Radne karakteristike demonstracijskog rashladnog uređaja s ugljikovim dioksidom kao radnom tvari

Badurina, Teodor

Undergraduate thesis / Završni rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:208239

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-08-19

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Teodor Badurina

Zagreb, 2020.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentor:

doc. dr. sc. Marino Grozdek, dipl. ing.

Student:

Teodor Badurina

Zagreb, 2020.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru doc. dr. sc. Marinu Grozdeku na pruženoj podršci i stručnim savjetima tijekom izrade ovog rada, te na izdvojenom vremenu.

Zahvaljujem se Ivanu Uzbašiću, dipl.ing.stroj. na stručnim savjetima i izdvojenom vremenu.

Teodor Badurina

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za završne ispite studija strojarstva za smjerove:

procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveučilište u Zagrebu					
Fakultet strojarstva i brodogradnje					
Datum Prilog					
Klasa:					
Ur.broj:					

ZAVRŠNI ZADATAK

Student:

Teodor Badurina

Mat. br.: 0035204499

Naslov rada na hrvatskom jeziku: Naslov rada na engleskom jeziku:

Radne karakteristike demonstracijskog rashladnog uređaja s ugljikovim dioksidom kao radnom tvari

Performance of a laboratory CO2 refrigeration unit

Opis zadatka:

Potrebno je provesti mjerenja te analizirati rad laboratorijskog, demonstracijskog rashladnog uređaja s ugljik dioksidom kao radnom tvari, smještenog u Laboratoriju za toplinu i toplinske uređaje na Fakultetu strojarstva i brodogradnje Sveučilišta u Zagrebu, s obzirom na sljedeće režime rada:

- o podkritični režim rada uređaja,
- o nadkritični režim rada uređaja.

Rad mora sadržavati:

- o opis sustava uključujući mjernu opremu,
- o shematski prikaz rashladnog uređaja,
- o plan provedbe mjerenja,
- o izračun mjerene nesigurnosti,
- o termodinamički proračun s izračunom faktora hlađenja i grijanja,
- o simulaciju rada uređaja kroz cijelu godinu za područje grada Zagreba.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

28. studenog 2019.

Datum predaje rada: **1. rok:** 21. veljače 2020. **2. rok (izvanredni):** 1. srpnja 2020. **3. rok:** 17. rujna 2020. Predviđeni datumi obrane: **1. rok:** 24.2. – 28.2.2020. **2. rok (izvanredni):** 3.7.2020. **3. rok:** 21.9. - 25.9.2020.

Predsjednik Povjerenstva:

Prof. dr. sc. Igor Balen

Zadatak zadao:

Izv. prof. dr. sc. Marino Grozdek

Sadržaj

1.	UVOD	. 1
2.	CO2 U RASHLADNOJ INDUSTRIJI	. 2
	2.1. Svojstva i usporedba CO2 kao radne tvari	. 2
,	2.2. Tipovi rashladnih sustava sa CO ₂ radnom tvari	. 5
	2.2.1. CO ₂ kao sekundarna radna tvar	. 5
	2.2.2. CO ₂ kao primarna radna tvar	.6
	2.2.3. CO ₂ kao posredna radna tvar	.7
3.	OPIS UREĐAJA	. 8
	3.1. Kompresor 4MTL-05X	. 8
	3.2. Kondenzator/Hladnjak plina	10
	3.3. Komora za hlađenje	10
	3.4. Vodeni krug	10
	3.4.1. Pločasti izmjenjivač za hlađenje vode	11
	3.4.2. Pločasti izmjenjivač za rekuperaciju	11
	3.4.3. Vodene pumpe	11
4.	MJERENJE	12
	4.1. Podkritičan režim rada-karakteristične točke	12
	4.2. Transkritičan režim rada-karakteristične točke	19
5.	SIMULACIJA RADA UREĐAJA KROZ GODINU	26
	5.1. Pretpostavke	26
	5.2. Ulazni podaci	26
	5.3. Podkritični režim rada	29
	5.4. Transkritični režim rada	33
	5.5. Potrošnja energije kroz godinu	36
6.	ZAKLJUČAK	38

POPIS SLIKA

Slika 1	Kategorizacija radnih tvari[1]	2
Slika 2	Usporedba dinamičke viskoznosti vrele kapljevine po temperaturama[1]	3
Slika 3	Usporedba toplinske provodnosti vrele kapljevine o temperaturi zasićenja[1]	3
Slika 4	Prikaz tlakova zasićenja u ovisnosti o temperaturi zasićenja[1]	4
Slika 5	Usporedba latentne topline isparavanja o temperaturi zasićenja[1]	4
Slika 6	Kaskadni rashladni sustav	5
Slika 7	CO2 kao primarna radna tvar u sustavu	6
Slika 8	CO ₂ kao posebna radna tvar	7
Slika 9	Dimenzije kompresora[2]	9
Slika 10	Pumpa TOP-S 30/5 1 PN 10	11
Slika 11	Podkritičan način rada	15
Slika 12	Prikaz mjernih pozicija termometra kod mjerenja stanja mješališta	15
Slika 13	Transkritičan način rada	22
Slika 14	Prikaz mjernih pozicija termometra kod mjerenja stanja mješališta	22
Slika 15	Polinomi za snagu kompresora	27
Slika 16	Polinomi za maseni protok kroz kompresor	28
Slika 17	Ovisnost COP o tlaku za zadanu izlaznu temperaturu plina	33
Slika 18	Raspon ε-a po satima kroz godinu	35

POPIS TABLICA

Tablica 1	Tehničke karakteristike kompresora[2]	
Tablica 2	Karakteristike hladnjaka plina	
Tablica 3	Izračunavanje mjerne nesigurnosti	
Tablica 4	Prikaz entalpija po točkama	
Tablica 5	Prikaz mjernih točaka vodenog kruga	17
Tablica 6	Prikaz stanja u komori	
Tablica 7	Izračun mjerne nesigurnosti	
Tablica 8	Određivanje entalpija u točkma sustava	
Tablica 9	Prikaz stanja vodenog kruga	
Tablica 10	Prikaz stanja u komori	
Tablica 11	Entalpija i udio pare u točki 4	
Tablica 12	Traženi protok i snaga kompresora za određenu vanjsku temperaturu	
Tablica 13	Vrijednosti ε-a za različite temperature	
Tablica 14	Ovisnost maksimalnog ε o vanjskoj temperaturi	
Tablica 15	Potrošnja električne energije po satima	

POPIS TEHNIČKE DOKUMENTACIJE

CRTEŽ 1. Shema demonstracijskog rashladnog uređaja

ε Faktor hlađenja

Grčke oznake

$\Delta artheta_{pot}$	Pothlađenje radne tvari	°C
$\Phi_{0,W}$	Rashladni učin isparivača za hlađenje vode	kW
$\Phi_{0,Z}$	Rashladni učin isparivača za hlađenje zraka	kW
$\Phi_{0,uk}$	Ukupni rashladni učin	kW
Φ_0	Rashladni učin	kW
Φ_R	Učin regeneratora	kW
ϑ_i	Temperatura isparavanja	°C
$\vartheta_{izl,gc}$	Izlazna tempratura iz gas-coolera	°C
ϑ_{ok}	Temperatura okolišnjeg zraka	°C

Latinične oznake

C _W	Specifični toplinski kapacitet vode	kJ/kgK
f	Frekvencija rada kompresora	Hz
Δp_W	Pad tlaka na strani vode u isparivaču	Pa
P_K	Snaga kompresora	kW
p_{tlak}	Tlak pri izlazu radne tvari iz kompresora	bar
$q_{m,RT,K}$	Maseni protok radne tvari kroz kompresor	kg/s
$q_{m,RT,W}$	Maseni protok radne tvari kroz isparivač za hlađenje vode	kg/s
$q_{m,RT,Z}$	Maseni protok radne tvari kroz isparivač za hlađenje zraka	kg/s
<i>q_{m,RT,isp}</i>	Maseni protok radne tvari kroz oba isparivača	kg/s

-

Teodor Badurind	l de la constante de	Završni rad
$q_{m,RT,ob.vod}$	Maseni protok radne tvari kroz obilazni vod	kg/s
$q_{m,HW}$	Maseni protok hladne vode	kg/s
$q_{m,TW}$	Maseni protok hladne vode	kg/s

SAŽETAK

Problemi rashladne industrije današnjice potiču razvoj dizalica topline koje koriste CO₂ kao radnu tvar. Zbog svojih svojstava CO₂ predstavlja izazov u primjeni. Danas su u Hrvatskoj sustavi CO₂ slabo zastupljeni i istraženi. Cilj je ovog rada približiti takve sustave i ispitati ima li u Zagrebu potencijala za njihovu upotrebu. Način na koji će se to obaviti jest eksperimentalnim dobivanjem početnih podataka, analizom i dobivanjem iskoristivosti sustava kroz godinu teorijskim pretpostavkama. Iz tih se podataka može vidjeti usporedba efikasnosti sa sadašnjim rashladnim sustavima u Hrvatskoj.

Ključne riječi: dizalica topline, CO2, R744

1. UVOD

U želji za rješavanjem nedostataka i problema današnje rashladne industrije kreiraju se mnoga rješenja koja nisu primjenjiva za sve oblike hlađenja i sva geografska područja. Jedan je od načina na koje se nova tehnologija uvodi u industriju ispitivanje u laboratorijima i obučavanje inženjera seminarima. Kod razvijanja novih tehnologija i uređaja u počecima se javljaju mnogi problemi koji nisu predviđeni teorijskim proračunima, a zbog toga je nužna izrada prototipa, gdje se mogu na siguran način ispitati granice i isplativost. Svrha ove analize jest predstaviti prednosti i nedostatke CO₂ kao radne tvari budućnosti i pokazati iskoristivost dizalica topline koje koriste CO₂ kao radnu tvar na području Grada Zagreba.Metoda analize promjene ε -a je mjerna metoda koja će poslužiti kao početna točka simulacije iz koje se dobivaju inicijalni parametri, na temelju kojih se rade određene pretpostavke. Cilj je dobiti promjenu ε -a kroz godinu kako bi se utvrdila kvantitativna isplativost korištenja CO₂ kao radne tvari na zagrebačkom području.

2. CO₂ U RASHLADNOJ INDUSTRIJI

2.1. Svojstva i usporedba CO2 kao radne tvari

Ugljikov dioksid spada u skupinu prirodnih tvari zajedno sa vodom, butanom, propanom,...

Specifične karakteristike CO₂ pružaju mnoge prednosti nad drugim tvarima, ali i određene nedostatke.

Svojstva koja CO2 daju prednost naspram drugih radnih tvari su:

- niska viskoznost
- nezapaljivost
- netoksičnost
- o mogućnost zagrijavanja vode na visoke temperature

Nedostaci:

- niska kritična točka
- o nemogućnost "retrofita" zbog visokih radnih tlakova
- o propuštanja pri velikim tlakovima su opasnija
- CO₂ sistemi su kompleksniji

Svojstva kao što su nezapaljivost i netoksičnost čine CO₂ privlačnim u odnosu na druge tvari zbog manje opasnosti za ljudske živote [Slika 1].

CFC	R-11	A1
	R-12	A1
HCFC	R-22	A1
	R-123	B1
HFC	R-134a	A1
	R-152a	A2
HFC	R-404A	A1
	R-410A	A1
HC	R-290	A3
	R-600a	A3
HFO	R-1234yf	A2
	R-1234ze	A2
Prirodni	R-744	A1
	R-717	B2

Slika 1 Kategorizacija radnih tvari[1]

Niska dinamička viskoznost omogućuje povećani koeficijent prijelaza topline naspram drugih radnih tvari, čime se dobiva mogućnost ugradnje manjih isparivača. Dodatne uštede u radu

omogućuju manji gubici u cjevovodu, zbog čega se ugrađuju pumpe manjih snaga [Slika 2 i Slika 3].

Slika 2 Usporedba dinamičke viskoznosti vrele kapljevine po temperaturama[1]

Slika 3 Usporedba toplinske provodnosti vrele kapljevine o temperaturi zasićenja[1]

Visoki radni tlakovi pri svim temperaturama predstavljaju velik nedostatak CO₂ sistema zbog povećane kompleksnosti pri projektiranju i održavanju sustava. U slučaju propuštanja dolazi do puno veće opasnosti za ljude nego pri konvencionalnim radnim tvarima. Nisko položena kritična točka znači da sustav pri visokim temperaturama okoliša radi u transkritičnom načinu rada, što ima za posljedicu smanjenje efikasnosti sustava [Slika 4 i Slika 5].

Slika 5 Usporedba latentne topline isparavanja o temperaturi zasićenja[1]

CO₂ se stoga koristi u kaskadnim sustavima kako bi se izbjegli nedostaci radne tvari, a da se pritom iskoriste prednosti.

2.2. Tipovi rashladnih sustava sa CO₂ radnom tvari

CO₂ se koristi na više načina u rashladnim sustavima: kao sekundarna radna tvar, kao primarna radna tvar, kao posredni prijenosnik energije. Odabir načina korištenja razlikuje se ovisno o mogućnostima pojedine lokacije, financijskim mogućnostima i traženim uvjetima hlađenja.

2.2.1. CO2 kao sekundarna radna tvar

Pri niskim temperaturama hlađenja (manje od -30°C) uobičajeno je korištenje kaskadnih sustava zbog velikih razlika tlakova između isparavanja i kondenzacije. Na tako velikim promjenama temperatura svojstva tvari izrazito se mijenjaju pa se gubi učinkovitost cjelokupnog sustava. Zbog toga se odabire sustav s dvije tvari, od kojih svaka ima prednosti na različitim temperaturama i tlakovima. R744/R717 primjer je sustava gdje se iskorištavaju prednosti CO₂ u potkritičnom području, dok se u gornjoj kaskadi koristi amonijak. Dodatna prednost ovakvog odabira sustava jest to što omogućuje smanjenje punjenja amonijaka u sustavu (otrovan) i može ga se izbaciti iz dijela postrojenja gdje se nalaze ljudi. Nedostatak je pak ovakvog tipa sustava što postoji temperaturna razlika u međuizmjenjivaču[Slika 6].

Slika 6 Kaskadni rashladni sustav

2.2.2. CO₂ kao primarna radna tvar

Kada se CO_2 koristi kao primarna radna tvar treba postojati oprez zbog visokih tlakova koji se javljaju u sustavu na tlačnoj strani. Ti tlakovi mogu premašiti i 100 bara što zahtjeva povećanu pozornost pri konstuiranju i održavanju rashladnih jedinica. Problem niske kritične točke očituje se pri visokim temperaturama okoliša kada sustav prelazi u transkritičan režim rada, što za posljedicu ima smanjenje ε -a. Pri temperaturama i tlakovima višim od kritičnih ne postoji kondenzacija radne tvari, a kondenzator preuzima ulogu hladnjaka plina. Prelazak u kapljevito stanje javlja se tek nakon prigušenja, kada tlakovi padnu ispod kritičnih[Slika 7].

Slika 7 CO₂ kao primarna radna tvar u sustavu

2.2.3. CO₂ kao posredna radna tvar

Završni rad

R744 koristi se kao posredni prenosnik energije u sustavima s potopljenim isparivačima, gdje zadaću cirkulacije radne tvari obavljaju pumpe, a ne kompresori. CO₂ se pumpama distribuira do isparivača, gdje uslijed promjene faze preuzima na sebe energiju okoline.

Prednosti su smanjenje primarne radne tvari i njihovo izbacivanje iz dijela zgrade gdje borave ljudi jer su najčešće otrovne. Zbog svojstava CO₂ potrošnja energije pri pumpanju kroz sustav manja je nego kod pumpanja vode ili glikolnih smjesa. Dodatna pogodnost je korištenje cjevovoda manjeg promjera zbog fazne promjene tvari koja iziskuje više energije nego zagrijavanje/hlađenje fluida [Slika 8].

Slika 8 CO₂ kao posebna radna tvar

3. OPIS UREĐAJA

Uređaj se nalazi u laboratoriju zgrade FSB-a. Sastoji se od jednostupanjskog kompresora, gas coolera, vodenoga rekuperatora, zračnog isparivača u komori, vodenoga isparivača, spremnika vode te dviju vodenih pumpi.

3.1. Kompresor 4MTL-05X

Jednostupanjski transkritični kompresor rađen je u poluhermetskoj izvedbi. Odlikuje se velikom komorom za pražnjenje kako bi se smanjilo pulsiranje u radu. Glava cilindra i plenum komora dizajnirani su tako da bi se izbjeglo širenje toplinskog toka na usis kompresora. Zbog poluhermetske izvedbe hlađenje se odvija tako da radna tvar prolazi kroz motor i preuzima na sebe toplinu stvorenu radom motora. Tehničke karakteristike ovog kompresora nalaze se u [Tablica 1]. Opće dimenzije kompresora nalaze se na [Slika 9].

Mehanički podaci					
Broj cilindara	4				
Provrt/Stroke;mm	26,0/25,0				
Dužina/širina;mm	630/425				
Visina;mm	410				
Neto težina;kg	123				
Mokra težina;kg	140				
Usis;inch	5/8				
Ispuh;inch	1/2				
Količina ulja;l	1,3				
Raspon frekvencijskoga rada, Hz	25-70				
Vrsta ulj(originalno punjenje)	POE RL 68 HB				
Vrste ulja(dozvoljeni tipovi)	Zerol RFL 68EP, POE RL 68HB				
Base mounting (provrt rupe);mm	368 x 256 (22,5)				
Visokotlačna strana PS mjerača;bar	135				
Niskotlačna strana PS mjerača;bar	90				
GWP radne tvari	1				
Klasifikacija radne tvari	A1				

Tablica 1Tehničke karakteristike kompresora[2]

Pri uvjetima:

$$\vartheta_{i} = -10^{\circ}C$$
$$\vartheta_{izl,gc} = 35^{\circ}C$$
$$\Delta\vartheta_{pot} = 0^{\circ}C$$
$$p_{tlak} = 90bar$$
$$f = 55Hz$$

Imamo rashladni učin od:

$$\Phi_0 = 9,72kW$$

Slika 9 Dimenzije kompresora[2]

3.2. Kondenzator/Hladnjak plina

Model GGVC CD 050.1/11-43 koji je instaliran na dizalici topline proizvodi tvrtka Guntner. Prednost je ovog modela opremljenost EC ventilatorom zbog kojega se može regulirati broj okretaja ventilatora. To omogućuje dva modusa rada: konstantnu temperaturu kondenzacije ili uštedu energije i smanjenje buke u promjenjivoj temperaturi kondenzacije. Prvenstveno se koristi promjenjiva temperatura kondenzacije radi smanjenja potrošnje energije, a samim time se i smanjuje ljudski utjecaj na okoliš. Tehničke karakteristike nalaze se u [Tablica 2].[3]

Radna tvar	R 744 (ugljikov dioksid, CO ₂)
Maksimalni dozvoljeni tlak	0 - 120 bar/-1 bar
Testni tlak	172 bar
Dozvoljene radne temperature	-50 +150 °C
Testni medij	Suhi zrak

Tablica 2Karakteristike hladnjaka plina

3.3. Komora za hlađenje

U komoru je ugrađen zračni isparivač tvrtke LU-VE[4], model F27HC 31 E7 SPEC CO₂ DX, kao jedan od potrošača na uređaju. Pri uvjetima:

 $\vartheta_i = -10^{\circ}C$ $V_{protok \ zraka} = 2000 \ m^3/h$ $Broj \ ventilatora = 2 \ (EC)$ $p_{maksimalni} = 85 \ bar$ $\Phi_0 = 1,96 \ kW$

3.4. Vodeni krug

Vodeni krug uređaja spojen je s dizalicom topline dvama pločastim izmjenjivačima. Željene temperature ulaza vode u isparivač određuju se s pomoću dvaju troputnih ventila. Sustav pokreću dvije pumpe, a svaka omogućuje da protok kroz izmjenjivač bude konstantan. Nadopunjavanje i pražnjenje vode odvija se ventilima koji se nalaze na spremniku.

3.4.1. Pločasti izmjenjivač za hlađenje vode

Svrha je izmjenjivača simulacija rada "chillera" pri uobičajenom temperaturnom režimu 12/7°C. Izmjenjivač je proizvod tvrtke SWEP i ima sljedeće karakteristike:

 $\vartheta_i = 3^{\circ}C$ $p_{maks} = 130 \ bar$ $\Delta p_{na \ strani \ vode} = 20 \ kPa$ $\Phi_0 = 15 \ kW$

3.4.2. Pločasti izmjenjivač za rekuperaciju

Korisiti se kod simulacije rekuperacije otpadne topline za zagrijavanje vode koja se zbog temperatura CO₂ iz kompresora (oko 70°C) može zagrijati na visoke temperature.Ulazne temperature vode u rekuperator određuju se preko troputnih ventila.

Prednost korištenja regeneratora leži u mogućnosti potkritičnog režima rada iako je temperatura zraka iznad kritične temperature zbog korištenja vodovodne vode temperature 12°C. Izmjenjivač je proizvod tvrtke SWEP.

3.4.3. Vodene pumpe

Zbog postojanja zasebne pumpe na svakom izmjenjivaču protok vode je konstantan. Pogoni ga se pumpom TOP-S 30/5 1 PN 10 kao proizvod tvrtke Wilo. Pumpa ima mogućnost izbora triju brzina vrtnje. Zbog simulacije potrošača koji uglavnom rade na režimu 12/7°C imamo troputni ventil tvrtke Danfoss modela HRE 3DN 25 s pripadajućim motorom AMB162 [Slika 10].

Slika 10 Pumpa TOP-S 30/5 1 PN 10

4. MJERENJE

Cilj mjerenja je izračunavanje ε -a i učina ostalih komponenti uređaja za dvije radne točke sustava (potkritični i transkritični režim rada). Uključenjem uređaja u struju, spajanjem laptopa pomoću UTP kabela i pokretanjem programa StoreView Desktop[5] i Start Service Tool[6] utvrđuje se da su sve komponente i senzori ispravni. Podešenjem parametara određena je željena radna točka. Pokretanjem najprije kompresora, potom potrošača (vodenog isparivača i zračnog isparivača) cijeli je sustav u pogonu.

4.1. Podkritičan režim rada-karakteristične točke

Nakon stabiliziranja sustava u potkritičnome režimu zapisane su vrijednosti karakterističnih radnih točaka. Očitanje se ponavlja tri puta za potkritični režim rada zbog mjerne nesigurnosti [Tablica3 i Slika 11]. Nesigurnost u mjerenju je računata po metodi A[7].

Aritmetička sredina

$$\mathbf{q} = \frac{1}{n} * \sum_{k=1}^{n} q_k$$

Standardno odstupanje

$$s = \sqrt{\frac{1}{n-1} * \sum_{k=1}^{n} (q_k - q)^2}$$

q-aritmetička sredina mjernih vrijednosti n-broj mjerenja q_k -mjerna vrijednost

Zbog nedostatka izolacije na usisnom cjevovodu upotrebljen je mjerni uređaj kojime su izmjerene mješališne temperature radi preciznijeg dobivanja protoka kroz sustav.

Stvarna temperatura radne tvari u cjevovodu može varirati zbog mjerenja termometrom s vanjske strane cijevi[Slika 12].

Točka		1 .OČITANJE		2.OČITANJE		3.OČITANJE		ARITMETIČKA Sredina		STANDARDNO ODSTUBANJE	
		p(bar)	θ (°C)	p(bar)	θ (°C)	p(bar)	θ (°C)	p(bar)	ϑ (°C)	p(bar)	θ (°C)
			(=)		(-)		(-)				
Usis u kompresor	1	32.22	8.20	32.65	7.60	32.22	8.00	32.36	7.93	0.248	0.306
Izlaz iz kompresora	2	71.79	73.00	71.40	71.50	71.82	73.20	71.67	72.57	0.234	0.929
Izlaz iz gas coolera	3	70.50	26.20	70.30	26.00	70.24	26.00	70.35	26.07	0.136	0.115
Nakon prigušenja	4	40.02	6.20	40.08	6.36	40.10	6.30	40.07	6.29	0.042	0.081
Para u spremniku	5	40.02	6.20	40.08	6.36	40.10	6.30	40.07	6.29	0.042	0.081
Kapljevina u spremniku	6	40.02	6.20	40.08	6.36	40.10	6.30	40.07	6.29	0.042	0.081
Ulaz u hladnjak vode	7	36.10	2.30	36.50	2.70	35.90	2.00	36.17	2.33	0.306	0.351
Izlaz iz hladnjaka vode	8	36.00	10.00	36.50	9.20	36.05	9.80	36.18	9.67	0.275	0.416
Ulaz u komoru	9	32.70	-1.20	33.29	-0.60	32.75	-1.30	32.91	-1.03	0.327	0.379
Izlaz iz komore	10	32.74	2.70	33.29	3.20	32.76	2.50	32.93	2.80	0.312	0.361
Dobiveno prigušenjem iz točke 5	11	32.20	-2.90	32.65	-2.40	32.21	-3.20	32.35	-2.83	0.257	0.404
Dobiveno prigušenjem iz točke 8	12	32.50	5.00	32.65	3.90	31.80	4.80	32.32	4.57	0.454	0.586
Pregrijanje u spiralnom izmjenjivaču	13	32.26	8.00	32.65	7.50	32.00	8.20	32.30	7.90	0.327	0.361
Pothlađenje kapljevine u spiralnom izmjenjivaču	14	40.00	9.00	40.08	8.70	40.10	9.30	40.06	9.00	0.053	0.300
	15	32.70	19.60	32.76	19.70	32.73	19.30	32.73	19.53	0.030	0.208
	16	32.74	8.40	32.70	8.60	32.71	8.60	32.72	8.53	0.021	0.115
	17	32.50	8.20	32.61	8.10	32.82	8.10	32.64	8.13	0.163	0.058
	18	32.51	8.90	32.48	8.50	32.51	8.60	32.50	8.67	0.017	0.208
	19	32.22	8.40	32.32	8.30	32.18	8.20	32.24	8.30	0.072	0.100

Tablica 3Izračunavanje mjerne nesigurnosti

Točka		p(bar)	θ (°C)	v(m3/kg)	h(kJ/kg)	x(kg/kg)
Usis u kompresor	1	32.36	7.93	0.01260	449.42	-
Izlaz iz kompresora	2	71.67	72.57	0.00690	489.67	-
Izlaz iz gas coolera	3	70.35	26.07	-	274.54	-
Nakon prigušenja	4	40.07	6.29	0.00350	274.54	0.315
Para u spremniku	5	40.07	6.29	0.00868	427.23	1.00
Kapljevina u spremniku	6	40.07	6.29	0.00113	213.32	0.00
Ulaz u hladnjak vode	7	36.17	2.33	0.00146	213.32	0.04
Izlaz iz hladnjaka vode	8	36.18	9.67	0.01090	444.99	-
Ulaz u komoru	9	32.91	-1.03	0.00182	213.32	0.08
Izlaz iz komore	10	32.93	2.80	0.01163	440.19	
Dobiveno prigušenjem iz točke 5	11	32.35	-2.83	0.01107	427.23	0.98
Dobiveno prigušenjem iz točke 8	12	32.32	4.57	0.01225	444.99	-
Pregrijanje u spiralnom izmjenjivaču	13	32.30	7.90	0.01260	449.56	-
Pothlađenje kapljevine u spiralnom	14			-	212.60	-
izmjenjivaču		40.06	9.00			
	15	32.73	19.53	0.01342	463.10	-
	16	32.72	8.53	0.01232	447.70	-
	17	32.64	8.13	0.01225	447.90	-
	18	32.50	8.67	0.01248	449.50	-
	19	32.24	8.30	0.01266	449.90	_

Tablica 4Prikaz entalpija po točkama

U [Tablica 4] entalpije radnih točaka očitane su iz programa Coolselector2[8] po izmjerenim temperaturama i tlakovima.

h (kJ/kg)

Slika 11 Podkritičan način rada

Slika 12 Prikaz mjernih pozicija termometra kod mjerenja stanja mješališta

Izračunavanje protoka kroz isparivače

Za zadane uvjete rada pomoću programa Select 8 dobiven je protok radne tvari kroz kompresor.

$$q_{m,RT,K} = 101.5 \frac{g}{s} \tag{1}$$

Pretpostavlja se da se sva parna faza koja dolazi u sakupljač odvaja i odlazi u kompresor. S tom pretpostavkom možemo izračunati maseni protok radne tvari kroz obilazni vod.

$$q_{m,RT,ob,vod} = X_4 * q_{,k} \tag{2}$$

$$q_{m,RT,ob.vod} = 0,315 * 101,5 = 31,97\frac{g}{s}$$

Mješalište kojemu su stanja ulaznih protoka izmjerena u točkama 15, 16 i 17, a izlazno u točki 19 može se odrediti protoke kroz pojedine isparivače pomoću masene i energetske jednadžbe[9].

$$q_{m,RT,K} = q_{m,RT,W} + q_{m,RT,Z} + q_{m,RT,ob.vod}$$
(3)

$$h_{19} * q_{m,RT,K} = h_{15} * q_{m,RT,Z} + h_{16} * q_{m,RT,W} + h_{17} * q_{m,RT,ob.vod}$$
(4)
$$q_{m,RT,W} = 64,69 \ g/s$$
$$q_{m,RT,Z} = 4,83 \ g/s$$

Izračunavanje rashladnog učina vodenog isparivača i protoka vode

Iz prethodno dobivenih vrijednosti može se izračunati rashladni učin vodenog isparivača.

$$\Phi_{0,W} = q_{m,RT,W} * (h_8 - h_7) \, kW \tag{5}$$

$$\Phi_{0,W} = 14,98 \, kW$$

Zbog nepoznate vrijednosti pada tlaka u cijevima vodenog kruga nije moguće izračunati protok vode kroz pumpu preko karakteristike pumpe nego preko učina isparivača[Tablica 5][10].

$$\Phi_0 = q_{m,HW} * c_W * (T_{STW5} - T_{VS3}) kW$$

$$q_{m,HW} = 0.73 kg/s$$
(6)

Prolaskom radne tvari kroz pločasti rekuperator oslobađa se potrebni toplinski tok za zagrijanje vode.

STW2:	29.5	°C
STW3:	29	°C
STW4:	33.1	°C
STW5:	12	°C
STW8:	28.6	°C
VS3:	7.1	°C
Otvorenost ventila tople	100	%
vode		
Otvorenost ventila hladne	76.1	%
vode		

Tablica 5Prikaz mjernih točaka vodenog kruga

Kada je ventil tople vode otvoren 100% sva voda koja prolazi kroz rekuperator dolazi iz spremnika, dok je kod ventila hladne vode to obratno. Iz tablice se može vidjeti da zbog zadane temperature vode u spremniku (STW3) uređaj preuzima na sebe maksimalnu količinu toplinskog toka.

Stanje u komori

Iz prethodno dobivenih vrijednosti može se izračunati rashladni učin zračnog isparivača[Tablica 4 i Tablica 6].

$$\Phi_{0,Z} = q_{m,RT,Z} * (h_{10} - h_9) \, kW \tag{9}$$
$$\Phi_{0,Z} = 1.1 \, kW$$

Temperatura zraka	4,2	°C
Otvorenost ventila	44	%
Temperatura	-1.2	°C
isparavanja		
Tlak isparavanja	32.74	bar
Pregrijanje	3.7	K

Tablica 6	Prikaz stanja u komo	ri
-----------	----------------------	----

Faktor hlađenja-ɛ

ε govori o učinkovitosti sustava u određenoj točki rada. Dobiva se kao omjer učina na isparivaču i električne snage utrošene na kompresoru[11]. Snaga kompresora za zadane uvjete rada isčitana je iz programa Select 8.

$$\boldsymbol{\varepsilon} = \frac{\Phi_{0,uk}}{P_k} \tag{10}$$

$$\Phi_{0,uk} = \Phi_{0,W} + \Phi_{0,Z} \tag{11}$$

$$\Phi_{0,uk} = 16,08 \ kW$$
$$P_K = 5,52 \ kW$$
$$\epsilon = 2,91$$

4.2. Transkritičan režim rada-karakteristične točke

Nakon stabiliziranja sustava u transkritičnome režimu zapisane su vrijednosti karakterističnih radnih točaka. Očitanje se ponavlja tri puta za potkritični režim rada zbog mjerne nesigurnosti[Tablica 7 i Slika 13].

Zbog nedostatka izolacije na usisnom cjevovodu upotrebljen je mjerni uređaj kojime su izmjerene mješališne temperature radi preciznijeg dobivanja protoka kroz sustav [Slika 14].

Stvarna temperatura radne tvari u cjevovodu može varirati zbog mjerenja termometrom s vanjske strane cijevi.

Točka		1 .OČITANJE		2.OČITANJE		3.OČITANJE		ARITMETIČKA		STANDARDNO	
			-		_		-	SRED	DINA	ODSTU	PANJE
		p(bar)	θ (°C)	p(bar)	θ (°C)	p(bar)	θ (°C)	p(bar)	θ (°C)	p(bar)	θ (°C)
Usis u kompresor	1	34.33	9.3	34.4	9.2	34.3	9.2	34.34	9.23	0.05132	0.05774
Izlaz iz kompresora	2	83.8	86.6	83.86	87	83.89	86.9	83.85	86.83	0.04583	0.20817
Izlaz iz gas coolera	3	83.2	29.5	83.15	29.7	83.17	29.7	83.17	29.63	0.02517	0.11547
Nakon prigušenja	4	40.12	5.4	40	5.3	40.13	5.3	40.08	5.33	0.07234	0.05774
Para u spremniku	5	40.12	5.4	40	5.3	40.13	5.3	40.08	5.33	0.07234	0.05774
Kapljevina u spremniku	6	40.12	5.4	40	5.3	40.13	5.3	40.08	5.33	0.07234	0.05774
Ulaz u hladnjak vode	7	36.5	2.9	36.66	2.7	36.56	2.8	36.57	2.80	0.08083	0.10000
Izlaz iz hladnjaka vode	8	36.61	11.4	36.6	11.2	36.68	11.3	36.63	11.30	0.04359	0.10000
Ulaz u komoru	9	34.8	0.1	34.9	0.1	34.85	0	34.85	0.07	0.05000	0.05774
Izlaz iz komore	10	34.8	2.8	34.9	2.8	34.85	2.8	34.85	2.80	0.05000	0.00000
Dobiveno prigušenjem iz točke 5	11	34.3	4.2	34.35	4.2	34.38	4	34.34	4.13	0.04041	0.11547
Dobiveno prigušenjem iz točke 8	12	34.3	8.7	34.2	9	34.25	9	34.25	8.90	0.05000	0.17321
Pregrijanje u spiralnom	13	34.8	10.2	34.7	10.1	34.33	10.1	34.61	10.13	0.24759	0.05774
izmjenjivaču											
Pothlađenje kapljevine u spiralnom	14	40.12	4.3	40	5.4	40.13	5.5	40.08	5.07	0.07234	0.66583
ızmjenjivaču											

Tablica 7Izračun mjerne nesigurnosti

Točka	p(bar)	θ (°C)	v(m3/kg)	h(kJ/kg)	x(kg/kg)	
Usis u kompresor	1	34.34	9.2	0.0116	446.8	-
Izlaz iz kompresora	2	83.85	86.8	0.006161	497.6	-
Izlaz iz gas coolera	3	83.17	29.63	0.001556	300.2	-
Nakon prigušenja	4	40.08	5.3	0.004156	300.2	0.405
Para u spremniku	5	40.08	5.3	0.008643	427.8	-
Kapljevina u spremniku	6	40.08	5.3	-	213.5	-
Ulaz u hladnjak vode	7	36.57	2.8	-	203.5	-
Izlaz iz hladnjaka vode	8	36.63	11.3	0.0108	445.8	-
Ulaz u komoru	9	34.85	0.1	0.001226	203.5	0.019
Izlaz iz komore	10	34.85	2.8	0.01064	435.8	-
Dobiveno prigušenjem iz točke 5	11	34.34	4.1	-	427.8	-
Dobiveno prigušenjem iz točke 8	12	34.25	8.9	-	445.8	-
Pregrijanje u spiralnom izmjenjivaču	13	34.61	10.1	0.009152	435.8	-
Pothlađenje kapljevine u spiralnom izmjenjivaču	14	40.08	5.1	-	213.5	-

Tablica 8Određivanje entalpija u točkma sustava

U [Tablica 8] entalpije radnih točaka očitane su iz programa Coolselector 2 po izmjerenim temperaturama i tlakovima.

Slika 13 Transkritičan način rada

Slika 14 Prikaz mjernih pozicija termometra kod mjerenja stanja mješališta

Izračunavanje rashladnog učina vodenog isparivača i protoka vode

Iz prethodno dobivenoga poglavlja dobiveni protok vode se upotrebljava za izračun učina vodenog isparivača.

$$q_{m,HW} = 0,702 \ kg/s$$

$$\Phi_{0,W} = q_{m,HW} * c_w (T_{STW5} - T_{VS3}) \ kW$$

$$\Phi_{0,W} = 13,44 \ kW$$
(12)

$$\Phi_{0,W} = q_{m,RT,W} * (h_8 - h_7) \, kW \tag{13}$$

$$q_{m,RT,W} = 55,5 g/s$$

Izračunavanje protoka toplije vode :

$$\Phi_{R} = q_{m,TW} * c_{w} (T_{STW4} - T_{STW8}) \ kW$$

$$q_{m,TW} = 0.438 \ kg/s$$
(13)

STW2:	32,5	°C
STW3:	36,8	°C
STW4:	41,3	°C
STW5:	12	°C
STW8:	29,9	°C
VS3:	7.6	°C
Otvorenost ventila tople	61,5	%
vode		
Otvorenost ventila hladne	32	%
vode		

Tablica 9 Prikaz stanja vodenog kruga

Kada je ventil tople vode otvoren 100% sva voda koja prolazi kroz rekuperator dolazi iz spremnika iz spremnika, dok je kod ventila hladne vode to obratno. Iz tablice se može vidjeti da zbog zadane temperature vode u spremniku (STW3) uređaj preuzima na sebe maksimalnu količinu toplinskog toka[Tablica 9].

Izračunavanje protoka kroz zračni isparivač

$$q_{m,RT,K} = 105,5 g/s$$

Pretpostavljeno je da se sva parna faza koja dolazi u sakupljač odvaja i odlazi u kompresor. Jednadžbom se može izračunati maseni protok obilaznog voda.

$$q_{m,RT,ob.vod} = X_4 * q_{m,RT,K}$$
(14)
$$q_{m,RT,ob.vod} = 0,405 * 105,5 = 42,93 \frac{g}{s}$$

Iz jednadžbe o očuvanju mase može se dobiti protok kroz zračni isparivač:

$$q_{m,RT,K} = q_{m,RT,W} + q_{m,RT,Z} + q_{m,RT,ob.vod}$$
(15)
$$q_{m,RT,Z} = 7,56 \ g/s$$

Stanje u komori

Iz prethodno dobivenih vrijednosti može se izračunati rashladni učin zračnog isparivača[Tablica 8 i Tablica 10].

$$\Phi_{0,Z} = q_{m,RT,Z} * (h_{10} - h_9) \, kW \tag{16}$$

$$\Phi_{0,Z} = 1,75 \, kW$$

Temperatura zraka	3,6	°C
Otvorenost ventila	46	%
Temperatura	-0,1	°C
isparavanja		
Tlak isparavanja	32.74	bar
Pregrijanje	2,9	K

Tablica 10Prikaz stanja u komori

ε – faktor hlađenja

 ε nam govori o učinkovitosti sustava u određenom režimu rada. Dobiva se kao omjer učina na isparivaču i električne snage utrošene na kompresoru. Snaga kompresora za zadane uvjete rada dobivena je iz programa Select 8.

$$\boldsymbol{\varepsilon} = \frac{\Phi_{0,uk}}{P_K} \tag{17}$$

$$\Phi_{0,uk} = \Phi_{0,W} + \Phi_{0,Z}$$
(18)

$$\Phi_{0,uk} = 15,2 \ kW$$

$$P_K = 6,48 \ kW$$

$$\epsilon = 2,34$$

5. SIMULACIJA RADA UREĐAJA KROZ GODINU

Zadatak je prikazati korisnost uređaja kroz cjelogodišnje razdoblje (ε) temeljem izmjerenog stanja na području Grada Zagreba.

5.1. Pretpostavke

Zbog uvjeta simulacije pretpostavlja se da je gas cooler/kondenzator smješten izvan zgrade kako bi bio izložen realnim promjenama vanjske temperature, dok se temperatura u laboratoriju smatra konstantnom. Radi pojednostavljenja proračuna kompresijski tlakovi i vanjske temperature zaokruženi su na cijele brojeve. Budući da su uvjeti u laboratoriju konstantni smatra se da je toplinsko opterećenje na rashladnoj komori konstantno kao što je i konstantno na vođenom isparivaču zbog konzistentnih ulaznih i izlaznih temperatura vođe (režim rada 12/7°C).

5.2. Ulazni podaci

Raspon temperatura po satima tijekom godine za Grad Zagreb je skinuti sa stranice Mgipu (Ministarstvo graditeljstva i prostornog uređenja).

Pomoću programa Select 8 dobiveni su polinomi kompresora 4MTL-05 na svim frekvencijama rada za maseni protok i snagu kompresora [Slika 15 i Slika 16]. Frekvencije se kreću od 25Hz do 60Hz. Pomoću jednadžbe (19) i tablica [Slika 15 i Slika 16] dobiva se maseni protok ili snaga kompresora ovisno o unesenim polinomima u jednadžbu.

$$X = C0 + C1 * S + C2 * D + C3 * S^{2} + C4 * S * D + C5 * D^{2} + C6 * S^{3} + C7 * D * S^{2} + C8 * S * D^{2} + C9 * D^{3}$$
(19)

X= Traženi parametar (snaga kompresora,kW;maseni protok kroz kompresor,g/s)

S= Temperatura isparavanja,°C

D=Izlazni apsolutni tlak iz kompresora,bar

теоцог Бицинни	Teodor	Bad	lurina
----------------	--------	-----	--------

Završni rad

	C0	C1	C2	C3	C4	C5	C6	C7	C8	C9
Snaga, kW; 25Hz	-2.34423	-0.11726	0.098913	-0.00138	0.001667	-0.00061	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 26Hz	-2.41419	-0.12079	0.101825	-0.00142	0.001705	-0.00062	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 27Hz	-2.4853	-0.12432	0.104749	-0.00146	0.001744	-0.00063	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 28Hz	-2.5575	-0.12784	0.107684	-0.0015	0.001782	-0.00064	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 29Hz	-2.63072	-0.13135	0.110631	-0.00154	0.00182	-0.00065	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 30Hz	-2.70489	-0.13487	0.113589	-0.00158	0.001858	-0.00066	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 31Hz	-2.77996	-0.13837	0.116558	-0.00163	0.001897	-0.00068	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 32Hz	-2.85585	-0.14187	0.119538	-0.00167	0.001935	-0.00069	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 33Hz	-2.93252	-0.14537	0.122531	-0.00171	0.001973	-0.0007	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 34Hz	-3.00987	-0.14886	0.125534	-0.00175	0.002011	-0.00071	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 35Hz	-3.08785	-0.15234	0.128549	-0.00179	0.00205	-0.00072	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 36Hz	-3.1664	-0.15582	0.131575	-0.00183	0.002088	-0.00073	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 37Hz	-3.24546	-0.15929	0.134612	-0.00187	0.002126	-0.00074	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 38Hz	-3.32498	-0.16276	0.137662	-0.00191	0.002164	-0.00075	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 39Hz	-3.40484	-0.16623	0.140722	-0.00195	0.002203	-0.00076	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 40Hz	-3.48501	-0.16968	0.143793	-0.00199	0.002241	-0.00077	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 41Hz	-3.56543	-0.17314	0.146876	-0.00203	0.002279	-0.00078	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 42Hz	-3.64602	-0.17658	0.14997	-0.00207	0.002317	-0.0008	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 43Hz	-3.72674	-0.18003	0.153076	-0.00212	0.002356	-0.00081	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 44Hz	-3.80749	-0.18346	0.156193	-0.00216	0.002394	-0.00082	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 45Hz	-3.88823	-0.1869	0.159321	-0.0022	0.002432	-0.00083	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 46Hz	-3.96889	-0.19032	0.16246	-0.00224	0.00247	-0.00084	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 47Hz	-4.0494	-0.19374	0.165611	-0.00228	0.002509	-0.00085	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 48Hz	-4.1297	-0.19716	0.168773	-0.00232	0.002547	-0.00086	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 49Hz	-4.20972	-0.20057	0.171947	-0.00236	0.002585	-0.00087	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 50Hz	-4.28941	-0.20398	0.175132	-0.0024	0.002623	-0.00088	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 51Hz	-4.3688	-0.20738	0.178333	-0.00244	0.002662	-0.00089	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 52Hz	-4.44769	-0.21077	0.181544	-0.00248	0.0027	-0.00091	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 53Hz	-4.52615	-0.21416	0.184771	-0.00252	0.002738	-0.00092	-7.5E-06	3.5E-06	-4.5E-06	1.85E-06
Snaga, kW; 54Hz	-4.60392	-0.21754	0.188006	-0.00256	0.002776	-0.00093	-7.5E-06	3.5E-06	-4.5E-06	1.86E-06
Snaga, kW; 55Hz	-4.68126	-0.22092	0.191263	-0.00261	0.002814	-0.00094	-7.5E-06	3.5E-06	-4.5E-06	1.86E-06
Snaga, kW; 56Hz	-4.75755	-0.22429	0.194517	-0.00265	0.002853	-0.00095	-7.5E-06	3.5E-06	-4.5E-06	1.86E-06
Snaga, kW; 57Hz	-4.83317	-0.22765	0.197788	-0.00269	0.002891	-0.00096	-7.5E-06	3.5E-06	-4.5E-06	1.86E-06
Snaga, kW; 58Hz	-4.90854	-0.23102	0.201097	-0.00273	0.002929	-0.00097	-7.5E-06	3.5E-06	-4.5E-06	1.86E-06
Snaga, kW; 59Hz	-4.98231	-0.23438	0.204388	-0.00277	0.002967	-0.00098	-7.5E-06	3.5E-06	-4.5E-06	1.86E-06
Snaga, kW; 60Hz	-5.05592	-0.23772	0.20773	-0.00281	0.003005	-0.00099	-7.5E-06	3.5E-06	-4.5E-06	1.86E-06

Teodor Badurina									Za	vršni rad
	C0	C1	C2	C3	C4	C5	C6	C7	C8	C9
Maseni protok, g/s;25Hz	68.97912	2.597957	-0.46481	0.042833	-0.01629	0.001973	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;26Hz	71.65656	2.684285	-0.47736	0.043751	-0.01644	0.002027	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;27Hz	74.34472	2.770363	-0.49003	0.044669	-0.01658	0.002081	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;28Hz	77.04305	2.856192	-0.5028	0.045587	-0.01673	0.002135	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;29Hz	79.751	2.941776	-0.51569	0.046506	-0.01687	0.00219	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;30Hz	82.46798	3.027106	-0.52868	0.047423	-0.01701	0.002244	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;31Hz	85.19344	3.112185	-0.54179	0.048341	-0.01716	0.002298	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;32Hz	87.92684	3.197015	-0.555	0.049259	-0.0173	0.002352	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;33Hz	90.66772	3.281609	-0.56833	0.050178	-0.01745	0.002407	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;34Hz	93.41532	3.36594	-0.58177	0.051096	-0.01759	0.002461	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;35Hz	96.16919	3.450021	-0.59531	0.052014	-0.01774	0.002515	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;36Hz	98.92877	3.533853	-0.60897	0.052932	-0.01788	0.002569	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;37Hz	101.6935	3.617435	-0.62273	0.05385	-0.01802	0.002624	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;38Hz	104.463	3.700785	-0.63662	0.054768	-0.01817	0.002678	0.000451	-0.00016	5.65E-05	-6E-06
Maseni protok, g/s;39Hz	107.2364	3.783868	-0.65061	0.055686	-0.01831	0.002732	0.000451	-0.00016	5.65E-05	-6E-06
Maseni protok, g/s;40Hz	110.0133	3.866701	-0.6647	0.056604	-0.01846	0.002786	0.000451	-0.00016	5.65E-05	-6E-06
Maseni protok, g/s;41Hz	112.7931	3.949285	-0.67891	0.057522	-0.0186	0.002841	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;42Hz	115.5753	4.031619	-0.69323	0.05844	-0.01874	0.002895	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;43Hz	118.3594	4.11371	-0.70766	0.059358	-0.01889	0.002949	0.000451	-0.00016	5.65E-05	-6E-06
Maseni protok, g/s;44Hz	121.1446	4.195545	-0.7222	0.060276	-0.01903	0.003003	0.000451	-0.00016	5.65E-05	-6E-06
Maseni protok, g/s;45Hz	123.9306	4.27713	-0.73685	0.061194	-0.01918	0.003058	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;46Hz	126.7167	4.358466	-0.75161	0.062112	-0.01932	0.003112	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;47Hz	129.5024	4.439558	-0.76648	0.06303	-0.01947	0.003166	0.000451	-0.00016	5.65E-05	-6E-06
Maseni protok, g/s;48Hz	132.2871	4.520395	-0.78146	0.063948	-0.01961	0.00322	0.000451	-0.00016	5.65E-05	-6E-06
Maseni protok, g/s;49Hz	135.0703	4.600982	-0.79655	0.064866	-0.01975	0.003275	0.000451	-0.00016	5.65E-05	-6E-06
Maseni protok, g/s;50Hz	137.8515	4.68132	-0.81175	0.065784	-0.0199	0.003329	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;51Hz	140.6306	4.761404	-0.82709	0.066702	-0.02004	0.003384	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;52Hz	143.4063	4.841242	-0.84253	0.06762	-0.02019	0.003438	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;53Hz	146.1789	4.920831	-0.85811	0.068538	-0.02033	0.003493	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;54Hz	148.9467	5.000161	-0.87377	0.069456	-0.02047	0.003548	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;55Hz	151.7109	5.07924	-0.88961	0.070374	-0.02062	0.003603	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;56Hz	154.468	5.158065	-0.90547	0.071292	-0.02076	0.003657	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;57Hz	157.2197	5.23662	-0.92148	0.072209	-0.0209	0.003712	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;58Hz	159.9681	5.315003	-0.93774	0.073127	-0.02105	0.003769	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;59Hz	162.706	5.393089	-0.95395	0.074046	-0.02119	0.003824	0.000451	-0.00016	5.64E-05	-6E-06
Maseni protok, g/s;60Hz	165.4406	5.470855	-0.97049	0.074963	-0.02134	0.003882	0.000451	-0.00016	5.64E-05	-6E-06

Slika 16 Polinomi za maseni protok kroz kompresor

Rashladni učin vodenoga isparivača i zračnoga isparivača

Zbog konstante brzine vrtnje pumpe hladnog dijela vodenog kruga, temperature ulaza vode u isparivač od 12°C i izlazne temperature vode od 7°C smatra se da je učin isparivača uvijek isti kroz cjelogodišnje razdoblje. Izračun učina isparivača napravljen je u poglavlju [4.1. Podkritičan režim rada-karakteristične točke].

Uvođenjem pretpostavke da je temperatura u laboratoriju konstantna tijekom cijele godine i slijedom postizanja stabilne i konzistentne temperature unutar komore može se smatrati da će učin zračnog isparivača ostati konstantan pri zadanim uvjetima. Način izračunavanja učina zračnog isparivača opisan je u poglavlju [4.1. Podkritičan režim rada-karakteristične točke].

5.3. Podkritični režim rada

Pri usisnom parametru od 32,21 bar minimalni tlak kompresije odabran je u iznosu od 50 bara zbog karakteristika sustava, dok je maksimalni izlazni tlak u potkritičnome režimu 73 bara.

Temperaturna razlika vanjske temperature i kondenzacije je 9°C dok je pothlađenje radne tvari 2°C.

 $p_{usis} = 32,21 \ bar$ $p_{\min tlak} = 50 \ bar$ $p_{\max tlak} = 73 \ bar$ $T_{kondenzacija} = T_{ok} + 9^{\circ}C$ $T_{pothlađenja} = T_{ok} + 7^{\circ}C$

Temeljem ovih jednadžbi izračunate su izlazne entalpije iz kondenzatora pomoći programa Coolprop korištenjem funkcije[12]:

= PropsSI("H", "T", temperatura pothlađenja u K, "P", tlak u Pa, "HEOS :: R744")/1000.

Nakon prigušenja radna tvar odlazi u sakupljač/separator gdje se parna faza daljnjim prigušenjem i zagrijavanjem odvodi u kompresor, a kapljevita faza odlazi u izmjenjivače. Za određivanje udjela parne faze korišten je program Coolselector2 pomoću kojega je očitan udio pare X(kg/kg) pri prigušenju radne tvari na tlak od 40 bara[Tablica 11].

$$p_{spremnika} = 40 \ bar$$

$T_{ok}(^{\circ}C)$	$H_{izlizkondenzatora}(rac{kJ}{kg})$	$X\left(\frac{kg}{kg}\right)$
-13	182.1567	0.054
-12	184.4219	0.054
-11	186.7058	0.054
-10	189.0093	0.054
-9	191.334	0.054

Teodor Badurina		Završni rad
-8	193.681	0.054
-7	196.0521	0.054
-6	198.449	0.054
-5	200.8735	0.054
-4	203.3279	0.054
-3	205.8147	0.054
-2	208.3366	0.054
-1	210.897	0.054
0	213.4994	0.054
1	215.9983	0.054
2	218.5235	0.054
3	221.607	0.054
4	224.4303	0.068
5	227.3278	0.082
6	230.3109	0.096
7	233.118	0.11
8	235.9813	0.124
9	238.5865	0.133
10	241.5507	0.147
11	244.5902	0.166
12	247.2972	0.175
13	250.4719	0.194
14	253.7518	0.208
15	256.5892	0.222
16	260.0586	0.24
17	262.9883	0.254
18	266.6948	0.273
19	269.7303	0.287
20	272.7898	0.315
21	276.9008	0.324

Tablica 11Entalpija i udio pare u točki 4

Zbog postojanja obilaznoga voda protoci kroz isparivače i kompresor nisu jednaki. Nakon prigušenja radne tvari poslije kondenzatora parni se dio odvaja u sakupljaču i odlazi u kompresor.

Protok radne tvar kroz kompresor izračunava se na sljedeći način:

$$q_{m,RT,K} = q_{m,RT,isp} + X * q_{m,RT,K}$$

$$\tag{20}$$

Iz potonjeg se dobiva da je protok kroz kompresor jednak

$$q_{m,RT,K} = \frac{q_{m,RT,isp}}{1-X} \tag{21}$$

Teodor Badurina

Završni rad

Usporedbom radnih točka pri usisnome tlaku, izlaznom tlaku i protoku kroz kompresor određena je snaga kompresora pri svakoj točki rada[Tablica 12].

ϑ_{ok} (°C)	$p_{usis}(bar)$	$p_{izlaz}(bar)$	$q_{m \ kompresora}(\frac{g}{s})$	$P_{kompresora}(kW)$
-13	32.21	50.87147	67.25426	1.91
-12	32.21	50.87147	67.84202	1.96
-11	32.21	50.87147	68.4451	1.96
-10	32.21	50.87147	69.06436	1.96
-9	32.21	50.87147	69.70074	1.96
-8	32.21	50.87147	70.35528	2.01
-7	32.21	50.87147	71.02912	2.01
-6	32.21	50.87147	71.72353	2.06
-5	32.21	50.87147	72.43992	2.06
-4	32.21	50.87147	73.17986	2.06
-3	32.21	50.87147	73.94514	2.1
-2	32.21	50.87147	69.52	2.11
-1	32.21	50.87147	69.72919	2.11
0	32.21	50.87147	70.72228	2.16
1	32.21	50.87147	71.37577	2.16
2	32.21	50.87147	72.41667	2.21
3	32.21	50.87147	73.48837	2.21
4	32.21	50.87147	74.59227	2.26
5	32.21	50.87147	75.72985	2.26
6	32.21	50.87147	76.90265	2.36
7	32.21	52.10802	78.11236	2.5
8	32.21	53.36773	79.36073	2.64
9	32.21	54.65105	80.18454	2.75
10	32.21	55.95848	81.50059	2.898
11	32.21	57.29053	83.35731	3.12
12	32.21	58.64777	84.26667	3.35
13	32.21	60.03085	86.2531	3.51
14	32.21	61.44045	87.77778	3.67
15	32.21	62.87735	89.35733	3.92
16	32.21	64.34244	91.47368	4.18
17	32.21	65.83675	93.19035	4.45
18	32.21	67.36149	95.62586	4.824
19	32.21	68.91817	97.50351	5
20	32.21	70.50887	101.4891	5.39
21	32.21	72.13687	102.8402	5.52

 Tablica 12
 Traženi protok i snaga kompresora za određenu vanjsku temperaturu

Završni rad

Zbog konstantnog opterećenja isparivača na ε utječe samo snaga kompresora[Tablica 13].

$$\boldsymbol{\varepsilon} = \frac{\Phi_{0,uk}}{P_K} \tag{22}$$

ϑ_{ok} (°C)	$\Phi_{0,uk}(kW)$	$P_K(kW)$	3
-13	16.076	1.91	7.274208
-12	16.076	1.96	7.274208
-11	16.076	1.96	7.274208
-10	16.076	1.96	7.274208
-9	16.076	1.96	7.274208
-8	16.076	2.01	7.274208
-7	16.076	2.01	7.274208
-6	16.076	2.06	7.274208
-5	16.076	2.06	7.274208
-4	16.076	2.06	7.274208
-3	16.076	2.1	7.274208
-2	16.076	2.11	7.274208
-1	16.076	2.11	7.274208
0	16.076	2.16	7.274208
1	16.076	2.16	7.274208
2	16.076	2.21	7.274208
3	16.076	2.21	7.274208
4	16.076	2.26	7.113274
5	16.076	2.26	7.113274
6	16.076	2.36	6.811864
7	16.076	2.5	6.4304
8	16.076	2.64	6.089394
9	16.076	2.75	5.845818
10	16.076	2.898	5.547274
11	16.076	3.12	5.152564
12	16.076	3.35	4.798806
13	16.076	3.51	4.580057
14	16.076	3.67	4.380381
15	16.076	3.92	4.10102
16	16.076	4.18	3.845933
17	16.076	4.45	3.612584
18	16.076	4.824	3.332504
19	16.076	5	3.2152
20	16.076	5.39	2.98256
21	16.076	5.52	2.912319

Tablica 13

Vrijednosti ε-a za različite temperature

Izračunavanjem ε -a pri svakoj vanjskoj temperaturi u potkritčnome režimu rada može se dobiti graf koji pokazuje efektivnost sustava kroz godinu [Slika 18].

5.4. Transkritični režim rada

Zbog nepovezanosti tlaka i temperature u transkritičnom načinu rada maksimalni ε izračunava se putem optimalnog tlaka u hladnjaku plina. Odabir optimalnoga tlaka vrši se definiranjem krivulje koja pokazuje ovisnost ε -a o tlaku u hladnjaku plina za zadanu izlaznu temperaturu plina iz hladnjaka.

Slika 17 Ovisnost COP o tlaku za zadanu izlaznu temperaturu plina

Iz [Slika 17] može se dobiti izraz za određivanje optimalnog tlaka pri izlaznoj temperaturi plina:

$$p_{gc,opt} = 2.3382 * \vartheta_{gc,izl} + 21.647$$
(23)

 $\vartheta_{\mathit{gc,izl}}$ - temperatura plina pri izlazu iz hladnjaka plina

Pomoću ranije navedenog izraza dobiva se maksimalan ε pri svakoj izlaznoj temperaturi plina iz hladnjaka [Tablica 14].

θ _{ok} (°C)	$ert ert _{gc,izl}^{ert _{gc,izl}}$ (°C)	p _{gc,opt} (bar)	h (kJ/kg)	X (kg/kg)	$q_{m,RT,K}$ $(\frac{g}{s})$	$\Phi_{0,uk}$ (kW)	$\begin{array}{c} P_K\\ (kW) \end{array}$	3
22	28	75	278.97	0.31	104.61	16.66	5.77	2.89
23	29	75	284.62	0.33	104.61	16.02	5.77	2.78
24	30	80	284.04	0.33	102.33	16.34	6.19	2.64
25	31	80	289.66	0.36	102.33	15.13	6.19	2.44
26	32	80	296.42	0.39	102.33	14.39	6.19	2.32
27	33	85	294.46	0.38	100.17	14.28	6.57	2.17
28	34	85	300.90	0.41	100.17	13.58	6.57	2.07
29	35	90	299.04	0.40	98.12	13.52	6.94	1.95
30	36	90	305.14	0.43	98.12	12.87	6.94	1.86
31	37	95	303.42	0.42	96.18	12.80	7.28	1.76
32	38	95	309.17	0.45	96.18	12.21	7.28	1.68
33	39	100	307.62	0.44	94.35	12.12	7.59	1.60
34	40	100	313.04	0.47	94.35	11.57	7.59	1.52
35	41	105	311.65	0.46	92.61	11.51	7.89	1.46
36	42	105	316.76	0.48	92.61	11.00	7.89	1.39
37	43	110	315.52	0.48	90.96	10.92	8.17	1.34

Tablica 14Ovisnost maksimalnog ε o vanjskoj temperaturi

Izračunavanjem ε -a pri svakoj vanjskoj temperaturi u transkritičnom režimu rada dobiva se graf koji pokazuje efektivnost sustava kroz godinu [Slika 18Slika 18].

5.5. Potrošnja energije kroz godinu

Temeljem broja sati u godini sa određenom temperaturom i poznavanja potrebne snage kompresora za tu određenu temperaturu dobiva se potrošnja električne energije kroz godinu. Dizalica topline sa R744 radnom tvari za ranije navedene uvjete rada potroši 33674.54 kWh električne energije[Tablica 15].

-			
ϑ_{ok}	Broj	P_K	E
(°C)	sati u	(kW)	(kwh)
	godini		
10	(h)	0.01	11.05
-13	5	2.21	11.05
-12	5	2.21	11.05
-11	7	2.21	15.47
-10	10	2.21	22.1
-9	18	2.21	39.78
-8	26	2.21	57.46
-7	62	2.21	137.02
-6	86	2.21	190.06
-5	87	2.21	192.27
-4	120	2.21	265.2
-3	170	2.21	375.7
-2	187	2.21	413.27
-1	179	2.21	395.59
0	235	2.21	519.35
1	233	2.21	514.93
2	236	2.21	521.56
3	211	2.21	466.31
4	228	2.26	515.28
5	237	2.26	535.62
6	264	2.36	623.04
7	234	2.5	585
8	230	2.64	607.2
9	280	2.75	770
10	320	2.898	927.36
11	321	3.12	1001.52
12	280	3.35	938
13	284	3.51	996.84
14	301	3.67	1104.67
15	368	3.92	1442.56
16	325	4.18	1358.5
17	373	4.45	1659.85
18	324	4.824	1562.976
19	342	5	1710

Završni rad

20	321	5.39	1730.19
21	307	5.52	1694.64
22	247	5.77	1425.19
23	236	5.77	1361.72
24	213	6.19	1318.47
25	169	6.19	1046.11
26	139	6.19	860.41
27	145	6.57	952.65
28	101	6.57	663.57
29	70	6.94	485.8
30	65	6.94	451.1
31	58	7.28	422.24
32	20	7.28	145.6
33	15	7.59	113.85
34	19	7.59	144.21
35	29	7.89	228.81
36	13	7.89	102.57
37	5	8.165	40.825
Ukupno:	8760		33674.54

Tablica 15	Potrošnja	električne	energije po	satima
	- • • • • • J • •			

6. ZAKLJUČAK

Svrha ovog rada je dati bolji uviđaj u nove tehnologije hlađenja i vidjeti da li se isplati ugradnja ovakvih uređaja na području grada Zagreba.

Cilj je dobiti konkretne faktore iskoristivosti kako bi se moglo usporediti sa standardnim rashladnim uređajima. Metoda kojom su dobiveni rezultati je višekratno mjerenje u različitim vremenskim periodima. Nakon dobivanja početnih radnih točaka i primjenom nekih pretpostavki (konstantno opterećenje na potrošačima tokom godine, konstantna temperatura isparavanja, konstantna temperatura vode u spremniku) teorijskim izračunom dobiven je raspon ε -a kroz godinu. U najpovoljnijim satima ε dostiže 7,27 dok u najnepovoljnijim pada na 1,34. Razlog malenog ε -a je nisko položena transkritična točka kod R744 pa zbog toga uređaj radi u transkritičnom režimu i ne događa se kondenzacija nego hlađenje plina u gas-cooleru. Rješenje ovog problema je korištenje CO₂ u kaskadnim sustavima gdje R744 se koristi u donjoj kaskadi pri tlakovima i temperaturama koje omogućuju pojavu kondenzacije. Druga prednost ovog sistema je iskorištavanje svojstava CO₂ pri niskim temperaturama i postizanja dodatne uštede u radu. Dizalica topline sa R744 radnom tvari za ranije navedene uvjete rada potroši 33674.54 kWh električne energije.

U budućim ispitivanjima efikasnosti ovakvih sustava na ovom uređaju bi trebalo poraditi na izolaciji uređaja, preciznijoj izmjeri protoka kroz pojedine grane dizalice topline i duljini vremenskog ispitnog perioda kako bi se potvrdile teorijske pretpostavke.

LITERATURA

- [1] IRJET: CO2as a Refrigerant in Supermarket Refrigeration Systems: A Review, 2019
- [2] Emersor:Select 8, 2019
- [3] Guntner, Compact condensers/gas coolers GGHC CD_GGVC CD, 2018
- [4] LU VE, Exchangers, Commercial unit coolers, 2015
- [5] StoreView Desktop,v1.18.01
- [6] Start Service Tool,vST 3.43
- [7] Vanja Matković, Završni rad, Fakultet strojarstva i brodogradnje, Zagreb, 2008
- [8] Danfoss:COOLSELECTOR2,2019
- [9] Antun Galović, Termodinamika 1, Zagreb, 2016
- [10] Boris Halasz, Antun Galović, and Ivanka Boras. *Toplinske tablice*. Fakultet strojarstva i brodogradnje, Zagreb, 2008
- [11] Hlađenje i dizalice topline, podloge za predavanja, Zagreb, 2018
- [12] Coolprop,v6.3.0.0
- [13] Ivan Uzbašić, Diplomski rad. Fakultet strojarstva i brodogradnje, Zagreb, 2015

- I. CD-R disc
- II. Tehnička dokumentacija

