Mezga, Izabela

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:701899

Rights / Prava: Attribution 4.0 International/Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2024-07-17

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Izabela Mezga

Zagreb, 2023.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentor:

Dr. sc. Tomislav Staroveški, dipl. ing.

Student:

Izabela Mezga

Zagreb, 2023.

Izjavljujem da sam ovaj rad izradila samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se svojem mentoru dr. sc. Tomislavu Staroveškom na pomoći i vodstvu pri izradi ovog diplomskog rada.

Zahvaljujem se i ostalim djelatnicima Laboratorija za alatne strojeve Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu, posebno dr. sc. Mihi Klaiću i asistentici Dori Bagarić mag. ing. mech. te kolegi Ivanu Haboiću na suradnji i pomoći tijekom izvođenja eksperimentalnog dijela rada.

Posebno hvala cijeloj mojoj obitelji na podršci koju su mi pružili tijekom cijelog studija.

Izabela Mezga

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za diplomske ispite studija strojarstva za smjerove: Proizvodno inženjerstvo, inženjerstvo materijala, industrijsko inženjerstvo i menadžment, mehatronika i robotika, autonomni sustavi i računalna inteligencija

Sveučili Fakultet stroja	šte u Zagrebu irstva i brodogradnje
Datum	Prilog
Klasa: 602 - 04	/23-6/1
Ur.broj: 15 - 23	-

DIPLOMSKI ZADATAK

Student:	Izabela Mezga
----------	---------------

JMBAG: 0035216813

Naslov rada na Analiza teksture površine obrađene robotskim sustavom hrvatskom jeziku:

Naslov rada na Analysis of surface texture machined using robot milling system engleskom jeziku:

Opis zadatka:

Na Katedri za alatne strojeve Fakulteta strojarstva i brodogradnje u tijeku je provođenje projekta ARCOPS, čiji je cilj razvoj robotskog ispitnog sustava prikladnog za izravni i posredni nadzor obradnih procesa. Ispitni postav sastoji se od dva robota od kojih je prvi (R1) predviđen za obradu odvajanjem i posredni nadzor obradnog procesa, dok je drugi robot (R2) predviđen za izravni nadzor istog. U sklopu predviđenih projektnih aktivnosti potrebno je utvrditi utjecaj krutosti robota R1 na teksturu površine obrađene glodanjem.

Stoga je u radu potrebno:

- 1. Napraviti 3D model ispitnog uzorka i odgovarajuće stezne naprave te izraditi i generirati putanje alata za obradu istog primjenom CAD/CAM sustava po vlastitom izboru. Pri tome je oblik i gabaritne dimenzije ispitnog uzorka, kao i elemente stezne naprave, potrebno odrediti na osnovi dostupne opreme i materijala.
- Predložiti dvije lokacije unutar radnog volumena robota R1 u kojima je moguće u cijelosti obraditi 2. ispitni uzorak. Lokacije je potrebno odrediti orijentacijski na način da se između razmatranih lokacija očekuje velika razlika u krutosti obradnog robota (R1).
- Izraditi ispitne uzorke na obje prethodno odabrane lokacije. 3.
- Za oba ispitna uzorka analizirati teksture obrađenih površina primjenom optičkog mjernog uređaja 4 Alicona IF-Sensor R25 ugradenog na R2.
- Donijeti zaključke rada. 5.

Točke rada 1.-3. potrebno je izvršiti u suradnji s kolegom Franom Haboićem, koji će u svome diplomskom radu naknadno analizirati topologiju obrađenih površina oba ispitna uzorka. U radu je također potrebno navesti eventualno dobivenu pomoć pri izradi rada, a u popisu literature navesti svu korištenu literaturu.

Zadatak zadan:

Datum predaje rada:

Predvideni datumi obrane: 17. - 21. srpnja 2023.

4. svibnja 2023. Zadatak zadao:

6. srpnja 2023.

Izv. prof .dr. sc. Tomislav Staroveški

Predsjodnik Povjerenstva: sc. Ivica Garašić

SADRŽAJ

SADRŽAJI
POPIS SLIKA III
POPIS TABLICAV
POPIS OZNAKA
SAŽETAKVII
SUMMARY
1. UVOD
 Problem nedostatka krutosti pri obradi industrijskim robotom
2. EKSPERIMENTALNI POSTAV I MJERNA OPREMA
2.1. Robotski obradni sustav
2.1.1. Robot ABB IRB 6660-205/1.9
2.1.2. Motorvreteno HSTEC FSB-SC-01-6000
2.2.1. Robot ABB IRB 4600-40/2.55
2.2.2. Mjerni uređaj Alicona IF-SensorR2511
2.2.2.1. Princip rada mjernog uređaja
2.3. Programska podrška
2.3.2. Programski paket Alicona MeasureSuite
3. IZRADA TEHNOLOŠKOG PROCESA OBRADE ZA ISPITNE UZORKE
3.1. Materijal obratka i karakteristike glodala
3.2. Stezna naprava
3.3. Operacije glodanja
3.3.1. Gruba obrada
5.5.2. FIIIA ODIADA
4. EKSPERIMENTALNI DIO
4.1. Priprema za robolsku obradu
4.1.2. Umjeravanje korisničkih koordinatnih sustava
4.1.3. Simulacija robotske obrade
4.1.3.1. Izrada virtualne robotske stanice u RobotStudio-u
4.1.3.2. Izrada programa za robot
4.2. RODOISKA ODFADA
4.3.1. Skeniranje ispitnih površina
4.3.2. Mjerenje parametara hrapavosti
5. REZULTATI I ANALIZA
6. ZAKLJUČAK

Izabela Mezga	Diplomski rad
LITERATURA	
PRILOZI	

Izabela Mezga

POPIS SLIKA

Slika 1.	Usporedba strukture (a) alatnog stroja [4], (b) robota s paralelnom kinematskom	1
	strukturom [2] i (c) robota sa serijskom kinematskom strukturom [2]	2
Slika 2.	Robotski obradni sustav	5
Slika 3.	Osi robota ABB IRB 6660 [11]	6
Slika 4.	Radni prostor robota ABB IRB 6660-205/1.9 [13]	7
Slika 5.	3D model sklopa motorvretena i prirubnice	8
Slika 6.	Frekvencijski pretvarač	8
Slika 7.	Robotski mjerni sustav	9
Slika 8.	Osi robota ABB IRB 4600-40/2.55 [14]	. 10
Slika 9.	Radni prostor robota ABB IRB 4600-40/2.55 [14]	.11
Slika 10	Mierni uređaj Alicona IF-SensorR25 [15]	11
Slika 11	Shematski prikaz miernog sustava temeljenog na varijaciji fokusa [16]	13
Slika 12	Grafičko korisničko sučelje programskog naketa <i>RobotStudio</i> sa virtualnim	. 15
onku 12.	operatorskim papelom	14
Slika 13	Grafičko korisničko sučelje Alicona Magsura Suita-2	15
Slike 14	2D model isnitnog uzerka	16
Slika 14.	Claura dimonzija protostag gladala Isaar Elash Salid 145, 100, 22, 10, 72, 2, D02	. 10 A
Slika 13.	Glavile uniterizije pistastog glodala iscal Flash Sond 143-100-22-10-72-3-K02-	•A 17
$\Omega_{\rm cl}^{1} = 16$	[20]	10
SIIKa IO.	(a) SD model 1 (b) lotografija stezne naprave	10
Slika $1/$.	Skiop sirovca i stezne naprave	. 19
Slika 18.	Gruba obrada vanjskih plona (<i>3D Adaptive Clearing</i>) – definiranje alata i	A 1
G111 10	parametara obrade	.21
Slika 19.	Putanja alata kod grube obrade vanjskih ploha	.21
Slika 20.	Gruba obrada utora (2D Pocket) - parametri obrade	. 22
Slika 21.	Putanja alata kod grube obrade utora	. 23
Slika 22.	Parametri fine obrade vanjskih ploha prve gornje razine	. 24
Slika 23.	Putanje alata kod fine obrade vanjskih ploha	. 25
Slika 24.	Fina obrada utora (2D Pocket) - parametri obrade	. 26
Slika 25.	Putanja alata kod fine obrade utora	. 26
Slika 26.	Završna analiza tolerancija	. 27
Slika 27.	Prikaz i redoslijed operacija obrade	. 27
Slika 28.	(a) Točka prihvata alata i (b) koordinatni sustav središnje točke alata [21]	. 29
Slika 29.	Provođenje umjeravanja koordinatnoga sustava alata	. 30
Slika 30.	Umjereno ishodište koordinatnoga sustava alata (tool frame), (a) položaj i (b)	
	orijentacija	. 30
Slika 31.	Definiranje dinamike alata (tool load)	. 31
Slika 32.	Provođenje umjeravanja korisničkog koordinatnog sustava	. 32
Slika 33.	Umierena nul-točka obratka (<i>user frame</i>) (Pozicija 1). (a) položaj i (b) orijentac	iia
		.33
Slika 34.	Umierena nul-točka obratka (<i>user frame</i>) (Pozicija 2). (a) položaj i (b) orijentac	iia
Since 5 ii		33
Slika 35	3D model robotske stanice u programskom paketu <i>RoboDK</i>	35
Slika 36	Virtualna robotska stanica u programskom paketu RobotStudio	36
Slika 30.	Fusion 360 - Post Process sučelje	37
Slika 37.	Izlazne datoteke nostrrocesora	38
SIIKa 30. Slika 20	DADID kod main ruting	20
SIIKA 39.	Die DADID kode ze energeiju "Crube chrede venislich nlehe"	20
SIIKa 40 .	DIO KAFID KOUA ZA OPERACIJU GIUDA ODFADA VANJSKIN PIONA	20
<u>ыка 41.</u>	KAFID KOU - <i>loolaala</i> 1 <i>woojaala</i>	. 39

Izabela Mezga

Slika 42.	Simulacija obrade na Poziciji 1	40
Slika 43.	Vizualna interpretacija parametra <i>Head angle</i> : (a) 30° (Pozicija 1) i (b) 180°	
	(Pozicija 2)	41
Slika 44.	Simulacija obrade na Poziciji 2	41
Slika 45.	Izvršavanje robotskog programa	42
Slika 46.	Robotska obrada na Poziciji 1	43
Slika 47.	Robotska obrada na Poziciji 2	44
Slika 48.	Izgled površina ispitnih uzoraka nakon obrade – Pozicija 1 (lijevo) i Pozicija 2	
	(desno)	44
Slika 49.	Ispitne površine	46
Slika 50.	Skeniranje ispitnih površina	46
Slika 51.	3D prikaz jedne od skeniranih površina (POZ1_P2_GORE)	47
Slika 52.	Karakteristične duljine izmjerenog profila hrapavosti [23]	48
Slika 53.	Prikaz rezultata mjerenja u MeasureSuite-u za jednu od ispitnih površina	
	(POZ1_P2_GORE)	49
Slika 54.	Grafički prikaz parametara hrapavosti za Poziciju 1	53
Slika 55.	Grafički prikaz parametara hrapavosti za Poziciju 2	53
Slika 56.	Usporedni prikaz prosječnih vrijednosti parametra Ra ispitnih površina za oba	
	uzorka	54
Slika 57.	Usporedni prikaz prosječnih vrijednosti parametra Rz ispitnih površina za oba	
	uzorka	54
Slika 58.	Ispitna površina obratka sa Pozicije 1 i pripadajući parametri hrapavosti Ra i R	<i>z</i> 58
Slika 59.	Ispitna površina obratka sa Pozicije 2 i pripadajući parametri hrapavosti Ra i R	<i>z</i> 58
Slika 60.	Smjerovi posmičnog gibanja na ispitnim površinama	59
Slika 61.	Rsk-Rku dijagram	61

Tablica 1	Značajke robota ABB IRB 6660-205/1 9 [12]	6
Tablica 2.	Karakteristike motorvretena HSTEC FSB-SC-01-6000	8
Tablica 3.	Značajke robota ABB IRB 4600-40/2.55 [14]	. 10
Tablica 4.	Tehničke specifikacije mjernog uređaja Alicona IF-SensorR25 [15]	.12
Tablica 5.	Karakteristike materijala AlMg4,5Mn [19]	17
Tablica 6.	Karakteristike glodala Iscar 145-100-22-10-72-3-R02-A [20]	18
Tablica 7.	Preporučene referentne duljine (cut-off) i duljine vrednovanja [24]	48
Tablica 8.	Definicija analiziranih parametara hrapavosti, izrađeno uz pomoć [25]	50
Tablica 9.	Rezultati mjerenja parametara hrapavosti na ispitnim površinama ($\lambda c = 0.8$ mm))52
Tablica 10.	Postoci rasta parametara hrapavosti Ra, Rq, Rt, Rz, Rp i Rv promjenom lokacije	
	obratka sa Pozicije 1 na Poziciju 2	55
Tablica 11.	Površine s najnižim i najvišim vrijednostima parametra Ra	57

Izabela Mezga

POPIS OZNAKA

Oznaka	Jedinica	Opis
a_p	mm	Aksijalna dubina rezanja
a_e	mm	Radijalna dubina rezanja
d	mm	Promjer glodala
f_z	mm/zub	Posmak po zubu glodala
ln	mm	Duljina vrednovanja profila hrapavosti
lr	mm	Referentna duljina profila hrapavosti
n	min ⁻¹	Frekvencija vrtnje glodala
Ra	μm	Srednje aritmetičko odstupanje profila hrapavosti
Rku	-	Zaobljenost profila hrapavosti
Rp	μm	Maksimalna visina vrha profila hrapavosti
Rq	μm	Srednje kvadratno odstupanje profila hrapavosti
Rsk	-	Simetričnost profila hrapavosti
Rt	μm	Ukupna visina profila hrapavosti
Rv	μm	Maksimalna dubina dna profila hrapavosti
Rz	μm	Maksimalna visina profila hrapavosti
Vc	m/min	Brzina rezanja
Vf	mm/min	Posmična brzina
Z.	-	Broj zubi glodala
λc	mm	Valna duljina profilnog filtera (cut-off)

Primjena industrijskih robota za postupke obrade odvajanje privlači sve više i više pažnje. U usporedbi s alatnim strojevima, industrijski roboti nude visoku fleksibilnost i niže investicijske troškove, no njihov nedostatak krutosti predstavlja glavnu prepreku postizanju uskih tolerancija i visoke kvalitete obrađenih površina. K tome, krutost robota nije konstantna vrijednost nego varira u njegovom radnom prostoru i ovisna je o samom položaju robota, što njegovu primjenu čini još izazovnijom. Stoga je u sklopu ovog rada proveden eksperiment s ciljem utvrđivanja utjecaja krutosti robota na teksturu površine obrađene glodanjem. Izvršena je obrada robotom u dva različita položaja, odnosno obrađena su dva identična ispitna uzorka na različitoj lokaciji unutar radnog prostora robota (jedan bliže bazi robota, a drugi udaljeniji od baze robota). U radu su također opisane i aktivnosti koje su prethodile samoj obradi (od izrade tehnološkog procesa do simulacija obrada). Shodno provedenoj analizi tekstura obrađenih površina, više vrijednosti parametara hrapavosti utvrđene su na obratku koji je bio udaljeniji od baze robota, odnosno koji je obrađivan sa ispruženom robotskom rukom. Ustanovljeno je da obrada sa smanjenom krutošću robotske ruke u ispruženom položaju, ima utjecaj na smanjenje kvalitete obrađene površine.

Ključne riječi: industrijski robot, robotsko glodanje, položaj robota, krutost robota, kvaliteta površine, analiza teksture površine

The application of industrial robots in machining processes is attracting more and more attention. Compared to machine tools, industrial robots offer higher flexibility and lower investment costs; however, their lack of stiffness is the main obstacle to achieving tight tolerances and high-quality machined surfaces. In addition, the stiffness of the robot is not a constant value, but varies in its working space and depends on the posture of the robot itself, which makes its application even more challenging. Therefore, as part of this thesis, an experiment was conducted to determine the influence of the robot stiffness on the texture of the milled surface. Robotic machining was performed at two different clamping positions, that is, two identical test samples were machined at different locations within the robot's workspace (one closer to the robot base and the other further away from the robot base). This thesis also describes the activities that preceded robotic machining (from the design of the technological process to machining simulations). According to the results obtained from the surface texture analysis, higher values of the roughness parameters were observed on the workpiece that was further away from the base of the robot and machined with an extended robot arm. It was found that machining with reduced stiffness of the robotic arm in an extended position negatively affected the quality of the machined surface.

Key words: industrial robot, robotic milling, robot posture, robot stiffness, surface quality, surface texture analysis

1. UVOD

Područja primjene industrijskih robota danas nadilaze granice klasične primjene kao što su zavarivanje, montaža i rukovanje materijalom. Industrijski roboti sve se više koriste u postupcima obrade odvajanjem kao što su brušenje, bušenje i glodanje. Za razliku od CNC strojeva industrijski roboti nude visoku fleksibilnost, niže investicijske troškove po kubnom metru radnog prostora kao i moguću interakciju s drugim strojevima ili dodatnim osima [1].

1.1. Problem nedostatka krutosti pri obradi industrijskim robotom

Kada se govori o primjeni industrijskih robota za obradu odvajanjem, razmatraju se dvije kinematske strukture robota, paralelna i serijska. Paralelna kinematska struktura sastoji se od zatvorenog kinematičkog lanca, a glavni dijelovi robota s takvom strukturom su pomična platforma (prihvatnica) povezana na nepomičnu bazu skupom identičnih ili različitih paralelnih krakova. Nasuprot tome, serijska kinematska struktura sastoji se od otvorenog kinematičkog lanca, a dijelovi mehaničkog sustava robota s takvom strukturom su kruti krakovi, koji se protežu od postolja do prihvatnice, a međusobno su povezani translacijskim ili rotacijskim zglobovima. Na prirubnicu robota mogu se pričvrstiti razni alati za obavljanje operacija obrade odvajanjem. Zbog strukture zatvorenog lanca, roboti s paralelnom kinematskom strukturom imaju karakteristike visoke krutosti i točnosti pozicioniranja u usporedbi s robotima sa serijskom kinematskom strukturom [2]. Međutim, takva struktura ograničava radni prostor robota i fleksibilnost [2]. Kao rezultat toga, današnja istraživanja više se fokusiraju na poboljšanje krutosti serijskog robota, na kojemu je i fokus u ovome radu.

Na slici 1 vidi se razlika u strukturi između alatnog stroja i industrijskog robota. Već iz samog pogleda na strukturu može se zaključiti da krutost alatnog stroja nadmašuje krutost industrijskog robota. Prema literaturi [3], krutost robota obično je manja od 1 N/µm dok je krutost alatnih strojeva obično veća od 100 N/µm. Općenito, krutost se može definirati kao omjer sile koja djeluje u ravnini presjeka i veličine elastičnih deformacija koje ona izaziva.

Slika 1. Usporedba strukture (a) alatnog stroja [4], (b) robota s paralelnom kinematskom strukturom [2] i (c) robota sa serijskom kinematskom strukturom [2]

Nedostatak krutosti industrijskog robota u odnosu na alatne strojeve može dovesti do znatnog pomaka vrha alata od zadane putanje kao i do vibracija uslijed djelovanja obradnih sila [1]. Ove vibracije koje se pojavljuju u određenim uvjetima obrade degradiraju završnu kvalitetu površine, a mogu uzrokovati i lom alata. Zbog toga je pri robotskom glodanju još uvijek veliki izazov stvoriti dijelove s prihvatljivim dimenzijskim tolerancijama i zadovoljavajućom kvalitetom obrađene površine. Pogreške koje se uočavaju na obratku mogu se podijeliti u dvije glavne kategorije [5]. Greške prve kategorije proizlaze iz mjernih i kinematičkih pogrešaka robota te iz deformacija zglobova robota uslijed djelovanja gravitacije i obradnih sila. Greške druge kategorije izazvane su vibracijama koje mogu nastati zbog velikih sila pri brzim pokretima robota ili zbog dinamičkih sila rezanja jer je alat u diskontinuiranom zahvatu s obratkom odnosno jer postoje diskontinuiteti u materijalu obratka. Tipično, greške prve kategorije utječu na dimenzijsku točnost robota, a greške druge kategorije na kvalitetu obrađene površine.

Prema literaturi [6], sama krutost robota ovisi o sljedećim čimbenicima: (1) geometrijskim i materijalnim svojstvima segmenata (krakova); (2) aktuatorima i prijenosnicima gibanja; i (3) položaju robota. Općenito, za dani robot, prva dva čimbenika rijetko variraju dok se njegov položaj neprestano mijenja tijekom obavljanja zadataka, pa stoga na njegovu krutost uglavnom utječe položaj. Kada se industrijski robot primijeni za operacije obrade odvajanjem kod kojih je jedan od glavnih zahtjeva dobra kvaliteta obrađene površine, može se reći da, za razliku od obrade CNC strojevima kod kojih je završna kvaliteta obrađene površine uglavnom funkcija samo procesnih parametara, na kvalitetu površine kod robotske obrade osim procesnih parametara izniman utjecaj ima i položaj robota, odnosno konfiguracija zglobova pri samoj obradi. Položaj robota, koji je pri samoj obradi striktno određen položajem obratka, izravno utječe na njegovu krutost. Navedene tvrdnje potvrđuju i istraživanja [7-8], kod kojih je dokazano da deformacije i krutost robota značajno variraju u njegovom radnom prostoru. Dakle, krutost robota nije konstantna vrijednost nego je funkcija njegova položaja i kod glodanja ovisi o lokaciji obratka.

Što se tiče procesnih parametara, oni uglavnom uključuju frekvenciju vrtnje glavnog vretena (brzinu rezanja), posmičnu brzinu te aksijalnu i radijalnu dubinu rezanja. Osim toga, dokazano je da je kvaliteta površine neposredno vezana uz kinematiku glodanja (protusmjerno ili istosmjerno glodanje) te uz smjer posmičnog gibanja [9].

1.2. Tekstura tehničkih površina

Suvremeni inženjerski proizvodi često, osim točnih dimenzija, zahtijevaju i određene karakteristike teksture površine. Tekstura površine proizvoda ima snažan utjecaj na funkcionalnost obrađenih dijelova, a posebno je važna kod površina koje dolaze u dodir s drugim površinama. Također, značajke kao što su estetski izgled, nosivost, otpornost na koroziju i trošenje te podmazivanje ovise o teksturi površine samog proizvoda. U uobičajenoj praksi nije moguće proizvesti savršenu površinu. Kod obrade odvajanjem dolazi do mikrogeometrijskih odstupanja obrađenih površina u odnosu na idealnu površinu. Ta mikrogeometrijska odstupanja, koja karakteriziraju kvalitetu obrađene površine, odnosno njezinu teksturu nazivaju se hrapavost površine. Osim hrapavosti, tekstura površine sadrži i komponentu valovitosti, a navedene komponente se prilikom mjerenja razdvajaju iz primarnog profila na dugovalne (valovitost) i kratkovalne (hrapavost) primjenom odgovarajućih profilnih filtera.

Hrapavost površine, čiji su osnovni pojmovi propisani standardom ISO 4287, može se pratiti preko više amplitudnih parametara profila hrapavosti, kao što su maksimalna visina vrha profila

Rp, maksimalna dubina dna profila Rv, maksimalna visina profila Rz, srednje aritmetičko odstupanje profila Ra [10]. Od standardiziranih parametara za mjerenje hrapavosti obrađene površine, u strojarskim primjenama najčešće se propisuju zahtjevi na vrijednosti parametara Ra i Rz.

1.3. Cilj i struktura rada

Polazna točka ovoga rada je činjenica da je krutost robota značajno ovisna o njegovom položaju. Cilj rada je primijeniti industrijski robot za obradu glodanjem te analizirati utjecaj položaja obratka u radnom prostoru robota na kvalitetu obrađene površine. Osnovna pretpostavka je da smanjena krutost robota u ispruženom položaju utječe na smanjenje kvalitete obrađene površine kod glodanja. U tu svrhu provedene su dvije obrade, jedna kada se obradak nalazio blizu baze robota, a druga kada je obradak bio udaljeniji od baze robota. U oba pokusa obrađivao se isti materijal, aluminijska legura AlMg4,5Mn. Utjecaj procesnih parametara na kvalitetu obrađene površine u ovom radu nije se razmatrao.

Ostatak ovog rada organiziran je na sljedeći način: najprije je opisan ispitni postav i dane su glavne karakteristike obradne i mjerne opreme. Zatim je, upotrebom *CAD/CAM* softvera *Fusion 360*, izrađen 3D model ispitnog uzorka i odgovarajuće stezne naprave te su generirane putanje vrha alata prilikom same obrade. Nakon toga, proveden je eksperimentalni dio u sklopu kojeg su predložene dvije lokacije unutar radnog prostora robota na kojima se u potpunosti mogu provesti obrade. Korištenjem softvera *RobotStudio* izvedene su simulacije obrade te je provedena i sama obrada. Naposljetku je izvršena analiza teksture obrađenih površina te je dan zaključak.

2. EKSPERIMENTALNI POSTAV I MJERNA OPREMA

Robotska ćelija eksperimentalnog postava sastoji se od dva industrijska robota od kojih je prvi namijenjen obradi odvajanjem, a drugi je opremljen dvama beskontaktnim senzorima za 3D skeniranje površina i mjerenje parametara hrapavosti. Robotski postav razvijen je na Katedri za alatne strojeve Fakulteta strojarstva i brodogradnje u sklopu provođenja projekta ARCOPS.

2.1. Robotski obradni sustav

Izabela Mezga

Za provođenje glodanja, korišten je robotski obradni sustav prikazan na slici 2. Obradni sustav sastoji se od industrijskog robota sa šest stupnjeva slobode gibanja (ABB IRB 6660-205/1.9), motorvretena (HSTEC FSB-SC-01-6000), reznog alata – prstastog glodala (Iscar 145-100-22-10-72-3-R02-A) i pripremka – aluminijske legure postavljene u steznu napravu. U nastavku poglavlja biti će opisane karakteristike korištene opreme.

Slika 2. Robotski obradni sustav

2.1.1. Robot ABB IRB 6660-205/1.9

Sama obrada izvedena je pomoću industrijskog robota švicarskog proizvođača ABB, model IRB 6660-205/1.9. Navedeni model je robot sa šest stupnjeva slobode gibanja (slika 3) čija nosivost iznosi 205 kg, a dohvat 1,9 m. Ostale značajke robota prikazane su u tablici 1, a radni prostor robota prikazan je na slici 4. Kako navodi proizvođač, ovaj model robota posebno je prilagođen i namijenjen za operacije obrade odvajanjem. U tu svrhu, drugi i treći zglob su paralelne kinematike, a maksimalno dopušteno ubrzanje niže je nego kod tradicionalnih robota

kako bi se dodatno povećala krutost robota. Na robot je montirana i posebna zaštita od nakupljanja odvojenih čestica kako se ne bi narušila funkcionalnost robota prilikom obrade.

Slika 3. Osi robota ABB IRB 6660 [11] Tablica 1. Značajke robota ABB IRB 6660-205/1.9 [12]

Značajke	Vrijednost		
Masa robota (kg)	1730		
Nosivost (kg)	205		
Broj stupnjeva slobode gibanja	6		
Točnost ponavljanja (mm)	0,07		
Točnost pozicioniranja (mm)	0,18		
Dohvat (m)	1,9		

Slika 4. Radni prostor robota ABB IRB 6660-205/1.9 [13]

Robot je opremljen upravljačkom jedinicom IRC5 i softverom za upravljanje robotom – *RobotWare*. Upravljačka jedinica robota je kabelom povezana sa operatorskim panelom (eng. *FlexPendant*) preko kojeg se vrši upravljanje robotom. Programiranje robota ostvaruje se pisanjem koda direktno u operatorski panel ili pomoću *RobotStudio* softvera.

2.1.2. Motorvreteno HSTEC FSB-SC-01-6000

Kako bi se ostvario glavni prigon kod glodanja, na prirubnicu robota pričvršćeno je motorvreteno (HSTEC FSB-SC-01-6000) čije su karakteristike prikazane u tablici 2. Na slici 5 prikazan je 3D model sklopa motorvretena s prirubnicom. Promjena frekvencije vrtnje motorvretena ostvaruje se pomoću frekvencijskog pretvarača, prikazanog na slici 6. Upravljanje frekvencijom vrtnje motorvretena nije automatizirano, stoga se tijekom same obrade frekvencija vrtnje motorvretena zadavala ručnim unošenjem potrebnih vrijednosti frekvencije napona koje odgovaraju željenoj frekvenciji vrtnje motorvretena.

Diplomski rad

Karakteristike	Vrijednost		
Vrsta motora	Trofazni asinkroni		
Nazivna snaga (kW)	1,5		
Nazivna brzina vrtnje (min ⁻¹)	14100		
Maksimalna brzina vrtnje (min ⁻¹)	20000		
Prihvat alata	HSK C-32		

Tablica 2. Karakteristike motorvretena HSTEC FSB-SC-01-6000

Slika 5. 3D model sklopa motorvretena i prirubnice

Slika 6. Frekvencijski pretvarač

2.2. Robotski mjerni sustav

U svrhu analize teksture obrađenih površina nakon obrade, koristio se robotski mjerni sustav prikazan na slici 7. Mjerni sustav korišten u eksperimentalnom dijelu ovoga rada sastoji se od robota ABB IRB 4600-40/2.55 na čiju je prihvatnicu pričvršćen mjerni uređaj - Alicona IF-SensorR25 (zajedno sa 3D skenerom - ATOS 5X). Na slici je vidljiva i zaštitna komora s predtlakom u koju se dovode uređaji nakon obavljanja svoje funkcije kako bi se zaštitili od vanjskih utjecaja.

U nastavku će se opisati karakteristike navedenoga robota te korišteni mjerni uređaj i princip njegova rada.

Slika 7. Robotski mjerni sustav

2.2.1. Robot ABB IRB 4600-40/2.55

Kako bi se omogućilo automatsko vođenje mjernog uređaja, sam uređaj instaliran je na prihvatnicu robota ABB IRB 4600-40/2.55. Radi se o 6-osnom robotu serijske kinematičke strukture (slika 8), nosivosti 40 kg i dohvata 2.55 m. Ostale značajke robota prikazane su u tablici 3, a radni prostor robota na slici 9. Kao i prethodni, robot je opremljen upravljačkom jedinicom IRC5 koja je povezana sa operatorskim panelom.

Slika 8. Osi robota ABB IRB 4600-40/2.55 [14] Tablica 3. Značajke robota ABB IRB 4600-40/2.55 [14]

Značajke	Vrijednost		
Masa robota (kg)	465		
Nosivost (kg)	40		
Broj stupnjeva slobode gibanja	6		
Točnost ponavljanja (mm)	0,06		
Točnost pozicioniranja (mm)	0,02		
Dohvat (m)	2,55		

Slika 9. Radni prostor robota ABB IRB 4600-40/2.55 [14] 2.2.2. Mjerni uređaj Alicona IF-SensorR25

IF-SensorR25 (slika 10) je optički 3D mjerni instrument, austrijskog proizvođača *Bruker Alicona*, a namijenjen je automatiziranom mjerenju oblika i hrapavosti u proizvodnji. Mjerni senzor može se integrirati u proizvodnu liniju, a u kombinaciji s robotom olakšava mjerenje površinskih karakteristika (*Ra*, *Rz* itd.) na pozicijama većih gabarita. Tehničke specifikacije mjernog uređaja prikazane su u tablici 4. Iz priložene tablice može se vidjeti da su specifikacije dijelom određene korištenim objektivom.

Slika 10. Mjerni uređaj Alicona IF-SensorR25 [15]

Princip mjerenja	beskontaktni, optički, trodimenzionalni, temeljen na varijaciji fokusa									
Raspon pozicioniranja (Z)		25 mm (mot.)								
Uvećanje objektiva		10x	20x	50x	2xSX	4xAX	5xAX	10xAX	20xAX	50xSX
Radna udaljenost	mm	17,5	16	10,1	34	30	34	33,5	20	13
Lateralno mjerno područje (X,Y)	mm	2	1	0,4	10	4,87	3,61	2	1	0,4
(X x Y)	mm ²	4	1	0,16	100	23,72	13,03	4	1	0,16
Vertikalna rezolucija	nm	100	50	20	3500	620	460	130	70	45
Točnost koraka (1 mm)	%	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Min. mjerljiva hrapavost (Ra)	μm	0,3	0,15	0,08	-	-	-	0,45	0,25	0,15
Min. mjerljiva hrapavost (Sa)	μm	0,15	0,075	0,05	-	-	-	0,25	0,1	0,08
Min. mjerljivi polumjer	μm	5	3	2	20	12	10	5	3	2

Tablica 4. Tehničke specifikacije mjernog uređaja Alicona IF-SensorR25 [15]

2.2.2.1. Princip rada mjernog uređaja

Tehnički princip na kojem se zasniva rad mjernog uređaja Alicona IF-SensorR25 naziva se varijacija fokusa (eng. *Focus Variation* - FV), a pripada familiji beskontaktnih mjernih tehnika. Varijacija fokusa je relativno nova tehnologija koja kombinira malu dubinu fokusa (eng. *Depth of Focus*) optičkog sustava s vertikalnim pozicioniranjem kako bi pružila informacije o razmatranoj površini [16]. Na taj način omogućeno je izvođenje 3D mjerenja tehničkih površina, a također se pružaju i informacije o boji same površine.

Budući da se opisana tehnika oslanja na analizu varijacije fokusa, primjenjiva je samo na površine gdje fokus dovoljno varira tijekom procesa vertikalnog pozicioniranja. Površine kojima se fokus tijekom vertikalnog pozicioniranja ne mijenja, kao što su prozirni uzorci ili površine s malom lokalnom hrapavošću, ne mogu se mjeriti [16].

Mjerni uređaji zasnovani na principu varijacije fokusa sadrže preciznu optiku, vrlo sličnu onoj konvencionalnog mikroskopa. Glavnu komponentu optičkog sustava takvog uređaja čini objektiv odgovarajućeg uvećanja (npr. 10x, 20x, 50x itd.). Korištenjem objektiva sa većim uvećanjem smanjuje se dubinska oštrina (eng. *Depth of Field*) što za posljedicu ima poboljšanje vertikalne rezolucije, no ujedno se smanjuje i lateralno mjerno područje. Tehnologija se može koristiti s koaksijalnim izvorom svjetlosti ili pak sa LED svjetlećim prstenom (eng. *Ring light*) koji omogućuje osvjetljavanje i mjerenje površinskih karakteristika koje imaju izraženi nagib u vertikalnoj ravnini. Dodatnom upotrebom polarizatora moguće je smanjenje refleksije površine čime je omogućena karakterizacija vrlo glatkih ili poliranih površina [17].

U nastavku je, pomoću shematskog prikaza na slici 11, opisan princip rada mjernog sustava koji se temelji na varijaciji fokusa.

Pomoću djelitelja snopa, svjetlost koja izlazi iz izvora svjetlosti usmjerena je na uzorak putem objektiva. Na obodu objektiva nalazi se LED svjetleći prsten za osvjetljavanje površine. Sve zrake koje se reflektiraju od površine uzorka i prolaze kroz leću objektiva prikupljaju se pomoću senzora koji se nalazi iza djelitelja snopa. Zbog male dubinske oštrine optike samo maleno područje na objektu je izoštreno, odnosno u fokusu. Kako bi se detektirala cijela vertikalna površina objekta, optički sustav se, pomoću preciznog prigona za pozicioniranje, pomiče okomito duž optičke osi kontinuirano bilježeći podatke s površine. Na taj način različiti dijelovi površine dolaze u fokus te se ostvaruje varijacija fokusa. Na prigonu za pozicioniranje nalazi se enkoder koji mjeri udaljenost za koju se pomakne optički sustav nakon svakog fokusiranja. Važno je spomenuti da je broj vertikalnih skeniranja povezan s vertikalnom rezolucijom – što je manja vrijednost vertikalne rezolucije (što je bolja vertikalna rezolucija) potreban je veći broj vertikalnih skeniranja u manjim koracima. Softver, zahvaljujući odgovarajućim algoritmima, koji podatke s senzora pretvaraju u oblak točaka, može detektirati točke koje su u fokusu (na svakom položaju optičkog sustava) i pohraniti njihovu boju, visinu i x-y koordinate. Kada su svi podaci prikupljeni, sustav rekonstruira 3D oblik objekta spajanjem pohranjenog oblaka točaka.

Slika 11. Shematski prikaz mjernog sustava temeljenog na varijaciji fokusa [16]

2.3. Programska podrška

Kao programska podrška obradnom robotu, u ovom radu korišten je softver *ABB RobotStudio* u kojem je provedena simulacija robotskih obrada prije puštanja programa na stvarnom robotu. Nakon robotskih obrada, a s ciljem analize teksture ispitnih površina korišten je softver *Alicona MeasureSuite*.

2.3.1. Programski paket ABB RobotStudio

RobotStudio je ABB-ov softver za simulaciju i *off-line* programiranje robota koji ima mogućnost prikaza potpune digitalne replike stvarnog robota. Temelji se na tehnologiji virtualnog kontrolera (eng. *Virtual Contoller Technology*). Virtualni kontroler ponaša se identično kao i stvarni kontroler, čime je omogućeno da ono što se vidi na zaslonu računala odgovara načinu na koji će se robot kretati u stvarnosti. Temeljem navedene tehnologije, nakon što se programski kod za robot testira *off-line* na računalu, on se može poslati izravno na robotski kontroler te je odmah moguće izvršavanje koda sa stvarnim robotom. U programu je moguće i učitavanje virtualnog operatorskog panela (eng. *Virtual FlexPendant*) koji je identičan stvarnom panelu osjetljivom na dodir te omogućuje odabir svih opcija kao i na stvarnom panelu. Softver također nudi mogućnost uvoza različitih formata *CAD* datoteka (npr. .STEP, .IGES, .STL) u virtualni prostor kako bi se omogućila što vjernija simulacija.

📴 🔛 17 - 17 - 12 - 7			Proje	ct1 - RobotSt	udio						o ×
File Home Modeling Simulation C	Controller RAPID Add-Ins										۵ 🕜
Add Controller*	icate Restart Backup ☐ File Transfer 20 Servents 20 Serverts 20 S	nline Monitor gnal Analyzer Online - Jobs	➡ Inputs/Outputs ➡ I/O Engineering I/O	Configuration	Load Parameters + Parameters Properties +	Installation Manager	Lonveyor Tracking Integrated Vision Collision Avoidance	ty Operating Operato Mode Window Virtu	Task Frames Change Options	Go C Offine R	Create Open elation Relation
Controller - x	Project1:View1 x		1.0								Ŧ
Expand all Current Station Geodo 50227 Gonfiguration Evention Evention Evention Evention Evention Evention	Hotors O	NEX mo		л X	лаен						
	SELA Stopped	(Speed 100%)		⇒ 10			P				
온 Jogging			100 million	0			- Andrewson				
Tap a property to chang	eit	Position									
Mechanical unit:	ROB_1	1: 0.0	0 0								
Absolute accuracy:	Off	2: 0.0	0 0	XU	and the second		E.				
hasonice decunder		3: 0.0	0 0		Enable	_					
Motion mode:	Axis 1 - 3	4: 0.0	0 0								
Coordinate system:	World	5: 50.0 6: 0.0		\Im	at a	/					
Tool:	tool0	0.			6 1	-		/	/		
Work object:	wobi0	Position Form	at	THE AS					_		
Baudanada	laado						_ /	/			
Payload:	10ad0	- Joystick directions						1	1		
Joystick lock:	None		2		Hold To Hun				1		
Increment:	None			~							
		21.	2								
Align Go	o To Activate										
									5		∓x
Production & Jogging			00				Time	Category			^
	(i) 6660-502287 (Station): 10010 - Motors OEE	etato	-	and the second se			30.5.2023. 19:43	105 Event Log			
	(i) 6660-502287 (Station): 10010 - Motors ON:	state					30.5.2023. 19:43	105 Event Log			
							00.02020.10.10				-
										Co	ntroller status: 1/1

Slika 12. Grafičko korisničko sučelje programskog paketa *RobotStudio* sa virtualnim operatorskim panelom

2.3.2. Programski paket Alicona MeasureSuite

Kao programska podrška mjernom sustavu u ovom radu, korišten je softver *Alicona MeasureSuite*. Navedeni programski alat služi za rukovanje izmjerenim 3D skupovima podataka i za izvođenje različitih mjerenja na tim skupovima podataka. Putem različitih mjernih modula, na dobivenim skupovima podataka moguće je mjerenje parametara hrapavosti, parametara oblika, parametara trošenja te mnogih drugih (slika 13 desno).

Slika 13. Grafičko korisničko sučelje Alicona MeasureSuite-a

Unutar samog softvera nalazi se ekstenzijski modul *LaboratoryMeasurementModule* koji služi za pokretanje ciklusa za skeniranje, generiranje 3D skupova podataka i za upravljanje mjernim uređajem putem grafičkog korisničkog sučelja [18].

3. IZRADA TEHNOLOŠKOG PROCESA OBRADE ZA ISPITNE UZORKE

Kako bi se robotu zadala putanja vrha alata tijekom obrade, bilo je potrebno izraditi tehnološki proces i simulaciju obrade ispitnih uzoraka. Za izradu simulacije korišten je *CAD/CAM* softver *Fusion 360* - sučelje *Manufacture*.

U istom softveru, u sučelju *Design*, prethodno je napravljen 3D model ispitnog uzorka za glodanje (slika 14) i to korištenjem opcija *Sketch* i *Extrude*. Kod modeliranja ispitnog uzorka nastojao se napraviti model koji će nakon obrade imati što više ispitnih površina za mjerenje hrapavosti.

Slika 14. 3D model ispitnog uzorka

3.1. Materijal obratka i karakteristike glodala

Za materijal obratka odabrana je aluminijska legura oznake AlMg4,5Mn, čije karakteristike su prikazane u tablici 5. Polazni pripremak je kvadar dimenzija 100x100x60 mm.

Tablica 5. Karakteristike materijala AlMg4,5Mn [19]							
Kemijski sastav		Svojstva materijala					
Al	92,4-95,6%	Gustoća, ρ	2,7 g/cm ³				
Mg	4 - 4,9%	Talište, T	580 – 640 °C				
Mn	0,4 – 1%	Modul elastičnosti, E	68 GPa				
Si	0,4% max.	Vlačna čvrstoća, <i>Rm</i>	290 – 390 MPa				
Fe	0,4% max.	Koeficijent toplinske vodljivosti, k	120 W/mK				
Cr	0,05-0,25%	Koeficijent toplinske rastezljivosti, α	24 µm/mK				
Zn	0,25% max.						
Ti	0,15% max.						
Cu	0,1% max.						
Ostalo	0,15% max.						

Za samu obradu izabran je alat - prstasto glodalo od tvrdog metala (eng. *solid carbide*) oznake Flash Solid 145-100-22-10-72-3-R02-A, proizvođača *Iscar*. Na slici 15 označene su glavne geometrijske veličine glodala, a tablica 6 sadrži popis karakteristika navedenog alata.

Slika 15. Glavne dimenzije prstastog glodala Iscar Flash Solid 145-100-22-10-72-3-R02-A [20]

Karakteristika	Veličina
Promjer, d	10 mm
Kut spirale, ω_s	45°
Maksimalna dubina rezanja, <i>a_{pmax}</i>	22 mm
Ukupna dužina, <i>l</i>	72 mm
Broj zubi, z	3
Radijus vrha alata, r_{ε}	0,2 mm
Minimalan posmak po zubu, f_{zmin}	0,03 mm
Maksimalan posmak po zubu, f _{zmax}	0,1 mm
Kvaliteta	IC08

Tablica 6. Karakteristike glodala Iscar 145-100-22-10-72-3-R02-A [20]

3.2. Stezna naprava

Za steznu napravu odabran je paralelni škripac koji i inače ima čestu primjenu kod glodanja. Sastoji se od pomične čeljusti koja može mijenjati svoj položaj i nepomične čeljusti koja je fiksna. Pomična čeljust giba se translatorno, a samo gibanje se ostvaruje ručnim zakretanjem navojnog vretena pri čemu se postiže potrebna sila stezanja.

Kako bi se izbjegla mogućnost potencijalnih kolizija između alata i stezne naprave pri stvarnoj obradi, izrađen je 3D model stezne naprave koji će se ubaciti u simulaciju obrade. 3D model izrađen je prema već postojećoj steznoj napravi. Na slici 16 vidljiv je usporedni prikaz 3D modela stezne naprave i fotografija stvarne stezne naprave prema kojoj je sam model napravljen. Modeliranje pojedinih elemenata stezne naprave provedeno je u sučelju *Design* programskog paketa *Fusion 360* korištenjem opcija kao što su *Sketch, Extrude, Revolve, Path Pattern, Rectangular Pattern, Hole* itd. Nakon toga elementima su korištenjem opcije *Joint* dodijeljene međusobne veze čime je dovršena izrada cjelokupnog modela.

Slika 16. (a) 3D model i (b) fotografija stezne naprave

Fakultet strojarstva i brodogradnje

3.3. Operacije glodanja

Nakon što je napravljen 3D model obratka i stezne naprave u sučelju *Design*, prelazi se na sučelje *Manufacture* koje omogućuje izradu simulacije obrade. U tu svrhu obradak se najprije dodjeljivanjem međusobnih veza (*Joints*) postavlja unutar čeljusti stezne naprave te se definiraju dimenzije sirovca (100x100x60 mm). Zbog same geometrije komada, obradu je bilo moguće izvesti u jednom stezanju. Prije izrade same simulacije obrade, bilo je potrebno odabrati ishodište koordinatnoga sustava obratka tzv. nul-točku obratka. Nul-točka je postavljena u jedan od vrhova pripremka, a os Z je orijentirana tako da pozitivan smjer osi Z odgovara smjeru odmicanja alata (slika 17).

Slika 17. Sklop sirovca i stezne naprave

Kako bi se dobio konačan oblik, obradak mora proći kroz niz operacija grube i fine obrade. Na početku svake obrade odvajanjem potrebne su operacije grube obrade pri čemu se uklanja najveća količina materijala, nakon čega obradak poprima približan oblik uz malu količinu materijala ostavljenog za finu obradu. Nakon fine obrade, obradak poprima konačan oblik i zahtijevanu kvalitetu obrađene površine.

3.3.1. Gruba obrada

Cilj grube obrade je ukloniti što veću količinu materijala u što kraćem vremenu obrade. U tu svrhu, obično se biraju veći posmaci i veće dubine rezanja dok je brzina rezanja nešto manja nego kod fine obrade da bi se smanjilo trošenje alata.

Kako bi se dobio zadani oblik izratka (slika 14), gruba obrada u ovom radu podijeljena je na (1) grubu obradu vanjskih ploha i (2) grubu obradu utora.

Gruba obrada vanjskih ploha izvedena je operacijom *3D Adaptive Clearing*. Kod navedene strategije glodanja najprije se pomoću veće aksijalne dubine rezanja (*Maximum Roughing Stepdown*) uklanja najveći dio materijala, a zatim se ostatak materijala skida od dna prema gore manjim aksijalnim dubinama (*Fine Stepdown*).

Na temelju kataloških vrijednosti proizvođača, odabrana je brzina rezanja koja iznosi $v_c = 230$ m/min. Za odabranu brzinu rezanja, frekvencija vrtnje glodala iznosit će $n = v_c / (d * \pi) = 230 / (0,01 * \pi) \approx 7321 \text{ min}^{-1}$. Također je odabrana i posmična brzina $v_f = 2400 \text{ mm/min}$, pri čemu posmak po zubu iznosi $f_z = v_f / (z * n) = 2400 / (3*7321) \approx 0,11 \text{ mm/zub}$ što je prihvatljivo.

Za maksimalnu aksijalnu dubinu rezanja tijekom obrade (*Maximum Roughing Stepdown*) odabrana je vrijednost $a_{pmax} = 5$ mm. Za maksimalnu radijalnu dubinu rezanja (*Optimal Load*) odabrano je $a_{emax} = 1,5$ mm. Za kinematiku glodanja je odabrano istosmjerno glodanje (*Climb*) za koje je poznato da povećava kvalitetu obrađene površine u odnosu na protusmjerno glodanje. Kao dodatak za finu obradu, ostavljeno je 1 mm materijala na dnu i na bokovima. Tolerancija

obrade postavljena je na 0,1 mm.

Svi definirani parametri kao i definirani alat vidljivi su na slici 18. Alat koji je definiran za ovu obradu koristio se tijekom cijele obrade.

Nakon što su postavljeni svi parametri, softver generira putanje alata za obradu, a rezultat je prikazan na slici 19. Plavom bojom označena su gibanja kod kojih alat reže materijal (*Cutting*), žutom bojom označeno je odmicanje alata (*Retract*), a zelenom ulazak odnosno izlazak alata iz zahvata (*Lead In/Out*).

Slika 18. Gruba obrada vanjskih ploha (*3D Adaptive Clearing*) – definiranje alata i parametara obrade

Slika 19. Putanja alata kod grube obrade vanjskih ploha

Za grubu obradu utora odabrana je operacija *2D Pocket* sa brzinom rezanja i posmičnom brzinom jednakom kao i kod grube obrade vanjskih ploha.

Ulazak alata u zahvat s obratkom je pod kutem od 2° (*Ramp*), a sama putanja ulaska je oblika spirale (*Helix*). Maksimalna radijalna dubina rezanja (*Maximum Stepover*) postavljena je na $a_{emax} = 6$ mm. Kako bi se odredila aksijalna dubina rezanja, uzeto je u obzir da ukupna dubina džepa iznosi 5,20 mm. Radi sigurnosti i zbog pretpostavke da bi obrada džepa u jednom aksijalnom prolazu, s obzirom na povećanu radijalnu dubinu rezanja, predstavljala preveliko opterećenje za sam alat i robot, omogućena je obrada u više aksijalnih razina (*Multiple Depths*), a za maksimalnu aksijalnu dubinu rezanja (*Maximum Roughing Stepdown*) odabrana je vrijednost $a_{pmax} = 2$ mm. Također je odabrano da se ukupna dubina podijeli na jednake aksijalne prolaze (*Use Even Stepdowns*). Uzimajući u obzir da je ukupna dubina džepa 5,20 mm, a maksimalna dubina rezanja 2 mm, obrada će se izvesti u tri aksijalna prolaza s jednakom aksijalnom dubinom rezanja $a_p = 5,20/3 = 1,73$ mm.

Kao dodatak za finu obradu, ostavljeno je 1 mm materijala na dnu i na bokovima. Tolerancija obrade postavljena je na 0,1 mm.

8 0 0 1	25	8 0 0 🗎	25	
Passes		▼ Linking		
Tolerance	0.1 mm	High Feedrate Mode	Preserve I	
Sideways Compen	∕o Left ▼	Allow Rapid Retract		
Minimum Cutting Ra	0 mm	Safe Distance	3 mm	
Finishing Passes		Keep Tool Down		
Preserve Order		Maximum Stay-Dor	50 mm	
loth Ways		Lift Height	0 mm	
Maximum Stepover 6 mm		▼ Leads & Transitions		
Jse Morphed Spirz 😡		Lead-In (Entry)		
Allow Stepover Cu		Horizontal Lead-In	1 mm	
Smoothing Deviation	0.1 mm	Lead-In Sweep Ar	90 deg	
🕶 🗹 Multiple Dep	ths	Linear Lead-In Dis	0 mm	
Maximum Roughinç	2 mm	Perpendicular	0	
Finishing Stepdow	•	Vertical Lead-In Rt	1 mm	
Finishing Stepdown	0.2 mm	Lead-Out (Exit)		
Wall Taper Angle (c	0 deg	Same as Lead-In		
Use Even Stepdow		▼ Ramp		
Order by Depth		Ramp Type	Helix	
🗸 🖉 Stock to Lea	ve	Ramping Angle (de	2 deg	
Radial Stock to Lec	1 mm	Maximum Ramp St	2 mm	
Axial Stock to Leave	1 mm	Ramp Clearance H	2.5 mm	
Smoothing		Ramp Radial Clear	0 mm	
_ shooting		Helical Ramp Diam	9 mm	

Slika 20. Gruba obrada utora (2D Pocket) - parametri obrade

Slika 21. Putanja alata kod grube obrade utora

3.3.2. Fina obrada

Kako bi se uklonio dodatak materijala ostavljen kod grube obrade, potrebno je provesti finu obradu. Finom obradom ukloniti će se 1 mm materijala na dnu i na bokovima ploha. Fina obrada obično se izvodi manjim posmacima po zubu glodala i manjim dubinama rezanja kako bi se dobila bolja kvaliteta obrađene površine. Brzina rezanja je nešto veća u svrhu zadržavanja produktivnosti.

Kako bi se dobio konačan oblik izratka, fina obrada je u ovom radu podijeljena na (1) finu obradu vanjskih ploha i (2) finu obradu utora.

Fina obrada vanjskih ploha se zbog same geometrije obratka izvodi na tri razine po Z-osi. Kod svake razine koristila se operacija 2D Contour. Za svaku razinu strategija je sljedeća: Najprije se odabere vanjska kontura oko koje alat mora prolaziti, a samo glodanje se oko konture odvija u više radijalnih prolaza (*Multiple Finishing Passes*) koji su međusobno razmaknuti za iznos radijalne dubine rezanja (*Stepover*). Broj radijalnih prolaza ovisi o površini dna svake razine, a radijalna dubina rezanja postavljena je fiksno na $a_e = 1$ mm. Nakon što se ukloni sav materijal sa dna svake razine, alat ulazi u završni zahvat s bokom gdje je aksijalna dubina rezanja veća (jednaka je visini boka svake razine, $\approx 7,3$ mm). Kako bi se tijekom obrade boka smanjilo opterećenje na alat i robot, tijekom obrade dna ostavljeno je 0,5 mm materijala (*Radial Stock to Leave*). Taj materijal uklanja se zajedno sa materijalom na boku u završnom prolazu svake razine.
Za brzinu rezanja fine obrade odabrana je vrijednost $v_c = 250$ m/min. Za odabranu brzinu rezanja, frekvencija vrtnje glodala iznosit će $n = v_c / (d * \pi) = 250 / (0,01 * \pi) \approx 7958$ min⁻¹. Također je odabrana i posmična brzina $v_f = 2000$ mm/min, pri čemu posmak po zubu iznosi $f_z = v_f / (z * n) = 2000 / (3*7958) \approx 0,084$ mm/zub što je prihvatljivo. Navedeni parametri koristili su se za cijelu finu obradu.

Tolerancija je za cijelu finu obradu postavljena na 0,01 mm.

Kako bi se odabrana kontura na svakoj razini obradila na točnu vrijednost, potrebno je uzeti u obzir promjer alata te postaviti *offset* na konturu u vrijednosti radijusa glodala. Softver to radi automatski, no daje mogućnost odabira u kojem smjeru primijeniti samu kompenzaciju alata (*Sideways Compensation*). Kako bi se ostvarilo istosmjerno glodanje, odabrana je lijeva kompenzacija (*Left*).

Nakon što se postave svi parametri, generiraju se putanje alata za svaku razinu kako je prikazano na slici 23.

2 3 7 1	<u>F</u>	▼ Passes			
Tool		Tolerance	0.01 mm		
		Sideways Comp	er 🔏 Left 🔹		
Fool	Select	Compensation Ty	pe In computer *		
	#1 - Ø10R0.2	Minimum Cutting	Ra 0 mm		
Coolant	Disabled •	Finishing Smooth	in 0 mm		
	0	Multiple Finishing	F 🗹		
Feed & Speed		Number of Finish	in 11		
	Curtan a	Stepover	1 mm		
reset	Custom •	Leads on all Finit	sh 🔲		
Spindle Speed	7957.75 rpm	Finish Feedrate	2000 mm/min		
Surface Speed	250 m/min	Repeat Finishing	P		
	7067 75	Finishing Overlag	3 mm		
Ramp Spindle Spe	7957.75 rpm	Lead End Distan	ce 0 mm		
Cutting Feedrate	2000 mm/min	Outer Corner Mo	de 🧹 Roll arc 🔻		
Feed per Tooth	0.0837758 mm	Tangential Fragm	e 5 mm		
		Preserve Order			
.ead-In Feedrate	666.667 mm/min	Both Ways			
.ead-Out Feedrate	2000 mm/min	Roughing P	asses		
Ramp Feedrate	1500 mm/min	Multiple De	pths		
Plunge Feedrate	666.667 mm/min	Chamfer	Chamfer		
Plunge Feed per R	0.0837758 mm	▼ Ø Stock to Leave			

Slika 22. Parametri fine obrade vanjskih ploha prve gornje razine

Slika 23. Putanje alata kod fine obrade vanjskih ploha

Fina obrada utora izvedena je operacijom *2D Contour* pri čemu su parametri rezanja, kao što su brzina rezanja i posmična brzina, jednaki kao i kod fine obrade vanjskih ploha.

Ulazak alata u zahvat s materijalom namješten je pod kutem od 2° (*Ramp*), a sama putanja je oblika spirale (*Helix*). Operacija se izvodi sa ukupno šest radijalnih prolaza (*Multiple Finishing Passes*), pri čemu je radijalna dubina rezanja $a_e = 1,5 \text{ mm}$ (*Stepover*). Aksijalna dubina rezanja a_p postavljena je na vrijednost 1 mm pri obradi dna utora, jer je toliko ostavljeno za finu obradu, dok pri obradi boka a_p iznosi 5,20 mm što odgovara visini boka.

Diplomski rad

Slika 24. Fina obrada utora (2D Pocket) - parametri obrade

Slika 25. Putanja alata kod fine obrade utora

Ovom operacijom je završena cjelokupna obrada. Nakon obrade napravljena je analiza tolerancija te je vidljivo da su sve obrađene površine unutar zadanih tolerancija (slika 26). Također je vidljivo i ukupno vrijeme obrade koje iznosi 29 min i 24 s.

Fakultet strojarstva i brodogradnje

Na slici 27 vidljiv je prikaz i redoslijed izvršavanja svih opisanih operacija (ukupno ih ima 9).

Slika 27. Prikaz i redoslijed operacija obrade

4. EKSPERIMENTALNI DIO

Kako bi se ispitao utjecaj krutosti robota na teksturu obrađene površine, proveden je eksperimentalni dio. U sklopu eksperimenta izvršena je obrada robotom u dva različita položaja, odnosno obrađena su dva identična ispitna uzorka koja su se nalazila na različitoj lokaciji u radnom prostoru robota. Pri tome je pozicija prvoga obratka bila blizu baze robota (gdje se očekivala velika krutost robota pri obradi tog obratka) dok je drugi obradak bio udaljeniji od baze robota (gdje je očekivana smanjena krutost robota). Pozicija obratka koji se nalazio blizu baze robota se u ostatku rada označava sa "Pozicija 1", dok se pozicija obratka koji je bio udaljeniji od baze robota označava sa "Pozicija 2". Prije provođenja robotske obrade, bilo je potrebno provesti i neke pripremne aktivnosti kao što su umjeravanje alata i obratka, generiranje programskog koda za robot te simulacija same obrade. Nakon obrade provedeno je skeniranje ispitnih površina te mjerenje parametara hrapavosti. Sve provedene aktivnosti opisane su u nastavku.

4.1. Priprema za robotsku obradu

U svrhu pripreme robota za samu obradu provedeno je umjeravanje koordinatnog sustava alata te koordinatnih sustava pojedinih obratka. Nakon toga je primjenom odgovarajućeg programskog alata izrađena virtualna robotska stanica i programski kod za robot te je provedena simulacija obrade.

4.1.1. Umjeravanje koordinatnoga sustava alata

Općenito, prije obavljanja bilo kakvog zadatka s robotom, potrebno je definirati dio robota koji bi trebao dotaknuti ciljanu točku. U ovom slučaju zadatak robota je obrada odvajanjem. Cilj je dakle, definirati vrh alata, odnosno ishodište koordinatnoga sustava alata kojim će se vršiti obrada. Definirani vrh alata će tijekom same obrade slijediti putanje koje su generirane prilikom izrade tehnološkog procesa u *CAM* sustavu (u ovom slučaju *Fusion 360*). Prema tvorničkim postavkama, ABB-ovi roboti pretpostavljaju da na kraju robotske ruke nema pričvršćenog alata i smatraju imaginarnu točku u središtu prirubnice, odnosno u osi šestog zgloba, središnjom točkom alata (eng. *Tool Center Point* – TCP). Taj preddefinirani koordinatni sustav naziva se koordinatni sustav prihvata alata (nulti koordinatni sustav alata), a imaginarni alat ima fiksno ime, *tool0*. Prema ovoj točci dalje se definira svaki koordinatni sustav alata. Koordinatni sustav alata definira se pomakom po tri osi (*x*, *y* i *z*) i rotacijama (*q1*, *q2*, *q3*, *q4*) od točke prihvata alata.

Slika 28. (a) Točka prihvata alata i (b) koordinatni sustav središnje točke alata [21] Za umjeravanje koordinatnoga sustava alata u ovom radu odabrana je "Metoda dodira četiri točke" koja je pogodna u slučajevima kada je alat orijentiran duž Z-osi prirubnice. Kako bi se provela navedena metoda, najprije je u držač alata motorvretena stegnut šiljak za umjeravanje pri čemu je zabilježen njegov ispon (udaljenost vrha šiljka od držača alata). Za fiksno postolje u prostoru pričvršćen je drugi šiljak. Ručnim vođenjem robota pomoću operatorskog panela (eng. *FlexPendant*), šiljak za umjeravanje pričvršćen na robotsku ruku dovodio se, s maksimalnom pažnjom, u vrh fiksnog šiljka iz četiri različita smjera. Na slici 29 prikazan je jedan od položaja šiljka prilikom umjeravanja.

Slika 29. Provođenje umjeravanja koordinatnoga sustava alata

Nakon provođenja opisane metode, upravljačka jedinica robota je, na temelju poznatog kinematičkog modela robota, u mogućnosti izračunati točku ishodišta koordinatnoga sustava alata. Na slici 30 prikazane su dobivene vrijednosti koje definiraju položaj i orijentaciju točke središta alata (TCP) u odnosu na preddefinirani koordinatni sustav prihvata alata.

Slika 30. Umjereno ishodište koordinatnoga sustava alata (*tool frame*), (a) položaj i (b) orijentacija

4.1.2.

Osim položaja i orijentacije koordinatnog sustava vrha alata (*tool frame*), poželjno je definirati i dinamiku alata (*tool load*). Time se upravljačkom sustavu robota daju potrebni podaci kako bi mogao što točnije izračunati potrebne zakretne momente u zglobovima za pomicanje vrha manipulatora željenom brzinom. Dinamika alata definira se ručnim unošenjem podataka u operatorski panel (slika 31). Podaci koje je bilo potrebno unijeti su:

- masa alata (prirubnica, motorvreteno i glodalo), m = 24 kg
- koordinate težišta alata izražene u koordinatnom sustavu prirubnice, x = 127,10 mm; y = -63,00 mm; z = 218,40 mm
- momenti inercije alata u odnosu na težište alata oko koordinatnih osi središnje točke prirubnice, $I_x = 2,197 \text{ kgm}^2$, $I_y = 2,143 \text{ kgm}^2$, $I_z = 1,030 \text{ kgm}^2$

Edit	Auto IZABELA	Motors On Stopped (Spe	eed 100%)	2 XX X	
Name: Tap a field to edit	t the value.	FOOLDiplIzabelaIvan1			
Name		Value	Data Type	13 to 18 of 26	
tload:		[24,[127.1,-63,218.4],[loaddata	Δ	
mass :=		24	num		
cog:		[127.1,-63,218.4]	pos		
x :=		127.1	num		Hald To Day
y :=		-63	num		- Hold 10 Kull
z :=		218.4	num	$\prec \lor$	
		Undo	ок	Cancel	00
Production Window	alibration	Program Data		00	

Slika 31. Definiranje dinamike alata (tool load) Umjeravanje korisničkih koordinatnih sustava

Umjeravanjem korisničkog koordinatnog sustava (eng. *User Coordinate System*), robotu se zadaju položaj i orijentacija nul-točke obratka, odnosno ishodište koordinatnoga sustava obratka relativno prema fiksnom (globalnom) koordinatnom sustavu u prostoru (eng. *World Coordinate System*) koji se obično nalazi u bazi robota. Prema toj umjerenoj nul-točki će se vršiti izvođenje NC programa za obradu.

Kako je zadatak ovoga rada bio izvršiti obradu robotom u dva različita položaja, bilo je potrebno umjeriti dva korisnička koordinatna sustava, jedan za obradak smješten što bliže bazi robota (Pozicija 1), a drugi za obradak udaljeniji od baze robota (Pozicija 2). Najprije je umjerena nultočka obratka na Poziciji 1. Vizualnom procjenom, stezna naprava postavljena je čim bliže bazi robota te je u nju stegnut obradak. Položaj i orijentacija same nul-točke na obratku određeni su prilikom izrade tehnološkog procesa obrade. Kako je tamo određeno, nul-točku je bilo potrebno umjeriti na jednom od vrhova sirovca na gornjoj površini. Za izvršavanje umjeravanja, u držač alata na robotu i dalje je stegnut šiljak za umjeravanje. Ručnim navođenjem pomoću operatorskog panela, šiljkom je bilo potrebno što točnije dotaknuti (definirati) tri točke na obratku ("Metoda tri točke"): početnu točku X-osi (x1), pozitivan smjer X-osi (x2) i pozitivan smjer Y-osi (y1). Na slici 32 vidljivo je definiranje parametra y1. Nakon zadavanja svih potrebnih podataka, upravljački sustav robota je u mogućnosti izračunati položaj i orijentaciju korisničkog koordinatnog sustava (nul-točke obratka) relativno prema globalnom koordinatnom sustavu (koji se u ovom slučaju nalazi u bazi robota), a dobiveni podaci prikazani su na slici 33.

Slika 32. Provođenje umjeravanja korisničkog koordinatnog sustava

abela Mezga				(221.5)		Di	plomski rad
(a)				(b)			
	Motors On Stopped (Spec	ed 100%)	TXXX X = X		Hotors On IELA Stopped (Spe	ed 100%)	*×× 🗙 🗄
Edit				A Edit			-
Name:	wobiIzabelaIvan0			Name:	wobiIzabelaIvan0		e
Tap a field to edit the value.	10000 7 .0000 0.0000 0.0000			Tap a field to edit the value	ut.		
Name	Value	Data Type	-5 to 12 of 20	Name	Value	Data Type	1110 15 #24
frame:	[[371.987,-711.097,9.3	pose	$\Delta \wedge \otimes / \wedge$	t rot:	[0.706493,0,0,-0.70772]	orient	$\Delta \wedge \mathbb{R}$
trans:	[371.987,-711.097,9.34	pos) - q1 :=	0.706493	num	
x :=	371.987	num		q2:=	0	num	0-
y :=	-711.097	num		q3 :=	0	num	
z :=	9.3436	num		q4 :==	-0.70772	num	
rot:	[0.706493,0,0,-0.70772]	orient	×V nen	oframe:	[[0,0,0],[1,0,0,0]]	pose	$\forall \lor$ (
	Undo	ок	Cancel		Undo	ок	Cancel
	to a state of the						

Slika 33. Umjerena nul-točka obratka (*user frame*) (Pozicija 1), (a) položaj i (b) orijentacija Nakon što je izvršeno umjeravanje nul-točke obratka koji se nalazio blizu baze robota, bila je provedena simulacija te sama obrada. Poslije toga, stezna naprava je premještena na Poziciju 2 i ponovno je izvršeno umjeravanje nul-točke na isti način kao i za prethodni obradak. Rezultati umjeravanja prikazani su na slici 34. Međusobnom usporedbom položaja koordinatnih sustava dvaju obradaka vidljivo je da je značajna promjena u X-koordinati u odnosu na bazu robota, dok su Y- i Z-koordinata umjerene na skoro jednaku vrijednost kod oba obratka.

Slika 34. Umjerena nul-točka obratka (*user frame*) (Pozicija 2), (a) položaj i (b) orijentacija 4.1.3. Simulacija robotske obrade

Nakon umjeravanja alata, te nakon što se za svaki obradak umjerio položaj i orijentacija nultočke, bilo je potrebno napraviti simulaciju robotske obrade. Naime, zbog ograničenja zglobova robota ili pojave singularnosti kod samog robota, postoji mogućnost da vrh alata neće biti u mogućnosti zauzeti sve položaje koji su mu zadani u NC programu. Postoji mogućnost i potencijalnih kolizija sa okolnom opremom. Iz navedenih razloga, prije same obrade, bilo je važno provjeriti može li se svaki od obradaka u cijelosti obraditi na predloženoj lokaciji. U tu svrhu, provedena je simulacija robotske obrade i to korištenjem programskog alata *RobotStudio*.

4.1.3.1. Izrada virtualne robotske stanice u RobotStudio-u

Kako bi se izradila virtualna robotska stanica, identična onoj u stvarnosti, u programskom alatu *RobotStudio* pokrenuta je izrada novog projekta (*New Project*) te je odabrana opcija koja uključuje izradu robotske stanice sa robotom i virtualnim kontrolerom koji će upravljati robotom (*Include a Robot and Virtual Controller*). Sigurnosna kopija potrebnog robota sa odgovarajućim virtualnim kontrolerom osigurana je od strane mentora. Nakon toga, izabire se opcija *Create from backup* te je odabrana lokacija same sigurnosne kopije na tvrdom disku računala. U istom koraku, odabrana je i verzija *RobotWare* programskog modula, 6.13.02.00. Nakon toga, odabirom opcije *Create*, kreira se robotska stanica.

Mehanizimi koji su konfigurirani u virtualnom kontroleru su robot ABB IRB 6660-205/1.9 koji će se koristiti za obradu te okretno-nagibni stol ABB IRBP A koji se neće koristiti u ovom eksperimentu.

Radi sigurnosti i što vjernije simulacije, u virtualnu stanicu ubacili su se *CAD* modeli elemenata koji se nalaze u blizini robota i zone obrade. 3D modeli komponenata robotske ćelije (zaštitna ograda, postolje robota, upravljački ormar itd.) dostupni su njihovim spremanjem u .STL format izravno iz programskog paketa *RoboDK*. Naime, tijekom provođenja projektnih aktivnosti cjelokupni 3D model potpuno umjerene robotske stanice otprije je izrađen u programskom paketu *RoboDK* (slika 35). *RoboDK* je programski alat za robotsku simulaciju, neovisan o proizvođaču robota i bez mogućnosti izrade virtualnog kontrolera. Zbog toga postoji mogućnost da kretanje zglobova robota u simulaciji, ne odgovara onome u stvarnosti. Baš iz tog razloga, odlučeno je da će se za izradu same simulacije koristiti *RobotStudio*.

Nakon njihovog spremanja u .STL format, modeli potrebnih komponenata koji se nalaze u blizini robota R1 korištenog za obradu, pomoću opcije *Import Geometry* ubacili su se u *RobotStudio*. Pri tome je bilo važno da se postavi ispravan položaj i orijentacija svakoga od njih u radnom prostoru robotske stanice. To se izvršilo korištenjem opcije *Set Position*. Za zadavanje položaja elementa bilo je potrebno zadati tri koordinate (X,Y i Z), a da bi se zadala orijentacija tri kuta, sve u odnosu na odabrani referentni koordinatni sustav. Potrebne vrijednosti direktno su se uzele iz *RoboDK*-a kako su tamo položaj i orijentacija svakog od elementa već definirani prema točno umjerenim vrijednostima.

U virtualnu robotsku stanicu zatim se ubacuje motorvreteno. Nakon toga, odabirom opcije *Attach* te izbora robota ABB IRB 6660/205-1.9 motorvreteno se priključuje na prirubnicu robota. U radni prostor također su uvedeni i 3D modeli sklopa stezne naprave sa obratkom korištenjem opcije *Import Geometry*. Uvedena su dva modela, po jedan za svaku poziciju obrade, čiji su se položaj i orijentacija postavili na umjerene vrijednosti.

Provođenjem svih navedenih aktivnosti, kompletirana je izrada virtualne robotske stanice, a rezultat je vidljiv na slici 36.

Izabela Mezga

Slika 36. Virtualna robotska stanica u programskom paketu RobotStudio

4.1.3.2. Izrada programa za robot

Kako bi upravljačka jedinica robota vodila vrh alata (TCP) točno onako kako je određeno NC programom, potrebno je sve putanje prevesti u jezik koji će razumjeti. Za vođenje robota, ABB- ove upravljačke jedinice koriste programski jezik RAPID.

Za generiranje RAPID koda, u *CAM* sustavu *Fusion 360* najprije je bilo potrebno otvoriti postojeći proces obrade (*Setup*) u sučelju *Manufacture* te desnim klikom miša otići na *Post Process* čime se otvara prozor prikazan na slici 37. Općenito, postprocesiranjem se proizvodne operacije te generirane putanje pretvaraju u jezik koji stroj, u ovom slučaju robot, razumije. Kod opcije *Post* odabran je postprocesor *ABB Robotics – Rapid* koji je prikladan za ABB-ove robote.

Izabela Mezga

Diplomski .	rad
-------------	-----

Machine and post		Post properties			:
Use machine configuration		 Process 			
Post	ABB Robotics - Rapid / abl 🔹 💉 🖆	End-effector state)FF	*	
Use cascading post		Head angle 3	30		
Program		Welding mode			
Name/number	1001	 Configuration 			
File name	1001	First point move type	Joints		
Comment		Pobot configuration	0-101		
Dutput folder	ısiona/1Diplomski_blizu (30) 🔀 🖆	Robot joint 1	0		
Post to Fusion Team		Robot joint 2	0		
VC extension	.txt	Robot joint 3	5		
Unit	Document unit -	Robot joint 4	-70		
Open NC file in editor		Robot joint 5	40		
		Robot joint 6	70		
		 Parameters 			
		Elip tool frame		2	
		Robot tool name (prefi	ix)	TOOLDiplIzabelaIv	
		Robot workobiect data	nome (prefix)	wobiIzabelaIvan	
		Robot smoothing value	e (Zone)	1	
		 Welding Settings 			
		 FFF Settings 			

Slika 37. Fusion 360 - Post Process sučelje

Prije generiranja izlaznih datoteka, bilo je potrebno definirati parametre postprocesora (*Post properties*). Jedna od mogućnosti koja se nudi je odabir tzv. kuta glave (*Head angle*). Navedeni kut se može interpretirati kao kut rotacije oko Z-osi alata pod kojim se, tijekom obrade, nalazi koordinatni sustav alata u odnosu na koordinatni sustav obratka. Prema zadanim postavkama kut iznosi 30°.

U odjeljku *Configuration* definira se početna pozicija koju robot zauzima prije početka izvršavanja operacija obrade (naredba je u programskom jeziku RAPID definirana kao MoveAbsJ). Unutarnje koordinate inicijalnog položaja namještene su prema zadanim postavkama.

U odjeljku *Parameters* omogućena je opcija *Flip Tool Frame* kako bi orijentacija koordinatnoga sustava vrha alata odgovarala zadanim ABB-ovim postavkama - pozitivan smjer Z-osi alata je prema dolje.

Nakon što se odabere opcija Post, postprocesor generira nekoliko datoteka (slika 38):

- mAutodesk.mod kao glavni program (main) koji upravlja pozivanjem svih putanja alata
- mIme_Putanje.mod kao potprogram za svaku putanju alata (ima ih 9)

- broj_programa.pgf kao programsku datoteku koja se koristi na kontroleru za učitavanje svih .mod datoteka.
 - 1001.pgf
 m1_nivo__finishing_pass_mod
 m2_nivo__finishing_pass_mod
 m3_nivo__finishing_pass_mod
 mAutodesk.mod
 mFina_obrada_utora_mod
 mGruba_obrada_utora_mod
 mGruba_obrada_vanjskih_ploha.mod
 mOffset_konturiranje_1_nivo.mod
 mOffset_konturiranje_3_nivo.mod
 mOffset_konturiranje_3_nivo.mod

Slika 38. Izlazne datoteke postprocesora

Izlazne datoteke zatim se učitavaju u *RobotStudio* nakon čega je svaka od datoteka sa ekstenzijom .mod vidljiva u popisu programskih modula. Otvaranjem pojedinih programskih modula prikazuje se RAPID kod za glavni program (*main*) (slika 39) i za svaku od operacija obrade (slika 40).

Slika 39. RAPID kod – main rutina

-302207	
1	888
2	VERSION:1
3	LANGUAGE : ENGLISH
4	***
5	
6	MODULE mGruba_obrada_vanjskih_ploha
7	PROC pGruba_obrada_vanjskih_ploha()
8	MoveAbsJ [[0,0,5,-70,40,70],[9E9,9E9,9E9,9E9,9E9,9E9]]\NoEOffs,v17,fine,TOOLDiplIzabelaIvan1;
9	MoveL [[-0.733,-10.52,15],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v17,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
10	MoveL [[-0.733,-10.52,5],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9,9E9]],v17,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
11	MoveL [[-0.733,-10.52,-2.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9,9E9]],v17,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
12	! Lead In Move Starts
13	MoveL [[-0.733,-10.52,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9,9E9]],v13,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
14	MoveL [[-0.194,-7.819,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v13,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
15	MoveL [[0.05,-5.076,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v13,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
16	! Cutting Move Starts
17	MoveL [[0.05,-4.919,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\W0bj:=wobjIzabelaIvan0;
18	MoveL [[-0.829,-4.022,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
19	MoveL [[-1.537,-2.985,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
20	MoveL [[-2.086,-1.855,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
21	MoveL [[-2.498,-0.669,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
22	MoveL [[-2.797,0.551,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
23	MoveL [[-3.009,1.788,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
24	MoveL [[-3.156,3.036,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
25	MoveL [[-3.255,4.288,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
26	MoveL [[-3.322,5.542,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
27	MoveL [[-3.366,6.797,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
28	MoveL [[-3.395,8.052,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
29	MoveL [[-3.414,9.308,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
30	MoveL [[-3.427,10.563,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
31	MoveL [[-3.435,11.819,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
32	MoveL [[-3.44,13.075,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
33	Movel [[-3.444,14.331,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
34	MoveL [[-3.447,16.842,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
35	Movel [[-3.45,21.866,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
36	MoveL [[-3.45,44.47,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
37	Movel [[-3.45,46.354,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
38	MoveL [[-3.441,46.51,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
39	MoveL [[-3.424,47.766,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
40	MoveL [[-3.433,49.022,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
41	MoveL [[-3.439,50.278,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
42	MoveL [[-3.443,51.533,-4.7],[0,1,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]],v40,z1,TOOLDiplIzabelaIvan1\WObj:=wobjIzabelaIvan0;
43	Movel [[-3,447,54,045,-4,7],[0,1,0,0],[0,0,0,0],[9F9,9F9,9F9,9F9,9F9,9F9]],v40,71,T00 Dip]TzabelaTvan1\W0bi:=wobiTzabelaTvan0:

Slika 40. Dio RAPID koda za operaciju "Gruba obrada vanjskih ploha"

Kako bi se generirani RAPID kod izvršavao sa odgovarajućim alatom i u pravilnom korisničkom koordinatnom sustavu bilo je potrebno stvoriti poseban modul u kojemu su se definirale vrijednosti varijabli vezanih uz alat (*tooldata*) i radni objekt (*wobjdata*). Programski kod prikazan je na slici 41. Vrijednosti za definiranje varijabli unešene su povlačenjem umjerenih vrijednosti za alat i obradak sa kontrolera (slike 30, 33 i 34). Bilo je važno uočiti da je u programskom kodu za svaku operaciju (slika 40) radni objekt definiran kao "wobjIzabelaIvan0", stoga je isti naziv bilo potrebno dodijeliti i varijabli *wobjdata* (vidljivo na slici 41) ovisno o tome na kojem se obratku izvodila obrada (Pozicija 1 ili pozicija 2).

Slika 41. RAPID kod - tooldata i wobjdata

Nakon provođenja svih navedenih aktivnosti, pokrenuta je simulacija obrade (RAPID → Start) i to najprije za obradak koji se nalazi na Poziciji 1 (slika 42). Simulacija je pokazala zadovoljavajuće rezultate. Potvrđeno je da robot može u potpunosti obraditi obradak na toj lokaciji te da prilikom obrade ne dolazi do nikakvih kolizija.

Slika 42. Simulacija obrade na Poziciji 1

Prilikom pokretanja simulacije obrade za obradak na Poziciji 2 softver javlja grešku da se zbog ograničenja zglobova robota, vrh alata (TCP) ne može dovesti do zone obrade (*Postion outside reach*). Problem je riješen promjenom vrijednosti "kuta glave" (*Head angle*) u postavkama postprocesora u *Fusion*-u. Metodom pokušaja i pogrešaka dobivena je vrijednost kuta od 180° pri kojoj je robot u mogućnosti u potpunosti obraditi obradak. Vizualni prikaz parametra *Head angle* za obje pozicije obrade prikazan je na slici 43. Isječak iz simulacije obrade na Poziciji 2 prikazan je na slici 44.

Slika 43. Vizualna interpretacija parametra *Head angle*: (a) 30° (Pozicija 1) i (b) 180° (Pozicija 2)

Slika 44. Simulacija obrade na Poziciji 2

Izvršavanje samog programa je sekvencijalno, odnosno izvršava se naredba po naredba. Izvršavanje programa prilikom simulacije može se pratiti u *RAPID Editoru* ili na virtualnom operatorskom panelu (eng. *Virtual FlexPendant*). Prilikom same obrade izvršavanje programa pratilo se na operatorskom panelu. Na slici 45 vidljive su dvije vrste pokazivača prilikom izvršavanja programa. Pokazivač programa (*Program Pointer*) prikazan je kao strelica i pokazuje onu naredbu koju kontroler trenutno izvršava. Pokazivač pokreta (*Motion Pointer*) prikazan je ikonom robota i pokazuje onu poziciju u kojoj se robot trenutno nalazi. Pokazivač programa nalazi se nekoliko linija koda ispod pokazivača pokreta kako bi se kontroler pripremio za izvođenje pokreta i unaprijed izračunao točke zadane trajektorije.

	V &	Auto IZABELA	1	Motors On Running (Speed 100%)	¥××		□ _ X ≑ ◎		
ê Pro	oduction Windo	w : <no name<="" th=""><th>d program> in 1</th><th>[_ROB1/mGruba_ob</th><th>ada_vanjskil</th><th>_plo</th><th>· (</th><th></th><th></th></no>	d program> in 1	[_ROB1/mGruba_ob	ada_vanjskil	_plo	· (
3406	Movel	1 *,v40,z	, TOOLDipl	IzabelaIvan1	\WObj:=	vobjIz	~		
3407	Movel	1 *,v40,z	, TOOLDipl	IzabelaIvan1	\WObj:=	vobjIz			
\$408	Movel	* , v 40,	z1, TOOLDip	lIzabelaIvar	1\WObj::	-wobjI			TTTTE:
3409	Movel	*,v40,z	, TOOLDipl	IzabelaIvan1	\WObj:=	vobjIz		- En	abla
3410	Movel	\$ *,v40,z	, TOOLDipl	IzabelaIvan1	\WObj:=	objIz	197		able
3411	Movel	*,v40,z	, TOOLDipl	IzabelaIvan1	\WObj:=	vobjIz		10	
3412	Movel	*,v40,z	, TOOLDipl	IzabelaIvan1	\WObj:=	vobjIz	(1
3413	Movel	*,v40,z	, TOOLDipl	IzabelaIvan1	\WObj:=	vobjIz		1 ← (5 + .
3414	Movel	*,v40,z	, TOOLDipl	IzabelaIvan1	\WObj:=	vobjIz			
3415	Movel	*,v40,z	, TOOLDipl	IzabelaIvan1	\WObj:=	vobjIz			
3416	Movel	*,v40,z	, TOOLDipl	IzabelaIvan1	\WObj:=	vobjIz	())	Hold	ToRun
3417	Movel	*,v40,z	, TOOLDipl	IzabelaIvan1	\WObj:=	vobjIz		-11010	TOTAL
3418	Movel	*,v40,z	, TOOLDipl	IzabelaIvan1	\WObj:=	vobjIz	\sim		
3419	Movel	*,v40,z	, TOOLDipl	IzabelaIvan1	\WObj:=	vobjIz			
Loa	ad	DD to Main			Del				
Pro	gram	PP to Main			Der	Jug			
Pro Pro Wi	oduction indow					0 ₀			

Slika 45. Izvršavanje robotskog programa

4.2. Robotska obrada

Nakon što je simulacija obrade pokazala zadovoljavajuće rezultate, obradu je bilo moguće izvesti na stvarnom robotu. Prije početka same obrade, šiljak za umjeravanje, pričvršćen u držaču alata motorvretena, zamijenio se sa odgovarajućim alatom – prstastim glodalom (Iscar 145-100-22-10-72-3-R02-A) pazeći pritom da ispon glodala odgovara isponu šiljka za umjeravanje. Također, programi za pojedinu operaciju prebačeni su sa računala na robotski kontroler, a izvršavanje programskog koda pratilo se na operatorskom panelu. Kako dostupni robotski obradni sustav nema ugrađen sustav za dovođenje SHIP-a u zonu obrade, sam SHIP se tijekom obrade povremeno dodavao ručno. Kao SHIP koristio se univerzalni sprej za podmazivanje WD-40.

Najprije se je provela obrada komada na Poziciji 1 (slika 46). Iznos posmične brzine prilikom obrade mijenjao se na operatorskom panelu prema zvučnom i vizualnom nadzoru. Tijekom grube obrade došlo je do pojave vibracija pa je tako vrijednost posmične brzine postavljena na 60 % vrijednosti posmične brzine zadane u programu. Posmična brzina postepeno se

Izabela Mezga

povećavala tijekom obrade pazeći pritom na razinu vibracija (maksimalno do 90 %). Tijekom fine obrade posmična brzina držala se na 100 % vrijednosti.

Slika 46. Robotska obrada na Poziciji 1

Nakon što se je provela obrada komada na Poziciji 1, stezna naprava se zajedno sa novim sirovcem premjestila na Poziciju 2, te se umjerila nul-točka obratka. Time je drugi ispitni uzorak bio spreman za obradu. Tijekom operacija grube obrade, pri kojima se smjer posmične brzine poklapao sa smjerom osi X baze robota (osi Y obratka) pojavile su se značajne vibracije i promjena zvuka. Stoga se tijekom tih operacija posmična brzina smanjila na 20 % od zadane posmične brzine. Također se smanjila i brzina rezanja na 210 m/min zbog pretpostavke da su vibracije posljedica pojave rezonancije. Nakon smanjenja brzine rezanja, vibracije su se blago smanjile no još su uvijek bile izrazite. Kod ostalih operacija posmična brzina se držala na oko 60 % od zadane. Fina obrada je, radi usporedivosti rezultata obrade, odrađena sa 100 %-tnom posmičnom brzinom. Robotska obrada na Poziciji 2 prikazana je na slici 47.

Izabela Mezga

Diplomski rad

Slika 47. Robotska obrada na Poziciji 2

Na slici 48 vidljivi su izgledi površina obratka nakon provedenih operacija obrade. Lijevo je prikazan uzorak koji se obrađivao na Poziciji 1, dok je desno uzorak sa Pozicije 2. Na površinama komada uočava se trag alata te izrazita izbrazdanost, posebno kod bokova.

Slika 48. Izgled površina ispitnih uzoraka nakon obrade – Pozicija 1 (lijevo) i Pozicija 2 (desno)

4.3. Mjerenje hrapavosti obrađenih površina

Mjerenje hrapavosti provedeno je pomoću 3D mjernog uređaja Alicona IF-SensorR25. Proces mjerenja je automatiziran, a vođenje mjernog uređaja je ostvareno pomoću robota ABB IRB 4600-40/2.55 (opisani u Poglavlju 2). Na mjerni uređaj postavljen je objektiv uvećanja 10xAX.

Cijeli proces mjerenja u ovom radu izvodio se uz korištenje programskog paketa *Alicona MeasureSuite* koji je instaliran na računalo.

4.3.1. Skeniranje ispitnih površina

Kako bi se na ispitnim površinama mogli izmjeriti određeni parametri hrapavosti, površine je najprije potrebno skenirati čime se dobiva 3D model uzorka površine na kojem se onda naknadno određuju parametri hrapavosti. Prije početka skeniranja ispitni uzorci su očišćeni od bilo kakvih nečistoća i fiksirani na stol. Također, unutar softvera u modulu *LaboratoryMeasurementModule* bilo je potrebno odabrati vrijednosti važnijih parametara skeniranja. Odabrano je odgovarajuće uvećanje objektiva te opcija automatskog namještanja ekspozicije senzora. Senzoru je bilo potrebno zadati i raspon skeniranja u smjeru Z-osi. Raspon se zadaje pomicanjem senzora najprije malo iznad najviše točka fokusa (određena gornja granica), a zatim malo ispod najniže točke fokusa (određena donja granica). Vertikalna i lateralna rezolucija postavljene su na zadane vrijednosti. U navedenom modulu je prije početka skeniranja bilo potrebno napraviti i odgovarajući direktorij i projekte u koje se rezultati skeniranja automatski spremaju.

Dostupnim objektivom uvećanja 10xAX moguće je skenirati površine 2 x 2 mm². Zbog toga postoji posebno napisana procedura na upravljačkom računalu robota u kojoj se zadaju željene pozicije po X i Y osi po kojima robot mora voditi mjerni uređaj. Vođenje mjernog uređaja pomoću robota ostvaruje se na način da robot, nakon svakog skeniranja površine 2 x 2 mm², pomiče mjerni uređaj po X i Y osi u iznosu koraka (mm) koji su mu zadani, pri čemu je važno da ti koraci budu manji od vidnog polja objektiva. Na taj način dobivaju se digitalizirani uzorci površina koji se međusobno preklapaju u određenom postotku površine. Njih je zatim, pozivanjem posebne skripte, moguće spojiti u jedan sken, odnosno jedan veći uzorak površine. Koraci su u ovom radu postavljeni na vrijednost od 1 mm čime je preklapanje između bliskih površina bilo 50 %. Koordinate po kojima je robot vodio mjerni uređaj namještene su tako da nakon spajanja ispitna površina iznosi 5 x 5 mm².

Na svakom od obradaka provedeno je skeniranje 13 ispitnih površina na kojima je naknadno izvršeno mjerenje parametara hrapavosti. Položaji ispitnih površina jednaki su na oba obratka, a ispitne površine (5 x 5 mm²) su plavom bojom označene na slici 49. Svakoj ispitnoj površini dodijeljena je odgovarajuća oznaka radi lakšeg snalaženja prilikom analize rezultata.

Slika 49. Ispitne površine

Nakon što su namješteni parametri mjerenja te koordinate vođenja mjernog uređaja, na operatorskom panelu robota pokrenut je program za skeniranje. Proces skeniranja prikazan je na slici 50.

Slika 50. Skeniranje ispitnih površina

Rezultatima skeniranja pristupa se putem grafičkog korisničkog sučelja *MeasureSuite-*a. Kako je već spomenuto, nakon skeniranja potrebno je spojiti pojedine površinske modele čime se dobiva odgovarajuća veličina ispitne površine. Rezultat skeniranja i spajanja za jednu od površina (POZ1_P2_GORE) prikazan je na slici 51. Na modelu je jasno vidljiv trag alata te tekstura površine.

Slika 51. 3D prikaz jedne od skeniranih površina (POZ1_P2_GORE)

4.3.2. Mjerenje parametara hrapavosti

Mjerenje parametara hrapavosti na dobivenim površinskim modelima izvršilo se unutar modula *ProfileRoughnessMeasurement* koji se odabire unutar *MeasureSuite*-a. Prema proizvođaču, u pozadini navedenog modula za mjerenje profila hrapavosti su dvije norme [22]:

- ISO 4287:1997 Geometrical Product Specifications (GPS), Surface texture: Profile method Terms, definitions and surface texture parameters (Ra, Rq, Rz, ...)
- ISO 4288:1996 Surface texture: Profile method Rules and procedures for the assessment of surface texture.

Kako bi se izmjerili određeni parametri hrapavosti, u projektu je najprije odabran površinski mjerenje. model kojemu željelo provesti Zatim na se se pokrenuo modul ProfileRoughnessMeasurement čime se pojavio 2D prikaz površinskog modela. Po prikazanom skupu podataka povukla se linija paralelna sa smjerom gibanja alata prilikom obrade. Duljina te linije određena je na način da odgovara potrebnoj duljini vrednovanja (eng. evaluation length, *ln*). Navedena linija koristi se za vrednovanje profila koji se mjeri. Duljina vrednovanja može sadržavati jednu ili više referentnih duljina (eng. sampling length, lr), najčešće pet. Referentna

Fakultet strojarstva i brodogradnje

duljina, često nazvana i duljina uzorka, koristi se za ustanovljavanje nepravilnosti koje karakteriziraju profile koji se mjere, a brojčano je jednaka karakterističnoj valnoj duljini profilnog filtera hrapavosti (eng. *cut-off, Lc* ili λc). Tim filtrom definirana je granica između komponenti hrapavosti i valovitosti profila. U praksi se parametri hrapavosti kao što su *Ra, Rq, Rz, Rp* i *Rv* definiraju na svakoj od pet referentnih duljina, a njihova konačna vrijednost predstavljena je kao prosjek tih pet vrijednosti. Za razliku od toga, parametar *Rt* određuje se na duljini vrednovanja.

Slika 52. Karakteristične duljine izmjerenog profila hrapavosti [23]

Važno je napomenuti da je, prije povlačenja linije, bilo potrebno prilagoditi vrijednosti λc te *ln*. Preporučene vrijednosti prema normi ISO 4288:1996 prikazane su u tablici 7. Kako bi se osiguralo da se mjerenja provode u skladu s preporukama norme, na svakoj ispitnoj površini je, prije pohranjivanja rezultata mjerenja, provedeno probno mjerenje. Za probno mjerenje λc se postavlja na vrijednost 0,8 mm nakon čega se provjerava upadaju li vrijednosti dobivenih parametara *Ra* i *Rz* unutar dozvoljenih granica. Ako se vrijednosti nalaze unutar dozvoljenih granica nastavlja se s daljnjim mjerenjima, pri čemu se pohranjuju rezultati mjerenja. Ukoliko se vrijednosti parametara *Ra* i *Rz* ne nalaze unutar dozvoljenih granica, potrebno je prilagoditi vrijednost λc (smanjiti ili povećati) te ponoviti mjerenje.

REFERENTNA DULJINA	DULJINA VREDNOVANJA	PERIODIČKI PROFIL	NEPERIODIČKI PROFIL	
$lr(\lambda c), mm$	$ln = 5 \times lr$, mm	RSm, µm	<i>Rz</i> , μm	<i>Ra</i> , µm
0,08	0,4	> 0,013 do 0,04	do 0,1	do 0,02
0,25	1,25	> 0,04 do 0,13	> 0,1 do 0,5	> 0,02 do 0,1
0,8	4	>0,13 do 0,4	>0,5 do 10	>0,1 do 2
2,5	12,5	>0,4 do 1,3	>10 do 50	> 2 do 10
8	40	> 1,3 do 4	> 50	> 10

 Tablica 7. Preporučene referentne duljine (cut-off) i duljine vrednovanja [24]

Fakultet strojarstva i brodogradnje

Tijekom provođenja probnih mjerenja, dogodilo se da na nekim ispitnim površinama vrijednosti parametara Ra i Rz premašuju dozvoljene granice. Prema preporuci norme vrijednost λc bi se u tim slučajevima trebala povećati (sa 0,8 mm na 2,5 mm) no time se automatski zahtijeva i povećanje duljine vrednovanja (sa 4 mm na 12,5 mm). Zbog ograničenja veličine ispitnih površina to nije bilo moguće ostvariti, stoga se odstupilo od norme te se mjerenje svih ispitnih površina provelo s $\lambda c = 0,8$ mm. Rezultati mjerenja na tim ispitnim površinama bilježe se uz napomenu da vrijednost *cut-off-*a nije u skladu s preporukama norme ISO 4288:1996.

Kao rezultat svega navedenoga prikazuju se izračunate vrijednosti parametara hrapavosti te profil hrapavosti (slika 53).

Slika 53. Prikaz rezultata mjerenja u *MeasureSuite-*u za jednu od ispitnih površina (POZ1_P2_GORE)

Na svakoj od 13 ispitnih površina, na oba ispitna uzorka, provedeno je 5 uzastopnih mjerenja, što je ukupno 130 mjerenja. Prilikom mjerenja, vrijednost λc je za svaku ispitnu površinu iznosila 0,8 mm, a pripadajuća duljina vrednovanja je bila ln = 4 mm.

Prije samog prikaza rezultata mjerenja i njihove analize, u tablici 8 prikazan je način na koji su definirani svi izmjereni parametri hrapavosti (amplitudni parametri).

Izabela Mezga

Oznaka	Naziv	Ι	Definicija
Ra	srednje aritmetičko odstupanje profila	$Ra = \frac{1}{lr} \int_0^{lr} Z(x) dx$	
Rq	srednje kvadratno odstupanje profila	$Rq = \sqrt{\frac{1}{lr} \int_0^{lr} Z^2(x) dx}$	
Rp	maksimalna visina vrha profila	$Rp = \max[Z(x)]$	$M M M^{R_p} M M$
Rv	maksimalna dubina dna profila	Rv = min[Z(x)]	
Rz	maksimalna visina profila	Rz = Rp + Rv	le lr →
Rt	ukupna visina profila	$Rt = \max(Rpi) + \max(Rvi)$	R_{p2} R_{p2} R_{p3} R_{r} R_{r} R_{r} R_{r} R_{r} R_{r} R_{r}
Rsk	asimetričnost profila	$Rsk = \frac{1}{Rq^3} \left[\frac{1}{lr} \int_0^{lr} Z^3(x) dx \right]$	Rsk > 0
Rku	zaobljenost profila	$Rku = \frac{1}{Rq^4} \left[\frac{1}{lr} \int_0^{lr} Z^4(x) dx \right]$	Rku > 3

 Tablica 8. Definicija analiziranih parametara hrapavosti, izrađeno uz pomoć [25]

5. REZULTATI I ANALIZA

Nakon provođenja svih mjerenja, utvrđene su prosječne vrijednosti parametara hrapavosti na temelju 5 mjerenja za svaku ispitnu površinu, a dobiveni rezultati prikazani su brojčano u tablici 9 (oznaka "*" kraj naziva ispitne površine označava da je mjerenje na toj površini provedeno sa vrijednošću λc nesukladno preporukama norme ISO 4288:1996). Kako je jedan od glavnih ciljeva ove analize bio usporediti vrijednosti parametara hrapavosti za dvije pozicije obratka u radnom prostoru robota, u istoj tablici dane su prosječne vrijednosti pojedinih parametara za svaku od dviju pozicija. Zbog rasipanja vrijednosti parametara hrapavosti na svakoj od pozicija, osim prosječnih vrijednosti, dane su i standardne devijacije za svaki od parametara.

Diplomski rad

Tablica 9. Rezultati n	njerenja parametara	a hrapavosti na ispitnim	površinama ($\lambda c = 0.8$ mm)

Ispitne površine	<i>Ra</i> , µm	<i>Rq</i> , μm	<i>Rt</i> , μm	Rz, μm	<i>Rp</i> , µm	Rv, μm	Rsk	Rku
POZ1_P1_DD	1,813	2,196	10,946	8,306	4,544	3,763	0,193	2,415
POZ1_P1_DL	0,824	1,031	6,375	4,582	2,293	2,288	0,004	3,061
POZ1_P1_GD	0,830	1,038	6,429	4,887	2,375	2,513	-0,121	2,972
POZ1_P1_GL	1,398	1,739	9,253	6,619	4,048	2,972	0,465	2,892
POZ1_P2_DESNO	1,762	2,434	15,219	9,961	5,264	4,696	0,576	5,049
POZ1_P2_DOLJE	1,007	1,245	7,303	5,601	2,812	2,789	0,031	2,834
POZ1_P2_GORE	1,333	1,667	9,139	7,223	3,821	3,402	0,102	2,804
POZ1_P2_LIJEVO	1,705	2,144	11,356	7,745	3,952	3,793	0,104	2,760
POZ1_P3_DESNO	1,219	1,574	10,185	6,707	3,204	3,503	-0,529	3,794
POZ1_P3_DOLJE	1,301	1,547	7,409	6,030	3,228	2,802	0,183	2,218
POZ1_P3_GORE	1,052	1,346	7,979	5,957	3,137	2,832	0,406	3,182
POZ1_P3_LIJEVO*	2,136	2,745	15,071	10,355	6,218	4,137	0,939	3,669
POZ1_P4	0,817	1,037	6,843	4,496	2,253	2,243	-0,095	3,252
POZ1 Prosjek	1,323	1,673	9,500	6,805	3,627	3,210	0,174	3,146
Standardna devijacija	0,426	0,560	2,996	1,885	1,191	0,744	0,365	0,718
POZ2_P1_DD*	3,733	4,916	27,927	18,827	10,374	8,452	0,294	3,503
POZ2_P1_DL	1,577	1,931	10,167	7,716	3,978	3,738	0,004	2,598
POZ2_P1_GD	1,720	2,113	10,624	8,576	3,998	4,578	-0,124	2,586
POZ2_P1_GL*	3,695	4,990	29,672	17,869	9,430	8,440	0,235	4,078
POZ2_P2_DESNO*	2,847	3,698	19,187	13,285	6,860	6,425	-0,251	3,156
POZ2_P2_DOLJE*	1,897	2,341	12,851	9,048	4,567	4,481	0,127	2,663
POZ2_P2_GORE*	3,316	4,887	30,723	16,192	9,729	6,463	0,627	5,072
POZ2_P2_LIJEVO*	2,556	3,192	17,415	12,070	6,412	5,658	0,123	2,877
POZ2_P3_DESNO*	3,021	3,968	22,546	14,458	6,941	7,516	0,163	3,391
POZ2_P3_DOLJE*	2,111	2,595	12,592	10,042	5,183	4,859	0,202	2,486
POZ2_P3_GORE*	2,651	3,534	20,309	12,618	7,251	5,367	0,585	4,078
POZ2_P3_LIJEVO*	2,809	3,644	19,612	13,112	6,716	6,396	0,135	3,213
POZ2_P4*	3,262	4,297	23,592	15,053	8,115	7,046	0,425	3,506
POZ2 Prosjek	2,707	3,547	19,786	12,990	6,889	6,109	0,196	3,324
Standardna devijacija	0,714	1,068	7,002	3,502	2,115	1,501	0,251	0,748

Prvi dio analize vezan je uz amplitudne parametre hrapavosti *Ra*, *Rq*, *Rt*, *Rz*, *Rp* i *Rv* kojima su opisane vrijednosti amplitudnih odstupanja profila hrapavosti od srednje linije profila. Na slikama 54 i 55 dani su grafički prikazi koji prikazuju vrijednosti određenih parametara hrapavosti za svaku od ispitnih površina za pojedinu poziciju obratka. Cilj ovakvog prikaza je utvrditi međusobnu ovisnost i trend navedenih parametara.

Slika 54. Grafički prikaz parametara hrapavosti za Poziciju 1

Slika 55. Grafički prikaz parametara hrapavosti za Poziciju 2

Iz tablice 9 i grafičkih prikaza na slikama 54 i 55 može se uočiti da se svi amplitudni parametri hrapavosti, za istu poziciju obratka, mijenjaju međusobno slično i pokazuju sličan trend. Jedina razlika je što amplitudni parametri *Rt* i *Rz* pokazuju nešto veće promjene između pojedinih

ispitnih površina no razlog tome je što ti parametri, zbog načina na koji su definirani, poprimaju veće vrijednosti te je stoga veća i njihova promjena. Također, vrijednosti parametara Rp i Rv (koji zbrojeni daju Rz) razilaze se na nekim ispitnim površinama što jednostavno ukazuje na činjenicu da su na tim ispitnim površinama visoki vrhovi profila izraženiji od dubokih dolova (Rp > Rv) ili suprotno (Rp < Rv).

Kako bi se usporedile vrijednosti parametara hrapavosti u ovisnosti o poziciji obratka, na slikama 56 i 57 dani su grafikoni koji prikazuju postignute vrijednosti parametara Ra i Rz usporedno za obje pozicije.

Slika 56. Usporedni prikaz prosječnih vrijednosti parametra *Ra* ispitnih površina za oba uzorka

Slika 57. Usporedni prikaz prosječnih vrijednosti parametra *Rz* ispitnih površina za oba uzorka

Iz grafikona se može uočiti jasna razlika u kvaliteti obrađene površine između ispitnog uzorka koji se obrađivao na Poziciji 1 i ispitnog uzorka sa Pozicije 2. Uspoređujući iste ispitne površine na oba obratka, ostvarena vrijednost parametra Ra je za Poziciju 2 viša na svim ispitnim površinama. U prosjeku vrijednost parametra Ra na Poziciji 1 iznosi 1,323 µm, dok je ta vrijednost na Poziciji 2 jednaka 2,707 µm, što je povećanje, odnosno pogoršanje hrapavosti od 105 %. Prosječna vrijednost parametra Rz na Poziciji 1 iznosi 6,805 µm, a na Poziciji 2 12,990 µm, što odgovara povećanju od 91 %. Sličan trend pokazuju i parametri Rq, Rt, Rp i Rv. U tablici 10 prikazana je relativna razlika u postocima, odnosno postotak rasta navedenih parametara hrapavosti promjenom položaja obratka na poziciju dalju od baze robota.

Ispitna površina	ΔRa , %	ΔRq , %	ΔRt , %	ΔRz , %	ΔRp , %	ΔRv , %
P1_DD	+ 106	+ 124	+ 155	+ 127	+ 128	+ 125
P1_DL	+ 91	+ 87	+ 59	+ 68	+ 73	+ 63
P1_GD	+ 107	+ 104	+ 65	+ 75	+ 68	+ 82
P1_GL	+ 164	+ 187	+ 221	+ 170	+ 133	+ 184
P2_DESNO	+ 62	+ 52	+ 26	+ 33	+ 30	+ 37
P2_DOLJE	+ 88	+ 88	+ 76	+ 62	+ 62	+ 61
P2_GORE	+ 149	+ 193	+ 236	+ 124	+ 155	+ 90
P2_LIJEVO	+ 50	+ 49	+ 53	+ 56	+ 62	+ 49
P3_DESNO	+ 148	+ 152	+ 121	+ 116	+ 117	+ 115
P3_DOLJE	+ 62	+ 68	+ 70	+ 67	+ 61	+ 73
P3_GORE	+ 152	+ 163	+ 155	+ 112	+ 131	+ 90
P3_LIJEVO	+ 32	+ 33	+ 30	+ 27	+ 8	+ 55
P4	+ 299	+ 314	+ 245	+ 235	+ 260	+ 214
Prosjek	+ 105	+ 112	+ 108	+ 91	+ 90	+ 90

Tablica 10.Postoci rasta parametara hrapavosti Ra, Rq, Rt, Rz, Rp i Rv promjenom lokacije
obratka sa Pozicije 1 na Poziciju 2

Iz priloženih podataka u tablici 10, jasno je kako se radi o značajnom postotku rasta parametara hrapavosti promjenom položaja obratka sa Pozicije 1 na Poziciju 2. Međutim, postotak rasta nije jednak kod svih ispitnih površina. Najveći postotak rasta parametara hrapavosti uočava se kod površine P4 gdje je parametar *Ra* porastao za 299 % što bi značilo da se postavljanjem obratka dalje od baze robota hrapavost pogoršala gotovo tri puta. *Rz* pokazuje nešto manji

postotak rasta za tu površinu (235 %) no svejedno veoma izražajno. U prosjeku najmanji postotak rasta svih parametara hrapavosti uočava se na ispitnoj površini P3_LIJEVO gdje je *Ra* porastao za 32%, a *Rz* za 27%. Pogledom na zadnji redak tablice, može se reći da su u prosjeku, promjenom položaja obratka dalje od baze robota, svi parametri hrapavosti porasli za ≈ 100 %. No treba uzeti u obzir da je to samo prosječna vrijednost jer, kako je navedeno, postoje značajna odstupanja od površine do površine.

Prema ovim rezultatima, očito je da smanjena krutost robota u ispruženom položaju značajno utječe na smanjenje kvalitete obrađene površine, odnosno na povećanje hrapavosti. Jedan od mogućih razloga tome je sljedeći: zbog dinamike sila rezanja (jer je alat s više reznih oštrica u diskontinuiranom zahvatu s obratkom) može doći do vibracija koje uzrokuju izražene tragove alata na površini obratka. Prema literaturi [26], na kvalitetu obrađene površine najveći utjecaj imaju vibracije u smjeru Z-osi alata. Velika je vjerojatnost da su, zbog manje krutosti robota u ispruženom položaju, vibracije bile veće te je stoga posljedično gora i kvaliteta obrađene površine. Kako bi se ova tvrdnja mogla potvrditi bilo bi potrebno provesti mjerenje razina vibracija tijekom samog procesa obrade.

Kao što je već uočeno u tablici 10, a to pokazuje i tablica 9, vidljive su varijacije parametara hrapavosti na ispitnim površinama za istu poziciju obratka. Uzimajući parametar *Ra* kao primjer, za Poziciju 1 on varira u rasponu od $0,817 - 2,136 \mu m$ te je njegova standardna devijacija $0,426 \mu m$. Na Poziciji 2 također se uočava rasipanje pri čemu se parametar *Ra* mijenja u rasponu od $1,577 - 3,733 \mu m$, a njegova standardna devijacija iznosi $0,714 \mu m$. Slično rasipanje vidljivo je i kod ostalih parametara. Također, može se uočiti da najbolje obrađene ispitne površine na Poziciji 2 imaju nižu vrijednost parametra *Ra* (kao i ostalih parametara) od najgore obrađenih ispitnih površina na Poziciji 1. Za vizualizaciju navedenoga, priložena je tablica 11.

 Tablica 11.
 Površine s najnižim i najvišim vrijednostima parametra Ra

			Pozicija 1		Pozicija 2	
			Ispitna površina	<i>Ra</i> , µm	Ispitna površina	<i>Ra</i> , µm
	Najbolji <i>Ra</i>	1.	P4	0,817	P1_DL	1,577
		2.	P1_DL	0,824	P1_GD	1,720
		3.	P1_GD	0,830	P2_DOLJE	1,897
	Najgori <i>Ra</i>	1.	P3_LIJEVO	2,136	P1_DD	3,733
		2.	P1_DD	1,813	P1_GL	3,695
		3.	P2_DESNO	1,762	P2_GORE	3,316

Gledajući parametar *Ra* na Poziciji 1 najniže vrijednosti postižu se na površinama P4 (0,817 μ m), P1_DL (0,824 μ m) i P1_GD (0,830 μ m). Najviše vrijednosti istog parametra za Poziciju 1 postižu se na površinama P3_LIJEVO (2,136 μ m), P1_DD (1,813 μ m) i P2_DESNO (1,762 μ m). Za Poziciju 2 parametar *Ra* najniže vrijednosti poprima na ispitnim površinama P1_DL (1,577 μ m), P1_GD (1,720 μ m) i P2_DOLJE (1,897 μ m). Najviše vrijednosti *Ra* postižu se za tu poziciju na ispitnim površinama P1_DD (3,733 μ m), P1_GL (3,695 μ m) i P2_GORE (3,316 μ m). Navedeno se može uočiti i vizualnom kontrolom obrađenih površina (slike 58 i 59). Ostali parametri hrapavosti uglavnom pokazuju isto uz jedan zanimljiv slučaj. Naime, vizualnom usporedbom površina P3_DESNO (*Ra* = 1,219 μ m) i P3_DOLJE (*Ra* = 1,301 μ m) na Poziciji 1, lošija struktura uočava se kod površine P3_DESNO no parametar *Ra* pokazuje suprotno. Parametri *Rq* i *Rz* u ovom slučaju bolje ocrtavaju stvarno stanje površine i pokazuju više vrijednosti na površini P3_DESNO što je u skladu s vizualnim izgledom površine.

Slika 58. Ispitna površina obratka sa Pozicije 1 i pripadajući parametri hrapavosti Ra i Rz

Zanimljivo je uočiti da se na obje pozicije robota kao površine s najboljom hrapavošću ističu P1_DL i P1_GD dok se kao jedna od najgore obrađenih površina na obje pozicije ističe P1_DD. Iste površine su na obje pozicije imale jednaku strategiju obrade što implicira na utjecaj smjera posmičnog gibanja na hrapavost površine. Utjecajem smjera posmičnog gibanja mogu se objasniti i varijacije parametara hrapavosti na ispitnim površinama za istu poziciju obratka. Naime, kako su aksijalna i radijalna dubina rezanja te posmična bili jednaki za sve ispitne površine (osim površine P4) moguće je da su varijacije hrapavosti izazvane različitim smjerom posmičnog gibanja u odnosu na koordinatni sustav baze robota. Kako pokazuju rezultati istraživanja [27], kvaliteta površine dobivena glodanjem u različitim smjerovima značajno se razlikuje zbog različite krutosti robota u različitim smjerovima njegovog koordinatnog sustava. Navedeni rezultati proizlaze iz same kinematike i konfiguracije robota jer su prilikom kretanja u različitim smjerovima aktivni različiti posmični prigoni u robotu pri čemu može doći do toga da se kretanje u pojedinom smjeru uglavnom izvodi sa prigonom koji ima najmanju krutost.

Na slici 60 dan je prikaz ispitnih površina sa naznačenim smjerom posmičnog gibanja. Iz te slike vidljivo je da se svakom vektoru posmičnog gibanja može dodijeliti smjer u smislu kuta koji čini u odnosu na koordinatni sustav baze robota.

Slika 60. Smjerovi posmičnog gibanja na ispitnim površinama
Detaljnijim razmatranjem smjera posmičnog gibanja na ranije spomenutim površinama s najmanjim vrijednostima parametara hrapavosti za obje pozicije obratka, može se zaključiti da se najniže vrijednosti parametara hrapavosti postižu pri smjerovima posmičnog gibanja od 45° i 225° u odnosu na bazu robota (površine P1_DL i P1_GD). Jednoj od najgore obrađenih površina, P1 DD, odgovara smjer posmičnog gibanja od 135°.

Vizualnom kontrolom također je moguće uočiti i veoma lošu kvalitetu obrađene površine na obradi kod bokova površina P1 kod obje pozicije i na površini P4 kod Pozicije 2. Kako ispitne površine nisu obuhvaćale područja uz bokove ona se u ovoj analizi ne uzimaju u obzir no moguće je da je takva pogoršana hrapavost uzrokovana povećanom dubinom rezanja kod bokova.

Zanimljivo je analizirati i površinu P4 jer pri obradi te površine robot radi kružnu interpolaciju. Na Poziciji 1 ta površina ima najmanje vrijednosti parametara hrapavosti ($Ra = 0.817 \mu m$, $Rz = 4.496 \mu m$) dakle najbolju kvalitetu površine, dok je na Poziciji 2 ista površina među jednima sa najvišim vrijednostima istih parametara ($Ra = 3.262 \mu m$, $Rz = 15.053 \mu m$), odnosno sa najgorom kvalitetom obrađene površine.

Parametri Ra, Rz i ostali prethodno analizirani parametri najčešće se koriste za karakterizaciju kvalitete površine proizvedenih dijelova. Međutim, ti parametri ne daju previše informacija o obliku profila hrapavosti. U tu svrhu preporučuju se drugi parametri kao što su asimetričnost profila Rsk i zaobljenost profila Rku. Rezultati navedenih parametara prikazani su za svaku ispitnu površinu i obje pozicije u tablici 9. Eksperimentalni rezultati nisu pokazali evidentan trend navedenih parametara s varijacijom položaja obratka. Štoviše, u većini slučajeva Rsk vrijednosti su oko 0, a vrijednosti Rku oko 3. U relevantnoj literaturi asimetričnost i zaobljenost profila hrapavosti često se promatraju u zajedničkom grafikonu. Stoga je na slici 61 dan takav prikaz za rezultate tih dvaju parametara. Svaka točka na grafikonu predstavlja jednu ispitnu površinu, a njen smještaj u dijagramu određen je vrijednostima parametara Rsk i Rku na toj ispitnoj površini. Iz priloženog grafikona uočava se disperzija Rsk-Rku parova, stoga se ne može dati egzaktan zaključak o ovisnosti tih parametara o položaju obratka. No može se uočiti blagi trend povećanih vrijednosti parametara Rsk i Rku za ispitne površine na Poziciji 2. Ovo se može utvrditi i analizom prosječnih vrijednosti u tablici 9 gdje je za Poziciju 1 prosječna vrijednost Rsk jednaka 0,174, dok na Poziciji 2 iznosi 0,196. Prosječna vrijednost Rku za Poziciju 1 iznosi 3,146, a za Poziciju 2 ta vrijednost je jednaka 3,324. Navedeno ukazuje da površine obrađene dalje od baze robota pokazuju malo oštriji profil s izraženijim vrhovima, za razliku od profila na Poziciji 2 koji je zaobljeniji međutim kako je vidljivo iz tablice 9 to ne vrijedi za sve ispitne površine. Općenito, ne očekuje se da varijacija položaja obratka može dovesti do potpuno različite vrste profila hrapavosti.

Slika 61. Rsk-Rku dijagram

6. ZAKLJUČAK

U ovom radu opisan je postupak primjene industrijskog robota za postupke obrade odvajanjem. Putanje alata za robotsku obradu generirane su upotrebom *CAD/CAM* programskog paketa *Fusion 360*. Shodno provedenim aktivnostima, može se zaključiti da *Fusion 360* pruža dobru podršku za izradu programa za robotsko glodanje. Koristeći ovu podršku, moguće je, odabirom odgovarajućeg postprocesora, generirati programski kod za upravljanje robotom po traženim putanjama alata, a generirani kod naknadno ubaciti u softver za programiranje robota. Kao jedan od takvih sotftvera, ističe se *ABB RobotStudio* koji zbog svoje tehnologije virtualnog kontrolera odlično simulira pokrete robota u stvarnom svijetu, što je utvrđeno ovim radom.

Kada se govori o primjeni industrijskog robota za obradu odvajanjem, kao jedan od glavnih nedostataka mora se spomenuti problem nedostatka krutosti industrijskog robota te ovisnost same krutosti o položaju obratka. Stoga su u sklopu eksperimentalnog dijela ovoga rada, provedene dvije robotske obrade, jedna blizu baze robota (Pozicija 1) i druga udaljenija od baze robota (Pozicija 2) kako bi se utvrdio utjecaj krutosti robota na kvalitetu obrađene površine. U oba pokusa obrađivao se isti materijal, aluminijska legura AlMg4,5Mn. Temeljem analize teksture obrađenih površina utvrđena je značajna ovisnost amplitudnih parametara hrapavosti *Ra*, *Rq*, *Rt*, *Rz*, *Rp* i *Rv* o poziciji obratka. Obrada na poziciji udaljenijoj od baze robota, rezultira višom vrijednošću navedenih parametara hrapavosti, odnosno lošijom kvalitetom obrađene površine od obrade na poziciji blizu baze robota. Dakle, smanjena krutost robota u ispruženom položaju značajno utječe na smanjenje kvalitete obrađene površine. Dodatnom analizom navedenih parametara hrapavosti utvrđena je i ovisnost kvalitete obrađene površine o smjeru posmičnog gibanja kod robotskog glodanja.

Temeljem svega navedenoga može se zaključiti da optimizacija položaja obratka u radnom prostoru robota može znatno utjecati na poboljšanje kvalitete obrađene površine, odnosno na smanjenje hrapavosti obrađenih površina kod robotskog glodanja. Prema tome, poželjno je koristiti robot u dijelu radnog prostora s većom krutošću jer to smanjuje pogreške uzrokovane deformacijom i vibracijama vrha alata.

- [1] Penczek, L.N.; Krampe, M.; Kuhlenkötter, B.: Analysis of surface quality during milling with industrial robots as a function of milling spindle orientation. In: Herberger, D.; Hübner, M. (Eds.): Proceedings of the Conference on Production Systems and Logistics
 : CPSL 2021. Hannover : publish-Ing., 2021, S. 595-604. doi: https://doi.org/10.15488/11262
- [2] Wu, K.; Li, J.; Zhao, H.; Zhong, Y. Review of Industrial Robot Stiffness Identification and Modelling. Appl. Sci. 2022, 12, 8719. doi: https://doi.org/10.3390/app12178719
- [3] Li, J., Li, B., Shen, N. et al. Effect of the cutter path and the workpiece clamping position on the stability of the robotic milling system. Int J Adv Manuf Technol 89, 2919–2933 (2017). https://doi.org/10.1007/s00170-016-9759-x
- [4] Fotografija alatnog stroja: <u>https://www.camprocnc.com/en/products/vertical-machining-center/nv-series/nv-1280</u>, Pristupljeno: 10. svibnja 2023.
- [5] Newman, M., Monsarrat, B., Fortin, Y. et al. Towards a new real-time metrology guidance method for robotized machining of aerostructures robust against cutting fluids and debris. Int J Adv Manuf Technol 126, 2647–2663 (2023). https://doi.org/10.1007/s00170-023-11242-2
- [6] Yingjie Guo, Huiyue Dong, Yinglin Ke, Stiffness-oriented posture optimization in robotic machining applications, Robotics and Computer-Integrated Manufacturing, Volume 35, 2015, Pages 69-76, ISSN 0736-5845, https://doi.org/10.1016/j.rcim.2015.02.006.
- [7] Peng Xu, Xiling Yao, Shibo Liu, Hao Wang, Kui Liu, A. Senthil Kumar, Wen Feng Lu, Guijun Bi, Stiffness modeling of an industrial robot with a gravity compensator considering link weights, Mechanism and Machine Theory, Volume 161, 2021, 104331, ISSN 0094-114X, https://doi.org/10.1016/j.mechmachtheory.2021.104331.
- [8] Zerun, Z., Chen, C., Fangyu, P. et al. Identification of joint position-dependent stiffness parameters and analysis of robot milling deformation. Int J Adv Manuf Technol 118, 4179–4193 (2022). https://doi.org/10.1007/s00170-021-08090-3
- [9] Peng Xu, Yinghao Gao, Xiling Yao et al. Influence of process parameters and robot postures on surface quality in robotic machining, 10 June 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1712459/v1]

- [10] Vucurevic, Radoslav & Krivokapic, Zdravko & Ivanković, Petar & Lemeš, Samir. (2019). Ispitivanje međuzavisnosti parametara kvaliteta obrađene površine i parametara odstupanja od oblika i položaja pri obradi bušenjem.
- [11] ABB IRB 6660: <u>https://new.abb.com/products/3HAC020536-013/irb-6660</u>, Pristupljeno: 15. svibnja 2023.
- [12] Značajke robota ABB IRB 6660-205/1.9:

 https://library.e.abb.com/public/91504b95a1734759a3e5b3eb5fc20560/3HAC028207%

 20PS% 20IRB% 206660-en.pdf, Pristupljeno: 15. svibnja 2023.
- [13] ABBIRB6660:https://search.abb.com/library/Download.aspx?DocumentID=ROB0053EN_F&LanguageCode=en&DocumentPartId=&Action=Launch, Pristupljeno: 15. svibnja 2023.
- [14]ZnačajkerobotaABBIRB4600-40/2.55:https://library.e.abb.com/public/1c6b1c1a553f4b12aa064c54a906faff/3HAC032885%2OPS%20IRB%204600%20on%20IRC5-en.pdf?x-sign=+8xcAi/YmloqFKODFuZe/W8r0bdSDUrBYJh9dqXP+YFvOXm5jEZWQbmZNH/XaD8t, Pristupljeno: 16. svibnja 2023.
- [15] Alicona IF-SensorR25: <u>https://www.alicona.com/products/if-sensorr25/</u>, Pristupljeno:
 17. svibnja 2023.
- [16] Danzl, Reinhard & Helmli, Franz & Scherer, Stefan. (2011). Focus Variation—A Robust Technology for High Resolution Optical 3D Surface Metrology. Strojniski Vestnik. 2011. 245-256. 10.5545/sv-jme.2010.175.
- [17] Gohil UB. 3D analysis of Dental Tool Wear: experimental evaluation of the rounding of the cutting edge. Milano: School of Industrial and Information Engineering; 2019.
- [18] Alicona MeasureSuite Manual. Raaba/Graz: Alicona Imaging GmbH; 2020.
- [19] Karakteristike materijala AlMg4,5Mn: <u>https://www.makeitfrom.com/material-properties/5083-AlMg4.5Mn0.7-3.3547-N8-A95083-Aluminum</u>, Pristupljeno: 27. svibnja 2023.
- [20] KarakteristikeglodalaIscar145-100-22-10-72-3-R02-A:https://www.iscar.com/Catalogs/publication-2021/Flash_Solid_catalog_43_1_2021_METRIC.pdf, Pristupljeno: 27. svibnja 2023.
- [21] Umjeravanje koordinatnoga sustava alata : <u>https://static.au-uw2-prd.autodesk.com/IM467178-L_Class_Handout_IM467178L.pdf</u>, Pristupljeno: 6. lipnja 2023.
- [22] Alicona Remoting Interface Manual. Raaba/Graz: Alicona Imaging GmbH; 2022. *Fakultet strojarstva i brodogradnje*

- [23] Runje, B. Predavanja iz kolegija Teorija i tehnika mjerenja. Zagreb: Fakultet strojarstva i borodgradnje; 2014.
- [24] International Standards Organisation. ISO 4288:1996 Geometrical Product Specifications (GPS) — Surface texture: Profile method — Rules and procedures for the assessment of surface texture; 1996.
- [25] Parametrihrapavosti:https://inspectionengineering.com/wp-content/uploads/2018/03/SurfaceFinishExplain.pdf, Pristupljeno: 10. lipnja 2023.
- [26] Marco Leonesio, Enrico Villagrossi, Manuel Beschi, Alberto Marini, Giacomo Bianchi, Nicola Pedrocchi, Lorenzo Molinari Tosatti, Vladimir Grechishnikov, Yuriy Ilyukhin, Alexander Isaev, Vibration Analysis of Robotic Milling Tasks, Procedia CIRP, Volume 67, 2018, Pages 262-267, ISSN 2212-8271, https://doi.org/10.1016/j.procir.2017.12.210.
- [27] Ni, J.; Dai, R.; Yue, X.; Zheng, J.; Feng, K. Contribution Ratio Assessment of Process Parameters on Robotic Milling Performance. Materials 2022, 15, 3566. https:// doi.org/10.3390/ma15103566

I. CD-R disc