
Razvoj metoda za podršku sljedivosti automatskim
kreiranjem veza između komponenata sklopa

Zubić, Alen

Master's thesis / Diplomski rad

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu,
Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:577117

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-15

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering
and Naval Architecture University of Zagreb

https://urn.nsk.hr/urn:nbn:hr:235:577117
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fsb.unizg.hr
https://repozitorij.fsb.unizg.hr
https://zir.nsk.hr/islandora/object/fsb:2887
https://repozitorij.unizg.hr/islandora/object/fsb:2887
https://dabar.srce.hr/islandora/object/fsb:2887

SVEUČILIŠTE U ZAGREBU
FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Alen Zubić

Zagreb, 2015.

SVEUČILIŠTE U ZAGREBU
FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentor: Student:

Izv. prof. dr. sc. Nenad Bojčetić, dipl. ing. Alen Zubić

Zagreb, 2015.

Izjavljujem da sam ovaj diplomski rad izradio samostalno koristeći se navedenom

literaturom i stečenim znanjem tijekom studija.

Zahvaljujem se svom mentoru prof. dr. sc. Nenadu Bojčetiću na ukazanom povjerenju,

savjetima i podršci prilikom pisanja ovoga rada. Zahvaljujem se prof. dr. sc. Mariu Štorgi na

ukazanoj prilici da temu obrađujem pomoću resursa Daimler AG razvojnog centra u Ulmu.

Profesorima dr. sc. Nevenu Pavkoviću i dr. sc. Draganu Žeželju zahvaljujem se na stručnim

savjetima i literaturi. Dipl.-Wirt.-Ing. Nico Koehler, Dr.-Ing. Thomas Naumann te ostali

kolege i profesori u Ulmu – hvala na pruženoj potpori i što ste me srdačno prihvatili.

Posebno se zahvaljujem svojoj obitelji koja mi je pružala potporu cijelo vrijeme

tijekom školovanja.

Zagreb, svibanj 2015. Alen Zubić

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture I

TABLE OF CONTENTS

LIST OF FIGURES ... II	

LIST OF TABLES ... IV	

SAŽETAK ... V	

SUMMARY ... VI	

PRODUŽENI SAŽETAK ... VII	

1.	
 Introduction ... 1	

2.	
 Understanding system complexity and industry practices .. 4	

3.	
 System traceability .. 9	

4.	
 DSM (Data Structure Matrix) ... 11	

4.1.	
 System complexity ... 13	

4.2.	
 Visualization ... 16	

4.3.	
 DSM post-processing methods ... 19	

5.	
 Conceptual development of methods for extracting product assembly relations 22	

5.1.	
 Constraints .. 23	

5.2.	
 Proximity .. 28	

5.3.	
 Permanent joints ... 32	

5.4.	
 Non-permanent joints ... 33	

5.5.	
 Validation model for developed methods .. 34	

6.	
 PoC (Proof of Concept) ... 36	

6.1.	
 Eclipse IDE .. 36	

6.1.1.	
 NX Open Java API ... 38	

6.1.2.	
 NX Open documentation ... 38	

6.1.3.	
 Debugging and journals ... 39	

6.2.	
 MVC (Model-View-Controller) ... 40	

6.3.	
 Assembly-to-DSM PoC .. 41	

6.3.1.	
 Constraints ... 43	

6.3.2.	
 Proximity .. 43	

6.3.3.	
 Permanent joints ... 45	

6.3.4.	
 Output format ... 45	

6.4.	
 Result validation and visualization .. 46	

7.	
 Discussion ... 50	

8.	
 Conclusion ... 52	

Bibliography ... 53	

Additional documentation .. 56	

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture II

LIST OF FIGURES

Figure 1: Traceability matrix - grey area represents the area of interest 1	

Figure 2: Master thesis goal – developing methods for finding assembly component relations 2	

Figure 3: How are the Light and Front Bumper related? ... 3	

Figure 4: High level meta-model structure of sociotechnical system .. 5	

Figure 5: Projects within matrix-organization [1] .. 5	

Figure 6: Sample DSM ... 11	

Figure 7: Basic DSM classification [16] [4] .. 11	

Figure 8: a) Binary DSM, b) Weighted DSM .. 12	

Figure 9: DSM created from process diagram ... 12	

Figure 10: Diagonal cell logic .. 13	

Figure 11: DSM dependencies ... 13	

Figure 12: Aspects of complexity in product design [4] ... 15	

Figure 13: Grayscale color mapping .. 16	

Figure 14: Network graph and DSM created from the same data sample [27] 16	

Figure 15: Broken cluster in DSM and the same representation in network graph [29] 17	

Figure 16: The structure of a ballpoint pen represented in DSM matrix and non-directional

force-directed graph [4] .. 18	

Figure 17: DSM clustering – three overlapping clusters [31] .. 19	

Figure 18: A simple bus and two modules [31] ... 20	

Figure 19: DSM aggregation .. 21	

Figure 20: Assembly-to-DSM .. 23	

Figure 21: Siemens NX Assembly Constraints menu .. 24	

Figure 22: Touch constraint examples ... 25	

Figure 23: Concentric constraint example ... 25	

Figure 24: Distance constraint examples ... 26	

Figure 25: Fix constraint example .. 26	

Figure 26: Perpendicular constraint example ... 27	

Figure 27: Align/Lock constraint example ... 27	

Figure 28: Fit constraint example ... 27	

Figure 29: Center (1 to 2) constraint example .. 28	

Figure 30: Angle constraint example ... 28	

Figure 31: Non-constrained minimum distance ... 29	

Figure 32: Comparator ... 29	

Figure 33: Virtual box definition ... 29	

Figure 34: Box method ... 30	

Figure 35: Box method problem .. 30	

Figure 36: Low body-box ratio – all relations to selected component from other components

within the box should be excluded ... 31	

Figure 37: Box method together with distance method ... 31	

Figure 38: Validation model .. 34	

Figure 39: Manually created aggregated DSM based on model from Figure 38 35	

Figure 40: Luna release Eclipse IDE for Java EE Developers ... 37	

Figure 41: Abstract of NX Open Java API role ... 38	

Figure 42: NX Open Java API documentation ... 38	

Figure 43: Siemens NX Java parameter to enable debugging ... 40	

Figure 44: Additional Siemens NX Java parameter ... 40	

Figure 45: MVC concept .. 41	

Figure 46: Assembly-to-DSM project structure ... 42	

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture III

Figure 47: Slice of result data - JSON format .. 47	

Figure 48: Visualized results - separated based on the extraction method 48	

Figure 49: Aggregated DSMs .. 48	

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture IV

LIST OF TABLES

Table 1: Relevant functionality in engineering tools to enable traceability [7] 8	

Table 2: Daimler’s suggested weld types ... 32	

Table 3: Intro algorithm ... 42	

Table 4: Constraints algorithm ... 43	

Table 5: Proximity algorithm ... 44	

Table 6: Permanent joints algorithm .. 45	

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture V

SAŽETAK

Cilj ogova rada je identificirati metode koje pružaju mogućnost automatskog prepoznavanja

postojećih veza između komponenata sklopa iz CAD modela. CAD alat korišten tijekom

ovoga rada je Siemens NX. Neke od metoda su direktno bazirane na geometrijskim relacijama

kreiranim prilikom konstruiranja, a ostale se koriste drugim dostupnim CAD podacima

kojima se pristupa pomoću API-a. Sve identificirane metode su detaljno objašnjene kroz rad,

a prepoznavanje veza je bitno za podršku sljedivosti.

Razvijen je odgovarajući algoritam za svaku od identificiranih metoda koja se pokazala kao

pouzdana za detekciju veza između dvije ili više komponenata. Razvijeni algoritmi su zatim

pretočeni u Java programski kod koristeći Eclipse razvojno sučelje. NX Open API je korišten

za komunikaciju sa Siemens NX-om kako bi se pristupilo raspoloživim CAD podacima.

Prikupljeni podaci su analizirani i preoblikovani u razumljiv format koji predstavlja vezu

između komponenata.

Na temelju kreiranih veza iz CAD modela, kreirana je DSM matrica. DSM matrice imaju

svojstvo pružanja jedinstvenog pogleda na arhitekturu sustava i kao takve su pogodne za

vizualizaciju rezultata u ovome radu. Dodatno, metode za manipuliranje podataka koje su

razvijene posebno za DSM matrice pružaju dodatne mogućnosti pri analizi sustava. Svaka od

tih metoda ima specifičan cilj pa su stoga detaljnije objašnjene one koje su od posebnog

značaja za podatke korištene u ovome radu.

Za potrebe testiranja razvijenog programa kreiran je CAD model na temelju kojega je nastala

DSM matrica. Kreirana DSM matrica predstavlja rezultate algoritma koji sadrži sve

identificirane metode za izvlačenje relevantnih veza. Rezultati su zatim uspoređeni s DSM

matricom koja je nastala ručnim bilježenjem veza i koja služi kao pravovaljana referenca.

Ključne riječi: sljedivost, DSM, Siemens NX, CAD, kompleksni sustavi

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture VI

SUMMARY

The main goal of this master thesis is to explore available methods for extracting component

relations from the CAD model in order to support traceability. Siemens NX is used as a CAD

tool because Daimler recently decided it will use that platform in the future product

development process. At the time of writing this thesis, they are still in transition from

CATIA. Some of the methods are based on Siemens NX features that are used while

designing the product and others are developed based on new ideas that use information

provided by the software API. The methods found are described in detail through the thesis.

 A proper algorithm is developed for each individual method that has been identified as valid

for extracting relations between two or more components. Developed algorithms are then put

into proof of concept using Java in Eclipse IDE which uses NX Open API to communicate

with the available Siemens NX CAD data. Collected data is used to extract relations.

Based on relations extracted from the CAD model, the DSM matrix is created. DSM matrices

have the possibility to support traceability providing an additional way of looking at the

system architecture and therefore are chosen as a tool in this thesis. Also, DSM post-

processing methods enable an additional manipulation of data to get a better overview of the

system architecture. Each post-processing method has certain goals and therefore the majority

of them that are important for this thesis are explained in detail.

The final DSM is created based on the CAD model created for the purposes of this master

thesis. Results are discussed and compared with a manually created DSM which is considered

as a valid reference.

Keywords: traceability, DSM, Siemens NX, CAD, system complexity

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture VII

PRODUŽENI SAŽETAK

U današnje vrijeme, kompleksnost proizvoda je sve viša. Prikupljeno znanje prilikom razvoja

proizvoda je stoga vrijedno zbog toga što može biti ponovno korišteno, a to povisuje

efikasnost i brzinu stvaranja varijanti ili potpuno novog proizvoda. Zato je važno osigurati što

bolju sljedivost prilikom razvoja i ostalih procesa kroz koje proizvod prolazi.

Kuća kvalitete je jedna od metoda koja može biti iskorištena za poboljšanje sljedivosti jer

povezuje zahtjeve za poboljšanje proizvoda s tehničkim funkcijama proizvoda. Same zahtjeve

moguće je analizirati metodama koje analiziraju tekst ili veću količinu tekstualnih zapisa.

Prisutne su i mnoge druge metode za poboljšanje sljedivosti, ali još uvijek postoji veliki

prostor za unaprjeđenje sljedivosti korištenjem podataka iz CAD modela. Niti jedan trenutno

prisutan PLM alat ne pruža mogućnost modeliranja procesa od zahtjeva do prodaje i

održavanja, a da pri tome prati svaku akciju, analizira sustav i pomaže u obogaćivanju

sljedivosti.

DSM matrice su jedan od alata koji nudi jednostavan način prikazivanja kompleksnih sustava,

odnosno za potrebe ovoga rada, prikazivanja relacija između komponenata sklopa. Svaki

element matrice može biti definiran tako da je vidljiva zavisnost s drugim elementima

sustava. Tako se gradi struktura. Nakon definiranja sustava, grupiranjem elemenata ili

spajanjem više matrica s istom vrstom i brojem elemenata, dobije se novi pogled na

promatrani sustav.

Kreiranje veza između elemenata je iscrpan i dugotrajan posao. Vrijeme izrade DSM matrice

ovisi o broju elemenata i kompleksnosti sustava, s time da ju moraju izraditi ljudi koji

razumiju funkcije i veze koje postoje između komponenata proizvoda. Zadatak ovoga rada je

pronaći metode koje će automatizirati i eliminirati ‘ručnu’ izradu DSM matrica.

Trenutno se autoindustrija suočava s mnogim izazovima od kojih su neki smanjenje CO2 u

ispušnim plinovima i ekonomska kriza. Budžeti za projekte se smanjeni, a razina

kompleksnosti raste. Najbolji primjer su hibridna vozila koja jasno povisuju kompleksnost

sustava zbog toga što se uvode nove tehnologije koje moraju raditi u skladu sa starima.

Multidisciplinarnost timova otežava njihovo upravljanje.

Sociotehnički sustav je koncept koji nudi način za opisivanje takvih i sličnih sustava

osnovnim funkcijama kao što su interakcija između čovjeka i stroja te analizom komunikacije

između ljudi. Sociotehnički sustav je sačinjen od dvije osnovne grane: sociološka i tehnička.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture VIII

Ovaj rad se bavi s tehničkom stranom sociotehničkog sustava koji uzima u obzir korištene

alate i strojeve prilikom razvoja proizvoda. Rad podupire tehničku stranu sustava

automatskim izvlačenjem važnih veza koje postoje između komponenata nekog sklopa. To je

jedan od segmenata sociotehničkog sustava koji doprinosi boljem opisu cjelokupnog sustava.

Analiza autoindustrije osamdesetih godina je već upozoravala na visoku razinu kompleksnosti

proizvoda, procesa i strategija za što je potrebno pronaći nove metode upravljanja. Bullinger

očekuje daljnji i neprestani porast kompleksnosti sustava. Česta strategija, i često pogrešna je

da se kompleksnost sustava pokušava izbjeći ili reducirati gdje god je moguće. Isto tako,

Lindemann upozorava da se koncentracijom na samo jedan vid poboljšanja, primjerice

‘Design for X’, ne može pružiti visoka kvaliteta proizvoda. Uštede i ograničenja u jednom

segmentu razvoja proizvoda idu na uštrp drugim segmentima. Nije nužno da kompleksnost

sustava automatski predstavlja negativne posljedice za krajnji proizvod, već je određena doza

kompleksnosti poželjna. Pitanje je kako upravljati kompleksnošću, a ne kako je izbjeći – sve u

cilju kreiranja konkurentnog proizvoda koji ne narušava prvotne ciljeve i zahtjeve.

Sljedivost je koncept koji prilikom razvoja proizvoda pokušava objasniti na koje su sve

načine elementi sustava povezani. Sljedivost nastoji dati odgovore na pitanja ‘zašto?’, ‘kako?’

i ‘kada?’ se nešto dogodilo, ‘tko?’ je odgovoran, na ‘što?’ se utjecalo i ‘gdje?’ se to dogodilo.

Tijekom razvoja proizvoda se uvijek teži ka boljoj sljedivosti, ali ako se informacijama za

podršku sljedivosti ne upravlja na pravi način ili ako su one netočne, sljedivost negativno

utječe projekt. Povisuje se cijene projekta, remeti se raspored, smanjuje se kvaliteta proizvoda

i povećava se broj iteracija koje su potrebne da se projekt dovede do kraja.

Informacije za podršku sljedivosti dolaze u mnogo različitih formata – skice, tehnička

dokumentacija, zabilješke sa sastanaka, bilješke i napomene radnika, proračuni, CAD modeli,

razna izvješća i drugo. Štorga na temelju svojih istraživanja zaključuje da je kvalitetno

upravljanje inženjerskim informacijama jedini način da se postigne efikasna sljedivost i

predlaže načine kako to postići. Da bi podatak postao vrijedna informacija, u toku sljedivosti

mora postojati nadogradnja koja ga u potpunosti opisuje. Sljedivost u tom slučaju pruža

inženjerima, upravljačkoj strukturi i ostalim odgovornim ljudima bolje razumijevanje i priliku

za kvalitetnije odluke temeljene na prije prikupljenim informacijama. Podatak može biti

vrijedan bez obzira odakle potječe i u kojem je formatu. Bolja sljedivost znači bolji proizvod i

siguran rast. Projekt TRENIN i SysMT su neki od projekata koji pokušavaju stvoriti

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture IX

platformu koja pomaže u poboljšanju sljedivosti na temelju zapažanja njihovih autora i

metoda koje su razvili.

DSM matrice su jednostavan, kompaktan i moćan alat za opisivanje relacija između

elemenata sustava. Elementi mogu predstavljati proizvode, procese i ostale entitete između

kojih postoji relacija. Mogućnost jednostavnog opisivanja sustava i naknadna analiza su

prednosti DSM matrica koje su ih dovele do intenzivnijeg korištenja u raznim kontekstima.

Postoje dvije glavne kategorije DSM matrica: statičke i vremenske. Zbog teme koju ovaj rad

obrađuje, detaljnije su opisane kvadratne statičke matrice. Statičke DSM matrice predstavljaju

sustav elemenata koji postoje istovremeno pa su zbog toga dobre za opisivanje arhitekture

proizvoda. Elementi predstavljaju komponente, a relacije zapisane u matrici predstavljaju

veze između komponenata. Identične komponente se prema istom rasporedu nalaze u

zaglavlju i na lijevoj strani tablice. Veza između elemenata se bilježi kao točka na sjecištu tih

elemenata u tablici ili se na istome mjestu stavlja broj koji predstavlja težinski faktor.

Dijagonalna polja DSM matrice koja kreću iz gornjeg lijevog kuta i protežu se do desnog

donjeg kuta nemaju značenje nego se mogu koristiti kao pomoć pri čitanju DSM matrice.

Standard korišten pri kreiranju DSM matrica u ovome radu je IC/FBD što se tumači kao da su

ulazni podaci smješteni u stupce, a izlazni u retke. Simbol u lijevom gornjem kutu matrice

ukazuje na odabrani standard. U nesimetričnoj matrici, elementi u redovima se mogu smatrati

kao onima koji utječu na elemente u stupcima, a shodno tome elementi u stupcima se mogu

smatrati kao oni na koje će utjecati elementi iz redaka. Glavna zadaća DSM matrice izrađene

na bazi kvalitetnih informacija je da pruži bolji pregled cjelokupnog sustava i omogućiti

vizualno uočavanje važnih područja. Statičke DSM matrice su često analizirane algoritmima

za klasteriranje koji se temelje na reorganizaciji položaja elemenata u matrici i time grupiraju

elemente koji su usko povezani. Tako se izlučuju strukturne jedinice koje čine podsustave

većih sustava. Kombiniranjem više matrica iste domene se zove agregacija. Elementi u svim

matricama se moraju referencirati na identične objekte koji se promatraju i samo tada je

dozvoljeno vršiti agregaciju matrica, a time se objedinjuju različite veze u jednu matricu.

Sklop koji je pretvoren u CAD model je virtualna preslika modela iz stvarnosti te stoga sadrži

sve potrebne veze između komponenti. U ovome radu su korištene informacije dostupne iz

Siemens NX programskog paketa kako bi se prepoznale željene veze, ali na temelju ovoga

istraživanja koje generalizira navedene metode, lako ih je primijeniti unutar drugih CAD

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture X

paketa. Zbir pronađenih metoda je kasnije implementiran u prototip koji je nazvan

‘Assembly-to-DSM’.

‘Constraint’ je vrsta veze u Siemens NX-u koja predstavlja geometrijski odnos između dvije

ili više komponenata, odnosno točnije – geometrijsko ograničenje. Sklop se gradi tako da

svaki novi dio dobije svoja geometrijska ograničenja u odnosu na dio koji je već postavljen u

virtualnom prostoru. Nakon što su umetnuti svi dijelovi i nakon što su za svaki od njih

odabrana geometrijska ograničenja, dobije se konačni sklop. Vrijedi napomenuti da se

odabirom vrste veze može utjecati na broj stupnjeva slobode gibanja svake pojedine

komponente. Svaki puta se odabire prikladna geometrijska restrikcija od njih jedanaest

ponuđenih.

‘Proximity’ metoda se temelji na analizi udaljenosti komponenata. Prednost ove metode je u

tome što ne mora postajati već prije definirana bila kakva veza između komponenata, nego se

na temelju minimalne udaljenosti određuje postoji li valjan razlog da se dvije komponente

promatra kao da između njih postoji određena povezanost. Za to postoji varijabla s kojom se

uspoređuje izračunata minimalna udaljenost, a vrijednošću navedene varijable upravlja

korisnik. Ako je vrijednost mala, u obzir će se uzimati sve komponente koje su blizu jedna

drugoj, a ako je vrijednost veća, u obzir će se uzimati komponente koje su blizu jedna drugoj,

ali i one koje su udaljenije. Vrijednost ne smije biti prevelika ako se žele postići kvalitetni

rezultati. To znači da se govori o rangu od 1-30 mm, ali vrijednost ovisi o vrsti proizvoda.

Ako je proizvod zbit i komponente su jako blizu jedna drugoj, bolje je da je odabrana

vrijednost što manja.

‘Permanent joints’ ili nerastavljivi spojevi predstavljaju veze koje se temelje na zavarima.

Bilo koji tip zavara povezuje najmanje dvije komponente i time se kvalificira kao važna veza.

Problem se pojavljuje kod segmentiranih i točkastih zavara jer se izlučuje puno veza koje su

od istog značaja; svaka veza povezuje identične komponente. Jedno od rješenja je grupirati

mnogo istoznačnih veza u jednu.

‘Non-permanent joints’ ili rastavljivi spojevi su tipovi veza koje stvaraju vijci i slične

komponente koje nisu trajno čvrsto vezane za bilo koju od komponenata u sklopu. S obzirom

na to da vijak dodiruje ili je vrlo blizu komponentama koje spaja, uzima se kao da prijašnje

metode koje analiziraju udaljenost između komponenata već prepoznaju ovaj tip veze.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture XI

Kako bi se ispitalo navedene metode napravljen je model koji sadrži sve navedene tipove

veza. Na temelju tog modela, ‘ručno’ je napravljena DSM matrica koja će u kasnijim

ispitivanjima poslužiti kao referenca za provjeru vjerodostojnosti rješenja koje će generirati

prototip. Važno je napomenuti da ‘ručna’ izrada DSM matrica iziskuje puno vremena i

stručne ljude koji poznaju sustav. Jako kompleksne sustave postaje gotovo nemoguće

modelirati pomoću DSM matrica.

Prototip rješenja je izrađen zbirom alata koji su u konačnici omogućili prikaz rješenja u obliku

DSM matrice. CAD model je napravljen u Siemens NX programskom paketu, a informacije

iz modela se dohvaćalo koristeći NX Open API funkcije koje su pozivane iz Java

programskog jezika. Eclipse IDE je korišten kao razvojno okruženje za Javu jer je besplatan i

pruža dovoljno napredne alate za provjeru ispravnosti programskog koda uz kvalitetnu

dokumentaciju koja je neophodna za ovakve pothvate.

Prototip je izrađen s MVC konceptom programiranja na umu. MVC je način programiranja

koji predlaže odvajanje ključnih dijelova programa u zasebne grupe kako bi u kasnijem

razvoju i dopunama bilo lakše upravljati promjenama. Osnovne skupine su ‘Model’, ‘View’ i

‘Controller’ gdje ‘Model’ predstavlja format podataka koji će služiti kao rješenje algoritama,

‘View’ definira način prikaza tih podataka, a ‘Controller’ je dio koji poznaje načine

prikupljanja podataka. Ovakav pristup programiranju je važan u ovom slučaju jer je izrađeno

rješenje jedinstveno za Siemens NX. Budući da je opisane metode za izvlačenje relevantnih

veza moguće promatrati kao generalno primjenjive i u drugim CAD programskim paketima,

onda je važno da je moguće te metode prilagoditi drugim načinima za upravljanje podacima

koje nude primjerice SolidWorks ili CATIA. MVC pojednostavljuje implementaciju novih

modula koji podupiru ostatak CAD programskih paketa zadržavajući neke od postojećih

dijelova programskog koda.

Dobiveni rezultati analize CAD modela dolaze u JSON formatu koji sadrži sve prepoznate

veze. Zatim su JavaScript, d3.js, HTML i CSS tehnologije iskorištene kako bi se ‘sirovi’

podaci vizualizirali u formi DSM matrice.

Analizom dobivenih rezultata i usporedbom s ‘ručno’ izrađenom DSM matricom došlo se je

do zaključka da je metoda automatskog prepoznavanja veza iz CAD modela bila preciznija.

Pronađena je jedna veza koja je slučajno bila zanemarena u ‘ručno’ izrađenoj DSM matrici.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 1

1. Introduction

With today’s increased level of product complexity [1] during product development,

traceability is an approach which naturally fits into an environment where future decisions

need to be made in a fast and precise way while at the same time considering the context

surrounding the product. Knowing the decision-making process and how conflicts inside

issues were resolved helps with future versioning and product variants. Knowledge gathered

during the development process can be reused and it helps to achieve better efficiency while

shortening the time for finalizing similar future projects [2]. New members of the team are

able to learn about the history of the product and it can help them to easily integrate into the

team. This is why it is important to have good product traceability.

While developing mechatronic systems, every module of the system with a specific function

should be applicable to a different context of another system. This enables future development

to take an existing project and use it in another as a module which performs its function

regardless of a new context [3]. Unfortunately, there are often new requirements that change

existing modules and the new changes can affect other parts of the system. Knowing which

parts of the system will be affected by the change facilitates foreseeing which resources will

be required to achieve a well-integrated solution.

There are existing methods that support traceability when dealing with product requirements

which are then translated into technical functions, e.g. House of Quality. House of Quality

supports traceability based on the knowledge about the relations between functions and

requirements [4]. Requirements alone can be analyzed with existing data mining and text

mining techniques [5]; however, the effective analysis of product component relations

remains a weak link in the product traceability path.. There is a large space for improvement

in traceability by the use of component relations in product assembly (Figure 1).

 1. 2. 3. 4. 5. 6. 7. …
1. Requirements
2. Functions
3. Components
4. Activities
5. Events
6. Decisions
7. Persons
…

Figure 1: Traceability matrix - grey area represents the area of interest

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 2

The existing tools and methods for product development are not adapted to deal with today’s

complex dependencies in vehicle development [6]. Therefore, the effort to manually model

Engineering Object Relations (EORs) is the main obstacle for using traceability tools in

practice. None of the existing commercial PLM tools support the modeling of EORs to the

full extent [7].

The Design Structure Matrix (DSM) offers simple way to present the view of assembly

component relations (Figure 2). Every DSM element can be defined with regard to the

relations to many different elements of the system. In that way, the system structure is built

[4]. After the matrix has been created, post-processing methods enable efficient use of the

matrix for analysis and further use such as search, visualization, modularization etc. For

example, it is possible to detect groups of closely related components by clustering them [8]

and this could later lead to building a single component with all the necessary functions, thus

optimizing the number of system elements. DSM matrices serve as a tool to better understand

system structure so it is relevant to have good data for creating the matrix.

Figure 2: Master thesis goal – developing methods for finding assembly component

relations

A complete structural representation of the product model with described EORs between

Engineering Objects (EOs) should enable engineers to recognize which EOs of the complete

system will be affected by the change of the desired EO. Creating EORs manually consumes a

lot of time and involves a lot of people familiar with the system design [9], thus new methods

identifying the relevant parts as well as the relevant relations of complex mechatronic systems

have to be developed.

Distance
Connections
Standard	
 Parts

Assembly
…

Input Output

CAD DSM

Methods

CAR

A1

A11

A12

A2

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 3

Figure 3: How are the Light and Front Bumper related?

This thesis describes ways in which traceability can be supported by finding new methods for

automated and semi-automated extraction of EORs between given EOs (Figure 3) to eliminate

manual work which is nowadays needed for extracting these relations. This contribution helps

to better understand the product assembly structure and produces data that can consequently

be used for better product management.

Light Front	
 Bumper

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 4

2. Understanding system complexity and industry practices

Recently, automotive industry faced few important challenges. Significant CO2 restrictions,

market drifts and economic crisis which demanded sudden changes in project management.

Economically, budgets for individual projects were reduced and in the other hand system

complexity rose due to the demand for fuel efficient vehicles. Fuel efficiency is trying to be

achieved by looking into green energy sources and building hybrid vehicles. Hybrid vehicles

made system complexity harder to handle because new approaches had to be introduced to

achieve combination of multiple power trains working together seamlessly. Old well

established and well known methods had to be modified. Now, different fields of science are

coming together and therefore new model had to be developed to manage this complexity of

all newly introduced artifacts in intensified cooperation, joint venture and network structure in

manufacturing [6].

One of the methods for understanding system complexity is introduced as sociotechnical

system approach. It defines basic system functions as interaction between human and machine

and as communication between humans. Product development process can then be modeled

based on those two functions. With this approach it is possible to model the system on lower

level in contrast to what was possible before, therefore it gives better overview of the system.

Methods and tools like CAx and PLM technologies had to be embraced and put into the

everyday process of product development. In the end, all of this should come together in a

model describing how to deal with the issues related to product development under

consideration of social behavior, design methodologies and IT services [6].

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 5

Figure 4: High level meta-model structure of sociotechnical system

As humans interact with the machines (for example computers) which often provide us with

tools for solving different scenarios, it’s important that those tools are efficient and produce

quality results [6]. If produced results were not correct, it’s not possible to support

traceability. Efficiency should be always taken into account as efficiency of the whole project

depends on the efficiency of partial steps in the project development.

This thesis supports technical side of sociotechnical model by providing methods and tools

for extracting relevant relations between components in complex system architecture.

Figure 5: Projects within matrix-organization [1]

Structure Function

Sociotechnical	
 system

Natural	
 environment

Social	
 system
Structure	
 and	
 characteristics

Execution	
 system

Information	
 system

Technical	
 system
Structure	
 and	
 characteristics

System	
 functions
States	
 and	
 characteristics

Technical	
 function

Effect	
 function

Application	
 function

Transformation	
 function
Material,	
 signal,	
 energy

Action	
 system
States	
 and	
 characteristics

Psychological	

system

Organic	
 system

Objective	
 system

Information	
 system

Execution	
 system

Information	
 system

Execution	
 system

Scheme	
 of	
 operation

Interaction	
 and	
 communication*
Theme,	
 	
 context,	
 information

System	
 functions
States	
 and	
 characteristics

Definition	
 of	
 boundaries

Allocation	
 of	
 resources

Building	
 of	
 structures

Process	
 management

Reflection

Genesis

Technical	
 genesis

SU
Vs …

Li
m
ou

sin
es

Power	
 train

Electrical System

…

S-­‐
Cl
as
s

V8

Start-­‐Stop System

Product-­‐oriented line
System-­‐oriented line
Product-­‐oriented project
System-­‐oriented project
Line-­‐spanning project

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 6

A multitude of new technical dependencies emerged due to increased integration of

mechatronic components in modern automobiles. Consequently, not only product complexity

but also process complexity increased.

The number of engineers involved in the development of complex technical systems has been

rising significantly over last hundred years [1]. In 1885, Karl Benz alone built the first vehicle

powered by a gasoline engine. Today, the development of a modern car involves several

hundred people. Rising product complexity is directly proportional to rising complexity

within the organization [6]. Organization is responsible for partitioning complex projects in

smaller ones and for rejoining them afterwards. It has the responsibility to deliver and verify

the solution.

When trying to understand company and development complexity, it’s necessary to

understand its organizational structure. Hierarchy often regulates amount of power and

responsibility within development projects. Right balance of power is important for the

success of collaborative development.

Matrix-organization (Figure 5) is a common way of arranging departments and roles inside

companies where two types of lines are facing each other. Figure 5 suggests vertical product-

oriented and system-oriented as horizontal lines. Vertical product oriented program teams

have the responsibility to integrate different systems into specific products whereas the

system-oriented departments focus on the integration of specific systems into different

products [1]. Projects span through multiple lines intersecting with one or few product- and

system-oriented lines.

Process and development control are one other aspect of organization. Processes define the

sequence, timeline, expected results and responsibilities of teams. The gateway processes [1]

in automotive industry can be seen as a validation door for merged sub-processes. Those

gateways are used to validate the synchronized results from different teams, to track the status

of the project and to define corrective actions. Today, processes in the automotive industry are

rather product-, not system-oriented.

The development of a new system is initiated either top-down or bottom-up within the

organizational structure. Top-down initialization comes after certain management attention

and sets a mandate for development. It is often a quick and urgent response to new customer

demands. Special project teams are under time pressure and they are working in close

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 7

cooperation with production development to ensure fast integration [1]. Figure 5 illustrates

the need for engineers from different departments in case of developing Start-Stop system

which came as a demand for reducing full consumption. Standard processes for this king of

cross-department project usually don’t exist and have to be defined on the fly. It is obvious

that this kind of development practice causes deficiencies in development robustness. Bottom-

up on the other hand is initiated by ideas within the departments. New specification comes as

a result of customer feedback, supplier experience, repair and servicing shops and possibly

from other sources that base new ideas on their own experience. There is usually less time

pressure but projects are not mandatory to be integrated into existing systems. Projects gain

attention only by achieving good results and then they might be converted into top-down

system development project. Top-down and bottom-up system approaches are both dealing

with same problems regarding collaborative work and cross-linked information within those

processes. Problems lay in inconsistent, hard to retrieve or outdated information across

departments, low transparency about changes and low transparency about impact of changes

[1].

People tend to search for new tools and methods for accomplishing the task they have in front

of them. This happens separately and simultaneously in different areas in the company,

leading to inhomogeneous set of applied tools and methods.

The current gateway processes mentioned in previous paragraph define goals, timelines and

responsibilities across different teams but do not assist the coordination of information in

between the gateway points.

Current practice from a tool perspective in German automotive industry suggests that

Microsoft Office suite, MATLAB- and Simulink-product family tools have become de facto

the standard [1]. Furthermore, there is a wide diversity of tools used by specialist departments

which help them to achieve better results but stresses an ease of integration and systematic

coordination of engineering data across the company. Non-coordinated data contributes to

unnecessary iterations which manifest as rising product cost and possibly can have an impact

on product quality. Inevitably, the number of tools and amount of generated data will persist

to increase (Table 1). Companies will struggle more and more with more complex data and

organization management; therefore there is a strong need to support the aspects of interaction

and communication within the development process and across organization structures.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 8

Table 1: Relevant functionality in engineering tools to enable traceability [7]

Analyses of the automotive industry of the 1980s already showed a high complexity

concerning processes and products, and numerous strategies for its systematic management

have since been designed [10]. Bullinger mentioned that the trend towards increasing variant

numbers and product complexity will continue in the automotive industry [11]. An approach

which potentially addresses the mentioned problems was introduced in the late 1970s. It

focuses on the management of interdependencies between software requirements and other

artefacts in software engineering and is called traceability [1].

PDM CAD Office tools

Project management
Document versioning
Workflow mechanism
Engineering change
management
Search/Query engine
Report generator

Feature tree (structure of the
CAD model)
Associatively links between
assemblies and parts
File versioning
3D model characteristic
management

Changes tracking
mechanism
Document properties
management

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 9

3. System traceability

System traceability is the power of knowing how all things done in process of creating a

product relate to each other. Traceability should be able to provide answers to ‘why?’, ‘how?’

and ‘when?’ specific events occurred, ‘who?’ is responsible, ‘what?’ was affected by those

events and ‘where?’ did it happen.

When talking about supporting traceability, there are some bad examples to have in mind. If

traceability is not well implemented or the information entering traceability support system is

not correct, it can impact project cost and schedule. Decrease in system quality, increase in

the number of changes and iterations in design, loss of knowledge due to misunderstanding

and misleading information are some of the common problems that can occur [7].

During product design process, information is recorded and evaluated. Information occurs in

variety of formats such as sketches, drawings, notes, meeting recordings, CAD models,

production drawings, calculations, reports and other [7]. Storga therefore argues that the

effective traceability is highly dependent on the effective utilization of existing engineering

information and records.

In order to fully understand an instance of information, it is important to know the

circumstances in which it has been developed and recorded. Traceability then allows

engineers to better understand and make better judgments about their future decisions based

on the previously collected and now well known facts. This is why it is important to leverage

all relevant information no matter where it originated, no matter of its format and no matter

where it resides [7] in order to help the company provide better services, produce better

products and therefore ensure healthy growth.

Relations that exist within product development lifecycle help anyone who may be concerned

to better understand the rationale behind previously made decisions [7]. In order to build

quality network of relations, different research groups approach traceability issues from

different perspectives. They state that it’s important to address knowledge integration [12],

communication, handling complex dependencies between requirements and components [13],

ontological retrieval of unstructured documents [14] and other areas for effective traceability

to be ensured. Storga suggests four main areas to focus on in order to understand what is

necessary to have complete traceability support. Those are requirements, changes,

characteristics and decision traceability issues.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 10

Project TRENIN [7] (Traceability of Engineering Information) is one of the approaches trying

to support system traceability. TRENIN architecture proposes four key elements that should

provide sufficient knowledge on how to describe complex system traceability: traceability-

point, -record, -engine and –framework. Traceability point should be seen as an external event

related to the product development process. Traceability record should be dynamic container

of links between system elements or any information in the database. Links should be

enriched with properties and structure in order to provide the context for every relation.

Traceability engine should be another layer on top of traceability records which should enrich

them with ontology and vocabulary in order to provide additional context to engineering

information for it to become even more useful. TRENIN traceability framework should be

complete architecture of elements mentioned before which is independent but later integrated

in PLM systems. In general, project TRENIN addresses shortcomings related to traceability

functionalities in existing engineering tools and wants to provide new framework for

integration to deal with this problem.

System modeling and management tool (SysMT) is developed by Daimler and is trying to

deal with a multitude of mechatronic systems that are used for different vehicle versions with

minimal adaptions. Its goal is to enhance traceability and to better describe EOs and EORs by

intercepting management, concept, application and properties during the product design [15].

Qualitative analysis of this traceability approach shows that SysMT implements most of the

required traceability functions for modeling and monitoring design process in comparison

with Teamcenter by Siemens or Catia V6 by Dassault Systems and some other products. It’s

worth noticing that there is no comparison with PTC Windchill PLM system [1].

To support traceability in technical aspect of sociotechnical model and to ensure possibility to

show the relations that are important for describing system architecture, this thesis will

embrace DSMs as a tool to facilitate extracted dependencies between system components.

DSMs post-processing methods will allow to further dive into system architecture analysis

and therefore provide more insight about the product structure itself.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 11

4. DSM (Data Structure Matrix)

This chapter will present only the segments of DSMs that are important for understanding,

creating and manipulating DSM matrices for the purpose of this thesis. There is a broad

spectrum of methods and applications for DSMs that can be applied in other cases.

DSM matrix is a simple, compact and powerful tool for representing relations between objects

of any type. Objects can represent products, processes or organization related information, but

to explain the possibilities of DSMs, objects don’t have to differentiate. They are always part

of a complex system. The advantages of DSMs have led to their increasing use in a variety of

contexts, also becoming widely used tool in engineering because of the ability to represent

and analyze system structure.

Figure 6: Sample DSM

There are two main categories of DSMs: static and time-based. Point of interest here are the

static ones. Static DSMs represents system elements existing simultaneously and therefore are

good for modeling product architecture. Product architecture is the arrangement of functional

elements into physical chunks [16]. Every interaction between chunks should be well defined

and chunks should implement one or more functions entirely. DSMs serve as a tool to

represent those interactions within system architecture.

Figure 7: Basic DSM classification [16] [4]

↳ A B C D E F G H I J

Element	
 A ● ●

Element	
 B ● ●

Element	
 C ● ●

Element	
 D ●

Element	
 E ● ● ● ●

Element	
 F ● ●

Element	
 G ● ● ●

Element	
 H ●

Element	
 I ● ● ●

Element	
 J ●

Design	
 Structure Matrices
DSMs

Static Time-­‐Based

Component-­‐Based
DSM

People-­‐Based
DSM Activity-­‐Based DSM Parameter-­‐Based

DSM

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 12

Static intra-domain DSM is essentially the square matrix. Intra-domain matrix is defined if the

elements in rows and columns are from the same domain/type [4]. System elements are

placed down the side of the matrix as row headings and across the top as column headings in

the same order. Elements can be represented in headings as names or numbers that indicate

the connection with the element. Intersections between nodes (rows i, columns j) represent

unity (ij) marked with a symbol in binary matrix or number in weighted matrix (Figure 8).

Weight numbers can describe anything that is decided to be important, for example

connection strength of unity, number of different types of connections between nodes or there

could be the unity cell that is split into a table for more complex representation of relation

[17].

Figure 8: a) Binary DSM, b) Weighted DSM

The diagonal elements of the matrix don’t have any interpretation in describing the system.

They are usually either left empty or blacked out, although many find it intuitive to think of

these diagonal cells as representative of the nodes themselves. Thinking about the diagonal

nodes as representatives of themselves, it is possible to develop useful logic that helps us

quickly interpret element interactions in directional (non-symmetrical) matrix that is modeled

based on a process diagram (Figure 9). This logic doesn’t apply to symmetric DSM matrix.

Figure 9: DSM created from process diagram

Before the explanation on how to use DSM diagonal cells, it should be mentioned that

IC/FBD convention for reading matrix is chosen. IC/FBD [8] convention is used for DSM

matrix reading which means that DSM has inputs shown in columns, outputs in rows; hence,

any feedback marks will appear below the diagonal. Symbol in the top left corner indicates

the chosen convention. IR/FAD convention is inverted.

a)

↳ A B C

A ●

B ●

C

↳ A B C

A 0.25

B 0.8

C

b)

↳ A B C

A ●

B ●

C ●

A

B

C

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 13

Logic that helps us better understand an element relation by looking at one of the diagonal

cells is the following (Figure 10):

• one diagonal cell represents one element (i=j),

• depending on the chosen convention for reading DSMs, IC/FBD in this case, cell’s

column (j) represents the element’s inputs and cell’s row (i) represents the element’s

outputs,

• for example in Figure 9, bottom right diagonal cell represents element C which gets

inputs from element A and B while providing output to element A.

Figure 10: Diagonal cell logic

Figure 11: DSM dependencies

In directional non-symmetrical matrix rows can be considered as elements that will affect

elements in columns and elements in columns can be considered as elements that will be

affected by the elements in rows (Figure 11). As it may seem very simple, it’s important to

have a good understanding on how to read DSMs because as they become bigger and more

complex those simple principles help to better understand the relations between elements.

The classic approach towards better understanding of the complex system is to model it.

Systems are modeled typically by decomposing actual structures into subsystems we know

relatively more about and by noting the relationships between them [16]. Dependencies of a

system form structures, such as a sequential chain of dependencies, a loop, or a hierarchical

tree. Thus, if system structures can be identified, it is possible to predict system behavior [4].

What if the system architecture is very large and complex? DSMs are still a great tool to

represent the relations between elements, visualize it and offer methods for further system

analysis, but it would be a great advancement if the decomposing and noting the relations

wasn’t manual.

4.1. System complexity

In almost all relevant sections of engineering, a steady increase of complexity can be

observed [4]. Often, complexity management is understood as the management of product

↳ j

↓

i ← i=j → Output

↑

In
pu

t

↳ This	
 element	
 will	
 be	
 affected	
 by

Th
is	

el
em

en
t	
 w

ill
	
 a
ffe

ct

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 14

variants only. Structural complexity management exceeds this, as further disciplines and

aspects of product design can be considered simultaneously. Every system, a technical

product composed of different parts or a project consisting of process steps, people and

documents, is characterized by dependencies between the system’s parts. Complexity can

arise from every aspects of development process.

The core idea of mass customization is an optimal combination of mass production with

customized product specifications. Companies try to achieve this by turning low internal

complexity into high external complexity for specific customer requests. The better

companies can control their existent complexity, the more customization becomes possible to

market quickly and at reasonable costs. The better system complexity can be controlled, the

better the structure can be adjusted in order to serve the desired functional objectives.

The structural complexity management simultaneously takes in consideration multiple aspects

of dependencies. Geometric and functional dependencies between technical components can

be processed together in order to describe system behavior. This is referred to as Design for X

approaches in product design [18]. The X stands for a large variety of possible optimization

targets. The Design for Assembly or the Design for Modularity is especially well established.

Methods summarized by the name Design for X only aim at one single optimization.

A common strategy for facing complex problems is to avoid or reduce complexity whenever

possible and one can assume that complexity must be prevented by any means. Lindemann

argues that focusing only on one specific objective, e.g. cost or assembly, cannot provide

comprehensive system improvements, because one system dependency adaptation can spread

through multitude of further system elements [19]. Complexity does not automatically

represent negative characteristics in product design. A specific level of complexity can be

useful to permit the flexibility; if, for example, the implied complexity refers to the quantity

of product variants offered, an increased product variety can better match different customer

requests that arise [20] and therefore provide competitive advantages [21] [22]. Also,

complexity reduction may decrease competitiveness. Controlling complexity stands for the

ability to handle the complexity of processes and their effects without jeopardizing their

targets [21].

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 15

Figure 12: Aspects of complexity in product design [4]

Improper simplification or the extraction of single aspects must be avoided. Users can draw

incorrect conclusions that may result in an unfavorable impact to system domains that had not

been considered (Figure 12). In contrast, all aspects must be excluded from considerations

that are irrelevant for the specific question. There are four fields of complexity in product

development: market, product, process, and organization (Figure 12). Mutual connectivity of

those four fields is the reason why considering only one (isolated) aspect of complexity is

often misleading.

In general, the complexity of each system can be reduced if it is possible to eliminate

elements and relations while keeping the existing system’s functionality. Furthermore, it is

possible that the reduction of complexity in one domain will increase complexity in another

one. This would be the case, for example, if a simplification of product components is

accompanied by a more complex production process [4].

Often an optimized product structure can help reduce unnecessary product complexity.

Related approaches aim at a modular product design [23] [24]. The objective is to design

subsystems that are generally independent from each other.

Users must always be able to have access to the overview of the considered system and the

acquired content, even if the data acquisition is split up in several workshops. For example,

assembly model can be built through several departments. Users need representations that

focus on case-specific aspects, where all relevant dependencies are integrated. Extracting

relevant information form assemblies can help support this claim.

Consequently, the avoidance of complexity cannot represent the only strategy for addressing

problems of complexity. If complexity can be controlled, it does not necessarily imply

negative aspects but can provide competitive advantages in product design. It turns out that it

PRODUCT	

DESIGN

Market	

Complexity

Product	

Complexity

Process	

Complexity

Organizational	

Complexity

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 16

is not about how complex the system is but how well the complexity can be managed for the

customer’s good.

4.2. Visualization

Visualization is a form of knowledge compression [25] because a seemingly simple image

can take vast amounts of structured or unstructured data and compress it into a few lines

together with colors that communicate the meaning of all that data quickly and efficiently.

Grayscale (Figure 13) allows us to see much less notable difference between different data

levels in comparison with using pseudocolor imaging. Pseudocolor image is derived from a

grayscale image by mapping each intensity value to a color according to a table or function

describing color values for different intensities [26]. We can only differentiate a few dozen

different grayscale intensity levels but we can differentiate thousands of different colors.

There is no finite answer on how to choose the right set of colors but common associations

among humans is that red and blue very clearly highlight high and low values [26]. Learning

about those principles is helpful in creating better DSMs that will be more appealing to the

user. The point is to highlight differences so the user can easily see things that relate to the

issue.

Figure 13: Grayscale color mapping

Structural consideration of complex systems requires suitable possibilities of information

visualization, for example by graphs or matrices, and efficient computational approaches. For

the interaction with complex systems in product design, different methodologies provide

possibilities of system modeling, visualization techniques and computational approaches.

DSMs provide simple and easy solutions that address those needs.

Figure 14: Network graph and DSM created from the same data sample [27]

.15 .8 .45

.4 .25 .3

.7 1 .42

.15 .8 .45

.4 .25 .3

.7 1 .42

Network	
 graph

↳ A B C

A ● ●

B ●

C ●

DSM

A B

C

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 17

Generally, matrices and/or graphs are applied for visualizing dependency information in

product design. Even though the mutual transferability of both forms is mathematically

formulated, only a few applications make use of their combination in order to benefit from the

advantage of both visualizations. Despite the possibility of mutually switching between

matrix and graph representations, information losses can still occur [28]. This thesis is

focused on DSM matrices because of the available computational methods and fair

visualization possibilities.

There are some disadvantages regarding the visualization of data through matrices but DSMs

are still commonly used in engineering. Some of the disadvantages are stated below and are

mainly related to the ease of recognizing important elements in comparison with force-

directed graph (Figure 15) [4].

Figure 15: Broken cluster in DSM and the same representation in network graph [29]

Clusters indicate that the group of elements has a strong interaction between them. Figure 15

shows that the matrix on the left has two complete clusters containing four elements

(indicated as 1 and 2) and a third one containing three elements (indicated as 31). The clusters

1 and 2 as well as 2 and 31 mutually overlap by one element (D and G). However, the

system’s structure overextends the matrix’s capabilities of representation. This can be seen

from the graph depiction at the right side of Figure 15, visualizing the same structure exactly.

The network graph clearly illustrates that the system includes three clusters (1, 2 and 3), each

containing four elements and overlapping with the other ones in one element. This specific

constellation results in a fourth cluster comprising three elements (A, D and G) and

overlapping with all other clusters in two elements. This constellation cannot be displayed

intuitively in a matrix form. Only one cluster (2) can be aligned with and connected to two

others (1 and 31). As the cluster in the lower right corner of the matrix has to be linked to the

clusters 1 and 2, it becomes visually split up. The attempt to align all four elements (A, G, H

and I) belonging to cluster 3 side by side would split up cluster 1. This shows that structures

↳ A B C D E F G H I

Element	
 A ● ● ● ● ● ●

Element	
 B ● ● ●

Element	
 C ● ● ●

Element	
 D ● ● ● ● ● ●

Element	
 E ● ● ●

Element	
 F ● ● ●

Element	
 G ● ● ● ● ● ●

Element	
 H ● ● ●

Element	
 I ● ● ●

D

A

G

F

E

B

C

I

H

1

2

31

33

32

1

2

3

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 18

comprising highly interrelated subsets may require more possibilities for their representation

than available in common matrices [4].

Figure 16: The structure of a ballpoint pen represented in DSM matrix and non-

directional force-directed graph [4]

A force-directed graph is applied with non-directional dependencies between the system

components (Figure 9). These dependencies are represented in the matrix as bi-directional

dependencies, symmetrically aligned to the matrix diagonal – for example the Tube links to

the Distance bush and the Distance bush links to the Tube. It must be mentioned that

representing the dependencies at one side of the matrix diagonal would be sufficient for

mediating the information included in the force-directed graph. However, due to the applied

reading direction of matrices (Figure 11), crosses at only one side of the matrix are interpreted

as unidirectional linkages.

Even if both representations contain the same information, the implied structure is easier to

understand by the force-directed graph: The Tube represents the core element, as almost all

other elements are linked to this. In the graph representation, the Tube is located in the center,

which makes its structural relevance intuitive.

People can also extract this information directly from the matrix, if they are used to this

depiction – the row and column associated with the Tube are the ones most filled with

dependencies.

The more elements exist in a structure and the more interlinked these elements become, the

less appropriate the matrix depictions seem to be. In fact, the depiction of one constellation

can hide other ones. The preceding examples suggest that graphs outmatch matrix depictions

and qualify for the mediation of system structures for the user. Whereas matrices are suitable

for purposes of information acquisition, in structure representation they only seem to possess

advantages for specific constellations, such as isolated clusters. Sometimes it’s better to

↳ A B C D E F G H

A:	
 Press	
 button ● ●

B:	
 Spring ●

C:	
 Grip ●

D:	
 Ink store ● ● ● ●

E:	
 Nib guide ● ●

F:	
 Clip ●

G:	
 Tube ● ● ● ● ● ●

H:	
 Distance bush ●

A

B

C

D

E

GF

H

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 19

visualize sections of relations with force-directed graph because it can more clearly show the

important intersections of relations (Figure 16).

The general objective of DSMs is to permit users a global system overview as well as to

provide focused views on specific aspects in order to obtain a better system understanding.

Visualized data helps engineers better understand product structure.

4.3. DSM post-processing methods

A high quality of captured data is the key factor for the accuracy and significance of all

further structure interactions. Deficiencies in the data acquisition can hardly be corrected later

on and often result in data that is useless for analysis and interpretation. In particular, if

mistakes made during data acquisition remain undiscovered, the resulting low quality of

information can become critical. Even correctly executed network analyses can lead to

misleading findings and unsuitable actions (Garbage-In-Garbage-Out1).

Beyond approximately 30 elements in the DSM matrix, manual analysis becomes almost

impossible [4]. In that case, depending on the type of matrix in possession, there are different

methods that are applicable for data manipulation.

Several matrix-based algorithms applied in engineering originally emerge from algorithms

developed in graph theory [22]. They provide the mathematical basics for analyzing

dependencies between system elements and in fact matrices only represent graphs in another

form (Figure 14, Figure 15 and Figure 16). The field of graph theory provides the

fundamentals for many methods applied in product design [30].

Figure 17: DSM clustering – three overlapping clusters [31]

1 Pertaining to the concept that, if meaningless or erroneous data, i.e., “garbage,” are entered into a data
processing system and are processed by that system, the output will also be meaningless or erroneous, i.e.,
meaningful or correct information cannot be obtained from “garbage” no matter how the “garbage” is processed.
Common abbreviation: GIGO.

↳ A B C D E F G H I

A ● ● ● ● ●

B ● ●

C ● ● ●

D ● ●

E ● ● ●

F ● ●

G ● ● ● ● ●

H ● ●

I

↳ B D G C E A F H I

B ● ●

D ● ●

G ● ● ● ● ●

C ● ● ●

E ● ● ●

A ● ● ● ● ●

F ● ●

H ● ●

I

cluster

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 20

Static DSMs are usually analyzed with clustering algorithms [16] which are based on the

realignment of elements in order to closely visualize related groups of elements. By

appropriate realignment of the element’s rows and columns, DSMs support the identification

of structural clusters (Figure 17).

As clustering is a mathematical model for realigning rows and columns in the matrix, there

are multiple algorithms and approaches and not all of them address important problems that

arise when trying to apply clustering algorithm. Authors Yu, Yassine and Goldberg [31]

conclude their paper with few important guidelines which point out the issues that should be

addressed when developing clustering algorithms:

• bus modules (Figure 18),

• overlapping modules (Figure 17),

• designed to overcome DSM manual/human clustering problems,

• tuning capability to mimic human expert clustering…

Figure 18: A simple bus and two modules [31]

Combining multiple DSMs into one matrix is called aggregation [4]. Aggregation is possible

only when all matrices contain the same number of elements while every element references

to the same base object in the system architecture. DSM needs to be Component-Based

(Figure 7) and symmetric. Since all the matrices should be the same in terms of basic

template, differences are in the relations that they represent. Different points of view on the

same system architecture will create different relations for the same unions. For example, one

system architecture can be observed from functional, geometric and feature point of view

(Figure 19). Combining matrices can give clustering algorithms opportunity to create clusters

based on multiple relation types and therefore provide better overview of the system

architecture as a whole.

Conceptual architectural diagram

E

↳ A B C D E

A ● ●

B ● ●

C ● ●

D ● ●

E ● ● ● ●

A B C D

E

A B C D

E

Module	
 AB Module	
 CD

Physical schematic DSM	
 model

=

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 21

Figure 19: DSM aggregation

Aggregation and clustering are DSM post-processing methods that create better visual

representation of the system architecture by combining and rearranging DSM elements.

↳ A B C

A ● ●

B ●

C ●

↳ A B C

A ◊

B

C ◊

=

+

↳ A B C

A ○ ○

B ○

C ○

+

↳ A B C

A 2 3

B 2

C 3

Functional view Geometric view Feature	
 view

Aggregated view

Union	
 of	
 elements	
 A	
 and	

C	
 contains	
 three	
 types	
 of	

relations:	
 ●,	
 ◊ and	
 ○

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 22

5. Conceptual development of methods for extracting product assembly

relations

Methods for extracting valid relations between components from finished product assembly

are developed to support project traceability. Finished product assembly is virtual

representation of a real product therefore it is created in a way that represents real system

structure. System structure consists of multiple components that are related to each other.

There are multiple types of relations that exist but the point is to extract all of them

automatically.

For this to be able to develop, existing design methodology and features for creating relations

need to be explored. In this case, features used for creating an assembly in Siemens NX will

be used to find important component relations. Even though the concept of extracting relevant

relations is based on features and possibilities of Siemens NX, it can easily be generalized and

applied in different contexts where components are in some way geometrically related to each

other and when there is a virtual representation of them available in form of virtual system

structure. Virtual system structure in this case is represented with CAD assembly model.

Why to develop methods for extracting relations between system components if those

relations are already defined in drawings and somewhere in project documentation? The key

word is from the previous sentence is ‘somewhere’ and this is the word on which the answer

is based on. When there is a virtual representation of system structure available, all the

relations are centralized! If the DSM matrix based on this system structure has to be created,

the easiest and most logical way to extract the relations is from the source that contains all of

them in one place. This is where the power of well-developed methods for extracting

important relations from product model comes into place. Assembly-to-DSM (Figure 20) is

the common name for all the methods described in this thesis and therefore it represents the

process of getting DSM matrix from product assembly.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 23

Figure 20: Assembly-to-DSM

Next few headings will present the methods for extracting important and valid relations

between system components. Concepts for extracting important relations will we explored

and explained together with the problems encountered during the development. Problems are

addressed and adequate solutions are suggested. Defined conceptual methods will be later

used for creating the prototype application in Java.

5.1. Constraints

Constraint is a Siemens NX feature that is a synonym for geometric relation. By definition it

is a restriction and here it is geometric restriction. Product assembly is created by defining one

or multiple constraints between inserted components, therefore creating unique structure that

relates to physical world.

Common practice is to start building the assembly with base component. Base component

serves as a foundation for other components to be constrained to. As each component is added

to an assembly, specific constraints are used in order to correctly position the component in

the assembly. Not all components should be fully constrained though. Difference between

fully and not-fully constrained components is in the degrees of freedom to move. Some

components such as gears need to rotate and other may need to slide in one or more

directions.

↳ 1 2 3 4

1 ● ● ○

2 ● ●

3 ●

4 ○ ●

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 24

Figure 21: Siemens NX Assembly Constraints menu

There are eleven types of constraints in Siemens NX (Figure 21). Very often they are

combined to achieve expected component behavior inside the assembly. It is important to note

that constraints create relations between two or more components and it is not possible to

create constraint based on only one component. Constraint features take points, edges, axes,

faces, datum planes or solid bodies as references and every constraint is defined in its own

specific way. Some can take in an account all mentioned references and some are based on

only one or few possible references.

Touch constraint is the first on the list of constraints. Two references from two different

objects need to be selected. It accepts all types of references and this constraint alone does not

fix the component in place but allows linear and rotational movement until more constraints

are added. Free linear and rotational movement depends on reference type used in creating the

constraint. Some of the examples are shown in Figure 22. One can notice that selected

references must touch in one common plane or axis.

First three illustrations on the left in Figure 22 represent touch constraint based on face

references. After the constraint is defined, components are only allowed to slide with their

referenced faces on the common touch plane whereas roller on the far right is allowed to

rotate as long as its face touches common touch plane. Roller is allowed to slide also.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 25

Figure 22: Touch constraint examples

Concentric constraints are uses mainly with rounded objects. In Figure 23, circle edge is

selected as a reference on both components. Components are merged together in a way that

both circles end up in the common plane created as a reference to one of the circles and the

center of circles always move to the same spot. Component that hasn’t been constrained and

is floating freely in the assembly space is always the one that will move towards another

component that is fixed (Figure 25) or in some other way constrained to the rest of assembly.

In contrast to fit constraint example (Figure 28), components can only rotate around the center

of the circle and are not allowed to move in linear motion parallel to circle center axis (up and

down in this case).

Figure 23: Concentric constraint example

Distance constraint defines fixed distance between referenced objects (Figure 24). Even

though components don’t touch in given examples, it’s important for further research to know

that distance constraint can be considered as a relation between two components because it’s

one of theirs mutual attributes. Once distance constraint is defined, components can move the

same way as in case of touch constraint with the only difference of having fixed distance

between them.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 26

Figure 24: Distance constraint examples

Fix constraint is used when component shouldn’t move at all (Figure 25). First component

inserted into assembly is often fixed because it serves as a foundation for the rest of the

assembly. Any component can be fixed at any place in the assembly and it’s the only

constraint that requires only one reference body. Because there are no two references that are

required for constrained definition, this constraint doesn’t create relation between to objects.

This is important for further method development which will deal with extracting relations

between components because it’s obvious that this constraint can be excluded from analysis.

Figure 25: Fix constraint example

Parallel constraint is similar compared to distance constraint (Figure 24) with the exception

that there is no fixed distance between referenced components. Selected referenced types are

parallel. Please refer to paragraph describing distance constraint for more information.

Perpendicular constraint defines 90° angle relation (Figure 26) between two references from

two different components. Reference types that are supported by this constraint are axes,

edges, faces and datum planes. Constrained components are able to move as long as the

perpendicular condition of two referenced types is met.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 27

Figure 26: Perpendicular constraint example

Lock constraints are only able to use edges and axes as a reference types for defining the

relation (Figure 27) between two components. Reference types are aligned parallel to each

other without any distance between them. Linear and rotational movements are allowed where

linear means sliding along the referenced edge or axis and rotational means that component

can rotate around the referenced edge or axis.

Figure 27: Align/Lock constraint example

Fit constraint (Figure 28) is similar to concentric constraint but uses faces as additional

geometric reference type. It doesn’t fix two components in place as concentric constraint does

when circle edge reference is used (Figure 23). Rotational and linear movements are allowed

relative to center of face or circle edge.

Figure 28: Fit constraint example

Bond constraint is similar to fix constrain (Figure 25) with the exception of being able to

select multiple bodies which will define group of components that can’t move. Two or more

components have to be selected. Fix constraint is used if only one component needs to be

fixed.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 28

Center constraint is the only one defined with three or four referenced objects. Figure 29

demonstrates ‘1 to 2’ definition model for defining the constraint. In this example, black

colored face is selected first and after that two grey faces. Center constraint defines equal

distance between all selected objects by placing first selected one in the middle. Two other

ways of defining constrains are ‘2 to 1’ and ‘2 to 2’. Process of defining the constraint is

similar to the one described at the beginning of this paragraph with the difference in order and

number of selected objects.

Figure 29: Center (1 to 2) constraint example

In contrast to perpendicular constraint (Figure 26) which has angle fixed at 90°, angle

constraint (Figure 30) offers arbitrary angle value. For more details, please refer to paragraph

that describes perpendicular constraint.

Figure 30: Angle constraint example

Those types of constrains and their names are specific for Siemens NX but other CAD

(Computer Aided Design) software have similar, if not the same constraint types and names.

All of them define basic geometric relations between components of the assembly.

5.2. Proximity

Proximity method for extracting component relations will consist of basic methods which take

in the account distance between the components. No relation between components has to be

defined prior to applying these methods.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 29

Figure 31: Non-constrained minimum distance

Minimum distance method has nothing to do with distance constraint method (Figure 24). It

simply takes in the account two components and calculates minimum distance between them

(Figure 31). Distance is calculated from the component surface and orientation doesn’t matter.

It is obvious that the user will have to choose the threshold which will then be used to

determine if the relation between two components is valid.

Figure 32: Comparator

Figure 32 describes threshold distance method logic. User chooses referenced value (R) which

is then put against compared value (C). Result is TRUE or FALSE depending on the

comparator method which is ‘larger than’ (>) in this case. TRUE comes as a result if

referenced value is larger than compared value and it means that the relation for chosen

distance is valid. FALSE comes as a result if compared distance is larger than referenced one

and it means that the relation shouldn’t be taken into account because the components are too

far apart.

Box method derives from the Siemens NX feature that is able to create a virtual box around

any type of geometric shape. In Siemens NX, this feature is referred to as Box Zone or

Proximity Zone.

Figure 33: Virtual box definition

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 30

Virtual box is defined by two points: Component center point and the furthest point that will

act as a box corner (Figure 33). Selected component will always fall inside the virtual box and

the size of the box can only grow from there. By varying virtual box size, box method can

detect if other components are within this virtual box volume (Figure 34). There are two

conditions that can be used for validation if the relation between two components exists:

virtual box intersect with only a part of other component or virtual box completely surrounds

other component. In further development, first condition will be used as it will be important to

get as many threats that can alert the engineer on possible collisions when the parts are moved

or if their size changes.

Figure 34: Box method

Left illustration in Figure 34 shows a non-valid component relation because virtual box is not

touching other component. Right picture illustrates that for the different box size, there is a

relation between two parts because virtual box intersects with part of other component. Same

as with non-constrained minimum distance (Figure 31), user should define which box size is

used for validation of relation.

Figure 35: Box method problem

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 31

Because of the way the virtual box is created, there is a potential problem of getting non-

important relations while using this method. Figure 35 illustrates the large space captured by

the virtual box, especially in lower right corner. The question is if the component that will

potentially sit there has enough important relation with the component from which the virtual

box is created from because it is very far from it? Figure 36 suggests one of the potential

solutions for getting rid of those non-important relations.

Figure 36: Low body-box ratio – all relations to selected component from other

components within the box should be excluded

Left illustration in Figure 36 represents the volume of the selected component. Right

illustration represents the volume of the virtual box for this component. Both illustrations are

created from simple cube boxes, therefore number of boxes that created left illustration is 9

and 20 for the right illustration. Ratio between those two volumes is 0.45. This value can then

be used to compare with referenced value (Figure 32) to validate if the relation should be

taken into consideration. Idea is to completely discard any relation produced by this method if

the ratio is lower than the given reference value.

Figure 37: Box method together with distance method

Figure 37 illustrates what will happen when virtual box around selected component surrounds

two other small components but the volume ratio between selected component and the virtual

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 32

box is low. Taking only box method into consideration, both components that fall into the

virtual box would be excluded from extracting the relation because of the small volume ratio.

Minimum distance method (Figure 31) will still include the relation of one small component

(Figure 37, black) even though it is discarded with box method. If we assume that the

minimum distance value to reach the other small component (Figure 37, grey) is larger than

the referenced value (Figure 32), then the validation of the relations from sample model in

Figure 37 is acceptable.

5.3. Permanent joints

Permanent joints will be represented by welds. Any type of weld is sure to connect at least

two components and this is what qualifies it as a relation reference.

Daimler’s design training literature (Table 2) suggests many weld types but they all have the

same purpose of connecting components, therefore it is irrelevant to distinguish them at this

point. As it was stated in previous paragraph, every weld is a valid relation between two or

more components. Attributes describing the weld will later be used to extract valuable meta-

data for describing the relation itself, therefore distinguishing them.

Table 2: Daimler’s suggested weld types

ID Description ID Description

Weld
21 Spot welding 211 Spot welding (VAN/TRUCK);

Indirect spot welding (CAR)

212 Spot welding (VAN/TRUCK);
Direct spot welding (CAR)

23 Projection welding

231 Indirect projection welding 232 Direct projection welding

24 Flash welding 25 Upset welding
4 Welding with pressure 42 Friction welding

H611 Laser-MIG hybrid welding H612 Laser-MIG hybrid welding
75 Laser welding 78 Stud welding

78 Stud welding (VAN/TRUCK)
A0009847719 M8x13

78 Stud welding
A0019840819 M6x16
Threaded bolt with painted groove

78 Stud welding
A0009902913 T5x14.2
Xmas tree stud

78 Stud welding
A0009910103 M6
Grounding stud

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 33

Problems can arise from welds that are partitioned, but belong to the same group. For

example, spot welds have many spots that connect two or more components and the problem

is that every spot will be recognized as one relation. Those relations would be duplicates. One

of the solutions to this problem is to gather all the relations and in post-processing methods

combine the spots in one group, therefore one relation. One relation is logically the correct

answer even though one weld has many partitioned welds.

5.4. Non-permanent joints

Non-permanent joints should represent screws and remote forces that cause interaction

between two or more components. In the very beginning, this thesis eliminates the possibility

of remote force existence such as magnetic field because during my research I did not stumble

upon such or similar feature in Siemens NX assemblies. Therefore, screws are most common

non-permanent type of connection that needs to be addressed.

There is one main assumption that guarantees extraction of screw relation: Screw is touching

or is very close to components that are connected by the screw. Based on this claim, minimum

distance (Figure 31) and box (Figure 34) method ensure extraction of relation. For example,

78 Stud welding
A0009914903 M4x11.1

23 Resistance stud welding

783 Drawn arc stud welding 784 Short-cycle drawn arc stud welding

785 Capacitor discharge drawn arc
stud welding

423 Friction stud welding

Mechanic
52LN Laser knob 52PN Punching operation knob

52MN Mould knob C1 Clinching
C110 Clinching without cutting C140 Clinching with cutting

C170 Clinching with prehole D110 Flow drill screwing with prehole
D140 Flow drill screwing without

prehole
E110 ImpAcT (impulse-type linear

driving)

S2 Self-piercing rivets (all materials) S210 Self-piercing semitubular rivet

S240 Self-piercing full rivet N3 Rivets (all materials)
N310 Blind rivet (all materials) N360 Riveting with tubular rivet

N380 Riveting with huck bolt
Robscan
L524 Robscan Remote welding

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 34

component 11 is very close or touching components 8 and 9 in Figure 38. Therefore there is

relation between components 8 and 9 through 11. It confirms that basic principles of previous

methods applied on non-permanent relations considered in this thesis are sufficient to extract

important relations. No other method needs to be developed. In future, when there will be

assemblies containing magnetic fields or similar remote forces, new methods for non-

permanent relations will need to be developed to find related relations.

5.5. Validation model for developed methods

Validation model is simplified real life representation of an assembly. Assembly components

are arranged in a way that is challenging for prototype relation extraction algorithm to

recognize all the important relations.

Figure 38: Validation model

Figure 39 is manually created DSM matrix based on model illustrated in Figure 38. It is

important to note that the amount of time is significant for describing even the simple model

like this. If complex technical systems are taken into account, it becomes almost impossible

and completely inefficient to create DSMs manually. Again, this confirms the need for

automatic relation extraction approach. Such approach is beneficial in saving man power,

working hours and in many other activities related to the process of manually creating DSMs.

Some may consider using DSMs even if it seemed impossible to do so before.

Aggregated DSM from Figure 39 serves as a reference for validation of results that the

prototype algorithm will produce. Grey cells are most important thing to focus on. It is only

extra beneficial if grey cell contains multiple types of relations that are recognized, but it is

enough to detect even one type of relation to be able to tell that there is a relation between two

components. Results will be compared by overlapping DSM from Figure 39 and the one

created by prototype. Ideally, grey areas will match.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 35

Figure 39: Manually created aggregated DSM based on model from Figure 38

↳

1 2 3 4 5 6 7 8 9 10 11

1 , |●□ |●□

2 |●□ |●□ |□

3 |●□ |●□ |□

4 |●□ |●□ |□ |□

5 |●□ |●□ |●□

6 |●□

7 |□ |●□ |□

8 |●□ |□ |□ |□ |● |□ |●□

9 |● |●◊□ |●□

10 |□ |□ |●◊□

11 |●□ |●□

● ◊ | □ _

TOUCH/INTERSECT WELD MIN. DISTANCE BOX CONSTAINT

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 36

6. PoC (Proof of Concept)

Task of prototyping software solutions firstly requires the selection of the right tool that suits

the needs the prototype has to address. Ideally, selected IDE (Integrated Development

Environment) allows intuitive, simple, fast, expandable and powerful enough environment.

Since this thesis is dealing with specific topic and therefore used tools, this is also what needs

to be taken into consideration.

Siemens NX provides NX Open API (Application Programming Interface) to interact with

data produced in NX environment. NX Open API’s documentation discloses possible

programing languages that can be used for interacting with the API. Those are: C/C++, Java,

.NET, GRIP and CAE. GRIP and CAE are the programing languages that support

manufacturing and simulation and therefore can be ignored for the use case this thesis is

dealing with. It leaves me with C/C++, Java and .NET to choose from. Considering my

background and interest in web technologies and therefore inevitably coming across

JavaScript programing language, it is clear that I should choose Java. I will leave the

discussion about advantages and disadvantages of every programing language aside.

Eclipse IDE is free, supports Java and is packed with necessary features to build a prototype.

It is also powerful enough for production stage of software development if needed.

Specifically, Eclipse IDE for Java EE (Enterprise Edition) Developers is used. Basic MVC

(Model-View-Controller) software architecture approach will be applied for this PoC.

Next few paragraphs will describe the way Eclipse IDE was set in combination with Siemens

NX to enable feature like debugging, brief introduction to NX Open API and following

documentation, brief overview of Siemens NX Journals while explaining why are they useful

and finally, description of implemented methods mentioned in paragraph 5.

This thesis will not go in detail explaining programming logic and practices. It provides an

overview of used tools, documents important steps taken to make a prototype solution and

describes algorithms in plain language. Application source is included in additional prints

coupled with this thesis.

6.1. Eclipse IDE

Eclipse offers pre-defined packages based on the type of development in place. Luna release

Eclipse IDE for Java EE Developers package is the one used for the purpose of this thesis.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 37

There are many different releases but to make sure that important libraries and features are

included, Luna is chosen.

Figure 40 illustrates basic layout of Eclipse. List on the far left side is referred to as Package

explorer. Essentially, it shows all files related to the project and serves as a navigator through

these files. Large middle section is used for code editing. Code syntax is colored and therefore

it is easier to find the point of interest. Bottom of Eclipse layout holds multi-tab section which

includes Javadoc (documentation references to code methods, types and classes), Problems

(Eclipse-identified possible problems) and Console (simple input-output canvas) to name a

few. Information provided from those tabs helps developers during project development

process. Two far right lists help developers to identify created methods, functions and

variables together with the possibility to create task list in process of managing the project.

Top toolbar provides shortcuts to most used functions. Java and Debug buttons on the right

are worth mentioning because they switch the layout depending on what is done with the

application. Figure 40 shows Java layout which is explained in this paragraph but Debug

layout is always used while debugging the project. Debugging layout emphasizes variables

and their content together with new functions in toolbar that allow the developer to go

through the code step-by-step in order to provide better overview of what is happening inside

application as it runs.

Figure 40: Luna release Eclipse IDE for Java EE Developers

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 38

Eclipse Marketplace is module inside Eclipse that allows developers to search for new

libraries and install them if needed. To build a prototype for this thesis, Eclipse Marketplace

was not used.

6.1.1. NX Open Java API

NX Open API is an interface through which Siemens NX can be manipulated and managed

with code. Figure 41 illustrates how the NX Open Java API enables Java code to interact with

Siemens NX. Direct connection between Java application and Siemens NX is not possible.

Figure 41: Abstract of NX Open Java API role

NX Open Java API is essentially a container that holds Siemens NX specific methods,

functions and types which can be used in the programing language of choice, this time in

Java. Since the mentioned API library is compiled, source cannot be seen. Therefore Siemens

created a documentation explaining all existing methods, functions and types held inside NX

Open API.

6.1.2. NX Open documentation

As previous paragraph stated, NX open API has to have a documentation explaining the APIs.

Without it, it would be hard (if even possible) to use the API.

Figure 42: NX Open Java API documentation

Eclipse	
 IDE
Java	
 code

NX	
 Open	
 Java	
 API
Interface	
 between	
 Java	

code	
 and	
 Siemens	
 NX

Siemens	
 NX
CAD	
 data	
 manipulation

method

result

data

data

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 39

NX Open Java API documentation (Figure 42) is standardized in regard to Java practices.

Basic structure of documentation consists of a list of packages, classes and interfaces inside

those packages and methods together with types inside selected class or interface. Methods

contain brief explanation about what they do, which parameters are taken in account and what

are the results of certain method.

It is obvious that detailed API documentation is necessary to understand the library.

Unfortunately, NX Open APIs are not that well documented. Mastering methods to

understand what they do and what the necessary inputs are comes with the experience.

Available descriptions are often not enough to understand the method at first. There is also the

lack of examples. Siemens GTAC Solution Center and PLM Community forums can provide

valuable solutions for some of the practical problems.

6.1.3. Debugging and journals

Debugging plays important role in application development. It allows the developer to run the

application step-by-step through the code. Variables used by the application can be monitored

at the same time. It is important because it validates that the code manipulates them as it

should.

Remote debugging has to be enabled to debug Siemens NX application inside Eclipse.

Following steps have to be taken:

1. Step: Create Remote Java Application

a. Open project,

b. Menu: ‘Run’ – ‘Debug Configurations…’,

c. Select ‘Remote Java Application’ and click ‘New launch configuration’ button

from the upper menu. New Remote Java Application item is created,

d. Select new item and change ‘Connection Type’ to ‘Standard (Socket Listen)’,

e. Remember ‘Port’ number from ‘Connection Properties’,

f. Click ‘Debug’ button at dialog bottom to confirm configuration.

Those steps ensure that Eclipse is ready to receive debugging data. It is important to note that

debugging has to be started every time project is reopened. It is not necessary to start remote

debugging again after every application test run.

2. Step: Set Siemens NX Java parameters

a. Ensure fresh start of Siemens NX,

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 40

b. Menu: ‘File’ – ‘Execute’ – ‘Override Java Parameters…’,

c. Copy line from Figure 43 into ‘UGII_JVM_OPTIONS’,

d. Confirm changes with ‘OK’ button.

-­‐Xdebug	
 -­‐Xrunjdwp:transport=dt_socket,address=127.0.0.1:8000,suspend=y	

Figure 43: Siemens NX Java parameter to enable debugging

Now every time application is run from Siemens NX (Menu: ‘File’ – ‘Execute’ – ‘NX

Open…’), if there is a breaking point in the code, Eclipse will switch to debugging layout.

Additional parameters have to be set in 2. Step – b. part for this prototype to work properly.

It’s not related to debugging issue. Please copy line from Figure 44 into

‘UGII_CLASSPATH’. *path_to_gson* and *path_to_lang* have to be modified to match file

path on current computer. GSON is a Java library for converting JSON to Java objects and

vice-versa and Apache Commons Lang is Apache’s library that supports additional methods

for array manipulation.

path_to_gson\gson.jar;*path_to_lang*\commons-­‐lang.jar	

Figure 44: Additional Siemens NX Java parameter

Issue form previous paragraph should be resolved in the future and therefore it won’t be

necessary to take that step.

Siemens NX Journal is a useful tool for extracting relevant code to achieve certain actions.

Prior to diving into NX Open API documentation and searching for relevant methods, it is

wise to record a journal. It contains Java code from events that happened in the process of

recording. Not all of the events are recorded but often times Journals can help steer the

developer in the right direction.

6.2. MVC (Model-View-Controller)

MVC is well known software architecture concept (not rules) used for creating modern

system structures. Basic idea is to have specific modules that are independent and have

specific tasks. Therefore, it is easier to plan the development, manage all the resources and

update the system with new features. MVC separates application in three main modules:

Model, View and Controller.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 41

Figure 45: MVC concept

Model stores and manipulates state of data within the system. It can be referred to as a

‘skeleton’ of the system. Data to the Model is either passed by the user or it is pulled from

existing databases. Output of the Model is s subset of data and sometimes instructions

recognizable by the View module.

View can be referred to as a ‘skin’ for the subset of data and instruction from the Model or the

user. It is visual representation of action done by the user and the Model. View module

displays the data and therefore has to know the semantics and layout of presented data from

other modules in MVC architecture.

Controller takes the user input and controls the interaction between Model and View modules.

It can be referred to as a ‘brain’ of the system because user input changes Model which means

View also. User requests are routed through the system by the handlers which are build to

coordinate specific user actions.

It is obvious that the user is also part of the MVC concept but it is never discussed specifically

because user only commands the system. System structure is therefore of grater importance to

successfully perform tasks set by the user.

Following Assembly-to-DSM files can be fitted into MVC concept like this:

• Model – DSM.java, RelationHolder.java, DSM output JSON files

• View – JSONtoDSM.html

• Controller – AssemblyToDSM.java, AssemblyListingWindowOutputStream.java

6.3. Assembly-to-DSM PoC

Assembly-to-DSM is the name of prototype project. Java code contains algorithms that will

extract important relations from the assembly based on the methods described in Conceptual

MODEL

CONTROLLER

VIEW

USER
or

EVENT

action

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 42

development of methods for extracting product assembly relations paragraph. Methods

through which code interacts with Siemens NX are learned from NX Open API Java

documentation. Resulting data is visualized using JavaScript d3.js library to show the results

as a webpage.

Figure 46: Assembly-to-DSM project structure

Figure 46 shows basic project class structure. In addition, JSONtoDSM.html is a HTML file

that is not part of Eclipse project. It uses produced results put in *.json files to plot resulting

DSM. Here is the summary of the roles of each file:

• AssemblyListingWindowOutputStream.java – serves as an interface through which

any data can be outputted as a string. Outputted information in this project informs

user about the status of application execution process,

• AssemblyToDSM.java – contains main() method, therefore it runs first and defines

the execution steps of the application. It contains methods for extracting component

relations,

• DSM.java – defines how the final object describing DSM relations. This object is

exported as a final result of the application,

• RelationHolder.java – when application finds a relation between two or more

components, RelationHolder class serves as an object that describes this relation. After

relation is fully described based on the data extracted from Siemens NX, it is then put

in related instance of DSM class that contains all the relations,

• JSONtoDSM.html – Results gained from Java algorithm are exported to JSON file

format. Created files are then loaded into web interface which uses d3.js visualization

library to display data as DSM.

Table 3 describes main() method from AssemblyToDSM.java.

Table 3: Intro algorithm

Assembly-­‐to-­‐DSM

AssemblyListingWindowOutputStream.java

AssemblyToDSM.java

DSM.java

RelationHolder.java

JSONtoDSM.html

get	
 current	
 Session	

get	
 current	
 Part	
 from	
 Session	

if	
 Part	

⋅	
 create	
 constraintRelations	

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 43

After extract* methods are called, *Relations objects will contain all extracted relations.

It is worth mentioning that prototype code uses Google’s GSON library to export

*Relations objects into JSON files as a final output. It is expected that exported files then

serve as a base for creating DSMs.

Next few paragraphs describe generic algorithms for extracting relations and do not contain

exact NX Open API method names. Exact method names and related attributes that are

necessary for them to work can be found in additional prints coupled with this thesis.

6.3.1. Constraints

Constraints are explicitly defined in the assembly. Algorithm described in Table 4 has to go

through all the components and check if there is a constraint related to any of those

components. If there is any, data is extracted from this constraint and passed to the collection

that holds all the relations from this extraction method.

Table 4: Constraints algorithm

6.3.2. Proximity

In contrast to constraints which are explicitly defined in the assembly, proximity finds

relations based on the methods from paragraph 5.2 which are then compared to the threshold

that is set by the user. Threshold filters important relations from those which are not. It is

obvious that the number of extracted relations depends on how strict are the user parameters.

⋅	
 create	
 proximityRelations	

⋅	
 create	
 permanentJointRelations	

⋅	
 create	
 nonpermanentJointRelations	

⋅	
 extractConstraintRelations(Part)	

⋅	
 extractProximityRelations(Part)	

⋅	
 extractPermanentJointRelations(Part)	

⋅	
 extractNonpermanentJointRelations(Part)	

end	
 if	

export	
 *Relations	
 objects	
 into	
 JSON	
 files	

for	
 i	
 =	
 1	
 →	
 total	
 #	
 of	
 components	

⋅	
 current	
 component	
 constraints	

⋅	
 for	
 j	
 =	
 0	
 →	
 total	
 #	
 of	
 constraints	

⋅	
 ⋅	
 if	
 constraint[j]	

⋅	
 ⋅	
 ⋅	
 currentConstraint	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 component	
 file	
 path	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 component	
 tag	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 relation	
 summary	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 relation	
 type	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 constraint	
 alignment	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 #	
 of	
 related	
 components	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 constraint	
 reference	
 type	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 constraint	
 related	
 components	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 constraint	
 tag	

⋅	
 ⋅	
 ⋅	
 add	
 currentConstraint	
 to	
 constraintRelations	

⋅	
 ⋅	
 end	
 if	

⋅	
 next	
 j	

next	
 i	

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 44

boxVolume and minDistanceTreshold are two variables that are set by the user.

boxVolume defines distance between corner box coordinate and center point coordinate as

shown in Figure 33. Default component virtual box will grow. minDistanceThreshold is

compared with minimum distance between two components. If the

minDistanceThreshold is larger than calculated minimum distance between components,

relation is considered important.

volumeRatio is a parameter calculated as described in Figure 36 and can be additionally

used for excluding non-important relations. It is ratio between component and box volume.

Table 5: Proximity algorithm

for	
 i	
 =	
 1	
 →	
 total	
 #	
 of	
 components	

⋅	
 //	
 box	

⋅	
 for	
 j	
 =	
 1	
 →	
 total	
 #	
 of	
 components	

⋅	
 ⋅	
 create	
 boxSize	

⋅	
 ⋅	
 create	
 inBox	

⋅	
 ⋅	
 if	
 inBox	
 &&	
 component[i]	
 !=	
 component[j]	
 &&	
 !assembly	

⋅	
 ⋅	
 ⋅	
 create	
 boxVolume	

⋅	
 ⋅	
 ⋅	
 create	
 componentVolume	

⋅	
 ⋅	
 ⋅	
 create	
 volumeRatio	
 =	
 	
 componentVolume	
 /	
 boxVolume	

⋅	
 ⋅	
 ⋅	
 currentBoxRelation	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 component	
 file	
 path	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 component	
 tag	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 relation	
 summary	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 relation	
 type	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 #	
 of	
 related	
 components	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 constraint	
 reference	
 type	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 constraint	
 related	
 components	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 constraint	
 tag	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 volumeRatio	

⋅	
 ⋅	
 ⋅	
 add	
 currentBoxRelation	
 to	
 proximityRelations	

⋅	
 ⋅	
 end	
 if	

⋅	
 next	
 j	

⋅	
 //	
 distance	

⋅	
 for	
 k	
 =	
 i	
 →	
 total	
 #	
 of	
 components	

⋅	
 ⋅	
 create	
 minDistThreshold	

⋅	
 ⋅	
 create	
 minDistMeasured	

⋅	
 ⋅	
 //	
 threshold	
 distance	
 is	
 smaller	
 than	
 minimum	
 measured	
 between	
 i	
 and	
 k	
 component	
 	

⋅	
 ⋅	
 if	
 minDistThreshold	
 <=	
 minDistMeasured	
 &&	
 minDistanceThreshold	
 !=	
 0	

⋅	
 ⋅	
 &&	
 component[i]	
 !=	
 component[k]	
 &&	
 !assembly	

⋅	
 ⋅	
 ⋅	
 currentDistanceRelation	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 component	
 file	
 path	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 component	
 tag	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 relation	
 summary	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 relation	
 type	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 #	
 of	
 related	
 components	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 proximity	
 reference	
 type	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 proximity	
 related	
 components	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 proximity	
 tag	

⋅	
 ⋅	
 ⋅	
 add	
 currentDistanceRelation	
 to	
 proximityRelations	

⋅	
 ⋅	
 end	
 if	

⋅	
 ⋅	
 //	
 components	
 touch	
 or	
 intrude	
 one	
 another	

⋅	
 ⋅	
 if	
 minDistMeasured	
 =	
 0	
 &&	
 component[i]	
 !=	
 component[k]	
 &&	
 !assembly	

⋅	
 ⋅	
 ⋅	
 currentDistanceRelation	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 component	
 file	
 path	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 component	
 tag	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 relation	
 summary	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 relation	
 type	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 #	
 of	
 related	
 components	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 proximity	
 reference	
 type	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 proximity	
 related	
 components	

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 45

6.3.3. Permanent joints

Permanent joints (welds) are explicitly defined features inside the assembly, therefore it is

necessary to go through all the components and check if there is a feature with certain

attribute that indicates the weld exists. This prototype checks for Weld_Type attribute inside

the feature and if it exists, isWeld is set to TRUE. Additional info regarding the weld is

extracted and put as meta-data in current relation holder object.

Table 6: Permanent joints algorithm

6.3.4. Output format

RelationHolder.java is the class that holds all relevant data extracted by the algorithm.

Objects within the given class are described as follows:

• summary – brief description of the relation. Contains name of the constraint, names of

components welded together or names of components that are close to each other,

• type – describes type of the relation which is extracted from the CAD variables or

custom name if the relation is not directly extracted from the CAD feature,

• path – exact path on hard drive to the file of selected component. Since relation is

defined between two components or more, path is related to the component on top of

which the relation is created,

• componentTag – component’s unique ID. Siemens NX tags components with

numbers,

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 proximity	
 tag	

⋅	
 ⋅	
 ⋅	
 add	
 currentDistanceRelation	
 to	
 proximityRelations	

⋅	
 ⋅	
 end	
 if	

⋅	
 next	
 k	

next	
 i	

for	
 i	
 =	
 1	
 →	
 total	
 #	
 of	
 components	

⋅	
 set	
 current	
 component	
 as	
 working	
 part	

⋅	
 extract	
 all	
 features	
 from	
 working	
 part	

⋅	
 for	
 j	
 =	
 0	
 →	
 total	
 #	
 of	
 features	

⋅	
 ⋅	
 create	
 isWeld	

⋅	
 ⋅	
 if	
 isWeld	

⋅	
 ⋅	
 ⋅	
 currentPJoint	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 component	
 file	
 path	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 component	
 tag	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 relation	
 summary	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 relation	
 type	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 #	
 of	
 related	
 components	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 joint	
 reference	
 type	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 joint	
 related	
 components	

⋅	
 ⋅	
 ⋅	
 ⋅	
 +=	
 procedure	
 code	

⋅	
 ⋅	
 ⋅	
 add	
 currentPJoint	
 to	
 permanentJointRelations	

⋅	
 ⋅	
 end	
 if	

⋅	
 next	
 j	

next	
 i	

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 46

• alignment – only exist in constrained type of relation. Describes the way components

are aligned based on information extracted from available CAD variables,

• referenceType – custom created array stating the references based on which the

relation is created (for example planes) or strings that describe the threshold

parameters from the algorithm (for example 15mm BOX which means that the relation

is extracted with proximity method building a 15mm long, deep and tall square box

around the component described in section 5.2),

• realName – name of the component displayed in CAD,

• referenceName – any additional identifications of the component’s reference that is

not the realName or componentTag,

• referenceTag – array containing component’s relation reference ID. When constraint is

defined, each component gets additional ID for the constraint. When proximity

relation is extracted, array fields contain componentTag of each component,

• numberOfRelatedComponents – now it is always two, but for possible future

improvements of the program this variable is already introduced,

• volumeRatio – calculated only in proximity algorithm. Detailed explanation is given

in section 5.2, Figure 35,

• procedureCode – relevant only for welded joints. Procedure code is the number that

references to specific type of weld given in section 5.3, Table 2. This is related to

Daimler internal codes that are implemented in CAD metadata therefore not relevant

to any other company.

Gson (official name is google-gson) Java library is later used to convert given objects from

Java environment into JSON format so that JSONtoDSM.html web interface can use the data

for visualization. Gson library is able to convert Java objects to JSON and vice-versa.

6.4. Result validation and visualization

As stated in section 5.5, results of this thesis are validated based on designed model (Figure

38) which is then put through the algorithm developed using methods explained in section 5.

Figure 39 summarizes validation model into DSM matrix. DSM matrix is manually created by

the author of this thesis and will serve as a reference and for comparison with computer

generated results.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 47

Design of the validation model (Figure 38) is simple, therefore time needed for algorithm to

process it was short. For the reference, algorithm was put thought some more complex

geometries available at the time spent in Daimler and it took few minutes to process

(approximately 50 components under 3 minutes). Processing time primarily depends on the

number of components and not on the complexity of the components involved. Larger

quantity of components need more time to be processed.

Figure 47: Slice of result data - JSON format

Figure 47 shows part of the final result produced by developed algorithm. Results are in

JSON file format containing extracted information from product assembly. As shown in

Figure 47, this slice of result data shows one of the relation recognized between component

number 3 and 8 as labeled in Figure 38. In detail, this slice tells us that the component number

3 is inside the virtual box (Figure 37) created around component number 8. Also, volume

ratio (Figure 35) of the component number 8 body volume in relation to virtual box volume

around its body is calculated. It is obvious that the ratio is low and since it is suggested as a

problem in section 5.2, this particular relation is ignored in final DSM plot. All relations

where volume ratio is below 0.5 are ignored.

PoC

…

{

"summary":	
 "block-­‐8	
 catches	
 box	
 of	
 block-­‐2-­‐7",

"type":	
 "INSIDE_BOX",

"path":	
 "C:\\Users\\alzubic\\Desktop\\tmp NX	
 files\\validation\\block-­‐8.prt",

"componentTag":	
 [39690],

"referenceType":	
 ["15.0mm	
 BOX"],

"realName":	
 ["8","3"],

"referenceName":	
 ["block-­‐8","block-­‐2-­‐7"],

"referenceTag":	
 [39690,39660],

"numberOfRelatedComponents":	
 2,

"volumeRatio":	
 0.2912846327236437

}

…

22

Results

Alen Zubic | Automated Creation of Component’s Relations | ITP/DC | 18.12.2014.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 48

Figure 48: Visualized results - separated based on the extraction method

Final results are visualized using d3.js graph library with some help from JavaScript, JQuery,

HTML and CSS. As seen in Figure 48, results are put in DSM style table where darker grey

color represents existing relation between the components. Necessarily, there is not only one

type of relation between two components, but for the validation purposes is determined that if

there is at least one relation detected, the field is darker grey colored. All the other detected

relations between the same two components are still in JSON files even though the number of

them is not shown in the visual output.

Figure 49: Aggregated DSMs

23

Visualization

Alen Zubic | Automated Creation of Component’s Relations | ITP/DC | 18.12.2014.

Constraints Proximity

Welds

PoC

24

Validation

Alen Zubic | Automated Creation of Component’s Relations | ITP/DC | 18.12.2014.

Manual Assembly–to–DSM

Aggregated DSMs

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 49

Figure 49 presents the aggregated view of the separate results shown in Figure 48 on the right

together with manually created DSM (Figure 39) on the left. Those are two DSMs which need

to be compared to validate the results produced by the algorithm. Rows and columns contain

numbers from 1 to 11 that represents the number of the components labeled in Figure 38.

When Manual and Assembly-to-DSM matrices (Figure 49) are overlapped, it can be stated

that developed algorithms are well designed. Algorithms extract proper relations from given

CAD model and results are successfully validated in comparison with manually created DSM.

There is one important lesson to be learned here and this is that machines never miss their

goal if well tuned. Proof to support this claim comes from Figure 49. Take a closer look at

coordinates 6-7 and 7-6! This is symmetric DSM and therefore both coordinates indicate the

same relation between components 6 and 7 (proximity), but you can notice that this relation

was not recognized in manually created DSM! This is not done on purpose and since result is

valid, credit goes to developed algorithms. Statistical probability of human error in

recognizing relevant component relations rises with the product complexity whereas machine

needs less time and is much more precise.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 50

7. Discussion

Please note that developed methods are applicable on an existing assembly while creating the

product or after the product is finished. It means that it compliments traceability with new

data after the product is completed or during iterative design process. Methods are especially

helpful in case of creating new version of existing product because of an existing overview of

system architecture.

Daimler has certain design rules for creating CAD assemblies. With those rules in place,

standardization of process is achieved. While writing this thesis, it is noticed that there is

some room for improvement. If Daimler adopted following design rule for creating

assemblies, other methods (not just clustering, Figure 17) would be applicable: while creating

constraints between components, first select the one on which the next component depends

on. Also, start from the root component - component from which the real-life assembly starts.

It primarily means that sequencing methods [16] could be helpful in creating step-by-step

component mounting diagrams because the order of assembling could be extracted. If

Daimler doesn’t implement constraints in its design process, it is virtually impossible to create

base ground for sequencing methods without user input. Currently, component assembly

sequence is identified by the user. Decomposing that kind of an assembly with the suggested

rule applied in the process, it would give non-symmetric DSM matrix which could be used to

remove ‘PowerPoint Engineering’2.

Methods for visualization other than DSMs are welcome to be considered. For example,

graph theory diagrams which are mentioned in section 4.3. Those diagrams contain simple

circles as nodes and lines representing relations which are connecting them. Depending on the

application and the needs of engineering team, different type of visualization can be beneficial

for the specific application. Mentioned graph theory diagrams are specially beneficial if the

components which are the ‘hub of many relations’ are of interest. It is easy to see and detect

them.

It would be beneficial to ‘directly’ connect DSM matrices with assembly components in CAD

tools. It means that selecting certain group of components in DSM matrix would offer direct

interaction with this group in CAD environment. Users can easily select specific subsets for

2 Step-by-step schetches of product assembly sequence is nicknamed 'PowerPoint Engineering'. Assembly
sketches in exploded views are produced by CAD tools and then put into Microsoft PowerPoint where engineers
put numbers that represent the sequence for putting parts together.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 51

closer consideration or navigate through the structure step-by-step. Group can then be hidden,

weight of the group can be calculated and any other CAD action can be applied. Integrating

DSM and CAD view into one interface offers new perspective on the system architecture.

Matrix representation of system structures possess deficiencies that have been clarified in

section 4.3. Because of those deficiencies, the structural complexity management asks for a

supplementary representation by graphs, in particular force directed graphs. Those graphs

fulfill the requirements for the intuitive comprehension of visualized structures, enhance the

capabilities of matrices concerning the mediation of structural subsets, and allow for

extensive possibilities of structure interaction. Thus, force-directed graphs are also

appropriate for users without a technical background and can help enhance team work on

complex systems. Graphs and matrices can easily be transformed into each other and

therefore open advanced possibilities for the representation of complex systems.

Further research is suggested to eliminate the need of user input for setting up threshold

values of the box and distance methods. Suggested solution is to select fixed value through

the case study or automate the calculation of the value based on available CAD data. For

example based on volume of the components and other parameters that could suggest the right

threshold.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 52

8. Conclusion

This thesis successfully identified four methods for extracting relations that exist between

components in the Siemens NX product assembly model. All methods are described in detail

after which the Java PoC is built. Extracted relations are then stored in JSON format which is

convinient for usage in any application that aims to improve product traceability. Methods are

derived from four main relation types – constraints between components, component

proximity, permanent and non-permanent joints.

DSM matrices are chosen as a tool to visualize relations because of their ability to simply

visualize a complex system architecture. Additionally, post-processing methods to manipulate

DSM data are described for further system analysis.

PoC demonstrated the way it is possible to automate the extraction of relations from the CAD

model. Results are successfully verified by comparing the DSM matrix produced by the PoC

algorithm with a manually created matrix based on a validation CAD model created for the

purposes of this thesis.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 53

Bibliography

[1] S. F. Königs, G. Beier, A. Figge, and R. Stark, Traceability in Systems Engineering -

Review of industrial practices, state-of-the-art technologies and new research solutions.

Berlin: Advanced Engineering Informatics, 2012.

[2] Rob Bracewell et al., DRED 2.0: A method and tool for capture and communication of

design knowledge deliberated in the creation of technical products. Stanford: ICED,

2009.

[3] Ron Sanchez and Joseph T. Mahoney, Modularity, flexibility, and knowledge

management in product and organization design. Nedlands/Campaign: John Wiley &

Sons, 1996.

[4] Udo Lindemann, Maik Maurer, and Thomas Braun, Structural Complexity Management:

An Approach for the Field of Product Design. Berlin: Springer, 2009.

[5] W. Chaovalitwongse, H. Pham, S. Hwang, Z. Liang, and C.H. Pham, Recent Advances in

Reliability and Quality in Design - Chapter 21: Recent Advances in Data Mining for

Categorizing Text Records. Piscataway,: Springer, 2008.

[6] T. Naumann, S. Königs, O. Kallenborn, and I. Tuttass, Social Systems Engineering - An

Approach for Efficient Systems Developement. Copenhagen: Proceedings od the 18th

International Conference on Engineering Design, 2011.

[7] M. Storga, N. Bojcetic, N. Pavkovic, and T. Stankovic, Traceability of Engineering

information Development in PLM Framework. Eindhoven: Proceedings of the 8th

International Conference on PLM, 2011.

[8] Steven D. Eppinger and Tyson R. Browning, Design Structure Matrix Methods and

Applications. Cambridge: MIT Press, 2012.

[9] Boris Tarnovski, "DSM" razvojnog projekta električnog sportskog automobila. Zagreb:

FSB, Master-Thesis, 2011.

[10] K.B. Clark and T. Fujimoto, Product Development Performance: Strategy, Organization

and Management in the World Auto Industry. Boston: Harvard Business School Press,

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 54

1991.

[11] H.J. Bullinger, E. Kiss-Preussinger, and D. Spath, Automobilentwicklung in Deutschland

– wie sicher in die Zukunft? Chancen, Potenziale und Handlungsempfehlungen für 30

Prozent mehr Effizienz. Stuttgart: Fraunhofer-IRB, 2003.

[12] C.E. Shannon and W. Weaver, A mathematical theory of communication. New York:

Bell Systems Technical Journal, 1948.

[13] N.P. Suh, The Principles of Design. Oxford: Oxford University Press, 1990.

[14] D.V. Steward, The design structure system: a method for managing the design of

complex systems. Sacramento: IEEE Transactions on Engineering Management, 1981.

[15] N. Koehler, T. Naumann, and S. Vajna, Suporting the Modeling of Traceability

Information. Dubrovnik: International DESIGN Conference - DESIGN 2014, 2014.

[16] Tyson R. Browning, Applying the Design Structure Matrix to System Decomposition and

Integration Problem: A Review and New Directions. Fort Worth: IEEE Transastions on

Engineering Management, Vol. 48, No. 3, 2001.

[17] Steven D. Eppinger and Tyson R. Browning, Design Structure Matrix Methods and

Applications.: MIT Press, 2012.

[18] G.Q. Huang, Design for X: Concurrent engineering imperatives. Netherlands: Springer

Science+Business Media Dordrecht, 1996.

[19] U. Lindemann, A vision to overcome "chaotic" Design for X processes in early phases.

Paris: ICED 07, 2007.

[20] G. Schuh and U. Schwenk, Produktkomplexität managen. München: Hanser, 2001.

[21] H. Puhl, Komplexitätsmanagement. Kaiserslautern: Univ. Kaiserslautern, 1999.

[22] M. Maurer and U. Lindemann, Facing Multi-Domain Complexity in Product

Development. München: Cidad Working Paper Series 3, 2007.

[23] A. Ericsson and G. Erixon, Controlling Design Variants – Modular Product Platforms.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 55

New York: ASME Press, 1999.

[24] C. Y. Baldwin and K. B. Clark, Design Rules - The Power of Modularity. Cambridge:

MIT Press, 2000.

[25] David Feinleib, Big Data Bootcamp. New York: Apress, 2014.

[26] B. Fortner, Number by Colors. New York: Springer-Verlag, 1997.

[27] Michael C. Pasqual and Olivier L. de Weck, Multilayer network model for analysis and

management of change propagation. London: Springer-Verlag, 2011.

[28] M. Broy, Informatik – Systemstrukturen und theoretische Informatik 2 (2nd edition).

Berlin: Springer, 1998.

[29] D. M. Sharman and A. Yassine, Characterizing Complex Product Architectures.

Cambridge: Systems Engineering, Vol. 7, 2004.

[30] J. L. Gross and J. Yellen, Graph Theory and its Applications, 2nd edition. London:

Chapman and Hall/CRC, 2006.

[31] Yu Tian-Li, Ali A. Yassine, and David E. Goldberg, An information theoretic method for

developing modular architectures using genetic algorithms. London : Springer-Verlag

Limited, 2007.

[32] J. M. Usher, U. Roy, and H. R. Parsaei, Integrated Product and Process Development –

Methods, Tools and Technologies. New York: John Wiley & Sons, 1998.

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 56

Additional documentation

I. Aggregated DSM comparison

II. CD-R disc

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 57

Additional documentation

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 58

I. Aggregated DSM comparison

Assembly-to-DSM

Alen Zubić Master Thesis

Faculty of Mechanical Engineering and Naval Architecture 59

Manual

Validation model

