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Abstract: This paper is concerned with the control law synthesis for robot manipulators, which
guarantees that the effect of the sensor faults is kept under a permissible level, and ensures the
stability of the closed-loop system. Based on Lyapunov’s stability analysis, the conditions that enable
the application of the simple bisection method in the optimization procedure were derived. The
control law, with certain properties that make the construction of the Lyapunov function much easier—
and, thus, the determination of stability conditions—was considered. Furthermore, the optimization
problem was formulated as a class of problem in which minimization and maximization of the same
performance criterion were simultaneously carried out. The algorithm proposed to solve the related
zero-sum differential game was based on Newton’s method with recursive matrix relations, in which
the first- and second-order derivatives of the objective function are calculated using hyper-dual
numbers. The results of this paper were evaluated in simulation on a robot manipulator with three
degrees of freedom.

Keywords: robot manipulators; sensor faults; L2-gain; min–max optimization; Newton-like algorithm

1. Introduction

In recent years, the control of robot manipulators in the presence of faults, and also, in
general, the control of nonlinear dynamic systems in the presence of faults, has been a very
active area of research. The approaches have been primarily focused on systems affected
by sensor faults [1–3], actuator faults [4,5] and simultaneously both sensor and actuator
faults [6–9]. Many well-known advanced control methods have been proposed as a way to
cope with fault occurrences: these methods include—but are not limited to—sliding mode
control [10–13], adaptive control [14], model predictive control [15,16], artificial neural
network control [17–19], fuzzy control [20], and hybrid control [21–24].

Furthermore, an optimal and robust control in the presence of sensor and actuator
faults has, for the last decade, been a topic of import for researchers on the control of
dynamical systems. Many authors consider the L2-gain of a nonlinear system (often called
nonlinearH∞, because, according to [25,26], the L2-gain is equivalent to theH∞ norm of a
linear system) to be a measure of the influence of the faults. A fixed L2-gain fault-tolerant
controller, for a class of Lipschitz nonlinear system with actuator saturation, was designed
in [27]. In [28], a data-driven output-feedback approach to the fault-tolerant control (FTC)
problem, considering L2-gain properties, was proposed. A robust H∞ FTC scheme to
regulate the quadrotor system was adopted in [29]: the approach was based on linear
matrix inequalities (LMI), so the overall dynamics of the quadrotor were linearized. In [30],
backstepping and adaptive control methods based on L2-gain were combined together,
to provide a passive fault-tolerant attitude controller of a nonlinear dynamic model of
morphing aircraft.

All the above-mentioned works were based on the formulation of the problem in
the form of LMI, or on the determination of the approximate solution of the associated
Hamilton–Jacobi–Isaacs (HJI) equation. The application of LMI requires the linearization of
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system dynamics, and therefore robustness cannot be guaranteed in all operating points;
on the other hand, solutions of the HJI equation can be complex, and therefore difficult to
apply in real control tasks.

The difficulties described above motivated us to conduct the research presented here.
We formulated the control problem of a robot manipulator affected by sensor faults, as
a typical representative of nonlinear dynamic systems, in the form of optimal L2-gain
control and the related min–max optimization, and we approached its solution without
LMI formalism or the need to approximate the solution of the HJI equation.

The main idea of the approach presented in this paper was based on the algorithmic
procedure described in the authors’ previous works [31,32]. The idea of using a Newton-like
algorithm with recursive matrix relations to calculate exact gradients and Hessians was ap-
plied to the synthesis of a control system which aimed to overcome the sensor malfunctions
whilst maintaining desirable stability and optimal L2-gain performance properties.

This paper considered the synthesis of the PID control law of a robot manipulator,
which kept the influence of sensor faults below the permissible limits, and ensured the
robust stability of the overall closed-loop system. The problem was presented as a two-
player zero-sum differential game, with the objective function including a parameter in such
a way that the control vector represented the “player” that minimized the objective function,
while the vector containing the sensor faults represented the “player” that maximized the
same objective function.

The algorithm proposed in this paper, in one part, was based on Lyapunov’s stability
analysis. The derived stability conditions were used in the optimization process for the
appropriate initial setting of the algorithm parameters: these conditions were crucial in
the application of the bisection method by which we determined the minimum L2-gain.
Also, by using Lyapunov method, the stopping criteria of the algorithm was improved,
by deriving inequalities dependent on PID controller gains that bound the distance of the
current point from the saddle point, and thus added bound on the number of iterations.

The main contributions of this work are summarized as follows:

• A suitable mathematical tool and systematic algorithmic procedure for the synthesis
of an optimal robust PID controller for robot manipulators affected by sensor faults
was developed. The presented approach admitted a min–max formulation, and hence
provided a guarantee of robustness, which was achieved by optimizing the worst-case
performance. To the best of the authors’ knowledge, such an algorithmic PID controller
synthesis procedure had not previously been investigated.

• In many other similar optimal control-based algorithms that have been proposed in
the literature (see, for example, [33,34] and references therein), the nonlinear system
dynamics were treated as equality constraints, and were included in the optimization
process, using the method of Lagrange multipliers: the results were HJI equations that
were very difficult or almost impossible to solve. For this reason, many approximation
methods have been developed (see, for example, [35–38] and references therein) in
which actual computational complexity increased with the number of system states
which needed to be estimated. In contrast to such approaches, the algorithm proposed
in this paper had no high-dimensional structure: this followed from the fact that,
instead of incorporating the robot dynamics in the closed loop with the controller
directly into an objective function, and solving the corresponding HJI equation, the
state variables and PID controller gains were coupled by recursive matrix relations,
used to calculate the first- and second-order derivatives that appear in the Newton-
like method.

Based on the contributions noted above, the importance of the research presented in
this paper lies in the fact that the proposed control architecture does not rely directly on
sensor fault estimation, in order to improve the desired positioning of the robot manipulator,
and is closely related to nonlinear L2-gain robust control, where a PID-type controller, with
its well-known simplicity of structure, is designed to be robust against a sensor fault in
the system. Such a control strategy has the potential for practical applications, due to its
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simplicity of design, it having less lag between sensor fault appearance and accommodation,
and it not requiring significant computing resources.

The rest of the paper is organized as follows. In Section 2, the robot manipulator
dynamics and their main properties are presented. In Section 3, the min–max optimal
control problem, of a robot manipulator affected by sensor faults and in a closed loop
with a PID controller, is defined. The main results are presented in Sections 4 and 5.
Based on the theory of L2 stability and Lyapunov’s approach, the stability conditions of
the entire control system are established in Section 4. In Section 5, the bisection method,
the Newton-like algorithm, the Adams discretization method and the recursive matrix
calculation of gradients and Hessians are integrated into an efficient algorithmic procedure.
The closed-loop response of the proposed control strategy and a robot manipulator with
three degrees of freedom (3DOF) are evaluated in computer simulations, and the results are
given and discussed in Section 6. Section 7 concludes the paper. There are three appendices
included. Appendix A describes the notation used throughout the paper. In Appendix B, a
detailed derivation of expressions for the kinetic and potential energy of the cylindrical
robot manipulator is given. Appendix C contains the expressions for the evaluation of
coefficients resulting from the mechanical properties of a cylindrical robot manipulator
with 3DOF.

2. Dynamic Model and Properties

Consider a dynamic model of an N-DOF robot manipulator system of the form

M(q) q̈ + C(q, q̇) q̇ + g(q) = u, (1)

where q ∈ RN is the vector of generalized coordinates, u ∈ RN is the vector of control
forces/torques applied to the system, M(q) ∈ RN×N is the inertia matrix, C(q, q̇)q̇ ∈ RN

is the vector of centrifugal and Coriolis forces/torques and g(q) ∈ RN is the vector of
gravitational forces/torques. It is well-known that Equation (1) can be obtained through
modeling a robot manipulator system by Euler–Lagrange equations.

For this paper, we considered a robot manipulator that had both rotational and translational
generalized coordinates, and hence had the following properties (see, for example, [39–43]):

Property 1. The matrix
Ṁ(q)− 2C(q, q̇), (2)

is skew-symmetric for all q, q̇ ∈ RN : this implies that

Ṁ(q) = C(q, q̇) + C(q, q̇)T; (3)

Property 2. The inertia matrix M(q) is a positive-definite symmetric matrix which satisfies

a1‖ξ‖2 ≤ ξTM(q)ξ ≤
(

a2 + c2‖q‖+ d2‖q‖2
)
‖ξ‖2, (4)

for all ξ and q ∈ RN , where a1, a2 > 0, and c2, d2 ≥ 0.

Property 3. There exist constants, c1 and d1, such that the Coriolis and centrifugal term, C(q, q̇) q̇,
satisfies

‖C(q, q̇) q̇‖ ≤ (c1 + d1‖q‖)‖q̇‖2, (5)

for all q and q̇ ∈ RN , where c1 > 0, d1 ≥ 0.

As is well-known, the vector of gravitational forces/torques is a gradient of the poten-
tial energy. The considered class of robot manipulator was such that its potential energy
depended linearly on translational generalized coordinates, while rotational generalized
coordinates appeared as a trigonometric function, with period 2π. Hence, the following
property was imposed:
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Property 4. There exist positive constants, kg1 and kg2, such that the Jacobian of the gravity
vector satisfies ∥∥∥∥∂g(q)

∂q

∥∥∥∥ ≤ kg1 + kg2‖q‖, (6)

for all q ∈ RN .

Remark 1. If the system (1) has no translational generalized coordinates, then c2, d2, d1, kg2 = 0.
See, for example, [44–47], and references therein.

3. Optimal Control Problem

As robot manipulators often work in extreme environments, their sensors are prone
to faults during operation: for example, due to environmental noise, like a magnetic field.
Faults in robot manipulator sensors often occur due to vibrations that cause disruptions in
communication between the control unit and the sensor, or even a short circuit. Further-
more, intermittent sensor connection, bias in sensor measurement and sensor gain drop
can also be presented as faults.

For this paper, we were interested in designing a decentralized system controller (1)
that guaranteed the stability around a desired constant of generalized coordinate positions
qd ∈ RN , while the influence of sensor faults was kept under a permissible level. In this
context, we considered the least upper bound (supremum) of the ratio of the L2-norm of
the vector of the output signals to be controlled, and the L2-norm of the vector representing
sensor faults. It should be noted that considering the control problem in this way was
actually equivalent to the L2-gain (or nonlinearH∞) optimal control defined in [25,26].

In a sensor fault situation, the internal robot dynamic properties are not affected, but
the controller of the robot manipulator (1) receives generalized coordinates that are not
exact, and are given as follows [2,8,48,49]:

q̄ = q + Fp ϕp, (7)
˙̄q = q̇ + Fv ϕv, (8)

where ϕp ∈ L2

([
t0, t f

]
, RS

)
and ϕv ∈ L2

([
t0, t f

]
, RS

)
are the vector functions repre-

senting sensor faults, and Fp and Fv are the matrices with appropriate dimensions. The
assumptions about the sensor fault terms were employed as follows:

Assumption 1. There exist positive-definite time-dependent functions fp and fv, such that the
sensor faults are bounded by

‖ϕp‖ ≤ fp, (9)

‖ϕv‖ ≤ fv. (10)

Remark 2. In many other works—for example, in [2,7,8,50]—sensor fault bounds are considered
as known positive real constants. In this work, we did not treat these bounds as known specific
constants, but as unknown functions that needed to be determined in such a way that they maximized
the objective function, so that the proposed control strategy might be available not only for robotic
manipulators but also for a wide class of nonlinear dynamical systems.

A PID-type control law was proposed, with gravity vector compensation in the fol-
lowing form:

u = −KP q̃−KD ˙̄q−KI υ + g(q), (11)

υ̇ = q̃, (12)
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where q̃ = q̄− qd was a generalized coordinates errors vector, and KP, KD and KI were
N × N positive–definite diagonal matrices. Note that, as KP, KD and KI were diagonal
matrices, the proposed control law was formed in a fully decentralized fashion.

The robot manipulator system (1) with mixed rotational and translational generalized
coordinates, affected by sensor faults (7) and (8) in a closed loop with a PID-type controller
(11) and (12), can be represented by a block diagram, as shown in Figure 1. Each DOF of
the robot manipulator was driven by servo motors with gears or pneumatic and hydraulic
cylinders. The decentralized PID control law was implemented in the microcontroller, and
point-to-point communication was established by electrical interface and physical layers.
The received encoder data were used to close the feedback loop in the microcontroller.

Regarding the block diagram shown in Figure 1, in our approach the emphasis was
not on the structure of the controller itself, but on the method for adjusting the gains of
the controller. The PID controller structure was considered because it is the most common
structure used in industrial applications.

Figure 1. Block diagram of closed-loop system, with algorithm for controller gains calculation.

Remark 3. It is important to emphasize the main difference between a conventional PID controller
and our proposed one. In conventional applications of a PID controller, the gain values are inde-
pendently and freely chosen by the designer, often using a trial-and-error method; however, in our
approach, a proportional gain matrix KP, a derivative gain matrix KD and an integral gain matrix
KI were tuned automatically and correlatively by a numerical algorithm that will be presented in
detail in the following sections.

Inserting (7) and (8) into (11) and (12) gave

u = −KP q̂−KD q̇−KI υ−KP Fp ϕp −KD Fv ϕv + g(q), (13)

υ̇ = q̂ + Fp ϕp, (14)

where q̂ = q− qd.
Finally, inserting (13) and (14) into (1) gave closed-loop equations in the following form:

M(q) q̈ + C(q, q̇) q̇ = −KP q̂−KD q̇−KI υ−KP Fp ϕp −KD Fv ϕv, (15)

υ̇ = q̂ + Fp ϕp. (16)

Based on the definition of finite L2-gain and the definition of L2 stability (see,
for example, [25,51]), we defined the min–max optimal control problem of a robot manipu-
lator affected by sensor faults, as follows:

Problem 1. Determine the PID controller gains, which are the elements of the matrices KP, KD
and KI in (11) and (12), and determine the “worst case” of sensor fault functions ϕp and ϕv in
(7) and (8), such that the system (15) and (16) is stable around the desired constant generalized
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coordinates positions, the ratio of the L2-norm of the vector of the output signals is controlled and the
L2-norm of the vector representing sensor faults is minimized. In other words, solve the following
zero-sum differential game:

J∗µ(q0) = min
KP ,KD ,KI

max
ϕ

{
‖q̂‖2

L2
+ ‖u‖2

L2
− µ‖ϕ‖2

L2

}
, (17)

where q̂, KP, KD, KI and ϕ =
[
ϕT

p ϕT
v

]T
are coupled via closed-loop system dynamics (15) and

(16), and µ > 0 is a finite L2-gain; furthermore, q0 is an a priori known vector of initial states of
generalized coordinates.

4. L2 Stability Conditions

It is well-known from the dissipativity theory [52–54] that a nonlinear dynamic system
is L2-stable if, for all initial conditions, all uncertainties w and all t f ≥ t0 there exists a stor-
age function V, which is also a Lyapunov function, such that the following inequality holds:

V̇ ≤ γ2wTw− zTz, (18)

where z is the performance variable, and γ > 0 is the finite L2-gain.
Note that the right-hand side of the inequality (18) in our case actually corresponded

to the argument of the min–max operator in (17). Based on this observation, we give
the following proposition, by which we set the stability conditions of the control system
proposed in this paper:

Proposition 1. If the following conditions are satisfied:

(a)

αλmin{KD} −
1
α

λmax{KI} − α2a1 > 0, (19)

(b)

αa1 + (c1 + d1‖q‖)‖q̂‖ − λmax{KD} − µ ≤ 0, (20)

αλmin{KI} − αµ ≤ 0, (21)

1− λmax{KD}σmax{Fv} ≤ 0, (22)

α− αλmax{KD}σmax{Fv} ≤ 0, (23)

for some α > 0, where µ > 0 is a finite L2-gain, and where a1, c1 and d1 are defined in Properties 2
and 3, then the system (15) and (16) is locally L2-stable.

Proof. The first step was to transform the system (15) and (16) into a form with a zero
steady state. The stationary state of the system (15) and (16) is q̇ = 0, q̂ = 0⇒ q = qd, so
it was obtained thus:

KI υ∗ + KP Fp ϕ∗p + KD Fv ϕ∗v = 0 (24)

υ̇ = Fp ϕ∗p, (25)

where υ∗, ϕ∗p and ϕ∗v were steady state values.

Subtracting (16) and (25) gave q̂ = −Fp

(
ϕp −ϕ∗p

)
; then, subtracting (15) and (24), we

obtained the error equations in the following form:

M(q) q̈ + C(q, q̇) q̇ + KD q̇ + KI υ̂ + KD Fv ϕ̂v = 0, (26)

where υ̂ = υ− υ∗ and ϕ̂v = ϕv −ϕ∗v.
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Following the methodology from [39,46], as the first step in the construction of the
Lyapunov function, the error Equations (26) were multiplied on the left side by αq̂T + q̇T

with some α > 0:

αq̂T M(q) q̈ + αq̂T C(q, q̇) q̇ + αq̂T KD q̇ + αq̂T KI υ̂ + αq̂T KD Fv ϕ̂v

+ q̇T M(q) q̈ + q̇T C(q, q̇) q̇ + q̇T KD q̇ + q̇T KI υ̂ + q̇T KD Fv ϕ̂v = 0.
(27)

Some of the terms in the expression (27) can be written as follows:

q̇T M(q) q̈ =
d
dt

(
1
2

q̇T M(q) q̇
)
− 1

2
q̇T Ṁ(q) q̇, (28)

αq̂T M(q) q̈ =
d
dt

(
αq̂T M(q) q̇

)
− αq̇T M(q) q̇− αq̂T Ṁ(q) q̇, (29)

αq̂T KD q̇ =
d
dt

(
1
2

αq̂T KD q̂
)

, (30)

αq̂T KI υ̂ =
d
dt

(
1
2

αυ̂T KI υ̂

)
, (31)

q̇T KI υ̂ =
d
dt

(
q̂T KI υ̂

)
− q̂T KI q̂. (32)

Inserting (28)–(32) in (27) and, as Ṁ(q) − 2C(q, q̇) was skew-symmetric (see
Property 1), which implied q̇T(Ṁ(q)− 2C(q, q̇)

)
q̇ = 0, we obtained:

d
dt

(
1
2

q̇T M(q) q̇ + αq̂T M(q) q̇ +
1
2

αq̂T KD q̂ +
1
2

αυ̂T KI υ̂ + q̂T KI υ̂

)
= αq̇T M(q) q̇ + αq̂T C(q, q̇)T q̇− q̇T KD q̇ + αq̂T KI q̂− q̇T KD Fv ϕ̂v − αq̂T KD Fv ϕ̂v.

(33)

Based on the nonlinear differential form (33), it could be concluded that on the left-
hand side we had the Lyapunov function candidate V(q̇, q̂, υ̂), while on the right-hand
side we had a candidate for the time derivative of the Lyapunov function V̇(q̇, υ̂,ϕ̂v).

The Lyapunov function candidate could be rewritten as follows:

V(q̇, q̂, υ̂) =
1
2
(αq̂ + υ̂)T M(q) (αq̂ + υ̂)− 1

2
α2q̂T M(q) q̂ +

1
2

αq̂T KD q̂

+
1
2

(
1√
α

q̂ +
√

αυ̂

)T
KI

(
1√
α

q̂ +
√

αυ̂

)
− 1

2α
q̂T KI q̂.

(34)

In order for the above expression to be positive-definite, it was necessary to determine
the conditions under which

−1
2

α2q̂T M(q) q̂ +
1
2

αq̂T KD q̂− 1
2α

q̂T KI q̂ > 0. (35)

Using definitions of vector and matrix norms, bound of quadratic forms (see Notation,
Appendix A) and, finally, applying Property 2 we obtained the following:(

1
2

αλmin{KD} −
1

2α
λmax{KI} −

1
2

α2a1

)
‖q̂‖2 > 0, (36)

which was positive-definite if

αλmin{KD} −
1
α

λmax{KI} − α2a1 > 0. (37)



Sensors 2023, 23, 1952 8 of 28

Next, according to the theory of L2 stability and the passivity properties of Euler–
Lagrange systems, the following inequality needed to be satisfied:

V̇(q̇, υ̂,ϕ̂v) ≤ µ‖αq̂ + q̇‖2 − (αq̂ + q̇)T ϕ̂v, (38)

where µ > 0 was a finite L2-gain.
Comparing (38) to the right-hand side of (33), using Cauchy—Schwarz inequality,

triangle inequality, definitions of vector and matrix norms, bound of quadratic forms
(see Notation, Appendix A) and, finally, applying Properties 2 and 3, we got the follow-
ing inequality:

(αa1 + (c1 + d1‖q‖)‖q̂‖ − λmax{KD} − µ)‖q̇‖2 + (αλmin{KI} − αµ)‖q̂‖2+

(1− λmax{KD}σmax{Fv})‖q̇‖ ‖ϕ̂v‖+ (α− αλmax{KD}σmax{Fv})‖q̂‖ ‖ϕ̂v‖ ≤ 0.
(39)

The conditions that satisfied the above inequality were as follows:

αa1 + (c1 + d1‖q‖)‖q̂‖ − λmax{KD} − µ ≤ 0, (40)

αλmin{KI} − αµ ≤ 0, (41)

1− λmax{KD}σmax{Fv} ≤ 0, (42)

α− αλmax{KD}σmax{Fv} ≤ 0. (43)

Remark 4. As the condition (40) depended on the generalized coordinates of the system, it was
concluded that the proposed controller guaranteed only local stability. For a more detailed analysis
of stability, it would be necessary to determine the domain of attraction that guarantees asymptotic
stability; furthermore, in order to ensure global stability, it would be necessary to introduce a
nonlinear term in the control law (see, for example, [39]). Determining the domain of attraction and
deriving the global stability conditions were beyond the scope of the research presented in this paper.
The stability conditions derived in this work were calculated numerically, and served only for the
appropriate initialization of the algorithm, thereby ensuring satisfactory convergence properties.

5. Algorithm for the Controller Synthesis

In order to derive the algorithm for the controller synthesis, i.e., the algorithm to solve
Problem 1, the PID control law (13) had to be written in parametrized form first. To do this,
a vectorization operation was performed:

vec(u) = −vec(KPq̂)− vec(KDq̇)− vec(KIυ)− vec
(
KPFpϕp

)
− vec(KDFv ϕv)

= −
(

q̂T ⊗ I
)

vec(KP)−
(

q̇T ⊗ I
)

vec(KD)−
(

υT ⊗ I
)

vec(KI)

−
(

ϕT
pFT

p ⊗ I
)

vec(KP)−
(

ϕT
vFT

v ⊗ I
)

vec(KD)

= −
[(

q̂T +ϕT
pFT

p

)
⊗ I

(
q̇T +ϕT

vFT
v

)
⊗ I υT ⊗ I

]vec(KP)
vec(KD)
vec(KI)

.

(44)

Then, by substituting x =
[
xT

1 xT
2 xT

3
]T

=
[
q̂T q̇T υT]T, from (15) and (16), we

got the following first-order nonlinear differential equations:

ẋ = f(x) + B(x,ϕ)k + Fϕp, (45)
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where

f(x) =

 x2
−M−1(x1)C(x1, x2)x2

x1

,

B(x,ϕp) =

 0
−M−1(x1)R(x,ϕ)

0

,

R(x,ϕp) =
[(

xT
1 +ϕT

pFT
p

)
⊗ I

(
xT

2 +ϕT
vFT

v

)
⊗ I xT

3 ⊗ I
]
,

k =

vec(KP)
vec(KD)
vec(KI)

,

ϕ =

[
ϕp
ϕv

]
,

F =

 0
0

Fp

.

(46)

Note that u = R(x,ϕ)k.
In accordance with the previous substitution, expression (17) then became

J∗µ(x0) = min
k

max
ϕ

{
‖x1‖2

L2
+ ‖R(x,ϕ)k‖2

L2
− µ‖ϕ‖2

L2

}
, (47)

where x, k and ϕ were coupled via nonlinear differential Equations (45) and (46).

5.1. L2-Gain Minimization

The stability conditions from Proposition 1 suggested that a simple and well-known
schematic bisection algorithm [55] could be applied, to minimize the L2-gain: the steps of
this method were as follows.
Step initialization: Choose the initial elements of the vector k, i.e., the initial PID controller
gains, such that the lower µl0 and upper µu0 bound of the L2-gain satisfy the conditions in
expression (19). Choose a small enough positive constant, ε, as the stopping criteria of the
bisection method.
Step 1: Set k := 1.
Step 2: Set

µk :=
1
2

(
µlk−1

+ µuk−1

)
, (48)

then calculate the value of function J∗µk
(x0) by solving the zero-sum differential game (47).

Step 3: If |J∗µk
(x0)| < ε, then stop; otherwise, if J∗µk

(x0) ≤ 0 then µlk := µlk−1
and µuk := µk;

else, µlk := µk and µuk := µuk−1 .
Step 4. Set k := k + 1 and return to Step 2.

5.2. Zero-Sum Differential Game Solution

In the second step of the algorithmic procedure described in the previous subsection,
it was necessary to solve the problem defined by expression (47). To solve this zero-
sum differential game, we implemented the Newton method, which is described in the
following steps.
Step initialization: Choose a small enough positive constant, ε, as the stopping criterion of
the Newton algorithm.
Step 1: Set j := 0.
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Step 2: Determine the search direction vector sj by solving a system of linear equations
using Cholesky factorization:[ ∇2

k J ∇2
k,ϕJ

−∇2
ϕ,k J −∇2

ϕJ

]
sj = −

[ ∇T
k J

−∇T
ϕJ

]
, (49)

where J is the argument of the min max operator in (47), ∇k J, ∇ϕJ, ∇2
k J, ∇2

ϕJ, and ∇2
k,ϕJ

are gradients and Hessians with respect to the vectors k and ϕ, respectively. Note that
the maximization with respect to ϕ is achieved simply by the minus sign in front of the
gradient and Hessians.
Step 3: Use the line search strategy satisfying the Wolfe conditions [56] to compute the
step-size ηj > 0.
Step 4: Calculate [

kj+1
ϕj+1

]
=

[
kj
ϕj

]
+ ηj sj. (50)

Step 5: If ∥∥∥[∇k J −∇ϕJ
]T∥∥∥

∞
≤ ε, (51)

then stop; else, set j := j + 1 and go to Step 2.
As is well-known, Newton’s method has a locally quadratic convergence to the saddle

point, assuming that the initial point is close enough to the saddle point. In the approach
we propose here, the proximity to the saddle point is ensured by the L2 stability conditions
set in Proposition 1: this further implies that ∇2

k J > 0 and −∇2
ϕJ > 0. As these Hessians

are positive-definite submatrices on the main diagonal of the matrix on the left-hand side
of (49), and submatrices ∇2

k,ϕJ and −∇2
ϕ,k J are negative transpositions of each other, the

matrix on the left-hand side of Equation (49) is asymmetric positive-definite and, therefore,
the linear system (49) is well-defined; therefore, the previously described algorithmic
procedure, which is based on the Newton method, produces:

kk ∈ arg min
k

{
‖x1‖2

L2
+ ‖R(x,ϕ)k‖2

L2
− µk‖ϕ‖2

L2

}
, (52)

ϕk ∈ arg max
ϕ

{
‖x1‖2

L2
+ ‖R(x,ϕ)k‖2

L2
− µk‖ϕ‖2

L2

}
, (53)

in the k-th iteration of the bisection algorithm proposed in Section 5.1.
To perform the steps of the proposed Newton-like algorithm, we needed expressions

for the gradients and Hessians that appear in (49). A detailed procedure for deriving
recursive matrix relations for computing these gradients and Hessians is given in the next
subsection.

5.3. Matrix Relations for Recursive Calculation of Gradients and Hessians

In order to derive recursive relations for calculating gradients and Hessians, we used
the fact that derivatives are a measure of the sensitivity of functions to small changes in their
variables. This suggested that, for their calculation, we could perform a time discretization
of the system dynamics (45). In the approach presented in this paper, the discretization of
system dynamics using the fourth-order Adams approximation with a small time step was
applied. In [32] it is shown that an explicit Adams method can be conveniently transformed
into discrete-time state space.

The explicit Adams approximation of system (45) can be simply written in the follow-
ing discrete-time state-space form:

x̂(i + 1) = φ̂(x̂(i), k(i),ϕ(i)), x̂(0) = x̂0, (54)
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such that the time grid consists of points ti = t0 + iτ for i = 0, 1, 2, . . . , N − 1, where
τ = (t f − t0)/N is the time step length, and x̂ is the extended 4n-dimensional state vector
(n is a dimension of state vector x in (45), and 4 is the order of the Adams method). More
details on the Adams method can be found in [57].

The discrete-time form of the objective function resulted in

J(x0) = τ
N−1

∑
i=0

F(x̂(i), k(i),ϕ(i)), (55)

where F was the sub-integral function of the argument of the min max operator in (47)

F(i) = ‖x1(i)‖2 + ‖R(x(i),ϕ(i))k(i)‖2 − µ‖ϕ(i)‖2. (56)

The gradient of the objective function (55), with respect to the k in the j-th iteration of
the Newton algorithm (Section 5.2), was given by

∇k(l) J = τ
N−1

∑
i=0
∇k(l)F(i) = τ

(
∇k(l)F(l) +

N−1

∑
i=l+1

∇k(l)F(i)

)
, (57)

for l = 0, 1, 2, . . . , N − 1. Note that, because of the causality principle, the terms for i < l
were equal to zero.

As the terms under the sum on the right-hand side of (57) depended on k(l) implicitly
through x̂(i) for i > l, this gave

∇k(l)F(i) = ∇k(l)x̂(i)∇T
x̂(i)F(i). (58)

Using the chain rule for ordered derivatives, from (54) it followed that

∇k(l)x̂(i) = ∇k(l)x̂(i− 1)∇x̂(i−1)φ̂(i− 1), (59)

for i = l + 2, . . . , N − 1.
To simplify the following expressions, we introduced

σ(l) =
N−1

∑
i=l+1

∇T
k(l)F(i). (60)

Starting from l = N − 2; i = N − 1, it followed that

σ(N − 2) = ∇T
k(N−2)F(N − 1), (61)

then, substituting (58) in (61)

σ(N − 2) = ∇k(N−2)x̂(N − 1)∇T
x̂(N−1)F(N − 1), (62)

and substituting (59) in (62), and taking into account (54), we obtained

σ(N − 2) = ∇k(N−2)φ̂(N − 2)∇T
x̂(N−1)F(N − 1). (63)

The above procedure could be further continued for l = N − 3; i = N − 1, N − 2;
l = N − 4; i = N − 3, N − 2, N − 1, etc., and the final recursive expressions for calculation
of gradient ∇k J had the following form:
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ω(N − 1) = 0, (64)

ω(l) = ∇T
x̂(l+1)F(l + 1) +∇x̂(l+1)φ̂(l + 1) ·ω(l + 1), (65)

σ(l) = ∇k(l)φ̂(l) ·ω(l), (66)

∇k(l) J = τ
(
∇k(l)F(l) + σT(l)

)
, (67)

for l = N − 2, N − 3, . . . , 0.
Before giving recursive expressions for computing the Hessians, we adopted the

usual convention such that, for some function z = f (v), the Hessian is defined by
∇2

vz = ∇v[vec(∇vz)]. Then, in order to calculate ∇2
k J in the j-th iteration of the Newton

algorithm (Section 5.2), the derivatives of Equations (64)–(67), with respect to vectors x̂ and
k, were taken. We obtained the following recursive matrix relation:

W(N − 1) = 0, (68)

W(l) = ∇x̂(l+1)

[
vec
(
∇T

x̂(l+1)F(l + 1)
)]

+∇x̂(l+1)

[
vec
(
∇x̂(l+1)φ̂(l + 1)

)]
·W(l + 1),

(69)

S(l) = ∇k(l)

[
vec
(
∇k(l)φ̂(l)

)]
·W(l), (70)

∇2
k(l)J = τ

(
∇k(l)

[
vec
(
∇k(l)F(l)

)]
+ S(l)

)
, (71)

for l = N − 2, N − 3, . . . , 0.
In the previous expressions, (64)–(71), the derivatives of the system dynamics (54) and

sub-integral function (56), with respect to the vectors x̂ and k,

∇x̂(l+1)φ̂(l + 1), ∇x̂(l+1)F(l + 1), ∇k(l)φ̂(l), ∇k(l)F(l),

∇x̂(l+1)

[
vec
(
∇x̂(l+1)φ̂(l + 1)

)]
, ∇x̂(l+1)

[
vec
(
∇T

x̂(l+1)F(l + 1)
)]

,

∇k(l)

[
vec
(
∇k(l)φ̂(l)

)]
, ∇k(l)

[
vec
(
∇k(l)F(l)

)]
,

(72)

were calculated by the hyper-dual number method [58,59], which enabled us to get the
first- and second-order derivatives in one step, accurately to machine epsilon, which cannot
be achieved by the finite difference method. Compared to the widely used and popular
method of adjoint automatic differentiation, the hyper-dual number method is more robust
and easier to apply.

In the previous considerations from expression (54)–(71) the derivation of recursive
matrix relations for the calculation of gradients and Hessians, with respect to the vector
k containing the gains of the PID controller, are shown. Matrix relations for calculating
gradients and Hessians, with respect to vector ϕ containing the sensor faults, can be
obtained by the same procedure, with obvious changes in notation, and there is no need to
give them here.

A flowchart of the entire algorithmic procedure described in Sections 5.1–5.3 is shown
in Figure 2.
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Figure 2. Flowchart of algorithmic procedure for calculation of PID controller gains and determination
of the “worst case” of sensors fault functions.

6. Results and Discussions
6.1. Numerical Simulations

In this subsection, the simulation results for control of the robot manipulator, using
the controller synthesis algorithm that is described in the previous sections are presented.

Figure 3 shows the considered structure of a robot manipulator. The structure of a
robot manipulator of this type is also the subject of consideration in [60,61]. However, for
the sake of completeness, in this paper a more detailed derivation of mathematical model
is presented. Detailed expressions for kinetic and potential energy and parameters that
define the bounds of the robot’s dynamic properties are given (see Appendices B and C).

The first joint is rotary, which enables the rotation of the robot around the vertical axis,
while the second and third are prismatic joints, which enable movement in the vertical
and horizontal directions, respectively. Such robot manipulators have a workspace in the
shape of a cylinder. Robot manipulators with a cylindrical structure, due to their compact
design, are most often used for simple assembly tasks, handling at machine tools, applying
coatings. Also, such robots can be fast, so a compromise should be sought because speeds
imply problems with rotational inertia, which can affect repeatability if the entire system is
not configured in accordance with its capabilities. It is usual for cylindrical robots that the
up-and-down motion is achieved by pneumatic or hydraulic cylinders, while the rotation
is usually achieved by electric motors and gears.

To model the kinematics and dynamics we denoted by q1 (rad) the rotational coordi-
nate of the first joint, q2 (m) and q3 (m) the translational coordinates of second and third
joint, respectively.

Figure 2. Flowchart of algorithmic procedure for calculation of PID controller gains and determination
of the “worst case” of sensor fault functions.

6. Results and Discussions
6.1. Numerical Simulations

In this subsection, the simulation results for control of the robot manipulator, using
the controller synthesis algorithm that is described in the previous sections, are presented.

Figure 3 shows the considered structure of a robot manipulator. The structure of a robot
manipulator of this type was also the subject of consideration in [60,61]; however, for the
sake of completeness, in this paper a more detailed derivation of the mathematical model is
presented. Detailed expressions for kinetic and potential energy, and parameters that define
the bounds of the robot’s dynamic properties, are given (see Appendices B and C).

The first joint is rotary, which enables the rotation of the robot around the vertical axis,
while the second and third are prismatic joints, which enable movement in the vertical and
horizontal directions, respectively. Such robot manipulators have a workspace in the shape
of a cylinder. Robot manipulators with a cylindrical structure, due to their compact design,
are most often used for simple assembly tasks, handling machine tools, applying coatings,
etc. In addition, such robots can be fast, so a compromise should be sought, because speed
implies problems with rotational inertia, which can affect repeatability if the entire system
is not configured in accordance with its capabilities. It is usual for cylindrical robots that the
up-and-down motion is achieved by pneumatic or hydraulic cylinders, while the rotation
is usually achieved by electric motors and gears.

To model the kinematics and dynamics we denoted by q1 (rad) the rotational coordi-
nate of the first joint, and by q2 (m) and q3 (m) the translational coordinates of the second
and third joints, respectively.
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Figure 3. Computer model and schematic representation of a robot manipulator with three degrees
of freedom.

First, the forward kinematic equations for the cylindrical structure of a robot ma-
nipulator with 3DOF, using the Denavit–Hartenberg convention were developed. The
Denavit–Hartenberg parameters are given in Table 1, where θ = q1, d1 = 0, d2 = L1 + q2
and d3 = L2 + q3.

Table 1. Denavit–Hartenberg parameters of cylindrical manipulator.

Parameter θi di ai αi

Joint 1 θ1 d1 0 0

Joint 2 0 d2 0 π/2

Joint 3 0 d3 0 0

Unit rad m m rad

The homogeneous transformation matrices were as follows:

A1 = Rot(z, q1) =


cos(q1) − sin(q1) 0 0
sin(q1) cos(q1) 0 0

0 0 1 0
0 0 0 1

, (73)

A2 = Tran(0, 0, L1 + q2) =


1 0 0 0
0 1 0 0
0 0 1 L1 + q2
0 0 0 1

, (74)

A3 = Tran(0, L2 + q3, 0) =


1 0 0 0
0 1 0 L2 + q3
0 0 1 0
0 0 0 1

. (75)
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The transformation matrices were as follows:

0T1 = A1 =


cos(q1) − sin(q1) 0 0
sin(q1) cos(q1) 0 0

0 0 1 0
0 0 0 1

, (76)

0T2 = A1A2 =


cos(q1) − sin(q1) 0 0
sin(q1) cos(q1) 0 0

0 0 1 L1 + q2
0 0 0 1

, (77)

0T3 = A1A2A3 =


cos(q1) − sin(q1) 0 −(L2 + q3) sin(q1)
sin(q1) cos(q1) 0 (L2 + q3) cos(q1)

0 0 1 L1 + q2
0 0 0 1

. (78)

where 0T3 was the corresponding Denavit–Hartenberg matrix and, based on the last column,
we had the position vector of the robot end-effector in the Cartesian space, as follows:px

py
pz

 =

−(L2 + q3) sin(q1)
(L2 + q3) cos(q1)

L1 + q2

. (79)

The solution of the inverse kinematic problem could be obtained, based on the follow-
ing equation:

A−1
1

0T3 = A2A3, (80)
? ? ? px cos(q1) + py sin(q1)
? ? ? −px sin(q1) + py cos(q1)
? ? ? pz
0 0 0 1

 =


1 0 0 0
0 1 0 L2 + q3
0 0 1 L1 + q2
0 0 0 1

. (81)

Based on the last columns of the previous matrices on the left and right sides, we
obtained:

px cos q1 + py sin(q1) = 0 =⇒ q1 = arctan
(
− px

py

)
, (82)

pz = L1 + q2 =⇒ q2 = −L1 + pz, (83)

−px sin(q1) + py cos(q1) = L2 + q3 =⇒ q3 = −L2 − px sin(q1) + py cos(q1). (84)

In order to derive the corresponding dynamic equations of motion, the kinetic energy
of the robot was first determined. The overall kinetic energy was calculated as the sum of
kinetic energies from corresponding links, as follows:

T = T1 + T2 + T3, (85)

where

T1 =
1
2

I1q̇2
1, (86)

T2 =
1
6

m2

(
L2

A q̇2
1 + 3q̇2

2

)
, (87)

T3 =
m3

2L3

[
1
3

L3
3q̇2

1 + L2
3(L2 + q3)q̇2

1 + L3

(
(L2 + q3)

2q̇2
1 + q̇2

2 + q̇2
3

)]
. (88)
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Next, the overall potential energy was calculated, as the sum of potential energies
from corresponding links, as follows:

U = U1 + U2 + U3, (89)

where

U1 =
1
2

m1gH1, (90)

U2 = m2g(L1 + q2), (91)

U3 = m3g(L1 + q2). (92)

The Euler–Lagrange equations of motion for a considered robot manipulator were
given by

τi =
d
dt

(
∂T
∂q̇i

)
− ∂T

∂qi
+

∂U
∂qi

, i = 1, 2, 3, (93)

where T was the total kinetic energy defined by (85)–(88), U was the total potential energy
defined by (89)–(92), and τi was the torque/force applied to the i-th robot link. Energy
dissipation in rotational joints, and viscous friction in translational joints were neglected.

The Equation (93) can be written in matrix form (1), such that q = [q1 q2 q3]
T, u =

[τ1 τ2 τ3]
T and

M(q) q̈ =

M11 0 0
0 m2 + m3 0
0 0 m3

, (94)

M11 = I1 + L2L3m3 + L2
2m3 +

1
3

(
L2

Am2 + L2
3m3

)
+ (L3m3 + 2L2m3)q3 + m3q2

3, (95)

C(q, q̇) q̇ =

 (L3m3 + 2L2m3 + 2m3q3)q̇1 q̇3
0

1
2 (−L3m3 − 2L2m3 − 2m3q3)q̇2

1

, (96)

g(q) =

 0
g(m2 + m3)

0

. (97)

A detailed derivation of expressions for the kinetic and potential energy of the consid-
ered robot manipulator is given in Appendix B.

The numerical values of the parameters relevant to the derivation of the dynamic
model of the considered robot, using the Euler–Lagrange formalism, are given in Table 2.

Table 2. Numerical values of the robot’s constant parameters.

Parameter L2 L3 LA m2 m3 I1 g

Value 0.5 0.3 0.4 2.5 1 0.1 9.81

Unit m m m kg kg kgm2 m/s2

Furthermore, for the appropriate initialization and numerical efficiency of the pro-
posed algorithmic procedure for PID controller synthesis, we needed the constant values of
the coefficients defined in properties (4)–(6). The numerical values of these parameters are
given in Table 3, and the expressions for determining them for the considered cylindrical
robot are given in Appendix C.
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Table 3. Numerical values of the coefficients defined in properties (4)–(6).

Parameter a1 a2 c2 d2 c1 d1

Value 0.2408 0.6633 1.3 1.0 0.9192 1.4142

Unit kgm2 kgm2 kgm kg kgm kg

The parameters of the algorithm proposed in this paper, for this particular robot ma-
nipulator, were set as follows. The vector of initial conditions of the generalized coordinates
was q0 = 0. The initial values of the PID controller gaining satisfying stability conditions
were chosen as

KP0 =

120 0 0
0 100 0
0 0 50

, KD0 =

110 0 0
0 50 0
0 0 30

, KI0 =

50 0 0
0 50 0
0 0 20

. (98)

The stop criterion of the bisection method was chosen as ε = 10−3. The criterion for
stopping Newton’s method was set as ε = 10−4. The final time was t f = 2 sec., and the
number of optimization time intervals was N = 2000, so that the sampling interval was
τ = 0.002 sec.

The desired positions of the generalized coordinates were selected as follows: qd1 =
π/2; qd2 = 0.2 m; qd3 = 0.1 m. By running the algorithm, we obtained the following PID
controller gains:

KP =

126.6367 0 0
0 103.1782 0
0 0 10.9068

, KD =

50.3292 0 0
0 4.0766 0
0 0 42.3659

,

KI =

45.9922 0 0
0 79.7230 0
0 0 33.0817

,

(99)

and the minimum L2-gain, µ = 532.3096.
The time responses of the rotational coordinates of the first joint q1 and the translational

coordinates of the second and third joints, q2 and q3, respectively, are presented in Figure 4.
It can be seen from the figures that the transient response lasted approximately 0.8 seconds.
The duration of the transient response could be further improved by adding weighting
matrices into the objective function (47). When selecting these matrices, one should strive
to reach a compromise between the time required to achieve the desired position, and the
maximum value of the control torque/force, such that the effect of the sensor faults is kept
under a permissible level, and ensures the stability of the closed-loop system.

Figure 5 illustrates the time dependence of the positioning errors. It can be seen that
the errors from the desired positions were approximately 10−3. These errors could be
further reduced by reducing the parameters ε and ε of the bisection and Newton methods.
Reducing these parameters would mean an increase in the number of iterations and, thus,
the execution time of the algorithm. Furthermore, the positioning errors could also be
reduced by choosing a smaller sampling time τ of the Adams method; however, as is
well-known, there is a minimal value of τ that guarantees numerical stability.
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Figure 4. Time responses of the rotational coordinates of the first joint, and of the translational
coordinates of the second and third joints.
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Figure 5. Time dependence of the positioning errors.

Figure 6 shows the time dependence of the force and torques applied to the robot
links. Furthermore, Figure 7 illustrates the simulation results for the time dependence of
the sensor faults calculated by the algorithm proposed in Sections 5.1 and 5.2. Note that
fp1, fp2, fp3, fv1, fv2 and fv3 are elements of vector ϕ, which is incorporated in the objective
function of the zero-sum differential game (17), i.e., (47) and, since ϕ is the maximizing
player, the sensor fault functions shown in Figure 7 affected the robot manipulator system
in the worst possible manner. The obtained results can be interpreted as a sensor failure
due to a deviation belonging to the class of bounded L2 functions.

It is obvious from the figures that the robot manipulator reached the desired positions
at an acceptable settling time, with a negligible steady state error and with acceptable
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amounts of applied forces and torques to achieve the desired motion: therefore, it can be
concluded that the proposed control strategy is efficient in the presence of sensor faults.
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Figure 7. Time dependence of the “worst case” sensor faults obtained by proposed algorithms.

6.2. Discussion of Comparison with Other Methods

Here, we discuss the features of our approach, in comparison to other similar approaches.
In fault-tolerant control approaches based on LMI formalism (see, for example, [6,7,23,29]

and references therein), the nonlinear dynamics of the robot manipulator must be linearized,
which means that robustness cannot be guaranteed in all operating points. Then, the de-
centralized PID controller must be transformed into a state feedback controller or an output
feedback controller, and the optimization problem is presented in the form of an LMI, in
which it is necessary to determine the elements of the positive-definite Lyapunov matrix
and the transformation matrix. In the case of a robot with 3DOF, the Lyapunov matrix is
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6× 6 and the transformation matrix is 3× 6: this means that the problem has at least 21 + 9
optimization parameters. In our approach, the PID controller gains were directly optimized,
which meant that we only had 9 optimization parameters. Furthermore, the Mehrotra-type
predictor–corrector variant of interior-point method algorithms is commonly used to solve
the LMI problem: in our approach, we use Newton’s method, which—near the saddle point
of the associated differential game—produces a sequence that quadratically converges to a
desired solution, while the Mehrotra-type predictor–corrector has linear convergence. Thus,
compared to methods based on solving LMI, the approach proposed in this paper has less
optimization variables, and requires less iterations.

Many of the approaches to fault-tolerant control (see, for example, [2,6,12] and refer-
ences therein), in addition to the synthesis of the controller, also imply a certain detection or
estimation of the faults that appear in the nonlinear dynamic system: this actually means
additional computational requirements that increase with the number of state variables
that need to be estimated due to the synthesis of an additional subsystem. Compared to
these approaches, our approach does not require an additional subsystem to determine
how to modify the controller structure and gains, but focuses on the L2-gain robust stability
of the robot manipulator, considering the worst-case scenario of sensor faults rather than
the desired performance for each fault occurrence scenario.

The algorithmic procedure presented in this paper is intended for the offline solution
of the zero-sum differential game related to the L2-gain optimal control problem, with the
explicit calculation of the PID controller gains: therefore, the computational complexity of
our approach is not as much of a limitation as for approaches intended for online execution,
such as model predictive control (see, for example, [15,16] and references therein).

7. Conclusions

In this paper, the tuning of PID-type controller gains for robot manipulators affected
by sensor faults, using an algorithmic procedure that gives an explicit solution to the
L2-gain optimality criterion and related zero-sum differential game, is presented. The
main contribution of the paper includes the integration of the simple bisection method,
the Newton method for solution of related zero-sum differential games without solving
the HJI equation, the Adams method for time discretization, and hyper-dual numbers, to
provide an effective method for control law synthesis. By applying Lyapunov stability
analysis, and the dissipativity theory and passivity properties of systems described by Euler–
Lagrange equations, we derived local L2 stability conditions that we used for appropriate
initialization of the bisection method, and for ensuring and controlling the convergence
of Newton’s method. The simulation results for control of the 3DOF cylindrical robot
manipulator showed that the proposed algorithmic procedure could efficiently calculate
the controller gains, in order to position the system affected by sensor faults, as desired.

The extension of the proposed approach could be continued in the following directions:

• Although the case of sensor faults is considered in this paper, the proposed algorithm
for control law synthesis could easily be extended to the case of dynamic systems
affected by actuator faults, without significant increase in its complexity.

• Improvements in the control strategy proposed in this paper could also go towards
the synthesis of a complete model-free control law, i.e., control law without gravity
vector compensation: this would complicate the derivation of the stability conditions,
and the controller gains should be presented as nonlinear functions of generalized
coordinates.

• Instead of the initial conditions being known in advance, one could consider a case
where the initial conditions were treated as an unknown uncertainty, i.e., the variables
of the min–max optimization problem that maximizes the objective function.

• From the numerical optimization algorithms point of view, to perform a detailed
analysis and comparison between a proposed algorithm and other existing methods,
such as genetic algorithm or particle swarm optimization, in terms of convergence,
accuracy and computational efficiency.
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• From the point of view of its application to a robot manipulator affected by sen-
sor faults, to carry out a detailed experimental analysis and comparison between a
proposed control strategy and other existing related fault-tolerant control approaches.
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Appendix A. Notation

Matrices and vectors are represented in bold upper and bold lower case, respectively.
Scalars are represented in italic lower case. I is an identity matrix, and 0 is a null matrix.
The dimensions of the matrices and vectors can generally be determined trivially by the
context. The symbols ∇ and ∇2 stand for the gradient and Hessian, respectively. The
symbol T denotes transposition.

The vec(·) is an operator that stacks the columns of a matrix one underneath the other.
The Kronecker product of the two matrices A (m× n) and B (p× q), denoted by A⊗ B, is
an mp× nq matrix defined by A⊗ B = (aijB)ij. The definitions of the matrix differentials
calculus, and the algebras related to Kronecker products, can be found in [62,63].

The Euclidean norm of vector is defined as ‖x‖ =
√

xT x. λmin{A} and λmax{A} repre-
sent the smallest and the largest eigenvalues, respectively, of the symmetric positive-definite
matrix A. The induced norm of matrix A is defined as ‖A‖ =

√
λmax{AT A} = σmax{A},

where σmax{A} represents the largest singular value of matrix A. If A is a symmetric
positive-definite matrix, it implies ‖A‖ = λmax{A}; furthermore, for a symmetric positive-
definite matrix, it holds that λmin{A}‖x‖2 ≤ xTAx ≤ λmax{A}‖x‖2.

L2(I,Rn) stands for the standard Lebesgue spaces of vector-valued square-integrable
and essentially bounded functions mapping an interval I ⊂ R to Rn: this space is equipped

with an L2 norm defined by ‖ · ‖L2 =
√∫ t f

t0
‖ · ‖2dt. We avoided explicitly showing the

dependence of the variables from the time when not needed.

Appendix B. Detailed Derivation of Expressions for the Kinetic and Potential Energy
of the Cylindrical Robot

The movement of the first link of the robot can be viewed as a rotation around an axis,
so the kinetic energy can be determined as follows:

T1 =
1
2

I1q̇2
1, (A1)
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where I1 is dynamic moment of inertia I1 = 1
2 m1R2. The potential energy of the first link is

defined by
U1 = −m1gTp1, (A2)

where p1 =
[
0 0 H1

2 1
]T

is the vector of the position of the center of gravity of
the infinitesimal mass of the first link in relation to the fixed coordinate system, and
g =

[
0 0 −g 0

]T is the vector of gravitational acceleration. By inserting them into the
Equation (A2), we get

U1 =
1
2

gm1H1. (A3)

The kinetic energy of the second link is

T2 =
1
2

∫
(m)

v2
2dm2. (A4)

If we assume that the second link is homogeneous, then it follows:

dm2

m2
=

du2

LA
⇒ dm2 =

m2

LA
du2, (A5)

where dm2 is infinitesimal mass and du2 is infinitesimal displacement. Substituting expres-
sion (A5) into (A4) and changing the bounds of integration, it follows:

T2 =
m2

2LA

LA∫
0

v2
2du2. (A6)

The position of the dm2 in the robot coordinate system is determined by the posi-
tion vector

R2 =
[

0 u2 0 1
]T . (A7)

The position vector of the mass dm2, with respect to the fixed coordinate system, is

p2 = 0T2R2. (A8)

By inserting expressions (77) and (A7) into expression (A8), we get

p2 =
[
−u2 sin(q1) u2 cos(q1) L1 + q2 1

]T . (A9)

The velocity of the mass dm2 is

v2 =
dp2

dt
=
[
−u2q̇1 cos(q1) −u2q̇1 sin(q1) q̇2 0

]T , (A10)

and the square of the velocity is

v2
2 = v2 · v2 = u2

2q̇2
1 cos2(q1) + u2

2q̇2
1 sin2(q1) + q̇2

2. (A11)

Inserting Equation (A11) into (A6), and integrating from 0 to LA, it follows:

T2 =
m2

2LA

[
L3

A
3

q̇2
1 cos2(q1) +

L3
A

3
q̇2

1 sin2(q1) + LA q̇2
2

]

=
m2

2LA

[
L3

A
3

q̇2
1

(
cos2(q1) + sin2(q1)

)
+ LA q̇2

2

]

=
1
6

m2

(
L2

A q̇2
1 + 3q̇2

2

)
.

(A12)
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The potential energy of the second link is calculated as follows:

U2 = −m2gTp2, (A13)

where the vector p2 is determined by (A9) for u2 = LA/2, so the potential energy is equal to

U2 = −m2
[

0 0 −g 0
]
− 1

2 LA sin(q1)
1
2 LA cos(q1)

L1 + q2
1

 = gm2(L1 + q2). (A14)

The same assumptions about the homogeneity of the second link and the linearity of
the mass distribution are applied to the calculation of the kinetic and potential energy of
the third link.

The kinetic energy of the third link is

T3 =
1
2

∫
(m)

v2
3dm3, (A15)

and, with the dm3 = m3
L3

du3, it follows:

T3 =
m3

2L3

0∫
−L3

v2
3du3. (A16)

The position vector of the infinitesimal mass dm3 in the robot coordinate system is

R3 =
[

0 −u3 0 1
]T . (A17)

The position vector of the mass dm3, with respect to the fixed coordinate system, is
equal to

p3 = 0T3R3 =


u3 sin(q1)− (L2 + q3) sin (q1)
(L2 + q3) cos(q1)− u3 cos(q1)

L1 + q2
1

, (A18)

where the transfer matrix from the third coordinate system to the fixed coordinate system
is defined by (78). The velocity of the mass dm3 is

v3 =
dp3

dt
=


u3q̇1 cos(q1)− (L2 + q3)q̇1 cos(q1)− q̇3 sin(q1)
u3q̇1 sin(q1)− (L2 + q3)q̇1 sin(q1) + q̇3 cos(q1)

q̇2
0

, (A19)

while the square of the velocity is

v2
3 = v3 · v3 = q̇2

1(L2 − u3 + q3)
2 + q̇2

2 + q̇2
3. (A20)

By inserting Equation (A20) into (A16), and after integrating within the limits from 0
to −L3, we get kinetic energy of the third link as follows:

T3 =
m3

2L3

[
1
3

L3
3q̇2

1 + L2
3(L2 + q3)q̇2

1 + L3

(
(L2 + q3)

2q̇2
1 + q̇2

2 + q̇2
3

)]
. (A21)
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The vector of the position of the center of gravity of the third link with respect to the
fixed coordinate system is obtained by inserting u3 = L3/2 into (A18):

p3 =


1
2 L3 sin(q1)− (L2 + q3) sin(q1)

(L2 + q3) cos(q1)− 1
2 L3 cos(q1)

L1 + q2
1

 (A22)

The potential energy of the third link is calculated as follows:

U3 = −m3gTp3, (A23)

according to which, we get

U3 = −m3
[

0 0 −g 0
]

1
2 L3 sin(q1)− (L2 + q3) sin(q1)

(L2 + q3) cos(q1)− 1
2 L3 cos(q1)

L1 + q2
1


= gm3(L1 + q2).

(A24)

Appendix C. Properties of the Dynamic Model of the Cylindrical Robot

Based on the inertia matrix defined by (94) and (95), using expression (4) with
q = [q1 q2 q3]

T and ξ = [ξ1 ξ2 ξ3]
T, the parameters a1, a2, c2 and d2 are determined

as follows.
On the left-hand side of expression (4), we have[

I1 + L2L3m3 +
1
3

(
L2

Am2 + L2
3m3

)
+ L3m3q3 + m3(L2 + q3)

2
]

ξ2
1

+ (m2 + m3)ξ
2
2 + m3ξ2

3

≥
(
− (L3m3 + 2L2m3)

2 − 4m3 p
4m3

)
ξ2

1 + (m2 + m3)ξ
2
2 + m3ξ2

3

≥ min

{(
− (L3m3 + 2L2m3)

2 − 4m3 p
4m3

)
, m2 + m3, m3

}(
ξ2

1 + ξ2
2 + ξ2

3

)
,

(A25)

where
p = I1 + L2L3m3 + L2

2m3 +
1
3
(L2

Am2 + L2
3m3). (A26)

from which it follows:

a1 = min

{(
− (L3m3 + 2L2m3)

2 − 4m3 p
4m3

)
, m2 + m3, m3

}
⇒

a1 = min
{

I1 +
1
12

L2
3m3 +

1
3

L2
Am2, m3

} (A27)

Furthermore, on the right-hand side of expression (4), we have[
I1 + L2L3m3 + L2

2m3 +
1
3

(
L2

Am2 + L2
3m3

)]
︸ ︷︷ ︸

p

ξ2
1

+
[
(L3m3 + 2L2m3)q3 + m3q2

3

]
ξ2

1 + (m2 + m3)ξ
2
2 + m3ξ2

3

≤
[

a2 + c2

√
q2

1 + q2
2 + q2

3 + d2(q2
1 + q2

2 + q2
3)

]
(ξ2

1 + ξ2
2 + ξ2

3).

(A28)
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We can write the above expression as follows:[
a2 − p + c2

√
q2

1 + q2
2 + q2

3 − (L3m3 + 2L2m3)q3 + d2(q2
1 + q2

2 + q2
3)−m3q2

3

]
ξ2

1

+ [a2 − (m2 + m3)]ξ
2
2 + [a2 −m3]ξ

2
3 ≥ 0,

(A29)

from which it follows:

a2 ≥ p, a2 ≥ m2 + m3, a2 ≥ m3, c2 ≥ L3m3 + 2L2m3, d2 ≥ m3, (A30)

that is, we have

a2 = min{p, m3}, c2 = L3m3 + 2L2m3, d2 = m3. (A31)

Based on the Coriolis vector (96), using expression (5), the parameters c1 and d1 are
determined as follows.

First, we will square the expression (5):

‖C(q, q̇)q̇‖2 ≤ (c1 + d1‖q‖)2‖q̇‖4. (A32)

On the left side of (A32) we have

‖C(q, q̇)q̇‖2 = [C(q, q̇)q̇]TC(q, q̇)q̇ = h2
(

q̇2
3 +

1
4

q̇2
1

)
q̇2

1, (A33)

where
h = L3m3 + 2L2m3 + 2m3q3. (A34)

Inserting (A33) into (A32) gives the following inequality:

h2
(

q̇2
3 +

1
4

q̇2
1

)
q̇2

1 ≤ b
(

q̇2
1 + q̇2

2 + q̇2
3

)2
, (A35)

where

b =

(
c1 + d1

√
q2

1 + q2
2 + q2

3

)2
. (A36)

Furthermore, from (A35), it follows(
b− 1

4
h2
)

q̇4
1 + 2

(
b− 1

2
h2
)

q̇2
1q̇2

3 + b
(

q̇4
2 + q̇4

3

)2
+ 2bq̇2

1q̇2
2 ≥ 0, (A37)

which will be satisfied if

b ≥ 1
4

h2,

c1 + d1

√
q2

1 + q2
2 + q2

3 ≥
√

2
2

[L3m3 + 2L2m3 + 2m3q3],
(A38)

so that, in the end, we get

c1 =

√
2

2
L3m3 +

√
2L2m3, d1 =

√
2m3. (A39)

The parameter kg2 from (6) is equal to zero, because the considered cylindrical robot
structure does not have translational degrees of freedom of motion at an angle that changes
in relation to the gravitational field. As the gravitational vector defined by (97) is not a
function of the controlled coordinates, it also follows from (6) that the parameter kg1 is
equal to zero.
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