Strukturna analiza konstrukcije obalne valoelektrane

Hergešić, Filip

Undergraduate thesis / Završni rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:549659

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-13

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Filip Hergešić

Zagreb, 2024.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentor:

Prof. dr. sc. Smiljko Rudan, dipl. ing.

Student:

Filip Hergešić

Zagreb, 2024.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se svom mentoru, Prof. dr. sc. Smiljku Rudanu na vremenu, trudu i prenesenom znanju uloženom u ovaj rad.

Zahvaljujem se Prof. dr. sc. Ivanu Ćatipoviću na pomoći i savjetovanju.

Zahvaljujem se svojoj obitelji, prijateljima i kolegama na neizmjernoj podršci.

Filip Hergešić

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za završne i diplomske ispite studija brodogradnje

Sveučiliš	ste u Zagrebu
Fakultet stroja	rstva i brodogradnje
Datum	Prilog
Klasa: 602 – 04	/ 24 – 06 / 01
Ur.broj: 15 – 24	-

ZAVRŠNI ZADATAK

Student:

Filip Hergešić

JMBAG: 0035214600

Naslov rada na hrvatskom jeziku: Stru

Strukturna analiza konstrukcije obalne valoelektrane

Naslov rada na engleskom Structural analysis of an onshore wave power plant construction jeziku:

Opis zadatka:

Klimatske promjene i posljedice tih promjena jasno ukazuju na nužnost korištenja obnovljivih izvora energije. Jedan od prihvatljivih izvora energije je energija morskih valova, koja se elektro-mehaničkim sustavom koji nazivamo valoelektrana, pretvara u električnu energiju. U završnom radu potrebno je analizirati konstrukcijske značajke obalne valoelektrane, sukladno dostupnim tehničkim podacima.

U radu je potrebno:

- 1. Napraviti pregled i proučiti princip rada za različite izvedbe valoelektrana.
- 2. Analizirati dostupne podatke o elementima valoelektrane te dimenzionirati elemente konstrukcije koji će se analizirati.
- 3. Izraditi geometrijski model valoelektrane u svrhu kinematičke analize pokretnih dijelova konstrukcije.
- 4. Provesti pojednostavljeni proračun sila koje djeluju na uronjene dijelove valoelektrane.
- 5. Izraditi mrežu konačnih elemenata konstrukcije valoelektrane te provesti analizu čvrstoće. Po potrebi, konstrukciju je potrebno modificirati kako bi joj se smanjila masa ili se poboljšala na drugi način.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

30.11.2023.

Zadatak zadao:

Prof. dr. sc. Smiljko Rudan

1. rok: 22. i 23. 2. 2024. **2. rok (izvanredni):** 11. 7. 2024. **3. rok:** 19. i 20. 9. 2024.

Datum predaje rada:

Predviđeni datumi obrane:

1. rok: 26. 2. – 1. 3. 2024. **2. rok (izvanredni):** 15. 7. 2024. **3. rok:** 23. 9. – 27. 9. 2024.

Predsjednik Povjerenstva:

Izv. prof. dr. sc. Ivan Ćatipović

Calipent

SADRŽAJ

POPIS TABLICA	II
POPIS DIJAGRAMA	II
POPIS SLIKA	V
POPIS OZNAKA	V
SAŽETAK	٧I
SUMMARYV	Π
1. UVOD	. 1
2. TIPOVI VALOELEKTRANA	. 2
3. PROJEKT VALOELEKTRANE ZA JADRAN	. 5
3.1. Princip rada pretvornika	. 6
4. KINEMATIČKI MODEL VALOELEKTRANE	. 7
4.1. Opis modela	. 7
4.2. SOLIDWORKS	.7
4.3. Prikaz modela	. ð
5. SILE VALA NA PLUTACU	. 9
5.1. Ulazni podaci	.9
5.3. Horizontalna komponenta	10
6. NUMERIČKI MODEL VALOELEKTRANE	12
6.1. Metoda konačnih elemenata	12
6.2. Femap/NX NASTRAN	12
6.3. Priprema modela	12
6.3.1. Definiranje svojstva materijala i grednih konačnih elemenata	13
6.3.2. Mreža	15
6.3.3. Sile i rubni uvjeti	16
6.4. Analiza 3D modela	20
6.4.1. Mjerne jedinice	20
6.4.2. Obacivanje Parasono daloteke modela u Femap	20 20
6.4.4 Rubni uvjeti	22 26
6.4.5. Opterećenja na plutači	29
7. ANALIZA REZULTATA	31
7.1. Rezultati početne analize	31
7.2. Rezultati analize punog modela	32
8. ZAKLJUČAK	35
LITERATURA	36

Tablica 1 Zadani ulazni podatci VANIS projekta	.9
Tablica 2 Proračun brzine, ubrzanja i horizontalne sile vala	11
Tablica 3 Promjena mjernih jedinica	20
Tablica 4 Kriteriji izdrživosti aluminijske legure EN AW 6060 T6 [8]	31
Tablica 5 Pomaci i naprezanja u navedenim profilima	31
Tablica 6 Preračunate vrijednosti pomaka i naprezanja	33

Filip Hergešić	Završni rad
POPIS DIJAGRAMA	
Dijagram 1 Prikaz horizontalne sile po vremenu	

POPIS SLIKA

Slika 7 Svojstvo BEAM elementa u Femap/NX NASTRAN......14 Slika 9 Upisanih koordinata za prvu točku u Femap/NX NASTRAN......15 Slika 14 Određivanje vertikalne sile u Femap/NX NASTRAN......17 Slika 16 Postavljanje svojstva DOF-SPRING elementa u Femap/NX NASTRAN 18 Slika 18 Određivanje rubnog uvjeta učvršćenja opruge u Femap/NX NASTRAN...... 19 Slika 24 Određivanje veličine mreže konačnih elemenata u Femap/NX NASTRAN......23 Slika 25 Prikaz stvaranja mreže na SOLID elementima u Femap/NX NASTRAN24 Slika 27 Prikaz stvaranje mreže PLATE elemenata plutače u Femap/NX NASTRAN...........25 Slika 28 Prikaz generirane mreže konačnih elemenata na modelu u Femap/NX NASTRAN 25 Slika 31 Prikaz stvaranja rubnog uvjeta za zglob u Femap/NX NASTRAN......27

Filip Hergešić

POPIS OZNAKA

Oznaka	Jedinica	Opis
g	m/s^2	Ubrzanje sile teže
ρ	kg/m ³	Gustoća fluida
Н	m	Visina plutače
D	m	Promjer plutače
h	m	Visina vala
Т	S	Period vala
ω	s ⁻¹	Kutna frekvencija vala
C_d	/	Koeficijent sile otpora
C_i	/	Koeficijent sile inercije
a_x	m/s^2	Horizontalno ubrzanje vala
v_x	m/s	Horizontalna brzina vala
V	m ³	Volumen plovka
Δ	kg	Masa istisnine plovka
ζα	m	Amplituda vala
ω	rad/s	Kutna frekvencija vala
t	S	Vremenski razmak
F	Ν	Sila
σ	MPa	Naprezanje

SAŽETAK

Potraga za obnovljivim izvorima energije stavlja u razmatranje mogućnost iskorištavanja energije valova mora za proizvodnju električne energije putem valnih pretvarača energije. Poznavanjem karakteristika valova Jadranskoga mora, mogu se postaviti početni uvjeti za izradu mehanizma koji će pomake plutače na morskoj površini valovitoga mora pretvoriti u pomake linearnog magnetskog generatora struje. Provođenjem strukturne analize modela mehanizma pomoću metode konačnih elemenata (MKE) ispituju se uvjeti i zahtjevi koje spomenuti mehanizam mora zadovoljiti za proizvodnju električne energije.

Ključne riječi: valni pretvarač energije, obnovljivi izvori energije, strukturna analiza, Jadransko more, metoda konačnih elemenata

SUMMARY

The search for renewable energy sources takes into consideration the possibility of using the energy waves of the sea to produce electricity through wave energy converters. By knowing the characteristics of the waves of the Adriatic Sea, the initial conditions can be set for the creation of a mechanism that will convert the translations of an buoy on the sea surface of the wavy sea into the translations of an linear magnetic current generator. By carrying out a structural analysis of the mechanism model using the finite element method (FEM), the conditions and requirements that the mentioned mechanism must satisfy to produce electricity are examined.

Keywords: wave energy converter, renewable energy sources, structural analysis, Adriatic Sea, finite element method

1. UVOD

Suvremeni energetski trendovi usmjeravaju se prema proizvodnji energije iz obnovljivih izvora, među kojima su najpoznatije i najzastupljenije solarne elektrane i vjetroelektrane. Tijekom zadnjih 20 godina počeo se razmatrati još jedan obnovljivi izvor za proizvodnju električne energije.

"Plava energija" ili energija morskih valova koristi neizmjernu kinetičku energiju kretanja mora kao obnovljivi izvor energije korištenjem pretvornika energije morskih valova (valoelektrana) za proizvodnju električne energije.

Činjenice da je 70% površine Zemlje morsko prostranstvo koje zauzima 361 milijun kilometara kvadratnih, predstavlja mnoge potencijalne lokacije diljem svijeta za iskorištavanje valne energije.[1] Uračunamo li k tome i minimalan utjecaj valoelektrana na okoliš u usporedbi s proizvodnjom iz drugih obnovljivih izvora energije, valna energija razmatra se kao vrlo povoljna opcija za proizvodnju energije te predstavlja začetak razvoja sustava valnih pretvarača energije.

Najranija istraživanja mogućih tehnologija iskorištavanja valne energije započeta su sedamdesetih godina 20. stoljeća, dok su suvremene tehnologije razvijene u različita rješenja koja su trenutno u fazama testiranja, ranih demonstracija i u nekim slučajevima demonstracija za komercijalnu upotrebu. Pretjerana raznolikost razmatranih i ispitivanih rješenja usporila je komercijalnu primjenu valnih pretvarača. Za ostvarenje komercijalne primjene, potrebno se koncentrirati na manji broj najisplativijih rješenja, da bi se resursi mogli usmjeriti prema izgradnji manjih serijskih postrojenja, koja će služiti kao model za povećanje stupnja iskoristivosti i smanjenje troškova izgradnje i održavanja komponenata postrojenja.

Time će se ostvariti puna komercijalna upotreba valoelektrana.[2]

U ovom radu razmatrat će se povoljnost izrade pretvarača valne energije na obali Jadrana, primjenom korištenjem plutače pokretati linearni generator električne energije, mehanizam prijenosa energije će biti potrebno dimenzionirati da izdrži naprezanja stvorena opterećenjem valova.

2. TIPOVI VALOELEKTRANA

Za razliku od ostalih obnovljivih izvora energija kod kojih su tehnologije pretvornika ustaljene i komercijalno dokazane, kod valoelektrana još uvijek nema takvih rješenja, nego se pojavljuju razni pristupi iskorištavanja valne energije koje se još uvijek razvijaju.

Pretvornici energije morskih valova su uređaji koji se dijele prema tipu tehnologije, lokaciji i načinu rada električnog generatora.

Najpoznatija su sljedeća 4 tipa tehnologije pretvornika:

- Točkasti upijač ili plutača (Point Absorber)
- Oscilirajući vođeni stup (Oscillating Water Column)
- Prelijevanje valova (Wave Overtopping)
- Prigušivač (Attenuator)

Prema lokaciji dijele se na:

- Pučinski
- Obalni

Prema tipu električnog generatora razlikuju se:

- Rotacioni generator
- Linearni generator.

Komercijalni uspjeh jedino su ostvarili točkasti upijač i oscilirajući vodeni stup. Tehnologije prelijevanja valova i prigušivača napuštene su zbog velikih troškova održavanja. Zaključuje se da isključivo obalni pretvornici imaju komercijalnu primjenu zbog prihvatljive cijene izgradnje i troškova održavanja.

Pučinski pretvarači sidre se na dno otvorenog mora, ali nije im pridružena kategorizacija u skupini plovnih objekata. Istovremeno njihova lokacija stvara izazov pristupačnosti i održavanja objekta. Obalne elektrane su po propisima kategorizirane kao obalne građevine. Lokacije za izgradnju obalnih valoelektrana su lukobrani, industrijska obala i molovi. Obalne valoelektrane mogu serijski imati veći broj pretvarača te zbog pristupačnosti imaju mogućnost modularnog proširenja i lakšeg održavanja. [3]

Slika 1 Shema obalnog oscilirajućeg vodenog stupa [4]

Slika 2 Shema pučinskog oscilirajućeg vodenog stupa [4]

Slika 3 Shema pučinskog točkastog upijača [4]

Filip Hergešić 3. **PROJEKT VALOELEKTRANE ZA JADRAN**

Na globalnoj razini Jadransko more nije vrlo bogato valnom energijom, no hrvatska obala kao jedna od najrazvedenijih obala u Europi i svijetu sadrži potencijal za iskorištavanje valne energije.

Kao početna točka ovog završnog rada postavljen je VANIS pretvornik, kategoriziran kao obalni točkasti upijač, koji uparuje plutaču i linearni generator istosmjernog napona u sustav proizvodnje električne energije. [3]

3.1. Princip rada pretvornika

Pretvornik se sastoji od sljedećih komponenti:

- Plutača
- Prijenosnik snage
- Linearni generator električne energije
- Elektro-ormarić.

Prijenosnik snage sastoji se od spojnog štapa, poluge, dvije koloture i užeta. Štap je učvršćen na plutaču i ležajem na prednji duži krak poluge. Zadnji kraći krak poluge je preko dvije koloture spojen užetom na translator linearnog generatora. Krakovi poluge su razdijeljeni osloncem na kojem se nalazi ležaj. Nailaskom vala, sila uzgona podiže plutaču koja kroz prijenos mehanizma podiže translator. Odlaskom vala gravitacija spušta plutaču i s time spušta translator. Na taj način okomito se kretanje plutače translatira u jednoliko i linearno kretanje generatora. Uzimajući u obzir da je jedino plutača u dodiru s morem, dok su svi ostali dijelovi pretvornika na obali, omogućen je jednostavan pristup elektor ormariću radi održavanja.

Pilot pretvornik ima opseg kretanja prednjeg kraka poluge ± 45 cm za visinu vala najviše 90 cm. Zadnji krak poluge ima opseg kretanja ± 30 cm, a cjelokupna dužina poluge je 2 metra.

Za izvedbu pretvornika korišteni su sljedeći materijali: aluminijske cijevi, PP, PE i ABS plastika, INOX čelik i drvo.

U odnosu na druge obalne pretvornike ovog tipa koji najčešće imaju hidraulični sustav i rotacioni generator kao prijenosnik snage, VANIS pretvornik koristi jednostavniji princip poluge kao prijenosnik snage.

Tijekom ispitivanja principa rada na morskoj obali (slika), dokazana je izvodljivost i ispravnost inženjerskog koncepta pretvornika i linearnog generatora.

4. KINEMATIČKI MODEL VALOELEKTRANE

4.1. Opis modela

Model se sastoji od: plutače i prijenosnika snage koji povezuje plutaču i linearni generator, slika 6.

Plutača je promjera 2 metra i visine 1 metra. Sastoji se od dva dijela. Gornji dio plutače je šuplji cilindar koji je sa gornje strane zatvoren diskom promjera 2 metra. Donji dio ima oblik polovice šupljeg torusa, visine i radijusa 0,5 metra, koji je s donje strane je zatvoren diskom promjera 1 metar. Debljina svih stijenki plutače je 5 milimetara. [3]

Prijenosnik snage sastoji se od jarbola, poluge, stalka, koloture i metalnog užeta. Jarbol se sastavlja od 4 trokutna nosača, visine je 0,5 metara i učvršćuje se na plutaču. Poluga je duljine od 4 do 5 metara, prednji dio koji je usmjeren prema moru dugačak je od 3 do 4 metra, dok je stražnji dio, koji je preko koloture i užeta spojen na pretvarač, dugačak 1 metar. Stalak se sastoji od dva nosača osovine i same osovine oko koje se poluga rotira.

Mehanizam je napravljen od aluminija.

4.2. SOLIDWORKS

SOLIDWORKS je CAD (Computer assisted design) programski paket koji omogućuje generiranje trodimenzionalnih modela. Izrada modela obično počinje izradom dvodimenzionalne skice na proizvoljnoj ravnini, u prostoru. Skica se sastoji od geometrijskih značajki kao što su točke, linije, lukovi i splineovi. Nacrtanoj skici određuju se dimenzije kako bi se definirala veličina i položaj geometrije unutar ravnine. Geometrijskim značajkama se mogu odrediti međusobni odnosi kao što su jednakost, paralelnost, okomitost i koncentričnost. Dimenzije u skici mogu se kontrolirati nezavisno ili odnosima između geometrijskih značajki unutar ili izvan skice.

Kada je skica u potpunosti definirana moguće razvući ili rotirati u prostoru kao bi se tragom njenog kretanja generirao trodimenzionalni objekt.

Objekti se mogu pohraniti kao dijelovi (Part) koji se mogu spajati s drugim dijelovima u mehanizme (Assembly). Slično kako se u skicama mogu pridodati odnosi geometrijskim značajkama, tako se mogu dijelovima pridodavati odnosi unutar mehanizma.

PLUTAČA

Slika 5 3D prikaz stvorenog modela u sučelju SOLIDWORKS-u

5.1. Ulazni podaci

Da bi se mogla ispitati naprezanja u modelu pretvarača, potrebno je odrediti opterećenja koja djeluju na plutaču. Budući da opterećenje stvaraju valovi, sila kojom more utječe na plutaču može se razdvojiti na vertikalnu i horizontalnu komponentu. Izračun sila u ovome radu proveden je prema ulaznim podatcima valova Jadranskoga mora koji su zadani u VANIS projektu.

Oznaka	Značajka	Vrijednost
ρ	Gustoća, kg/m3	1025,87
g	Ubrzanje gravitacije, m/s2	9,80665
Н	Visina plutače, m	1
D	Promjer plutače, m	2
h	Visina vala, m	2
Т	Period vala, s	5
Cd	Koeficijent sila otpora, /	1
Ci	Koeficijent sila inercije, /	2

Tablica 1 Zadani ulazni podatci VANIS projekta

5.2. Vertikalna komponenta

Vertikalna komponenta računa se sljedećom izrazom [5]:

$$F_{\text{vertikalna}} = \boldsymbol{\rho} * \boldsymbol{g} * \boldsymbol{V} = 26338 \text{ N}$$
 (5.1)

Gdje je:

V – volumen plovka, m³

koji se računa sljedećim izrazom:

$$\mathbf{V} = H * \frac{D^2 * \pi}{4} = 2.618 \,\mathrm{m}^3 \tag{5.2}$$

5.3. Horizontalna komponenta

Horizontalna komponenta računa se sljedećim izrazom [5]:

$$F_{\text{horizontalna}} = \frac{1}{2} * \rho * C_d * D * H * |v_x| * v_x + C_i * \Delta * a_x = 8222 \text{ N}$$
(5.3)

Gdje je:

 v_x – brzina čestica vala, m/s

 a_x – ubrzanje čestice vala, m/s²

 Δ – masa istisnine plutače, kg

Masa istisnine plutače, brzina i ubrzanje čestica vala određuju se sljedećim izrazima:

$$\Delta = \rho * V = 2686 \text{ kg}$$
(5.4)

$$v_x = \zeta_a * \omega * e^{kz} * \cos(kx - \omega t)$$
(5.5)

$$a_x = \zeta_a * \omega^2 * e^{kz} * \sin(kx - \omega t)$$
(5.6)

Gdje je :

 ω – kutna frekvencija vala, s⁻¹

 ζ_a – amplituda vala, m

$$\omega = \frac{2 * \pi}{T} = 1.2566 \text{ rad/}_{\text{s}}$$
 (5.7)

$$\zeta_a = \frac{h}{2} = 1 \,\mathrm{m} \tag{5.8}$$

Uzimajući u obzir, x = 0; z = 0, formule za brzinu (5.5) i ubrzanje (5.6) postaju:

$$\boldsymbol{v}_{\boldsymbol{x}} = \boldsymbol{\zeta}_{\boldsymbol{a}} \ast \boldsymbol{\omega} \ast \cos(-\boldsymbol{\omega}\boldsymbol{t}) \tag{5.9}$$

$$a_x = \zeta_a * \omega^2 * \sin(-\omega t) \tag{5.10}$$

Za pronalaženje maksimalne horizontalne sile proveden je proračun u trajanju 2 puna perioda sa korakom *t* ,jednakom jednoj desetini perioda:

$$t = \frac{T}{10} = 0,5 \text{ s}$$
(5.11)

Vrijednosti sile brzine, ubrzanja i sile po vremenu su dane u sljedećoj tablici:

<i>t</i> , s	v_x , m/s	a_x , m/s2	$F_{horizontalna}, \mathrm{N}$
0	1.26	0.00	1620
0.5	1.02	-0.93	-3925
1	0.39	-1.50	-7912
1.5	-0.39	-1.50	-8222
2	-1.02	-0.93	-6046
2.5	-1.26	0.00	-1620
3	-1.02	0.93	3925
3.5	-0.39	1.50	7912
4	0.39	1.50	8222
4.5	1.02	0.93	6046
5	1.26	0.00	1620
5.5	1.02	-0.93	-3925
6	0.39	-1.50	-7912
6.5	-0.39	-1.50	-8222
7	-1.02	-0.93	-6046
7.5	-1.26	0.00	-1620
8	-1.02	0.93	3925
8.5	-0.39	1.50	7912
9	0.39	1.50	8222
9.5	1.02	0.93	6046
10	1.26	0.00	1620

Tablica 2 Proračun brzine, ubrzanja i horizontalne sile vala

6. NUMERIČKI MODEL VALOELEKTRANE

6.1. Metoda konačnih elemenata

Metoda konačnih elemenata (MKE) je numerička metoda koja opisuje ponašanje fizičkih sustava rješavanjem parcijalnih diferencijalnih jednadžbi. Koristi se za modeliranje i analizu deformacija, naprezanja struktura. Metoda koristi pristup diskretizacije ili podjele kompliciranih modela na manje i jednostavnije elemente povezane čvorovima. Ponašanje svakog zasebnog elementa se aproksimira matematičkim jednadžbama te se povećanjem broja elemenata povećava preciznost aproksimacije. Prednosti metode konačnih elemenata su, naspram tradicionalnih numeričkih metoda, modeliranje složenih oblika, svojstava materijala i opterećenja te pruža precizne rezultate za probleme s kompleksnom geometrijom. [7]

6.2. Femap/NX NASTRAN

Femap/NX NASTRAN (Finite Element Modeling And Postprocessing) je inženjerski programski paket korišten za izradu modela konačnih elemenata te analizu modela metodom konačnih elemenata. Omogućuju preciznu i učinkovitu simulaciju i analizu naprezanja i deformacije u različitim materijalima i konstrukcijama. Femap/NX nastran pruža pristupačno korisničko sučelje za stvaranje modeli i vizualizaciju rezultata te također pruža integraciju za SOLIDWORKS programski paket, gdje omogućava unošenje stvorene geometrije diretkno u svoje sučelje.

6.3. Priprema modela

Za lakše određivanje profila poluge, prije nego što se stvori 3D model, prvo će se na jednodimenzionalnom modelu, sačinjenog od BEAM elementa, ispitati više profila.

6.3.1. Definiranje svojstva materijala i grednih konačnih elemenata

Prije postavljanja mreže elemenata potrebno je odrediti svojstva materijala i samih elemenata. Materijal se određuje naredbom, *Model – Material*.

Youngs Modulus, E 71000000. Shear Modulus, G 26000000. Poisson's Ratio, nu 0.33 Tension 0. Shear 0. Damping, 2C/Co 0. Reference Temp 25.	Junness		Limit Stress		
Shear Modulus, G 26000000. Compression 0. Poisson's Ratio, nu 0.33 Shear 0. hermal Expansion Coeff, a 0. Mass Density 2.71E-6 Conductivity, k 0. Damping, 2C/Co 0. Reference Temp 25.	Youngs Modulus, E	71000000.	Tension	0.	
Poisson's Ratio, nu 0.33 Shear 0. hermal Expansion Coeff, a 0. Conductivity, k 0. Specific Heat, Cp 0. Heat Generation Factor 0. Heat Generation Factor 0.	Shear Modulus, G	26000000.	Compression	0.	
Mass Density 2.71E-6 Conductivity, k 0. Damping, 2C/Co 0. Heat Generation Factor 0.	Poisson's Ratio, nu	0.33	Shear	0.	
	Thermal Expansion Coeff, a Conductivity, k Specific Heat, Cp Heat Generation Fact	0. 0. 0. or 0.	Mass Density Damping, 2C/Co Reference Temp	2.71E-6 0. 25.	

Slika 6 Svojstva materijala Aluminija u Femap/NX NASTRAN

Dok se BEAM svojstvo, kojim se definira poprečni presjek grede, određuje naredbom Model

- Property. Početan presjek poluge će biti kvadratna cijev dimezija 100x100x10mm.

1 Title B_100	0_10		Material 1	ALU u mm	~
Color 110		Layer 1		Elem/Prop	erty Type
Property Values			Stress Rec	overy (2 to 4	HBlank=Square)
Tapered Beam Wri	te Zeros at E End A	nd B (Off=Blank) End B		Y	z
Area, A	3600.	0.	End A 1	-50.	-50.
Moment of Inertia, 11 or Izz	4920000.	0.	2	50.	-50.
I2 or Iyy	4920000.	0.	3	50.	50.
I12 or Izy	0.	0.	4	-50.	50.
Torsional Constant, J	7727854.	0.	End B. 1	0	10
Y Shear Area	1676.739	0.	CIUDI	0.	0.
Z Shear Area	1676.739	0.	2	0.	0,
Nonstruct mass/length	0.	0.	3	0.	0.
Warping Constant	0.	0.	4	υ.	υ,
Perimeter	400.	0.			
Y Neutral Axis Offset	0.	0.		Shap	ie
Z Neutral Axis Offset	0.	0.		Change 7	

Slika 7 Svojstvo BEAM elementa u Femap/NX NASTRAN

Slika 8 Prikaz poprečnog presjeka poluge u Femap/NX NASTRAN

6.3.2. Mreža

Proces kreiranja mreže konačnih elemenata kreće od stvaranja linije koja se koristi kao referentna geometrija pojednostavljenog modela. Naredbom, *Geometry – Curve - Line – Project Points*, generira se ravna linija između dvije točke, čije se koordinate ručno upisuju.

Locate - Enter First	Location for Projected L	ine	
x 0	Y 0	Ζ 0.	
ID 5	Sys 0Global Rectangular	V Parameters	Methods ^

Slika 9 Upisanih koordinata za prvu točku u Femap/NX NASTRAN

Locate - Enter Secon	d Location for Projected Lin	e	
X 4000	Y 0. Z 0.		
ID 5 CSy	s 0Global Rectangular	✓ Parameters	Methods ^

Slika 10 Upisane koordinate za drugu točku u Femap/NX NASTRAN

Generirana linija dugačka je 4000 milimetara i kreće se u smjeru osi "x".

Generiranje mreže se sastoji od izvođenja dvaju naredbe. Prvom naredbom, *Mesh – Mesh Control – Size along Curve*, proizvoljno se određuje broj ili veličina elemenata koji će se drugom naredbom generirati na liniji.

Mesh Size Along Curves				×
Mesh Size		Node Spacing		
Number of Elements	30	Equal Biased	Parametric I enoth	Reset
O Element Size		Geometric B	ias	
Min Elem on Lines	1	Dise Coster		
Min Elem on Closed Edges 12		bias Paciul		
Min Elem on Other Edges 2		Small Element	ents at Start	
Size Pronagation		Small Eleme	ents at End	ОК
Propagate Sizing		Small Eleme	ents at Center ents at Both Ends	Cancel

Slika 11 Određivanje veličine elemenata na krivulji u Femap/NX NASTRAN Druga naredba, *Mesh – Geometry – Curve*, služi za stvaranje elemenata.

Geometr	y Mesh Op	otions		×
Node and	l Element O	ptions		
Node ID	83	CSys	0Global Rectangular	🗸 🗹 Merge Nodes 🋛 🎽
Elem ID	82	Property	1B_100_10	
Generate				
○ Nodes			Offset to Reference Point	ОК
Elements and Nodes		lodes		Cancel

Slika 12 Prozor za generiranje mreže konačnih elemenata u Femap/NX NASTRAN

U prozoru je potrebno pod stavkom *Property* odabrati željeno svojstvo BEAM elementa. Stvaranjem BEAM elemenata generirano je jednodimenzionalno tijelo. Sljedeći korak je postavljanje rubnih uvjeta i sila na mrežu elemenata.

6.3.3. Sile i rubni uvjeti

Sile i rubni uvjeti su prikazani su na slici:

26337929. ↓	123456
	12345

Slika 13 Bočni prikaz postavljenog modela u Femap/NX NASTRAN

Vertikalna sila, izračunata u jednadžbi (5.1), postavljena je, naredbom *Model – Load – Nodal*, na čvor lijevog kraja modela, a naredbom, *Model – Load – Body*, postavljen je utjecaj sile teže na cijeli model.

Editing Load Definition			×
Load Set 1 din			
Title vertical		Definition Coord Sys 0Global Re	ectangular v
Color 10	Layer 1		
Force	Direction Components Vector Along Curve Normal to Plane Normal to Surface	Specify	Method Constant Variable Data Surface Advanced
	Value	Time/Freq Dependence	Data Surface
	FX 0.	0None v ^f xy	0None 🗸
	FY 🗸 26337929.		0None 🗸 🟥
	FZ 0.		0None 🗸 🏥
	Phase 0.	0None V 🗴	OK Cancel

Slika 14 Određivanje vertikalne sile u Femap/NX NASTRAN

Create Body Loads					
Load Set 1 din					
Translational Acc	Translational Accel / Gravity (length/time/time)				
Active	Time/Freq Dependence				
Ax 0.	0None	\sim	<mark>Ґ</mark> ху		
Ay -9810.	0None	\sim	<mark>∫</mark> ху		
Az 0.	0None	~	<mark>∫</mark> ху		

Slika 15 Upisivanje globalnog utjecaja sile teže u Femap/NX NASTRAN

Na kraju suprotnom od djelovanja sile je, usmjerena po "y" osi, postavljena opruga korištenjem *DOF SPRING* svojstva. Krutost opruge se određuje izrazom:

$$k = \frac{F}{L} \tag{6.1}$$

Gdje je:

 $F-{\rm sila}$ na oprugu, mN

- k faktor krutosti opruge, mN/mm
- L duljina dozvoljenog pomaka generatora, mm

Sukladno pravilu jednakosti momenata, omjer duljina poluga recipročan je omjeru veličina sila koje djeluju na njih. Ako je krak poluge na koji je spojena plutača duljine 3000 milimetara, a sila na plutači iznosi 26337929 mN, tada sila koja djeluje na oprugu, čiji je krak duljine 1000 milimetara, mora biti trostruko veća, što znači da iznosi 79013787 mN. Prema formuli (6.1) krutost opruge iznosi 237041 mN/mm. Slika 16

D 7	Title OPRUGA	Material	∽ _GĘ
	Color 24	Layer 1	Elem/Property Type
Connect to DOF		Stiffness Property Values	
Ed. o	E-18-O	Stiffness	237041.
		Stress Coefficient	0.
TY	(€) TY	Force vs Displacement	0None ~
Otz	⊖tz	Force vs Frequency	0None ~
		Damping vs Frequency	0None ~
0	0	Damping Property Values	
ORY	ORY	Damping	0.
⊖rz	⊖rz	Force vs Frequency	0None v

Slika 16 Postavljanje svojstva DOF-SPRING elementa u Femap/NX NASTRAN Za postavljanje rubnih uvjeta na čvorove koristi se naredba *Model – Constraint – Nodal*. Na čvor udaljen 3000 milimetara od mjesta djelovanja vertikalne sile postavljen je rubni uvjet opisan, slika 17:

Editing Constraint Defini	tion				×
Constraint Set 1 r	u				
Title pivot			Coord Sys -1	Use Nodal Outpu	t System 🔍
Color 120	Layer 1				
DOF			X Symmetry	X AntiSym	NonZero Constraint >>
ΣΤΣ ΥΤΥ ΣΤΖ	Fixed	Pinned			
	Free	No Rotation	Y Symmetry	Y AntiSym	ОК
			Z Symmetry	Z AntiSym	Cancel

Slika 17 Određivanje rubnog uvjeta zgloba u Femap/NX NASTRAN

Dok je dio poluge na koji je spojena opruga ograničen rubnim uvjetom, slika 18.

Editing (Constraint Defini	tion				×
Constrain	t Set 1 r	u				
Title	gen			Coord Sys -1	Use Nodal Outpu	t System 🗸 🗸
Color	120	Layer 1				
DOF	i.		-	X Symmetry	X AntiSym	NonZero Constraint >>
∠ тх	∠TY ∠TZ	Fixed	Pinned			
		Free	No Rotation	Y Symmetry	Y AntiSym	ОК
<u> </u>		1166	No Rotation	7 Symmetry	Z AntiSym	Cancel

Slika 18 Određivanje rubnog uvjeta učvršćenja opruge u Femap/NX NASTRAN

6.4. Analiza 3D modela

6.4.1. Mjerne jedinice

U analizi 3D modela mjera duljina biti će, umjesto u metrima, definirana u milimetrima. Tako da će sve veličine koje ovise o duljini biti prikazane na sljedeći način, tablica 3

Značajka, <i>Oznaka</i>	U metrima	U milimetrima	
Gravitacija, g	9,81	9810	
Sila, F	Ν	mN	
Naprezanje, σ	Ра	10 ³ Pa	
Gustoća, <i>ρ</i>	kg/m ³	kg/mm ³	
Modul elastičnosti, E	GPa	10 ⁻³ GPa	

Tablica	3	Promjena	mjernih	jedinica
---------	---	----------	---------	----------

6.4.2. Ubacivanje Parasolid datoteke modela u Femap

Naredbom, *File – Import – Geometry*, datoteka, pohranjena u *Parasolid* formatu, se unosi direktno u sučelje Femap-a. Prilikom unosa javlja se prozor koji zahtjeva unos imena datoteke i mjerilo modela. U Solidworksu je model dimenzioniran u milimetrima, pa se unose sljedeći podatci, slika 19.

Solid Model Read Optio	ns ×
Title parasolid_datoteka	Y
Entity Options	
Geometry Scale Factor	1000.
Layer	1
Update Existing Geome Colors From File Active Colors Single Color	etry Options
Assembly Options	
Increment Layer	Increment Color
ОК	Cancel

Slika 19 Određivanje mjerila u Femap/NX NASTRAN

Odabirom opcije "OK" model se prikazuje u sučelju Femapa, slika 20:

Slika 20 Prikaz unesenog CAD modela u sučelju Femap/NX NASTRAN

6.4.3. Generiranje mreža konačnih elemenata

Prije nego što je moguće generirati mrežu konačnih elemenata potrebno je odrediti materijal i svojstva konačnih elemenata. Materijal je isti kao u poglavlju 6.3.1. (slika 7), dok će se, zbog trodimenzionalnosti modela, za konačne elemente koristiti drugačija svojstva.

Mreža konačnih elemenata će biti sastavljena od *PLATE* elemenata (plutača i poluga) i *SOLID* elemenata (jarbol, držači osovina, stalak).

Svojstvo *SOLID* elemenata jednako je za sve dijelove načinjene od njih tako da se određuje na kao što je prikazano, slika 21:

Define Property - SOLID Element Type	×
ID 5 Title SOLID	Material 1ALU u mm $\sim \begin{bmatrix} E \\ G U \end{bmatrix}$
Color 110 Layer 1	Elem/Property Type
Material Axes	Integration Network (03) 0
Align to Element	Load Save Copy
	OK Cancel

Slika 21 Svojstvo SOLID u Femap/NX NASTRAN

Debljine stijenki plutače i poluge su različite, te je potrebno stvoriti dva različita *PLATE* svojstva. Debljina PLATE elemenata plutače iznosi 5 mm (slika 22), a debljina PLATE elemenata poluge iznosi 20 mm (slika 23).

Define Property - PLATE Element Type X				
ID 1 Title P_plutaca Color 110	Material 1ALU u mm E Layer 1 Elem/Property Type			
Property Values	Additional Options			
Thicknesses, Tavg or T1 5.	Bend Stiffness, 12I/T**3 0.			
blank or T2 0.	TShear/Mem Thickness,ts/t 0.			
blank or T3 0.	Bending 0Plate Material ~			
blank or T4 0.	Transverse Shear 0Plate Material V			
Nonstructural mass/area 0.	Memb-Bend Coupling 0None - Ignore ~			
Stress Recovery (Default=T/2)				
Top Fiber 0.	Load Save OK			
Bottom Fiber 0.	Copy Cancel			

Slika 22 PLATE svojstvo plutače u Femap/NX NASTRAN

Filip Hergešić

Zavi	ršni	rad
2000	5111	1 0101

Define Property - PLATE Element Ty	ype X
D 2 Title P_poluga Color 110	Material 1ALU u mm Eu Layer 1 Elem/Property Type
Property Values	Additional Options
Thicknesses, Tavg or T1 20.	Bend Stiffness, 12I/T**3 0.
blank or T2 0.	TShear/Mem Thickness,ts/t 0.
blank or T3 0.	Bending 0Plate Material ~
blank or T4 0.	Transverse Shear 0Plate Material V
Nonstructural mass/area	Memb-Bend Coupling 0None - Ignore ~
Stress Recovery (Default=T/2)	
Top Fiber 0.	Load Save OK
Bottom Fiber 0.	Copy Cancel

Slika 23 PLATE svojstvo poluge u Femap/NX NASTRAN

Sa postavljenim materijalom i svojstvima elemenata moguće je započeti generiranje mreže konačnih elemenata. Naredbom, *Mesh – Mesh Control – Size on Solid*, određuje se veličina konačnih elemenata, slika 24.

Automatic Mesh Sizing			1
Size For			
Tet Meshing O Hex Me	eshing		
Basic Curve Sizing		Surface Interior Mesh Growth	
Element Size 20		Growth Factor	1.
Replace Mesh Sizes on All Curves		Curvature-Based Mesh Refinement	
Min Elements on Edge		Refinement Ratio	0.1
Max Angle Tolerance 25	5.	Refine Surface Mesh	
Max Elem on Small Feature 6			
Max Size of Small Feature 14	5.5131	Assembly / Multi-Solid Sizing	
Vertex Aspect Ratio 3.			
Suppress Short Edges 1.	%	Remove Previous Slaving	
Auto Boundary Small Surf	%	Adjust Colors	
		Skip Sizing on Slaved Surfaces	
		Allow Slaving Across Connections	
Sizing Type 2Parametric/Equal Le	ngth 🗸		
Size Propagation			
✓ Propagate Sizing	~	OK Car	ncel

Slika 24 Određivanje veličine mreže konačnih elemenata u Femap/NX NASTRAN Naredbom, *Mesh – Geometry – Solids*, generiraju se konačni elementi ovisno o odabranom svojstvu. Model će biti opisan tetraedarskim konačnim elementima (*Tet Mesh*), a svojstva se

Filip Hergešić

određuju ovisno o dijelu modela za koji generiramo konačne elemente. Za svaki pojedini dio modela generirana je jedinstvena mreža elemenata. Za jarbol i stalak korišteni su SOLID elementi (slika 25), a za polugu (slika 26) i plutaču (slika 27) korišteni su PLATE elementi.

Automesh Solids				×
Node and Element Option	IS			
Node ID 58607	CSys 0Global Rectangular		\sim	두 🗗 🔁
Elem ID 110992	Property 12SOLID		~ 4	Options
Meshing Approach O Surface Mesh Only Tet Mesh Only	Surface Mesh Options	Pyramid Mesh Options Pyramid Locations	Match	Adjacent Linear Elements Adjacent Parabolic Elements
◯ Tet/Pyramid Mesh	Tet Mesh Options	Multiple Tet thru Thickness	2 ~	Update Mesh Sizing
Merge Nodes	Tet Sliver Removal	Tet Optimization 3Defa	ult 🗸	ок
		Tet Growth Ratio 1.1	to 1	Cancel

Slika 25 Prikaz stvaranja mreže na SOLID elementima u Femap/NX NASTRAN

Automesh Solids			×
Node and Element Option Node ID 58607 Elem ID 110992	S CSys 0Global Rectangula Property 2P_greda	ar 🗸	✓ ➡ ➡ ➡ Options
Meshing Approach Surface Mesh Only Tet Mesh Only	Surface Mesh Options	Pyramid Mesh Options Pyramid Locations	Match Adjacent Linear Elements Match Adjacent Parabolic Elements
○ Tet/Pyramid Mesh	Tet Mesh Options	Multiple Tet thru Thickness 2	Update Mesh Sizing
Merge Nodes	✓ Tet Sliver Removal	Tet Optimization3DefaultTet Growth Ratio1.1	OK to 1 Cancel

Slika 26 Prikaz stvaranja mreže PLATE elemenata poluge u Femap/NX NASTRAN

Filip Hergešić				Završni rad
Automesh Solids				×
Node and Element Option	S			
Node ID 58607	CSys 0Global Rectangula	r	~	🍒 🛱
Elem ID 110992	Property 1P_plutaca		~ 4	Options
Meshing Approach	Surface Mesh Options	Pyramid Mesh Options		
Surface Mesh Only	Allow Mapped Meshing	Pyramid Locations	O Match	Adjacent Linear Elements
◯ Tet Mesh Only			Match	Adjacent Parabolic Elements
O Tet/Pyramid Mesh	Tet Mesh Options			Undata Mach Sizing
	Midside Nodes	Multiple Tet thru Thickness	2 💛	opuate Mesh Sizing
Merge Nodes	✓ Tet Sliver Removal	Tet Optimization 3Defa	ult \sim	ОК
001		Tet Growth Ratio 1.1	to 1	Cancel

Slika 27 Prikaz stvaranje mreže PLATE elemenata plutače u Femap/NX NASTRAN

Slika 28 Prikaz generirane mreže konačnih elemenata na modelu u Femap/NX NASTRAN

Iako na slici mreža izgleda cjelovita, zbog različitih svojstava konačnih elemenata, čvorovi na mjestima gdje se preklapaju dijelovi modela iako dijele iste lokacije nisu povezani, pa je za pravilno umrežavanje svih čvorova potrebno upotrijebiti naredbu: *Check – Coincident Nodes*, slika 29.

Odabirom prikazanih opcija se čvorovi koji dijele lokaciju sa drugim čvorovima umrežavaju te se s time generira kvalitetna mreža.

Check/Me	rge Coincident		Х
Tolerance	5	Options	
Action	Merge 🗸	Make Groups	
Keep ID	Automatic ~	Merge Across Connections	
Move To	Current Location	Merge Across Output CSys Set Output Csys To -1Use Nodal Output System	~
	Preview	OK Cancel	

Slika 29 Prikaz spajanja čvorova mreže u Femap/NX NASTRAN

6.4.4. Rubni uvjeti

Kao što je vidljivo na slici 28, stalak, njegova osovina i zglob na strani generatora nisu uključeni u mrežu konačnih elemenata. Izostavljeni su kako bi se na njih mogli kreirati takozvani *RIGID* elementi (*RBE*), slika 30. Korištenjem *RIGID* elemenata stvoriti će se čvorovi na koje će se postaviti rubni uvjeti, slika 31.

Kreiranjem *RIGID* elemenata, naredbom *Model – Element*, na lokaciji osovine stalka stvoren je čvor na koji je postavljen rubni uvjet koji omogućava rotaciju samo oko "z" osi.

Define RIGID Element - Ente	r Nodes or Select with C	ursor	×
ID 110992 Color 11	0 Layer 1	Property	 Туре
RBE1 RBE2 RBE3 (Interpo	lation)		
Dependent		Independe	ent
DOF	es	Node	þ
VTX VRX		O New 1	Node At Center
TY RY	= -		
TZ RZ	ete		
Re	set		
Thermal Expansion		Single RBF2	
Coefficient 0.	Material	Convert	OK Cancel

Slika 30 Prikaz stvaranja RIGID elementa u Femap/NX NASTRAN

Editing Constraint Defin	ition				×
Constraint Set 1 t	:				
Title pivot			Coord Sys -1	Use Nodal Outpu	ut System 🗸 🗸
Color 120	Layer 1				
DOF			X Symmetry	X AntiSym	NonZero Constraint >>
	Fixed	Pinned			
	Free	No Rotation	Y Symmetry	Y AntiSym	ОК
			Z Symmetry	Z AntiSym	Cancel

Slika 31 Prikaz stvaranja rubnog uvjeta za zglob u Femap/NX NASTRAN

Slika 32 Prikaz stvorenog RIGID elementa i rubnog uvjeta u Femap/NX NASTRAN

Ponavljanjem naredbe, *Model – Element*, kreiran je još jedan RIGID element na kraju poluge koji je spojen sa linearnim generatorom. Kreira se ista opruga kao i u poglavlju 6.3.3., koja se spaja na čvor RIGID elementa te se drugi kraj na suprotni kraj opruge postavlja rubni uvjet koji onemogućuje sve translacijske i rotacione pomake, slika 33.

Slika 33 Prikaz opruge, RIGID elementa i rubnog uvjeta u Femap/NX NASTRAN

6.4.5. Opterećenja na plutači

Na mrežu konačnih elemenata, naredbom *Model – Load – Body*, postavlja se utjecaj gravitacije, slika 36, a naredbom *Model – Load – On Surface*, postavljaju se vertikalna (slika 34) i horizontalna sila (slika 35) iz jednadžbi (5.1) i (5.3):

Editing Load Definition			×
.oad Set 1 sve			
Title vertikalna_sila Color 10	Layer 1	Definition Coord Sys 0Global F	kectangular 🗸
Force	Direction Components Vector Along Curve Normal to Plane Normal to Surface	Specify	Method Constant Variable Data Surface Advanced
	Load Value	Time/Freq Dependence	Data Surface
	FY ✓ 26337930. FZ 0.		0None
	Phase 0.	0None V	y OK Cancel

Slika 34 Prikaz unosa vertikalne sile na plutaču u Femap/NX NASTRAN

Editing Load Definition						×
Title horizontalna_sila	Layer 1	Definition Coord Sys	0Global Rec	tangular		-
Force	Direction Components Vector Along Curve Normal to Plane Normal to Surface Load Value FX 0. FY 0. FZ 8221787.	Specify Time/Freq Depend 0None	dence	Method Constant Variable Data Surfac Advar Data Surfac 0None 0None 0None	e ace	
	Phase 0.	0None	√ ^f xy	ОК	Cancel	

Slika 35 Prikaz unosa horizontalne sile na plutaču u Femap/NX NASTRAN

Zavr	šni	rad

reat	e Body Lo	oads					Х
oad S	Set 1	sve		Coord Sys	0Global Rectangular	~]
Trans	slational Ad	cel / Gravity (length/time/time)		Rotational Acce	eleration (radians/time/	time)	
A	ctive	Time/Freq Dependence	e		Time/Freq Dep	endence	
Ax	0.	0None	√	Arx 0.	0None	~	<mark>∫</mark> ху
Ay	-9810.	0None	√ [∫] xy	Ary 0.	0None	~	<mark>∫</mark> ху
Az	0.	0None	~ f_{xy}	Arz 0.	0None	~	fxy
Wx Wy	0.	0None	∼ ^f xy ∼ ^f xy		X 0. Y 0.		
Wz	0.	0None	∼ [∫] xy		z 0.		
Wz Varyi	0. ing Transla	0None tional Acceleration (length/time	√ [∫] xy ≥/time)	Thermal	Ζ 0.		
Wz Varyi	0. ing Transla Active	0None tional Acceleration (length/time Acceleration vs. Locatio	e/time)	Thermal	Z 0.	т 0.	
Wz Varyi Ax	0. ing Transla Active 0.	ONone tional Acceleration (length/time Acceleration vs. Locatio ONone	 ✓ ^fxy a/time) m ✓ ^fxy 	Thermal	Z 0.	т 0.	
Wz Varyi Ax Ay	0. ing Transla Active 0. 0.	0None tional Acceleration (length/time Acceleration vs. Locatio 0None Axis to Vary Along 0X	✓ fxy /time) // fxy ✓ fxy	Thermal	Z 0.	Τ 0.	

Slika 36 Prikaz unosa sile teže na tijelo modela u Femap/NX NASTRAN

Slika 37 Prikaz vektora svih sila u Femap/NX NASTRAN

Filip Hergešić 7. **ANALIZA REZULTATA**

7.1. Rezultati početne analize

Svrha početne analize je bilo preliminarno dimenzioniranje nosača mehanizma valnog pretvarača. Primjenom BEAM elemenata su na pojednostavljenom modelu ispitane razne aluminijske kvadratne cijevi.

Kriteriji čvrstoće i izdržljivosti cijevi su svojstva odabrane aluminijske legure EN AW 6060 T6 opisana u sljedećoj tablici:

Tablica 4 Kriteriji izdrživosti aluminijske legure EN AW 6060 T6 [8]

Vlačna čvrstoća, MPa	Smična čvrstoća, MPa
170	130

Profil, mm	Pomak plutače, m	Naprezanje, MPa
100x100x10	1,903	798
100x100x15	1,696	619
120x120x20	1,369	398
140x140x20	1,175	230
150x150x20	1,135	194
160x160x20	1,104	166

Tablica 5 Pomaci i naprezanja u navedenim profilima

Na temelju rezultata prikazanih u tablici odabran je profil dimenzija 160x160x20mm.

7.2. Rezultati analize punog modela

Analiza opterećenja vala pokazala je da se plutača uslijed djelovanja vala pomaknula prema gore (slika 38) te su se zbog krutosti opruge stvorila tlačna naprezanja na gornjoj strani poluge profila 160x160x20mm (slika 39).

Slika 38 Prikaz gradijenta pomaka modela u Femap/NX NASTRAN

Slika 39 Prikaz gradijenta naprezanja na modelu u Femap/NX NASTRAN

Vrijednosti prikazanih pomaka (slika 39) izražene su u milimetrima, a vrijednosti prikazanih naprezanja (slika 40) u kPa. Kada se spomenute vrijednosti preračunaju u metre i MPa njihove vrijednosti iznose kako je prikazano u tablici 5:

Značajka	Vrijednost
Pomak, m	1,303
Naprezanje, MPa	137,316

Daljnjom analizom podataka ustanovljeno je da se na spoju zgloba stalka i poluge javlja žarište naprezanja koje iznosi 205 MPa (slika 41), što prelazi elastičnu izdržljivost izabrane legure aluminija. Žarište se nalazi na samom zglobu (slika 40).Taj problem može se riješiti na način da se geometrija stalka izmjeni da bi se spriječilo gomilanje naprezanje. Dok su naprezanja poluge na toj lokaciji 126 MPA, što je unutar granice izdržljivosti materijala, slika 42.

Slika 40 Gradijent naprezanja na zglobu stalka

Slika 41 Prikaz točke žarišta naprezanja na zglobu stalka

Slika 42 Prikaz žarišta naprezanja na poluzi

8. ZAKLJUČAK

Tehnologija pretvarača valne energije, iako u ranoj fazi razvoja, sadrži ogroman potencijal za daljnji razvoj i preuzimanje većeg udjela sektora za proizvodnju električne energije iz obnovljivih izvora. Unatoč poteškoćama u razvoju valoelektrana, broj raznolikih ispitanih rješenja svjedoči o ogromnoj količini scenarija za iskorištavanje valne energije.

Idući korak razvoja takvih tehnologija je pokretanje većih postrojenja valoelektrana te pronalaženja načina da se smanje troškovi održavanja takvih sustava.

U ovom radu ispitivala se specifična izvedba obalnog točkastog pretvarača. Strukturnom analizom u programskom paketu FEMAP/NX-Nastran, dokazano je da predloženi sustav sa svim svojim značajkama može izdržati uvjete Jadranskog mora.

Naime, tijekom analize ustanovljeno je da su opterećenja jako velika te je bilo potrebno dimenzionirati nosač koji je po svojim dimenzijama nije praktičan za proizvodnju i upotrebu.

Prijedlog za daljnju razradu mehanizma bio bi promjena veličine i oblika plutače, da bi se povećala opterećenja kojima val djeluje na mehanizam. Time bi se posljedično povećala i naprezanja u samom mehanizmu, što bi zahtijevalo pojačanje nosača i time veće iskorištavanje sile.

[1] Hrvatska enciklopedija, mrežno izdanje. <u>https://enciklopedija.hr/clanak/more</u>

Leksikografski zavod Miroslav Krleža, 2013. – 2024., 19.9.2024.

[2] IRENA Ocean Energy Technology Brief 4, www.irena.org Lipanj 2014., 10.9.2024

[3] Škoro, V.: Razvoj pretvornika energije morskih valova u električnu energiju

korištenjem linearnog generatora i plutače, zbornik radova, 8. Dani inženjera elektrotehnike, Zadar, 2015.

[4] Falcao, A.: *Wave energy utilization: A review of the technologies,* Technical University of Lisbon, 2009.

 [5] Oceans of Info: Dual Platform Tests Wave Energy Converter Tech, https://eepower.com/news/oceans-of-info-dual-platform-tests-wave-energy-converter-tech/#, 22.7.2024. 19.9.2024

[6] Prpić-Oršić, J.; Čorić, V.: Pomorstvenost plovnih objekata; Zigo; Rijeka, 2006.

[7] Journee, J.M.J; Massie, W.W.: *Offshore hydromechanics*, Delf University of Technology, 2001.

[8] Zaimović-Uzunović, N.: Metoda konačnih elemenata, Univerzitet u Zenici, 2013.

[9] EN-AW 6060 Data sheet,

https://www.alumerogroup.eu/fileadmin/user_upload/downloads/folder/technologien/ALUME <u>RO_Legierungen_EN-AW-6060_EN.pdf</u>, Srpanj 2020., 2.9.2024.