation:

R = ∇•(uQ )−∇•(γ∇Q )−qv (10)

Time domain variables will be caligraphic: Q and frequency domain will be latin Q. The

discrete variables will also be denoted by the hat symbol, eg. Q̂ .

Fourier series expansion of variable Q with n harmonics reads:

Q (t) = Q0 +QS1 sin(ωt)+QC1 cos(ωt)+QS2 sin(2ωt)+QC2 cos(2ωt)+ ...+

QSn sin(nωt)+QCn cos(nωt),
(11)

and expansion of R reads:

R (t) = R0 +RS1 sin(ωt)+RC1 cos(ωt)+RS2 sin(2ωt)+RC2 cos(2ωt)+ ...+ (12)

RSn sin(nωt)+RCn cos(nωt).

Inserting the R expansion from Eq. (12) and time derivative of Q expansion from Eq. (11)
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into the transport equation, yields:

ωQS1 cos(ωt)−ωQC1 sin(ωt)

+2QS2 cos(2ωt)−2QC2 sin(2ωt)

+...+

nQSn cos(nωt)−nQCn sin(nωt)

+RC1 cos(ωt)+RS1 sin(ωt)

+2RS2 sin(2ωt)+2RC2 cos(2ωt)

+...+

nRSn sin(nωt)+nRCn cos(nωt) =−R0.

(13)

In Eq. (13), Q and R are the Fourier coefficients coming from Eq. (11) and Eq. (12). Q

represents Fourier coefficients related to theQ expansion, where subscripts S and C denote the

sine or cosine term. The index number denotes the harmonic. R represents Fourier coefficients

related to the R expansion, while the rest of the notation remains the same.

Grouping together the sine and cosine parts, we get 2n+1 equations:

n for sine



−ωQC1 +RS1 = 0,

−2ωQC2 +RS2 = 0,

...

−nωQCn +RSn = 0,

mean – R0 = 0 (14)

n for cosine



ωQS1 +RC1 = 0,

2ωQS2 +RC2 = 0,

...

nωQSn +RCn = 0,

or, written in a compact, matrix form:

ωAQ+R = 0. (15)
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Matrices A, Q and R are coefficient matrices:

A =



0 −1

0 −2

0 . −3

.
. . .

. −n

0 0 0 · · · 0 0 0 · · · 0 0 0

1 .

2 .

3 . 0
. . . 0

n 0



, Q =



QS1

QS2

QS3
...

QSn

Q0

QC1

QC2

QC3
...

QCn



, R =



RS1

RS2

RS3
...

RSn

R0

RC1

RC2

RC3
...

RCn



.

(16)

A new matrix that will be used for switching between the time domain and the frequency

domain needs to be introduced. This matrix is called the time-to-frequency domain

transformation matrix E and it is a matrix representation of Direct Fourier Transform (DFT).

The derivation of matrix E for only one harmonic will be shown below and then generalised

for n harmonics. The transformation matrix E connects the time and the frequency domain:

Q = EQ̂QQ (t) and R = ER̂RR (t). (17)

Matrix E is obtained from discrete Fourier expansion for 2n + 1 time steps within one

period. If the simulation period is T and only one harmonic is used, variables will be calculated

at time instants t1, t2 and t3 where:

t1 =
T
3
, t2 = 2t1 =

2T
3

and t3 = 3t1 =
3T
3

= T. (18)

This is necessary in order to obtain the inverse matrix E that will be needed later. n

harmonics will have 2n+ 1 terms and to create a square matrix (instead of a column matrix)

2n+1 equally spaced time steps need to be calculated.
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Discrete Fourier expansions in t1, t2 and t3 read:

Qt1 = Q0 +QS sin(ωt1)+QC cos(ωt1)

Qt2 = Q0 +QS sin(ωt2)+QC cos(ωt2)

Qt3 = Q0 +QS sin(ωt3)+QC cos(ωt3).

(19)

Once Q0, QS and QC coefficients have been calculated, one can evaluate the variable Q in any

time by changing t. Set of equation give in Eq. (19) can be written in matrix form:


Qt1

Qt2

Qt3

=


sin(ωt1) 1 cos(ωt1)

sin(ωt2) 1 cos(ωt2)

sin(ωt3) 1 cos(ωt3)




QS

Q0

QC

 , (20)

or:

Q̂QQ = E−1Q, (21)

where E stands for:

E =
2
3


sin(ωt1) sin(ωt2) sin(ωt3)

1
2

1
2

1
2

cos(ωt1) cos(ωt2) cos(ωt3)

 . (22)

E−1 is the inverse matrix of E. Matrix E is the transformation matrix from the frequency

domain to the time domain, while matrix E−1 is the transformation matrix from the time

domain to the frequency domain.
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Generalised for n harmonics, matrix E has the following form:

E =
2

2n+1



sin(ωt1) sin(ωt2) sin(ωt3) . . . sin(ωt2n+1)

sin(2ωt1) sin(2ωt2) sin(2ωt3) . . . sin(2ωt2n+1)

sin(3ωt1) sin(3ωt2) sin(3ωt3) . . . sin(3ωt2n+1)
...

...
...

...

sin(nωt1) sin(nωt2) sin(nωt3) . . . sin(nωt2n+1)

1
2

1
2

1
2

. . .
1
2

cos(ωt1) cos(ωt2) cos(ωt3) . . . cos(ωt2n+1)

cos(2ωt1) cos(2ωt2) cos(2ωt3) . . . cos(2ωt2n+1)

cos(3ωt1) cos(3ωt2) cos(3ωt3) . . . cos(3ωt2n+1)
...

...
...

...

cos(nωt1) cos(nωt2) cos(nωt3) . . . cos(nωt2n+1)



, (23)

and matrix E−1 can analytically be expressed as:

E−1 =



sin(ωt1) sin(2ωt1) . . . sin(nωt1) 1 cos(ωt1) cos(2ωt1) . . . cos(nωt1)

sin(ωt2) sin(2ωt2) . . . sin(nωt2) 1 cos(ωt2) cos(2ωt2) . . . cos(nωt2)

sin(ωt3) sin(2ωt3) . . . sin(nωt3) 1 cos(ωt3) cos(2ωt3) . . . cos(nωt3)
...
...

sin(ωt2n+1) sin(2ωt2n+1) . . . sin(nωt2n+1) 1 cos(ωt2n+1) cos(2ωt2n+1) . . . cos(nωt2n+1)


.

(24)

Therefore, by using the matrix E and its inverse E−1 we can keep the equation in the

frequency domain, but use variables in the time domain. Inserting Eq. (17) into Eq. (15) yields:

ωAEQ̂QQ +ER̂RR = 0. (25)

While the linear equations could be solved in this form, evaluating sources and fluxes in the

frequency domain is computationally expensive and inconvenient [1]. Therefore, we shall

proceed to transform the equation back to time domain. Multiplying Eq. (25) by the

transformation matrix E−1 from the left, the final form of the harmonic balance for transport
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equation in time domain is obtained:

ωE−1AEQ̂QQ +R̂RR = 0. (26)

This is possible because E−1 is a two-sided inverse of E, i.e.:

EE−1 = E−1E = I. (27)

In Eq. (26), time-domain matrices Q̂QQ and R̂RR contain variables in 2n+1 time steps:

Q̂QQ =



Qt1

Qt2

Qt3
...

Qt2n+1


, R̂RR =



Rt1

Rt2

Rt3
...

Rt2n+1


, (28)

where tn stands for:

t1 =
T

2n+1
, t2 =

2T
2n+1

, . . . , tn =
nT

2n+1
. . . , t2n+1 = T. (29)

tn may be expressed in terms of t1. Because of equally spaced time steps, the following

substitution can be applied:

t2 = 2t1, t3 = 3t1, . . . , tn = nt1. (30)

Eq. (26) represents a coupled set of 2n+1 steady-state problems. Comparing Eq. (25) with the

original scalar transport equation, Eq. (1), two important features may be observed:

• R has been replaced with its discrete counterpart R̂RR , indicating that the solution is

sought at fixed number of discrete time instants only. The number of discrete time

instants is defined with specified number of harmonics n, as indicated in Eq. (28).

• Time derivative term has been replaced by terms coupling the solutions at different time

steps. This is equivalent to evaluating the time derivative of a harmonic signal via 2n+1

uniformly spaced coupled temporal snapshots, including a mean (steady) solution.
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Solving the Eq. (26) in terms of computational cost means solving a coupled set of 2n+1

steady-state equations. With increase in number of harmonics, the computational time grows

for two reasons. The first reason is increase in number of equations to be solved, while the

second reason concerns the coupling of a increasingly larger set of equations. In contrast to

harmonic balance, transient simulation calculates 2n+1 times less equations, but calculates

the solution in many time instants, which depend on the velocity field. Higher velocities will

usually require smaller time steps, thus increasing the calculation time. When simulating

periodic phenomena, transient simulations are usually run for at least several periods in order

to achieve meaningful, periodically averaged results. This comparison will be discussed more

thoroughly in sections 4 and 5 concerning validation.

Using trigonometric sum identity sin(α+β ) = sinα cosβ+cosα sinβ to simplify the

expression, only the sine functions remain. Finally, Eq. (26) can be written in expanded form

for each time instant:

Qt1 : ∇•(uQt1)−∇•(γ∇Qt1) =−
2ω

2n+1

(
Qt2

n

∑
k=1

k sin(kωt1)+ (31)

+Qt3

n

∑
k=1

k sin(kω2t1)+ . . . +Qt2n+1

n

∑
k=1

k sin(kω2nt1)

)
,

Qt2 : ∇•(uQt2)−∇•(γ∇Qt2) =−
2ω

2n+1

(
Qt1

n

∑
k=1

k sin(−kωt1) (32)

+Qt3

n

∑
k=1

k sin(kωt1) . . . +Qt2n+1

n

∑
k=1

k sin(kω(2n−1)t1)

)
,

Qt3: . . .
...

...

Qtn: . . .

In order to further simplify the obtained expressions, additional substitution is defined.
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Because the summation terms in the brackets repeat, coefficients P1−Pi are introduced:

P1 =
n

∑
k=1

k sin(kωt1);

P2 =
n

∑
k=1

k sin(kω2t1);

P3 =
n

∑
k=1

k sin(kω3t1); (33)

...

Pi =
n

∑
k=1

k sin(kωit1), for i = {1,2n}.

The summation terms come from the E−1AE matrix multiplication in Eq. (26):

E−1AE =
2

2n+1



0 P1 P2 P3 . . . . . . P2n

−P1 0 P1 P2 P3
...

−P2 −P1 0 P1 P2
...

−P3 −P2 −P1 0 P1
...

... . . . P2

... . . . P1

−P2n . . . . . . −P3 −P2 −P1 0


. (34)

Final form of the harmonic balance equations for scalar transport reads:

Qt1 : ∇•(uQt1)−∇•(γ∇Qt1) =−
2ω

2n+1
(
Qt2P1+Qt3P2+. . .+Qt2n+1P2n

)
, (35)

Qt2 : ∇•(uQt2)−∇•(γ∇Qt2) =−
2ω

2n+1
(
−Qt1P1+Qt3P1+. . .+Qt2n+1P2n−1

)
, (36)

...

or written in general form:

∇•(uQtj)−∇•(γ∇Qtj) =−
2ω

2n+1

(
2n

∑
i=1

P(i−j)Qti

)
, where P−i =−Pi. (37)
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Figure 2 shows the difference between temporal resolution obtained using different

number of harmonics. Symbol + presents the time instant in which the solution is calculated.

For 1 harmonic, 3 equally spaced time instants are calculated, as shown in Figure 2a.

Increasing the number of harmonics to n = 3, 7 time instants are calculated offering finer

temporal resolution. By further increasing the number of harmonics to 6, Figure 2c, more

detailed temporal resolution is obtained.

Time, s
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r 
v

a
lu

e

(a) 1 harmonic temporal resolution,

Time, s

S
c
a
la

r 
v

a
lu

e

(b) 3 harmonics temporal resolution,

Time, s

S
c
a
la

r 
v

a
lu

e

(c) 6 harmonics temporal resolution,

Figure 2: Temporal resolution of a single harmonic signal
with 1, 3 and 6 harmonics.

Since the time variation is presented in frequency domain, temporal accuracy is formally

spectral. However, the notion of temporal discretisation error is now converted into the fidelity

of variation of the temporal signal with a given number of harmonics, as shown in Figure 1. It

should be noted that solution in any time step can be obtained in post processing step. Using

calculated solution, Fourier coefficients and mean value in matrices Q and R, Eq. (15), can

be evaluated. Fourier coefficients and mean value allow obtaining the solution in any time, as

presented in Eq. (19).

3.3.1 Finite Volume Implementation

Following notation by Rusche [14], we use [·] to denote implicit FV discretisation. Details

on FV discretisation may be found in Jasak [15] and will not be presented here. Since the

convection, diffusion and source terms remain unchanged, the discretised form of the harmonic
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balance scalar transport equation, Eq. (37), reads:

[
∇•(uQt j)

]
−
[
∇•

(
γ∇Qt j

)]
=− 2ω

2n+1

(
2n

∑
i=1

Pi− jQti

)
, for j = 1 . . .2n+1 , (38)

where the source terms in Eq. (24), arising from the harmonic balance treatment of the time

derivative term are treated explicitly. Hence, a segregated, iterative solution algorithm for

successive Qt j is employed. Following analogy with the Gauss–Seidel iterative solution

algorithm [16], each Qt j is solved once per outer iteration during a forward sweep

( j = 1 . . .2n+1). Latest available Qt j is always used in source terms for other equations

(k > j), preventing additional memory requirements. Outer iterations are continued until

convergence.

3.4 Harmonic Balance for the Navier-Stokes Equations

In previous section, derivation of the Harmonic Balance Method for scalar transport equation

was presented. In order to solve the fluid flow equations, the Harmonic Balance Method will

be applied to the Navier–Stokes system. Before harmonic balance treatment, discretisation of

the Navier-Stokes equations will be presented. The derivation of the pressure equation will

be presented as well, in order to examine the coupling between pressure and velocity in the

Harmonic Balance Method.

3.4.1 Discretisation of the Navier-Stokes Equations

Compared to scalar transport equation, Navier–Stokes equations have two distinctive features.

The first is the non–linearity of convection term in the momentum equation. The second

concerns pressure-velocity coupling [15].

Convection term ∇•(uu) models transport of the velocity field by itself. Therefore, this

expression is quadratic in velocity and should be linearised by using the existing velocity field

in flux calculation and performing Picard iterations to convergence. The discretised form of

the convection term is:

∇•(uu) = ∑
f

S.(uo) f (u) f

= ∑
f

F(u) f (39)

= aPuP+∑
N

aNuN ,
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where aP and aN contain the appropriate contributions from flux F and convection interpolation

factors. Flux F is evaluated using available uo, thus linearising the expression:

F = S f ·uo
f . (40)

3.4.2 Derivation of the Pressure Equation

The derivation of the pressure equation starts from a semi-discretised form of the momentum

equation valid for each control volume, as shown in [15]:

uo

δ t
+aPuP+∑

N
aNuN =−∇p (41)

Eq. (41) is obtained from the integral form of the momentum equation, Eq. (3). Index P

presents the finite volume cell, while index N presents the neighbouring cells. aP is the diagonal

coefficient which multiplies the cell velocity. We shall introduce the H(u) operator to simplify

the expression:

H(u) =−∑
N

aNuN+
uo

∆t
, (42)

Hence, Eq. (41) becomes:

aPuP = H(u)−∇p. (43)

The H(u) consists of two parts, the transport part and the source part. The transport part

presents all the neighbouring coefficients multiplied by neighbouring velocities, while the

source part includes the transient term and all other source terms apart from the pressure

gradient. The pressure gradient is not discretised at this stage.

We proceed to express u from Eq. (43) as:

uP =
H(u)

aP
− 1

aP
∇p, (44)

and use it for the face interpolate:

u f =

(
H(u)

aP

)
f
−
(

1
aP

)
f
(∇p) f , (45)

which will be needed for calculation of face fluxes.
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The discretised form of the continuity equation reads:

∇•u = ∑
f

S.u f = 0. (46)

Inserting Eq. (45) into the discretised incompressible continuity equation Eq. (46), we obtain

the pressure equation for incompressible fluid:

∇•

(
1
aP

∇p
)
= ∇•

(
H(u)

aP

)
= ∑

f
S.
(

H(u)
aP

)
f
. (47)

After the solution of the pressure equation, the conservative face flux F is calculated using

Eq. (45):

F = S.u f =

(
H(u)

aP

)
f
−
(

1
aP

)
f
(∇p) f . (48)

3.4.3 Harmonic Balance for the Navier–Stokes System

The conventional derivation of the pressure equation was presented in the previous section. In

order to describe the flow field, both velocity and pressure fields have to be calculated. The

derivation of the Harmonic Balance Method for the Navier–Stokes equations will be presented

in this section. Because of the similarity with the harmonic balance for a scalar transport

equation, this section will often refer to section 3.3.

The momentum equation for the velocity expressed as a Fourier expansion, in condensed

form reads:
∂UUU
∂ t

+RRR = 0, (49)

where RRR stands for the convection and diffusion transport and source/sink terms of the

transport equation:

RRR = ∇•(UUU oUUU )−∇•(γ∇UUU )+∇p. (50)

Fourier expansion of the velocity field that will be used reads:

UUU (t) = u0+uS1 sin(ωt)+uC1 cos(ωt)+uS2 sin(2ωt)+uC2 cos(2ωt)+...+

uSn sin(nωt)+uCn cos(nωt).
(51)

The expression for the expansion of RRR is equivalent as for scalar transport, equation Eq. (12).

After inserting Fourier expansions of velocity field and residual field into the momentum
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equation, Eq. (49), we get the following expression:

ωAu+R = 0, (52)

where matrices u and R read:

u =



uS1

uS2

uS3
...

uSn

u0

uC1

uC2

uC3
...

uCn



, R =



RS1

RS2

RS3
...

RSn

R0

RC1

RC2

RC3
...

RCn



. (53)

Matrices A, E and E−1 remain the same (see Eq. (16), (23) and (24)), hence the final expression

of the momentum equation in time domain for Harmonic Balance Method reads:

ωE−1AEÛUU +R̂RR = 0, (54)

where time-domain matricesUUU and RRR contain variables u in 2n+1 time steps:

ÛUU =



ut1

ut2

ut3
...

ut2n+1


, R̂RR =



Rt1

Rt2

Rt3
...

Rt2n+1


. (55)

Faculty of Mechanical Engineering and Naval Architecture 21
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Following the procedure in section 3.3, coefficients Pi will be used as a substitute for the

summation terms, as they are the same as in expression Eq. (33). The harmonic balance form

of the momentum equation reads:

∇•(ut jut j)−∇•(γ∇ut j) =−
2ω

2n+1

(
2n

∑
i=1

P(i− j)uti

)
. (56)

Observing the Harmonic Balance Method for the Navier–Stokes equations, one can deduce

that the Harmonic Balance Method transforms the time derivative in the transport equation into

source terms: leaving convection, diffusion and additional source terms unchanged. Hence, it

can be shown that the continuity equation remains the same, with u replaced with its discrete

counterpart ut j :

∇•ut j = 0. (57)

Eq. (57) states that at each discrete time instant t j, the incompressible continuity equation must

hold.

3.4.4 The Finite Volume Implementation of Harmonic Balance for the Navier–Stokes
System

As previously introduced in section 3.3.1 and using notation by Rusche [14], we use [·] to

denote implicit FV discretisation. Discretised harmonic balance pressure–velocity system

reads:

[
∇•(ut jut j)

]
−
[
∇•
(
ν∇ut j

)]
=−∇pt j−

2ω

2n+1

(
2n

∑
i=1

Pi− juti

)
, for j = 1 . . .2n+1 , (58)

[
∇•

(
1

aPt j

∇p
)]

= ∇•

(H(ut j)

aPt j

)
, for j = 1 . . .2n+1 , (59)

where aPt j is the diagonal coefficient of the momentum equation at time instant t j, and H(ut j)

is the flux operator as defined in [15]. Harmonic balance pressure equation, Eq. (59) is

obtained from the harmonic balance continuity equation, using standard procedure for

segregated solution algorithms. As discussed, harmonic balance variant of a transient

transport equation yields 2n+1 coupled steady-state problems. Hence, the SIMPLE [17]

algorithm is employed to resolve the pressure–velocity coupling separately at each time

instant t j. In addition to pressure–velocity coupling at each time step, velocity fields at
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different time instants are coupled due to harmonic balance source terms on the right hand

side of Eq. (58). Each ut j and t j are solved once per outer iteration and demand its own

SIMPLE loop. However, only one SIMPLE iteration is sufficient for each t j in order to

simultaneously resolve ut j−pt j and ut j−utk coupling.

In contrast to the momentum equation, the pressure equations at different time instants are

not coupled. The coupling in momentum equation is involved in source term which comes from

the Fourier decomposition of the temporal derivative, equations Eq. (49)-Eq. (52). Temporal

derivative is not present in the pressure equation.

Implementation of a fully coupled algorithm [18] will be the topic for future work, [19].

3.5 Example: Equation Set for 1 Harmonic

With the complete general derivation of the Harmonic Balance Method both for the scalar

equation and for Navier–Stokes equations, an example for one harmonic will be given here.

This example will give insight into the coupled set of equations that arises from the harmonic

balance treatment.

For one harmonic, Eq. (34) reduces to:

E−1AE =
2

2n+1
·


0 P1 P2

−P1 0 P1

−P2 −P1 0

 (60)

In matrix form, Eq. (26) for passive scalar and Eq. (54) for momentum read:

ωE−1AEQ̂QQ +R̂RR =
2ω

3


0 P1 P2

−P1 0 P1

−P2 −P1 0




Qt1

Qt2

Qt3

+


Rt1

Rt2

Rt3

 , (61)

ωE−1AEÛUU +R̂RR =
2ω

3


0 P1 P2

−P1 0 P1

−P2 −P1 0




ut1

ut2

ut3

+


Rt1

Rt2

Rt3

 . (62)
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Expanding Eq. (61) yields 3 scalar transport equations:

Qt1 : ∇•(uQt1)−∇•(γ∇Qt1) =−
2ω

3
(
Qt2P1+Qt3P2

)
,

Qt2 : ∇•(uQt2)−∇•(γ∇Qt2) =−
2ω

3
(
Qt1(−P1)+Qt3P1

)
, (63)

Qt3 : ∇•(uQt3)−∇•(γ∇Qt3) =−
2ω

3
(
Qt1(−P2)+Qt2(−P1)

)
,

Scalar field Q at time instant t1 depends on scalar fields from time steps t2 and t3: Qt2 and

Qt3 . For calculation of the scalar field Q in time instant t2, scalar fields from all the other time

steps are needed. The same goes for the scalar field Q in time step t3. Therefore, 3 resulting

equations are coupled. Evaluating the coefficients P1 and P2 from equation Eq. (33), yields:

P1 = 0.866025,

P2 =−0.866025. (64)

In the case of one harmonic, P1 and P2 are the same in value, but opposite in sign. For

calculation of Qt1 , the coefficient P2 multiplies the variable Qt3 which is calculated at time

instant t3 = 3T
2n+1 = 3T

3 = T . Because of the assumed periodicity, t3 represents both the end of

the period as well as the beginning of the period. For number of harmonics n > 1, it can be

shown that variables that appear closer in time to the variable currently calculated are

multiplied with larger coefficients than those farther in time. For n = 3, coefficients Pi are:

P1 = 4.03334,

P2 =−2.23833,

P3 = 1.795, (65)

P4 =−1.795,

P5 = 2.23833,

P6 =−4.03334.

To summarise, the value of coefficient P depends on the relative location in time between

the variable it multiplies and the variable currently calculated. In the case of one harmonic,

time distance between all of the variables is the same and equals t/3, which explains why

|P1|= |P2|. Relation between coefficients is shown in Figures 3 and 4.
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Figure 3: Coefficients related to calculation of solution in
second time step for one harmonic.
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Figure 4: Coefficients related to calculation of solution in
fourth time step for 3 harmonics.

The same is applicable for the momentum equation. The equations for 1 harmonic read:

ut1 : ∇•(ut1ut1)−∇•(γ∇ut1) =−
2ω

3
(ut2P1+ut3P2) ,

ut2 : ∇•(ut2ut2)−∇•(γ∇ut2) =−
2ω

3
(ut1(−P1)+ut3P1) , (66)

ut3 : ∇•(ut3ut3)−∇•(γ∇ut3) =−
2ω

3
(ut1(−P2)+ut2(−P1)) ,
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Gregor Cvijetić Harmonic Balance Method

Pressure equations remain unchanged:

p1 : ∇•

(
1
aP

∇p1

)
= ∇•

(
H(ut1)

aP

)
,

p2 : ∇•

(
1
aP

∇p2

)
= ∇•

(
H(ut2)

aP

)
, (67)

p3 : ∇•

(
1
aP

∇p3

)
= ∇•

(
H(ut2)

aP

)
.

In case of specific problems, one harmonic might not be enough. If flow features that

occur with frequency of order n want to be captured, then Fourier expansion at least of the

order n should be used. This is achieved using more harmonics. If we assume for some flow

field n = 5 harmonics should be used. At this point, the system of equations grows rapidly

because 2n+1 = 11 coupled equations are present. It slows down the simulation because more

equations are to be calculated and the larger system of equations slows down the convergence.

Even though higher number of harmonics slows down the simulation, the flow field is resolved

more accurately and more time steps within a period are obtained.

3.6 Closure

The derivation of a general Harmonic Balance Method was presented in this section. As

shown in the derivation of the Harmonic Balance Method for scalar transport and

Navier–Stokes equations, equation set containing 2n+1 coupled time instants is calculated.

Calculating 2n+1 velocity fields, 2n+1 pressure fields, 2n+1 scalar fields, etc. results in

memory increase. While all scalar and velocity fields from all 2n+1 time steps are coupled,

pressure field is not coupled with other pressure fields because of its elliptic form. It is

calculated subsequently the same way as it would be calculated if we weren’t using Harmonic

Balance Method. The main difference in pressure calculation is that in equations Eq. (47) and

Eq. (48) the fluxes and the velocity field corresponding to the time step for which the pressure

is calculated have to be used.

It should be noted that in the present derivation the non–linear term was not expanded

using Fourier series. Two approaches are possible for this matter. The first approach is the

one used in this work: linearisation of the non-linear term is assumed in advance, following

the simple derivation of the Harmonic Balance Method. It can be shown that this approach

is order-consistent. The second approach deals with Fourier expansion of both velocity fields

in the convective term, yielding higher orders of frequency than the prescribed one, which is

assumed inconsistent.
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4 Scalar Transport Validation

Derivation of the Harmonic Balance Method was given in the previous section. In order to test

validity of the proposed method, several test cases need to be considered. This section contains

validation of the Harmonic Balance Method for scalar transport.

4.1 Introduction

Results obtained from present model will be compared with transient simulations. The

Harmonic Balance Method for passive scalar transport will be validated on four test cases

concerning forced periodic behaviour at the inlet. Two of the test cases will use harmonic

waves, in the spirit of Fourier series expansion. The other two test cases will test both

robustness and accuracy. The CPU time study is not performed for scalar transport validation

cases, as these cases are not computationally demanding and the CPU time was too short to

draw relevant conclusions. In section 5 CPU time comparison is given for validation cases

considering Navier–Stokes equations.

4.2 Computational Domain

The domain for all of the test cases for scalar transport validation is a 2D rectangle, Figure 5.

No walls or obstacles are present, leaving the domain open on all sides.

Figure 5: Domain used for scalar transport validation.

In order to obtain accurate results but also reduce the simulation time, the domain was

meshed using 6633 hexahedral cells. The domain size is 10 m × 7 m.

Faculty of Mechanical Engineering and Naval Architecture 27
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4.3 Test Case 1 - Single Sine Wave

4.3.1 Boundary Conditions

In first test case a sine wave signal is imposed at the inlet:

T = Asin(2π f t), (68)

where A is the amplitude of the sine wave, f is the frequency, t is time and T is a scalar being

transported. A is set to 5 and frequency of 2 Hz is used. With uniform velocity of 10 m/s

in longitudinal direction and domain length 10 m, two complete waves will always be in the

domain. Diffusion coefficient is set to 1.5·10−5 m2/s.

For harmonic balance, boundary conditions need further comments. As it was described in

section 3, by using harmonic balance we are not calculating the flow field continuously for the

whole period. Instead, we are calculating the steady state flow field at 2n+1 equally spaced

time steps within a period, depending on the number of harmonics specified, n. Therefore,

Eq. (68) is used for setting the boundary conditions on inlet: each time step will have different

fixed value boundary condition for scalar T . Using n harmonics, we will have 2n+1 boundary

conditions and the scalar value on the inlet will be:

For time step j: Tj = Asin(2π f t j) (69)

where:

t j =
P

2n+1
· j, j ∈ [1,2n+1], (70)

with P denoting the period.

Other boundary conditions for scalar T on all other boundaries are set to zero gradient.

Velocity is uniform through the whole domain and it is not calculated, but only used for

transporting the scalar T .

4.3.2 Results

Scalar field along the x axis is used for comparison at different time steps, Figure 6. Since a

simple sine wave is imposed, only one harmonic is needed. Using one harmonic, 2n+1 = 3

time steps are obtained and compared.
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Figure 6: Line of data extraction for comparison.

The sine wave imposed at the inlet for scalar T is shown in Figure 7. Figure 8 shows the flow

field in the domain at time t = 1 s.
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Figure 7: Sine wave imposed on inlet.
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Figure 8: Scalar field at t = 1 s.

Figures 9, 10, 11 show the agreement between transient solver and Harmonic Balance

Method for 1 harmonic. Figure 9 shows the agreement in the first third of the period. Figure

10 shows the agreement in the second third of the period and Figure 11 shows the agreement

at the end of the period.
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Figure 9: Transient solver and Harmonic Balance Method comparison
at the first third of a period.
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Figure 10: Transient solver and Harmonic Balance Method comparison
at the second third of a period.
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Figure 11: Transient solver and Harmonic Balance Method comparison
at the end of a period.

Figures 9, 10, 11 show the expected result. One harmonic is sufficient to accurately describe

a single harmonic sine wave. Using more than one harmonic in this case would not be useful

as it would only prolong the simulation time without possible increase in accuracy.

4.4 Test Case 2 - Two Harmonic Waves

Test case 1 has shown the accuracy of Harmonic Balance Method with one harmonic on a sine

wave excitation. Test case 2 will examine the accuracy of Harmonic Balance Method for 2

harmonic waves with second order behaviour.

Faculty of Mechanical Engineering and Naval Architecture 31
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4.4.1 Boundary Conditions

In this case, the wave imposed at the inlet is a linear combination of sine and cosine waves

with different frequencies. To be fully compatible with Fourier series expansion, both waves

frequencies should be a multiple of a base frequency:

T = Asin(2π · fsin ·(t−0.35))+Bcos(2π · fcos ·(t−0.35)). (71)

A and B are coefficients representing amplitudes of sine (A) and cosine (B) waves. fsin is the

frequency used in sine wave while, fcos is the frequency of a cosine wave. Coefficient 0.35 is

used purely to position the period so that the wave at t = 0 has the value 0.

In this validation case coefficient values are chosen as follows:

A = 3 (72)

B = 5 (73)

fsin = 2Hz (74)

fcos = 1Hz. (75)

With this setup, the period is 1 second, hence only one wave is present in the domain. Figure

12 shows the described wave.
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Figure 12: Wave imposed on inlet in second test case.

For harmonic balance simulation, 2 harmonics should be used. The inlet boundary conditions

for scalar T in this case are:

Tj = Asin(2π fsin(t j−0.35))+B(2π fcos(t j−0.35)), (76)
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where:

t j =
P

2n+1
· j, j ∈ [1,2n+1], (77)

and P is the period.

4.4.2 Results

For two harmonics, 2n+1 = 5 time steps are obtained, therefore 5 time steps are solved for.
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(a) t = T/5
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(b) t = 2T/5
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(c) t = 3T/5
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(d) t = 4T/5

Figure 13: Scalar comparison in first four time steps for 2 harmonics used.

Figure 13 shows the comparison of the transient solver and the harmonic balance solver for

two harmonics. First four time steps are compared. Figure 14 shows the comparison between

the transient solver and the harmonic balance solver at the end of the period for both one

harmonic and two harmonics.
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Figure 14: Comparison at the end of period for 1 and 2 harmonics.

Figure 14 demonstrates the accuracy of higher harmonic used. Only one harmonic is describing

the sine or cosine wave with values prescribed. For more complex waves, higher number of

harmonics should be used: for this case two harmonics are sufficient.

4.5 Test Case 3 - Ramped Square Wave

In Test cases 1 and 2, the behaviour of Harmonic Balance Method on simple harmonic waves

is presented. In order to describe a more complex wave, higher number of harmonics should

be used. Test cases 3 and 4 will show ramped square waves in order to test the accuracy and

robustness of the method. The reason why square waves are chosen is because square waves are

not continuous and present a challenge for numerical methods, since they theoretically require

an infinite harmonic series.

4.5.1 Boundary Conditions

First square signal is a regular wave with steep, but ramped transition from one value to another.

The signal amplitude is 3 and period is 1 s. The wave imposed on inlet is shown in Figure 15.
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Figure 15: Wave imposed on the inlet in third test case.

4.5.2 Results

For square signal, results for a single time instant within the period are chosen and a

convergence is compared using different number of harmonics. The square signal shown on

Figure 15 is simulated using 3, 5 and 7 harmonics. With 7 harmonics satisfactory results are

obtained, therefore no further testing with higher number of harmonics has been done.

Figure 16 shows the square wave obtained using transient simulation and compared with

results obtained using Harmonic Balance Method with 3, 5 and 7 harmonics.
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Figure 16: Square wave comparison between transient simulation
and harmonic balance with 3, 5 and 7 harmonics.

Figures 17 and 18 show the domain at the and of the period for transient simulation and

for harmonic balance with 3 harmonics. The difference between results obtained using 3

harmonics and a transient simulation is obvious from a slightly increased range (see scale on

Figures 17 and 18). The harmonic nature can be observed in the middle of the wave crest and

wave trough.
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Figure 17: Scalar wave obtained using transient simulation.

Figure 18: Scalar wave obtained using Harmonic Balance Method with 3 harmonics.

4.6 Test Case 4 - Complex Square Wave

4.6.1 Boundary Conditions

The final test case for passive scalar transport is a complex square signal depicted in Figure 19.

Describing such wave is more demanding and up to 10 harmonics are used.
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Figure 19: Wave imposed on the inlet in fourth test case.

4.6.2 Results

Results obtained using transient solver and harmonic balance with 3, 5, 7 and 10 harmonics

are compared in Figure 20. As shown previously, solution converges to the transient one with

increase in number of harmonics. It should be noted that even the transient solver distorts the

solution due to spatial discretisation errors.
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Figure 20: Solution comparison between transient solver
and harmonic balance with 3, 5, 7 and 10 harmonics.

Figure 21 shows the error between the transient solution and solution obtained using 3, 5,

7 and 10 harmonics. Bars at the bottom of the graph represent the absolute value of error in

logarithmic scale. Green bars stand for 10 harmonics, while red bars stand for 7 harmonics.

Bars are included to show the difference between 7 and 10 harmonics and to demonstrate that
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the difference is not significant, but involves solving 21 coupled equations (for 10 harmonics)

rather than 15 (for 7 harmonics), thus increasing the computational time.
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Figure 21: Absolute and relative error along centerline.

4.7 Closure

The validation of Harmonic Balance Method for passive scalar transport was presented in this

section. Four cases were used to demonstrate the behaviour of the Harmonic Balance Method.

For simple harmonic waves, small number of harmonics is needed, depending on the wave type.

For square waves, higher number of harmonics is needed. The fourth test case has shown that

at certain point increase in number of harmonics does not significantly improve the solution. It

is an important engineering aspect because the engineer running the simulation should know in

advance the nature of the flow to be simulated. Wrong assumptions about the flow field can lead

to use of too few harmonics, causing inaccurate results. On the other hand, bad assumptions

can also lead to use of too many harmonics, increasing the calculation time. As mentioned in

[20], number of harmonics greater than 7 is rarely needed, which was also shown in test case 4

by comparing the error between solutions obtained using 7 and 10 harmonics.
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5 Harmonic Balance Navier-Stokes Validation

Harmonic Balance Method for passive scalar transport was presented and validated in the

previous section. This section deals with validation and test cases for Harmonic Balance

Method for Navier–Stokes equations. Only laminar cases are considered as turbulence is not

yet implemented in the harmonic balance solver at this stage.

5.1 Introduction

In engineering practice, two types of periodic problems are common and both types will be

presented and discussed here. The first type is a periodic problem with a well-defined base

frequency. In such cases, periodic oscillations are imposed as a boundary condition: therefore,

frequency is known in advance. The first case presented here is the case from this category. It

is a NACA 2412 pitching airfoil with a prescribed pitching angle and frequency. Other similar

cases could include waves, rotating machinery, fluid-structure interaction problems, etc.

The second type is a periodic problem with frequency which is not known in advance. In

such problems, there are no prescribed oscillating boundary conditions that make the problem

periodic. Cases presented here are laminar vortex shedding behind a cylinder and edge tone

noise. These cases are periodic because of the non-linear nature of convective terms in

equation sets that may amplify initial instabilites. Even though boundary conditions are

constant, periodic phenomena occurs, thus making it a periodic problem with unknown exact

frequency in advance.

5.2 NACA 2412 Test Case

In order to validate the Harmonic Balance Method for Navier–Stokes equations, NACA 2412

test case is used. NACA 2412 is a standard airfoil for which pressure contours during periodic

pitching are presented. Several test cases are simulated, varying the Re number and number of

harmonics in order to show agreement between transient and harmonic balance solver.

5.2.1 Computational Domain

Domain used in NACA 2412 test case is a circular 2D domain with d = 13m, Figure 22.

Computational mesh consists of 6060 hexahedral cells. Airfoil chord length is 1m. Harmonic

Balance Method uses static mesh and therefore different boundary conditions are prescribed

for each time step. In order to be fully consistent with the physics to be simulated, transient

simulation uses a moving mesh to model airfoil pitching.
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Figure 22: Computational domain for NACA 2412 test case.

5.2.2 Boundary Conditions

Since transient simulation and Harmonic Balance Method have different approaches to

temporal periodicity, altered boundary conditions should be used. Transient boundary

conditions will be discussed first. Transient simulation is intended to simulate the problem as

close as possible as it is in reality. As a first simplification, because of the relative velocity

between the airfoil and the air, the airfoil does not have to move in the simulation – air flow

can be set in the opposite direction. That is the inlet boundary condition for velocity, fixed

value, while zero gradient is set for pressure. In order for the flow to freely exit the domain, all

the other boundary patches are set to zero gradient both for velocity and for pressure. To

introduce pitching, mesh motion is prescribed as a rotation around the airfoil axis. The axis is

set at the chord line at one third distance from the trailing edge. By including mesh motion in

the transient simulation, simulation time increases. The Harmonic Balance Method, because

of its steady-state concept, has 2n+1 boundary conditions for n harmonics. As it was

previously explained, Harmonic Balance Method solves 2n+1 coupled steady-state problems

and therefore each problem requires its own boundary condition. By alternating boundary

conditions from one time step to another, periodic motion in the flow is created. In harmonic

balance, static mesh is used which means that airfoil pitching has to be modelled by rotating

the inlet flow. The flow is rotated in such manner that the angle between inlet air flow and

airfoil in each time step matches the angle from the transient simulation at the same time

instant. This relative rotation of the flow, rather than rotation of the airfoil, introduces a certain

approximation error. This approach might not be fully consistent with the Space Conservation

Law [21] and will further be investigated in future work.
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Figure 23 depicts the difference between the approach used in the transient simulation and

the one used in harmonic balance. Figure 23a shows the transient simulation in which the inlet

flow is steady and undisturbed. The only disturbance caused is the one from the airfoil. Figure

23b shows the harmonic balance approach in which each time step has its own inlet boundary

conditions, causing the flow to change. It means that by rotating the flow, different flow field is

obtained even before reaching the airfoil.

(a) Transient simulation mesh rotation,
(b) Inlet velocities at different

time steps in harmonic balance.

Figure 23: Boundary condition treatment
in the transient and the harmonic balance simulation.

8 test cases were run in order to compare transient simulation and Harmonic Balance

Method. Two different setups were made, one for low Re number and the other for high Re

number. For each setup a transient simulation and harmonic balance simulations with 1, 3 and

6 harmonics were made. Due to the numerical instabilities that occur at low speeds, the

variation in Re numbers was achieved by changing the kinematic viscosity of fluid. First setup

has inlet velocity set to 1 m/s with pitching angle of 6◦. Kinematic viscosity is set to

ν = 5.9·10−4m2/s which gives Re = 1695 and stable laminar flow. Second setup has the

same inlet velocity, 1 m/s with pitching angle of 6◦, but the kinematic viscosity is set to

ν = 1.5·10−5m2/s, yielding Re = 66667.
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5.2.3 Results

Results presented here are given for airfoil pitching case with low and high Re number. Low Re

number case is a laminar case without flow separation. Results of pressure contours obtained

using 1, 3 and 6 harmonics are compared to transient simulation.

Figure 24 shows the results obtained using 1 harmonic and transient simulation. Figure 24a

represents the pressure contour around the airfoil at t = T/3. Horizontal axis depicts the cells

of the expanded airfoil, where pressure peak in the middle presents leading edge stagnation

point, while values 0 and 100 stand for trailing edge. Values 0–50 represent the lower camber

while 50–100 is upper camber. This representation is not length–authentic because some parts

of the airfoil are meshed with finer mesh and some with coarser, meaning that 1 cell can have

length of 1 mm as well as 100 mm. Such approach was chosen in order to be able to compare

the obtained value in each cell. Figures 24b and 24c show the contours in t = 2T/3 and t = T ,

respectively.
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(a) Pressure contours at t = T/3
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(b) Pressure contours at t = 2T/3
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(c) Pressure contours at t = T

Figure 24: Pressure contours around the airfoil for 1 harmonic, 0–50 represents
the lower camber while 50–100 the upper camber.

It can be seen that peak pressures show good agreement in all of the time steps. Pressure on

lower camber sides show small deviations from transient case, while in second time step, there

is a somewhat higher discrepancy around cell number 40 (horizontal axis).
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Further results are shown for 3 harmonics. Figure 25 shows the comparison with transient

simulation. It can be noticed that the deviation from transient results has been reduced.

However, the discrepancy around cell number 40 which was observed in 1 harmonic case

appears again and can be seen in Figures 25e and 25f.
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(a) Pressure contours at t = T/7,
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(b) Pressure contours at t = 2T/7,
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(c) Pressure contours at t = 3T/7,
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(d) Pressure contours at t = 4T/7,
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(e) Pressure contours at t = 5T/7,
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(f) Pressure contours at t = 6T/7,

Figure 25: Pressure contours around the airfoil for 3 harmonics.

The final set of results for setup with low Re number is obtained using 6 harmonics, offering

good temporal resolution of 13 time steps. Although good temporal resolution is achieved,

6 harmonics slow down both the simulation time and convergence compared to 1 harmonic

simulation. Comparison with transient simulation is shown in Figures 26 and 27 for all time

steps.
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(a) Pressure contours at t = T/13,
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(b) Pressure contours at t = 2T/13,
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(c) Pressure contours at t = 3T/13,
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(d) Pressure contours at t = 4T/13,
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(e) Pressure contours at t = 5T/13,
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(f) Pressure contours at t = 6T/13.

Figure 26: Pressure contours around the airfoil for 6 harmonics.

It can be noticed once again, in Figures 27b to 27e, that harmonic balance is not accurately

following the pressure contour of the transient simulation in the same areas as for 1 harmonic

and 3 harmonics. There is still a discrepancy at the left trough around cell number 40. Apart

from this discrepancy, the overall agreement is good. The causes for such behaviour will be

discussed in section 5.2.4.
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(a) Pressure contours at t = 7T/13,
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(b) Pressure contours at t = 8T/13,
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(c) Pressure contours at t = 9T/13,
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(d) Pressure contours at t = 10T/13,
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(e) Pressure contours at t = 11T/13,
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(f) Pressure contours at t = 12T/13,
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(g) Pressure contours at t = T .

Figure 27: Pressure contours around the airfoil for 6 harmonics.
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In Figure 28, harmonic balance solution with 1, 3 and 6 harmonics is compared to transient

solution at the end of a period With symbols representing each harmonic balance simulation

overlapping, it can be noticed that the results are similar.

Results presented above suggest that for simulations where high temporal resolution is

not needed, 1 or 3 harmonics are more than sufficient. As it was stated in the description of

Fourier series in section 3.2 , in terms of energy, first harmonic has the largest influence on the

solution, while every further harmonic has smaller and smaller influence. Also, higher number

of harmonics contribute to the solution accuracy in terms of small disturbance frequencies.

That explains why there is small difference between the solution with 1 and 3 harmonics, but

results differ for 6 harmonics. It should also be noticed that an airfoil pitching case is not

the case with many disturbances and complex flow phenomenon, therefore higher numbers of

harmonics should not change the solution significantly.
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Figure 28: Comparison of transient simulation and harmonic balance
with 1, 3 and 6 harmonics at t = T.

For second example of a pitching airfoil, the same test case with high Re is simulated.

This test case is carried out to show that transient interaction of vortices cannot be accurately

captured using harmonic balance. Pressure contour on the airfoil at the point where flow

separation occurs does not match the pressure contour in the harmonic balance solution.

Transient pressure contour is curved with jumps, while harmonic balance pressure contour is

smooth. Some of the previously introduced approximations may be the cause of such

behaviour and it will be discussed more thoroughly later.

Four simulations are compared: a conventional transient simulation with three harmonic

balance simulations, using 1, 3 and 6 harmonics. Because of turbulent flow at Re = 66667,

pressure contours are not completely identical at certain time instants within every period.

Therefore, in a transient simulation, 10 periods were simulated and only the last five were
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compared in order to neglect the start–up unsteadiness. At certain time instants, where there

were variations in pressure contours, average of 5 periods is made and compared to harmonic

balance. In time instants where transient pressure contours matched each other closely in all of

the periods, no averaging is done. Higher Re than in previous case was achieved by reducing

the kinematic viscosity to ν = 1.5·10−5 m2/s and setting the inlet velocity to u = 1 m/s.

The comparison of results is shown in Figure 29 for one harmonic case. It can be observed

that both upper and lower camber side exhibit lack of disturbances in harmonic balance

simulation. These disturbances cause pressure fluctuations which are also the cause of

differences in other regions of airfoil where flow separation does not occur.
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(a) Pressure contours at t = T/3,
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(b) Pressure contours at t = 2T/3,
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(c) Pressure contours at t = T .

Figure 29: Pressure contours around the airfoil for 1 harmonic for high Re.

Transient results compared in Figures 29a and 29c are averaged over 5 periods. Figure

30 shows the transient contours and the resulting averaged contour. Dashed lines present the

pressure contours, while black line presents the averaged profile.
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(a) Averaged pressure contour at t = T/3
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(b) Average pressure contour at t = T .

Figure 30: Averaged pressure contours, dashed lines present the contours in different periods.

The results for 3 harmonics are shown in Figure 31. Similar to the low Re number case,

discrepancy around cell number 40 can be seen both in Figures 31a, 31d, but also in the 1

harmonic case in Figure 29a. Even though higher number of harmonics is used compared

to previous case, flow separation and turbulence is not resolved. Results are only shown at

some of the time steps because other time steps exhibit similar behaviour and are therefore not

presented.
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(a) Pressure contours at t = T/7,
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(b) Pressure contours at t = 3T/7,
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(c) Pressure contours at t = 5T/7,
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(d) Pressure contours at t = T .

Figure 31: Pressure contours around the airfoil for 3 harmonics used at high Re.

The 6 harmonics case is presented in Figure 32. It can be observed that results are similar
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to ones shown previously for 1 and 3 harmonics. As stated in case with low Re number, airfoil

pitching case is not a complex case which could easily demonstrate the behaviour of results

by including higher number of harmonics. Even though accuracy of higher harmonics is not

presented here, effects of higher number of harmonics are demonstrated in section 4, dealing

with scalar transport, and behaviour is analogous. The results for other time instants exhibit

similar behaviour and are not presented.
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(a) Pressure contours at t = T/13,
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(b) Pressure contours at t = 5T/13,
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(c) Pressure contours at t = 9T/13.

Figure 32: Pressure contours around the airfoil for 6 harmonics at high Re.

In Figure 32b, discrepancy around cell number 40 is still not present, irrespective of 6

harmonics used.

Flow field visualisation is presented in Figures 33 and 35. Flow field is from fifth time

step, t = 5T/13, or in Figures it is labeled as UTime4 and pTime4, counting from zero. Overall

velocity fields are quite similar with both trailing wakes going slightly downwards. Disturbance

present in graphs of pressure contours can also be noticed in Figure 33b, and it does not appear

in Figure 33a of the harmonic balance flow field. More detailed view is depicted in Figure 34.

Stagnation point and areas of high and low velocities appear in same locations for the transient

simulation and harmonic balance cases.
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(a) Harmonic balance, 6 harmonics, (b) Transient simulation.

Figure 33: Velocity field visualisation at t = 5T/13.

Figure 34 shows flow fluctuation that occurs at the trailing edge. In the transient simulation,

larger flow separation appears compared to the harmonic balance, both at the trailing edge and

lower camber side.

(a) Harmonic balance, 6 harmonics, (b) Transient simulation.

(c) Harmonic balance, 6 harmonics, (d) Transient simulation.

Figure 34: Detailed look at velocity field at t = 5T/13.

Figure 35 shows the visualization of the pressure field within the domain. The pressure
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field is similar with a slightly different distribution at the upper camber side. Stagnation point

appears at the same place in both simulations with larger pressure diffusion around the

stagnation point in transient simulation. For the trailing edge, the difference was already

noted: the transient simulation has flow separation while the harmonic balance resolves the

flow as if it is smooth and undisturbed.

(a) Harmonic balance, 6 harmonics, (b) Transient simulation.

Figure 35: Detailed look at velocity field at t = 5T/13.

5.2.4 Approximations Introduced

In order to use the Harmonic Balance Method and to be able to present its current progress

and development, some simplifications and approximations are present in the NACA 2412 test

case. Simplifying the physics of the flow is necessary, but introduces a certain error into the

calculation. This section deals with errors introduced only by the case setup.

Differences that arise from the Harmonic Balance Method are caused by three main

approximations. These approximations are believed to cause most problems visible in NACA

2412 test case and introduce significant errors. The first cause arises from the relative flow

direction. In contrast to real situation (and the transient simulation) where flow is

unidirectional and the airfoil is pitching, in NACA 2412 test case for the Harmonic Balance

Method a single and static mesh is used. By doing this, we have accepted that the flow

direction is changing rather than the airfoil is pitching, which is not an accurate

approximation. This will be clarified by referencing the hypothetical transient case with

variable inlet velocity which is changing direction. When inlet flow changes direction, it has

to change the direction of the surrounding flow too before it reaches the airfoil. It means that

the flow reaching the airfoil, in the relative coordinate system, is not the same as in transient

simulation. Other than disturbed flow, in the transient simulation when the pitch angle

changes, the angle of attack is changed instantly and the stagnation point moves instantly. In

approximation used here, changing the inlet direction changes only the inlet direction

instantly while airfoil is reached after some time. Only then will stagnation point move and
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Gregor Cvijetić Harmonic Balance Navier-Stokes Validation

pressure and velocity field correspond to the pitching angle. These are the remarks concerning

the hypothetical transient case with a variable velocity direction, but the same boundary

condition setup will cause the same effects in the harmonic balance too. In order to improve

this effect, a rotating mesh should be used. Every time step would have a static mesh

corresponding to its pitch angle, while the inlet velocity would stay unchanged.

The second cause is closely related to the one just mentioned and it concerns the way

harmonic balance works. In the Harmonic Balance Method velocity fields from all the time

steps are coupled together. In order to calculate the solution in time step t = T/13, all other

12 velocity fields are used as the source terms. This type of velocity coupling, together with

the case setup as shown in Figure 23 causes the flow field to flatten out in the x–direction.

Therefore, what was intended to be a unidirectional flow at α degrees, is the inlet flow at

α degrees which eventually tends to flatten. As it was shown, such approximation produces

sufficiently good results compared to the level of simplicity that this approach offers – no

moving mesh, only one mesh used, memory reduction, etc. On the other hand, the multiple

mesh approach is believed to converge more quickly because velocity fields in all of the time

steps are similar and results would be more accurate.

The third cause of errors in the NACA 2412 test case could not be resolved by using a

multiple mesh approach, but it is also the result of moving mesh. In transient simulation, by

pitching the airfoil not only the relative angle between the flow and the airfoil changes, but

also the relative velocity. This acceleration causes an increase of velocity on one side of the

airfoil and reduction of velocity on the other, and opposite for the pressure. This effect caused

by airfoil movement is not captured by the Harmonic Balance Method and cannot be captured

using steady-state approach, unless some of the methods similar to MRF are used, as described

in [22]. This could explain why in some graphs contours were slighly offset in the y direction.
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5.3 CPU Time Comparison

For the presented NACA 2412 cases, a CPU time comparison study is carried out. Harmonic

balance is a quasi-steady technique depending on the number of iterations and residuals. The

residual noted in tables 1 and 2 is the initial residual for velocity and pressure fields, obtained

using L1 norm. Conventional transient simulation is directed using time step size. Maximum

Courant–Friedrichs–Lewy number was used to determine the suitable time step size. In order

to neglect the start-up instabilities and produce a perfectly periodic results, simulation was run

for 10 periods. Table 1 shows comparison of case setup and time required to satisfy the residual

criterion for the NACA 2412 low Re case.

Transient ∆t=0.005 s Max Co = 1 1 period = 116 s

HB 1h 520 iter residual = 10−6 18 s
3h 1000 iter residual = 10−6 90 s
6h 2700 iter residual = 10−6 350 s

Table 1: CPU time comparison for low Re NACA 2412 test case.

In transient simulation, simulating one period took 116 s and is consistent through all the

periods. On the other hand, the harmonic balance simulation took substantially less time for

the simulation with one harmonic, 18 s. Three harmonics simulation took nearly as one period

of transient simulation, while six harmonics took three times more. It should be noted here

that one period of transient simulation is not representative. In terms of low Re case, at least 4

periods should be run for the results to become consistent. Hence, transient simulation time of

at least 464 s should be used for comparison.

Transient ∆t=0.001 s Max Co = 0.5 1 period = 431 s

HB 1h 850 iter residual = 10−6 26 s
3h 3200 iter residual = 10−6 250 s
6h 2800 iter residual = 10−6 352 s

Table 2: CPU time comparison for high Re NACA 2412 test case.

Table 2 presents the CPU time comparison for the NACA 2412 high Re case. Transient

simulation was run with time step ∆t = 0.001 s, at lower Courant-Friedrichs-Lewy number

than in low Re case, yielding the period time of 431 s. The harmonic balance simulation for

one and three harmonics took considerably more time than in the previous case, while for six
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harmonics the same CPU time was required. In validation section it was shown that transient

simulation was not completely periodic after ten periods: CPU time of at least 4310 s should

be used for comparison.

CPU time tables 1 and 2 present the harmonic balance efficiency in terms of computational

resources. For the low Re case, simulation with one harmonic is 25 times faster, while three and

six harmonic simulations are 5 and 1.3 times faster, respectively. High Re case took more time

both for the transient and harmonic balance simulation. Hence, harmonic balance simulation

with one harmonic being 165 times faster, with three harmonics 17 times faster and with six

harmonics 12 times faster, compared to 10 periods of transient simulation. Presented savings

in CPU time justify the error introduced in the harmonic balance simulations.
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5.4 Test Cases with Unknown Frequency

Previous test cases dealt with prescribed motion of an airfoil with a known dominant

frequency. In this section, cases with unknown frequency will be presented. Such cases

present special problems for the Harmonic Balance Method for two reasons. The first reason

is already mentioned: frequency which is an input parameter for the harmonic balance is

unknown. Therefore, frequency should be either guessed or a transient simulation should be

performed and a frequency spectrum could be obtained using FFT (Fast Fourier Transform).

The second problem is the problem of non–linearity. In cases where periodicity doesn’t come

from enforced motion or prescribed periodic boundary condition, periodicity is the result of

the nature of the flow. Because of unsteadiness, convergence is hard to reach. Both of the

mentioned problems are presented in the following two cases.

5.4.1 Laminar Cylinder Vortex Shedding Test Case

First test case deals with laminar vortex shedding behind the cylinder. Following [23] where

vortex shedding behind a cylinder with enforced motion is simulated using the Harmonic

Balance Method, a similar case without enforced motion is reconstructed. The computational

domain is a 2D structured mesh with 25920 hexahedral cells, shown in Figure 36.

Figure 36: Domain for laminar vortex shedding case.

The domain size is 30 m × 11 m with cylinder diameter of 1 m. Inlet velocity is 0.333

m/s and the kinematic viscosity ν = 1.44715·10−5 m2/s. This setup, with D = 1 m, yields

Reynolds number of 23010. Due to unknown dominant frequency, a transient simulation is

performed first and frequency spectrum is obtained. The frequency spectrum depicted in Figure

37 shows the base frequency of f = 0.09677 Hz which is an input parameter for the harmonic

balance simulation.

Figure 38 shows the periodical behaviour of residuals of velocity in x direction. Lack of

convergence is caused by the convective term that involves non–linearity in Navier–Stokes

equations which is still present in the Harmonic Balance Method. Therefore, the periodicity

arising from convective term will also be present in the harmonic balance, despite the Fourier
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Figure 37: Frequency spectrum of shedding of vortices.

decomposition. It is the reason why satisfactory convergence is not possible.
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Figure 38: Residuals of velocity in x direction for the Harmonic Balance Method
in t = T/3 for one harmonic.

In Figures 39a and 39b the transient and the harmonic balance flow fields are compared.

Although some resemblance can be noticed, the harmonic balance solution is not converged

and representative.

The results shown here are for case with one harmonic and only first time step. Other results

exhibit the same behaviour and therefore are not presented. For cases with higher number of

harmonics, satisfactory convergence is still not reached.
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(a) Transient simulation velocity field, (b) Harmonic balance velocity field.

Figure 39: Velocity field comparison between transient solution
and the harmonic balance solution.

5.4.2 Edge Tone Noise Test Case

The second test case with frequency which is unknown in advance is the edge tone noise test

case. In this test case the phenomena described in [24] is reconstructed. The computational

domain is a 2D domain consisting of 35500 hexahedral cells. The domain size is 0.0975 m ×
0.151 m and it is depicted in Figure 40.

Figure 40: Edge tone test case domain.

Fluid properties and boundary conditions are the same as in [24], hence the frequency is

also the same. Inlet velocity is set to 0.0309 m/s with kinematic viscosity ν = 1.54515·10−5

m2/s. Frequency spectrum is obtained running a transient simulation, Figure 41. Dominant

frequency is f = 117 Hz.
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Figure 41: Edge tone frequency spectrum.

Although convergence is not reached using the Harmonic Balance Method approach,

Figures 42, 43 and 44 show that flow phenomena has been captured and the flow is

qualitatively similar to one obtained using transient simulation.

(a) Transient simulation velocity
field, (b) Harmonic balance velocity field.

Figure 42: Transient solution and the Harmonic balance solution at t = T/3.

Figures 42, 43 and 44 are obtained using the harmonic balance with one harmonic and

depict solution in time instants t = T/3, t = 2T/3 and t = T , respectively. Results using higher

number of harmonics do not exhibit improved convergence, therefore are not presented here.
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(a) Transient simulation velocity
field, (b) Harmonic balance velocity field.

Figure 43: Transient solution and the harmonic balance solution at t = 2T/3.

(a) Transient simulation velocity
field, (b) Harmonic balance velocity field.

Figure 44: Transient solution and the harmonic balance solution at t = T .

Results presented here show that the Harmonic Balance Method could offer an efficient

tool not only for problems with prescribed motion, but also with phenomena where dominant
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frequency is not precisely known in advance. Even though the frequency problem persists,

further development of the Harmonic Balance Method could lead to better results and

convergence.

5.5 Closure

This section presented the validation of the Harmonic Balance Method. First, passive scalar

transport was tested and validated. Presented test cases have shown the accuracy of the

Harmonic Balance Method in various problems. Scalar transport was validated using four

types of periodic impulses resembling sine wave, complex wave consisting of sine and cosine

waves and two square waves. Harmonic waves are described perfectly, while square wave test

cases have demonstrated convergence and robustness of the Harmonic Balance Method.

The Harmonic Balance Method for Navier–Stokes equations was validated using NACA

2412 test case with low and high Re number. Although simulations with different numbers of

harmonics were performed, the convergence study is not satisfactory. Further development in

area of mesh motion should be taken into consideration, as it is believed to be the main cause

of discrepancies compared to transient simulation.

Finally, two cases where frequency is not known in advance were presented. In these cases,

the instabilities arise from the convective term rather than prescribed harmonic behaviour. As

derived in section 3, in the Harmonic Balance Method the convective term is also present,

therefore, instabilities occur regardless of Fourier decomposition of the temporal term.
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6 Conclusion and Future Work

The thesis describes derivation and validation of the Harmonic Balance Method in

computational fluid dynamics and its implementation in OpenFOAM. Harmonic Balance

Method is a method for non–linear temporally periodic flows in which variables are

represented by a Fourier series with spatially varying coefficients. Harmonic or non–linear

transient equations are converted into a set of coupled steady-state equations which yield flow

fields at discrete instants of time throughout a representative harmonic period. The method is

implemented in OpenFOAM, using second–order accurate, polyhedral Finite Volume Method,

developed for a general transport equation and generalised to coupled non–linear sets

including incompressible Navier–Stokes equations.

The results obtained using the Harmonic Balance Method demonstrate that the method is

capable to successfully capture the periodic flow field. Comparison of passive scalar transport

given in Section 4 shows the nature of the Harmonic Balance Method presented on harmonic

waves. For the square waves imposed, a convergence resulting from with the increase in

number of harmonics is presented, showing that closer approximation is achieved with higher

number of harmonics. Square waves were found to be a challenge in numerical terms, but, on

the other hand, it allows testing of the robustness and accuracy of the Harmonic Balance

method.

Successful validation of the harmonic balance solver for passive scalar transport led to

development of the harmonic balance for Navier-Stokes equations. The Harmonic Balance

Method for Navier-Stokes equation was validated using NACA 2412 airfoil in two flow

regimes: at low and high Re number. Comparison is presented in Section 5 using four setups

for each Re number. Harmonic balance results with 1, 3 and 7 harmonics were compared to

transient results. As NACA 2412 at low Re number is a simple case, results obtained with 1, 3

and 7 harmonics were close. For the high Re test case, the results of the Harmonic Balance

Method differ more from the transient results due to flow separation near the trailing edge.

Even though the flow separation is not resolved using the harmonic balance, the flow trend is

successfully captured. Overall, comparison carried out on NACA 2412 airfoil shows good

agreement of the harmonic balance solver with conventional transient solver.

The CPU time comparison, presented for the NACA 2412 test case, shows the efficiency

and computational accuracy of the Harmonic Balance Method; in some cases it was up to

165 times faster than the conventional transient solver. While in transient simulation a perfect

periodical state could be reached provided that the adequate number of periods was used, in the

Harmonic Balance Method the accuracy was defined by the number of harmonics. Therefore,

the results obtained in the thesis demonstrate that the Harmonic Balance Method is a useful

and reliable tool for solving periodic problems and that it offers a great potential for further
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development.

In addition to application presented in the thesis, versatile Harmonic Balance features

indicate that the method could be used in a wide variety of technology and industrial domains.

Other than current areas of interest (turbomachinery, airfoil simulation, etc.), naval

hydrodynamics involves periodic phenomena that corresponds to the one presented in the

thesis and, therefore, it is an important topic crucial for future progress. Whatever is the area

of application and intended use, the results obtained in the thesis point to the importance of

implementation of mesh motion for further developments in both theoretical and practical

knowledge.
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