Ispitivanje svojstava maskirnog premaza na limovima za karoseriju vozila

Peran, Anita

Professional thesis / Završni specijalistički

2025

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:923258

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-14

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Poslijediplomski specijalistički studij

Anita Peran

Zagreb, 2024.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Poslijediplomski specijalistički studij Inženjerstvo materijala

Ispitivanje svojstava maskirnog premaza na limovima za karoseriju vozila

Mentor:

Student:

Prof. dr. sc. Darko Landek, dipl. ing.

Anita Peran

Zagreb, 2024.

PODACI ZA BIBLIOGRAFSKU KARTICU:

UDK: 628.147.22:623.437.4

Ključne riječi: maskirni premaz, NATO RAL 6031 F9, otpornost na atmosfersku koroziju, otpornost na udarnu eroziju, otpornost na abrazijsku eroziju.

Key words: camouflage coating, NATO RAL 6031 F9, corrosion resistance, wear resistance.

Znanstveno područje: TEHNIČKE ZNANOSTI

Znanstveno polje: STROJARSTVO

Institucija u kojoj je izrađen: Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Mentor rada: Prof. dr. sc. Darko Landek, dipl. ing.

Broj stranica: 128

Broj slika: 95

Broj tablica: 15

Broj korištenih bibliografskih jedinica: 45

Datum obrane: 14. siječnja 2025.

Povjerenstvo:

1. Doc. dr. sc. Marin Kurtela - predsjednik povjerenstva

2. Prof. dr. sc. Darko Landek - mentor

3. Doc. dr. sc. Zvonko Trzun – Sveučilište obrane i sigurnosti "Dr FranjoTuđman" – član

Institucija u kojoj je rad pohranjen: Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Izjavljujem da sam ovaj rad izradila samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Prije svega, zahvaljujem se mentoru, prof. dr. sc. Darku Landeku, na stručnoj podršci, izdvojenom vremenu te na savjetima i konstruktivnim kritikama koji su omogućili da ovaj rad napišem na što kvalitetniji način.

Zahvaljujem se doc. dr. sc. Marinu Kurteli za stručno vodstvo i pomoć tijekom provedbe korozijskih istraživanja.

Želim izraziti svoju duboku zahvalnost kolegama iz svoje bivše postrojbe u Bjelovaru, koji su svojim relevantnim savjetima i iskustvom značajno doprinijeli izradi ovog rada.

Također, želim zahvaliti stručnom osoblju Remontnog zavoda ZzP-a na nesebičnoj pomoći pri pripremi samih ispitnih uzoraka te na korisnim savjetima koji su pomogli u realizaciji ovog istraživanja.

Posebno se zahvaljujem svojoj obitelji koji su mi bili najveći oslonac tijekom cijelog mog obrazovanja. Vaša vjera u mene gurala me naprijed, posebice u trenucima izazova.

Anita Peran

U teorijskom dijelu rada treba opisati:

- Postupke nanošenja i svojstva zaštitnih prevlaka i premaza na karoseriji vozila.
- Osnovne mehanizme korozije i trošenja premaza u uporabi.
- Ispitivanja fizikalnih, mehaničkih, triboloških i korozijskih svojstava zaštitnih premaza.

U eksperimentalnom dijelu rada treba:

- Provesti nanošenje maskirnog premaza RAL 6031 F9 na uzorke pocinčanog i ne pocinčanog lima.
- Provesti ispitivanja mehaničkih, fizikalnih, korozijskih i triboloških svojstava premaza
- ...- Odrediti utjecaj prevlake cinka na svojstva maskirnog premaza.
- Predložiti postupke pripreme površine lima i metode za karakterizaciju svojstava maskirnog premaza.

Zadatak zadan: 19. lipnja 2024.

Zadatak predan:

prof. dr. sc. Darko Landek

Predsjednik Odbora za poslijediplomske studije

prof. dr. sc. Andrej Jokić Inže

Vodřelj smjera Juži v Juži Inženjerstvo materijala prof. dr. sc. Božidar Matijević

SADRŽAJ

POPIS SLIKA	6
POPIS TABLICA	9
POPIS OZNAKA	. 10
SAŽETAK	.12
SUMMARY	13
1. UVOD	.14
2. ZAŠTITNE PREVLAKE I PREMAZI NA KAROSERIJI VOZILA	.17
2.1. Podjela zaštitnih prevlaka i premaza	. 17
2.2. Priprema metalnih površina za nanošenje prevlaka i premaza	. 18
2.3. Postupci nanošenja prevlaka	. 20
2.3.1. Vruće pocinčavanje	21
2.3.2. Kromatiranje i kromiranje	. 23
2.3.3. Dupleks postupci	.23
2.3.4. Fosfatiranje	.25
2.4. Nanošenje premaza	. 26
2.4.1. Premazi za karoserije civilnih vozila	.26
2.5. Maskirni premazi za vojna vozila	. 30
2.6. Opće karakteristike vojnog vozila TAM 150 T11 BV-6x6	. 32
3. PROCESI KOROZIJE I TROŠENJA	.35
3.1. Atmosferska korozija	.35
3.2. Trošenje abrazijom i erozijom česticama	. 39
3.2.1. Abrazijsko trošenje	. 39
3.2.2. Trošenje erozijom česticama	.45
4. ANALITIČKE METODE I UREĐAJI ZA ISPITIVANJE FIZIKALNIH I TRIBOLOŠK SVOJSTAVA	ШН . 48
4.1. Ispitivanje debljine suhog sloja premaza	. 48
4.2. Ispitivanje prionjivosti premaza	. 49
4.3. Ispitivanje tvrdoće premaza	. 52
4.4. Određivanje poroznosti premaza	. 53
4.5. Ispitivanje otpornosti premaza na erozijsko trošenje	. 54
5. ISPITIVANJE KOROZIJSKIH SVOJSTAVA PREMAZA	. 57
5.1. Ubrzana korozijska ispitivanja	. 57
5.1.1. Ispitivanja u slanoj komori	. 57
5.1.2. Ispitivanja u vlažnoj komori	. 59
5.1.3. Ispitivanja u klimatizacijskoj komori	. 59
5.2. Elektrokemijska ispitivanja korozije	. 60

5.2.1. Elektrokemijska ispitivanja korozije istosmjernom strujom	60
5.2.1.1. Određivanje korozijskog potencijala	61
5.2.1.2. Metoda linearne polarizacije	62
5.2.1.3. Metoda Tafelove polarizacije	63
5.2.2. Elektrokemijska ispitivanja korozije izmjeničnom strujom	65
5.2.2.1. Metoda elektrokemijske impedancijske spektroskopije	66
5.2.2.2. Određivanje ekvivalentnog električnog kruga	68
6. PLAN POKUSA I PRIPREMA UZORAKA	73
6.1. Materijal i oznake ispitnih uzoraka	73
6.2. Priprema ispitnih uzoraka i plan ispitivanja	74
6.3. Metalografska priprema uzoraka	77
7. ISPITIVANJE MIKROSTRUKTURE I TVRDOĆE LIMA	80
7.1. Analiza mikrostrukture	80
7.2. Ispitivanje mikrotvrdoće lima	82
8. ISPITIVANJE FIZIKALNIH SVOJSTAVA PREMAZA	83
8.1. Ispitivanje debljine suhog premaza	83
8.2. Ispitivanje tvrdoće suhog premaza	86
8.3. Ispitivanje poroznosti premaza	88
8.4. Ispitivanje prionjivosti premaza	88
9. ISPITIVANJE KOROZIJSKE POSTOJANOSTI PREMAZA	96
9.1. Vizualna analiza korozije na premazu iz uporabe	96
9.2. Ispitivanje premaza u slanoj, vlažnoj i klimatizacijskoj komori	99
9.3. Rezultati elektrokemijskih ispitivanja istosmjernom strujom	. 105
9.3.1. Priprema elektrokemijske ćelije	. 105
9.3.2. Određivanje korozijskog potencijala premaza	. 106
9.3.3. Određivanje polarizacijskog otpora premaza	. 106
9.3.4. Rezultati ispitivanja premaza metodom Tafelove ekstrapolacije	. 107
9.4. Rezultati elektrokemijskih ispitivanja izmjeničnom strujom	. 109
9.4.1. Elektrokemijska impedancijska spektroskopija	. 109
10. ISPITIVANJE OTPORNOSTI PREMAZA NA EROZIJU MLAZOM ČESTICA.	. 113
10.1. Ispitivanje otpornosti na udarnu eroziju	. 113
10.2. Ispitivanje otpornosti na abrazijsku eroziju	. 115
11. ZAKLJUČAK	. 119
12. LITERATURA	. 121
ŽIVOTOPIS	. 124
PRILOZI	. 125

POPIS SLIKA

Slika 1. Podjela prevlaka prema postupcima prevlačenja [2,3]	17
Slika 2. Shmaltz-ov model strukture rubnog sloja bez prevlake [6]	19
Slika 3. Postupak vrućeg pocinčavanja [8]	21
Slika 4. Mikrostruktura pocinčane prevlake [9]	22
Slika 5. Usporedba profila prijelaza tvrdoće premaza (lijevo) i dupleks prevlake (desno) [12]
Slika 6. Mikrostruktura Zn-Fe prevlake s dvije varijante izlučenih intermetalnih faz	za: a)
mikrostruktura s gama, delta i zeta fazom, b) mikrostruktura uglavnom sastavljena od delt	a faze
[9]	25
Slika 7. Podjela sustava premaza [5]	27
Slika 8. Postupak nanošenja premaza u automobilskoj industriji [17]	29
Slika 9. RAL skala [19]	31
Slika 10. Karakteristične RAL boje za NATO vojna vozila [21]	31
Slika 11. Vojno vozilo TAM 150 TT1 BV-6X6 [25]	33
Slika 12. Shematski prikaz elektrokemijske korozije [28]	30
Slika 13. Opca korozija: a ravnomjerna, b neravnomjerna: A-povrsina metala prije korozi	је, В-
Slika 14. Process postanka korozija u precijanu [28]	3 / 2 Q
Slika 15. Lokalna korozija: a pjegasta korozija, b jamičasta korozija, c potpovršinska kor	30
d kontaktna korozija: A-površina metala prije korozije. B-površina metala poslije korozij	ie M-
metal. M_1 -neplemenitiji metal. M_2 -plemenitiji metal ili nemetal. Z-procijep između	dvaiu
elemenata [28]	39
Slika 16. Jedinični događaj abrazije [30]	40
Slika 17. Abrazija u dodiru dvaju tijela (a) i triju tijela (b)[30]	41
Slika 18. Mikromehanizmi trošenja materijala [30]	42
Slika 19. "Čista" abrazija [30]	43
Slika 20. "Selektivna" abrazija [30]	43
Slika 21. "Nulta" abrazija [30]	44
Slika 22. Prikaz trošenja u usporedbi s veličinom abrazivnog zrna [33]	45
Slika 23 Jedinični događaj erozijskog trošenja [30]	45
Slika 24. Ovisnost erozijskog trosenja o kutu udara krutih cestica za razlicite materijale	e [30] 46
Slika 25. Mjerenje debljina zaštitnih premaza metodom: a) magnetske indukcije, b) vrtl struja [36]	ložnih 49
Slika 26. Izgled površine uzoraka nakon "cross-cut" testa	51
Slika 27. Ispitivanje prionjivosti premaza Pull-off testom [37]: a) priprema oprem	ne za
ispitivanje, b) odvajanje viška ljepila pomoću odvijača, c) provedba ispitivanja po određenog uređaja	moću 51
Slika 28. Uređaj za ispitivanje tvrdoće premaza olovkama prema normi HRN EN ISO 1	5184:
1-gumeni prsten za vođenje uređaja, 2-olovka, 3-podloga, 4-level, 5-mali, pomični ut	eg, 6-
stezaljka, 7-smjer kretanja uređaja, 8-grafit, 9-premaz	53
Slika 29. Niskonaponski uređaj za mjerenje poroznosti Elcometer 270 [39]	54
Slika 30. Uređaj za erozijsko ispitivanje: 1 – zračni pištolj za pjeskarenje, 2 – okidač, 3 –	vreća
za prikupljanje materijala za pjeskarenje, 4 – kontejner medija za pjeskarenje, 5 - mano	metar
$\mathbf{O}(1_{1}, 2_{1}, \mathbf{D}_{2}, \mathbf{D}_{2},$	55
SIIKa 51. Prieumatski pistolj za pjeskarenje: 1 – zračni pistolj za pjeskarenje, 2 – bradav	ica za
zračni prikijučak (uraz zraka), 5 – okluač, 4 – vreća za sakupljanje materijala za pjeskaren	ije, 3–

zavrtna stezaljka, 6 - mlaznica, 7 - zakretni regulator, 8 -spremnik za pjeskarsko sredstvo,	9–
vijčani zatvarač [40]	. 55
Slika 32. Položaj ispitnog uzorka pri erozijskom trošenju	. 56
Slika 33. Shema slane komore: 1-radni prostor, 2-spemnik slane otopine, 3-uređaj	za
raspršivanje, 4-dovod komprimiranog zraka, 5-dovod slane otopine, 6-vješalice za uzorke,	, 7-
ispušna cijev, 8-poklopac s ručicama (a) i prozorom (b), 9-žlijeb sa slanom otopinom,	10-
preljevna cijev, 11-cijev za punjenje i pražnjenje s vodokazom (c) i pipcem (d) [41]	. 58
Slika 34. Vlažna komora	. 59
Slika 35. Klimatizacijska komora	. 60
Slika 36. Elektrokemijska ćelija za ispitivanje korozijskih procesa DC-tehnikama [42]	. 61
Slika 37. Određivanje korozijskog potencijala E _{kor} [42]	. 62
Slika 38. Određivanje polarizacijskog otpora R _p [7]	. 63
Slika 39. Tafelova ekstrapolacija [42]	. 65
Slika 40. Sinusoidalni val za narinuti potencijal E i rezultirajuću struju I [42]	. 67
Slika 41. Vektorska analiza rezultirajuće struje [42]	. 67
Slika 42. Randlesov krug [42]	. 69
Slika 43. Nyquistov grafički prikaz [43]	70
Slika 44. Bodeov dijagram [44]	70
Slika 45. Vrata voinog vozila TAM-150 T11 BV-6X6 prije izrezivanja ispitnih uzorka [25]	74
Slika 46. Profil hrapavosti neprevučenog (a) i vruće pocinčanog lima (c)	74
Slika 47. Profil hrapavosti vruće pocinčanog lima u smjeru valjanja	75
Slika 48. Izgled uzorka B i C prije i nakon prevlačenja maskirnim premazom	75
Slika 49. Faze metalografske pripreme uzoraka	77
Slika 50 Uređaj Mecatome T260	78
Slika 51. Metalografski pripremljeni uzorci	78
Slika 57. Uređaj MECATECH 250 SPC	79
Slika 53 Mikrostruktura uzorka: a) serija A b) serija B i c) serija C	80
Slika 54. Deblijna nanešene boje na uzorak serije B povećanja 200X	81
Slika 55. Deblijna nanešene boje na uzorak serije C povećanja 200X	81
Slika 56. Uređaj WII SON-WOLPERT TUKON 2100 B	82
Slika 57 Uređaj za mjerenje debljine suhog filma Elcometer 456"	83
Slika 58. Prikaz uzoraka za ispitivanie deblijne suhog sloja premaza	84
Slika 59. Aritmetička sredina deblijne suhog sloja premaza	85
Slika 60. Oprema za ispitivanie tvrdoće premaza olovkom	86
Slika 61. Uređaj PosiTector SHD	87
Slika 62. Niskonaponski uređaj Elcometer 270	88
Slika 63. Uzorci prije izlaganja ispitivanju u vlažnoj komori	89
Slika 64. Klimatizacijska komora	89
Slika 65. Ispitni uzorci u klimatizacijskoj komori	90
Slika 66 Ispitivanie prionijvosti premaza na uzorcima A1-1 B1-1 C1-1	91
Slika 67 Ispitivanje prionjivosti premaza na uzorcima A1-0 B1-0 C1-0	92
Slika 68 Ispitivanje prionjivosti premaza na uzorcimaa A1-4 B1-4 C1-4	93
Slika 69. Ispitivanje prionjivosti premaza na uzorcima A1-2. A1-3. B1-2. B1-3.	94
Slika 70. Ispitivanje prionjivosti premaza na uzorcima C1-2 i C1-3	95
Slika 70. Ispitivanje promjivosti premaža na uzorenna C1-2 1 C1-5 Slika 71. Uređaji za makroskonska snimanja uzorka: a) stativ s fotoaparatom	b)
stereomikroskon	96
Slika 72 Oblici korozije na unutrašnioi strani lima vrata vozila	97
Slika 73. Pojavni oblici korozije uslikani fotoanaratom Cannon 1000D: a) onća korozije b	
i d) korozija u procijenu	, c) 07
Slika 74. Pojavni oblici korozije na površini lima u unutrašnjosti vrata	98

Slika 75. Uzorci prije i nakon ispitivanja u slanoj komori10	00
Slika 76. Priprema uzorka za mjerenje stupnja korozije 10	01
Slika 77. Uzorci prije i nakon ispitivanja u vlažnoj komori10	03
Slika 78. Uzorci prije i poslije ispitivanja u klimatizacijskoj komori10	04
Slika 79. Elektrokemijska ćelija: a) Elektrode elektrokemijske ćelije, b) Radna elektro	da
pričvršćena na elektrokemijsku ćeliju10	05
Slika 80. Dijagram linearne polarizacije za: a) uzorak B _{0/3} , b) uzorak B _{1/2} 10	06
Slika 81. Ispitivanje korozije Tafelovom metodom za: a) uzorak B _{0/3} , b) uzorak B _{1/2} 10	07
Slika 82. Izgled površine nakon ispitivanja korozije na: a) uzorku B _{0/3} , b) uzorku B _{1/2} 10	08
Slika 83. Rezultati EIS za uzorak A1-6 prikazana Nyquistovim dijagramom1	10
Slika 84. Rezultati EIS za uzorak M1-4 prikazana Nyquistovim dijagramom1	10
Slika 85. Rezultati EIS za uzorak C1-5 prikazana Nyquistovim dijagramom	11
Slika 86. Izgled površine nakon elektrokemijskog ispitivanja za: a) uzorak A1-6, b) uzorak M	[1-
4, c) uzorak C1-5	11
Slika 87. Izgled uzoraka snimljen stereomikroskopom Mantis Elite-Cam HD povećanja 8X:	a)
uzorak A1-6, b) uzorak M1-4, c) uzorak C1-5 1	11
Slika 88. Modeli ekvivalentnog strujnog kruga za uzorak A1-6 (lijevo) i uzorke M1-4 i C1	-5
(desno)	12
Slika 89. Izgled površine uzoraka nakon izlaganja 10 s i 30 s erozijskom trošenju 1	13
Slika 90. Izgled površine uzoraka nakon izlaganja 50 s i 60 s erozijskom trošenju 1	14
Slika 91. Izgled površine uzoraka nakon izlaganja 90 s i 120 s erozijskom trošenju 1	14
Slika 92. Relativno smanjenje debljine premaza nakon abrazijskog trošenja uzoraka B i C po	od
upadnim kutom erodenta 45°1	15
Slika 93. Relativno smanjenje debljine premaza nakon abrazijskog trošenja uzoraka B i C po	od
upadnim kutom erodenta 60°	16
Slika 94. Trošenje uzoraka B i C pod kutom 45	17
Slika 95. Trošenje uzoraka B i C pod kutom 60 [°] 1	18

POPIS TABLICA

Tablica 1. Tehnički podaci vozila TAM 150 T11 BC-6x6 [26]	34
Tablica 2. Skala za ocjenjivanje prionjivosti premaza po normi HRN EN ISO 2409:2013 [37]
	50
Tablica 3. Impedancijske jednadžbe za elemente električnog kruga	68
Tablica 4. Oznake ispitnih uzoraka	73
Tablica 5. Parametri hrapavosti neprevučenog i vruće pocinčanog lima	75
Tablica 6. Debljine suhog sloja premaza	85
Tablica 7. Rezultati ispitivanja tvrdoće premaza olovkama	87
Tablica 8. Rezultati ispitivanja tvrdoće premaza uređajem PosiTector SHD	87
Tablica 9. Parametri izračuna stupnja korozije	101
Tablica 10. Raspon vrijednosti korozijskih potencijala ispitnih uzoraka	106
Tablica 11. Rezultati elektrokemijskih ispitivanja	107
Tablica 12. Rezultati ispitivanja Tafelove ekstrapolacije	108
Tablica 13. EIS parametri ispitnih uzoraka A1-6, M1-4 i C1-5	112
Tablica 14. Rezultati ispitivanja otpornosti premaza na abrazijsku eroziju pod kutom od 45	5°
	115
Tablica 15. Rezultati ispitivanja otpornosti na abrazijsku eroziju pod kutom od 60°	116

POPIS OZNAKA

Oznaka	Jedinica	Opis				
А	%	Istezljivost				
a _a	-	Odsječak na osi y anodnog pravca				
a _k	-	Odsječak na osi y katodnog pravca				
b _a	V/dek	Nagib anodnog Tafelovog pravca				
b_k	V/dek	Nagib katodnog Tafelovog pravca				
c	-	Stupanj korozije				
$C_{ m dl}$	F	Kapacitet dvosloja				
1		Kritične vrijednosti abrazivnog zrna (critical particle				
$d_{ m krit}$	mm	size, CPS)				
DMF	mm	Debljina mokrog filma				
DSF	mm	Debljina suhog filma				
$E_{\rm kor}$	mV	Korozijski potencijal				
$E_{\rm ok}$	mV	Potencijal otvorenog strujnog kruga				
EW	g	Ekvivalentna masa materijala				
F	Cmol ⁻¹	Faradayeva konstanta				
F_n	Ν	Normalna komponenta sile trošenja				
F_t	Ν	Tangencijalna komponenta sile trošenja				
H_1	-	Tvrdoća trošenog materijala				
H _a	-	Tvrdoća abraziva				
Ηβ	-	I vrdoca meksin faza u abradiranom materijalu				
l	A	Jakost korozijske struje				
I'	A	Realna komponenta struje				
Ι"	A	Imaginarna komponenta struje				
Ia	A	Anodna struja otapanja				
IBAD	-	Prevlačenje potpomognuto snopom iona (<i>Ion-Beam</i> Assisted Deposition)				
I_k	А	Katodna struja redukcije				
$I_{ m kor}$	А	Jakost struje				
j	$\mu A/cm^2$	Gustoća struje				
jo	μ A/cm ²	Gustoća struje izmjene				
PVD	-	Fizikalno prevlačenje u parnoj fazi (Physical Vapour Deposition)				
R	JK ⁻¹ mol ⁻¹	Opća plinska konstanta				

Ra	μm	Srednje aritmetičko odstupanje profila							
RAL	-	Njemački odbor za uvjete isporuke i osiguranje kvalitete (R eichs- A usschuss für Lieferbedingungen und Gütesicherung)							
R _{ct}	Ω	Otpor prijenosu naboja							
R_{eH}	MPa	Gornja granica razvlačenja							
R _{el}	Ω	Otpor elektrolita							
R _m	MPa	Vlačna ili rastezna čvrstoća							
R _{max}	μm	Maksimalna visina profila							
R _p	$k\Omega \ cm^2$	Polarizacijski otpor							
Rz	μm	Srednje odstupanje korijena od profila							
R_{Ω}	Ω	Omski otpor							
S	cm^2	Površina radne elektrode							
		Zasićena kalomel elektroda ili ZKE (Saturated Calomel							
SCE	-	Electrode)							
Т	K	Termodinamička temperatura							
ТАМ	-	Tvornica automobila i motora u Mariboru (Tovarna automobilov i motorjev Maribor)							
Vkor	mm/god								
W	mm								
Wc	mm	Aritmetička sredina zona korozije							
Z	-	Broj elektrona							
Z'	Ωm^2	Realna komponenta impedancije							
Z''	$\Omega { m m}^2$	Imaginarna komponenta impedancije							
Z, Z_{uk}	Ωm^2	Ukupna impedancija							
α	-	Koeficijent prijenosa (vrijednosti od 0 do 1)							
η	mV	Prenapon							
ρ	gcm ⁻³	Gustoća materijala							
arphi	-	Fazni kut							
ω	rad/s	Kružna frekvencija							

SAŽETAK

Maskirni premazi pripadaju skupini organskih završnih premaza koji se nanose na prethodno zaštićenu podlogu; metalnom prevlakom i/ili temeljnim i vezivnim premazom. Na karoseriji vojnih vozila pružaju zaštitu od korozije i trošenja i omogućuju dugotrajni kamuflažni efekt. U radu se ispituju svojstva, brončano-zelenog NATO premaza RAL 6031 F9, koji se primjenjuje samostalno ili kao dio trobojnog sustava. U teorijskom dijelu rada opisani su postupci nanošenja i svojstva zaštitnih prevlaka i premaza na karoseriji vozila, osnovni mehanizmi korozije i trošenja premaza karakterističnih za navedeni premaz te metode ispitivanja fizikalnih, mehaničkih, triboloških i korozijskih svojstava zaštitnih prevaza. U eksperimentalnom dijelu rada provedena su laboratorijska ispitivanja mehaničkih, fizikalnih, korozijskih i triboloških svojstava premaza na limu izuzetom iz uporabe te na uzorcima pocinčanog i ne pocinčanog lima.

Ključne riječi: maskirni premaz, NATO RAL 6031 F9, otpornost na atmosfersku koroziju, otpornost na udarnu eroziju, otpornost na abrazijsku eroziju.

SUMMARY

Camouflage coatings on the body of military vehicles have a significant protective role in the tribocorrosive environment, maintaining the camouflage effect. Namely, camouflage coatings belong to the group of organic cover coatings that are applied to a previously protected surface; metal coating and/or base coat and primer. Therefore, RAL 6031 F9, a bronze-green NATO coating, which is applied alone or as part of a tricolor system, is eminent for the military industry. The theoretical part of the work depicts the application procedures and properties of protective coatings and paint on the vehicle body, the basic mechanisms of corrosion and wear of coatings and the methods of testing the physical, mechanical, tribological and corrosion properties of camouflage coatings. In the experimental part of the work, the mechanical, physical, corrosion and tribological properties of the camouflage coating were tested on the existing sheet metal and on samples of galvanized and non-galvanized sheet metal. Laboratory testing of the coating on atmospheric corrosion and on the resistance of the coating to impact and abrasion erosion was carried out. Relevant ISO or EN standards and recommendations are listed for all tests performed.

Key words: camouflage coating, NATO RAL 6031 F9, corrosion resistance, wear resistance.

1. UVOD

U automobilskoj industriji, zaštitne prevlake i premazi postaju neophodni u osiguranju dugotrajnosti, ali i estetskog izgleda karoserije vozila. U suvremenoj vojnoj industriji maskirni premazi imaju značajnu ulogu u zaštiti vojne opreme i vozila, koja se podvrgavaju utjecajima korozije i erozije iz okoline i, pri čemu se zahtijeva zadržavanje kamuflažnog efekta premaza. Od 1980-ih godina na razini NATO saveza je propisano da sva vozila i oprema vojne namijene treba biti zaštićena od infracrvenih uređaja (IR) za noćno gledanje, maskirnom bojom koja odgovara odrazu zelenog lišća u infracrvenom dijelu spektra elektromagnetskog zračenja[1]. Za vojnu namjenu dodatno se od premaza zahtijeva visoka mehanička otpornost i korozijska postojanost u ekstremnim klimatskim i uporabnim uvjetima. Maskirni premazi vojnih vozila u NATO zemljama, propisani su europskim registrom boja oznake RAL (njem. "Reichsausschuss für Lieferbedingungen"), od koji je za vojna vozila značajna skupina boja RAL F9 koja obuhvaća devet boja. Prva tri RAL maskirna premaza uvedena su u primjenu 1970-tih godina u oružanim snagama Republike Njemačke: RAL 6031 - F9 brončano zelena, RAL 8027 - F9 kožna smeđa, i RAL 9021 - F9 katransko crna. Boja RAL 6031 dostupna je u dvije verzije, kao boja polumat sjaja i mutnog mat sjaja. Od 2003. godine, u skupinu maskirnih premaza uvedeno je još pet boja: pješčana bež RAL 1039 F9, glinena bež RAL 1040 F9, svijetlo maslinasta RAL 6040 F9, kamuflažno siva RAL 7050 F9 i piješćano smeđa RAL 8031 F9 [1].

U teorijskom dijelu rada opisat će se se postupak nanošenja zaštitnih prevlaka i premaza na karoseriju vozila te njihova fizikalna, mehanička, tribološka i korozijska svojstva. Pri tome je naglasak stavljen na maskirne premaze vojnih vozila NATO zemalja. Također, opisat će se pojavni oblici korozije na karoseriji vozila te procesi abrazijskog i erozijskog trošenja.

U eksperimentalnom dijelu rada ispitat će se NATO premaz RAL 6031 F9 na limu izuzetom iz otpisanog dijela karoserije vozila te na uzorcima novog pocinčanog i ne pocinčanog lima. Provedena mehaničko-fizikalna ispitivanja obuhvatit će ispitivanje debljine, prionjivosti, tvrdoće i poroznosti maskirnog premaza. Korozijska postojanost premaza ispitat će se ubrzanim laboratorijskim korozijskim ispitivanjima i to u slanoj, vlažnoj te klimatiziranoj komori. Brzina prodiranja korozije u materijal odredit će se elektrokemijskim ispitivanjima Tafelovom metodom (DC tehnika), dok će se elektrokemijske reakcije na granici faza, odnosno vrijednosti otpora i kapaciteta definirati elektrokemijskom impendancijskom spektroskopijom (AC tehnika). Tribološko ispitivanje provest će se izlaganjem ispitnih uzoraka premaza udarnoj i abrazijskoj eroziji mlazom čestica Al₂O₃ u struji komprimiranog zraka. Na temelju svih provedenih ispitivanja donijet će se zaključak o mehaničkim, fizikalnim, korozijskim i tribološkim svojstvima NATO premaza RAL 6031 F9.

TEORIJSKI DIO

2. ZAŠTITNE PREVLAKE I PREMAZI NA KAROSERIJI VOZILA

2.1. Podjela zaštitnih prevlaka i premaza

Jedna od uobičajenih metoda za zaštitu limenih dijelova karoserije vozila od korozije, trošenja, mehaničkih i drugih oštećenja je nanošenje prevlaka i premaza. Oni sprječavaju i usporavaju pojavu korozije i trošenja, stvarajući zaštitnu barijeru između metalnih dijelova karoserije i agresivnog medija iz okoline. Slika 1 prikazuje glavnu podjelu prevlaka na organske (premazi) i anorganske (prevlake u užem smislu). Anorganske prevlake dalje se dijele na metalne i nemetalne prevlake.

Slika 1. Podjela prevlaka prema postupcima prevlačenja [2,3]

Svojstva prevlake ili premaza na metalnoj podlozi značajno ovise o sljedećim utjecajnim faktorima [4]:

- Stanju površine materijala nakon predobrade (npr. topografija površine, kemijski sastav površine, mehanička svojstva, greške na površini i itd.),
- 2) Parametrima postupka nanošenja prevlake ili premaza (npr. brzina nanošenja, temperatura osnovnog materijala, kontaminacija plinovima i ostalo),
- Prionjivosti prevlake na metalnu površinu (npr. stvaranje difuzijske zone između osnovnog materijala i površinskog sloja),
- Djelovanju okoline na sustav prevlaka podloga neposredno nakon nanošenja u fazi ohlađivanja ili sušenja (npr. korozijsko djelovanje, degradacija dodirne površine prevlake i podloge).

Za nanošenje kvalitetne prevlake ili premaza treba optimizirati djelovanje svih navedenih faktora kako bi se ostvarila optimalna zaštita karoserije od korozije, i oštećenja (ogrebotina, brazdi, ljuštenja, erozije tvrdim česticama i sl.), dekorativni izgled te ostale posebne funkcije (maskirni uzorak, difuzno raspršenje svjetlosti bez refleksije, postojanost na povišene temperature itd.).

Kvalitetna prevlaka za zaštitu metalne karoserije vozila od atmosferske korozije i umjerenog trošenja treba zadovoljiti sljedeće zahtjeve [5]:

- 1) Dobra prionjivost na osnovni materijal.
- 2) Postojanost na elektrokemijsku koroziju.
- 3) Dovoljna tvrdoća za otpornost na abraziju i udarnu eroziju.
- 4) Dovoljna žilavost (otpornost na ljuštenje).
- 5) Dobra kemijska postojanost na oksidaciju.
- 6) Hidrofobnost i samočisteća svojstva.
- 7) Neporoznost.
- 8) Prilagođenost podlozi.

2.2. Priprema metalnih površina za nanošenje prevlaka i premaza

Metalna površina je slojevite strukture te se na njoj uobičajeno nalazi sloj prljavštine, adsorbiranih plinova i sloj oksida koji čine vanjski površinski sloj. Ispod vanjskog sloja, nalazi se unutrašnji sloj koji je sastavljen od plastično deformiranog sloja i osnovnog metala. Struktura metalne površine može se opisat Shmaltz-ovim modelom rubnog sloja koji prikazuje Slika 2.

Slika 2. Shmaltz-ov model strukture rubnog sloja bez prevlake [6]

Prije nanošenja prevlake ili premaza, površinu metalnoga materijala treba temeljito oprati i očistiti. Cilj pripreme površine je uklanjanje nečistoća (npr. masne tvari, prašina, čađa i dr.), taloga (npr. korozijski produkti, okujina), postizanje tražene hrapavosti površine (tzv. kondicioniranje površine) i kemijska aktivacija za nanošenje prevlake ili premaza. Razlikuje se **vanjsko** (*ex situ*) **čišćenje** koje se provodi izvan postupka nanošenja i **unutarnje** (*in situ*) **čišćenje** površine koje se provodi kao sastavni dio postupka prevlačenja.

Vanjsko čišćenje površine metalnoga materijala treba što učinkovitije provesti kako bi proces unutarnjeg čišćenja bio kratkotrajniji i brži. Vanjsko čišćenje sastoji se od grubog i specijalnog čišćenja.

Grubo čišćenje metalnih površina se provodi sljedećim postupcima [7]:

- <u>Kemijskim otapanjem</u>, u kojem se primjenjuju vodene otopine kiselina i lužina (npr. H₃PO₄, HNO₃, NaOH, HCL, H₂SO₄ i ostalo) za skidanje debelih naslaga na površini (npr. za skidanje oksidnih slojeva).
- 2) <u>Abrazivnim čišćenjem</u>, pomoću abrazivnih alata (brusni papir, čelična vuna, jastuci za čišćenje), abrazivnih prahova u pasti ili tekućem mediju (SiC, dijamant, precipitirani kalcijev karbonat, CeO, pšenični škrob), udarajućih čestica u plinu velike brzine ili mlazu tekućine ili pare (parno brušenje, pjeskarenje), te pomoću abraziva kombiniranih s medijem za nagrizanje.
- <u>Kemijskim nagrizanjem,</u> koje se koristiti za uklanjanje površinskih slojeva oksida, za zatupljivanje oštrih vrhova površinskih pukotina ili za uklanjanje nečistoća koje su se snažno nalijepile na površinu metala.

 <u>Elektrokemijskim čišćenjem,</u> koje se sastoji od elektrokemijskog nagrizanja ili elektronagrizanja metala prolaskom električne struje u vodenim otopinama. Provodi se katodnim, anodnim kombiniranim (katodno-anodnim), te postupkom s izmjeničnom strujom.

Specijalno čišćenje metalnih površina provodi se pomoću tekućina ili para u kojima se otapaju ili uklanjaju nečistoće s površine uzorka. Otopine mogu sačinjavati: vodu ili smjese vode i alkohola, klorirana i klorofluorokarbonska (CFC) otapala poput trikloretilena (TCE), poluvodena sredstva za čišćenje te sapuni i deterdženti [5].

Unutarnje čišćenje površine metalnog materijala se provodi sljedećim postupcima [4]:

- 1) Čišćenjem plazmom ioniziranog inertnog plina (Ar) koja isparuje i otprašuje hlapljive nečistoće.
- Ionskim pročišćavanjem (engl. *ion scrubbing*) pomoću energije iona (N₂, H₂) ubrzanih u električnom polju.
- 3) Otprašivanjem i nagrizanjem u plazmi ioniziranih plinova (Ar, N₂, H₂).
- 4) Čišćenjem raspršivanjem.
- 5) Isparivanjem ili ablacijom nečistoća laserskim snopom.

2.3. Postupci nanošenja prevlaka

Metalne prevlake su anorganske prevlake koje se nanose na podlogu materijala fizikalnim, kemijskim i elektrokemijskim postupcima.

Fizikalni postupci nanošenja prevlaka jesu sljedeći [7]:

- 1) vruće uranjanje,
- 2) metalizacija prskanjem,
- 3) platiranje,
- 4) nataljivanje,
- 5) navarivanje,
- 6) oblaganje,
- 7) lemljenje i lijepljenje i itd.

Kemijski postupci nanošenja prevlaka jesu sljedeći:

- 1) ionska zamjena i
- 2) katalitička redukcija.

Elektrokemijski postupci prevlačenja podrazumijevaju primjenu galvanotehnike.

Najzastupljeniji postupak fizikalnog prevlačenja metalnih materijala u industrijskoj primjeni je **vruće uranjanje**, koje se temelji na skrućivanju filma na metalu podloge prethodno uronjenog u talinu metala prevlake. Rezultat nanošenja vrućim uranjanjem je prevlaka čija je debljina veća od prevlake nanošene postupkom galvanizacije.

2.3.1. Vruće pocinčavanje

Primjer vrućeg uranjanja u automobilskoj industriji je **vruće pocinčavanje** koje predstavlja moderan trend antikorozivne zaštite čelika. Čelični dijelovi karoserije se uranjaju u talinu cinka na temperaturi od 450 °C do 460 °C, pri čemu nastaje prevlaka cinka koja djeluje zaštitno stvaranjem vlastitih produkata korozije. Štoviše, prevlaka cinka djeluje i kao zaštitna anoda u korozijskom članku cink-elektrolit-čelik. Prije samog uranjanja u kadu s rastaljenim cinkom, čelični predmeti se pripremaju kako je prikazano Slikom 3.

Postupak vrućeg pocinčavanja provodi se u sljedeće četiri faze [8]:

1. U prvoj fazi površina materijala se čisti od svih nečistoća (masti, ulja, ostataka boje...) te se naknadno ispire vodom i kiselinom u cilju uklanjanja ostataka hrđe i organskih nečistoća.

2. U drugoj fazi, podloga se temeljito čisti od oksidnih i drugih filmova, postupkom fluksiranja, kako bi se spriječio nastanak međusloja oksida između podloge i prevlake cinka.

3. U trećoj fazi predmeti se uranjaju u kupku rastaljenog cinka u kojoj se na podlogu taloži prevlaka cinka debljine od 50 μm do 90 μm.

4. U četvrtoj fazi prevučena površina se suši i prema potrebi dodatno obrađuje.

Slika 3. Postupak vrućeg pocinčavanja [8]

U postupku vrućeg pocinčavanja, osim što nastaje pocinčana površina, stvara se i intermetalna faza željeza i cinka visoke tvrdoće i žilavosti. Na donjoj slici prikazana je mikrostruktura površinskog sloja nakon pocinčavanja čelika. Na limovima za automobilske karoserije prevlaka cinka je uobičajeno debljine između 6 µm do 10 µm. Intermetalne faze koje se stvaraju između Zn prevlake i čelika obično sadrže oko 6 % Zn.

Slika 4. Mikrostruktura pocinčane prevlake [9]

U odnosu na ostale toplinske postupke prevlačenja, vruće pocinčavanje posjeduje sljedeće prednosti [8]:

- 1) pouzdanost kvalitete prevlake,
- 2) dugotrajna zaštita čelika,
- 3) ravnomjerna debljina prevlake,
- 4) zaštita na svim mjestima metalne konstrukcije,
- 5) mogućnost primjene zaštitinih i dekorativnih premaza (dupleks sustav),
- 6) povoljna cijena,
- 7) povoljna mehanička svojstva,
- 8) dobra deformabilnost i
- 9) visoka produktivnost obrade.

Međutim, nedostatak vrućeg pocinčavanja je veliki gubitak rastaljenog cinka i ovisnost svojstava prevlake o temperaturi kupke za pocinčavanje. Na preniskoj temperaturi pocinčavanja se dobivaju nejednolike i predebele prevlake, dok je na previsokoj temperaturi kupke slaba prionjivost prevlake. Nadalje, dimenzije metalne konstrukcije određene su veličinom kupke za pocinčavanje. Prevlaku cinka se treba dodatno zaštititi premazima ako će biti izložena okolini s pH-vrijednostima ispod 5 ili iznad 10 [8].

2.3.2. Kromatiranje i kromiranje

Krom se može nanositi <u>kemijskim i elektrokemijskim postupkom</u> (galvanizacijom). **Kromatiranje** (engl. *chromating*) predstavlja kemijsko prevlačenje koje se provodi uranjanjem ili naštrcavanjem površine vodenom otopinom kromne kiseline ili kromove soli. Samim postupkom nastaje konverzijska prevlaka s heksavalentnim kromom čija je primjena u ekološkom, zdravstvenom i ekonomskom aspektu ograničena. Iako omogućuju zaštitu u širokom području pH-vrijednosti i ima mogućnost samozacjeljivanja (engl. *self-healing*) prevlake, Cr (VI) je iznimno kancerogen i ekološki neprihvatljiv. Shodno tome, razvijaju se alternativni postupci nanošenja kemijskih spojeva, poput trovalentnog kroma i cerijevog (III) klorid heptahidrata [10].

Kromiranje (engl. *chrom plating*) predstavlja elektrokemijsko prevlačenje koje se odnosi na taloženje prevlaka na metale elektrolizom. Osim visoke otpornosti na koroziju, povišenu tvrdoću i otpornost na trošenje, kromirani površinski slojevi služe i za dekorativnu metalizaciju u nekoliko oblika, poput svijetlog i tamnog kroma. Kromirani površinski slojevi ovise o međusloju nikla debljine od 10 μm do 20 μm. Stoga, za svijetle kromirane slojeve, sloj nikla zahtijeva izravnatu površinu koja se postiže dodatkom organskih aditiva, dok za tamne kromirane slojeve sloj nikla zahtijeva dodatak uljnih kapljica kako bi se dobila glatka struktura. U oba slučaja ovi dodaci će utjecati na svojstva završnog premaza (posebno na njegovu boju). Naspram dekorativnog, tvrdim kromiranjem dobiva se 100 - 1000 puta deblja prevlaka i primarna svrha joj je povećanje tvrdoće i otpornosti prema trošenju. Štoviše, automobilski dijelovi koji zahtijevaju visoku otpornost na trošenje kao što su bregaste osovine, nosači, ventili i sl. su prevučeni tvrdim kromom visoke tvrdoće od 1100 HV [11].

2.3.3. Dupleks postupci

Budući da vruće pocinčane površine ne pružaju dovoljnu zaštitu od korozije, potrebno je nanijeti dodatnu prevlaku na prevlaku cinka, prilikom čega nastaje dupleks sustav zaštite površina. Dupleks prevlake se proizvode kombinacijom dvaju ili više postupaka prevlačenja koji slijede jedan iz drugoga. Pri tome nastaju slojevi koji nemaju istaknutu granicu s materijalom podloge, nego kontinuirani prijelaz iz osnovnog materijala u prevlaku. Stoga, dupleks prevlake opisuje dobra adhezivnost prevlake na podlogu i kombinacija svojstava koja se ne može postići pojedinačnom primjenom postupkom prevlačenja. Naspram ostalih prevlaka koje imaju problem prionjivosti i povezanosti s materijalom podloge, dupleks prevlake stvaraju difuzijsku zonu s materijalom podloge te samim time i umanjuju nedostatke

konvencionalnih prevlaka. Štoviše, difuzijska zona implicira stupnjeviti sastav od prevlake do materijala podloge te njihov blagi prijelaz tvrdoće. U suprotnome, ako je prijelaz tvrdoća između prevlake i materijala podloge diskontinuiran (njihove tvrdoće se uvelike razlikuju), dolazi do generiranja velikih mehaničkih naprezanja. Primjerice, dupleks prevlake su znatno jače od samih organskih prevlaka (premaza), identičnog kemijskog sastava, zbog kompenziranog mehaničkog naprezanja u međuzoni. Štoviše, dupleks prevlake su manje podložne nastajanju šupljina i uključaka nego premazi zbog otpornosti na samo odvajanje od podloge i ljuštenje. Slika 5 prikazuje kontinuirani prijelaz tvrdoće kod dupleks prevlaka i diskontinuirani (grubi) prijelaz tvrdoće od premaza do osnovnog materijala [12].

Udaljenost od površine

Slika 5. Usporedba profila tvrdoće premaza (lijevo) i dupleks prevlake (desno) [12]

Klasičan primjer dupleks prevlaka za automobilsku industriju su prevlake od legure cinka i željeza proizvedene toplinskom difuzijom i legiranjem galvanski nanešene prevlake cinka (tzv. odžarene galvanske prevlake). Ove prevlake debljine između 7 µm do 10 µm razvijene su 1970-tih godina za primjenu na limovima za karoserije vozila, koji će se spajati točkastim zavarivanjem i potom zaštititi od korozije premazima. Nakon galvanskog nanošenja cinka u kontinuiranoj proizvodnoj liniji, prevučeni limovi prolaze kroz elektroindukcijsku ili plamenu peć i kratkotrajno se žare na temperaturi između 500 °C do 550 °C. Npr. nakon žarenja na 550 °C/10 s postiže se legirana Zn-Fe prevlaka s oko 10 % Fe. U ovim prevlakama uobičajeni maseni udjel željeza je od 9 % do 12 % [9]. Dobra prionjljivost boje na odžarene galvanske Zn-Fe prevlake rezultat je povećane hrapavosti površina koja nastaje izlučivanjem intemetalnih faza Zn-Fe (delta i zeta faza). Na donjoj slici prikazana je mikrostruktura Zn-Fe prevlake s dvije

varijante izlučenih intermetlnih faza. Zeta faza sadrži oko 6 % Fe, a delta faza oko 10 % do 12 % Fe. Kraćim držanjem na temperaturi žarenja izlučuje se zeta faza, dok se dužim držanjem potiče izlučivanje delta faze [8].

Slika 6. Mikrostruktura Zn-Fe prevlake s dvije varijante izlučenih intermetalnih faza: a) mikrostruktura s gama, delta i zeta fazom, b) mikrostruktura uglavnom sastavljena od delta faze [9]

Nakon galvanski odžarenih Zn-Fe prevlaka, za zaštitu limova karoserije vozila razvijene su Zn-Al-Fe i Zn-Cr-Fe odžarene galvanske prevlake. Također, limovi karoserije vozila s cinkovim prevlakama prije nanošenja zaštitnih premaza se mogu dodatno prevlačiti fosfatiranjem pri čemu nastaju cink-fosfatne prevlake.

Novija istraživanja [13] dokazala su značajne prednosti dupleks, antikorozijskih prevlaka Zn-Ti, Zn-Cr i Zn-Mn, proizvedenih postupkom fizikalnog prevlačenja iz parne faze (engl. *Physical vapour Deposition*, PVD) potpomognuto nanošenjem ionskim snopom (engl. *Ion-Beam Assisted Deposition*, IBAD). Nakon nanošenja prevlake na karoseriju automobila, slijedila su razna ispitivanja koja su obuhvatila i ispitivanja erozijskog trošenja i ciklička ispitivanja korozije vozila u propisanim uvjetima vožnje. Nakon provednih ispitivanja, uočena su rupičasta oštećenja u prevlaci najmanje širine kod dupleks prevlaka Zn-Ti, Zn-Cr i Zn-Mn. Korištenjem PVD legirnih prevlaka reducirana je debljina prevlake za 15 % te manje je učestala pojava crvene hrđe u odnosu na polazne prevlake, što je ekonomična i ekološki prihvatljiva alternativa inženjerstva površina u automobilskoj industriji [14].

2.3.4. Fosfatiranje

Najčešće primjenjivana anorganska nemetalna prevlaka u automobilskoj industriji je konverzijska **fosfatna prevlaka**, koja se nanosi na površinu čelične karoserije prije nanošenja ulja ili voštanog premaza ili laka. U primjeni se koristi hladno, vruće i elektrokemijsko fosfatiranje. Prema kemijskom sastavu ova prevlaka može sadržavati fosfate željeza, mangana

ili cinka. Osim željeza moguće je fosfatirati aluminij, bakar i njegove legure, nikal, kositar, kadmij i cink.

<u>Vruće fosfatiranje</u> se provodi na temperaturi do približno 100 °C s nedostatkom velikog utroška energije i složenim održavanjem kupke. Tijekom ovog postupka dolazi do čestog isparavanja vode koje je nemoguće nadoknaditi, jer bi dovelo do ulaska uzburkanog mulja s dna kupke u prevlaku. Stoga se za prevlačenje velikih površina uobičajeno provodi <u>hladno fosfatiranje</u> na sobnoj temperaturi [15].

Hladno fosfatiranje se provodi u otopinama fosfata i fosforne kiseline kao kemijski i elektrokemijski postupak. U njemu se na površini oblikuje porozni zaštitni sloj koji služi kao vezivna podloga za nanošenje premaza i laka. Elektrokemijsko fosfatiranje, u odnosu na kemijsko, ne daje kvalitetnije prevlake te se uobičajeno provodi kemijsko fosfatiranje [15].

2.4. Nanošenje premaza

2.4.1. Premazi za karoserije civilnih vozila

Jedna od najviše zastupljenih (štite oko 75 % ukupnih metalnih površina) i najjeftinijh postupaka zaštite metalnih površina je zaštita organskim prevlakama tj. premazima. Premazi su organska tekuća zaštitna sredstva koja nakon sušenja stvaraju na površini predmeta čvrsti zaštitni sloj.

Svojstva premaza trebaju zadovoljiti sljedeće uporabne zahtjeve [5]:

- 1) nepropustljivost za korozijske čimbenike (tzv. barijerni efekt),
- 2) aktivno antikorozijsko djelovanje,
- 3) kemijska inertnost,
- 4) kompaktnost,
- 5) minimalna apsorpcija,
- 6) dekorativnost,
- 7) prionjivost na podlogu i itd.

Slika 7 prikazuje podjelu sustava premaza sa svojstvima pojedinih slojeva premaza.

Slika 7. Podjela sustava premaza [5]

Prije samog nanošenja premaza, metalnu podlogu treba očistiti odgovarajućim postupcima grubog i specijalnog čišćenja. Nanošenje premaza se obavlja u više slojeva koji se potpuno ili djelomično suše prije nanošenja sljedećeg sloja. Međusobna povezanost slojeva mora biti kompatibilna, stoga se posebna pozornost postavlja na kompatibilnost između podloge i premaza, između veziva i otapala/razrjeđivača te na kompatibilnost između punila, pigmenta i aditiva.

Premazi se nanose različitim postupcima, a obuhvaćaju nanošenje [16]:

- <u>četkama</u> (kistovima) koje uzrokuju neravnomjernu debljinu premaza i narušeni estetski izgled površine premaza.
- 2) lopaticama.
- 3) valjcima gdje nastaje glađi i ravnomjerniji sloj od nanošenja premaza četkama.
- 4) <u>prskanjem boja i lakova pomoću stlačenog zraka na sobnoj ili povišenoj temperaturi</u> bezračnim ili elektrostatičkim postupkom.
- 5) <u>uranjanjem.</u>
- 6) prelijevanjem (većinom rešetkasti i rebrasti proizvodi).
- <u>elektroforezom</u> prilikom čega se nanosi premaz na metal u vodenim disperzijama ili otopinama premaza s pozitivno ili negativno nabijenim česticama polimernog veziva. Navedenim postupkom se nanose samo temeljni premazi i zasniva se na principu privlačenja suprotnih naboja.

Prije nanošenja sljedećeg premaza, treba osušiti prethodni sloj. Mehanizam sušenja premaza se sastoji od [5]:

- 1) fizikalnog sušenja gdje se filmovi formiraju hlapljenjem otapala.
- 2) kemijskog sušenja koji se sastoji od:
 - a) <u>oksidacijskog sušenja:</u> konačni film se stvara hlapljenjem otapala i reakcijom kisika i veziva.
 - b) <u>dvokomponentnog sušenja</u>: film nastaje naknadnom kemijskom reakcijom između veziva i sredstva za otvrdnjivanje.
 - c) <u>druge polimerizirajuće reakcije:</u> npr. reakcijom veziva s vlagom u zraku.

Zaštita premazima u automobilskoj industriji ima estetsku i funkcionalnu ulogu (otpornost na koroziju, tribološka djelovanja, vremenske utjecaje). Dijelovi vozila koji zahtijevaju značajnu zaštitu od korozije su kočione obloge, dijelovi kotača, naplatci i karoserija. Uporabom vozila, prednji i bočni dijelovi karoserije podložni su abrazijsko-erozijskom trošenju tj. oštećenjima od udaraca sitnog pijeska i prskanja kapljicama blata, mulja, i sl. Dijelovi karoserije iznad kotača se mogu dodatno pojačati plastičnim ili bitumenoznim premazom kako bi se spriječilo abrazijsko i erozijsko trošenje. Neadekvatni konstrukcijski oblici omogućuju nakupljanje tekućine i blata koji pospješuju koroziju, posebno u zimskim mjesecima, uz dodatno korozijsko djelovanje vodenih otopina soli od posipa na cesti [17].

Nanošenje površinske zaštite organskim premazima je najčešće automatiziran postupak, u kojem se karoserija prenosi na nosaču kroz proizvodnu liniju ograđenu tunelima. Uobičajena zaštita karoserije vozila je zaštita dupleks slojem. Na donjoj slici je prikazan postupak nanošenja dupleks sustava premaza za antikorozivnu zaštitu koji se sastoji od pripreme (čišćenje i fosfatiranje), elektroplatiranja, nanošenja temeljnog, dodatnog i završnog premaza te naposljetku završnog testiranja što prikazuje Slika 8 [17].

Slika 8. Postupak nanošenja premaza u automobilskoj industriji [17]

Postupak pripreme sastoji se od čišćenja nečistoća na metalnoj površini i odmašćivanja kako bi se olakšala prionjivost sloja na metalnu površinu. Nakon čišćenja provodi se fosfatiranje površine, stvaranjem prevlake Zn₃(PO₄)₂, pri čemu se stvara konverzijski sloj fosfatnih kristala s ciljem povećanja otpornosti na koroziju i čvrstog prianjanja premaza. Uranjanjem karoserije u otopinu za fosfatiranje stvara se površina glatke sive mat boje, nakon čega se površina uranja u vodu i suši kako bi se uklonili ostaci fosfatiranih spojeva, poput Cl i Na - soli. Nakon predobrade slijedi elektroplatiranje, tj. nanošenje temeljnog premaza (tzv. "E-premaz") čija je primarna uloga povećanje korozijske otpornosti. Postupak elektroforeze se temelji na uranjanju karoserije vozila u otopinu boje i laka u kojima se nalaze pozitivno ili negativno nabijene čestice polimernog veziva s pigmentima te suprotno nabijenim molekulama vode. Djelovanjem električnog polja, čestice premaza putuju prema suprotno nabijenom obratku, dok voda putuje u suprotnom smjeru. Nakon taloženja, karoserija se prenosi u peć na stvrdnjavanje i sušenje premaza (na temperaturi oko 170 °C) nakon čega se na površinu nanosi sintetski vosak (engl. Sealant). Osim korozijske zaštite, sintetski vosak omogućava dodatna funkcionalna svojstva premaza što je otpornost na buku, vibracije i ogrebotine. Polivinil klorid (PVC) i akril/uretan se smatraju najefektivnijim sintetskim voskovima u prevenciji nastajanja hrđe. Potom slijedi

nanošenje vezivnog premaza (engl. *Primer*) koji obuhvaća antikorozivne pigmente i povezanost E-premaza s ostalim slojevima olakšavajući njihovo taloženje. Na vezivni premaz se nanosi temeljni (engl. *Base coat*) i bezbojni lak (engl. *Clear coat*), elektrostatskim postupkom pomoću rotirajućeg pištolja. Ovi slojevi laka predstavljaju pokrivne premaze i daju boju vozila. Znanstvenim istraživanjem je dokazano da je područje između vezivnog premaza i temeljnog laka najviše osjetljivo na ogrebotine čiji je razvoj potaknut nastankom pukotina u sloju bezbojnog laka. Štoviše, bezbojni premaz štiti vozilo od vanjskih uvjeta, ogrebotina, kemikalija, UV zračenja i slično. Nakon nanošenja pokrivnog premaza, prevučena površina se suši u peći i potom hladi do 23 °C, čime završava proces nanošenja zaštitnog premaza. Nakon sušenja premaza provodi se kontrola kvalitete premaza te se naposljetku karoserija vozila premaže voskom i upućuje na daljnju montažu vozila [17].

2.5. Maskirni premazi za vojna vozila

Ovisno o zadaći, karoserija vojnih vozila se izlaže agresivnijim okolišnim uvjetima i opterećenjima u odnosu na vozila u civilnoj uporabi. Stoga premazi za karoseriju vojnih vozila trebaju zadovoljiti vojne preporuke i norme koji propisuju izbor premaza koji će omogućiti visoku mehaničku otpornost, stabilnosti nijanse i tona boje te površinsku tvrdoću i korozijsku postojanosti premaza u različitim ekstremnim klimatskim uvjetima [18].

U 1980-ima NATO je spoznao da bi neprijateljske snage tijekom rata mogle lako identificirati koje zemlje djeluju protiv njih jednostavnim promatranjem maskirnih uzoraka na vozilima. To je bilo moguće jer je gotovo svaka zemlja razvila i koristila vlastite, jedinstvene boje i uzorke. Zaključeno je da bi se maskirna boja trebala standardizirati. Stoga, norme za maskirne premaze vojnih vozila u NATO zemljama propisane su standardiziranim europskim registrom boja oznake RAL. Različite industrije koriste RAL kako bi standardizirale nazive boja koje će primijeniti na svoje proizvode. Službeni RAL sustav usklađivanja boja izvorno je razvijen u Njemačkoj 1927. godine od strane Njemačkog odbora za uvjete isporuke i osiguranje kvalitete "**R**eichs-**A**usschuss für Lieferbedingungen und Gütesicherung" od čega i dolazi njegov naziv. Razvoj je započet sa zbirkom od 40 boja "RAL 840" koja se danas sastoji od zbirke s 210 boja. Svaka boja ima svoj četveroznamenkasti kod pri čemu svaka znamenka ima svoje značenje. Prva znamenka odnosi se na nijansu boje, druga je svjetlina, treća je zasićenost, a četvrta je prozirnost [1].

Slika 9 prikazuje devet skupina boja označene brojčano od 1000 do 9000.

RAL 1000	RAL 1023	RAL 3001	RAL 4001	RAL 5010	RAL 6004	RAL 6022	RAL 7010	RAL 7038	RAL 8015
RAL 1001	RAL 1024	RAL 3002	RAL 4002	RAL 5011	RAL 6005	RAL 6024	RAL 7011	RAL 7039	RAL 8016
RAL 1002	RAL 1027	RAL 3003	RAL 4003	RAL 5012	RAL 6006	RAL 6025	RAL 7012	RAL 7040	RAL 8017
RAL 1003	RAL 1028	RAL 3004	RAL 4004	RAL 5013	RAL 6007	RAL 6026	RAL 7013	RAL 7042	RAL 8019
RAL 1004	RAL 1032	RAL 3005	RAL 4005	RAL 5014	RAL 6008	RAL 6027	RAL 7015	RAL 7043	RAL 8022
RAL 1005	RAL 1033	RAL 3007	RAL 4006	RAL 5015	RAL 6009	RAL 6028	RAL 7016	RAL 7044	RAL 8023
RAL 1006	RAL 1034	RAL 3009	RAL 4007	RAL 5017	RAL 6010	RAL 6029	RAL 7021	RAL 7045	RAL 8024
RAL 1007	RAL 1037	RAL 3011	RAL 4008	RAL 5018	RAL 6011	RAL 6032	RAL 7022	RAL 7046	RAL 8025
RAL 1011	RAL 2000	RAL 3012	RAL 4009	RAL 5019	RAL 6012	RAL 6033	RAL 7023	RAL 7047	RAL 8028
RAL 1012	RAL 2001	RAL 3013	RAL 4010	RAL 5020	RAL 6013	RAL 6034	RAL 7024	RAL 8000	RAL 9001
	RAL 2002	RAL 3014	RAL 5000	RAL 5021	RAL 6014	RAL 7000	RAL 7026	RAL 8001	
	RAL 2003	RAL 3015	RAL 5001	RAL 5022	RAL 6015	RAL 7001	RAL 7030	RAL 8002	RAL 9003
	RAL 2004	RAL 3016	RAL 5002	RAL 5023	RAL 6016	RAL 7002	RAL 7031	RAL 8003	RAL 9004
	RAL 2008	RAL 3017	RAL 5003	RAL 5024	RAL 6017	RAL 7003	RAL 7032	RAL 8004	RAL 9005
RAL 1017	RAL 2009	RAL 3018	RAL 5004	RAL 6000	RAL 6018	RAL 7004	RAL 7033	RAL 8007	RAL 9010
	RAL 2010	RAL 3020	RAL 5005	RAL 6001	RAL 6019	RAL 7005	RAL 7034	RAL 8006	RAL 9011
RAL 1019	RAL 2011	RAL 3022	RAL 5007	RAL 6002	RAL 6020	RAL 7006	RAL 7035	RAL 8011	RAL 9016
RAL 1020	RAL 2012	RAL 3027	RAL 5008	RAL 6003	RAL 6021	RAL 7008	RAL 7036	RAL 8012	RAL 9017
	RAL 3000	RAL 3031	RAL 5009	Slight color de expected due to th	viations may be re printing process.	RAL 7009	RAL 7037	RAL 8014	RAL 9018

Slika 9. RAL skala [19]

Osim klasične RAL ljestvice, razvijene su ljestvice boja RAL F9, RAL Effect, RAL Digital, RAL Colour Feeling i RAL Design. Maskirni premazi su iz skupine RAL F9 te se uobičajeno kombiniraju kao sljedeće tri boje, prikazane na vojnom vozilu na Slici 10 [20]:

- 1) RAL 6031-F9- brončano zelena.
- 2) RAL 8027-F9- kožasto smeđa.
- 3) RAL 9021-F9-katranasto crna.

Slika 10. Karakteristične RAL boje za NATO vojna vozila [21]

Značajke maskirnih boja iz skupine RAL-F9 jesu slijedeće [22]:

- izvrsna vodootpornost,
- izvrsna postojanost sjaja i boje,
- izvrsni kamuflažni učinak u bliskom infracrvenom spektru,
- skrivene su od infracrvenih uređaja za noćno gledanje,
- dobra korozijska zaštita u ekstremnim klimatskim uvjetima,
- dobra kemijska otpornost,
- visoka površinska tvrdoća,
- dobra fizikalna svojstva i
- prikladnost za različite metalne podloge nakon odgovarajuće preobrade.

Brojni proizvođači uveli su odgovarajuće preporuke i norme za ispunjavanjem odgovarajućih standarda premaza u primjeni vojne industrije. Primjerice, kvaliteta RAL 6031-F9, proizvođača RIPOL i Brillux Industrial Coatings, dokazana je ispunjavanjem zahtjeva Bundeswehr TL 8010-0002 Class IV Type 3, shodno vojnom standardu VG 95211 čime je osigurana njena kvaliteta [23].

Nadalje, neki od značajnih STANAG-a i referentnih dokumenata za standardizaciju maskirnih boja vojnih vozila su [24]:

- (1) NATO Ultraviolet Reflective (UVR) White Colour For the Camouflage Of Military Equipment In Snow Environments Agreement (STANAG 2835),
- (2) Removable Paints for Camouflage (STANAG 2836) i
- (3) Reference Document of Colours for Disruptive Camouflage for Military Equipment in use in NATO (AEP-31).

U eksperimentalnom dijelu rada su uspoređena svojstva maskirnog premaza na uzorcima izrezanim iz vanjske strane vrata kamiona TAM 150 T11 BV-6x6, izuzetih nakon intenzivne višegodišnje uporabe, sa svojstvima novog maskirnog premaza nanesenog na pocinčane i ne pocinčane uzorke, izrađene od komercijalno dostupnog lima kao metalne podloge.

2.6. Opće karakteristike vojnog vozila TAM 150 T11 BV-6x6

Kamion TAM 150 T11 BV-6x6, prikazan na Slici 11, je terensko motorno vozilo višestruke namjene opremljen motorom velike snage i transmisijom s pogonom na sve kotače, koji omogućuju bržu vožnju te sposobnost savladavanja strmih nagiba i zahtjevnih terena. Opremljen je specijalnim terenskim pneumaticima u kojima tlak zraka za vrijeme vožnje varira od 0,7 do 3,5 bar što doprinosi dobroj mobilnosti vozila.

Slika 11. Vojno vozilo TAM 150 T11 BV-6X6 [25]

Nazivna oznaka automobila ima sljedeće značenje[26]:

- TAM "Tovarna automobilov i motorjev Maribor"; Tvornica automobila i motora u Mariboru;
- 150 snaga motora od 150 KS;
- T 11 najveća dozvoljena ukupna masa od 11 t;
- B trambus kabina (kabina iznad motora);
- V automobili s vitlom;
- 6x6 pogona na 6 kotača, svi su pogonski.

Vozilo je namijenjeno za:

- Prijevoz tereta do 5 t korisne nosivosti po putu te do 3 t korisne nosivosti po terenu;
- Vuča oruđa do 3,6 t i prijevoz posade s borbenim kompletom za oruđe do 3 t ukupne mase;
- Vuča prikolice mase 4,5 t na terenu i 6,5 t na putu;
- Prijevoz ljudstva (18+2) s kompletnom opremom.

Podvozje ovog kamiona sa zatvorenom kabinom koristi se za nadogradnju tehničke pokretne radionice, kabine za ugradnju sredstava veze, informativnog centra, radarske kabine, cisterne za dekontaminaciju, cisterne za gorivo te kao vatrogasni automobil za gašenje požara suhim prahom. U Tablici 1, prikazani su tehnički podaci za vozilo TAM 150 T11 BV-6x6.
Dimenzije i geometrijski parametri			
Dužina automobila	6550 mm		
Širina sa sklopljenim retrovizorima	2275 mm		
Visina neopterecenog automobila	2890 mm		
Težinski parametri			
Masa automobila spremnog za vožnju	6400 kg		
Maksimalno dozvoljena ukupna masa	11400 kg		
Korisna nosivost na putu	5000 kg		
Korisna nosivost na terenu	3000 kg		
Kapacitet prijevoza ljudstva	18+2		
Uporabne karakteristike			
Maksimalna brzina automobila	90,4 km/h		
Brzina automobila na terenu nagiba 6-8%	24 km/h		
Potrošnja goriva na 100 km	24-301		
Zapremina rezervoara goriva	1501		

Fablica 1. Tehnički podaci v	ozila TAM 150 T11 BC-6x6 [26]
------------------------------	-------------------------------

Postupak nanošenja maskirnog premaza na nove dijelove karoserije, u proizvodnji vojnih vozila, zaštićen je od javne objave patentnom zaštitom proizvođača. Postupak nanošenja maskirnog premaza na obnovljene dijelove karoserije također je zaštićen Pravilnikom o tajnosti podataka obrane. Za javnu objavu je dozvoljen opći opis postupka nanošenja maskirnog premaza na metalne dijelove karoserije koji se sastoji od slijedećih pet faza:

- 1. Pripreme površine prema međunarodnim normama ISO 12944 i ISO 8501, koja se sastoji od odmašćivanja organskim otapalima i čišćenja mlazom abraziva.
- 2. Nanošenja temeljnog premaza RAL 7032 s učvršćivačem.
- 3. Matiranje temeljnog premaza.
- 4. Nanošenja završnog premaza RAL 6031 F9 s učvršćivačem.
- 5. Sušenja premaza na zraku ili u peći.

3. PROCESI KOROZIJE I TROŠENJA

Namjena vojnih vozila usredotočena je na ispunjenje zadaća koja uobičajeno obuhvaćaju vožnju po raznim nepristupačnim terenima u svim vremenskim i klimatskim uvjetima. Ovakva uporaba dovodi do povećanih opasnosti od pojave korozije, trošenja te mehaničkih, toplinskih i degradacijskih oštećenja premaza na karoseriji.

3.1. Atmosferska korozija

Ako je motorno vozilo tijekom jednog duljeg vremenskog intervala izloženo nepovoljnim atmosferskim uvjetima, dolazi do spontanog razaranja materijala pojavom **atmosferske korozije**. Budući da su vojna vozila često smještena na otvorenom parkirnom mjestu, atmosferska korozija predstavlja najučestaliji oblik korozije. Brzina korozije ovisi o okolišu u kojem se vozilo nalazi (industrijski, gradski, morski ili ruralni) i primjenjenoj korozijskoj zaštiti.

Prema stupnju vlažnosti okoliša atmosferska korozije se dijeli na:

- mokru koroziju (okoliš s 100%-tnom vlažnosti), u kojoj je metal potpuno uronjen u elektrolit koji izaziva elektrokemijsku koroziju,
- 2) vlažnu koroziju u kojoj je relativna vlažnost zraka manja od 100%,
- 3) suhu atmosfersku (kemijsku) koroziju koja nastaje u odsutnosti vlage.

Najveća brzina elektrokemijske korozije metalnih materijala pojavljuje se u zagađenoj gradskoj atmosferi, a najmanja u suhom i čistom okolišu. Na tijek atmosferske korozije značajno utječu sljedeći čimbenici [27]:

- Sastav metala ili legure. Primjerice, dodavanjem kroma, materijalu se poboljšava otpornost na koroziju te trošenje.
- 2) Sastav i fizikalna svojstva elektrolita.
- 3) Sastav atmosfere (geografski položaj).
- 4) Temperatura.
- 5) Debljina sloja elektrolita.
- 6) Prethodno nastali produkti korozije.

<u>Prema mehanizmu procesa</u>, atmosferska korozija je elektrokemijski redoks-proces jer se zbiva uz oborine koje svaraju vodeni adsorbat ili kondenzat na površini metala. Redoks-proces (redukcijsko-oksidacijski proces) u sustavu metal-elektrolit. Jedan je od najraširenijih oblika

korozije metalnih materijala koji nastaje na površini metala zbog lokalno uspostavljenih razlika elektrokemijskog potencijala ili između dvaju metala različitih elektrokemijskih potencijala uronjenih u elektrolit. Pri tome dolazi do oksidacije metala kao donora elektrona u slobodni kation (ionizacija metala) i redukcije oksidansa (depolarizatora ili akceptora elektrona). Uvjeti za početak elektrokemijske korozije mogu biti nehomogenosti na granici metal/elektrolit nastali zbog [28]:

- 1) nehomogenosti čvrste faze (metala),
- 2) nehomogenosti medija (elektrolita) i
- 3) nejednakosti fizikalnih uvjeta na faznoj granici.

Slika 12 prikazuje proces nastanka elektrokemijske korozije u kojoj anodni proces karakterizira oksidacija reducensa, a katodni dio redoks reakcije karakterizira redukcija vodikovih iona, odnosno izdvajanje vodika.

KATODNI PROCES:

TROŠENJE ELEKTRONA:
a)- VODIKOVA DEPOLARIZACIJA: 2e⁺+ 2H⁺ → 2H → H₂ ili
b)- KISIKOVA DEPOLARIZACIJA: O₂+2H₂O+ 4e^{*} → 4OH^{*}
KATODNI + ANODNI PROCES = PROCES KOROZIJE

Slika 12. Shematski prikaz elektrokemijske korozije [28]

<u>Prema geometriji korozijskog razaranja</u> (oblik i raspodjela na površini materijala), razlikuju se tri pojavna oblika relevantnih za koroziju karoserije vozila: opća korozija, korozija u procijepu i lokalna korozija.

Opća korozija (engl. *uniform corrosion*) karakterizira ravnomjerno smanjenje debljine metala pri čemu je čitava površina materijala izložena agresivnom mediju. Ovo je najrašireniji oblik korozije koji je najmanje opasan jer se sam proces korodiranja lako prati i može se predvidjeti kada treba određeni element popraviti ili ga u potpunosti zamijeniti novim [29]. Opća korozija se uglavnom pojavljuje na mjestima oštećenih zaštitnih prevlaka na velikim plohama (limovima) te zahvaća čitavu izloženu površinu materijala, a može biti [28]:

- <u>Ravnomjerna opća korozija</u>, prikazana na Slici 13.a), najmanje je opasna zbog predvidljivosti.
- <u>Neravnomjerna opća korozija</u>, prikazana na Slici 13.b), opasnija je od ravnomjerne opće korozije.

Slika 13. Opća korozija: a ravnomjerna, b neravnomjerna: A-površina metala prije korozije, Bpovršina metala poslije korozije, M-metal [28]

Korozija u procijepu (engl. *crevice corrosion*) nastaje u uskim površinskim pukotinama ili u procijepima materijala istih korozijskih potencijala u kojima se nakupljaju nečistoće te povećava koncentracija agresivnih čimbenika. Uzrok nastanka može biti i neravnomjerna raspodjela kisika pri čemu su anode smještene na manje pristupačnim mjestima od katoda, pa se nazivaju člancima diferencijalne aeracije. Pojavljuje se na mjestima zavarivanja (točkasti zavari, nezavareni korijen, naštrcane kapi oko zavara) te na dosjednim plohama (preklopi, spojni sustavi, brtve, ležaji). U cilju njene preventivne zaštite potrebno je izbjegavati isprekidane i preklopne spojeve te težiti prikladnijoj konstrukcijskoj izvedbi [28]. Slika 14 prikazuje proces nastanka korozije u procijepu.

Slika 14. Proces nastanka korozije u procijepu [28]

Lokalna korozija je najčešći oblik elektrokemijske korozije koji zahvaća samo neke dijelove izložene površine materijala. Ona se može podijeliti na pjegastu, rupičastu, potpovršinsku, i kontaktnu koroziju. Čimbenici nastanka lokalne korozije su tri elementa: medij (povišena temperatura, pristupačnost oksidansa, koncentracija kloridnih iona i itd.), materijal (segregacije, uključci, granice zrna i itd.) te mehanički čimbenik (statička i dinamička naprezanja) [28].

<u>Pjegasta korozija</u> zahvaća samo plitko anodna mjesta na metalnoj površini te je ograničena na pojedine veće dijelove površine [28]. Površina metala s pjegastom korozijom prikazana je na Slici 15.a).

<u>Rupičasta korozija</u> (engl. *pitting*) ili jamičasta korozija je lokalni oblik korozije koji nastaje na samo nekim izloženim površinama materijala. Nakon određenog vremena korozijskog djelovanja, nastaje "jamica" kružnog oblika koja je veće širine od one na površini materijala. Jedan je od najopasnijih oblika korozije jer se teško može predvidjeti i spriječiti te brzo prodire u materijal bez vidljivog gubitka mase. Uzrok njenog nastanka su nehomogenost, nakupine mikroorganizama, hrapavost površine, posljedice zavarivanja, vodena otopina s halogenidnim ionima koji razaraju pasivni film i itd. Slika 15.b) prikazuje rupičastu koroziju.

Potpovršinska korozija jednim dijelom nastaje širenjem žarišta rupičaste korozije u dubinu metala pri čemu dolazi do njegovog raslojavanja. Napada mehanički valjane metale koji su u dodiru s morskom vodom i kiselinama. Raspoznaje se po pojavi mjehura na površini materijala koji nastaju zbog porasta čvrstih korozijskih produkata u unutrašnjosti čiji je volumen veći od volumena uništenog materijala. Jedna od poznatih oblika potpovršinske korozije je filiformna

korozija koja se razvija ispod premaza ili organskih prevlaka na čeličnim, aluminijevim i magnezijevim površinama [28]. Slika 15.c) prikazuje pojavu potpovršinske korozije.

Kontaktna korozija dijeli se na koroziju u procijepu koja se javlja pri dodiru dvaju dijelova od istovrsnog materijala i na galvansku koroziju. Galvanska korozija (kontaktna, bimetalna korozija) nastaje u kontaktu dvaju metala različitih elektrodnih potencijala u elektrolitu u kojem korodira onaj metal s nižim elektrodnim potencijalom (anoda galvanskog članka). Predstavlja opasan oblik korozije jer anodni metal vrlo brzo korodira. Smanjenje sklonosti galvanskoj koroziji pripomažu sljedeći koraci: odabir kombinacije metala s relativno bliskim korozijskim potencijalima, izolacija kontakata različitih materijala i izolacija anodnog metala od korozivnog okoliša. Slika 15.d) prikazuje pojavu galvanske korozije.

Slika 15. Lokalna korozija: a pjegasta korozija, b jamičasta korozija, c potpovršinska korozija, d kontaktna korozija: A-površina metala prije korozije, B-površina metala poslije korozije, Mmetal, M₁-neplemenitiji metal, M₂-plemenitiji metal ili nemetal, Z-procijep između dvaju elemenata [28]

3.2. Trošenje abrazijom i erozijom česticama

3.2.1. Abrazijsko trošenje

Abrazijsko trošenje se definira kao trošenje istiskivanjem materijala uzrokovano tvrdim česticama ili tvrdim izbočinama tj. abrazivom nedefinirane geometrije oštrice [29]. Jedinični događaji u procesu abrazijskog trošenja prikazani su na donjoj slici.

Slika 16. Jedinični događaj abrazije [30]

U prvoj fazi procesa trošenja, abraziv prodire u površinu materijala pod djelovanjem normalne komponente sile trošenja F_n . Ovisno o iznosu normalne sile, granici tečenja i vlačnoj čvrstoći na površini materijala nastaje elasto-plastična deformacija ili mikropukotina. U drugoj fazi trošenja pukotina se širi i napreduje uz istiskivanje ili odlamanje čestice trošenja iz površinskog sloja djelovanjem tangencijalne komponente sile trošenja F_t .

Pojavni oblik abrazijskog trošenja ovisi o sljedećim utjecajnim čimbenicima:

- 1) strukturi tribosustava,
- 2) međusobnom djelovanju abraziva i trošene površine te
- 3) omjeru tvrdoće abraziva i trošene površine.

Prema strukturi tribosustava razlikuje se pojava abrazije u dodiru dvaju tijela, od abrazije u dodiru triju tijela:

- a) Abrazija u dodiru dvaju tijela nastaje u tribosustavu sastavljenom od abraziva i trošenog (abradiranog) materijala što je prikazano na Slici 17.a).
- b) Abrazija u dodiru triju tijela nastaje u tribosustavu sastavljenom od dva funkcionalna tijela tj. abrazivnog tijela i abrazijskog protutijela između kojih se kližu ili kotrljaju slobodne čestice kao što je prikazano na Slici 17.b).

Prema istraživanju I. Kovaříková-e i suradnika, dokazano je da slobodne abrazivne čestice samo oko 10% od ukupnog trajanja kontakta troše abradirano tijelo, dok se ostatak vremena gibaju u

međuprostoru bez odvajanja čestica. Iz toga proizlazi zaključak da je trošenje abrazijom u dodiru triju tijela znatno sporije i manje intenzivno od abrazije u dodiru dvaju tijela [31]. Rezultati istraživanja iz 2018. godine o odnosu oblika abrazijsko-erozijske čestice s abrazijsko-erozijskim trošenjem osporava navedeno istraživanje. Budući da se čestice u abraziji u dodiru triju tijela slobodno gibaju, čestice s više vrhova će uzrokovati više štete nego iste čestice u tribosustavu koji se sastoji od dvaju funkcionalnih tijela gdje su čestice fiksirane tj. ne miču se [32].

Slika 17. Abrazija u dodiru dvaju tijela (a) i triju tijela (b)[30]

Prema međusobnom djelovanju abraziva i trošene površine razlikuju se sljedeća četiri pojavna oblika abrazije [30]:

- a) Mikrobrazdanje, koje nastaje prolaskom abrazijske čestice preko površine žilavog i mekanog materijala, uz pojavu plastične deformacije i stvaranje brazde čija nadvišenja se odvajaju u obliku čestica trošenja, kako je shematski prikazano na Slici 18.a).
- **b) Mikrorezanje**, koje nastaje prolaskom abrazijske čestice preko površine materijala povišene čvrstoće, uz pojavu rezanja i brazdi, kako je prikazano na Slici 18.b).
- c) Mikropukotine koje nastaju prolaskom abrazivne čestice preko površine krhkog materijala prilikom čega se stvaraju i šire mikropukotine, uz odlamanje čestica trošenja, kako je shematski prikazano na Slici 18.c).
- d) Mikroumor, koji nastaje djelovanjem cikličkih promjena naprezanja koje dovode do stvaranja inicijalnih pukotina i njihovog širenja uz odnošenje materijala s trošene površine. Mikroumor može također nastati učestalim mehanizmom mikrobrazdanja, kako je prikazano na Slici 18.d).

Slika 18. Mikromehanizmi trošenja materijala [30]

Tribološka oštećenja premaza i prevlaka na karoseriji vozila uobičajeno se događaju mikrobrazdanjem ili mikrorezanjem, npr. prolaskom vozila kroz gusto raslinje, drveće, uz kamene ili pješćane stijene i sl. Ključna razlika između mikrobrazdanja i mikrorezanja sastoji se u pojavi da je u procesu mikrobrazdanja materijal potisnut u stranu u obliku grebena te u idealnom slučaju nema čestica trošenja. Također, pojava mikrobrazdanja je karakteristična pri malim kutovima pritiskanja abraziva na trošenu površinu, dok je pojava mikrorezanja karakteristična za veće kutove pritiskivanja abrazivnih čestica na trošenu površinu. Naspram mikrobrazdanja, mikrorezanje dovodi do odvajanja trošenog materijala ispred abrazivne čestice prilikom čega dolazi do značajnog trošenja materijala.

Prema međusobnoj ovisnosti tvrdoće abraziva i trošenog materijala razlikuju se tri vrste abrazije [30]:

a) "Čista" abrazija – prisutna je kad je tvrdoća abraziva H_a veća od tvrdoće trošenog materijala H₁. Slika 19 prikazuje površinu trošenja duktilnog i krhkog materijala. Ako je površina trošenog materijala duktilna, čestice trošenja su spiralnog oblika. U slučaju krhke površine, čestice trošenja su nepravilnog oblika.

Slika 19. "Čista" abrazija [30]

b) Selektivna abrazija – nastaje kada je tvrdoća abrazivne čestice H_a veća od tvrdoće mekših faza H_β u abradiranom materijalu, a manja od tvrđih faza H_α. Prema tome, selektivna abrazija je učestala pojava kod višefaznih materijala nakon čega je mekši dio trošene površine abradiranog materijala izbrazdan, prikazan na Slici 20.

Slika 20. "Selektivna" abrazija [30]

c) "Nulta" abrazija – naspram "čiste" abrazije, tvrdoća trošenog materijala H₁ je veća od tvrdoće abraziva H_a. Iako abrazivna čestica nema značajan utjecaj na samo trošenje materijala, postoji mogućnost trošenja vanjskog graničnog sloja pri čemu su čestice trošenja oblika sitnih ljuskica, prikazano na Slici 21. Nulta abrazija je karakteristična kod onih materijala koji su prevučeni prevlakama visoke tvrdoće.

Slika 21. "Nulta" abrazija [30]

Sve tri navedene vrste abrazije mogu se pojaviti pri trošenju premaza i prevlaka na karoseriji vozila, premda je pojava tzv. čiste abrazije najviše zastupljena, npr. uslijed prolaska vozila kroz grmlje, uz stijene, zidove građevina i sl.

Najutjecajniji čimbenici na otpornost na abraziju jesu omjer tvrdoće abraziva i trošenog materijala, te veličina abrazivne čestice. S povećanjem veličine abraziva linearno se povećava gubitak mase trošenog materijala do određene kritične vrijednosti abrazivnog zrna d_{krit} (engl. *critical particle size*, CPS). Slika 22 prikazuje tri različita napredovanja gubitka mase trošenog materijala nakon dostizanja d_{krit}. Prema tome, nakon dostizanja kritične veličine abrazivnog zrna, gubitak mase se može znatno slabije povećavati, ostati konstantan ili se smanjivati. Na intenzitet abrazijskog trošenja također utječe i mikrostruktura trošenog materiajla, udjeli, raspored i oblik tvrdih faza u mikrostrukturi.

Slika 22. Prikaz trošenja u usporedbi s veličinom abrazivnog zrna [33]

3.2.2. Trošenje erozijom česticama

Erozija česticama je gubitak materijala s površine krutog tijela zbog relativnog gibanja (strujanja) fluida (tekućeg ili plinovitog) u kojem se nalaze krute čestice [30]. U procesu erozijskog trošenja sudjeluju mehanizmi trošenja umorom površine (tzv. udarna erozija) i trošenje abrazijom (tzv. abrazijska erozija) koja se opisuje jediničnim događajima sudara čestice i trošene površine.

Jedinični događaj erozije česticama, prikazan na Slici 23, sastoji se od dvije faze [30]:

I.faza – sudar krute čestice određene brzine gibanja i upadnog kuta prema trošenoj površini.

II.faza – odbijanje krute čestice od trošene površine, pri čemu dolazi do razaranja površinskog sloja i nastajanja čestica trošenja.

Slika 23 Jedinični događaj erozijskog trošenja [30]

Prema kutu udara čestica o trošenu površinu, razlikuje se <u>abrazivna</u> (strujanje pod malim kutom) <u>i udarna erozija</u> (gotovo okomiti kut udara čestice)[30]. Kut upada čestica ili kut udara α je značajna veličina koja utječe na brzinu erozije te određena je vrstom erodiranog materijala. Slika 24 jasno prikazuje da duktilni materijali najbrže erodiraju pod manjim kutovima od 15 do 30, dok krhki materijali najveći stupanj erodiranosti postižu pod kutom oko 90°. Štoviše, prema znanstvenom istraživanju iz 2018. godine, dokazano je da su brzina erozije i gubitak mase materijala postigli maksimalne rezultate pri manjim kutovima upada čestica (posebice pod kutom upada 30) [34].

Slika 24. Ovisnost erozijskog trošenja o kutu udara krutih čestica za različite materijale [30]

Odnosno, vrijednosti gubitka mase materijala i brzine erozijskog trošenja duktilnih materijala su se smanjivale s povećanjem kuta udara α, gdje je plastična deformacija istaknuta kao jedan od dominantnih mehanizama erozije. Također, pri manjoj kinetičkoj energiji gibanja čestica, površina metala prikazuje dominantnu elastičnu deformaciju. Stoga, što je manja brzina gibanja čestica to će biti sve manje čestica koje imaju dovoljno energije da uzrokuju plastičnu deformaciju materijala [34]. S morfološkog aspekta, mehanizmi mikrorezanja i mikrobrazdanja su dominantni mehanizmi trošenja pri kutu od 30°, dok pri normalnom kutu od 90° je učestala pojava krhkog napredovanja pukotine [35].

Povećanjem **veličine erozijskih čestica** ujedno se povećava i udarna energija na trošenu površinu prilikom udara, te naposlijetku **kinetička energija (brzina gibanja čestica)** i brzina erozijskog trošenja. Prema tome, krhki materijali su osjetljiviji na porast veličine erozijskih čestica. Štoviše, prema znanstvenim istraživanjima utvrđeno je da povećanje brzine erozijskog

trošenja s veličinom erozijskih čestica će vrijediti samo za pojedine materijale. Za čestice srednjeg promjera 50 µm do 100 µm, brzina erozije postaje konstantna [30].

Oblik erozijskih čestica također je od relevantnog značaja s obzirom na brzinu erozije i kut upada čestica. Što je oblik erodenta nepravilniji, to je veća brzina erozije. Od ostalih utjecajnih čimbenika na brzinu erozije utječe i **temperatura okoline**. Stoga, razlikuju se tri grupe različitih materijala koji se različito ponašaju s obzirom na temperaturu i kut upada čestice. U prvu grupu materijala spadaju oni koji imaju stalan (konstantan) porast brzine erozije s porastom temperature, poput ugljičnih čelika i olova. U drugom slučaju, brzina trošenja erozije opada s povećanjem temperature sve do određene točke nakon koje počinje rasti. Takvo ponašanje se ističe kod volframa. U trećoj grupi pripadaju oni materijali koji uglavnom nisu osjetljivi na temperaturu sve do dostizanja njene kritične vrijednosti, nakon čega dolazi do porasta brzine erozije s porastom temperature. Takvo ponašanje je karakteristično za aluminijeve legure iz serije EN-AW-1100 [30].

4. ANALITIČKE METODE I UREĐAJI ZA ISPITIVANJE FIZIKALNIH I TRIBOLOŠKIH SVOJSTAVA

4.1. Ispitivanje debljine suhog sloja premaza

Ovisno o primjeni, svaka prevlaka ima određenu optimalnu debljinu kojom ostvaruje zaštitu površine od korozije i trošenja. Prevlaka ne smije biti pretanka, jer se smanjuje antikorozivna zaštita, niti predebela. Predebele prevlake traže dulje vrijeme sušenja, povećavaju proizvodne troškove i mogu sadržavati više pogrešaka od tanjih prevlaka.

Na debljinu premaza utječu sljedeći čimbenici [29]:

- 1) tehnika nanošenja,
- 2) vrsta premaza,
- 3) uvjeti nanošenja premaza,
- 4) vještina ličioca i
- 5) pripremljena površina.

Mjerenje debljine filma premaza provodi se prema normi HRN EN ISO 2808:2019 te obuhvaća [29]:

- 1) Mjerenje debljine mokrog filma premaza, DMF i
- 2) Mjerenje debljine suhog filma premaza, DSF.

Za mjerenje debljine prevlake razvijene su razorne (destruktivne) i nerazorne (nedestruktivne) metode.

Destruktivne metode mjerenja debljine premaza temelje se na razaranju materijala primjenjujući tehnike kao što su rezanje, bušenje, glodanje i promatranje pod mikroskopom. Iako je takav postupak dugotrajan i skup, mjerenja su referentna i od eminentne važnosti u nekim situacijama. Primjer destruktivne metode je određivanje debljine prevlake kalotestom koji je primjenjiv za ispitivanje vrlo tankih i tvrdih prevlaka. Princip rada temelji se na pritisku i rotaciji čelične kugle određene mase i promjera prislonjene na prevlaku [36].

Naspram destruktivnih, **nedestruktivne metode** mjerenja debljine prevlake su brže, jednostavnije i fleksibilnije. Metoda magnetske indukcije i metoda vrtložnih struja predstavljaju najviše zastupljene metode nerazornih ispitivanja debljine prevlake. **Metoda magnetske indukcije** se primjenjuje isključivo na magnetičnim metalima te se temelji na generiranju

privlačnih sila između permanentnog magneta i feromagnetne metalne podloge kao što prikazuje Slika 25.a). Debljina prevlake očitava se s uređaja na temelju privlačnih sila pomoću kojih se dobiva udaljenost magneta i podloge [36].

Metoda vrtložnih struja je primjenjiva za nemagnetičnu podlogu i temelji se na stvaranju vrtložnih struja prilikom generiranja visokofrekventnog izmjeničnog magnetskog polja što prikazuje Slika 25.b). Princip rada se zasniva na razlici u električnoj vodljivosti premaza i nemagnetične podloge.

Slika 25. Mjerenje debljina zaštitnih premaza metodom: a) magnetske indukcije, b) vrtložnih struja [36]

Legenda:

- 1 osnovni metal, 2 prevlaka, 3 feromagnetična jezgra, 4 promjenjivo magnetsko polje,
- 5 izmjereni signal, 6 struja, 7- vrtložne struje, 8-struja, 9- izmjereni signal.

4.2. Ispitivanje prionjivosti premaza

Prionjivost je ključno svojstvo premaza koje ovisi o svojstvima premaza, stanju podloge, debljini sloja premaza, temperaturi, relativnoj vlažnosti kod aplikacije, uvjetima eksploatacije i itd. Budući da adheziju prevlake na podlogu nije jednostavno izravno ispitati, pristupa se destruktivnim metodama određivanja prionjivosti premaza, tzv. *Pull-off* i *Cross-cut* test.

Osnovna metoda ispitivanja prionjivosti premaza je **metoda urezivanja mrežice** (engl. *cross-cut* test). Naime, *cross-cut* test predstavlja razornu metodu ispitivanja pomoću specijalnog uređaja pomoću kojeg se ureže u premaz 2x6 ureza pod pravim kutom te ostavlja trag mrežice od 25 kvadratića. Ovisno o debljini premaza razmak između ureza je jednoliko raspoređen. Stoga, za debljine premaza do 60 µm međusobni razmak između ureza je 1 mm, za debljine

premaza od 60 µm do 120 µm razmak je 2 mm, a za debljine preko 120 µm razmak između ureza iznosi 3 mm. Ispitivanje se provodi u skladu s normom HRN EN ISO 2409:2020 pomoću instrumenta za urezivanje, četke i ljepljive trake. Nakon zarezivanja mrežice, četkom se očisti područje mreže te naglim odljepljivanjem ljepljive trake promatra se izgled rešetke što je prikazano na Tablici 2.

	Opis	Izgled rešetke
0	Tragovi rezova su potpuno glatki, nijedan kvadratić mrežice nije okinut	
1	Nešto premaza je oljušteno na sjecištima u mrežici; manje od 5% površine je oštećeno	
2	Dio premaza je oljušten na rubovima i sjecištima u mrežici; 5 do 15% površine je oštećeno	
3	Premaz je oljušten duž rubova i unutar kvadratića mrežice; 15 do 35% površine je oštećeno	
4	Premaz je oljušten duž rubova, neki kvadratići su potpuno oljušteni; 35 do 65% površine je oštećeno	
5	Više od 65% površine je oštećeno	

Izgled rešetke ocjenjuje se prema skali za ocjenjivanje prionjivosti premaza po normi HRN EN ISO 2409:2020 prikazanoj na Slici 26. Prema tome, ako su tragovi ureza potpuno glatki i nijedan kvadratić mrežice nije otkinut, ocjena prionjivosti iznosit će 0. Međutim, ako je oštećeno više od 65 % površine, ocjena prionjivosti iznosit će 5.

Slika 26. Izgled površine uzoraka nakon "cross-cut" testa

Ispitivanje prionjivosti premaza na površinu provodi se i *Pull-off* testom sukladno normi ISO 4624:2023, ASTM D451 te BS EN 24624 za debljine suhog sloja veće od 250 μm. Ispitivanje se temelji na mjerenju sile koja je potrebna za odvajanje metalnog valjčića koji je zalijepljen na površinu premaza. Stoga, otklanjanjem valjka s površine, očitava se numerička vrijednost adhezije kao vrijednost sile u N mm⁻² potrebne za otklanjanje valjka [37]. Slika 27 prikazuje opremu i postupak ispitivanja prionjivosti premaza *Pull-off* testom.

Slika 27. Ispitivanje prionjivosti premaza Pull-off testom [37]: a) priprema opreme za ispitivanje, b) odvajanje viška ljepila pomoću odvijača, c) provedba ispitivanja pomoću određenog uređaja

4.3. Ispitivanje tvrdoće premaza

Tvrdoća materijala se uobičajeno definira kao otpor tijela kojim se ono suprotstavlja prodiranju drugog čvrstog tijela. Mala tvrdoća premaza obuhvaća mogućnost lakog utiskivanja ili lakog mehaničkog oštećenja šiljastim predmetima ili jakog prigušivanja njihala oslonjenog kuglicom na premazanu površinu. Prema tome, opravdan je zahtjev za većom tvrdoćom, ali samo do određene granice zbog manje elastičnosti i česte pojave krtosti. Tvrdoća premaza određuje se indirektno pomoću: utiskivanja različitih tijela u prevlaku, prigušivanja titraja njihala čiji se oslonci nalaze na prevlaci i grebanja površine različitim šiljcima [37].

Ispitivanje tvrdoće premaza provodi se najčešće pomoću tri metode: ispitivanje tvrdoće po Buchholzu, ispitivanje tvrdoće njihalom (klatnom) i ispitivanje tvrdoće olovkama. Ispitivanje tvrdoće olovkama primijenit će se u eksperimentalnom dijelu rada zbog jednostavnosti provedbe i manjih dimenzija uzorka u odnosu na ostale metode.

Ispitivanje tvrdoće po Buchholzu provodi se prema normi HRN EN ISO 2815:2013 pri čemu se mjeri duljina otiska nakon djelovanja utisnog tijela u premaz. Utisno tijelo se drži 30 s na premazu i djeluje silom utiskivanja od 5 N na podlogu. Nakon 30 s, makne se utisno tijelo te se pod stereomikroskopom mjeri duljina otiska na premazu, a time se utvrđuje i tvrdoća prevlake [29].

Ispitivanje tvrdoće njihalom (klatnom) provodi se sukladno normi HRN EN ISO 1522:2008. Ispitivanje se provodi prigušivanjem titraja njihala koji se oslanja na površinu laka čeličnim poliranim kuglicama. Ovisno o dimenziji njihala, trajanju i amplitudi prigušivanja, razlikuje se ispitivanje tvrdoće premaza po Persozu i Königu [29].

Ispitivanje tvrdoće premaza olovkama provodi se prema normi HRN EN ISO 15184:2020. Postupak određivanja tvrdoće premaza temelji se uporabom olovki različitih tvrdoća, od najtvrđe prema najmekšoj:

9H, 8H, 7H, 6H, 5H, 4H, 3H, 2H, H, F, HB, B, 2B, 3B, 4B, 5B, 6B, 7B, 8B, 9B.

Olovke od 3B do 6B su meke, od 2B do 2H su srednje, a od 3H do 6H su tvrde. Osim 20 olovaka, oprema za ispitivanje obuhvaća i uređaj Simex koji za vrijeme povlačenja po površini prevlake olovku drži pod kutom od 45°. Slika 28 prikazuje uređaj Simex i postupak ispitivanja tvrdoće premaza olovkama.

Slika 28. Uređaj za ispitivanje tvrdoće premaza olovkama prema normi HRN EN ISO 15184: 1gumeni prsten za vođenje uređaja, 2-olovka, 3-podloga, 4-level, 5-mali, pomični uteg, 6stezaljka, 7-smjer kretanja uređaja, 8-grafit, 9-premaz

U pripremi ispitivanja, olovku treba pričvrstiti u uređaj da sila olovke na podlogu iznosi 7,5 N i dok vrh olovke ili uloška za mine izviruje iz uređaja prema već spomenutoj normi. Potom se olovka jednoličnom brzinom povuče u smjeru vrha preko ispitivane površine premaza. Nakon toga se otisak olovke obriše vlažnom krpom i promatra pod indirektnim svjetlom. Postupak se ponavlja sve dok olovka određene tvrdoće ne napravi zarez u premazu [37].

4.4. Određivanje poroznosti premaza

Poroznost značajno utječe na zaštitna svojstva premaza. Određivanje poroznosti ili propusnosti premaza se provodi propuštanjem određenih plinova ili tekućina kroz premaz. Ovim ispitivanjem se otkrivaju brojna oštećenja i greške u premazu. Što su agresivniji uvjeti okoliša kojima se premaz izlaže, propisani broj pora treba biti manji.

Ispitivanje poroznosti premaza se provodi uređajem koji se naziva "detektor šupljina" (engl. *Holiday detector*), koji može biti niskonaponski ili visokonaponski. **Niskonaponski detektor** mjeri otpor između elektrode i ispitnog metalnog materijala koji je prethodno natopljen vodljivim elektrolitom. Ispitivanje se provodi prema metodi "mokre spužve" jer se tekućina iz spužve kapilarno uvlači u sve pore te se uspostavlja strujni krug. Prilikom prolaska namočene spužve preko šupljine ili oštećenja u premazu, ono uzrokuje pojavu svjetlosnog i zvučnog signala na detektoru [38]. Slika 29 prikazuje niskonaponski uređaj za ispitivanje poroznosti Elcometer 270.

Slika 29. Niskonaponski uređaj za mjerenje poroznosti Elcometer 270 [39]

Naspram niskonaponskog, visokonaponski detektor stvara električnu iskru na mjestu oštećenja te je namijenjen za određivanje poroznosti na premazima debljina većih od 500 µm [38].

4.5. Ispitivanje otpornosti premaza na erozijsko trošenje

Za potrebe ispitivanja otpornosti premaza na erozijsko trošenje, izrađen je uređaj, prikazan na Slici 30. Osnovni dijelovi uređaja jesu pneumatski pištolj za pjeskarenje, spremnik erodenta, kompresor i dovod komprimiranog zraka s regulacijom tlaka i protoka.

Slika 30. Uređaj za erozijsko ispitivanje: 1 – zračni pištolj za pjeskarenje, 2 – okidač, 3 – vreća za prikupljanje materijala za pjeskarenje, 4 – kontejner medija za pjeskarenje, 5 - manometar

Pneumatski pištolj za pjeskarenje tipa PDSP 1000 E6, prikazan na Slici 31, idealan je za uklanjanje boje, laka, hrđe i tvrdokorne prljavštine, te se također može upotrebljavati za ispitivanje otpornosti na erozijsko trošenje ispitnih uzoraka. Radni tlak pneumatskog pištolja je maksimalno 6,3 bar, maksimalna potrošnja zraka 320 l/min, dok maksimalni sadržaj erodenta za pjeskarenje iznosi 0,9 l. Srednji promjer erodenta Al₂O₃ korištenog u ispitivanjima iznosio je od 0,40 mm do 0,60 mm.

Slika 31. Pneumatski pištolj za pjeskarenje: 1 – zračni pištolj za pjeskarenje, 2 – bradavica za zračni priključak (ulaz zraka), 3 – okidač, 4 – vreća za sakupljanje materijala za pjeskarenje, 5– zavrtna stezaljka, 6 - mlaznica, 7 – zakretni regulator, 8 –spremnik za pjeskarsko sredstvo, 9– vijčani zatvarač [40]

Ispitni uzorak s premazom pričvršćuje se na držač uzorka koji je udaljen 100 mm od mlaznice pneumatskog pištolja, što je prikazano na Slici 32. Nagib uzorka prema horizontalnoj ravnini se može mijenjati od 15 ° do 90 °.

Slika 32. Položaj ispitnog uzorka pri erozijskom trošenju

5. ISPITIVANJE KOROZIJSKIH SVOJSTAVA PREMAZA

Uporaba vozila neizbježno je praćena pojavom korozije metalnih dijelova, što utječe na izgled, funkcionalnost i sigurnost vozila. Ispitivanja korozijske postojanosti premaza na metalnoj karoseriji vozila omogućuju utvrđivanje otpornosti premaza na korozijska oštećenja, djelovanjem suhe i vlažne atmosfere, vode i vodenih otopina soli na sobnoj i povišenoj temperaturi, čime se u laboratorijskim uvjetima simuliraju vremenski uvjeti, stanje kolnika ili terena u uporabi vozila.

Prema načinu provedbe razlikuje se laboratorijska (ubrzana), eksploatacijska (uporabna) i terenska ispitivanja premaza. Terenska ispitivanja su najpouzdanija metoda provjere kvalitete premaza jer su uvjeti ispitivanja jednaki stvarnim uvjetima uporabe, ali ona su i najzahtjevnija, dugotrajna i najskuplja ispitivanja. Naspram eksploatacijskog i terenskog ispitivanja, laboratorijsko ispitivanje provodi se na uzorcima premaza u značajno kraćem trajanju od ostalih ispitivanja. Za ispitivanje korozije premaza uobičajeno se koriste sljedeće metode [27]:

- vizualna kontrola površine metala,
- gravimetrijske metode,
- volumetrijske metode,
- analitičke metode,
- konduktometrijska metoda,
- mjerenje dubine pittinga,
- ubrzane metode,
- elektrokemijske metode.

5.1. Ubrzana korozijska ispitivanja

Ubrzana korozijska ispitivanja su laboratorijske metode koje se provode u specijalno konstruiranim komorama simuliranjem uvjeta atmosferske korozije. Zahtjevana brzina ispitivanja se postiže povišenjem temperature i relativne vlažnosti, primjenom agresivnih plinova, poput SO₂ ili kvašenjem premaza. Ubrzana korozijska ispitivanja obuhvaćaju ispitivanje u slanoj, vlažnoj i QUV komori [27].

5.1.1. Ispitivanja u slanoj komori

Najviše korištena laboratorijska metoda ubrzanog ispitivanja djelotvornosti premaza u **slanoj komori** (engl. *Salt Spray Test Chamber*), prema HRN EN ISO 9227:2022, shematski je prikazana na Slici 33.

Slika 33. Shema slane komore: 1-radni prostor, 2-spemnik slane otopine, 3-uređaj za raspršivanje, 4-dovod komprimiranog zraka, 5-dovod slane otopine, 6-vješalice za uzorke, 7ispušna cijev, 8-poklopac s ručicama (a) i prozorom (b), 9-žlijeb sa slanom otopinom, 10preljevna cijev, 11-cijev za punjenje i pražnjenje s vodokazom (c) i pipcem (d) [41]

U slanoj komori se ispituje utjecaj morske atmosfere na materijal prevlake, stvaranjem agresivne magle od razrijeđene vodene otopine NaCl ili nekih drugih soli. Otopina za raspršivanje u spremniku sastoji se od NaCl (w= 3 ili 5 ili 20 %, pH vijednosti od 6,5 do 7,2) i destilirane (deionizirane) vode. Ponekad se otopini dodaje octena kiselina kako bi se ubrzala korozija, pri čemu bi se pH vrijednost smanjila na 3,1 do 3,5. Ispitivanje počinje raspršivanjem navedene otopine pomoću dviju sapnica koje stvaraju maglu duž ispitnog prostora održavajući temperaturu od 35 °C. Kroz sapnice se propušta komprimirani zrak tlaka od 0,7 bar do 1,4 bar koji strujanjem prenosi otopinu u komoru. Slana magla dopire do ispitnih uzoraka koji su smješteni vertikalno iznad kosog dijela dna komore. Ispitivanje traje između 2 h pa sve do 1000 h nakon čega se uzorci ispiru, suše i podvrgavaju daljnjim ispitivanjima [41].

Budući da spada u grupu CCT uređaja (engl. *Cyclic Corrosion Test*), ispitivanje u slanoj komori koristi se za cikličko ispitivanje korozije koje obuhvaća četiri utjecajna procesa: prskanje slane magle, kondenzacije vlage na površini premaza, sušenje premaza zrakom i regulacija vlažnosti atmosfere. U određenom vremenskom intervalu ispitivanja, navedeni procesi se ciklički ponavljaju simulirajući korozijsku sredinu. Treba naglasiti da testovi ispitivanja slane komore nisu u vremenskoj korelaciji s vremenom pojave korozije u uporabnim uvjetima. Razlog leži u

činjenici da se korozija može pojaviti čak i nakon nekog dužeg vremena nakon izlaganja korozivnoj sredini.

5.1.2. Ispitivanja u vlažnoj komori

Ispitivanje u vlažnoj komori (HRN EN ISO 6270-2:2018) je ispitivanje korozijske postojanosti simuliranjem strujanja toplog zraka zasićenog vlagom uz prisutnost kondenzirane vlage na premazu. Vlažna komora je hermetički zatvorena i opremljena grijačem i ventilatorom koji omogućuju postizanje navedenih uvjeta te ravnotežu relativne vlažnosti i temperature toplog zraka ($40 \pm 3 \text{ °C}$). Kondenzacija vlage se ostvaruje isključivanjem grijača ili hlađenjem ispitnih uzoraka. Slika 34 prikazuje vlažnu komoru s podnim spremnikom za prihvat kondenzirane vode.

Slika 34. Vlažna komora

5.1.3. Ispitivanja u klimatizacijskoj komori

Klimatizacijska komora, prikazana na Slici 35, je termostatsko-higrostatski uređaj koji ciklično mijenja utjecaj vlage i temperature na ispitne uzorke. Zbog širokog raspona temperature (od - 40 °C do + 180 °C) i relativne vlažnosti (od 10 % do 98 %), klimatizacijska komora može simulirati različite mikroklime pa predstavlja efektivnu metodu ispitivanja atmosferske korozije [27].

Slika 35. Klimatizacijska komora

5.2. Elektrokemijska ispitivanja korozije

Prema elektrokemijskoj pojavi korozijskih procesa, razlikuju se dvije elektrokemijske metode za određivanje brzine korozije: metode s istosmjernom strujom (DC-tehnike, engl. *direct current technics*) i metode s izmjeničnom strujom (AC-tehnike, engl. *alternating current* technics).

5.2.1. Elektrokemijska ispitivanja korozije istosmjernom strujom

Elektrokemijsko ispitivanje korozije istosmjernom strujom obuhvaća dvije vrste polarizacijskih metoda mjerenja: potenciostatsku i galvanostatsku polarizaciju. Potenciostatska polarizacija se provodi pomoću potenciostata koji uspostavlja određeni potencijal na mjernoj elektrodi te se mjeri strujni odziv elektrokemijske ćelije. Galvanostatska polarizacija se provodi uporabom galvanostata pomoću kojeg se na mjernoj elektrodi uspostavlja određena jakost struje te se mjeri naponski odziv elektrokemijske ćelije. U slučaju da se narinuti potencijal ili struja može kontinuirano mijenjati i pratiti odziv, radi se o potenciodinamičkim i galvanodinamičkim

mjerenjima. Svrha polarizacijskih mjerenja je prikaz anodnih i katodnih krivulja koji određuju korozijsko ponašanje određenog materijala u određenom mediju [29].

Elektrokemijsko ispitivanje provodi se u elektrokemijskoj ćeliji prikazanoj na Slici 36. Ćelija se sastoji od tri elektrode: radne (ispitivani metal), referentne (Hg/Hg₂Cl₂, Ag/AgCl, Cu/CuSO₄ ili dr.) i pomoćne elektrode (tzv. protuelektrode) koje se spajaju na potenciostat ili galvanostat. Radna elektroda je ispitni uzorak čija je površina od 1 cm² izložena elektrolitu. Referentna elektroda je elektroda poznatog potencijala pomoću koje se mjeri potencijal radne elektrode s kojom je povezana pomoću Lugginova mosta. U laboratorijskim uvjetima se primjenjuje zasićena kalomel elektroda, ZKE, standardnoga elektroda izrazito dobre vodljivosti koja zatvara strujni krug. Izrađuje se od korozijski postojanog materijala, grafita ili platine.

Slika 36. Elektrokemijska ćelija za ispitivanje korozijskih procesa DC-tehnikama [42]

5.2.1.1. Određivanje korozijskog potencijala

Određivanje korozijskog potencijala E_{kor} ili potencijala otvorenog strujnog kruga E_{ok} [mV] provodi se stabilizacijom elektrokemijskog sustava metal - elektrolit. Odnosno, između radne elektrode i protuelektrode uspostavit će se otvoreni strujni krug pri čemu struja neće teći i uzorak se neće otopiti. Budući da se korozijski potencijal sustava uzorak-otopina ne može

direktno izmjeriti, prati se razlika potencijala između referentne i radne elektrode ovisno o vremenu ispitivanja u dijagramu E-t prikazanog na Slici 37.

Slika 37. Određivanje korozijskog potencijala *E*_{kor} [42]

Nakon uspostavljanja stacionarnog stanja na potencijalu koji je jednak potencijalu otvorenog strujnog kruga E_{ok} ili korozijskom potencijalu E_{kor} , anodna struja otapanja metala i katodna struja redukcije istog su iznosa, ali suprotnog smjera ($I_a=I_k=I_{kor}$). Praćenjem promjena potencijala ovisno o vremenu moguće je odrediti korozijsko ponašanje ispitivanog uzorka u određenom mediju.

Prema navedenom, pozitivne vrijednosti E_{ok} određuju stabilnost elektrode, negativne vrijednosti E_{ok} ukazuju na nestabilnost (korozija) elektrode, a ako se vrijednosti mijenjaju od negativnih prema pozitivnima dolazi do spontane pasivacije. U slučaju da se stacionarno stanje nije uspostavilo, razlika potencijala se razlikuje od korozijskog potencijala za prenapon η .

5.2.1.2. Metoda linearne polarizacije

Linearnom polarizacijom određuje se polarizacijski otpor ili otpor Faradayevoj reakciji R_p koja predstavlja otpor prolasku elektro aktivnih čestica iz jedne faze (metal) u drugu (elektrolit) i obrnuto. Metoda se temelji na potenciodinamičkoj polarizaciji s rasponom potencijala otvorenog strujnog kruga od -20 mV do 20 mV brzinom polarizacije od 0,199 mV s⁻¹. U blizini korozijskog potencijala omjer struje i potencijala je linearan, te se vrijednost polarizacijskog otpora R_p računa prema jednadžbi:

$$R_p = \frac{S\Delta E}{\Delta I} = \frac{\Delta E}{\Delta j_{corr}} \tag{1}$$

Gdje je:

 R_p - polarizacijski otpor, k Ω cm²

S - površina radne elektrode, $\rm cm^2$

E - potencijal, mV

I - jakost struje, A

Postupak određivanja polarizacijskog otpora R_p prikazan je na Slici 38 te je jednak postupku određivanja nagiba pravca.

Slika 38. Određivanje polarizacijskog otpora R_p [7]

5.2.1.3. Metoda Tafelove polarizacije

Metoda Tafelove polarizacije ili kvazi-potenciostatske ekstrapolacije provodi se s ciljem izračuna gustoće struje kako bi se došlo do vrijednosti brzine korozije uzorka u korozivnom mediju. Metoda se temelji na Butler-Volmerovoj jednadžbi koja daje iznos ukupne struje koja prolazi kroz granicu faza na kojoj se zbiva jedna katodna i jedna anodna reakcija, a iskazuje se jednadžbom:

$$j = j_0 \left\{ exp\left[\frac{(1-\alpha) \times z \times F \times \eta}{R \times T} \right] - exp\left[\frac{-\alpha \times z \times F \times \eta}{R \times T} \right] \right\}$$
(2)

Gdje je:

- *j* gustoća struje $[\mu A/cm^2]$
- jo gustoća struje izmjene
- η prenapon, $\eta = E E_0 [mV]$
- z broj elektrona
- F Faradayeva konstanta, F = 9,648 \cdot 10⁴ Cmol⁻¹
- R opća plinska konstanta, R = 8,314 JK⁻¹mol⁻¹

- *T* termodinamiĉka temperatura [K]
- α koeficijent prijenosa (vrijednost od 0 do 1)

Butler-Volmerova jednadžba je temeljna jednadžba elektrokemijske kinetike koja iskazuje ovisnost gustoće struje o potencijalu elektrode, odnosno o samom aktivacijskom prenaponu η koji je jednak razlici potencijala elektrode kod kojeg teče struja i ravnotežnog potencijala elektrode. Njegovim povećanjem, struja redukcije se zanemaruje pa logaritamski oblik Butler-Volmerove jednadžbe poprima oblik:

$$\eta = \frac{-2,303 \times R \times T}{z \times F \times (1 - \alpha)} \times \log j_0 + \frac{-2,303 \times R \times T}{z \times F \times (1 - \alpha)} \times \log j$$
(3)

koja se može zapisati u pojednostavljenom obliku Tafelove jednadžbe:

$$\eta = \mathbf{a} + \mathbf{b} \times \log j \tag{4}$$

gdje su:

$$a_a = \frac{-2,303 \times R \times T}{z \times F \times (1-\alpha)} \times \log j_0 - \text{ odsječak na osi y anodnog pravca}$$
(5)

$$a_k = \frac{2,303 \times R \times T}{\alpha \times z \times F} \times \log j_0 - \text{ odsječak na osi y katodnog pravca}$$
(6)

$$b_a = \frac{2,303 \times R \times T}{z \times F \times (1 - \alpha)} - \text{ nagib anodnog Tafelovog pravca}$$
(7)

$$b_k = \frac{2,303 \times R \times T}{z \times F \times \alpha} - \text{ nagib katodnog Tafelovog pravca}$$
(8)

Slika 39 daje prikaz Tafelove ekstrapolacije u linearno - logaritamskom mjerilu (E-log *j*) dobivene anodnom i katodnom polarizacijom u širokom području potencijala u odnosu na korozijski potencijal ($E=E_{kor}\pm 250$ mV). Prema prikazanom, vrijednosti gustoće korozijske struje j_{kor} i korozijskog potencijala E_{kor} su dobiveni u sjecištu ekstrapolacije anodnih i katodnih Tafelovih pravaca.

Slika 39. Tafelova ekstrapolacija [42]

Na temelju izračunate vrijednosti gustoće korozijske struje j_{kor} [µAcm⁻²], poznate vrijednosti ekvivalentne mase materijala *EW* i gustoće materijala ρ [gcm⁻³], brzina korozije uzorka u korozivnom iznosu se računa prema izrazu:

$$v_{kor} = \frac{3.3 \times 10^{-3} \times j_{kor} \times EW}{\rho} \tag{9}$$

5.2.2. Elektrokemijska ispitivanja korozije izmjeničnom strujom

Budući da se ispitivanja s istosmjernom strujom (DC-tehnike) zasnivaju na polarizaciji, dolazi do promjene stanja površine elektrode i njegove površine te se sustav narušava. Stoga, sedamdesetih godina dvadesetog stoljeća I. Epelboin i suradnici uvode elektrokemijske tehnike s izmjeničnom strujom (AC-tehnike) koje služe za određivanje polarizacijskog otpora te ne narušavaju sustav. Izumom dvaju uređaja; potenciostata i analizatora frekvencijskog odgovora, FRA, ističe se prava primjena EIS-a u svrhu eksperimentalne analize.

Metoda elektrokemijske impedancijske spektroskopije (EIS) koristi se pri istraživanju elektrokemijskih reakcija na granici faze mjerenjem odziva strujnog kruga na uzbudu izmjeničnim naponom ili strujom promjenljive frekvencije. Metoda EIS se primjenjuje za razna ispitivanja poput ispitivanje korozije i pasivacije metala i legura, ionskih i elektronskih vodljivosti materijala, određivanje površinskih parametara (brzine reakcija, vodljivost) i itd.

5.2.2.1. Metoda elektrokemijske impedancijske spektroskopije

Elektrokemijska impedancijska spektroskopija je elektrokemijska nedestruktivna metoda ispitivanja kojom se elektrodi dovodi izmjenično promjenjiv potencijal male amplitude (5 mV-10 mV) u širokom opsegu frekvencija (1 mHz - 1 MHz). Naspram metode s istosmjernom strujom, u odzivu elektrode prati se amplituda i fazni pomak izmjenično promjenjive struje iste frekvencije. Analogno Ohmovom zakonu koji vrijedi za istosmjernu struju gdje je vrijednost frekvencije jednaka nuli, kod izmjenične struje (frekvencija nije nula) jednadžba za potencijal jednaka je izrazu:

$$E = I \times Z \tag{10}$$

gdje je:

E- potencijal

I- struja

Z-električna impedancija

Budući da se električni otpor suprostavlja prolasku istosmjerne električne struje, na isti način se električna impedancija suprostavlja prolasku izmjenične struje kroz strujni krug. Nadalje, navedena metoda je spektroskopska metoda jer rezultat odgovarajućeg pobudnog signala je spektar koji predstavlja odgovor sustava kao funkcije frekvencije pobudnog signala. Odnosno, metoda se temelji na mjerenju odgovora sustava (odzivni sinusoidalni strujni ili potencijalni signal) na pobudni (nisko-amplitudno sinusoidalni potencijalni ili strujni) signal. Budući da su korozijski procesi inherentno nelinearni, u cilju zadovoljenja nužnog uvjeta linearnosti odnosa pobudnog i odzivnog signala, koristi se nisko-amplitudni sinusoidalni signal ΔE ($\Delta E < 10$ mV). Slika 40 prikazuje sinusoidalnu krivulju potencijala *E* i rezultirajuću struju *I* koje se razlikuju po amplitudi i fazi.

Slika 40. Sinusoidalni val za narinuti potencijal E i rezultirajuću struju I [42]

Slika 41 prikazuje vektorsku analizu rezultirajuće krivulje struje kao metoda karakterizacije AC krivulja. Stoga, strujni vektor je definiran faznim kutom φ , strujom *I* te realnom *I* i imaginarnom *I*" osi s obzirom na referentni val. Budući da se numerička vektorska analiza temelji na kompleksnim brojevima, realna komponenta je u fazi s referentnim valom, a imaginarna komponenta je 90° van faze. Prema tome, AC strujni vektor se definira izrazom:

$$I_{uk} = I' + I''j \tag{11}$$

gdje je: $j = \sqrt{-1}$

Slika 41. Vektorska analiza rezultirajuće struje [42]

Vektorskom analizom strujni i naponski val mogu se prikazati s obzirom na iste koordinatne osi čime se impedancijski vektor izračunava kao omjer vektora potencijala i struje:

$$Z_{uk} = \frac{E_{uk}}{I_{uk}} = \frac{E' + E''j}{I' + I''j} = Z' + Z''j$$
(12)

Stoga, apsolutna vrijednost impedancije se računa:

$$|Z| = \sqrt{Z'^2 + Z''^2} \tag{13}$$

S faznim kutom:

$$\tan \varphi = \frac{Z''}{Z'} \tag{14}$$

5.2.2.2. Određivanje ekvivalentnog električnog kruga

Elektrokemijska impedancijska spektroskopija omogućava korištenje analogije s električnim krugom za prikazivanje pojava u elektrokemijskom ćeliji. Elektrokemijsku reakciju na granici elektroda/elektrolit moguće je opisati ekvivalentnim električnim krugom koji se sastoji od kombinacije radnih, induktivnih i kapacitivnih otpora. Svaki ispitivani uzorak može se prikazati odgovarajućim ekvivalentnim električnim krugom pri čemu se povezuju fizikalna i/ili kemijska svojstva sustava s elementima električnog kruga te se usklađuju numeričke vrijednosti izmjerenih podataka s modelom kruga. Pri tome, metodom EIS se dolazi do podataka o elektrokemijskim parametrima površine radne elektrode i do podataka o korozijskim procesima na radnoj elektrodi. U Tablici 3 su prikazani ekvivalentni električni krugovi i pripadajuće jednadžbe za određivanje njihove impedancije.

Element kruga	Simbol	Impedancijska jednadžba
Otpornik	R	Z = R + j0
Kondendzator		$Z = 0 - \frac{j}{\omega C}$
Paralelno spojeni otpornik i kondenzator		$Z = \frac{R}{1 + \omega^2 C^2 R^2} - j \frac{\omega C R^2}{1 + \omega^2 C^2 R^2}$

Tablica 3. Impedancijske jednadžbe za elemente električnog kruga

Budući da impedancija otpornika nema imaginarne komponente, struja je u fazi s potencijalom, nema faznog pomaka te struja i impedancija su neovisne o frekvenciji. Štoviše, impedancija kondenzatora ima samo imaginarnu komponentu te je ona funkcija frekvencije i kapaciteta. Budući da su impedancija kondenzatora i frekvencija obrnuto proporcionalne, pri niskim frekvencijama impedancija kondenzatora teži beskonačnosti (ponaša se kao otvoreni strujni krug). Međutim, pri visokim vrijednostima frekvencije, impedancija kondenzatora jednaka je nuli te se ponaša kao zatvoreni strujni krug.

Za dva serijski spojena elementa kruga, impedancija je jednaka njegovom zbroju:

$$Z_s = Z_1 + Z_2 \tag{15}$$

Za paralelno spojene elemente kruga, vrijednost inverzne impedancije se zbrajaju:

$$\frac{1}{Z_p} = \frac{1}{Z_1} + \frac{1}{Z_2} \tag{16}$$

Slika 42 prikazuje jednostavnu elektrokemijsku ćeliju; Randlesov ekvivalentni električni krug, koji se sastoji od polarizacijskog otpora R_p , kapaciteta dvosloja C_{dl} i otpora elektrolita R_{el} .

Slika 42. Randlesov krug [42]

Shodno prikazanom, formula za ukupnu impedanciju serijski spojenog elektrolita s paralelno spojenim polarizacijskim otporom i kondenzatorom iznosi:

$$Z_{uk} = Z_{el} + Z_p = Z_{el} + Z'_p + (-jZ''_p) = R_{el} + \frac{R_p}{1 + \omega^2 C^2 R_p^2} - j \frac{\omega C R_p^2}{1 + \omega^2 C^2 R_p^2}$$
(17)

Podaci dobiveni metodom EIS mogu se grafički prikazati Nyquistovim i Bodeovim dijagramom. Nyquistov grafički prikaz impedancijskog spektra prikazuje Randlesov ekvivalentni krug tj. ovisnost imaginarne komponente Z' u odnosu na realnu komponentu Z za svaku pobudnu frekvenciju. Iz Slike 43 je vidljivo da se na najvišim frekvencijama, gdje
polukrug siječe realnu os, nalazi otpor elektrolita R_{el} ili omski otpor R_{Ω} (otpor elektrolita između radne i referentne elektrode). Na najnižim vrijednostima frekvencija, polukrug siječe x-os, impedancija je također neovisna o frekvenciji te se može aproksimirati otporom, koji ima vrijednost $R_{\Omega} + R_p$ (polarizacijski otpor ili otpor prijenosa naboja R_{ct}). Međutim, na srednjim vrijednostima frekvencija, impedancija ima imaginarnu komponentu te postaje ovisna o frekvenciji.

Slika 43. Nyquistov grafički prikaz [43]

Drugi način prikazivanja impedancijskog spektra je Bodeov dijagram koji prikazuje ovisnost logaritma apsolutne vrijednosti impedancije $\log |Z|$ i faznog kuta φ o logaritmu frekvencije *f*. Štoviše, kao i na Nyquistovom dijagramu, na vrijednostima visokih frekvencija na Bodeovom dijagramu se očitava otpor elektrolita, a na nižim frekvencijama dominira polarizacijski otpor što je prikazano na Slici 44.

Slika 44. Bodeov dijagram [44]

Pri srednjim frekvencijama, krivulja ima oblik pravca s nagibom -1 te njenom ekstrapolacijom dobije se vrijednost kapaciteta dvosloja C_{dl} :

$$|Z| = \frac{1}{c_{dl}} \tag{18}$$

Osim navedenog, Bodeov dijagram prikazuje ovisnost i o faznom kutu. Pri najnižim i najvišim frekvencijama (Randlesova ćelija se ponaša kao otpornik), vrijednost faznog kuta jednaka je nuli. Međutim na srednjim vrijednostima frekvencija, imaginarna komponenta i fazni kut se povećavaju.

Elektrokemijska impedancijska spektroskopija se pokazala kao učinkovita nerazorna tehnika ispitivanja koja daje detaljne informacije o zaštitnim svojstvima premaza u različitim elektrolitima koji simuliraju okolišne uvjete.

EKSPERIMENTALNI DIO

6. PLAN POKUSA I PRIPREMA UZORAKA

6.1. Materijal i oznake ispitnih uzoraka

U eksperimentalnom dijelu rada uspoređuju se svojstva maskirnog premaza NATO RAL 6031 F9, nakon višegodišnje uporabe, sa svojstvima dva nova premaza nanesena na hladno valjani čelični lim, s i bez prevlake cinka. Oznake ispitnih uzorka sastoje se od osnovne slovne oznake (A, B, C) i dodatnih slovno-brojčanih oznaka, prikazanih u donjoj tablici.

Osnovna oznaka uzorka	Stanje maskirnog premaza RAL 6031 F9 i podloge
٨	Stari premaz na uzorcima izuzetim iz uporabe nanesen
A	na lim od čelika EN DC01 debljine 1,0 mm
р	Novi premaz nanesen na hladno valjani lim od čelika EN
D	DC01 debljine 0,80 mm
C	Novi premaz nanesen pocinčani hladno valjani lim od
C	čelika EN DC01 debljine 0,60 mm
B _{0/3}	Neprevučeni uzorak B
B1/0, B1/1, B1/2	Neprevučeni uzorak C
Dodatne oznake	
uzorka	
A	A _{1/0} , A _{1/1} , A _{1/2} , A _{1/3} , A _{1/4} , A _{1/5} ,
В	$M_{1/0}, M_{1/1}, M_{1/2}, M_{1/3}, M_{1/4}$
С	C _{1/0} , C _{1/1} , C _{1/2} , C _{1/3} , C _{1/4} , C _{1/5}

Tablica 4. Oznake ispitnih uzoraka

Uzorci maskirnog premaza osnovne oznake "A" izrezani su iz vrata vojnog vozila TAM-150 T11 BV-6x6 prikazanih na Slici 45. Osnovni materijal za uzorke "B" i "C" bili su hladno valjani limovi od čelika EN DC01 (1.0330). Mehanička svojstva čelika EN DC01 propisana su normom EN 10130:2006, R_{eH} = 280 MPa, R_m = 210 – 410 MPa, A = 28 %, 105 HV. Kemijski sastav ovog čelika nije propisan, ali je u navedenoj normi preporučen uobičajeni sastav: do 0,12 % C, do 0,6 % Mn, do 0,045 % P, do 0,045 % S.

Slika 45. Vrata vojnog vozila TAM-150 T11 BV-6X6 prije izrezivanja ispitnih uzorka [25]

6.2. Priprema ispitnih uzoraka i plan ispitivanja

Uzorci serije B i C izrezani su iz komercijalno nabavljenih limova od čelika EN DC01 (1.0330) debljine 0,80 mm (uzorci B), odnosno 0,60 mm (uzorci C). Hrapavost površine limova prije prevlačenja određena je na uređaju TIME 3202, snimanjem profila hrapavosti na ukupnoj mjernoj duljini L = 4,00 mm, duljinom uzorkovanja 0,8 mm i određivanjem parametara R_a , R_z i R_{max} primjenom Gaussovog filtera u analizi profila. Izgled profila hrapavosti neprevučenog i vruće pocinčanog lima prikazan je na Slici 46 i Slici 47, a podaci o parametrima hrapavosti navedeni su u Tablici 5.

Slika 46. Profil hrapavosti neprevučenog (a) i vruće pocinčanog lima (c)

Slika 47. Profil hrapavosti vruće pocinčanog lima u smjeru valjanja

Tablica 5.	Parametri	hrapavosti	neprevučenog	i vruće	pocinčanog	lima
					Potnemos	

Oznaka uzorka	Ra [µm]	Rz [µm]	R _{max} [µm]
В	1,222	5,824	6,796
С	0,494	1,386	3,447

Nanošenje maskirnog premaza NATO RAL 6031 F9 na podlogu uzoraka, iz serije "B" i "C", provedeno je u Remontnom zavodu MORH-a. Izgled uzorka B i C prije i nakon prevlačenja maskirnim premazom prikazan je na Slici 48.

Slika 48. Izgled uzorka B i C prije i nakon prevlačenja maskirnim premazom

Sva laboratorijska ispitivanja provedena su u laboratorijima Fakulteta strojarstva i brodogradnje: Laboratoriju za inženjerstvo površina, Laboratoriju za zaštitu materijala, Laboratoriju za tribologiju i Laboratoriju za materijalografiju. Ispitivanja svojstava maskirnih premaza su obuhvatila sljedećih 12 laboratorijskih metoda:

- 1) Mikrostrukturnu analizu Zn prevlake i podloge.
- 2) Ispitivanje tvrdoće lima metodom Vickers.
- 3) Ispitivanje debljine suhog premaza.
- 4) Ispitivanje prionjivosti premaza cross-cut testom.
- 5) Ispitivanje tvrdoće premaza olovkom i uređajem PosiTector SHD,
- 6) Ispitivanje poroznosti premaza pomoću niskonaponskog detektora.
- 7) Vizualnu analizu pojavnih oblika korozije na premazima iz uporabe.
- 8) Ubrzana korozijska ispitivanja u vlažnoj, slanoj i klimatizacijskoj komori.
- 9) Elektrokemijska ispitivanja korozije istosmjernom strujom,
- 10) Elektrokemijska ispitivanja korozije izmjeničnom strujom,
- 11) Ispitivanja otpornosti na udarnu eroziju tvrdim česticama,
- 12) Ispitivanja otpornosti na abrazijsku eroziju tvrdim česticama.

Simuliranjem atmosferskih uvjeta, uzorci lima prema dolje navedenim oznakama podvrgnuti su mehaničkim i korozijskim ispitivanjima u Laboratoriju za zaštitu materijala na Fakultetu strojarstva i brodogradnje:

- Ispitivanje debljine suhog sloja premaza: uzorci A1-0, A1-1, B1-0, B1-1, C1-0, C1-1, B1/0, B1/1.
- 2) Ispitivanje u slanoj komori: uzorci A1-2, A1-3, B1-2, B1-3, C1-2, C1-3.
- 3) Ispitivanje u vlažnoj komori: uzorci A1-0, B1-0, C1-0.
- 4) Ispitivanje u klima komori: uzorci A1-4, B1-4, C1-4.
- Ispitivanje prionjivosti premaza: uzorci A1-0, A1-1, A1-2, A1-3, A1-4, B1-0, B1-1, B1-2, B1-3, B1-4, C1-0, C1-1, C1-2, C1-3, C1-4, B_{1/0}, B_{1/1}.
- 6) Ispitivanje tvrdoće premaza: uzorci A1-0, A1-1, A1-2, A1-3, A1-4, B1-0, B1-1, B1-2, B1-3, B1-4, C1-0, C1-1, C1-2, C1-3, C1-4.
- 7) Određivanje poroznosti premaza: uzorci A1-0, A1-1, B1-0, B1-1, C1-0, C1-1.

 8) Ispitivanje zaštitnih slojeva premaza elektrokemijskim metodama: uzorci A1-5, B_{0/3}, B_{1/2}, B1-4, C1-5.

6.3. Metalografska priprema uzoraka

Metalografsko ispitivanje je vrsta razornog ispitivanja koja može biti makroskopska i mikroskopska. Makrostrukturom uzorka uočavaju se makro-pojave nastale preradom materijala, različite nakupine, pukotine, lomovi i sl. Naspram nje, mikrostrukturu uzorka je nemoguće promatrati golim okom ili malim povećanjem. Stoga, mikrostruktura zahtijeva uporabu svjetlosnog ili elektronskog mikroskopa kako bi se utvrdila raspodjela prisutnih faza, uključci, veličina kristalnog zrna i njihove granice, deformacije strukture i slično. Faze metalografske pripreme ispitnog uzorka prikazane su na donjoj slici.

Slika 49. Faze metalografske pripreme uzoraka

Priprema i analiza metalografskih uzoraka provedena je u Laboratoriju za materijalografiju na Fakultetu strojarstva i brodogradnje u Zagrebu. Rezanje reprezentativnog uzorka iz osnovnog materijala provedeno je na uređaju Mecatome T260 s dijamantnom reznom pločom, prikazanom na Slici 50.

Slika 50. Uređaj Mecatome T260

Nakon rezanja uzorci su zaliveni u kalup u dvokomponentnu polimernu smjesu koja umrežava i očvršćava u pneumatskoj preši, proizvođača Pneumet Press, pod djelovanjem povišenog tlaka i temperature. Polimerni prah rastaljuje i polimerizira u polimernu masu u kojoj uzorci ostaju zaliveni što prikazuje Slika 54¹.

Slika 51. Metalografski pripremljeni uzorci

¹ Oznaka 0: uzoraka serije A, oznaka 1: uzorak serije C, oznaka 2: uzorak serije B.

Nakon zalijevanja u polimernu masu, provedeno je brušenje na uređaju MECATECH 250 SPC prikazanom na Slici 52, kojim se otklanjanju slojevi nečistoća, ostaci polimerne mase i tragovi rezanja. Brušenje je provedeno primjenom brusnih papira zrnatosti: #150, # 600, #1200 i #2000.

Slika 52. Uređaj MECATECH 250 SPC

U cilju uklanjanja tragova brušenja s površine materijala te postizanja glatke, ravne i sjajne površine, nakon brušenja se provodi poliranje uzorka suspenzijom Struers DP3. Naposljetku, se polirani uzorak podvrgava nagrizanju u 3%-tnoj otopini NITAL, tj. smjesi od 3 ml dušične kiseline i 97 ml etilnog alkohola.

7. ISPITIVANJE MIKROSTRUKTURE I TVRDOĆE LIMA

7.1. Analiza mikrostrukture

Nakon poliranja i nagrizanja, metalografski uzorci su analizirani na svjetlosnom mikroskopu OLYMPUS GX51. Na Slici 53.a) prikazana je mikrostruktura lima uzorka iz serije A. Izgled mikrostrukture upućuje na tipičnu feritno – perlitnu strukturu niskougljičnog nelegiranog čelika. Sličan izgled i faze u mikrostrukturi nalazi se kod uzorka serije B (Slika 53.b)) i serije C (Slika 53.c)).

Slika 53. Mikrostruktura uzorka: a) serija A, b) serija B i c) serija C

Na Slici 54 prikazana je mikrostruktura uzorka s nanesenim premazom (serija B). Na Slici 55 prikazana je mikrostruktura rubnog sloja na uzorku C, s prevlakom cinka. Primjenom računalnog programa povezanog s kamerom na svjetlosnom mikroskopu, izmjerena je debljina premaza na uzorku B i debljina prevlake cinka na uzorku C:

- a) izmjerena debljina premaza iznosi: 9,90 \pm 2,37 μ m
- b) izmjerena debljina prevlake cinka inosi: 9,42 \pm 3,05 μ m

Slika 54. Debljina nanešene boje na uzorak serije B povećanja 200X

Slika 55. Debljina nanešene boje na uzorak serije C povećanja 200X

7.2. Ispitivanje mikrotvrdoće lima

Nakon provedene analize mikrostrukture pod svjetlosnim mikroskopom, ispitana je mikrotvrdoća uzorka metodom Vickers HV 0,5 na tvrdomjeru INSTRON WILSON-WOLPERT TUKON 2100 B, prikazanom na Slici 56. Ispitivanje je provedeno u Laboratoriju za inženjerstvo površina na Fakultetu strojarstva i brodogradnje u Zagrebu.

Slika 56. Uređaj WILSON-WOLPERT TUKON 2100 B

Ispitivanje tvrdoće provedeno je s pet mjerenja na svakom uzorku. Oznake uzoraka bile su slijedeće: uzorak serije A: postojeći materijal, serije B: prevučena pločica alternativnog materijala te uzorak serije C: pocinčana pločica prevučena zelenom (NATO) bojom. Srednje vrijednosti tvrdoće nakon pet mjerenja iznose (vidi Prilog I):

- Uzorak serije A: $100 \pm 1,09$ HV 0.5
- Uzorak serije B: $116 \pm 5,40$ HV 0.5
- Uzorak serije C: 121 ± 2,92 HV 0.5

8. ISPITIVANJE FIZIKALNIH SVOJSTAVA PREMAZA

8.1. Ispitivanje debljine suhog premaza

Mjerenje debljine suhog sloja premaza provedeno je sukladno normi HRN EN ISO 2808:2019, korištenjem uređaja Elcometer 456/4 koji radi na principu elektromagnetske indukcije. Uređaj se sastoji od ekrana na kojem se prikazuju parametri debljine i kabla sa sondom, koja se postavlja okomito na površinu mjerenja, što je prikazano na Slici 57. Prije samog mjerenja debljine premaza, provedeno je umjeravanje uređaja pomoću etalona propisanog od proizvođača.

Slika 57. Uređaj za mjerenje debljine suhog filma "Elcometer 456"

Ispitivanje je provedeno u 10 točaka na svakom uzorku serije A (A1-0, A1-1), serije B (B1-0, B1-1), serije C (C1-0, C1-1), prikazanim na Slici 58. Izmjerene su minimalne i maksimalne vrijednosti debljine premaza, njihova aritmetička sredina i standardna devijacija.

Slika 58. Prikaz uzoraka za ispitivanje debljine suhog sloja premaza

Rezultati debljine suhog sloja premaza prikazani su u Tablici 6 i na Slici 59.

OZNAKA UZORKA:	Broj mjerenja, n	Minimalna debljina premaza (µm)	Maksimalna debljina premaza (µm)	Standarna devijacija, σ (μm)	Aritmetička sredina, X (μm)
A1-0	10	197,00	214,00	4,84	204,10
A1-1	10	114,00	153,00	11,70	130,30
B1-0	10	83,30	95,50	4,47	88,54
B1-1	10	82,00	105,00	7,99	91,56
C1-0	10	92,60	111,00	6,34	102,90
C1-1	10	98,50	107,00	2,47	102,30

Fablica 6.	Debljine	suhog	sloja	premaza
------------	----------	-------	-------	---------

Slika 59. Aritmetička sredina debljine suhog sloja premaza

8.2. Ispitivanje tvrdoće suhog premaza

Provedene su dvije metode ispitivanja tvrdoće suhog filma, a to su:

- 1) Ispitivanje tvrdoće premaza olovkom i
- 2) Ispitivanje tvrdoće premaza Shore-D metodom, pomoću uređaja PosiTector SHD.

Ispitivanje tvrdoće olovkom provedeno je sukladno normi HRN EN ISO 15184:2013. Oprema za ispitivanje je prikazana na Slici 60.

Slika 60. Oprema za ispitivanje tvrdoće premaza olovkom

Ispitivanje tvrdoće premaza olovkom je provedeno na uzorcima serije A (A1-1), serije B (B1-1) i serije (C1-1), te na uzorcima koji su bili izloženi utjecajima komora: serija A (A1-0, A1-3, A1-4), serija B (B1-0, B1-3, B1-4) i serija C (C1-0, C1-3, C1-4).

Ispitivanje tvrdoće premaza uređajem PosiTector SHD, prikazanog na Slici 61, jednostavan je postupak mjerenja tvrdoće po Shore-D, koja se definira kao mjera otpornosti materijala na prodiranje u prevlaku. Tvrdoća se mjeri Shore skalama koje se kreću od 0 do 100, a veći broj predstavlja veću vrijednost tvrdoće. Ispitivanje tvrdoće po Shore-D je proveden na trima uzorcima koji nisu izloženi slanoj, vlažnoj ni klima komori (A1-1, B1-1, C1-1) po pet mjerenja na svakom uzorku.

Slika 61. Uređaj PosiTector SHD

Nakon ispitivanja debljine prevlake, na uzorcima: serije A (A1-0, A1-1, A1-3, A1-4), serije B (B1-0, B1-1, B1-3, B1-4) te serije C (C1-0, C1-1, C1-3, C1-4), je provedeno ispitivanje tvrdoće premaza olovkama, a rezultati mjerenja su prikazani u Tablici 7.

Tablica 7. Rezultati ispitivanja tvrdoće premaza olovkama

Oznaka uzorka:	A1-0	A1-1	A1-3	A1-4	B1-0	B1-1	B1-3	B1-4	C1-0	C1-1	C1-3	C1-4
Rezultat:	Н	3H	F	Н	2H	3H	Н	Н	2H	5H	2H	Н

Rezultati ispitivanja tvrdoće premaza uređajem PosiTector SHD, na uzorcima A1-1, B1-1 i C1-1 su prikazani u Tablici 8.

Tablica 8. Rezultati ispitivar	ja tvrdoće premaza u	uređajem PosiTector Shore-D
--------------------------------	----------------------	-----------------------------

Oznaka uzorka:	Broj mjerenja	Srednja vrijednost
A1-1	5	88,0
B1-1	5	90,0
C1-1	5	88,4

8.3. Ispitivanje poroznosti premaza

Ispitivanje poroznosti premaza provedeno je u Laboratoriju za zaštitu materijala na Fakultetu strojarstva i brodogradnje u Zagrebu. Postupak je proveden na uzorcima serije A (A1-0, A1-1, A1-3, A1-4), serije B (B1-0, B1-1, B1-3, B1-4) i serije C (C1-0, C1-1, C1-3, C1-4), pomoću niskonaponskog detektora Elcometer 270 Pinhole Detector, prema normi HRN EN ISO 29601:2012. Slika 62 prikazuje postupak rada niskonaponskog detektora Elcometer 270 Pinhole Detector.

Slika 62. Niskonaponski uređaj Elcometer 270

Naime, utvrđivanjem poroznosti premaza, niskonaponskim Holiday detektorom, utvrđeno je da na svim uzorcima nema pora koje prodiru do metalne podloge.

8.4. Ispitivanje prionjivosti premaza

Ispitivanje prionjivosti premaza *cross-cut* testom provelo se sukladno normi ISO 2409:2013. Ispitivanje se provelo na uzorcima prije i poslije izlaganja slanoj, vlažnoj i klima komori, koji su prikazani na Slici 63, a to su:

- Uzorci A1-1, B1-1, C1-1: nisu izložene utjecaju komora,
- uzorci A1-0, B1-0, C1-0: izložene utjecaju vlažne komore,
- uzorci A1-4, B1-4, C1-4: izložene utjecaju klima komore,
- uzorci A1-2, A1-3, B1-2, B1-3, C1-2, C1-3: izložene utjecaju slane komore.

Slika 63. Uzorci prije izlaganja ispitivanju u vlažnoj komori

Ispitivanje je provedeno i u klimatizacijskoj komori "KK-190 CHLT", na uzorcima A1-2, B1-4 i C1-4, u vremenu od 5 dana po 5 ciklusa u kojem ciklus obuhvaća dva koraka: I. korak u kojem su uzorci izloženi 60 % vlagi i temperaturi zraka 40 °C u trajanju od 12 h, te II. korak koji podrazumijeva hlađenje 15 °/h na temperaturu -20 °C u trajanju 12h. Klimatizacijska komora i odgovarajući uzorci prikazani su na Slici 64 i Slici 65.

Slika 64. Klimatizacijska komora

Slika 65. Ispitni uzorci u klimatizacijskoj komori

Nakon ispitivanja debljine suhog filma i ispitivanja u slanoj, vlažnoj i klimatizacijskoj komori, provedeno je ispitivanje prionjivosti premaza na uzorcima A1-1, B1-1, C1-1 te na uzorcima A1-0, B1-0, C1-0 (nakon ispitivanja u vlažnoj komori), uzorcima A1-4. B1-4, C1-4 (nakon ispitivanja u klimatizacijskoj komori) i na uzorcima A1-2, A1-3, B1-2, B1-3, C1-2, C1-3 (nakon ispitivanja u slanoj komori), što je prikazano od Slike 66 do Slike 70.

Oznaka uzorka	Slika uzorka	Ocjena prema normi ISO 2409
A1-1		ocjena 3 (15 do 30% površine je oljušteno)
B1-1		ocjena 1 (manje od 5 % površine je oštećeno)
C1-1		ocjena 2 (5 do 15 % površine je oštećeno)

Slika 66. Ispitivanje prionjivosti premaza na uzorcima A1-1, B1-1, C1-1

Slika 67. Ispitivanje prionjivosti premaza na uzorcima A1-0, B1-0, C1-0

Slika 68. Ispitivanje prionjivosti premaza na uzorcimaa A1-4, B1-4, C1-4

Oznaka uzorka	Slika uzorka	Ocjena prema normi
·····		ISO 2409
A1-2		Ocjena 5 (više od 65% površine je oljušteno)
A1-3		Ocjena 2 (5 do 15 % površine je oštećeno)
B1-2		Ocjena 1 (manje od 5 % površine je oštećeno)
B1-3		Ocjena 1 (manje od 5 % površine je oštećeno)

Oznaka uzorka	Slika uzorka	Ocjena prema normi ISO 2409
C1-2		Ocjena 2 (5 do 15 % površine je oštećeno)
C1-3		Ocjena 1 (manje od 5 % površine je oštećeno)

Slika 70. Ispitivanje prionjivosti premaza na uzorcima C1-2 i C1-3

9. ISPITIVANJE KOROZIJSKE POSTOJANOSTI PREMAZA

9.1. Vizualna analiza korozije na premazu iz uporabe

Vizualna analiza korodiranih dijelova vrata vojnog vozila provedena je stereomikroskopom Mantis Elite-Cam HD, a snimanje interesantnih lokaliteta napravljeno je fotoaparatom Cannon 1000D postavljenim na prijenosni stalak KAISER RS2. Korištena oprema prikazana je Slikom 71.a) i Slikom 71.b).

Slika 71. Uređaji za makroskopska snimanja uzorka: a) stativ s fotoaparatom, b) stereomikroskop

Vrata vozila izrađena su kao sendvič konstrukcija sastavljena od dva lima, zavarena točkastim zavarivanjem, između kojih je zračna izolacija. Ovaj prostor nije dostupan za vizualnu analizu niti za održavanje, ali je tijekom uporabe izložen kondenzaciji vlage i pojavi korozije. Slika 72 prikazuje pojavne oblike korozije na unutrašnjoj strani lima vrata vozila. Oznaka 1 prikazuje pojavu opće korozije, dok ostale oznake prikazuju koroziju u procijepu.

Slika 72. Oblici korozije na unutrašnjoj strani lima vrata vozila

Slika 73 prikazuje pojavne oblike korozije na unutrašnjoj strani lima vozila uslikana fotoaparatom Cannon 1000D.

Slika 73. Pojavni oblici korozije uslikani fotoaparatom Cannon 1000D: a) opća korozija, b), c) i d) korozija u procijepu

Stereomikroskopske snimke korozije na limu vozila snimljene su stereomikroskopom pri povećanju 8:1 i prikazane Slikom 74.

Slika 74. Pojavni oblici korozije na površini lima u unutrašnjosti vrata

9.2. Ispitivanje premaza u slanoj, vlažnoj i klimatizacijskoj komori

Nakon ispitivanja debljine premaza, provedena su ispitivanja korozijske postojanosti laboratorijskim ubrzanim metodama.

Ispitivanje u slanoj komori provedeno je na uzorcima serije A, serije B i serije C, u trajanju 720 sati, prema normi HRN EN ISO 9227:2022, čiji parametri ispitivanja su prikazani u Tablici 9. Ispitni uzorci prije i poslije ispitivanja prikazani su na Slici 75.

Parametri ispitivanja	Norma HRN ISO	Uvjeti
	9227	ispitivanja
Trajanje ispitivanja, h	prema dogovoru	720
Temperatura ispitnog prostora, °C	35±2	35±0,1
Volumen ispitnog prostora, <i>l</i>	min 400	450
Temperatura ovlaživača komp. zraka, °C	45 - 50	47
Tlak komprimiranog zraka, <i>bar</i>	0,7 - 1,4	0,98
Korištena otopina	NaCl	NaCl
Koncentracija korištene otopine, %	5	3,5
Količina sakupljenog kondenzata, <i>ml</i> /80 <i>cm</i> ² / <i>h</i>	1,5±0,5	2,0
pH vrijednost kondenzata pri 25±2°C	6,5 – 7,2	7,1
El. provodljivost destilirane vode, $\mu S/cm$ pri	max. 20	< 10
25±2°C		

Tablica 9.	Parametri	ispitivanja	u slano	i komori
I upited >1	1 wi willout i	ispin anju	a shano	J 110111011

Slika 75. Uzorci prije i nakon ispitivanja u slanoj komori

Nakon izlaganja uzoraka slanoj atmosferi, ocjenjivanjem stupnja korozije oko ureza, simulira se ponašanje oštećenog premaza u korozivnoj sredini, i to na mjestima oštećenja. Ispitivanje je provedeno prema normi ISO 4628, pri čemu se svakih 5 mm mjerila širina zone djelovanja korozije. Postupak pripreme uzorka za mjerenje stupnja korozije je prikazan na Slici 76, dok su parametri ispitivanja prikazani u Tablici 10.

Slika 76. Priprema uzorka za mjerenje stupnja korozije

Stupanj korozije se računa prema formuli:

$$c = \frac{W_c - W}{2} \tag{19}$$

gdje je:

c ocjena stupnja korozije, Wc aritmetička širina zone korozije u mm te W širina ureza u 2 mm.

Oznaka	Broj	Aritmetička	Širina ureza W,	Stupanj
uzorka	mjerenja, n	sredina Wc, [mm]	[mm]	korozije
A1-2	10	1,6667	2	0,165
A1-3	10	1,7778	2	0,110
B1-2	10	1,0444	2	0,480
B1-3	10	1,8333	2	0,085
C1-2	10	0	2	1
C1-3	10	0	2	1

Tablica 10. Parametri izračuna stupnja korozije

Nakon ispitivanja u slanoj komori, u trajanju od 720 sati, sukladno normi HRN EN ISO 9227, uočeno je da na uzorcima serije A i serije B, nema pojava mjehurenja i pucanja prema odgovarajućim normama prikazanim u Tablici 11. Štoviše, na uzorcima serije C, vidljivo je širenje korozijskih produkata cinka (bijela hrđa) po urezu ispod premaza, što je uzrokovalo slabu prionjivost prevlake za podlogu. Prema rezultatima stupnja korozije, ocjenjene sukladno

normi HRN EN ISO 12944-6:2018, za sve uzorke navedenih serija, ocjena je zadovoljavajuća i iznosi manje od 1,5 mm.

	ISO 4628-2	ISO 4628-3	ISO 4628-4	ISO 4628-5	ISO 7253
Oznaka uzorka	Mjehurenje	Hrđanje	Pucanje	Ljuštenje	Korozija po urezu [mm]
A1-2	0(S0)	Ri 0	0(S0)	0(S0)	0,165
A1-3	0(S0)	Ri 0	0(S0)	0(S0)	0,110
B1-2	0(S0)	Ri 0	0(S0)	0(S0)	0,480
B1-3	0(S0)	Ri 0	0(S0)	0(S0)	0,085
C1-2	0(S0)	Ri 0	0(S0)	0(S0)	1
C1-3	0(S0)	Ri 0	0(S0)	0(S0)	1

Tablica 11. Rezultati ispitivanja u slanoj komori nakon 720h

Nakon podvrgavanja uzoraka vlažnoj komori u trajanju od 120 h, sukladno normi HRN EN ISO 6270:2018, na ispitnim uzorcima nisu uočene pojave degradacije u obliku hrđanja, pucanja ili ljuštenja. Numeričke vrijednosti ispitivanja u vlažnoj komori su prikazane u Tablici 12. Međutim, pojava mjehurenja je vidljiva na uzorku serije M, što se jasno vidi na Slici 77.

Oznaka uzorka	ISO 4628-2	ISO 4628-3	ISO 4628-4	ISO 4628-5
	Mjehurenje	Hrđanje	Pucanje	Ljuštenje
A1-0	0(S0)	Ri 0	0(S0)	0(S0)
B1-0	3(S3)	Ri 0	0(S0)	0(S0)
C1-0	0(S0)	Ri 0	0(S0)	0(S0)

Tablica 12. Rezultati ispitivanja u vlažnoj komori nakon 120 h

Slika 77. Uzorci prije i nakon ispitivanja u vlažnoj komori

Na uzorcima izloženih utjecaju klimatizacijske komore, koje su prikazane na Slici 78, nisu uočene pojave degradacije u obliku hrđanja, mjehurenja, pucanja ili ljuštenja.

Slika 78. Uzorci prije i poslije ispitivanja u klimatizacijskoj komori

9.3. Rezultati elektrokemijskih ispitivanja istosmjernom strujom

9.3.1. Priprema elektrokemijske ćelije

Elektrokemijska ispitivanja istosmjernom strujom provodila su se na uređaju VersaSTAT3 Potentiostat Galvanostat, sukladno normi ASTM G5-94, čiji rezultati su obrađeni pomoću programskog paketa VersaStudio v2.44. Elektrokemijska ćelija, prikazana na Slici 79, sastoji se od 3 elektrode: radne elektrode (ispitni uzorak), referentne elektrode (zasićena kalomel elektroda ZKE potencijala + 0,242 V prema standardnoj vodikovoj elektrodi) i pomoćne elektrode, odnosno grafitne protuelektrode. Za ispitni medij korištena je 3,5 %-tna otopina NaCl.

Slika 79. Elektrokemijska ćelija: a) Elektrode elektrokemijske ćelije, b) Radna elektroda pričvršćena na elektrokemijsku ćeliju

Elektrokemijsko ispitivanje istosmjernom strujom provedeno je na uzorcima $B_{0/3}$, $B_{1/2}$, A1-5, B1-4 i C1-5. Površina ispitnog uzorka, radne elektrode od 1 cm², izložena je ispitnom mediju u elektrokemijskoj ćeliji.
9.3.2. Određivanje korozijskog potencijala premaza

Korozijski potencijal E_{kor} ili potencijal otvorenog strujnog kruga E_{ok} određen je promjenom potencijala u vremenu od 1000 s. Vrijednost potencijala na tisućitoj sekundi predstavlja konačni korozijski potencijal u odnosu na zasićenu kalomel elektrodu. U Tablici 13, prikazani su rasponi vrijednosti korozijskih potencijala ispitnih uzoraka.

Uzorak	k Konačni korozijski potencijal <i>E_{corr}</i> [mV]	
B _{0/3}	-658,192	
B _{1/2}	-1015	
A1-5	-844,362	
B1-4	-164,087	
C1-5	-68,278	

Tablica	13.	Vrijednost	koroziiskih	potencijala	ispitnih	uzoraka
Tabilca	15.	viijeunose	KULUZIJSKIH	potencijaia	ispitini	uzoi ana

Od prevučenih uzoraka, uočava se da najnegativniji potencijal ima upravo iskorišteni uzorak, odnosno uzorak A1-5, što ukazuje na njegovu nestabilnost u korozivnom okruženju.

9.3.3. Određivanje polarizacijskog otpora premaza

Metodom linearne polarizacije utvrđen je polarizacijski otpor R_p . Korozijski potencijal E_{corr} je u području od ±20 mV, a brzina polarizacije je od 0,1666 mV/s. Slika 80 prikazuje dijagrame linearne polarizacije uzoraka B_{0/3} i B_{1/2}, dok su ostali uzorci podvrgnuti metodi elektrokemijske impedancijske spektroskopije zbog prevučenosti premazom.

U Tablici 14 prikazani su rezultati elektrokemijskih ispitivanja.

Uzorak	jcorr [µA/cm ²]	R _p [Ω]
B _{0/3}	24,012	968,174
B _{1/2}	7,784	2575,0

Tablica 14. Rezultati elektrokemijskih ispitivanja

Gdje je:

 R_p – polarizacijski otpor, [Ω]

 j_{corr} - gustoća korozijske struje, [μ A/cm²]

9.3.4. Rezultati ispitivanja premaza metodom Tafelove ekstrapolacije

Na uzorcima $B_{0/3}$ i $B_{1/2}$ provedena je potenciodinamička polarizacija, u području potencijala od -250 mV do +250 mV i brzinu promjene potencijala od 0,1666 mV/s, primjenom kvazipotenciostatske metode (metoda Tafelove ekstrapolacije). Na Slici 81 i Slici 82, prikazana je metoda Tafelove ekstrapolacije i izgled površine nakon ispitivanja na uzorcima $B_{0/3}$ i $B_{1/2}$, dok su u Tablici 15 prikazani rezultati njihovih ispitivanja.

Slika 81. Ispitivanje korozije Tafelovom metodom za: a) uzorak B_{0/3}, b) uzorak B_{1/2}

Slika 82. Izgled površine nakon ispitivanja korozije na: a) uzorku B_{0/3}, b) uzorku B_{1/2}

Tablica 15. Rezultati ispitivanja Tafelove ekstrapolacije

Uzorak	Ekor VS ZKE, [mV]	vcorr [mm/god]
B _{0/3}	-658,192	0,1155
B _{1/2}	-1015	0,0942

Gdje je:

 E_{kor} - korozijski potencijal određen prema referentnoj kalomel elektrodi poznatog potencijala od +0,242 V, [mV]

v_{corr} - brzina korozije, [mm/god]

Prema navedenim rezultatima zaključuje se slijedeće:

-Polarizacijski otpor R_p uzorka B_{1/2} veći je od polarizacijskog otpora uzorka B_{0/3}.

- Brzina korozije uzorka B_{0/3} veća je od brzine korozije uzorka B_{1/2}.

- Vrijednosti korozijskog potencijala obaju uzoraka su negativne što upućuje na koroziju.

9.4. Rezultati elektrokemijskih ispitivanja izmjeničnom strujom

9.4.1. Elektrokemijska impedancijska spektroskopija

Ispitivanja metodom elektrokemijske impedancijske spektroskopije (EIS) provedena su u Laboratoriju za zaštitu materijala, na Fakultetu strojarstva i brodogradnje. Kao elektrolit je korištena 3,5%-tna vodena otopina NaCl, pri standardnoj temperaturi, a kao referentna elektroda zasićena Kalomel elektroda. Za pomoćne elektrode korištene su grafitne elektrode, dok je površina radne elektrode (uzorci A1-5, M1-4 i C1-5) iznosila 1 cm². Metoda EIS provedena je u rasponu frekvencija od 0,1 Hz do 100 000 Hz.

Za analizu rezultata dobivenih elektrokemijskom impedancijskom spektroskopijom, primijenjen je ekvivalentni krug koji uključuje sljedeće elemente: omski ili nekompenzirani otpor elektrolita između radne i referentne elektrode (R_s), otpor premaza (R_{coat}), modificirani kapacitivni element premaza (Q_{coat}), otpor prijenosu naboja na međufaznoj granici između niskougljičnog čelika i elektrolita (R_{ct}), modificirani kapacitivni element električnog dvosloja (Q_{dl}). Navedeni kapacitivni elementi predstavljaju modificirani fazni element CPE (engl. Constant Phase Element) koji poboljšava reprezentaciju impedancije pomoću modela.

Za usklađivanje vrijednosti dobivenih EIS ispitivanjem na uzorcima iz Remontnog zavoda, korišten je i Randlesov ekvivalentni krug, koji se sastoji od otpora elektrolita (R_s), kapaciteta električnog dvosloja (C_{dl}) i otpora prijenosu naboja (R_{ct}). Za svaki uzorak prikazan je Nyquistov graf modula impedancije, dok su numeričke vrijednosti prikazane u Tablici 16.

S ciljem utvrđivanja učinkovitosti zaštitnih prevlaka, koje predstavljaju zaštitnu barijeru na ispitnim uzorcima, ključno je odrediti njihove specifične vrijednosti. Veća apsolutna impedancija ukazuje na veći otpor pora i pukotina prema prodoru elektrolita u prevlaku, što potvrđuje bolja barijerna svojstva prevlake.

Nyquistovi dijagrami za ispitne uzorke, prikazani su na Slici 83, Slici 84 i Slici 85. Smanjenje impedancijskih vrijednosti vidljivo je kroz smanjenje radijusa krugova. Ova pojava izravna je posljedica difuzije elektrolita kroz pore premaza, što omogućuje ionima u elektrolitu da dođu u kontakt s metalnom površinom i uzrokuju oštećenja na granici faza između premaza i podloge.

Slika 83. Rezultati EIS za uzorak A1-6 prikazana Nyquistovim dijagramom

Slika 84. Rezultati EIS za uzorak M1-4 prikazana Nyquistovim dijagramom

Slika 85. Rezultati EIS za uzorak C1-5 prikazana Nyquistovim dijagramom

Slika 86 i Slika 87 prikazuje površinu uzoraka nakon elektrokemijskog ispitivanja izmjeničnom strujom.

Slika 86. Izgled površine nakon elektrokemijskog ispitivanja za: a) uzorak A1-6, b) uzorak M1-4, c) uzorak C1-5

Slika 87. Izgled uzoraka snimljen stereomikroskopom Mantis Elite-Cam HD povećanja 8X: a) uzorak A1-6, b) uzorak M1-4, c) uzorak C1-5

Za Nyquistove dijagrame izabrani su modeli ekvivalentnih strujnih krugova u programu ZSimpWin za svaki određeni uzorak, prikazani na Slici 88, kako bi se opisala reakcija i promjene na površini ispitnih uzoraka u ispitnom elektrolitu, a modeli su:

- 1) R(Q(R(QR))) za uzorak A1-6,
- 2) R(CR) za uzorak M1-4 i
- 3) R(CR) za uzorak C1-5.

Slika 88. Modeli ekvivalentnog strujnog kruga za uzorak A1-6 (lijevo) i uzorke M1-4 i C1-5 (desno)

Iz numeričkih vrijednosti prikazanih u Tablici 16, može se zaključiti da prevučena alternativna pločica, uzorak M1-4, i prevučeni pocinčani uzorak, uzorak C1-5, imaju jednake vrijednosti R_s , R_{coat} i C_{dl} , zbog relativno podjednakih uvjeta prevlačenja (isti ličioc, jednaka tehnika nanošenja i itd.). Uzorak A1-6 ima najmanju vrijednost otpora R_{coat} , što ukazuje na veću sklonost koroziji.

Uzorak	$R_{ m s}\left[\Omega ight]$	$R_{ ext{coat}}[\Omega]$	$R_{ m ct} \left[\Omega \right]$	Q_1	Q_2	Cdl
A1/6	2,263 × 10	$1,621 \times 10^2$	$2,201 \times 10^3$	$1,715 \times 10^{-4}$	3.291×10^{-4}	-
M _{1/4}	1,000 × 10	$1,171 \times 10^{6}$	-	-	-	$3,009 \times 10^{-9}$
C1/5	1,000 × 10	$1,171 \times 10^{6}$	-	-	-	3,009 × 10 ⁻⁹

Tablica 16. EIS parametri ispitnih uzoraka A1-6, M1-4 i C1-5

Gdje je:

Rs- Omski ili nekompenzirani otpor elektrolita,

 R_{coat} - otpor premaza,

 R_{ct} - otpor prijenosu naboja na međufaznoj granici između niskougljičnog čelika i elektrolita,

 $Q_1(Q_{coat})$ – modificirani kapacitivni element premaza (engl. Constant Phase Element, CPE),

 $Q_2(Q_{dl})$ – modificirani kapacitivni element električnog dvosloja.

10.ISPITIVANJE OTPORNOSTI PREMAZA NA EROZIJU MLAZOM ČESTICA

10.1. Ispitivanje otpornosti na udarnu eroziju

Rezultati mjerenja debljine ispitnih uzoraka serije A, B i C nakon ispitivanja erozijom čestica prikazani su u Prilogu II. Na Slici 89, Slici 90 i Slici 91 prikazane su površine uzoraka serije A, B i C nakon određenih vremenskih intervala erozijskog trošenja pod kutom od 90° snimljene pomoću fotoaparata Cannon 1000D s prijenosnim stalkom KAISER RS2.

Uzorak	Vrijeme	trošenja, s		
OZOTUK	10	30		
Postojeća pločica				
Prevučena alternativna pločica				
Prevučena pocinčana pločica				

Slika 89. Izgled površine uzoraka nakon izlaganja 10 s i 30 s erozijskom trošenju

Uzorak	Vrijeme trošenja, s			
	50	60		
Postojeća pločica				
Prevučena alternativna pločica				
Prevučena pocinčana pločica				

Slika 90. Izgled površine uzoraka nakon izlaganja 50 s i 60 s erozijskom trošenju

Slika 91. Izgled površine uzoraka nakon izlaganja 90 s i 120 s erozijskom trošenju

10.2. Ispitivanje otpornosti na abrazijsku eroziju

Ispitivanje otpornosti na abrazijsku eroziju provedeno je pod kutom upada erodenta od 45° i 60°. Erodent su bile čestice aluminijeva oksida. Ispitivanja su provedena na istom uređaju kao i pokusi udarne erozije. U Tablici 17 i Tablici 18 prikazani su rezultati ispitivanja abrazijskog trošenja pod određenim kutom i njihov grafički prikaz.

Oznaka uzorka	Polazna debljina premaza [µm]	Vrijeme trošenja [s]	Smanjenje debljine premaza [µm]	Relativno smanjenje debljine [µm]
В	85±5	60	12	73
		90	18	67
		120	0	85
С	115±5	60	92	23
		90	88	27
		120	44	71

Tablica 17. Rezultati ispitivanja otpornosti premaza na abrazijsku eroziju pod kutom od 45°

Slika 92. Relativno smanjenje debljine premaza nakon abrazijskog trošenja uzoraka B i C pod upadnim kutom erodenta 45°

Oznaka uzorka	Polazna debljina premaza [µm]	Vrijeme trošenja [s]	Smanjenje debljine premaza [µm]	Relativno smanjenje debljine [µm]
В	85±5	60	30	55
		90	24	61
		120	14	71
		60	82	33
С	115±5	90	68	47
		120	20	95

Tablica	18.	Rezultati is	nitivania	otpornosti na	abrazijsku	eroziiu n	od kutom	od 60°
I upited	10.	Itezaitati is	pro anja	orpor nostri ma	aorazijona	er ozija p	ou nucom	04 00

Slika 93. Relativno smanjenje debljine premaza nakon abrazijskog trošenja uzoraka B i C pod upadnim kutom erodenta 60°

Na Slici 94 i Slici 95 prikazane su površine uzoraka B i C pod kutom od 45 i 60 u vremenskim intervalima trošenja 60 s, 90 s i 120 s.

Oznaka	Vrijeme trošenja [s]							
uzorka	60	90	120					
В								
С								

Slika 94. Trošenje uzoraka B i C pod kutom 45

Oznaka		Vrijeme trošenja [s]	
uzorka	60	90	120
В			
C			

Slika 95. Trošenje uzoraka B i C pod kutom 60°

11. ZAKLJUČAK

U suvremenoj vojnoj i civilnoj industriji prevlake i premazi imaju ključnu ulogu u zaštiti opreme i motornih vozila od atmosferske korozije i trošenja u uporabi. Stoga, prevlake i premazi moraju zadovoljiti vojne preporuke i norme kako bi se odabrala odgovarajuća prevlaka za vojna vozila, koja bi ispunila uvjete postavljene na mehaničko-fizikalna i tribološka svojstva te korozijsku postojanost.

Nakon provedenih ispitivanja NATO premaza RAL 6031 F9, na limu iz karoserije iz uporabe (uzorak A), neprevučenom novom limu (uzorak B) i pocinčanom novom limu (uzorak C) zaključuje se slijedeće:

- Prema metalografskoj analizi, limovi svih ispitnih uzoraka A, B i C imaju tipičnu feritno-perlitnu strukturu niskougljičnog nelegiranog čelika.
- Prema rezultatima ispitivanja debljine suhog premaza, uzorak A ima najveću debljinu, dok uzorak B ima najmanju debljinu suhog premaza.
- Prema rezultatima ispitivanja tvrdoće, uzorak A ima najmanju tvrdoću premaza nakon izlaganja slanoj, vlažnoj i klimatizacijskoj komori. Prema rezultatima ispitivanja tvrdoće premaza prema Shore-D metodi, uzorak B ima najveću tvrdoću, dok prema rezultatima ispitivanja tvrdoće premaza olovkama, uzorak C ima najveću tvrdoću. Nakon izlaganja uzoraka vlažnoj i klimatizacijskoj komori, uzorak B i uzorak C su podjednake tvrdoće. Međutim, nakon izlaganja slanoj komori, uzorak C je tvrđi od uzorka B.
- Prema rezultatima ispitivanja prionjivosti premaza u slanoj, vlažnoj i klimatizacijskoj komori, prevučena pocinčana metalna podloga C ima znatno bolje rezultate od prevučenog lima iz uporabe (uzorak A).
- Nakon ispitivanja poroznosti premaza, zaključuje se da su svu uzorci neporozni.
- Prema postignutom stupnju korozije, utvrđeno je da NATO premaz, na mjestima oštećenja u korozivnoj sredini (uzorci serije C), ima zadovoljavajuće rezultate otpornosti na koroziju naspram uzoraka iz serije A i serije B.
- Prema rezultatima elektrokemijskih ispitivanja istosmjernom strujom, uzorak serije A ima najnegativniji korozijski potencijal, što ukazuje na njegovu nestabilnost u korozivnoj sredini.
- Prema rezultatima elektrokemijske impedancijske sprektroskopije, uzorak A ima najmanji otpor premaza, što dodatno ukazuje na njegovo nestabilno ponašanje u

ekstremnim uvjetima. Međutim, uzorci B i C imaju jednake rezultate otpora premaza što ukazuje na dovoljnu kvalitetu premaza i njegovu neistrošenost (nov premaz).

 Prema rezultatima triboloških ispitivanja, uzorci serije C pokazali su se najboljim izborom materijala otpornim na trošenje, naspram uzoraka serija A i B. Relativno smanjenje debljine premaza uzorka serije B, pod kutom 45, je gotovo tri puta veće od relativnog smanjenja debljine premaza uzorka serije C.

Predloženi slijed ispitivanja, sastavljen od 12 laboratorijskih metoda, može se preporučiti za sustavno ispitivanje svojstava i karakteristika premaza za motorna vozila u civilnoj i vojnoj primjeni. Također, nakon laboratorijskih ispitivanja, preporučuje se provesti terenska ispitivanja, primjenom maskirnog premaza na dijelovima karoserije najviše izloženim koroziji i trošenju u uobičajenoj vojnoj uporabi.

12. LITERATURA

- [1] https://www.torso.de/Farbstandards/RAL-Farben/RAL-Classic/RAL-F9-Tarnfarben::144.html, pristupljeno 04.05.2024.
- [2] Landek, D.: Postupci prevlačenja površina, Vježbe iz kolegija "Proizvodne tehnologije", FSB, Zagreb, 2020.
- [3] Syed, P.S., Shoba U.S.: Engineering Chemistry II., Indian Scientific Publications, 2014.
- [4] Mattox D. M.: Handbook of Physical Vapor Deposition (PVD) Processing, Film formation, Adhesion, Surface Preparation and Contamination Control, Noyes Publications, Westwood, New Jersey, 1998.
- [5] Stojanović, I.: Predavanja iz kolegija: "Korozija i zaštita", HVU, Zagreb, 2020.
- [6] Landek, D.: Tehnološka ispitivanja površinskih slojeva, Vježbe iz kolegija "Tribologija i inženjerstvo površina", FSB, Zagreb, 2023.
- [7] Alar V., Juraga I., Stojanović I., Šimunović V.: Korozija i metode zaštite od korozije, skripta, FSB, Zagreb, 2012.
- [8] https://nfs-cink.hr/vruce-cincanje/, pristupljeno 02.01.2023.
- [9] ASM International Handbook Committee: ASM Handbook, Surface Engineering, Volume 5, 1994.
- [10] Kurtela, M.: Utjecaj cerijevih iona na korozijska svojstva aluminijske legure u kloridnome mediju, Doktorski rad, Fakultet strojarstva i brodogradnje, Zagreb, 2021.
- [11] Bewilogua K. et al.: Surface technology for automotive engineering, CIRP Annals - Manufacturing Technology 58 (2009), 608–627
- [12] Batchelor A.W. at al.: Materials Degradation and its Control by Surface Engineering, Imperial College Press, 2002.
- [13] Guzman, L. et al.: PVD-IBAD zinc coating development for automotive application, Surface and Coatings Technology, 174-175 (2003) 665-670
- [14] Lauwerens, W. et al.: PVD Al–Ti and Al–Mn coatings for high temperature corrosion protection of sheet steel, Surface and Coating Technology, 146-147 (2001) 27-32
- [15] Sankara Narayanan, T.S.N.: Surface pretreatment by phosphate conversion coatings, Rev.Adv.Mater.Sci. 9 (2005) 130-177
- [16] Esih, I., Dugi, Z.: Tehnologija zaštite od korozije I i II, Školska knjiga, Zagreb,1990. i 1992.

- [17] Giampieri A. et al.: A review of the current automotive manufacturing practice from an energy perspective, Applied Energy 261 (2020) 114074
- [18] https://www.aerosolsdirect.co.uk/about-ral/, pristupljeno 05.05.2024.
- [19] https://www.ve-metal.hr/ral-skala/, pristupljeno 05.05.2024.
- [20] https://madexcolor.com/ral-ljestvica/, pristupljeno 05.05.2024.
- [21] https://www.brillux-industrial-coatings.com/branches/military/, pristupljeno 06.05.2024.
- [22] https://www.ripol.com/wp-content/uploads/2023/06/RIPOL_Camouflagepowder-coating-RAL6031F9 en.pdf link RAL 5 , pristupljeno 06.05.2024.
- [23] https://www.ripol.com/en/camouflage-powder-coating-for-military-vehicles/, pristupljeno 06.05.2024.
- [24] https://www.vvubrno.cz/en/sec/group-of-camouflage-and-deception/ pristupljeno 17.09.2024.
- [25] https://www.researchgate.net/figure/All-terrain-vehicle-TAM-150-T11-Ris-1-Krupnotonnaznyj-gruzovoj-avtomobil-TAM-150-T11_fig1_369711203, pristupljeno 07.05.2024.
- [26] Savezni sekretarijat za narodnu obranu Tehnička uprava: Automobil TAM 150
 T 11 B/BV 6X6 Opis, rukovanje, osnovno i tehničko održavanje, Split, 1986.
- [27] Stupnišek-Lisac E.: Korozija i zaštita konstrukcijskih materijala, Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, Zagreb, 2007.
- [28] Alar, V.: Predavanja iz kolegija: "Korozija i zaštita", HVU, Zagreb, 2020.
- [29] Alar V., Juraga, I., Stojanović I., Korozija i zaštita premazima I. izdanje, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, Zagreb, 2014.
- [30] Grilec K., Jakovljević S., Marić G., Tribologija u strojarstvu, Fakultet strojarstva i brodogradnje, Zagreb, 2017.
- [31] Blaškovitš P. et al.: Study and characteristic of abrasive wear mechanisms, Institute of Production Technologies, Faculty of Materials Science and Technology, Slovak University of Technology, 2009.
- [32] Stachowiak G.W.: Particle angularity and its relationship to abrasive and erosive wear, University of Western Australia, Wear 241 (2000), 214–219
- [33] Lukšić H.: Usporedba mikrostrukture i svojstava dvaju konstrukcijskih čelika otpornih na trošenje, Diplomski rad, Fakultet strojarstva i brodogradnje, Sveučilište u Zagrebu, 2021.

- [34] Abdullah A. M. et al.: Erosion Behavior of API X120 Steel: Effect of Particle Speed and Impact Angle, MDPI 8 (2018) 343
- [35] Gandhi B. K., Sharma S.: Erosion Wear Behavior of Martensitic Stainless Steel Under the Hydro-Abrasive Condition of Hydropower Plants, Journal of Materials Engineering and Performance, Volume 29 (2020) 7544–7554
- [36] Briševac D., Stojanović I.: Dupleks sustav zaštite prevlakama, International Conference MATRIB, 2018.
- [37] Kurtela, M.: Vježbe iz kolegija "Korozija i zaštita", HVU, Zagreb, 2020.
- [38] https://www.elcometer.com/en/elcometer-270-pinhole-detector.html , preuzeto 05.03.2024.
- [39] Klišlić, M., Vrsalović L.: Vježbe iz "Tehnologija površinske zaštite", Interna skripta, Kemijsko-tehnološki fakultet, Split, 2005.
- [40] Air Sand Blaster Gun PDSP 1000 D5, Priručnik
- [41] Dugi Z., Esih I.: Tehnologija zaštite od korozije, ŠK, Zagreb, 1990.
- [42] Stojanović, I.: Utjecaj tehnoloških parametara na zaštitna svojstva vodorazrjeđivih premaza, Doktorski rad, FSB, Zagreb, 2011.
- [43] Martinez S.: Elektrokemijska korozija materijala, Metode određivanja brzine korozije, II dio, skripta, FKIT, 2013.
- [44] https://www.fkit.unizg.hr/_download/repository/KT_vjezbe-VJEZBA_4.pdf , preuzeto 01.03.2024.
- [45] Živčić I.: Analiza mikrostrukture keltskog mača, Diplomski rad, Fakultet strojarstva i brodogradnje, Sveučilište u Zagrebu, 2016.

ŽIVOTOPIS

Anita Peran rođena je u Šibeniku, dana 05.06.1998. Svoje djetinjstvo provela je u Grebaštici, malom povijesnom šibenskom mjestu poznatom po obrambenom zidu iz 15. stoljeća. Osnovnu školu je pohađala od 2006. do 2013. godine u Osnovnoj školi Brodarica, a nakon toga svoje srednjoškolsko obrazovanje stječe u Gimnaziji Antuna Vrančića, Šibenik, smjer Opća gimnazija. Nakon srednje škole upisuje preddiplomski sveučilišni studij Vojno inženjerstvo, rod tehnička služba, na Hrvatskom vojnom učilištu "Dr. Franjo Tuđman", čime postaje kadet Oružanih snaga Republike Hrvatske. 2021. godine završava preddiplomski studij kao treći najbolji polaznik svoje generacije za što je nagrađena brončanom medaljom načelnika GS OSRH za izvrsnost u izobrazbi. 2022. godine završava diplomski sveučilišni studij Vojno inženjerstvo te postaje poručnica OS RH. Prvo postavljenje dobila je u Gardijskoj mehaniziranoj brigadi, Topničko-raketnoj bojni, Bjelovar, gdje je obnašala dužnost zapovjednika logističkog voda. Nakon šest mjeseci rada u kopnenoj vojsci, dobiva premještaj u Hrvatsko ratno zrakoplovstvo, Središte za obuku, gdje stječe temeljna znanja zrakoplovnog održavanja i obnaša dužnost zapovjednika voda. Potom, krajem 2024. godine dobiva premještaj na dužnost zapovjednika voda u Satniji za održavanje i opsluživanje helikoptera, Donji Zemunik.

PRILOZI

I. Rezultati mjerenja tvrdoće uzorka oznake 0, 1 i 2.

REDNI BROJ	UZORAK 0	UZORAK 1	UZORAK 2	
MJERENJA	HV 0.5	HV 0.5	HV 0.5	
1.	101	114	114	
2.	99	124	116	
3.	101	118	121	
4.	99	122	115	
5.	99	128	114	
SREDNJA				
VRIJEDNOST HV 0.5	99,80	121,20	116,00	

Uzorak	Vrijeme trošenja, t (s)	Broj mjerenja, n	Minimalna debljina premaza (µm)	Maksimalna debljina premaza (μm)	Standarna devijacija, σ (μm)	Aritmetička sredina, A (μm)
Postojeća pločica A	30	10	87,2	92,4	1,93	90,27
	40	10	96,5	119,0	6,47	113,8
	50	10	123,0	129,0	1,65	125,6
	60	10	58,4	98,5	13,3	83,71
Prevučena alternativn a pločica B	30	10	95,8	104,0	2,93	100,8
	40	10	87,9	110,0	7,23	96,92
	50	10	80,2	89,8	2,71	84,2
	60	10	82,9	89,1	1,92	85,8
	90	10	85,8	100,0	4,87	92,42
	120	10	92,2	98,1	1,85	94,05
Prevučena pocinčana pločica C	30	10	82,9	89,9	2,41	87,64
	40	10	102,0	109,0	2,0	105,0
	50	10	99,0	109,0	3,24	104,6
	60	10	101,0	113,0	3,34	105,7
	90	10	91,5	99,1	2,26	94,95
	120	10	79,0	94,5	4,59	86,37

I. Rezultati mjerenja debljine ispitnih uzoraka nakon udarnog erozijskog trošenja.