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ABSTRACT Accurate patient registration is a critical issue in medical image-guided interventions. The
neurosurgical robotic system RObotic Neuro-NAvigation (RONNA) uses four retro-reflective spheres,
on a marker attached to the patient’s cranial bone, for patient registration in physical and image space.
In this paper, the algorithm for automatic localization of spherical fiducials in CT scans is presented
and clinically evaluated. The developed localization algorithm uses a unique approach, which combines
machine vision algorithms, biomedical image filtration methods, and mathematical estimation methods. The
performance of the localization algorithm was evaluated in comparison with four skilled human operators.
The measurements were based on twelve patient and eight lab phantom CT scans. The localization error
of the algorithm in comparison with the human readings was smaller by 49.29% according to the ground
truth estimation and by 45.91% according to the intra-modal estimation. Localization processing time was
reduced by 84.96%. Reliability in terms of successful localization of the fiducial marker was 100% for
20 different test samples containing a total of 116 spherical fiducials. Based on the tests carried out in
clinical conditions, the localization algorithm has demonstrated reliability with a high degree of accuracy and
short processing time. The developed algorithm provides fully automated and accurate machine vision-based
patient localization for the neurosurgical clinical application of the robotic system RONNA.

INDEX TERMS Accuracy, biomedical image processing, clinical trials, DICOM, medical robotics,
stereotaxy.

I. INTRODUCTION
Medical image-guided interventions (IGI) use information
acquired from preoperative imaging methods such as com-
puted tomography (CT) and magnetic resonance imag-
ing (MRI). Three-dimensional (3D) volume is reconstructed
from two-dimensional (2D) slices in visualization software
and is then used for preoperative planning, accurate surgi-
cal tool guidance, and surgery target visualization. These
methods have been introduced into clinical applications such
as neurosurgery, cardiac surgery, orthopaedic surgery, and
others [1]. For example, neuronavigation systems are com-
monly used in clinical practice to guide the neurosurgeon’s
instrument inside the cranial space or vertebral column.
A general sequence of steps in medical IGIs includes: a pre-
operative scan obtained from a CT or an MRI scanner;
preoperative visualization and intervention planning; patient-
to-image registration; surgical tool guidance and intra-
operative visualization. A surgeon uses the images acquired

in the preoperative phase for visualizing and planning of
surgery targets. In machine vision, the term ‘‘registration’’
implies the aligning of two images of the same environ-
ment or object, which can be taken from different viewpoints,
with different devices, and at different times [2]. A process
of registration in the context of medical image registration
and IGI implies the determination of a spatial transformation
between the image and patient coordinate systems [3], [4].
Surgery points determined in preoperative planning can be
targeted in the physical space only after the image space and
the physical space have been aligned. In general, fiducial
marker localization is the process of determining the exact
marker coordinates in the image space and the physical space.
Fiducial points located on the fiducial marker are used as
references in the registration process.

The proportion of misalignment in registration reduces the
accuracy of the surgical tool positioning to the planned target.
Steinmeier et al. [5] used two different medical neuronav-
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igation systems with a plexiglass phantom for testing the
influence of different factors on the tool positioning accuracy.
Their conclusion was that the accuracy of neuronavigation
systems greatly depends on the registration procedure. The
dependence of neuronavigation accuracy on different param-
eters such as slice thickness, the field of view, and type of
sequences for CT and MRI is measured in [6]. In that study,
CT procedures proved to be more accurate than MRI.

Another factor influencing the registration accuracy is the
type of marker used for the patient localization. Registration
methods in IGI with regard to the type of marker [7] are
extrinsic, intrinsic, and non-image based (calibrated coor-
dinate systems). Extrinsic methods rely on attaching exter-
nal objects to a patient prior to imaging. External objects
used in medical procedures are stereotactic frames, rigid
bone- attached markers, other externally attached frames, and
adhesive markers. Improved marker insertion methods and
benefits of bone-implanted markers have been demonstrated
in [8] and [9]. Advantages of extrinsic methods in terms of
accuracy in comparison with the intrinsic and calibration-
based methods are identified and evaluated in [10]. In the
study, seven different modes of patient registrations were
compared based on in vivo measurements including thirty
patients. Bone-attached markers provide the highest degree
of the application and the targeting accuracy when used
in IGI.

Methods used in IGI enable the practical use of robots in
situations where an accurate robot- guided surgical tool is
needed. From the robotics point of view, many problems in
neurosurgery can be classified as rigid body transformations
and hence the implementation of robot systems in neuro-
surgery is suitable. Growth trends in robotic neurosurgery
presented in [11] and [12] are sure to continue because
of the proven capabilities of robot systems such as accu-
racy, repeatability, tremor-less movement, and automation of
surgery procedures. The accuracy of surgical robot systems
is of the utmost importance when evaluating the plausibility
of implementation in different medical procedures. A higher
degree of the system accuracy enables us to implement it in
even more demanding medical procedures.

Our research group has developed a robotic system for neu-
rosurgical applications, RONNA. In the current development
stage, the prototype is included in a series of human clinical
applications in cooperation with a team of neurosurgeons
from the Clinical hospital Dubrava. RONNA is composed of
two industrial robot arms used for the navigation and precise
guidance of surgical tools. The main system components of
RONNA, the operating flow chart of the operating procedure,
and a novel visual calibration method are presented in [13]
and [14]. In the registration procedure, a bone-implanted
marker carrying four spherical fiducials must be localized
in both the CT scan and the robot coordinate system in
the physical space. The bone-implanted marker is used to
provide safe positioning. In our recent study [15], a low-
cost lightweight industrial robot arm guided with a medically
certified optical tracking system was navigated to positions

manually localized by the human operator from a CT scan.
The purpose of the study was to measure the main accuracy
categories of the system and to assess whether the optical
tracking system could improve the positioning accuracy of
the robot tool. The combined root mean square (RMS) error
of the human operator and the CT scanner was measured
at 0.462 mm for a calibration board.It was concluded that
one of the main factors contributing to the imaging and the
registration error was the manual localization of features in
the CT scan.

The main disadvantages of manual localization are: local-
ization duration, the possibility of human error, and insuf-
ficient accuracy. In the RONNA surgery procedure, manual
localization must be conducted after the patient with the
attached fiducial marker has been scanned and taken to the
operating room. The operator visually determines the centre
of every spherical fiducial in the exact order as the coordinate
system has been defined. Since the neurosurgeon can only
start with the target planning after the localization procedure,
it is crucial that this phase takes as little time as possible.
Consequently, this puts additional pressure on the human
operator.

In this paper, we present a novel algorithm for
accurate localization of fiducial markers in the image
space (CT scans). The drawbacks of manual localization are
overcome by means of machine vision algorithms. An extrin-
sic, bone-implanted fiducial marker with four retro-reflective
spherical fiducials is used for localization. Circular Hough
Transform (CHT)-based algorithm is used for finding all the
potential circles in two orthogonal image projections (axial
and sagittal). Due to the visually cluttered environment in
2D CT images, many false positive circles are detected.
An iterative clustering method is developed for circle group-
ing. Verified clusters are used for the calculation of sphere
centres. Euclidean distance filters are used in the clustering
phase and for the elimination of potential false positive
results. Two methods for estimating spherical fiducial centres
from the detected clusters are implemented: RANSACLinefit
and Spherefit. Robustness, accuracy, reliability, and process-
ing time of the algorithm for the automated localization of
fiducial markers are verified in the conducted clinical trials.
The degrees of accuracy of the automated algorithm and
the manual localization conducted by trained operators are
compared with ground truth and intra-modal measurements.

II. RELATED WORK
Methods for the localization of fiducials in volumetric images
can bemanual, semi-automatic, and automatic. Manual local-
ization is a general approach that involves human operators
and that is used with different fiducial types and imaging
technologies. Semi-automatic and automatic localization
algorithms have been introduced to overcome previously
stated drawbacks ofmanual localization and to improve local-
ization and registration accuracy results. A priori knowledge
such as physical features and intensity values of the marker
are often used for the localization of fiducial points.

12266 VOLUME 5, 2017



F. Šuligoj et al.: Automated Marker Localization in the Planning Phase of Robotic Neurosurgery

An example of semi-automatic fiducial localization is
presented in [16]. First, the operator designates the rough
location of the fiducials and then the algorithm localizes
the fiducial points accurately using the intensity-based reg-
istration with mutual information similarity measure. As the
authors point out, the advantage of such an approach is that
it can be used for different types of fiducials and with dif-
ferent imaging modalities. Gerber et al. [17] have developed
a registration system for robotic microsurgery that localises
the fiducial screw in both the physical and the image space.
Both methods use the semi-automatic approach for the coarse
localization of the screw. Fiducial localization uses cropped
sub-volumes of the image. Sub-volumes are selected by the
operator and fitted to the 3D surface model of the screw. The
robot uses a force-torque sensor for precise localization of
the screw head in the physical space.

An automatic knowledge-based technique for localizing
the centroids of cylindrical markers externally attached to
the patient’s head in the CT and the MR image volumes
is presented in [18]. Machine vision algorithms are used
to find the markers whose voxel intensities are higher than
those of the surrounding space. Similarly to our research,
Yaniv [19], [20] uses externally placed spherical fiducials
for localization. When using a c-arm-based cone-beam
CT (CBCT) instead of the localization in volumetric
images, the developed method is able to provide coor-
dinates of the fiducials from the projection images. The
related research [21] proposes a 3-D surface modelling
approach for the localization of spherical radio-opaque
markers in CT scans. In that case, the optimized algo-
rithm parameters deliver sub-millimeter localization accu-
racy with different CT resolutions. Performance of a block
matching-based automatic registration algorithm is tested by
Isambert et al. [22]. The accuracy of the process was mea-
sured for two different phantoms on CT, MR and positron
emission tomography (PET) images. The block matching-
based algorithm yielded the below voxel accuracy. In a pilot
study [23], the patient’s teeth were successfully used in
marker-less registration. The system displayed high accuracy
in the real-time 3D image matching of stereo vision data and
integral videography image derived from a CT scan.

Fiducial localization in volumetric images is an essen-
tial requirement in robot-assisted neurosurgical procedures.
Non-invasive markers are preferred for their simpler mount-
ing procedure but they show lower accuracy. For example,
the stereotactic robot system Rosa is used in intracranial
procedures [24]. Lefranc et al. [25] assess the impact of
imaging modality, registration method, and intraoperative
flat-panel computed tomography on the application accu-
racy of the ROSA stereotactic robot. Their measurements
show that the frame-based stereotactic registration in robotic
surgery is more accurate than the frameless registration.
In vitro testing of the Neuromate neurosurgical robot showed
similar results regarding the impact of registration method
on the application accuracy. In vitro testing [26] showed the
application accuracy of the frame-based localization system

to be 0.86 ± 0.32 mm and 1.95 ± 0.44 mm of the frameless
localization system. In a more recent study [27], in vitro and
in vivo tests carried out with the Neuromate’s frame-based
application showed improved accuracy.

III. MATERIALS AND METHODS
For testing the reliability and accuracy of the developed local-
ization algorithm, we used: a bone-attached fiducial marker
developed for the RONNA system, a Siemens Sensation
16 CT scanner, and the Medinria medical imaging software.
A FerrantiMerlin 750 coordinatemeasuringmachine (CMM)
was used for ground truth (GT) measurements of the test
phantom. The declared expanded measuring uncertainty of
the CMM is equal to 4+ 4× L µm, for L being the distance
measured in metres. The testing procedure was conducted
as a part of the standard clinical procedure for stereotactic
neurosurgery where the marker was fixed on the patient and
on the test phantom. An aluminium marker with four retro-
reflective spheres attached to a patient and the test phantom
is shown in Fig. 1 and Fig. 2.

FIGURE 1. Patient with a bone-attached fiducial marker.

FIGURE 2. Test phantoms with an attached fiducial marker.

Retro-reflective spheres, i.e. spherical fiducials (fiducial
points) are localized both in the physical and the image space.
Infrared cameras are used for robot localization in the physi-
cal space and the developed automatic localization algorithm
is used for localization in the image space. Spatial positioning
of the fiducial spheres on the fiducial marker gives a unique
distance between any two spheres. The first test phantom
shown in Fig. 2 (left) was made of several (methyl methacry-

VOLUME 5, 2017 12267



F. Šuligoj et al.: Automated Marker Localization in the Planning Phase of Robotic Neurosurgery

late) oval plates attached to each other. The volume and the
shape of the test phantom aremade to resemble a human head.

The second test phantom shown if Fig.2 (right) was
equippedwith the fiducial marker and additional twelve retro-
reflective spheres that were used as target points. The fiducial
marker was placed on the test phantoms in a similar way to
the fiducial marker on the patient head.

CT parameters used for testing were: bone kernel
H70h (sharp), slice thickness 0.70 mm, and image size of
every axial CT slice 512 × 512 pixels, which, with vari-
able reconstruction diameter, gave the axial voxel size range
0.45 × 0.45 mm to 0.90 × 0.90 mm. The Medinria imaging
software was used for the visualization and manual localiza-
tion of spherical fiducials and the surgery target planning.
In our experiments, manual localization is conducted by
skilled operators and compared with the localization algo-
rithm using the methodology described below.

The transformation that maps the rigid body points
between the image space and the physical space in real
applications is considered to be imperfect and should contain
certain errors. To measure the accuracy of the proposed local-
ization algorithm we applied the theory of the medical image
registration error introduced by Maurer, Jr., et al. [28] and
Fitzpatrick et al. [29]. Fiducial registration error (FRE) is an
error in aligning the corresponding fiducials after registration.
FRE is defined as the root mean square distance between two
sets of n matching fiducials after registration:

FRE2
=

∑n
j=1

∥∥qj − T (pj)∥∥2
n

, (1)

with qj being the position of a single fiducial in the image
space, and pj being the exact position of a fiducial in the
physical space. T is the rigid body transformation between
the two sets. Fiducial localization error (FLE) is defined as
the Euclidean distance between the true and the measured
distance of the fiducial location. According to the aforemen-
tioned theory and a more recent study [30], if the ground truth
measurement is available, FLE can be estimated based of
N number of fiducials and FRE as:

FLE2
GT =

N
N − 2

FRE2 (2)

Intra-modal FLE estimation is based on two or more different
CT scans of the same set of fiducials and it can be calculated
as:

FLE2
IMAGE =

1
2

N
N − 2

FRE2, (3)

for two different CT scans, or as:

FLE2
IMAGE =

N
2M (N − 2)

∑M

m=1
FRE2

m, (4)

for more than two scans.M is the number of different registra-
tions and FREm is the FRE of the m-th registration. In clinical
application, the positioning accuracy of the targeted points is
the most significant measure. Target registration error (TRE)
is defined as the distance between the planned image target

location and the physical target location after registration.
Targeted points in neurosurgery are inside the brain and usu-
ally cannot be measured, so TRE can be estimated as the error
in a given position r that may be caused by FLE. Assuming
an isotropic error distribution of FLE, TRE is equal to:

TRE2 (r) ≈
FLE2

N

1+

∑3
k=1

d2k
f 2k

3

 , (5)

with N being the number of fiducials, dk the minimal distance
of r from the k-th principal axis, and fk the RMS distance
of the fiducials from the k-th axis. It should be noted that
even though equations (2-4) and (5) are found to be a reliable
estimates of FLE and TRE [31], there are cases in which
FRE does not approach the FLE as the number of fiducials
increases and TRE from (5) is uncorrelated with the true
TRE [32]. In [33] it is shown that for a single clinical case
FRE and TRE are uncorrelated but equations (2-4) can be
used to estimate mean value of FLE from FRE based onmany
measurements. From FLE, TRE can be estimated for that
specific fiducial configuration and target position. To achieve
reliable results we conducted a number of measurements
with the same fiducial marker configuration found in both
test phantoms and we inserted target points in the second
test phantom for the purpose of evaluating the measure-
ment results and applicability of the selected FLE estimation
methods.

IV. AUTOMATIC LOCALIZATION IN CT IMAGES
Hypothetical planes that transect the human body in
order to locate points of interest are axial (horizontal),
sagittal (lateral), and coronal (frontal) plane. Reconstructed
CT 3D volume is composed of a number of 2D slices from
the axial plane. The 3D space between every two slices is the
estimation of the intensity of the two original slices. Assum-
ing that the highest degree of accuracy of the scan is found
in the CT image slice itself, we first search for the potential
spherical fiducials in the 2D axial slices. To confirm the found
spheres and to calculate their centres, we additionally use the
reconstructed sagittal 2D image slices. The main steps of the
localization algorithm are shown in Fig. 3.

A. INTENSITY-BASED IMAGE FILTRATION
The pre-processing step in the automatic localization algo-
rithm includes the intensity-based filtration of voxels. The
fiducial marker consists of an X-shaped aluminium base with
four steel pins (NDI - Northern Digital Inc., Ontario Canada).
The outer geometry of steel pins fits the inner part of each of
the four retro-reflective spherical fiducials. The tip of each
steel pin is located around the geometrical centre of each
spherical fiducial. The spherical fiducial is made of a homo-
geneous polymer and coated with a thin layer of fine-grained
retro-reflective pearls. Both materials have the Hounsfield
value similar to that of certain parts of the human anatomy
and cannot be filtered by their intensity values. The radio-
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FIGURE 3. Automated localization algorithm flowchart.

density of the steel pins is very high and their intensity on the
CT scans is saturated to +3071. In our CT scans, each voxel
is stored as a 12-bit value in the range [−1024, 3071]. Binary
threshold with a value of 3070 is used to convert each slice
to a binary representation where all voxel intensities higher
than 3070 are set to 1 and all other voxels are set to 0. Two
binary morphological operators are further applied to each
binarized slice representation. First, morphological closing
(dilation followed by erosion) is performed, followed by the
morphological shrink operator which removes pixels so that
objects without holes shrink to a point while preserving the
Euler number. After these steps, only slices where four steel
pins and the titanium bone screw are located are segmented
in such a way that they contain voxels with non-zero values.
We generate a cubic (3D) ROI mask centred on all non-zero
voxels. The side length of each ROI is equal to a 30% enlarged
diameter of a spherical fiducial. The 30% enlargement is used
as a safety factor so that each ROI is geometrically guaranteed
to contain one whole spherical fiducial. In some cases, false
positive results, i.e. false positive ROIs, are identified in the
area of the patient’s teeth because of dental fillings. As they
are eliminated with the clustering algorithm, the only effect
of the false positive results is the prolongation of the total
computational time needed to search all the generated ROIs
for circular objects, i.e. cross sections of spherical fiducials.

B. CIRCLE DETECTION
Regardless of the orientation, a cross section of any sphere is a
circle. Based on that fact, we use a circle detection algorithm
in the filtered axial and sagittal images to find all potential
circles. TheCHT-based algorithmwas used for finding circles
in images because of its robustness in the presence of noise,
occlusion, and varying intensity [34]. Each circle in an image
is found based on the known parameters of the retro-reflective
spheres: radius span (r), algorithm threshold (Tr), and circle

TABLE 1. Algorithm for Circle detection.

polarity (Pl). The radius span ranges from 50% to 120% of
the nominal sphere radius. The circle polarity is set to light
since the background of the CT images is dark and spheres
are perceived as white.

C = f (r,Tr,Pl) (6)

Based on the set system parameters used in (6), if a circle is
valid, a non-zero binary value is assigned accordingly.

Given the pseudocode in Table 1, the Cpx, Cpy, Cpsl
denote the horizontal position, the vertical position, and the
slice number, respectively, and Cpr denotes the radius of
the Cp circle. The transformation from the image to the
Cartesian coordinates (metric values) is carried out based on
the CT scan metadata.

C. CIRCLE CLUSTERING AND SPHERE VERIFICATION
Potential spheres in the Cartesian space are segmented using
the developed iterative clustering method. Clusters of circles
are located from the circle centre axial (CCA) and circle
centre sagittal (CCS) matrices. Low threshold setting used in
the circle detection algorithm leads to the retrieval of false
positive results, i.e. circles that are not part of spherical fidu-
cials. False positive detections in regions around the marker
frame and the patient’s teeth are handled with the Euclidian
distance filtering and bidirectional sphere verification. The
first circles in the CCA and in the CCS matrix are designated
as the first cluster. Euclidian distance filtering is used in both
the 3D space and the 2D slice space to determine whether the
next circle centre is part of any existing cluster. If not, a circle
is labelled as the origin of a new cluster. This procedure is
repeated for every circle centre. After all the circles have been
processed, every cluster centroid CT i is determined from
the coordinates of all the n numbers of its members in the
i-th cluster:

CT i =

[∑n
j=1 xj
n

,

∑n
j=1 yj
n

,

∑n
j=1 zj
n

]
(7)

The clustering process described previously is repeated in two
iterations to ensure that most of the circles are designated to
their correct clusters. In the two iterations, the centroids of
the real clusters converge to the centre of their sphere and
the false circle readings are excluded from those clusters.
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FIGURE 4. Visualization of the Linefit data.

Finally, spheres are verified with bidirectional cluster prox-
imity and cluster size. The minimal cluster size is set to three
circles. Bidirectional cluster proximity denotes the validation
of minimal predetermined distance between any two cluster
centroids CT i derived from the CCA and CCS matrices.
Sphere centres are estimated with two different methods
conveniently called Linefit and Spherefit:
1) RANSAC LINEFIT
For the estimation of sphere centre, the Random Sample
Consensus (RANSAC) method [35] was implemented to fit
the verified sphere cluster points from the axial and sagittal
planes to their respective lines L1 and L2. Sphere cluster
points are all the circle centres in the cluster that are used
for the RANSAC line fitting. The advantage of RANSAC
over other fitting methods such as the least squares fitting
technique is that only the inlier points are used for the fitting
of data. If a certain point in a data set differs, it is treated as
an outlier. Minimal distance d between two estimated lines
L1 and L2 from the axial and sagittal clusters is calculated
from two closest points P and Q:

d (L1,L2)=P∈L1minQ∈L2d(P,Q) (8)

The midpoint of the PQ line is the calculated sphere centre
shown in Fig. 4.

2) SPHEREFIT
The second method used for the estimation of sphere cen-
tres is Spherefit. As shown in [36], a set of points is
used for fitting algebraic surfaces using the direct least
square method. Since this method is dimension-independent,
it is suitable for sphere fitting. The data associated with
the verified spheres contains circle centres with radii
and all the detected circles that should lie on a spheri-
cal surface as shown in Fig. 5. Four random points Pij
(for j=1, 2, 3, 4) are generated from every circle Ci that is
a part of the verified sphere:

Ci[xi, yi, zi, ri, rand(αij)]→ Pij[xij, yij, zij] (9)

EveryPij is used as a point set for the calculation of the sphere
centre.

The difference between the Spherefit and the RANSAC
Linefit is that in the former all the data is used in the direct
least square method for sphere centre calculation.

FIGURE 5. Visualization of the Spherefit data.

D. MARKER VERIFICATION
In the final step of the procedure, the distances between all
spherical fiducials are compared to the known geometry of
the fiducial marker. If the Euclidean distances between the
calculated sphere centres are in the range ±e (allowed error)
of the known nominal marker distances, the marker position
is validated.

FIGURE 6. Visualization of a localized fiducial marker and a fiducial
sphere.

Four verified fiducial points on the marker are automati-
cally saved as an initial version of the preoperative plan. The
saved plan is uploaded to the visualization software and the
localized marker is shown to the operator or neurosurgeon.
Visualization of the fiducial maker in the 3D and the sagittal
view of one of the localized spherical fiducials are shown
in Fig. 6.

V. CLINICAL TRIALS AND MEASUREMENTS
The purpose of measurements is to compare the accuracy,
reliability, and speed of the human operators and the devel-
oped automatic localization algorithm. For the experiment,
we acquired CT images of twelve patients with mounted fidu-
cial markers and eight CT images of the two test phantoms
shown in Fig. 2. Four scans were taken of the patients with
the bone-attached fiducial marker that was mounted for the
purpose of clinical testing of the complete RONNA system.
All the other patients were scanned with the fiducial marker
that was adhesively attached to their skin. Fig. 7 shows the
robotic localization procedure of the fiducial marker during
clinical trials.

Intra-modal and GT localization and registration accura-
cies were derived from five CT scans of the first test phantom
with the same fiducial marker. The second test phantom was
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FIGURE 7. Robot localization of the patient.

TABLE 2. Phantom ground truth fle estimation.

scanned three times with a CT scanner. Scans of the test
phantoms were taken on the same scanner with a different
orientation for each scan. The GT was obtained by measuring
the test phantoms on the CMM in the Croatian national labo-
ratory for precise measurements of length. For comparison,
the fiducial marker was localized in the image space by
four skilled human operators and two previously described
automated methods. FRE and FLEGT were calculated
using (1) and (2).

The mean FLEGT for all human operators was 0.3189 mm,
for Linefit 0.1685 mm, and for Spherefit 0.1617 mm,
as shown in Table 2. Both the Linefit and the Spherefit centre
estimation method showed smaller FLEs than any human
operator individually in all CT scans. The lowest FLE values
were obtained with the Spherefit method.

Intra-modal approximation of the FLEIMAGE is calculated
using (4) for m=1÷10 registrations derived from the same set
of 5 phantom CT scans. The results are given in Table 3. The
intra-modal approximation confirmed the GT results except
for the estimated error values which were higher. FLEIMAGE
for human operators was 0.4698 mm, for Linefit 0.2604 mm,
and for Spherefit 0.2541 mm.

TABLE 3. Phantom intra-modal fle estimation.

From the patient CT scans, an additional intra-modal
FLEIMAGE approximation was calculated for a total of M=66
registrations. Patient scans were made with two almost iden-
tical fiducial markers and the fiducial spheres were changed
after every operation. Since the identical fiducial set was not
used due to interchangeable markers and spheres, we could
not reliably estimate the intra-modal FLE. Hence, the calcu-
lated FLEIMAGE from the patient CT scans was used only as
confirmation of the results measured with the test phantom.
The calculated FLEIMAGE from the patient scans showed the
same ranking and confirmed the measurements with the test
phantom. Considering the calculated test phantom FLEGT
and the patient and the test phantom FLEIMAGE, the Spherefit
method has provided the best accuracy.

The second test phantom was used to measure the com-
bined TRE and FLE and assess which FLE estimation type is
the more appropriate measure for TRE estimation in our case.
The fiducial spheres on the fiducial marker and target points
were localised with the CMM and the localisation algorithm.
After all the point coordinates were transformed into the coor-
dinate system of the fiducial marker, the positioning error was
calculated as a Euclidean distance between matching points.
It should be noted that TRE estimation considers ideal target
points which is not the case when we are comparing both
fiducial points and target points localised in the CMM and
the CT scans. Hence, because the target points are localised
with the localization algorithm the TRE cannot be measured
directly and the magnitude of the mean absolute error should
be comparable with the sum of the TRE from fiducial marker
registration and the localization error from the individual
target points. Coordinates of 48 points localised from three
CT scans were compared with CMM measurements. Mean
absolute positioning error was 0.5431 mm for Linefit and
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FIGURE 8. Spherefit TRE depending on different point P coordinates.

FIGURE 9. TREs in localization committed by operators and algorithms
localizations for FLEIMAGE.

0.5769 mm for Spherefit. RMS error was 0.4191 mm for
Linefit and 0.4551 mm for Spherefit. Similarly to the results
from the first test phantom, the second test phantom’s mean
FLEGT was 0.1852 mm for Linefit and 0.1545 mm for Spher-
efit. FLEIMAGE was 0.3406 mm for Linefit and 0.2738 mm
for Spherefit. TRE estimation is calculated using (5) as a
function of the second test phantom’s FLEGT and FLEIMAGE,
the fiducial marker configuration, and all the target points in
the coordinate system of the fiducialmarker. Average TRE for
all target points is equal to 0.1841 mm based on 0.1545 mm
Spherefit FLEGT and 0.3263 mm based on 0.2738 mm Spher-
efit FLEIMAGE. Target points average distance from the coor-
dinate system origin is equal to 108.2037 mm. From the
measured and the calculated values, it is observed that the
values for FLEIMAGE and the resulting TRE demonstrate
the sum of 0.6001 mm which is a good match with the
mean absolute positioning error of 0.5769 mm. Based on
previous observation it was concluded that intra-modal FLE
approximation is a more reliable measure for our case.

The spatial arrangement of the fiducial points on the
marker causes the error estimation to slightly differ depend-
ing on the location of the target point in the marker coor-
dinate system. Fig. 8 shows the TRE estimated from the
first phantom’s Spherefit FLEIMAGE for the target located in
point P [x, y, z] of themarker coordinate system. If the estima-

tion of TRE is considered for a point P with the same distance
from all the principal axes, the registration accuracy obtained
with the localization algorithm is improved by 45.91% in
comparison with the average human operator. Fig. 9 shows
TREs in localization committed by operators and algorithms
localizations.

The reliability and processing time of the localization algo-
rithm are confirmed from the CT scans of twelve different
patients and eight CT scans of the two test phantoms. All
116 fiducial spheres on the patient and phantom scans were
successfully located and the fiducial marker configuration
was validated in 100% of the cases. The average localization
time of the human operator was 191.5 sec. The average
localization time of the localization algorithm running on the
i7-6700HQ CPU at 2.60GHz with 12GB RAM was 28.8 sec.
In comparison with human operators, the localization algo-
rithm reduces the time of the preoperative phase of marker
localization by 84.96 %.

VI. CONCLUSION AND FUTURE WORK
The developed localization algorithm uses CT scan data for
localizing spherical fiducials. ARONNAmarker is composed
of four spherical fiducials which are used for calculating
the reference position of a patient in relation to planned
surgery targets. Based on the measurements done in clinical
conditions on the patients and test phantoms, the localization
algorithm has shown a considerably higher degree of accu-
racy and higher speed in comparison with human operators.
Reliability in terms of successful localization of the fiducial
marker has been 100% in the twenty tested cases. The use
of the localization algorithm reduces the imaging and the
registration error significantly. In manual localization, oper-
ators have to visually determine the centre of every spherical
fiducial in the exact order as the coordinate system of the
marker has been defined. After the implementation of the
automatic localization algorithm, the human operators and
medical personnel reported less stress during the preoperative
planning phase of the surgery. In the cases when the patient’s
CT scan is taken just before the surgical procedure, the overall
duration of the surgery is reduced by the average of 162.7 sec.

In future work, we plan to develop an interconnected auto-
matic system for the localization and registration of freely
distributed non-invasive fiducial markers in the image space
and the physical space. Non-invasive skin-attached markers
have been reported to have a lower degree of registration
accuracy than rigid bone-attached markers but, when used in
a greater number, their accuracy improves [5]. The close loop
registration system should include novel methods for image
processing and marker localization in the image space, for
global localization of a marker in the physical space, and for
fine localization of the patient in the robot coordinate system.
The system could be tested by means of a test phantom with
a large number of fiducial points which would be used for
measuring TRE. The preoperative surgery procedure could be
considerably simplified if it did not include skull drilling and
screw implantation. Based on the proposed system accuracy,
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it would be decided in which procedures one can use the
system.
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