Abstract | U ovom radu napravljena je tehničko-ekonomska analiza i razrađena je rekonstrukcija termotehničkog sustava uredske zgrade industrije cementa u Puli. Tehničko rješenje fokusirano je na grijanje i hlađenje prostora zgrade. Uredska zgrada prostire se na tri etaže (prizemlje, prvi kat i drugi kat) ukupne korisne površine 1114 m². Analiza tri stanja zgrade, točnije postojeće stanje zgrade bez energetske obnove zgrade i stanje zgrade nakon prve i druge mjere energetske obnove zgrade i četiri termotehnička sustava pokazala je da najkraći period povrata investicije ima rješenje koje se sastoji od dizalice topline voda-voda i u kojem nije primjenjena energetska obnove zgrade. Ukupni projektni toplinski gubici, prema normi HRN EN 12831, iznose 101,2 kW pri vanjskoj projektnoj temperaturi od -6°C. Ukupni toplinski dobici, prema smjernici VDI 2078, iznose 63 kW. Postojeći sustav grijanja i hlađenja, temeljen na termoakumulacijskim pećima i klima uređajima, zamjenjuje se modernim rješenjem koje uključuje dizalicu topline voda-voda ukupnog učina 114 kW za grijanje i 97,96 kW za hlađenje, koja kao toplinski izvor i ponor koristi morsku vodu. Unutar prostora tvornice se, kao nusprodukt, proizvodi otpadna toplina od hlađenja peći za proizvodnju aluminatnog cementa i ona služi kao dodatni toplinski izvor prosječne tempetature 40 °C i prosječnog protoka 35 l/s. Peći za proizvodnju cementa se hlade morskom vodom koja se potom distribuira do sustava grijanja zgrade, gdje predaje toplinu međukrugu vode otpadne topline, koji potom grije međuspremnik vode za grijanje. Dizalica topline i otpadna toplina rade u alternativnom režimu rada, što znači da otpadna toplina pokriva toplinsko opterećenje dokle god je to moguće, a kada to više nije moguće uključuje se dizalica topline voda-voda. Kao terminalni uređaji za distribuciju topline u prostorijama ugrađeni su ventilokonvektori sa temperaturnim režimom 55°C/45°C za grijanje i 7°C/13°C za hlađenje. Kada sustav koristi otpadnu toplinu temperaturni režim ventilokonvektora je 35°C/30°C. Upravljanje cijelim sustavom grijanja i hlađenja omogućeno je putem centralnog nadzornog sustava. Proračuni toplinskih gubitaka i dobitaka, radne točke pumpi, crteži dispozicije strojarske opreme, sheme usponskih vodova i funkcionalna shema strojarnice nalaze se u prilozima. Proračun toplinskih gubitaka i dobitaka napravljen je u računalnom paketu IntegraCAD©. Proračuni potrebne energije, isporučene energije i primarne energije napravljeni su u računalnom paketu KI Expert Plus©. Proračuni perioda povrata investicije i proračuni padova tlaka napravljeni su u MS Excel-u. |
Abstract (english) | In this thesis, a technical-economic analysis was conducted, and the reconstruction of the HVAC system for the office building of a cement industry in Pula was developed. Technical solution is focusing on the heating and cooling of the building's spaces. The office building spans three floors (ground floor, first floor, and second floor) with a total useful area of 1114 m². An analysis of three building conditions, more precisely existing building condition without energy renovation measure and conditions after first and second energy renovation measures for the building and various HVAC systems revealed that the solution with the shortest payback period consists of the existing state of the building combined with a water-to-water heat pump. The total design heat losses, calculated according to the HRN EN 12831 standard, amount to 101,2 kW at a design outdoor temperature of -6°C. The total cooling loads, calculated according to the VDI 2078, amount to 63 kW. The existing heating and cooling system, based on electric thermal storage heaters and split air conditioning units, is replaced with a modern solution that includes a water-to-water heat pump with a total capacity of 114 kW for heating and 97,96 kW for cooling, utilizing seawater as both the heat source and sink. Within the factory premises, waste heat from the cooling of furnaces used in aluminous cement production is generated as a by-product, which serves as an additional heat source with average temperature 40 °C and average volume flow of 35 l/s. Cement production furnaces are cooled using seawater, which is then distributed to the building's heating system, where it transfers heat to the waste heat intermediate water circuit, which subsequently heats the heating water buffer tank. The heat pump and the waste heat operate in an alternating mode, meaning that waste heat covers the thermal load as long as it is available, and when it is insufficient, the heat pump is activated. Fan coil units with a temperature regime of 55°C/45°C for heating and 7°C/13°C for cooling are installed as terminal devices for heat distribution in the rooms. When the system uses waste heat, the fan coil temperature regime is 35°C/30°C. The entire heating and cooling system is managed through a centralized control system. The calculations for heat losses and gains, , operating points of pumps, dispositions and schemes of thermotehnical systems are included in the appendices. The heat loss and gain calculations were performed using the IntegraCAD© software package. The calculations for required energy, delivered energy, and primary energy were conducted using the KI Expert Plus© software package. Payback period calculations and pressure drop calculations were performed using MS Excel. |
Study programme | Title: Mechanical Engineering; specializations in: Design, Process and Energy Engineering, Production Engineering, Engineering Modelling and Computer Simulation, Marine Engineering, Industrial Engineering and Management, Materials Engineering, Mechanics and Robotics, Autonomous Systems, Mechatronics and Robotics Course: Process and Energy Engineering Study programme type: university Study level: graduate Academic / professional title: sveučilišni/a magistar/magistra inženjer/inženjerka strojarstva (sveučilišni/a magistar/magistra inženjer/inženjerka strojarstva) |