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Abstract: The powertrain efficiency for plug-in hybrid electric vehicles (PHEV) can be maximized
by gradually discharging the battery in a blended regime, where the engine is regularly used all
over the driving cycle. A key step in designing an optimal PHEV control strategy for the blended
regime corresponds to synthesis of battery state-of-charge (SoC) reference trajectory. The paper
first demonstrates that the optimal SoC trajectory can significantly differ from a typical linear-like
shape in the case of varying road grade and presence of low-emission zones (LEZ). Next, dynamic
programming (DP)-based optimizations of PHEV control variables are conducted for the purpose of
extracting and analyzing optimal SoC trajectory patterns. It is shown that the optimality is closely
related to the minimization of SoC trajectory length with respect to travelled distance. This finding is
used for SoC reference trajectory synthesis in the presence of LEZ and varying road grades. Finally,
the overall PHEV control strategy is applied to a PHEV-type city bus and verified by means of
computer simulations in comparison with the DP optimization benchmark.

Keywords: plug-in hybrid electric vehicle; control; optimization; dynamic programming; battery
state-of-charge trajectory; low-emission zones; variable road grade

1. Introduction

Plug-in hybrid electric vehicles (PHEVs) offer the functionality of pure electric driving,
while successfully tackling the major obstacles related to a wide adoption of battery electric vehicles
(BEVs) such as high price, low range, and long charging duration [1]. The PHEV powertrain typically
operates in a charge depleting (CD) regime until the battery is discharged to a predefined lower limit
value, when the charge sustaining (CS) regime is activated to sustain the battery state-of-charge (SoC)
and to extend the driving range. When the driving distance is known in advance, the PHEV battery
could be discharged more gradually by regularly using the engine in the so-called blended mode,
in order to fully exploit the PHEV powertrain efficiency potential [2]. In this case, the PHEV control
strategy becomes more complex and it requires optimal design of battery SoC reference trajectory to
be commanded to an explicit or implicit SoC controller. While it is well-known that the optimal SoC
trajectory vs. travelled distance is nearly linear for the basic, certification driving cycles, it is clear that
it can substantially differ from the linear profile when the low-emission zones (LEZ) [3,4] and varying
road grade are considered [5].

Several previous publications have dealt with analyzing optimal battery energy usage throughout
the driving cycle under different driving conditions, including varying road grade and LEZ
presence [6]. In [7], an energy management strategy relying on driving condition preview is proposed,
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which generates an explicit trip-specific battery SoC reference based on predicted driving patterns
along a trip. An adaptive energy management strategy based on the Pontryagin minimum principle is
proposed in [5], which uses predefined maps to adapt control strategy parameters based on driving
cycle conditions. An SoC reference generator dealing with varying road grade is presented in [8],
which employs a preview of the driving cycle to crudely approximate SoC recharging rates during
negative road grades, while using quadratic programming to minimize SoC reference rates during
positive road grades to guarantee the final SoC constraint. Reference [9] presents a predefined,
heuristically determined rules to modify SoC reference trajectory during steep hill climbing based on
velocity and road grade preview. In [3], the CD/CS operation-like SoC reference trajectory generation
is proposed for driving cycles including LEZs, where the battery charge is sustained in hybrid driving
outside of LEZ, while using pure electric driving within LEZ. Model predictive control (MPC)-based
energy management strategies are becoming a research topic of many recent papers, where on-line
optimizations of PHEV control variables are performed on a receding horizon [10–12]. A Monte Carlo
approach is applied in [13] to reconstruct the optimal SoC reference trajectory over an MPC strategy
prediction horizon. In [12] and [14], SoC reference is provided to MPC control strategy in the form
of terminal condition at the end of MPC optimization time horizon, which is calculated based on
real-time traffic flow data in [14], and based on prediction of travelled distance within the following
optimization time horizon in [12].

This paper presents a practical method of optimal SoC reference trajectory synthesis for a general
case of driving cycles (including the presence of LEZs and varying road grade), which can be applied
to any control strategy that requires explicit SoC reference. For verification purposes, the synthesized
SoC reference is incorporated into the previously developed PHEV control strategy based on a
rule-based controller extended with an equivalent consumption minimization strategy (ECMS) [15].
First, dynamic programming (DP)-based optimizations of control trajectories are conducted for the
purpose of obtaining globally optimal SoC trajectories for the given set of driving cycles, and extracting
and analyzing their patterns for specific operating conditions. It is shown that the near optimal SoC
trajectory can be synthesized as a piecewise linear function of traveled distance, thus leading to a
straightforward and computationally efficient synthesis targeted to real-time applications. Finally,
the overall control strategy, applied to a PHEV-type city bus, is verified by means of computer
simulations, and the results are compared with the DP optimization benchmark.

The main contributions of this paper include: (i) extracting the optimal battery SoC patterns
from DP optimization results for different LEZ and varying road grade scenarios, and (ii) proposing a
practical, nearly optimal method of optimal SoC reference trajectory synthesis dealing with LEZ and
varying road slope scenarios.

The remaining part of the paper is organized as follows. A mathematical model of the PHEV
powertrain is described in Section 2. The results of DP optimization of PHEV control variables are
presented in Section 3 and the optimal patterns of SoC trajectory are analyzed. The overall PHEV
powertrain control strategy, including the SoC reference trajectory synthesis, is described in Section 4.
Simulation results and corresponding analyses are presented in Section 5. Concluding remarks are
given in Section 6.

2. Mathematical Model of PHEV Powertrain

The PHEV powertrain configuration considered is of the P2 parallel type, and it includes electric
machine operating as motor or generator (M/G machine), internal combustion engine, electrochemical
battery, and automated manual transmission with 12 gear ratios (Figure 1). The engine is connected
with the rest of powertrain via a clutch, which is disengaged when the engine is switched off in pure
electric driving. The PHEV powertrain is modeled in a backward-looking manner [1], resulting in a
computationally efficient quasi-static model with only the battery SoC considered as a state variable.
The powertrain model elements are parameterized for the case of Volvo 7900 Electric Hybrid city
bus [16].
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The relations of rotational speeds and torques of different powertrain components are modeled by
a set of kinematic equations. The engine rotational speed ωe and M/G machine rotational speed ωMG
are related to the vehicle velocity vv and the wheel rotational speed ωw:

ωe = ωMG = iohωw = ioh
vv

rw
, (1)

where io represents the final drive ratio, h is the transmission gear ratio, and rw is the tire effective
radius. The engine torque τe and M/G machine torque τMG are combined to deliver the demanded
torque at wheels, τw, and cover the torque/power losses:

τe + τMG =
τcd
ioh

=

τw
ηtr(τw)

+
P0(ωw)
ωw

ioh
, (2)

where τcd is the transmission output torque, while ηtr(τw) and P0(ωw) are transmission efficiency and
idle power loss maps shown in Figure 1b,c, respectively. These maps have been reconstructed from the
data/maps given in [17] and [18] by properly scaling the data with respect to maximum speed and
power ratios of the vehicles from [17,18] and the particular PHEV-type bus. The total wheel torque τw

is calculated as [15]:

τw = rw


(
Mv + mpass

)dvv

dt
+ R0

(
Mv + mpass

)
g cos(δr)︸                         ︷︷                         ︸

Froll

+
(
Mv + mpass

)
g sin(δr)︸                     ︷︷                     ︸

Fgrade

+ ρairA f Cdv2
v︸       ︷︷       ︸

Faero

, (3)

where Mv and mpass represent the empty bus mass and the total mass of passengers, respectively; Froll,
Fgrade, Faero are rolling, road grade-related and aerodynamic resistances, respectively, where R0 is the
rolling resistance coefficient, ρair is the air density, A f is the bus frontal surface, Cd is the aerodynamical
drag coefficient, δr is the road grade, and g is the gravity acceleration (see Appendix A for numerical
values of these parameters). The overall power demand Pd including the powertrain losses is then
calculated as

Pd = ωwτcd =
ωwτw

ηtr(τw)
+ P0(ωw). (4)
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Figure 1. (a) Functional scheme of considered parallel PHEV powertrain, (b) idling power loss map
and (c) torque/power transfer efficiency map.

The engine specific fuel consumption Aek and M/G machine efficiency ηMG are modeled by maps
in dependence of the corresponding rotational speeds and torques (Figure 2). These maps are adopted
from the respective maps published in [19] and [20] for similar engine and M/G machine and scaled
(based on the Willans line method [21]) with respect to maximum speed and power ratios of the
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vehicles from [19,20] and the particular PHEV-type bus. The fuel mass flow is calculated from the
specific fuel consumption map from Figure 2a (with the unit of Aek converted to g/Ws) by using the
following expression

.
m f = Aek(τe,ωe)τeωe. (5)Energies 2019, 12, x FOR PEER REVIEW 4 of 22 
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Figure 2. (a) Engine specific fuel consumption map and (b) M/G machine efficiency map, including
corresponding maximum torque lines (blue lines).

The battery is modeled as a charge storage based on the equivalent electric circuit (Figure 3a),
where the open-circuit voltage Uoc and internal resistance R are set to be dependent on the battery SoC
(Figure 3b). The dependences Uoc(SoC) and R(SoC) have been reconstructed from SAFT Ion’Drive
630 V battery system datasheet and available data from [22]. The model is represented by the following
state equation [23,24]:

.
SoC =

√
U2

oc(SoC) − 4R(SoC)Pbatt −Uoc(SoC)

2QmaxR(SoC)
, (6)

where Qmax represents the battery total charge capacity with SoC being defined as SoC = Q/Qmax,
while Pbatt represents the battery power which is calculated from the M/G machine power (PMG) and
efficiency (ηMG, see Figure 2b):

Pbatt = ηk
MGτMGωMG︸    ︷︷    ︸

PMG

. (7)

The exponent k in Equation (7) depends on the M/G machine operating mode: k = −1 for motoring
(PMG > 0), and k = 1 for regenerative braking (PMG < 0).
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3. Optimization of PHEV Control Variables

This section deals with dynamic programming-based off-line optimization of PHEV powertrain
control variables, which is aimed at revealing optimal powertrain behaviors under different driving
conditions, and thus providing guidelines for synthesis of optimal SoC reference trajectory and setting
a globally optimal benchmark for verification of on-line control strategy.
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3.1. Considered Driving Cycles and Scenarios

Two driving cycles are used in control variable optimizations and also simulations (Figure 4):
(i) realistic city-bus driving cycle recorded in the city of Dubrovnik (designated as DUB cycle), which
includes vehicle speed, road grade, and passengers mass time profiles [25]; and (ii) Heavy Duty Urban
Dynamometer Driving Schedule driving cycle (HDUDDS), which only includes vehicle speed time
profile while assuming zero road grade (δr = 0) and empty bus (mpass = 0). Finally, these driving
cycles are replicated several times and concatenated (designated as jxDUB and jxHDUDDS, where j is
the number of cycles concatenated), in order to enable discharging of the battery under the blended
operating regime.
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In order to study the impact of low-emission zones (LEZ) on the optimal PHEV powertrain
operation, two hypothetical LEZ sections are introduced in each of the repetitive driving cycles (3xDUB
and 3xHDUDDS). The created LEZs are illustrated in Figure 5, where the variable KLEZ takes non-zero
values (KLEZ > 0) for LEZ-related road segments, while taking zero value, otherwise.
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Apart from LEZ impact on the optimal powertrain operation, the impact of varying road grade is
also considered and analyzed. For this purpose, DUB driving cycle is analyzed both for the case of
recorded road grade (Figure 4b) and zero road grade. Additionally, three synthetic road grade profiles
of different spatial frequencies are generated as

δr = δr,max sin
(

kπ
s f

s
)
, (8)

where δr,max represents the road grade amplitude (here set to 2◦), k is the scaling factor determining the
spatial frequency, and s f is the total travelled distance (see Figure 6a). These road grade profiles are
combined with 4xDUB driving cycle. Figure 6b shows the corresponding altitude profiles. Here, the
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case of low-frequency road grade, representing long hill climbing followed by long hill descending,
can have particularly significant impact on PHEV powertrain operation. Namely, for the optimal
operation, the PHEV should apparently discharge the battery in the climbing phase, in order to prepare
it for charging during regenerative braking in the descending phase, which would require some kind
of predictive control.Energies 2019, 12, x FOR PEER REVIEW 6 of 22 
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driving cycle, while ℎ is a control variable to be optimized. The engine torque 𝜏  is chosen as the 
second control variable to be optimized, where the M/G machine torque 𝜏  is then determined by 
Equation (2) to satisfy the demanded torque 𝜏 . The state, control, and external variables can be 
written in the vector form as follows: 𝑥 = 𝑆𝑜𝐶, 𝐮 = 𝜏  ℎ , 𝐯 = 𝜏  𝜔 . (9) 
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3.2. Optimal Problem Formulation

Equation (1) points out that the engine speedωe and M/G machine speedωMG are both determined
by the vehicle velocity vv via the transmission gear ratio h, where vv is defined by the driving cycle,
while h is a control variable to be optimized. The engine torque τe is chosen as the second control
variable to be optimized, where the M/G machine torque τMG is then determined by Equation (2) to
satisfy the demanded torque τcd. The state, control, and external variables can be written in the vector
form as follows:

x = SoC, u = [τe h]T, v = [τw ωw]
T. (9)

The cumulative fuel consumption is minimized by introducing the following discrete-time cost
function:

J =
N∑

k=1

F(xk, uk, vk, k), (10)

F(xk, uk, vk, k) =
.

m f ,kTd + KLEZ(k)
.

m f ,kTd
+Kg

{
H−(xk − SoCmin) + H−(SoCmax − xk)

}
+Kg

{
H−

(
Pmax

batt − Pbatt,k
)
+ H−

(
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)}
+Kg

{
H−
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min
e

)
+ H−
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)}

+Kg
{
H−

(
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e

)
+ H−

(
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e −ωe,k
)}

+Kg
{
H−

(
τMG,k − τ

min
MG

)
+ H−

(
τmax

MG − τMG,k
)}

+Kg
{
H−

(
ωMG,k −ω

min
MG

)
+ H−

(
ωmax

MG −ωMG,k
)}

(11)

where k denotes the discrete time step, Td = 1 s is the discretization time and N is the total number of
discrete time steps. The term

.
m f ,kTd corresponds to the current fuel consumption, while the second

term KLEZ(k)
.

m f ,kTd penalizes the fuel consumption within LEZ by multiplying it with the penalization
factor KLEZ shown in Figure 5. Other terms of Equation (11) are introduced to penalize violation
of different powertrain constraints. Here, the function H− denotes the inverted Heaviside function
defined as: H−(z) = 0 for z ≥ 1, and H−(z) = 1, otherwise. The variable Kg is weighting factor and it is
set to a relatively large value (Kg = 1012 g) to ensure satisfying the constraints. The state Equation (6)
is given in the discrete form as

xk+1 = f (xk, uk, vk, k), k = 0, 1, . . . , N − 1, (12)
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with the initial condition set as x0 = SoCi, where SoCi is the initial SoC. Finally, the final SoC can be
prescribed (to the value SoC f ) by adding the terminal term J f to the cost function given by Equation (10):

min
uk

J f +
N∑

k=1

F(xk, uk, vk, k)

, (13)

J f = K f
(
SoC f − xN

)2
= K f

(
SoC f − f (xN−1, uN−1, vN−1)

)2
, (14)

where K f is the corresponding weighting factor (K f = 106 g).
The optimization problem formulated by Equations (10)–(14) is solved by dynamic programming

(DP) optimization algorithm [26], which can provide globally optimal solution even for nonlinear,
nonconvex optimization problems with discretized time, control and state variables. However, the DP
algorithm has a high computational complexity which grows exponentially with the number of state
and control variables. Having only one state and two control variables in the particular powertrain
model (see Equation (9)) makes the DP algorithm viable for PHEV control variables optimization [27].

3.3. Optimization Results

First, DP optimizations have been conducted for the case of zero road grade, initial SoC equal
to 90% (SoCi = 90%) and the target final SoC equal to 30% (SoC f = 30%). The corresponding optimal
SoC trajectories are given in Figure 7 (blue lines) with respect to travelled distance, along with linear
trajectories connecting the initial and final SoC points. Evidently, the optimal SoC trajectories are close
to the linear ones with almost ideal correlation (K ≈ 1; K is obtained by using corrcoef (.) function in
Matlab).

Based on the observation that the optimal SoC trajectory has a linear, i.e., shortest length form,
it may be hypothesized that the optimality of SoC trajectory is related to its length when expressed
with respect to travelled distance. This is further analyzed in Appendix B (for more details see [28]).
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preparing for discharging while traversing through the LEZ in the electric-only driving mode. 

Figure 7. (a) Optimal SoC trajectories obtained by DP optimization and corresponding shortest-length
(linear) trajectories for 3xDUB driving cycle and (b) 2xHDUDDS driving cycle and for zero road grade
and no LEZ presence.

Next, DP optimizations have been conducted in the case of LEZ presence and zero road grade.
The resulting optimal SoC trajectories are shown in Figure 8 (blue lines), along with the shortest-length
(piecewise linear) SoC trajectories respecting the requirement on electric-only driving within LEZs
(see the next section for details on synthesizing the shortest-length SoC trajectories). The results are
shown for two pairs of initial and final SoC values: (i) SoCi = 90%, SoC f = 30% (Figure 8a,c), and (ii)
SoCi = 50%, SoC f = 50% (Figure 8b,d). The obtained optimal SoC trajectories are aligned well with
the shortest-length ones, thus confirming the posed hypothesis on the optimality of shortest-length
SoC trajectory when considering the presence of LEZs, as well. This is particularly visible in the Case
(ii) (Figure 8b,d), where the battery is being recharged prior to reaching a LEZ, thus preparing for
discharging while traversing through the LEZ in the electric-only driving mode.
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Figure 8. (a,c) Optimal SoC trajectories and corresponding shortest-length (piecewise linear) trajectories
in case of LEZ presence, for SoCi = 90%, SoC f = 30% and (b,d) SoCi = 50%, SoC f = 50% and for 3xDUB,
3xHDUDDS driving cycles and zero road grade.

Figure 9 shows the impact of realistic (recorded) road grade on the optimal shape of SoC
trajectories for repetitive DUB driving cycles and the cases without and with LEZ presence. Although
the optimal SoC trajectories preserve shortest-length (piecewise) linear-like trends, a notable offset- and
high-frequency content-related distortion from the shortest-length trajectories is observed (particularly
in the case of LEZ presence, Figure 9b,c). Furthermore, Figure 10b,c reveal that the optimal SoC
trajectories obtained for sinusoidal road grade profiles (see Figure 6a) strictly decrease when the road
grade is positive (uphill driving), while they increase due to the regenerative braking when the road
grade is negative (downhill driving). Consequently, the deviation from the linear-like trajectory is
most emphasized for the low-frequency road grade profile (Figure 10b). In the case of highest road
grade frequency (Figure 10d) the SoC trajectory distortion is significantly smaller and comparable to
that obtained by using the recorded road grade profile (Figure 10a). Note that the minimum SoC is
exceptionally reduced to 0% in the low-frequency optimization run (Figure 10b), in order to facilitate
comparative analysis with other scenarios in the particular case of long uphill driving (see Figure 6b).
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Figure 10. (a) Optimal SoC trajectories and corresponding shortest-length (linear) trajectories for
4xDUB driving cycle and recorded road grade from Figure 4b, (b) low frequency, (c) mid frequency
and (d) high frequency sinusoidal road grade profiles from Figure 6a.

The shape of optimal trajectory in Figure 10b suggests that this trajectory may also be represented
by a piecewise-linear profile, consisting of at least two sections corresponding to uphill and downhill
driving. In order to analyze and potentially exploit this hypothesis, the optimal SoC trajectories from
Figure 10 are decomposed and rearranged into battery discharging and charging sections (Figure 11a).
Here, predominantly the discharging part is relevant from the standpoint of SoC reference trajectory
synthesis, since in the case of battery recharging the battery SoC profile is mostly determined by
regenerative braking power determined by the driving cycle and not by the SoC reference trajectory.
The SoC trajectory decomposition indeed reveals that the SoC trajectory during discharging now
follows shortest-length (linear-like) shape, as in the previous cases (cf. Figures 7 and 8). Based on this
observation, the shortest-length SoC trajectory pattern can also be used for SoC reference trajectory
synthesis in the case of varying road grade (see next section).Energies 2019, 12, x FOR PEER REVIEW 10 of 22 
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Figure 11. (a) Optimal SoC trajectories from Figure 10 decomposed and rearranged to battery
discharging (i.e., Pbatt > 0, dSoC/dt < 0) and charging sections (i.e., Pbatt < 0, dSoC/dt > 0) and (b) SoC
time derivative with respect to power demand Pd.
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Figure 11b gives the distribution of optimal rate of change of SoC with respect to power demand
Pd. The clear functional dependence can be observed for the range of negative to mid positive
power demands (regenerative braking and electric-only driving, respectively), while there is no clear
dependence above ≈70 kW, because both electric and hybrid driving modes are active for these
high-power demands (i.e., dSoC/dt can be negative and approximately zero, respectively). The set
of points which exhibit clear dependence of SoC rate on power demand are approximated by the
2nd-order polynomial (red dashed line in Figure 11b) for the purpose of SoC reference trajectory
synthesis in the next section.

4. PHEV Powertrain Control Strategy

This section first presents the basic control strategy of a PHEV powertrain, which is aimed at
selecting proper powertrain operating mode and instantaneously optimizing its operating point (more
details can be found in [15]). Next, the design of optimal SoC reference trajectory, fed to the basic
control strategy (i.e., its SoC feedback controller), is presented for the cases of LEZ presence and varying
road grade.

4.1. Basic Control Strategy

The powertrain is controlled by a rule-based (RB) controller combined with instantaneous
optimization of the powertrain point (see block diagram in Figure 12 and [24] for the control concept
details). The RB controller includes engine start/stop logic which determines whether the electric or
hybrid driving mode is activated, and a proportional SoC controller incorporating a dead-zone and
extended with feedforward control (the block FF control in Figure 12). The feedforward controller
improves tracking of the SoC reference trajectory (SoCR). The engine power demand P∗e is calculated
from the total power demand Pd (defined by the vehicle velocity vv and the wheel torque demand
τw, see Equations (1)–(3) and Figure 12) and the SoC controller power demand P∗batt. The signal P∗e is
used as an input to the simple engine start/stop logic, which switches the engine on (ENst = 1) if the
engine power P∗e is larger than the threshold Pon, while the engine is switched off if P∗e is lower than
the threshold Po f f < Pon (ENst = 0). Exceptionally, the engine can be kept switched on in the case
P∗e < Po f f , when the M/G machine cannot solely satisfy the power demand due to the speed-dependent
torque constraint (i.e., τmax

MG (ωMG)ωMG < Pd; see the blue line in Figure 2b).
The instantaneous optimization is based on the equivalent consumption minimization strategy

(ECMS) [29], where the following equivalent fuel consumption
.

meq is subject of minimization [24]:

min
τe,h

.
meq =

{ .
m f+
.

m f+

Aekηbatt,cPbatt

Aekη
−1
batt,dPbatt︸             ︷︷             ︸
.

mbatt

, for Pbatt < 0
, for Pbatt > 0

. (15)

Here, the term
.

m f is real fuel mass flow, while the second term (
.

mbatt) relates to virtual fuel mass
flow accounting for the power drawn from or stored in battery (Pbatt), where ηbatt,d is battery efficiency
during discharging, ηbatt,c is round-trip loss-related efficiency during charging, and Aek is the mean
engine specific fuel consumption during discharging (see [24] and [15] for more details). The ECMS
optimization is performed over the transmission gear ratio h and the engine torque τe (i.e., two degrees
of freedom, 2D-ECMS). The iteration through discrete gear ratio values h directly impacts the engine
speed ωe (see Equation (1) where vv is set to its current value). In order to ensure SoC sustainability,
the engine torque search range is made dependent on the SoC control error eSoC = SoCR − SoC (see
function w(eSoC) in Figure 12, [15]). When the SoC error is zero, the search range is of maximum width,
i.e., between the absolute lower limit Po f f /ωe and the absolute upper limit τmax

e (ωe). For increasing
SoC error, the engine torque search range becomes narrower and finally diminishes in the operating
point defined by τe = P∗e/ωe (i.e., one degree of freedom left, 1D-ECMS), where satisfying the RB



Energies 2019, 12, 4296 11 of 21

controller power demand P∗e guarantees the SoC sustainability. The final control strategy is denoted as
RB+ECMS.

When the engine is switched off and only the M/G machine is propelling the vehicle, the electricity
consumption is minimized (instead of the equivalent fuel) by varying only transmission gear ratio
h. Namely, Pbatt/ηbatt,d is minimized in the motoring mode, and ηbatt,cPbatt is minimized in the
generator mode; where ηbatt,d and ηbatt,c denote the corresponding battery discharging and charging
efficiencies, respectively.
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The mere application of RB+ECMS control can result in frequent switching of gear ratios, thus
deteriorating the driving comfort and drivability. Therefore, a gear shift delay (GSD) algorithm is
introduced, which is aimed at reducing the number of gear ratio switching events. The ECMS cost
function (15) is extended by a discount factor r f , as given by

.
meq = r f (tsh, hk−1, hk)

[ .
m f +

.
mbatt(Pbatt, ηbatt, Aek)

]
. (16)

The discount factor is defined as

r f =

 r0 + tsh
1−r0
tth

, for tsh < tth and hk = hk−1

1, for tsh ≥ tth or hk , hk−1
, (17)

where r0 = r f (tsh = 0) is the initial/reset value of discount factor (i.e., at the instant of previous, (k
− 1)th gear shift event), tsh is the time elapsed from the previous gear shift event, and tth is the time
threshold in which the discount factor r f reaches the value of 1. The discount of the cost function
is provided if the current gear ratio hk is selected to be equal to the previous gear ratio hk−1, and if
the elapsed time from the previous gear shift event is less than the threshold tth, thus encouraging
the ECMS optimization to keep the current gear ratio for somewhat prolonged period, i.e., to avoid
frequent switching of gear ratio.
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4.2. Synthesis of Optimal SoC Reference Trajectory

4.2.1. Scenario 1: Zero Road Grade and no LEZ Presence

Based on the principle of designing the shortest-length SoC reference trajectory as the optimal one
(Section 3, Appendix B), the following simple-to-implement expression for the SoC reference trajectory
applies in the basic scenario with no LEZ presence and zero road grade (see red line in Figure 7):

SoCR(s) = SoCR(0) + s
SoCR

(
s f

)
− SoCR(0)

s f
, (18)

where s f is the total travelled distance.

4.2.2. Scenario 2: Zero Road Grade and LEZ Presence

The same principle of designing the shortest-length SoC trajectory is also applied in the case of
LEZ presence, where the requirement related to pure electric driving within LEZs is respected. The
following expression for the SoC trajectory length can be derived [4]:

L(s) =
Nr∑

r=1

∆sr

√
1 +

(∆SoCr

∆sr

)2
+

Nl∑
l=1

∆sl

√
1 +

(
∆SoCl

∆sl

)2

, (19)

where the route is divided into segments, and Nr and Nl are the total number of these segments
outside and within LEZ, respectively, and the terms ∆SoCr/∆sr = (SoCr − SoCr−1)/(sr − sr−1) and
∆SoCl/∆sl = (SoCl − SoCl−1)/(sl − sl−1) denote the SoC depletion gradients for each segment. Since
pure electric driving is preferred within LEZs (the engine is activated only when the M/G machine
cannot satisfy the power demand), the LEZ-related SoC depletion gradient is predominantly dependent
on the road power demand. Therefore, only the SoC depletion gradients occurring outside the LEZ can
be regulated by the control strategy, and they are used for the minimization of overall SoC trajectory
length:

minL(s) = min
∆SoCr

∆sr

Nr∑
r=1

∆sr

√
1 +

(∆SoCr

∆sr

)2
. (20)

Due to the convexity of function under sum, the minimum of Equation (20) is achieved for a
constant value of SoC depletion gradient ∆SoCr/∆sr over all-time steps r, thus resulting in a piecewise
linear shape of overall SoC trajectory (see [4] where the same principle is used for the calculation of
SoC trajectory which minimizes battery losses). The optimal SoC depletion gradient can, thus, be
calculated as

∆SoCr

∆sr
=

SoC f − SoCi − ∆SoCLEZ,Σ∑Nr
r=1 ∆sr

, (21)

while considering the predefined initial and final SoC values SoCi and SoC f , respectively, and denoting

the total SoC depletion within all LEZ segments as ∆SoCLEZ,Σ =
∑Nl

l=1 ∆SoCl (assumed to be known

in advance). The denominator
∑Nr

r=1 ∆sr represent the total travelled distance outside of LEZs.
The shortest-length trajectories calculated by Equation (21) are shown by black lines in Figures 8 and 9,
where the total LEZ-wise SoC depletion ∆SoCLEZ,Σ, is taken from the DP optimization results. This SoC
depletion is not known in advance and should be properly estimated in applications. In the next
section, robustness of the synthesis method is tested with respect to errors of estimation of ∆SoCLEZ,Σ.

4.2.3. Scenario 3: Variable Road Grade and no LEZ Presence

In the case of varying road grade, the synthesis of SoC reference trajectory is based on the
2nd-order polynomial fitting of dSoC/dt vs. Pd curve given in Figure 11b (red dashed line), and the
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assumption that the power demand profile Pd and the vehicle velocity vv are known in advance (or
properly estimated). The SoC gradient in pure electric driving for all time steps is, thus, calculated as

∆SoC+
R,i

∆si
=

(
k1P2

d,i + k2Pd,i + k3
)

︸                    ︷︷                    ︸
.

SoCapp

∆t
∆si

=
(
k1P2

d,i + k2Pd,i + k3
)

︸                    ︷︷                    ︸
.

SoCapp

1
vv,i

, for Pd,i ≤ Pd,th, (22)

where the term
.

SoCapp represents the 2nd-order polynomial fitting curve from Figure 11b, ∆si is the
travelled distance within ith time step, and Pd,th > 0 is the power demand threshold obtained in an
iterative manner starting with the initial value conservatively set to Pd,th = 0. The gradient ∆SoC+

R,i/∆si
is limited with respect to SoC rate lower and upper limit values given in Eq. (23), which are obtained
by feeding the maximum discharging (i.e., negative) and maximum charging (i.e., positive) battery
power into the battery state Equation (6).

1
vv,i

.
SoC

min
≤

∆SoC+
R,i

∆si
≤

1
vv,i

.
SoC

max
. (23)

As in the case of LEZ, where the SoC trajectory is divided into segments occurring outside and
inside LEZ, the SoC trajectory is divided here into hybrid and pure electric driving parts as:

N j∑
j=1

∆SoC−R, j

∆s j
∆s j︸             ︷︷             ︸

Hybrid driving

+

Ni∑
i=1

∆SoC+
R,i

∆si
∆si︸             ︷︷             ︸

Pure electric driving

= SoC f − SoCi, (24)

where N j is the total number of time steps for which the condition Pd,th < Pd,k ≤ Pmax
d is satisfied (with

Pmax
d denoting the highest power demand value), while Ni is the total number of steps for which the

condition Pd,k ≤ Pd,th is satisfied. Since the SoC gradient in the pure electric driving segments is defined
by Equation (22), it remains to determine the SoC gradients in the hybrid driving mode (Pd,i > Pd,th, for
all time steps i). According to the optimal discharging curves shown in left-hand side of Figure 11a,
the optimal SoC trajectories for different road grade profiles have linear-like shape and thus nearly
shortest length. Similarly as in the case of LEZ presence, the SoC trajectory of shortest length can be
achieved by applying a constant SoC gradient value in all hybrid driving time instants. Based on
Equation (24), the constant discharging SoC gradient, which satisfies the initial and final SoC values
and accounts for the total SoC depletion in the pure electric driving, can be calculated as

∆SoC−R
∆s

=
SoC f − SoCi −

∑Ni
i=1

∆SoC+
R,i

∆si
∆si∑N j

j=1 ∆s j

. (25)

This SoC gradient is further limited to ensure its feasibility:

1
vv, j

.
SoCapp

(
Pd, j

)
≤

∆SoC−R
∆s

≤
1

vv, j

.
SoC

max
, ∀ j ∈

[
1, N j

]
, (26)

where the lower limit is imposed because it is not feasible to have the SoC gradient in hybrid driving
lower (i.e., larger in absolute value) than that in the pure electric driving (here approximated by

.
SoCapp

(
Pd, j

)
, see Equation (22)), while the upper limit is again imposed to reflect the maximum battery

power. The feasibility condition (26) greatly depends on the power threshold Pd,th, which is initially
set to zero. If the constant SoC rate ∆SoC−R/∆s obtained by the guessed threshold value Pd,th does not
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respect constraint from Equation (26), the threshold Pd,th is incrementally increased by 10 kW step size
until the respective SoC rate ∆SoC−R/∆s becomes feasible.

Referring to the results shown in Figure 13, the SoC trajectories synthesized according to the
above procedure closely follow the optimal SoC trajectories. This is quantitatively confirmed by means
of correlation index values K given in Figure 13, which closely approach the ideal-correlation value of
1 (cf. Figure 7).

It should be noted that this synthesis procedure is not directly applicable in most applications,
because the required future power demand profile and vehicle velocity are usually not available.
However, there is a good potential for application to vehicles driving on predetermined and fixed
routes, such as buses and delivery vehicles typically equipped with GPS/GPRS-based tracking devices,
where the upcoming power demand profiles can be effectively predicted based on historical data [30].
Also, this method could be applied to personal vehicles by using the data provided by the GPS-based
navigation service, including an option of sharing the traffic data between the vehicles, similarly as it
is done within the PHEV energy management approach described in [14].
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5. Simulation Results

The developed PHEV control strategy including SoC reference trajectory synthesis has been
examined by backward model-based simulations for different driving cycles, zero and varying road
grade profiles, and without and with LEZ presence. The obtained simulation results are compared
with the globally optimal DP results.

Figure 14 shows the total fuel consumption V f for the basic case of no LEZ, and CD/CS and
blended (BLND) operating regimes. The initial and target final SoC values are set to SoCi = 90%
and SoC f = 30%, respectively, and the linear SoC reference trajectory calculated by Equation (18) is
inputted into the control strategy. Since the final SoC values in simulation results do not fall exactly at
the target value of 30%, the DP optimizations have been conducted for several final SoC values around
30% (black circles in Figure 14), and the results are linearly interpolated (green lines in Figure 14) [24].
This makes the simulated fuel consumptions directly comparable to the DP results. The results in
Figure 14 reveal that in the blended mode the proposed control strategy approaches the DP benchmark
within a margin of 2%, while in the case of CD/CS regime this margin grows to 5%. Exceptionally,
in the case of 6xDUB w/grade driving cycle, the fuel consumptions are comparable for CD/CS and
blended regimes. This may be explained by the influence of varying road grade considered in this case,
which results in distorted and thus more similar blended and CD/CS SoC profiles, and finally in more
similar total fuel consumption values.
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for different driving cycles and no LEZ case.

Figure 15 shows the simulation results for the case of LEZ presence, different driving cycles (with
zero or varying road grade), and different sets of initial and final SoC values. The blended regime is
considered here and further on. The simulation-obtained SoC trajectories are given by red dashed lines,
and they are plotted along with the DP optimal trajectories (blue lines) and the reference trajectories
obtained based on Equation (21) (full black lines). The presented results point to accurate tracking of
the SoC reference trajectory, thus confirming the effectiveness of the overall control strategy, including
the combined, feedback and feedforward SoC controller and the SoC reference trajectory synthesis. It is
important to note that in the case of varying road grade (Figure 15a,b), the actual SoC trajectories aligns
much better with the DP optimal trajectories than the reference ones. This is explained by numerous
battery recharging events caused by regenerative braking due to frequent negative road slopes, in
which case both control strategy and DP optimizer tend to maximize regenerated energy, thus causing
the SoC to deviate from its reference trajectory. This indicates that, although the synthesized piecewise
linear SoC trajectory represents a relatively rough approximation of the DP optimal SoC trajectory,
this reference can effectively be used in order to achieve nearly optimal results.Energies 2019, 12, x FOR PEER REVIEW 16 of 22 
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Figure 15. DP optimal, simulated and reference SoC trajectories for case of LEZ presence, (a,b) 3xDUB
w/ grade, (c,d) 3xDUB w/o grade and (e,f) 3xHDUDDS driving cycles and different sets of initial and
final SoC values ((a,c,e) SoCi = 90%, SoC f = 30%, left column and (b,d,f) SoCi = 50%, SoC f = 50%, right
column).
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Table 1 gives the fuel consumption results corresponding to the simulation results from Figure 15,
which are compared with respect to DP benchmark based on the interpolated DP results. The results
are given and analyzed for three characteristic SoC reference trajectory synthesis cases: (i) the exact
DP-obtained value of total LEZ-wise SoC depletion ∆SoCLEZ,Σ is used for each driving cycle (see
Equation (21)), (ii) average value of ∆SoCLEZ,Σ for the three considered driving cycles is employed,
and (iii) ∆SoCLEZ,Σ is doubled with respect to the average value of the three considered driving cycle.
The motivation for this analysis is to test robustness with respect to error of estimating the driving
cycle-dependent LEZ depletion ∆SoCLEZ,Σ. The results shown in Table 1 indicate that when using the
exact values of ∆SoCLEZ,Σ in the SoC reference trajectory synthesis, the control strategy approaches
the DP benchmark with a margin of 2%. This margin is only slightly increased in other two cases,
thus confirming the robustness of the proposed SoC reference trajectory synthesis method.

Table 1. Fuel consumption values corresponding to simulation results from Figure 15 and their relative
differences in comparison with DP benchmark (given in brackets).

SoCi = 90%,
Target SoCf = 30%

RB+ECMS vs. DP Fuel Consumption [L]
Exact ∆SoCLEZ,Σ Average ∆SoCLEZ,Σ Doubled ∆SoCLEZ,Σ

3xDUB w/ grade 2.83 vs. 2.80 (+0.9%) 2.97 vs. 2.94 (+1.0%) 3.01 vs. 2.98 (+1.1%)
3xDUB w/o grade 2.59 vs. 2.56 (+1.1%) 2.60 vs. 2.57 (+1.2%) 2.63 vs. 2.56 (+2.6%)

3xHDUDDS 3.15 vs. 3.08 (+2.2%) 3.10 vs. 3.02 (+2.5%) 3.11 vs. 3.02 (+3.0%)

SoCi = 50%,
Target SoCf = 50%

RB+ECMS vs. DP Fuel Consumption [L]
Exact ∆SoCZ,Σ Average ∆SoCLEZ,Σ Doubled ∆SoCLEZ,Σ

3xDUB w/ grade 5.02 vs. 4.99 (+0.6%) 5.01 vs. 4.98 (+0.5%) 5.16 vs. 5.08 (+1.5%)
3xDUB w/o grade 5.01 vs. 4.95 (+1.2%) 5.10 vs. 5.04 (+1.3%) 5.16 vs. 5.02 (+2.8%)

3xHDUDDS 5.72 vs. 5.66 (+1.1%) 5.68 vs. 5.61 (+1.3%) 5.72 vs. 5.65 (+1.2%)

Finally, the simulation verification has been conducted for different varying road grade profiles,
including the recorded one (Figure 4b) and sinusoidal ones (Figure 6; no-LEZ case is considered). Two
characteristic cases of SoC reference trajectory synthesis are analyzed: (i) the simple-to-implement,
linear trajectory determined by Equation (18), and (ii) the trajectory synthesized according to Equations
(22)–(26) which assumes prior knowledge of driving cycle features. Figure 16 shows the comparative
SoC trajectories obtained by control system simulations and DP optimizations. These results indicate
that the two SoC reference trajectory synthesis methods give similar SoC trajectories in the cases
of recorded and high-frequency sinusoidal road grade profiles. However, these trajectories diverge
from each other as the spatial frequency of road grade profile decreases. This effect is particularly
emphasized in the case of lowest frequency (Figure 16b), where the SoC trajectory related to linear
reference trajectory starts to deviate very early from the DP optimal trajectory. On the other hand,
when the more sophisticated reference trajectory synthesis is used, the SoC trajectory follows the DP
optimal one very accurately during the whole driving cycle.

Figure 17 outlines the fuel consumption values corresponding to the simulation results shown in
Figure 16. The performance delivered by the control strategy approaches the DP benchmark within the
margin of 2% for the recorded and high-frequency road grade profiles. Here, the fuel consumption is
only slightly higher if the simplified linear SoC reference trajectory is employed when compared to the
nonlinear synthesis method (see Figure 13). The difference between the results related to the use of two
synthesis methods becomes higher if the mid-frequency road grade profile is considered. The largest
benefit of using the nonlinear SoC reference trajectory is observed in the case of low-frequency road
grade profile, where the fuel consumption is increased by 2.04% when compared to DP optimization,
while in the case of linear reference trajectory, this margin equals 15.67%.
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6. Conclusions

The paper has proposed a method for synthesis of optimal battery state-of-charge (SoC) trajectory
for a P2 parallel plug-in hybrid electric vehicle (PHEV), which assumes a blended regime of powertrain
operation. The SoC synthesis method has been verified by means of backward-looking PHEV model
simulations, where different scenarios and SoC synthesis approaches are analyzed, and the obtained
results are compared against DP optimized benchmark in terms of total fuel consumption.

First, the overall control strategy has been verified for the basic scenario of no low-emission zones
(LEZ) and zero road grade. Here, the simple linear SoC trajectory, starting from the initial SoC and
ending at its target final value, is used as a reference to the control strategy SoC controller. In this case
the control strategy operating in the blended regime approaches the DP benchmark within the margin
of 2%. This margin increases to 5% if the elementary, charge depleting/charge sustaining (CD/CS)
regime is considered.

Next, the SoC synthesis method has been extended to deal with the LEZ presence. Here, it has been
found that the optimal pattern of the SoC trajectory is linear within specific (LEZ or no-LEZ) segments,
i.e., piecewise linear all over the travelling distance. The control strategy again approaches the DP
benchmark to the margin of 2%. Apart from the knowledge of total driving distance, the synthesis
method assumes the knowledge of total SoC depletion within LEZs, which depends on driving cycle
features. Therefore, the synthesis method has been tested with respect to errors of estimating the
LEZ-wise SoC depletion, which shows minor influence on fuel consumption, thus confirming the
method robustness.
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Finally, the SoC synthesis method has been generalized to driving cycles with varying road
grade. Here, the simple linear SoC reference trajectory was firstly used. Then, the more sophisticated
nonlinear SoC reference trajectory was synthesized assuming prior knowledge of power demand and
vehicle velocity. The linear reference trajectory was shown to be nearly optimal only for road grade
profiles characterized by mid-high spatial frequencies. However, in the case of low-frequency road
grade profile (i.e., for long successive hill climbing and hill descending distances), the nonlinear SoC
reference trajectory synthesis method shows the superior performance, which is close to that achieved
for less hilly roads (about 2% higher fuel consumption compared to the DP benchmark is obtained,
while for the linear SoC reference trajectory this margin increases to 16%).

Future work will be directed towards the synthesis of optimal SoC reference trajectory based
on prediction of driving cycle features, which is anticipated to be beneficial for driving cycles with
segmented driving patterns (e.g., highway/city and/or uphill/downhill driving).
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Appendix A. PHEV City Bus Parameters

Appendix A.1. Model Parameters

Vehicle parameters [15]: wheel radius, rw = 0.481 m; bus frontal area, A f = 7.52 m2; aerodynamical
drag coefficient, Cd = 0.70; rolling friction coefficient, R0 = 0.01; empty bus weight, Mv = 12635 kg, final
drive ratio, io = 4.72.

Battery parameters: Qmax = 30 Ah, Emax = 19 kWh.

Transmission gear ratios [15]:

Gear no. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
Gear ratio 14.94 11.73 9.04 7.09 5.54 4.35 3.44 2.70 2.08 1.63 1.27 1.00

Appendix A.2. DP Optimization Parameters

Weighting coefficients: Kg = 1012, K f = 106, KLEZ = 103, KSoC = 5× 105.

Constraints: SoCmin = 0.2, SoCmax = 1, Pbatt,min = −150 kW, Pbatt,max = 150 kW, ωe,min = 0 rad/s,
ωMG,min = 0 rad/s, ωe,max = 277.5 rad/s, ωMG,max = 277.5 rad/s.

Appendix A.3. Control Strategy Parameters

r0 = 0.6, tth = 1 s, Po f f = 75 kW, Pon = 85 kW.

Appendix B. Analysis of Optimal SoC Trajectory Pattern

In order to further confirm the posed hypothesis on shortest-length optimality of the SoC trajectory
when expressed with respect to travelled distance (Section 4), additional DP optimizations generating
SoC trajectories of different length are conducted (more detailed analysis is presented in [28]). To this
end, the following additional SoC-related soft constraints are added to the DP cumulative cost
function (10):

JSoC,add =
∑

j

(
SoCconstr, j − x j

)2
=

∑
j

KSoC
(
SoCconstr, j − f

(
x j−1, u j−1, v j−1

))2
, j ∈ Ca (A1)

http://achieve.fsb.hr/
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where SoCconstr, j is the SoC constraint in the jth discrete time step, Ca is the set of discrete time steps for
which the additional SoC constraints are imposed, and KSoC is the penalization factor related to SoC
constraint violation (set to 5·105, herein). The normalized SoC trajectory length is defined as

LSoC, norm =
N∑

k=1

√
∆SoC2

k +

(
∆sk
s f

)2

, (A2)

where the travelled distance within kth discrete time step ∆sk is normalized with respect to the total
travelled distance s f .

The total electric losses, including both battery and M/G machine losses, are defined as:

EEL,loss = Ebatt,loss + EM/G,loss. (A3)

The battery losses have quadratic dependence with respect to battery current (i.e.,
Ebatt,loss =

∫
Ibatt

2Rdt) and they are dissipated as a heat on the internal battery resistance (see
Figure 3a). Due to this quadratic energy loss dependence, from the battery perspective the optimal
discharging from initial to final SoC is related to constant current condition, which finally results in the
SoC trajectory of minimum length (this can be easily proven by using Jensen’s inequality applied to
the convex function describing total battery losses; see [28] for more details). While the M/G machine
losses depend on the M/G machine efficiency map (see Figure 2b), they usually dominantly relate to
quadratic Ohmic losses similarly as in the battery case.

Figure A1 shows the optimization results obtained by DP optimization for different randomly
generated additional SoC constraints (A1) and 3xDUB driving cycle without road grade. The obtained
optimal SoC trajectories are shown in Figure A1a, among which several characteristic ones are
highlighted: Blended which is generated without additional SoC constraints (the same trajectory already
shown in Figure 7a), CD/CS where the battery is discharged to the lower limit of 30% as fast as possible,
CS/CD where the battery discharging is maximally postponed, and max LSoC, norm whose trajectory
length is maximal. All of these SoC trajectories start and finish at the same SoC values (90% and 30%,
respectively), thus enabling direct comparison of obtained total fuel consumptions.

Figure A1b indicates very high correlation of the total fuel consumption with respect to the
normalized SoC trajectory length given by Equation (A2), which is in line with the posed hypothesis
that the SoC trajectory length should be minimized in order to minimize the fuel consumption. In order
to gain more in-depth insights, the fuel consumption is analyzed also with respect to: (i) mean specific
fuel consumption reflecting the engine-related losses (Figure A1c), and total electric energy losses
discussed above (Figure A1d). The results in Figure A1c,d point out that the cause of increased fuel
consumption is solely related to the increased total electric energy losses (the correlation factor K in
Figure A1d approaches the maximum value of 1). For most of the cases (all points except the blue
one in Figure A1c), the DP optimizer pushes the engine operating points to the region with slightly
higher specific fuel consumption (cf. Figure 2a), in order to minimize the electric energy losses and
finally the total fuel consumption (i.e., negative correlation occurs in Figure A1c). Only the slight
increase of mean specific fuel consumption for a wide range of different SoC trajectories reveals high
engine flexibility in adjusting its operating points to achieve the SoC trajectory of minimum length and
minimal battery losses.
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17. Cipek, M.; Pavković, D.; Petrić, J.Š. A control-oriented simulation model of a power-split hybrid electric
vehicle. Appl. Energy 2013, 101, 121–133. [CrossRef]

18. Staunton, R.H.; Ayers, C.W.; Marlino, L.D.; Chiasson, J.N.; Burress, B.A. Evaluation of 2004 Toyota Prius Hybrid
Electric Drive System; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2005.

19. Yuan, Z.; Hou, S.-H.; Li, D.; Wei, G.; Hu, X. Optimal Energy Control Strategy Design for a Hybrid Electric
Vehicle. Discret. Dyn. Nat. Soc. 2013, 132064.

20. EVO ELECTRIC LTD CATALOGUE, AF-230 Motor/Generator. Available online: http://www.fordmax.in.ua/

wp-content/uploads/2014/12/AF-230-Spec-Sheet-V1.pdf (accessed on 6 October 2019).
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