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Abstract

Turbomachinery CFD simulations have become a standard in industry,
although still presenting quite expensive and time consuming process. In order
to alleviate this, a number of tools and methods have been developed, being an
approximation or simplification of the ongoing process within turbomachinery.
Some of these methods include the steady state Multiple Reference Frame
approach (MRF), taking into account the rotation even though a steady state
simulation is run. Another more recent method is the Harmonic Balance
method, a quasi-steady state method due to a number of time instants being
solved via coupled steady state equations. Finally, the approach with least
approximations is the transient simulation where a large number of successive
time steps are solved, thus obtaining the detailed insight into flow development,
wakes propagation, etc. In order for time-accurate simulation to present valid
results, a periodic steady state has to be reached: simulating a single period is
not enough. It should be made sure that the simulation start instabilities do
not affect the solution and that resulting flow features are no longer within the
domain, therefore reaching periodic steady state is what makes transient
simulation expensive. In certain cases this means simulating 5-10 periods, but if
a high level of unsteadiness is present, the number of needed periods can even
go up to 50. From the perspective of CPU time consumption, the transient
simulation is the most expensive one, followed by Harmonic Balance and then
by MRF as the shortest. The focus of this work is on the Harmonic Balance
method, which is extensively used for periodic problems, mostly vibrations,
acoustics and turbomachinery.

Compared to conventional transient methods, the benefit of the Harmonic
Balance method is the ability to capture transient flow features at significantly



lower CPU time cost, while still being sufficiently accurate. This is presented by
performing the comparison with transient approach and steady state MRF
method, demonstrating the speed-up of at least an order of magnitude.
Depending on the number of harmonics used, the size of the system of
equations changes, as well as the accuracy. n number of harmonics yield a
system of 2n+ 1 coupled equations, where larger number of harmonics will take
more time to converge, while offering greater accuracy as higher order effects do
not get neglected. As the method is based on the Fourier series expansion, the
frequency of the motion should be known in advance, suggesting that problems
with imposed periodic motion are the most suitable for Harmonic Balance. In
this work, the Harmonic Balance method is implemented in the Finite Volume
framework within the open source software OpenFOAM, using a segregated
pressure-based algorithm.

Turbomachinery start-up and shut-down present a challenging problem for
CFD investigation. Furthermore, change of operating points requires special
attention as well. Depending on the type of the machine considered, the change
of regime can take from several periods up to several dozen periods, making the
simulations of such process highly expensive. The change of regime is a transient
process during which the flow can change significantly and mass flow through the
machine changes according to the newly reached regime. Rotor angular velocity
can change as well in this process, making steady state simulations unusable.

The modified version of the Harmonic Balance method is deployed here as
a quasi-steady method in order to reduce the simulation time and capture the
behavior during regime change. Non–periodic process such as start-up or shut-
down is made periodic by considering both start-up and shut-down as a complete
process. The period then consists of two complementary regime changes, with
2n + 1 coupled simulations throughout the period of start-up and shut-down.
Due to two distinctive time-scales of rotor period (inner) and complete start-
up/shut-down period (outer), a nested Harmonic Balance structure is deployed.
Therefore, the 2n + 1 Harmonic Balance simulations for 2n + 1 time instants
are interconnected with additional Harmonic Balance source term for the outer
coupling.

The validation of the time-spectral Harmonic Balance method is performed



on industrially relevant test case of ERCOFTAC centrifugal pump by
performing the comparison with other conventional methods (time-accurate,
MRF) and with experimental data. Furthermore, the comparison of
computational resources is performed in terms of CPU time, showing the
Harmonic Balance method approximately 30 times faster than time-accurate
simulation. The nested Harmonic Balance is validated using Francis-99 test case
for shut-down and start-up processes. Comparison is performed against
experimental data for power variation and pressure probes during complete
period with good agreement achieved in a fraction of time otherwise needed by
the time-accurate simulation.

Keywords:
Harmonic Balance, turbomachinery, nested, Fourier series, spectral, Francis



Prošireni sažetak

Uvod

Periodični problemi su česta pojava u znanstvenim i industrijskim
istraživanjima, a javljaju se kod analize raznih rotirajućih strojeva, problema
valne prirode, raznih tokova s induciranim periodičnim rubnim uvjetima ili
periodičnim kretanjem tijela (osciliranje krila, ventili, itd.). Iako su već postale
standard u industriji, simulacije turbostrojeva i dalje predstavljaju izrazito skup
i vremenski zahtjevan zadatak. Kako bi se to izbjeglo razvijene su razne metode
i alati koji predstavljaju aproksimaciju ili pojednostavljenje procesa koji se
odvija u turbostroju. Neke od tih metoda su Multiple Reference Frame (MRF)
koja uzima u obzir rotaciju domene iako se radi o stacionarnoj simulaciji.
Druga, novija metoda je metoda harmonijske ravnoteže, kvazi-stacionarna
metoda budući da rješava više spregnutih vremenskih trenutaka koristeći
stacionarne, ali međusobno spregnute jednadžbe. Naposljetku, pristup koji nudi
najveću razinu točnosti po pitanju vremenske rezolucije je tranzijentna
simulacija, pri čemu se rješava niz uzastopnih vremenskih trenutaka i dobiva
detaljan uvid u razvoj toka, propagaciju valova, itd. Međutim, kako bi
tranzijentna simulacija bila valjana kod periodičnih problema, potrebno je doći
do rezultata koji je periodično-stacionaran. Drugim riječima, nije dovoljno
simulirati samo jedan period već je potrebno osigurati da su nestabilnosti
uzrokovane rubnim uvjetima s početka simulacije u potpunosti napustile
domenu i da početni uvjeti ne utječu na rezultat. Tranzijentna simulacija je
stoga iznimno skupa budući da treba doći do periodično-stacionarnog stanja. U
pojedinim slučajevima to znači 5-10 perioda, no za kompleksnije probleme može
biti potrebno simulirati i do 50 perioda. Iz perspektive utroška proračunskog



vremena potrebnog za simulaciju, tranzijentna simulacija je najskuplja, nakon
čega slijedi metoda harmonijske ravnoteže te MRF. Fokus ovog rada je na
metodi harmonijske ravnoteže koja se koristi za periodične probleme, ponajviše
vibracije, akustiku i turbostrojeve.

Pristup istraživanju

Metoda harmonijske ravnoteže je kvazi-stacionarna metoda, što znači da
obuhvaća karakteristike i stacionarnog i tranzijentnog pristupa. U odnosu na
konvencionalne stacionarne metode, prednost metode harmonijske ravnoteže je
mogućnost dobivanja prijelaznih karakteristika toka, uz dodatni utrošak
vremena simulacije. Korištenjem stacionarnih metoda kod simulacija
turbostrojeva dobiva se rješenje samo za jedan položaj rotora, zbog čega
izostaju prijelazne pojave i vrtlozi te takav pristup nije naročito značajan ako
su lokalne nestabilnosti od značaja. S druge strane, u odnosu na tranzijentnu
metodu, metoda harmonijske ravnoteže omogućuje značajno smanjenje vremena
simulacije uz zadržanu točnost metode. Umjesto rješavanja jedne tranzijentne
jednadžbe, primjenom metode harmonijske ravnoteže dobiva se sustav
spregnutih stacionarnih jednadžbi čije rješavanje daje polje strujanja unutar
cijelog reprezentativnog perioda.
Glavne faze istraživanja su:

a) Razvoj osnovnog modela metode harmonijske ravnoteže.

b) Specijalizacija metode harmonijske ravnoteže za upotrebu kod
turbostrojeva. Razvoj modela s više frekvencija.

c) Validacija i verifikacija metode.

d) Proširenje metode za simulacije promjene radne točke.

e) Primjena metode za simulacije rada turbostroja van optimalne radne točke
i analiza nestabilnosti.



Metoda harmonijske ravnoteže je metoda razvijena za simulacije periodičnih
strujanja, a u ovom istraživanju je specijalizirana za primjenu na
turbostrojevima. Metoda rješava niz kvazi-stacionarnih međusobno spregnutih
Navier-Stokesovih jednadžbi, te se kao rezultat dobiva polje strujanja unutar
cijelog reprezentativnog perioda turbostroja. Za uspješnu implementaciju
metode, prije diskretizacije jednadžbi metodom kontrolnih volumena potrebno
je pretvoriti tranzijentne Navier-Stokesove jednadžbe u kvazi-stacionarne
Navier-Stokesove jednadžbe u formi metode harmonijske ravnoteže. Tom
procedurom umjesto jedne tranzijentne jednadžbe dobivamo sustav
kvazi-stacionarnih jednadžbi. Veličina sustava ovisi o broju odabranih
harmonika n, pri čemu je broj jednadžbi u sustavu 2n+1. Nakon uspješne
implementacije metode u okružju metode kontrolnih volumena, idući korak je
razvoj dodatnih funkcionalnosti metode kako bi bila potpuno primjenjiva kod
turbostrojeva. Budući da metoda harmonijske ravnoteže u svom osnovnom
obliku uzima u obzir samo jednu frekvenciju, izveden je model metode koji je u
mogućnosti koristiti dvije frekvencije (frekvencija rotora i frekvencija statora), a
zatim je u obzir uzeta i dodatna frekvencija nestabilnosti koja se razvija kao
posljedica ne-optimalnog toka. Metoda harmonijske ravnoteže i svi pripadajući
alati implementirani su u programskom paketu OpenFOAM, napisanom u C++
programskom jeziku.

Dvojna metoda harmonijske ravnoteže

Višefrekvencijskim pristupom dolazi se do različitih frekvencijskih domena za
rotor i stator, što također zahtjeva poseban tretman. Kako bi se omogućilo
korištenje zasebnih frekvencija u različitim domenama, a bez smetnji
poduzorkovanja (aliasing errors), potrebno je uskladiti vremenske trenutke
između domena. Budući da kod turbostrojeva dominantne frekvencije ovise o
karakteristikama turbostroja: broju lopatica rotora i statora, brzini vrtnje,
broju stupnjeva, itd., moguće je unaprijed odabrati dominantne frekvencije.
Točnost metode harmonijske ravnoteže ovisi o broju odabranih harmonika, n,
pri čemu je nepoželjno koristiti veliki broj harmonika samo kako bi uzeli u obzir
i određenu dominantnu frekvenciju koja je višekratnik osnovne frekvencije.



Pokretanje i zaustavljanje turbostrojeva predstavljaju izazov za CFD zajednicu,
kao i procesi promjene radne točke. Ovisno o vrsti stroja, promjena režima rada
može trajati od nekoliko perioda rotora do nekoliko desetaka perioda, pri čemu
bi simulacije takvih procesa bile iznimno skupe. Nadalje, promjena režima rada
turbostroja je prijelazan proces tijekom kojeg se tok unutar turbostroja može
značajno promijeniti, kao i maseni protok kroz stroj, ovisno o novom režimu rada.
Također se može mijenjati i brzina vrtnje rotora kod određenih turbostrojeva,
zbog čega stacionarne simulacije postaju gotovo neupotrebljive.

Modificirana verzija metode harmonijske ravnoteže je upotrebljena u ovom
radu, kao kvazi-stacionarna metoda kako bi smanjila proračunsko vrijeme, ali i
obuhvatila pojave u turbostroju prilikom promjene režima. Aperiodičan proces
kao što je pokretanje ili zaustavljanje turbostroja prikaže se kao periodičan
proces tako što se razmatraju istovremeno i zaustavljanje i pokretanje
turbostroja kao jedan cjeloviti proces. Ukupni period se u tom slučaju sastoji
od dvije komplementarne promjene režima, sa 2n+ 1 spregnutih simulacija kroz
ukupni period zaustavljanja i pokretanja. Uzmu li se u obzir dvije različite
vremenske skale perioda rotora i ukupnog novog perioda, potrebno je
primijeniti metodu harmonijske ravnoteže s dvojnom strukturom, čija forma je
predstavljena u ovom radu. Dvojna struktura sastoji se od 2n + 1 simulacije
metodom harmonijske ravnoteže za 2n + 1 vremenskih trenutaka, pri čemu su
simulacije međusobno spregnute dodatnim izvornim članom zaslužnim za
"vanjsku" spregu, što znači da jednadžbe imaju dva izvorna člana proizašla iz
metode harmonijske ravnoteže.

Validacija predložene metode

Validacija i verifikacija provedena je koristeći osnovne testne slučajeve iz
područja turbostrojeva. Usporedba optimalne radne točke izvršina je u odnosu
na konvencionalni tranzijentni rješavač i stacionarnu MRF metodu, no
provedena je i usporedba s eksperimentalnim podacima. Analiza jedne radne
točke izvršena je koristeći centrifugalnu pumpu ERCOFTAC, pri čemu su
uspoređene fluktuacije tlaka kroz turbostroj te parametri rada turbostroja
(snaga, efikasnost) s eksperimentalnim mjerenjima. Nadalje, usporedba metode



harmonijske ravnoteže s konvencionalnim tranzijentnim i stacionarnim
metodama pokazala je da se metodom harmonijske ravnoteže može doći do
značajnog rezultata po pitanju točnosti u samo dio proračunskog vremena
potrebnog tranzijentnoj simulaciji. Usporedbom proračunskog vremena na
istom računalu u jednakim uvjetima pokazano je da simulacija metodom
harmonijske ravnoteže traje 30 puta kraće od tranzijentne simulacije.

Validacija metode harmonijske ravnoteže za primjenu kod pokretanja i
zaustavljanja turbostrojeva provedena je na industrijski značajnom primjeru
vodne turbine tipa Francis. Izvedena je simulacija cjelovitog perioda koji se
sastoji od zaustavljanja turbine s optimalne radne točke te ponovnog
pokretanja na optimalnu radnu točku, a dobiveni rezultati uspoređeni su s
dostupnim eksperimentalnim mjerenjima. Usporedba je izvedena prateći snagu
turbine kroz cijeli period, te fluktuacije tlaka u dvije mjerne točke neposredno
nakon izlaza iz rotora. Primjenom metode harmonijske ravnoteže postignuta je
visoka razina točnosti uz značajnu uštedu proračunskog vremena u odnosu na
konvencionalne metode simulacije.

Zaključak

Temeljem provedenog istraživanja i predstavljenih rezultata, može se zaključiti
da su postavljeni ciljevi istraživanja uspješno zadovoljeni i hipoteze istraživanja
potvrđene. Iako je jasno da su učestale promjene radnih točaka kod
turbostrojeva neizbježne, pojave koje se pritom javljaju skraćuju radni vijek
stroja i ne mogu biti zanemarene. U svrhu istraživanja i razvoja turbostrojeva,
računalna dinamika fluida predstavlja bitan alat u konstrukcijskom procesu,
iako je kao alat za redovitu upotrebu još uvijek previše skup i spor, uz duge
vremenske zahtjeve za dolazak do rezultata. U ovom radu je stoga predstavljena
i validirana pojednostavljena metoda za analizu toka kod promjene radnog
režima, koja bi mogla biti značajan korak prema praktičnom alatu u
konstrukcijskoj fazi.

U sklopu budućih istraživanja trebalo bi proširiti metodu na preostale tipove
problema i turbostrojeva, budući da niz procesa i pojava nisu uzeti u
razmatranje u okviru ovog rada: efekt stlačivosti, razne ne-osnosimetrične



pojave poput izlaznog vrtloga kod Francis turbine, zatim turbostrojevi s mnogo
stupnjeva, itd. Sve navedene pojave predstavljaju značajan utjecaj na tok u
turbostroju, radni vijek i unutarnje pojave, te bi trebale biti razmotrene u
okviru zasebnog istraživanja.

Ključne riječi:
metoda harmonijske ravnoteže, turbostroj, Fourierov razvoj, spektralna metoda,
Francis, turbina
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As CFD became a common tool in many design procedures, its further
development in terms of accuracy and efficiency became the main target for
researchers. In turbomachinery, CFD can provide good prediction of the flow
quantities and features, but the high calculation time is the main drawback in
using it as an everyday tool. Although the only alternative to CFD is the
experiment, it accumulates additional production costs as well as production
and labor time. Therefore, the intention to start using CFD regularly as a
reliable design and optimisation tool should be the final goal.

Although majority of turbomachines have the same working principle and
similar parts, distinctive groups can be formed by categorizing based on two key
aspects: working medium and type of turbomachine. Working medium (fluid)
behavior should be taken into account while performing calculation, thus an
appropriate formulation of the physics model needs to be chosen. In case of
water being the working medium, the CFD calculation can be performed using the
incompressible flow models. Otherwise, if gas is a working medium, the decision
to use compressible or incompressible formulation should be made depending on
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the use. Common practice states that for problems with Mach numbers lower
than 0.3 the incompressible models can be used. Depending on the type of
machine, the fluid can be expanded (turbine) or compressed (compressor).

In terms of CFD, one of possible classifications of current methods can be
based on temporal discretisation: time-accurate or transient methods,
steady-state methods and spectral methods. Time-accurate methods are based
on solving the problem in small intervals throughout the considered time with
arbitrary temporal resolution. In terms of stability of explicit models, the
limitation of the method is usually the maximal Courant-Friedrichs-Levy (CFL)
number of 0.5, which for the high-speed machines results in extremely small
time steps and long calculation times. Due to high blade tip velocity and small
cells in order to capture the boundary layer, the CFL number condition is
usually satisfied only for extremely small time steps. However, the major
advantage is usually good temporal resolution as there are many time steps
through investigated period, with good ability to capture the appearing
phenomena and flow patterns, instabilities and wake propagation.

If steady state simulation is performed, the flow is assumed unchanged
throughout the time and the result represents the steady flow condition where
no instabilities appear. However, due to rotation in turbomachinery the flow is
not steady, but it is repeating with the rotational frequency. In order to obtain
the steady state, a modified equation set is used: accounting for centrifugal and
Coriolis forces rather than rotating the rotor mesh. Such steady state
simulation provides reasonable insight into flow field, without transient flow
features, although the effect of rotation is achieved. Furthermore, this kind of
simulation is often referred to as a frozen rotor approach, resembling the
snapshot of a flow field within a turbomachine. This approach offers reasonable
accuracy for general flow field and integral quantities (power, efficiency, etc.),
with additional benefit of requiring little CPU time. However, rotor-stator
interaction and wake propagation in multistage turbomachinery will not give
relevant results. The assumption that there is no contribution from the
temporal term is not correct, which is the main reason of unrealistic wake
propagation.

Spectral methods can be used for turbomachinery simulations as well, due



CHAPTER 1. Introduction 3

to its periodic nature. With time-accurate methods and steady state methods
the equations are solved in time domain, whereas spectral methods provide a
transformation between frequency and time domain, therefore evaluation can be
performed in any of the two domains, depending on the approach. The Harmonic
Balance method is a commonly used spectral method for turbomachinery, with
different possible solution procedures for evaluation either in time or frequency
domain. Variants of Harmonic Balance method will be discussed in detail in
Section 2.1. The Harmonic Balance method allows solving a number of coupled
steady state equations, where coupling accounts for temporal change as each
equation solves for its unique time instant. This means solving a number of
equations, which are iterated to convergence in a steady state manner. The result
obtained is valid for the whole representative period T = 1

f
, and can be perceived

as a situation when the periodic steady state is reached. In terms of accuracy
and CPU time, it can be placed between the frozen rotor and time-accurate
simulations. Depending on the number of harmonics prescribed, both accuracy
and CPU time are affected, thus yielding the solution closer to either of the two
methods. The Harmonic Balance can offer significant savings in terms of CPU
time compared to time-accurate simulations, on account of reduced accuracy.
This thesis is dealing mostly with the Harmonic Balance method, while other
methods are introduced for comparison purposes only.

1.1 Thesis Statement

Periodic flows are common in scientific and industrial studies such as rotating
machinery, wave-like phenomena, various flows induced by periodic boundary
conditions and different periodic body motions (wing oscillations, moving valves,
etc.). For such problems transient simulations are used, yielding long CPU time
with satisfying accuracy. In order to obtain periodic results and neglect initial
transients resulting from simulation start and initialization, a number of periods
need to be simulated before reaching the scientifically significant result. The
need to reduce simulation CPU time, while still preserving periodic flow features
motivated the development of new methods. Harmonic Balance [1, 2] is such
a method, developed specially for periodic problems with prescribed harmonic
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motion.
The Harmonic Balance method is a quasi-steady state method,

incorporating characteristics both of steady state and transient approach. As
opposed to conventional steady state methods, the benefit of Harmonic Balance
is the ability of capturing transient flow features, at a cost of moderate increas
of CPU time. Steady state methods yield single rotor position solution, without
the ability of resolving the transient instabilities, therefore this approach cannot
be used for obtaining local instabilities or wake propagation. On the other
hand, compared to conventional transient simulation, Harmonic Balance offers a
significant CPU time reduction [3] with comparable accuracy.

The main idea behind the Harmonic Balance method was to make use of
periodicity to reduce the computational time required to compute both small
disturbances and large amplitude unsteady flows. Both spatial and temporal
periodicity were tackled by Hall and Crawley [4], and later by Clark and Hall
[5] by using the time-linearised methods. The assumption was that the
unsteady disturbance is small compared to the mean flow, therefore led to
linearising the Navier-Stokes equations about a non–linear steady or mean
operating conditions. However, the main drawback was the inability to model
dynamically non–linear effects. During that time He developed the method
initially as a periodic boundary condition [6], which was later extended by He
and Ning [7] for application to solving the two-dimensional Navier-Stokes
equations. Instead of solving a single transient equation, using the Harmonic
Balance treatment a set of coupled steady state equations is obtained by
replacing the temporal derivation term with a coupling source term. By solving
this set of equations, the flow field within a representative period is obtained.

Recently, Harmonic Balance method has been extensively developed in
numerous application areas. Other than oscillating airfoils and wings presented
by Dufour et al. [8] and Thomas et al. [9, 10], also aeroelastic flutter and limit
cycle oscillations [11, 12] were the topic of many researchers. Hall et al. [13]
used complex geometries such as turbines and other rotor-craft to extend and
demonstrate the Harmonic Balance capabilities. Additionally, Hall et al.
proposed three forms of Harmonic Balance, of which the time-spectral form of
Harmonic Balance is the most convenient one for solving.
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As the Harmonic Balance method was developed for use in turbomachinery,
Gopinath et al. [14] stress the need for involving additional frequencies within
the basic Harmonic Balance method to capture different length and time-scales
appearing in the machine. Guédeney et al. [15] develop the multiple frequency
approach for simulations of multistage turbines where frequency changes in each
stage due to a different number of blades in previous and later stages.
Furthermore, Guédeney et al. [16] present the two algorithms for non-uniform
time sampling in multiple frequency approach of Harmonic Balance, as different
frequencies mean solving non-matching time instants in two regions.
Furthermore, Ekici and Hall presented Hall’s Harmonic Balance technique
extended for modelling unsteady flows in multistage turbomachinery with blade
excitations at multiple frequencies [17, 18, 19].

He [20] addressed the stability and convergence issues of the Harmonic
Balance method, followed by Huang and Ekici [21] who introduced time
spectral viscosity as an additional stabilisation factor. Addition of time spectral
viscosity eliminates aliasing errors and ensures the convergence towards the
physical solution. In order to avoid stability issues at more complex geometric
configurations, as reported by Hall et al. [1], the strategies for implementation
of implicit Harmonic Balance algorithm are investigated in [22]. Moreover, Sicot
et al. [23], Woodgate and Badcock [24], and Su and Yuan [25] have proposed
different implicit techniques for the Harmonic Balance method which involve
the development of new implicit algorithms. Thomas et al. [23] presented the
more favourable approach not requiring new algorithm development, using the
two-step approximate factorization approach. Anatheaume and Corre [26]
implemented implicit Harmonic Balance method using numerical implicit
strategies and block relaxation.

Researchers interested in simulations of turbomachinery are currently
undertaking significant research efforts, but such computations mostly deal with
design-point performance of the turbomachines. Performance at off-design
points cause local instabilities which may propagate and lead to choking of the
machine or other undesirable flow-related problems in off-design conditions. In
terms of early computational fluid dynamics (CFD) studies, He [27] simulated
the growth of both short and long length-scale disturbances. At about the same
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time, Hendricks et al. [28] developed a nonlinear compressible model and
successfully simulated the inception and growth of the disturbance up to
complete choking of turbomachine.

Further CFD work was carried out by Choi et al. [29], who simulated the
stalling and unstalling processes. Their results of stalling behavior of the fan
agree with common experimental experience. Most recently, Dodds and Vahdati
[30, 31] have used CFD to interpret experimental measurements from an engine
compressor. They showed that the compressor was operating with two
disturbances rotating independently in the first and second stages of the
machine. This was also confirmed recently by Houde et al. [32]. Usually, it
takes between 10 and 30 periods from instability inception up to complete
choking of the turbomachine, depending on the propagation speed, which is
different from the rotor rotation speed [33]. Pullan et al. [34] showed that the
spike-type stall inception begins near the blade tip due to high local incidence.
The separation gives rise to shed vorticity from the leading edge, which
develops into a trumpet-shaped vortex stretching between the casing and the
suction side of the blade. By further motion of the vortex from suction side of
one blade to pressure side of the next blade, the propagation of instability
occurs. After the vortex reached the next blade, new vortices appear, the whole
process repeats and eventually the choking occurs. During change of operating
point the turbomachine undergoes through a number of operating conditions
which are not optimal, i.e. off-design conditions. During this process the
aforementioned phenomena may appear, yielding unwanted effects.
Furthermore, the oscillating power demand often requires switching between
operating points, making the unwanted phenomena appear more often than it
was considered in the design phase. This means that turbomachinery requires
design procedures with flexibility in mind, such that stable operation can be
obtained in a variety of operating points [35].

A field unrelated to turbomachinery was also explored and will be briefly
presented here. Although the method presented in this work was initially
developed mainly for single-phase periodic problems such as turbomachinery,
the author and his colleagues saw the opportunity and ability of the method to
be used in the problems of naval hydrodynamics and extended its application
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accordingly. In naval hydrodynamics the spectral methods present no novelty as
this approach is used for several decades [36], but such methods offer no
accurate solution to calculate the viscous drag force of ships reliably so far.
Therefore, this has yielded several publications to which the reader is referred
for more information related to this topic [37, 38, 39, 40].

1.2 Approach

This thesis describes the development and implementation of a numerical
model, as well as on the validation of the implemented model. The
implementation includes the development of the mathematical model adapted
to finite volume framework. The main part of the mathematical model consists
of the Harmonic Balance method for periodic flows, and its specialisation for
use in turbomachinery, as well as the development of additional tools for
pre-processing and post-processing of Harmonic Balance simulation results.

The Harmonic Balance method and the additional tools are implemented
in the CFD software OpenFOAM [41], specifically in a community driven fork
foam-extend, written in C++ programming language. Special attention was
given to the standard and the organisation of the OpenFOAM library in order
for the final Harmonic Balance solver to be fully compatible with the toolkit, but
also become a general turbomachinery solver which is simple for maintenance and
improvements.

Main phases of research are:

a) Development of the basic Harmonic Balance method.
b) Specialisation of the Harmonic Balance method for use in turbomachinery

followed by development of multiple frequency version.
c) Validation and verification of the method.
d) Extension of the method for change of operating point.
e) Application of the method for the off-design points and analysis of flow

instabilities.

The Harmonic Balance method is developed for periodic problems, whereas in
this research it will be extended for use in turbomachinery and investigation of
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the start-up and shut-down conditions. The Harmonic Balance method solves
the Navier-Stokes equations in the pseudo-spectral domain and as a result the
flow field within a representative period is obtained. Prior to discretisation of
the equations, the transient Navier-Stokes equations need to be transformed into
a quasi-steady state equations in form of the Harmonic Balance method. This
yields a set of quasi-steady state equations instead of a single transient equation.
The size of the set depends on the number of harmonics, n, and the number of
solved equations is 2n+ 1.

The Harmonic Balance method has not previously been implemented in the
framework of the open source software OpenFOAM, which has been performed
within the scope of this study. Implementation required development of
mathematical model suitable for C++ coding environment along with
consideration on function optimisation and coding simplicity. Adhering to the
OpenFOAM standard, the accompanying libraries have been developed as well,
handling the 2n + 1 velocity fields, pressure fields, and other variables that
might be used. These libraries include thermophysical models, turbulence
models, finite volume dynamic mesh library, transport models and additional
post-processing tools for field reconstruction, initialization, etc. The main
Harmonic Balance characteristic is that instead of solving one steady equation
or one transient equation which propagates through time, a number of time
instants are solved simultaneously. For n harmonics (chosen by user at the
run-time), 2n + 1 equidistant time instants are calculated, thus forming the
complete period. For this reason each of the 2n + 1 time instants requires its
own set of Navier-Stokes equations, turbulence treatment and therefore its own
variables, yielding 2n+ 1 of each variable.

At the point of successful implementation of the Harmonic Balance method in
the finite volume framework, the additional functionality was developed to allow
its use for multistage turbomachinery. The basic form of Harmonic Balance
method takes only one frequency into account, therefore a variant capable of
taking into account a pair of frequencies (rotor frequency and stator frequency)
was developed.

The Harmonic Balance method in its general form can be used for various
periodic problems where dominant frequency is known in advance. To account
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for two different dominant frequencies appearing in rotor and stator, a modified
version has been developed. While running single stage turbomachinery
simulations, at least two dominant frequencies are taken into account, with the
ability to account for higher harmonics as well. Furthermore, solvers for static
single-domain problems and for multiple-domain problems with moving mesh
are implemented, allowing solution of problems such as pitching airfoils (single
dominant frequency) or compressors (several dominant frequencies). As
opposed to regular boundary conditions, the Harmonic Balance method requires
boundary conditions aware of 2n+ 1 time instants in which the boundary values
can differ Figure 1.1.

(a) Transient simulation mesh rotation,
(b) Inlet velocities at different

time steps in Harmonic Balance.

Figure 1.1: Boundary condition treatment
in the transient and the Harmonic Balance simulation.

Some periodic problems can be modelled simply by prescribing fluctuating
boundary conditions, such as opening and closing inlet or rotating the inlet
velocity direction. Having in mind that the Harmonic Balance method is based
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on the Fourier expansion, it is clear that by obtaining the solution at discrete
time instances, the whole period can easily be reconstructed. Utilities for period
decomposition and reconstruction have been developed within this study,
allowing analyses of the whole period, rather than just selected time instants,
neglecting the effect of rate-of-change.

The implemented method with accompanying libraries is validated using
several canonical turbomachinery test cases. Validation of basic single frequency
Harmonic Balance method has been performed and demonstrated in [42].
Simple harmonic wave impulses were imposed at the inlet and successfully
recovered through the domain. The increasing level of accuracy with increasing
number of harmonics was presented as well. Validation of the multiple
frequency approach is performed in this study using the ERCOFTAC
centrifugal pump test case. The Harmonic Balance results are compared against
the transient approach simulation, steady-state results and available
experimental data. Verification is performed by varying the number of used
harmonics, where it is expected for the results to converge to a single solution
with the increase of harmonics. Good agreement of results allowed proceeding
with the development of the Harmonic Balance method for turbomachinery
performance at off-design points: start-up and shut-down simulations.

Analysis of the instability inception should give insight into suppression
methods and procedures for unstalling. In most cases, it takes between 10 and
30 periods from stall inception to fully choked turbomachine, and such
simulations are very CPU time demanding. The Harmonic Balance method
should obtain the solution in significantly less time, while still offering
satisfactory accuracy.

Having in mind that dominant frequencies in turbomachinery depend on
number of blades in rotor and stator, rotational speed, number of stages, etc. it
is possible to choose the dominant frequencies in advance. The accuracy of the
Harmonic Balance method depends on the number of harmonics, n, where it is
inconvenient to use a large number of harmonics in order to take into account
higher frequency which is a multiple of the base frequency. Number of solved
equations scales with 2n + 1, therefore including each additional harmonic
involves solving the two additional sets of equations. For one harmonic this
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means solving 3 sets of governing equations; if increased accuracy is required,
for instance with n = 5 harmonics, 11 sets of equations are solved. The user
should be sufficiently familiar with the method and problem at hand to choose
the appropriate number of harmonics, so that satisfying level of accuracy is
obtained without the unnecessary CPU time overhead.

The hypotheses that present the motivation behind this work are the
following:

• Implementation of the Harmonic Balance method based on the finite
volume framework, which casts periodic problems into spectral space, thus
making it quasi-steady state would provide a general method for assessing
turbomachinery integral parameters and their oscillations through time.

• The developed numerical model will contribute to significant reduction of
computational time of turbomachinery simulations compared to available
conventional methods.

• The nested approach of the Harmonic Balance method provides a
framework for turbomachinery start-up and shut-down simulations, giving
insight into integral values and flow patterns through regime change, while
being significantly CPU less demanding compared to available
conventional methods.

1.3 Present Contributions

The objective of this study is to introduce a new numerical model for
turbomachinery simulations, dealing mainly with investigation of regime change
and focus on start-stop procedures. The model is implemented in the open
source software with the complete framework offering support for multistage
turbomachinery. Previous work related to the Harmonic Balance method
implementation has been extensively broadened with number of tools and
accompanying utilities along with the main method. The work behind this
thesis makes the following specific contributions to the field of CFD related to
turbomachinery applications:



CHAPTER 1. Introduction 12

1. The time–spectral form of the Harmonic Balance is derived in terms of
mathematical model and finite volume discretisation. Segregated
pressure–velocity equation set for incompressible, turbulent, viscous,
single phase flows is used, as well as segregated approach to coupling of
the Harmonic Balance equations.

2. Implementation of the Harmonic Balance method within the community
driven fork foam-extend of the open source library OpenFOAM.
Implementation included development of a complete Harmonic Balance
library for both single and multistage turbomachinery at specified
operating condition. The implementation is made completely general, so
that number of resolved harmonics, n, is user-chosen at the run-time and
can be adapted to the problem at hand.

3. Extension of existing models to provide support for the Harmonic Balance
method has been performed. Dynamic mesh motion models have been
adapted for mesh rotation between time instants depending on the
number of harmonics, while taking into account the actual mesh flux and
wall velocity. Furthermore, the turbulence and transport models have
been extended to account for a set of variables, each for one time instant,
in order to comply with the Harmonic Balance structure. A number of
pre-processing and post-processing tools have been developed as well, of
which some include reconstruction utility, so that the solution at any
point in time can be obtained instantly, utility for initial boundary
condition setup so that it provides a harmonic function through a
complete period, etc.

4. Major part of the presented work includes support for regime change
simulations, particularly shut-down and start-up simulations. The
Harmonic Balance method has not been used for such simulations so far,
while promising results are presented in this work. In general, any change
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from operating point 1 to operating point 2 can be performed, although
the focus of this study was on validation of the proposed procedure for
shut-down and start-up of turbomachinery. Although it can be tackled
with a variety of tools and methods, this area presents a number of
challenges in numerical sense and for specific applications the proposed
method offers a notable solution.

1.4 Outline

In the following parts of this thesis, the Harmonic Balance method is introduced
and presented with accompanying mathematical derivation. This is followed by
validation and comparison with the experiment for a single operating point using
the ERCOFTAC centrifugal pump test case. Finally, the turbomachinery start-
stop behavior is explored, as well as the Harmonic Balance methods for start-stop
simulation which is followed by a validation using a simple 2D test case and a
Francis-99 turbine for which experimental data exist.

Chapter 2 presents the mathematical model of the work, including the
governing equation sets, Harmonic Balance derivation and treatment of the
governing equations, with discussion on types of available Harmonic Balance
forms. Numerical model is outlined in Chapter 3, dealing with the discretisation
of the governing equations in the Harmonic Balance form and algorithm for
segregated pressure-velocity coupling. Sections 3.3 and 3.4 introduce the
numerical tools developed for turbomachinery simulations, namely tools for
rotating domain treatment and interface treatment in order to couple the two
neighbouring regions or make use of spatial periodicity with the aid of periodic
boundary conditions.

Start-up and shut-down concerns are explained in Chapter 4, dealing with
start-stop procedures in general and covering some of the effects appearing
during regime change. Furthermore, challenges for the CFD are presented and
the Harmonic Balance approach is proposed. The results of the Harmonic
Balance method for single operating point is presented in Chapter 5, comparing
the time-accurate, steady state and the Harmonic Balance results, as well as
comparing the Harmonic Balance results with experiment. The validation of a
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start-stop Harmonic Balance is presented in Chapter 6, performed on a simple
test case for a preliminary validation, followed by a real Francis-99 turbine in
Chapter 7 for which the complete shut-down and start-up processes are
investigated and the Harmonic Balance is compared with the experiment. The
work is summarised in Chapter 8 with suggestions for future work.
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In this chapter the mathematical model of the Harmonic Balance method is
established. Along with governing equations which are presented in the
Section 2.3, the discussion on different formulations of the Harmonic Balance
method is given. The focus of the discussion is on the choice of the most
practical formulation, mainly in terms of practicality from user point of
perspective and efficiency in terms of CPU consumption and performance.

The choice of the Harmonic Balance formulation is followed by the
derivation of a mathematical model for incompressible viscous turbulent flow,
with segregated approach to pressure-velocity coupling. The derivation is
entirely general, assuming no specific number of harmonics used or their
frequency. The derived equations can be used for any variable, therefore
momentum equation, turbulence equations or any other equation can be
modelled in the Harmonic Balance fashion. The implementation is made simple
as well, following the practice of OpenFOAM coding style, which allows simple
future modifications of steady or transient equations into the Harmonic Balance
form.
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2.1 Harmonic Balance Forms

In this section several forms of the Harmonic Balance formulations are
presented. The formulations have been reviewed by several authors previously,
such as Hall et al. [43] or He [20], but will be presented here for completeness
and clarification of the chosen approach. The main difference in the proposed
formulations is in the treatment of temporal term and whether its evaluation is
performed in the frequency or time domain. Three formulations are presented:
the classic Harmonic Balance; the non–linear frequency domain Harmonic
Balance; and spectral Harmonic Balance.

2.1.1 Classic Harmonic Balance

The classical approach to the Harmonic Balance method was proposed by Hall
[1], by modelling the unsteady non–linear Euler equations and pseudo-marching
it through time. The equations are developed into the Harmonic Balance form
using the Fourier expansion and marched in pseudo time to convergence. If f(x)

is a function of the real variable x and it is integrable on the interval [x0, x0 +P ],
where P is the repeating period of f(x), then the Fourier expansion reads:

f(x) = a0 +
∞∑
n=1

(
an cos

(
2πnx

P

)
+ bn sin

(
2πnx

P

))
, x ∈ [x0, x0 +P ]. (2.1)

Because of periodicity of the function, the function repeats with period P before
and after the interval [x0, x0 + P ], consequently the expansion is invariant of the
interval chosen. Coefficients an and bn are called Fourier coefficients and can be
calculated if f(x) is known:

an =
2

P

∫ x0+P

x0

f(x) · cos

(
2πnx

P

)
dx,

bn =
2

P

∫ x0+P

x0

f(x) · sin
(

2πnx

P

)
dx.

(2.2)
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However, in practical use the expansion has to be finite, therefore the basic
concept is to represent the conservation variables by a truncated Fourier series:

u(t) = u0 +
n∑

i=1

uSi
sin(iωt) + uCi

cos(iωt) . (2.3)

In Equation 2.3 the uCi
and uSi

are the Fourier coefficients of the i-th harmonic for
the sine and cosine term. The Fourier form of conservation variable, Equation 2.3
is substituted into momentum equation, eventually leading to a set of 2n + 1

equations: n for cosine terms, n for sine terms and one for mean value.
Furthermore, the pseudo time τ is introduced in order to use conventional

time marching methods to solve steady flow problems. The pseudo-time term of
each equation is driven to zero, yielding the steady state solution.

As stated by Hall [43], for simple problems the solution to the obtained
equation set is possible, however, with choice of larger number of harmonics n
the computational cost grows rapidly and scales by a factor of n3. Furthermore,
in case of turbulent flow the complexity grows as well which is mainly why this
form has not been used extensively in CFD.

2.1.2 Non-linear Frequency Domain Harmonic Balance

The non-linear frequency domain form of the Harmonic Balance method was
developed and widely used by McMullen et al. [44, 45]. By transforming the
convection and diffusion fluxes into the time domain, the efficiency of the method
is increased compared to classic Harmonic Balance.

The methodology of the non-linear frequency domain Harmonic Balance is
based on evaluating residuals in frequency domain, as well as the conservation
variable. However, due to the non–linearity of the residual operator, the frequency
domain residual cannot be computed directly from the conservation variable in
the frequency domain. To alleviate this, the conservation variable has to be
transformed into physical space using the inverse fast Fourier transform, yielding
conservation variable in time domain in all of the 2n + 1 time instants. The
residual operator is then calculated in the time domain and further transformed
into frequency domain. The new frequency domain residual is used to obtain
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the new approximate of the conservation variable in frequency domain and the
cycle repeats. The computational cost of this method is proportional to (2n +

1) log(2n + 1), where n is the number of solved harmonics. Thus, the proposed
method is more efficient compared to classical Harmonic Balance approach.

2.1.3 Spectral Harmonic Balance

The final form of the Harmonic Balance method is the time-spectral
formulation. This formulation is similar to the non-linear frequency domain
form of the Harmonic Balance, with key difference being the domain in which
the conservation variables are solved for. Here, the variables represent the
solution in time domain equally distributed over one time period. Therefore,
such equations represent mathematically steady problems as there is no time
derivation term. However, the obtained equations are mutually coupled via an
additional source term and the coupling term behaves as the time derivation
term.

Computational efficiency of such an approach is similar to the efficiency of
the non-linear frequency domain Harmonic Balance. In terms of memory
requirements, this approach requires 2n + 1 times more memory, as each
conservation variable is stored at 2n + 1 time instants. Therefore, the
simulation result will be the flow fields in 2n + 1 time instants, rather than just
a single variable set. Although by reconstruction within the scope of a Fourier
expansion a complete period can be obtained, i.e. any point in time regardless
of the calculated time instants.

2.2 The Harmonic Balance Derivation

In this study the time-spectral form of the Harmonic Balance method is used.
The derivation of the method is presented in the sequel, which will be applied to
the governing equations presented in Section 2.3.

The main assumption based on which the Harmonic Balance method is
formulated is that the flow is periodic in time. Such assumption allows utilizing
approximation of the periodic function by superposing a number of harmonic
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functions. The lowest order of approximation is the mean value, to which sine
and cosine functions can be added to obtain fluctuation. Approximation series
based on sum of harmonic functions is called the Fourier expansion. If the
expansion contains infinite number of terms, the series is no longer an
approximation. However, in common practice it is impossible to have infinite
number of terms, therefore the error of the approximation is equal to the sum of
uncounted terms. In most cases the value of each following term is smaller
compared to the previous one, resulting in first several terms consisting the
majority of the result and being the most significant. Higher harmonics account
for the effects appearing with the frequency much higher than the dominant,
base frequency and therefore are needed to capture fine instabilities occurring
during the base period. If conservation variables are expanded in Fourier series
with arbitrary number of harmonics n, periodic behaviour is assumed.
Moreover, for completeness the whole derivation will be presented, with
reference to [40, 42, 46].

Under assumption that the problem to be analysed is periodic, with its
transport described with a convection-diffusion equation:

∂Q

∂t
+ R = 0 , (2.4)

where R stands for convection, diffusion and source/sink terms:

R = ∇•(uQ)−∇•(γ∇Q)− SQ . (2.5)

Here, u is the transport velocity and γ is diffusivity, the primary variable Q can
be written as a Fourier series with n harmonics:

Q(t) = Q0 +
n∑

i=1

QSi
sin(iωt) +QCi

cos(iωt) . (2.6)

As a general note, the notation of Q is used for the time domain, and Q for the
frequency domain. The Fourier expansion for R is analogous to one in Eqn. (2.6),
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with Q substituted by R:

R(t) = R0 +
n∑

i=1

RSi
sin(iωt) +RCi

cos(iωt) . (2.7)

One harmonic in the Fourier expansion refers to a sum of a single sine and cosine
term. For only nth harmonic part of the solution it can be written:

Qn = QSn sin(nωt) +QCn cos(nωt) . (2.8)

Inserting the time derivative of Q from Eqn. (2.6), and the Fourier expansion of
R into the original transport equation, Eqn. (2.4), yields:

n∑
i=1

[iω (QSi
cos(iωt)−QCi

sin(iωt)) + (RCi
cos(iωt)+RSi

sin(iωt))] = R0 . (2.9)

Eqn. (2.9) represents the scalar transport equation in the frequency domain,
where Fourier coefficients QSi

and QCi
are unknown. Note that each Q and R

are fields, i.e. they represent Fourier decomposition coefficients for each point
in space, assuming the same choice of base frequency. Grouping the coefficients
with the same harmonic part in Eqn. (2.9) yields 2n+ 1 equations:

−iωQCi
+RSi

= 0→ n equations for sine parts, for i = 1 . . . n ,

R0 = 0→ 1 equation for mean part,

iωQSi
+RCi

= 0→ n equations for cosine parts, for i = 1 . . . n .

(2.10)

Eqn. (2.10) can be written in a more compact, matrix format:

ωAQ + R = 0 , (2.11)
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where:

A=



0 −1

0 −2

0 . −3

.
. . .

. −n
0 0 · · · 0 0 0 · · · 0 0 0

1 .

2 .

3 . 0
. . . 0

n 0



, Q=



QS1

QS2

QS3

...
QSn

Q0

QC1

QC2

QC3

...
QCn



, R=



RS1

RS2

RS3

...
RSn

R0

RC1

RC2

RC3

...
RCn



. (2.12)

Solving Eqn. (2.11) would yield a set of Fourier coefficients Q for Q(t). However,
such a procedure is not favourable since R contains differential operators that
would need to be transformed into the frequency domain.

We proceed by defining a matrix representation of Discrete Fourier Transform
(DFT) in order to easily switch between time and frequency domain in the discrete
space. In order to have a unique one–to–one mapping, we define the discrete
time-domain vector as:

QT =
[
Qt1 Qt2 Qt3 · · · Qt2n+1

]
, (2.13)

where tn stands for time instants throughout the period T :

ti =
iT

2n+ 1
, for i = 1 . . . 2n+ 1 . (2.14)

DFT from the time-domain vector Q to the frequency domain vector Q can be
written in matrix form:

Q = EQ , (2.15)
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where square matrix E takes the following form:

E =
2

2n+ 1



sin(ωt1) sin(ωt2) . . . sin(ωt2n+1)

sin(2ωt1) sin(2ωt2) . . . sin(2ωt2n+1)
...

...
...

sin(nωt1) sin(nωt2) . . . sin(nωt2n+1)

1

2

1

2
. . .

1

2

cos(ωt1) cos(ωt2) . . . cos(ωt2n+1)

cos(2ωt1) cos(2ωt2) . . . cos(2ωt2n+1)
...

...
...

cos(nωt1) cos(nωt2) . . . cos(nωt2n+1)



. (2.16)

Multiplying Eqn. (2.15) with E−1 from the left, one obtains mapping from the
frequency domain to the time domain:

Q = E−1Q , (2.17)

where the inverse transformation matrix reads:

E−1 =



sin(ωt1) . . . sin(nωt1) 1 cos(ωt1) . . . cos(nωt1)

sin(ωt2) . . . sin(nωt2) 1 cos(ωt2) . . . cos(nωt2)
...
...

sin(ωt2n+1) . . . sin(nωt2n+1) 1 cos(ωt2n+1) . . . cos(nωt2n+1)


. (2.18)

Having defined the forward and backward transformation matrices, E and E−1,
respectively, we proceed to formulate the frequency domain scalar transport
equation. Inserting the Eqn. (2.15) into Eqn. (2.11) yields the frequency domain
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equation, expressed via the time domain vector Q:

ωAEQ + ER = 0 , (2.19)

where the same transformation has been applied to R and Q.
While the (linear) equations could be solved in this form, evaluating sources

and fluxes in the frequency domain is computationally expensive and
inconvenient [1]. We shall therefore proceed to transform the equations back to
the time domain. To achieve this, Eqn. (2.19) is multiplied with E−1 from the
left, yielding:

ωE−1AEQ + R = 0 . (2.20)

The resulting equation represents a temporally–coupled set of 2n+1 steady state
problems, analogous to the initial problem, Eqn. (2.4).

Comparing Eqn. (2.20) with the original scalar transport equation, Eqn. (2.4),
two important features may be observed:

• R has been replaced with its discrete counterpart R, indicating that the
solution is sought at a fixed number of discrete time instants only. The
number of discrete time instants is defined with a specified number of
harmonics n, as indicated in Eqn. (2.13).

• The solving variables are no longer continuous in time, but are discrete,
representing the solution in each of the time instants.

• The time derivative term has been replaced by terms coupling the solutions
at different time steps. This is equivalent to evaluating the time derivative of
a harmonic signal via 2n+1 uniformly spaced temporal snapshots, including
a mean (steady) solution, where the effect of temporal distance is taken
into account by the coefficients Pl (Equation 2.25), as demonstrated in
Figure 2.1. It can be seen that coefficients in time instants closer to the
time instant of interest are larger (in absolute value) than those farther
away. As the investigated signal is periodic, the coefficients are the same,
symmetrically reducing in positive and negative time direction. Therefore
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the shift of three time instants in the positive time direction can be seen as
a shift of four time instants in the negative time direction due to periodicity.

• The coupling term refers to temporal-coupling as it replaced the time
derivative term and accounts for temporal effects. This is not related to
any other forms of coupling, such as pressure-velocity coupling. Therefore,
the treatment of the source term can be explicit or implicit regardless of
the pressure-velocity coupling.

Time, s

Q

time instant of interest

4.03334

-2.23833

1.795

-1.795

-4.03335

2.23833

Figure 2.1: Time instants and Fourier coefficients Pl for 3 harmonics.

The matrix E−1AE pre–multiplying Q in Eqn. (2.20) has the following form:

E−1AE =
2

2n+ 1



0 P1 P2 P3 . . . . . . P2n

−P1 0 P1 P2 P3
...

−P2 −P1 0 P1 P2
...

−P3 −P2 −P1 0 P1
...

... . . . P2

... . . . P1

−P2n . . . . . . −P3 −P2 −P1 0


, (2.21)
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where Pl is defined as:

Pl =
n∑

k=1

k sin(lkω∆t) , for l = 1 . . . 2n , (2.22)

where:
∆t =

T

2n+ 1
. (2.23)

Constant coefficients Pl depend only on the base frequency and specified number
of harmonics, which are defined beforehand. Therefore, Pl may be calculated
and stored only once at the beginning of a simulation, with negligible memory
demand compared to the cost of a CFD simulation.

Using Eqn. (2.21) in combination with Eqn. (2.20), the expanded form of the
coupled Harmonic Balance scalar transport equations may be written in a more
convenient form:

∇•(uQtj)−∇•
(
γ∇Qtj

)
− SQtj

= − 2ω

2n+ 1

(
2n∑
i=1

Pi−jQti

)
, (2.24)

for j = 1 . . . 2n+ 1 ,

where Pi−j is defined as:

Pi−j = Pl =
n∑

k=1

k sin(lkω∆t) , for l = −2n . . . 2n . (2.25)

Pi−j term takes into account the temporal distance between solution time
instants, therefore yielding small coupling coefficient for distant time instants
making them less important compared to temporally-close time instants which
become more significant. Due to this, the temporally closer neighbouring
solutions affect the current solution more than those farther away, as
demonstrated in Figure 2.1. It should be noted that no less then 2n + 1 time
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instants should be solved, as that could cause the aliasing errors. A set of
2n + 1 equations is the smallest required number of time instants for a chosen
number of harmonics, n, for which an accurate solution can be obtained. As the
coupling of solutions at different time instants tj is achieved through Pi−j

coefficient, it is clear that the time derivative term is now modelled as
additional source terms. Qtj represents the solution in time instant tj and all of
the 2n + 1 time instants are solved simultaneously as a closed set of equations.
Hence, a single transient equation given by Eqn. (2.4) is transformed into a set
of 2n + 1 coupled steady state problems, Eqn. (2.24), obtaining the solution in
2n + 1 time instants. As the temporal term is replaced by a HB-coupling term,
the equation has become a mathematically steady equation, although due to the
nature and origin of the coupling term it can be considered a quasi–steady
equation.

2.3 Governing Equations

This section covers the governing equations solved within the scope of the
thesis. Equations include the continuity equation, the momentum equation and
the pressure equation, forming the pressure-velocity equation set for the
incompressible viscous turbulent flow. Continuity equation states that the
amount of fluid entering the domain is equal to the amount of fluid exiting the
domain:

∂ρ

∂t
+∇•(ρu) = 0 , (2.26)

where u is a velocity field, ρ is density and t is time. In case of incompressible
flow the equation Eqn. (2.26) gets reduced as there is no change in density:

∇•u = 0 . (2.27)

The momentum equation is of the form:

∂u

∂t
+∇•(uu)−∇•(ν∇u) = −∇p

ρ
+ Su , (2.28)
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where ν denotes kinematic viscosity, p the pressure field and Su is a source term,
if exists. The momentum equation can as well be written in condensed form,
which is the form that will be used in the following sections:

∂u

∂t
+ R = 0 , (2.29)

where R stands for convection and diffusion terms and any existing source or sink
terms.
Terms in Equation 2.28 from left to right are:

• Temporal derivative accounting for inertia of the system.

• Convection term, representing transport with the fluid velocity field. It
is hyperbolic in nature and the information is propagated based on the
direction of velocity.

• Diffusion term, representing transport due to gradient of a passive scalar. It
is elliptic, therefore every point in the domain feels any disturbance within
the domain instantaneously.

• Source term.

The governing equations solved in this work are the Navier–Stokes equations for
incompressible fluid flow. The momentum equation is transformed into HB form
following the procedure presented in the previous subsection, while continuity
equation remains unchanged as it does not have the temporal term:

∇•utj = 0 , (2.30)

∇•(utjutj)−∇•
(
ν∇utj

)
= −
∇ptj
ρ
− 2ω

2n+ 1

(
2n∑
i=1

Pi−juti

)
, (2.31)

for j = 1 . . . 2n+ 1.
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Equations 2.30 and 2.31 represent a coupled pressure-velocity system of 2n + 1

equations defined by dominant frequency ω, resolved with accuracy corresponding
to n harmonics. The solution obtained is always perfectly time-periodic, which
would not be the case in the equivalent transient simulation. Additionally, by
calculating the Fourier coefficients and performing a reconstruction, the solution
can be obtained at any time instant within a period.

2.4 Closure

A general overview of the governing equations and the Harmonic Balance
method, followed by its interpretation has been presented. Three main
Harmonic Balance techniques have been briefly presented, with explanation on
why the spectral form was selected for development. The Harmonic Balance
treatment and derivation is then outlined, with notes on temporal coupling and
interpretation of the transformation from single time-accurate equation into a
set of coupled steady equations. Finally governing equations are presented
covering the fluid flow problem in this study.

The overhead that conventional transient simulation poses compared to the
Harmonic Balance method comes from solving a large number of time steps in
order to propagate the unsteadiness throught the system and obtain periodic
steady state. For periodic problems, obtaining a periodic steady state solution
is mandatory, as otherwise the solution should not be referred to as periodic.
Therefore, reaching periodic steady state means solving a number of periods
until the achieved difference between a number of successive periods is within
the proposed tolerance for a significant variable. This can mean solving from
several periods up to several dozen periods. The main benefit of the Harmonic
Balance method is that a set of steady state equations is solved, meaning that
solution is converged in a steady state manner for all of the equations. As Fourier
series is the core of the Harmonic Balance method, the number of steady state
equations depends on the number of harmonics, n. Simple problems can be solved
accurately with one harmonic, while for more complex problems larger number
of harmonics should be resolved. The number of Harmonic Balance equations
scales with number of harmonics by a factor of 2n+ 1.
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The governing equations for viscous, turbulent, non-linear flow in the final
Harmonic Balance form were presented in Chapter 2. Choice of the most
suitable Harmonic Balance form was made, with a brief overview of different
formulation possibilities. The derivation of the Harmonic Balance equations
shows the transformation from a single temporally resolved equation into a set
of 2n+ 1 coupled mathematically steady equations for n harmonics.

In this chapter the numerical treatment of governing equations in physical
space is presented. Within the Section 3.1 the transformation from general
equations to finite volume equations is presented, with notes on implicit or
explicit treatment of each term. The Section 3.4 deals with interpolation
procedures in case of solving multiple domains with adjacent boundaries. In
turbomachinery, it is a common case for each blade row to be its own domain -
yielding a number of interconnected domains which exchange information over
the numerical interface in a specific manner, based on a chosen interpolation
algorithm. Section 3.3 briefly introduces two steady state approaches, multiple
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reference frame (MRF) and single reference frame (SRF) models that are used
in this work for comparison, but as a method are not of interest here.

3.1 Discretisation

Discretisation of equation terms refers to adapting the mathematical form of
the governing equations into a numerically suitable form for iterative solving in
the framework of finite volumes (cells). The spatially continuous equation is
transformed into a finite volume configuration, such that physical space is no
longer continuous, but discrete and divided into cells. Therefore, the domain
consists of cells, internal faces and boundary faces. A cell has a finite number
of neighbours sharing a common face, whereas a single internal face is shared
only by two cells. Collocated grids are commonly used in CFD, meaning that the
solution variables are stored at cell centres, while flux is evaluated on cell faces.
The arrangement of both pressure and velocity variables located in cell centres
can in case of incompressible flow solved on uniform mesh lead to odd-even cell
decoupling [47], characterised by checkerboarding in the resulting flow field. In
order to avoid odd-even cell decoupling on uniform meshes, the Rhie and Chow
procedure is used [48]. Rhie and Chow proposed interpolating the velocity onto
faces without accounting for the pressure gradient, while performing separate
interpolation of the pressure gradient onto faces. Such procedure preserves the
local influence of each cell, without the possibility of odd-even decoupling to
occur.

In the following subsections the finite volume discretisation of momentum
and pressure equations is presented, as well as the treatment of each term in the
equation. The numerical discretisation of governing PDEs, using second-order
accurate, collocated finite volume method for arbitrary polyhedral (unstructured)
grids is presented [49] and used in this work. Collocated, polyhedral framework
is preferred due to its simplicity regarding grid generation for complex geometries
often encountered in turbomachinery. However, the methodology presented here
is general regardless of type of grid used, polyhedral or block structured.

The integral form of the governing equations is obtained by integrating over
the control volume faces. Additional details on finite volume discretisation in
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collocated grids can be found in [50, 47, 49, 51, 52].

3.1.1 Spatial Discretisation

Prior to solving the governing equations, the solution domain should be
spatially discretised. By discretising the solution domain in terms of finite
volumes, a computational mesh consisting of control volumes is produced. A
typical control volume is shown in Figure 3.1, where P denotes the cell centre
and N stands for a neighbouring cell centre. sf represents the face area vector:
pointing in the direction normal to face with its magnitude equal to face area.
Control volumes (or cells) are bounded by an arbitrary number of faces, thus
making it a general polyhedron. Faces are flat and each face is shared with only
one neighbouring control volume. Furthermore, control volumes do not overlap
and fill the computational domain completely. Finally, the discretised mesh
holds the variables in the cell centroid, P , while N denotes neighbour cell
centre. The computed value is considered constant for the whole cell, although
a representation of a continuous field can be obtained by interpolating between
cell centres. Obviously, the smaller the control volumes, the smaller parts of
space are considered to have a constant value. Thus, finer field distribution is
obtained. In general, the size of the cell should be chosen based on the problem,
so that phenomena with large gradients is discretized with smaller cells. Within
the finite volume method, PDE’s are solved for cell centres in case of collocated
grid and in cell centres and faces for staggered.

3.1.2 Temporal Discretisation

Temporal discretisation refers to dividing the physical continuous time into
discrete instants in which the solution is sought. In conventional time-accurate
simulations, the time is discretised by prescribing the size of the time step that
will be used during the calculation. The solution is then obtained by marching
from the prescribed initial condition, propagating in increments of time which
are of size of prescribed time step. Based on the problem and temporal
variation of the flow, the time step size should be chosen so that fluctuations
can be captured. Furthermore, one should have in mind the restriction of CFL
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The dynamic condition follows from the momentum conserva-
tion law and states that forces acting on the fluid at the interface
are in equilibrium. The tangential force balance yields a relation
between normal derivative of tangential velocity on the two sides
of the interface:

lB n �rvtð ÞB � lA n �rvtð ÞA ¼ �rsr� ðlB � lAÞðrsvnÞ; ð5Þ

where n is the unit normal vector on the interface which points
from fluid A to fluid B, vt = (I � nn)�v is the tangential velocity com-
ponent, rs =r � nn�r is the surface gradient operator, r is the
surface tension coefficient and vn = n�v is the normal velocity com-
ponent at the interface. A non-zero gradient of the surface tension
coefficient rsr can occur for example due to non-uniform distribu-
tion of surfactants at the interface or due to presence of a temper-
ature gradient. In this study, the surface tension coefficient is
assumed constant but the numerical procedure is described for
the general case of a non-uniform surface tension coefficient.

From the normal force balance, the pressure jump across the
interface is calculated:

pB � pA ¼ rj� 2ðlB � lAÞrs � v; ð6Þ

where j = �rs�n is twice the mean curvature of the interface. The
second term on the right hand side of Eq. (6) represents the jump of
normal viscous force across the interface, expressed through surface
divergence of interface velocity [36].

3. Numerical method

The mathematical model of fluid flow in its integral form is dis-
cretised in space using a second order accurate cell-centred
unstructured FV method. Numerical integration of the model in
time is performed using a second order accurate implicit method.
The description of the discretisation procedure is divided into
two parts: discretisation of the computational domain and equa-
tion discretisation.

3.1. Discretisation of the computational domain

The time interval is split into a finite number of time-steps Dt
and the equations are solved in a time-marching manner. Compu-
tational space is divided into a finite number of convex polyhedral
control volumes (CV) or cells bounded by convex polygons. Cells do
not overlap and fill the spatial domain completely. Fig. 1 shows a
polyhedral control volume VP around the computational point P lo-
cated in its centroid, face f, with area Sf, face unit normal vector nf

and the centroid N of a neighbouring CV sharing the face f. Geom-
etry of the CV is fully determined by the position of its vertices.

In surface tracking, the finite volume mesh needs to be adjusted
to the time varying shape of the interface. The deforming mesh ap-
proach is used in this study where the internal CV vertices are
moved based on the prescribed motion of the boundary vertices,
while the topology of the mesh stays unchanged. The vertex-based
automatic mesh motion solver [37,24] developed by the authors is
used for mesh deformation. Here, displacement u of the mesh
points (vertices) is governed by the Laplace equation:

r � ðCruÞ ¼ 0; ð7Þ

discretised on a tetrahedral finite element (FE) mesh using the
Galerkin weighted residual FE method [38]. The diffusion coefficient
C in Eq. (7) is inversely proportional to the square of distance from
the moving boundary. This makes the mesh more rigid near moving
boundaries and thus helps to preserve good mesh quality. The tet-
rahedral FE mesh is obtained by decomposition of polyhedral ele-
ments using one of the decomposition procedures shown in Fig. 2.
In case of a complex polyhedral mesh the cell-and-face split is used
despite introducing more computational points, as it produces bet-
ter tetrahedron quality.

3.2. Discretisation of the mathematical model

According to the FV discretisation method, the surface integrals
of an integral conservation equation are transformed into sums of
face integrals which together with the volume integrals are
approximated to second order accuracy by using the mid-point
rule. Temporal discretisation is carried out by numerical integra-
tion of the governing equation in time from the old time instance
to to the new time instance tn = to + Dt using an implicit three-level
second order scheme [29] referred to as the backward scheme.1

The fully discretised counterpart of the momentum Eq. (2) for the
moving control volume VP reads:

qP
3vn

PV
n
P � 4vo

PV
o
P þ voo

P Voo
P

2Dt
þ
X

f

ð _mn
f � qf

_Vn
f Þ vn

f

¼
X

f

lfn
n
f � ðrvÞnf Snf � ðrpÞnPVn

P; ð8Þ

where the subscripts P and f represent the cell-centre and face-cen-
tre values and the superscripts n, o and oo represent values evalu-
ated at the new time instance tn and two previous time instance
to and too = to � Dt. The cell-face mass flux _mn

f ¼ qfn
n
f � vn

f S
n
f must

satisfy the discretised mass conservation law, while the face volume
flux _Vn

f must satisfy the discretised GCL. These unknown fluxes are

d

Fig. 1. Polyhedral control volume (cell).

Fig. 2. Decomposing a polyhedral cell into tetrahedra.

1 The first order implicit Euler temporal discretisation scheme is used at the first
time step since only one old time level is available.
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Figure 3.1: Finite volume polyhedral cell [53].

number in terms of stability for explicit codes, so that information does not
propagate more than one cell per time step. The CFL criterion relates cell size,
velocity within cell and time step. However, in case of the Harmonic Balance
method the discretisation of time is performed in a different manner: one period
is perceived as a total physical time which is split into a 2n+ 1 equidistant time
instants. Time step can be thought of as δt =

T

2n+ 1
, where T is the complete

period and n is the number of harmonics used.
However, stemming from the fact that in the Harmonic Balance method the

solution is not marched in time, the time increment does not have the same
interpretation as in the time-accurate simulations. Moreover, the impact of the
temporal distance between the time instants is expressed through the Harmonic
Balance coupling term, without marching from one time instant to another. The
coupling coefficient in the Harmonic Balance source term becomes larger as the
temporal distance is smaller, thus accounting for the temporal closeness, which
can be thought of as the influence coefficient of the phenomena appearing closer
in time and having greater impact or farther in time with smaller impact.

Figure 2.1 shows the temporal discretisation in the Harmonic Balance
simulation. The error of the Fourier approximation, Equation 2.1, can clearly
be noticed: for small number of harmonics, n, the time steps are rather large,
whereas in case of infinite number of harmonics, the time would no longer be
discretised, but would become continuous (with infintesimal time steps).
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3.1.3 Discretised Momentum Equation

The momentum equation expressed in Equation 2.31 is briefly discussed here in
terms of discretisation and treatment. This section briefly presents the finite
volume implementation of the Harmonic Balance variant of the
pressure–velocity system. The resolution of coupling the Harmonic Balance
equations will be discussed to a somewhat greater extent.

Following the notation by Vukcevic [54], we use [·]i to denote implicit finite
volume discretisation and [·]e for explicit. Details on finite volume discretisation
may be found in Jasak [49] and will not be presented here. Since the
convection, diffusion and source terms remain unchanged compared to
conventional discretisation, the discretised the Harmonic Balance
pressure-velocity system, Eqn. (2.31), reads:

[
∇•(utjutj)

]
i
−
[
∇•
(
ν∇utj

)]
i

= −
[∇ptj

ρ

]
e

−

[
2ω

2n+ 1

(
2n∑
i=1

Pi−juti

)]
e

, (3.1)

for j = 1 . . . 2n+ 1 ,

where the source term arising from the Harmonic Balance treatment of the time
derivative term is treated explicitly. Hence, a segregated, iterative solution
algorithm for successive utj is employed.

The pressure equation in the finite volume framework is used to create
conservative fluxes for incompressible fluid flow. Following Patankar and
Spalding [55] the pressure-velocity coupling algorithm is derived, with Rhie and
Chow correction procedure taken into account as well. In its final form, the
discretised pressure equation reads:

[
∇•

(
1

aPtj

∇ptj
)]

i

=

[
∇•

(
H(utj)

aPtj

)]
e

, for j = 1 . . . 2n+ 1 , (3.2)

where aPtj is the diagonal coefficient of the momentum equation at time instant
tj, and H(utj) is the flux operator as defined by Jasak [49]. Following the Rhie
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and Chow correction, the pressure gradient term is not included in the H(utj)

operator. H(utj) term consists of:

H(utj) =

[
−
∑
N

aNtjuNtj

]
i

+

[
utj

∆t

]
e

. (3.3)

The Harmonic Balance pressure equation, Eqn. (3.2) is obtained from the
Harmonic Balance continuity equation, Eqn. (2.30), using standard procedure
for segregated solution algorithms. This is possible, as the continuity equation
must hold for every point in time, i.e. for all 2n + 1 time instants. For the
pressure equation at time tj, the accompanying variables for time tj have to be
used. Due to lack of temporal term, the final pressure equation does not contain
the coupling source term. As discussed, the Harmonic Balance variant of a
transient transport equation yields 2n + 1 coupled steady state problems.
Hence, the SIMPLE [55] algorithm is employed to resolve the pressure–velocity
coupling at each time instant tj.

3.2 The Harmonic Balance Pressure-Velocity

Coupling

Following the analogy with the Gauss–Seidel iterative solution algorithm [56],
each utj is solved once per outer iteration during a forward sweep (j = 1 . . . 2n+1).
Latest available uti is always used in source terms for other equations (j > i),
preventing additional memory requirements. Outer iterations are continued until
convergence.

Within the Harmonic Balance simulation, inner and outer coupling appears.
Outer coupling refers to a standard simple loop for resolving the u− p coupling.
However, in case of Harmonic Balance the corresponding variables have to be
coupled depending on the time instant: utj−ptj . Inner coupling refers to φtj−φti

coupling of a single conservative variable in different time instants, performed
through the source term. Therefore, in addition to pressure–velocity coupling at
each time step, velocity fields at different time instants are coupled via Harmonic
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Balance source terms on the right hand side of Eqn. (3.1). utj coupling is resolved
during a forward sweep, using the latest available utj , while each time instant
demands its own SIMPLE loop. However, only one SIMPLE iteration is sufficient
for each tj in order to simultaneously resolve utj − ptj and utj − utk coupling.

3.3 Domain Treatment

Steady state turbomachinery simulations can be performed regardless of the
missing rotational motion. Such approach is usually referred to as a frozen rotor
approach, namely due to the captured flow field resembling a snapshot during
continuous operation. Such simulations offer reasonable accuracy, with good
estimate of power, torque or efficiency, for only a fraction of transient
simulation CPU time.

In order to obtain the rotating flow field which accurately represents the
physical behaviour even though a steady simulation is run, the additional source
terms accounting for rotation are added into momentum equation. Furthermore,
it is clear that the rotating blade velocity is of magnitude different from zero and
therefore the mesh flux has to be included as well [57].

The source term that is added in the momentum equation represents the
Coriolis force and centrifugal force:

Su = 2ω × uR + ω × ω × r (3.4)

Two variants of steady state simulations are possible: Single Reference Frame
(SRF) or Multiple Reference Frame (MRF) simulations [58]. SRF is used when
the whole domain is rotating with the single angular velocity. Therefore, this is
where the name comes from - only one frame of reference is used and it is valid for
the whole domain. Example of SRF simulations include rotor-only configurations
such as single rotor blade passage or propellers and fans without non-rotating
parts, Figure 3.2.
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(a) Full annulus SRF. (b) Single blade passage SRF.

Figure 3.2: Single reference frame (SRF) domains.

MRF is applied when several different frames of reference are to be used due to
different angular velocity. MRF approach is common in multistage
turbomachinery simulations due to multiple stationary and rotating blade rows
which should be accounted for. Moreover, in case of different angular velocities
between moving regions, each region should have its own reference frame, i.e.
MRF-zone.

SRF and MRF can be implemented choosing either the absolute or relative
velocity formulation. Within foam-extend, the MRF implementation is
performed with relative convective velocity and absolute velocity as a
conservative variable. The final momentum equation after collapsing
appropriate terms is of the form:

∇•(uR ⊗ uI) + Ω× uI −∇• (ν∇uI) = −∇p
ρ

(3.5)

MRF can be used for any rotating objects, such as spinning wheels, propellers,
fans, mixers, where both rotating and stationary parts exist. Due to flux
conservation, the MRF zone should not have the mesh flux through its
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boundaries, therefore it has to be cylindrical. Although it is possible to define
the MRF zone as a selection of cells in which the rotation will be accounted for,
a more common way is to define and mesh separate domains, connected with
the aid of interface boundary condition. Possibilities for interface treatment and
possible interpolation schemes are presented in the following passage,
Section 3.4.

3.4 Interface Treatment

In this section the methods of the interface treatment between adjacent domains
are covered. In CFD, many applications can require solving a multiple-domain
problem for two reasons:

• Split complex geometrical parts from less complex in order to perform
separate meshing and simplify the pre-processing step.

• Different parts of domain may require different treatment, for instance one
part is moving while the other is stationary.

Having in mind that meshing is a highly important part of preparation, the
meshing procedure should be performed with great care and attention. As good
mesh will improve the quality of the results [59, 60], so will the bad mesh decrease
the convergence rate or even lead to divergence [61, 62, 63]. Therefore, it is
necessary to obtain the sufficiently good mesh in terms of common mesh criteria
[64, 65, 66]. The requirement to fit all regions with a single mesh or conformal
matching interfaces is often very difficult or leads to geometric compromises that
affect the numerical quality of the simulation results.

In cases of complex geometry, such as turbomachinery, it is convenient to
split the mesh into several parts, based on complexity. The interblade passage
is usually chosen as one region, the inlet casing the second and the outlet draft
tube the third. This allows using coarse grid in inlet and outlet parts and fine
grid for the blades in order to describe the blade geometry accurately, as well
as capture the appearing boundary layer. Moreover, if the turbomachine consists
of both rotor and stator blades, then the domains have to be split as well in



CHAPTER 3. Numerical Model 38

order to allow rotation only of the rotor parts. The presented cases are solved
using the interface on the adjacent boundaries to allow flow propagation from
one domain into another. In order to accommodate physically split domain, in
terms of matrix representation the domain should be unified before solving. This
is performed using the interface boundary conditions which perform implicit or
explicit domain coupling. In foam-extend these boundary conditions are called
General Grid Interface (GGI), Overlap General Grid Interface [67] and Mixing
Plane [68]. GGI, Overlap GGI and Mixing Plane are implicit techniques.

The main challenges that turbomachinery simulations impose are linked with
the need to study the relative motion of multiple rotors and stators. Depending on
the transient or steady state approach, the rotation can be handled in two ways:
directly by moving the mesh or indirectly by using a static mesh and modifying
the equations to take into account the rotation. The first way is only appropriate
for transient simulations, whereas the static-mesh approach is suitable for SRF,
or MRF.

The interface between stationary and rotating parts can be treated in several
ways: for transient simulation with topological changes, sliding mesh technique
is commonly used, whereas the available methods are: General Grid Interface
(GGI), where a weighted interpolation is performed to evaluate and transmit
flow values across a pair of conformal or non-conformal coupled patches [69]; the
partial Overlap GGI for cases where some of the interface faces are not physically
covered by their counterpart; and the Mixing Plane interface that performs the
circumferential averaging of the solution at the rotor-stator interface [70].

3.4.1 General Grid Interface

The General Grid Interface (GGI) is a region coupling boundary condition
available in foam-extend used for connecting the two neighbouring domains
[71]. The adjacent boundaries affect the internal cells by acting as a prescribed
fixed boundary condition. The conservative variables from one domain are
interpolated over the interface onto the second domain. The interpolation is
performed by taking into account the face area weights in order to obtain the
conservative field. The interpolation is not done explicitly in-between the
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iterations, but implicitly by adding the coefficients in the solving matrix
equation. The main advantage of the GGI comes from the ability to adjust the
topology of the mesh between the two non-conformal domains, Figures 3.3 and
3.4. Based on that, a set of weighting factors is evaluated in order to properly
balance the flux at the GGI. Interpolation is fully conservative irrespective of
the face shape, provided that full overlap of surfaces is achieved.

For time–accurate turbomachinery simulations with rotating runner, it is
inevitable to have non-conformal interfaces between the fixed and moving
domain during the mesh motion. This is easily handled via GGI, which
performs the re-evaluation of the GGI weighting factors at each time step and
interpolates the variables accordingly. The GGI weighting factors are computed
as a percentage of surface intersection between two overlapping faces, performed
using an efficient 2D face-to-face Sutherland-Hodgman intersection algorithm
[67].

(a) Stator domain interface mesh. (b) Rotor domain interface mesh.

Figure 3.3: GGI non-conformal interface set.

3.4.2 Overlap and Cyclic General Grid Interface

In case of axisymmetric problems, common in turbomachinery, only a portion
of domain can be used. Instead of solving for the complere circumference of
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Figure 3.4: Non-conformal rotor and stator overlapping.

the blade row, the effect of spatial periodicity can be taken into account, thus
reducing the domain size. For example, if the investigated propeller has n blades,
the solved domain can consist of only 1/n of the whole annulus, containing just
a single blade (or blade passage). In turbomachinery this is extremely useful,
as blade rows can have large number of blades, meaning that the reduction in
simulation CPU time will scale with the number of blades, making the simulation
significantly more efficient.

If such case is considered and only a single blade passage is simulated, two
important boundary conditions should be used: periodic boundary condition for
meridional boundaries and overlap GGI for domain coupling. The use of the
periodic boundary condition is presented in Figure 3.6. The flow field variables
are interpolated from one meridional plane onto another, creating an effect of
repeating domains, i.e. spatial periodicity. In cases where meridional boundaries
are non-conformal, the GGI interpolation is utilized, while for the conformal
boundaries the values do not have to be interpolated. Communication between
multiple domains is achieved using the overlap GGI functionality. The overlap
GGI is a variant of regular GGI, which is capable of running only a portion
of annulus, while performing interpolation as if the whole annulus is present.
Furthermore, for vectors and tensors the appropriate coordinate transfomation is
applied as well.

The overlap GGI is presented in Figure 3.5 between stationary and rotating
domain. The non-overlapped parts could not be evaluated and interpolated using
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a standard GGI approach due to the lack of shadow interface. Within the overlap
GGI, this is handled by doing copy-and-rotate of both rotor and stator interfaces
to obtain the whole annulus. Once the whole annulus is paved, both the rotor
and stator interface are fully covered and a regular variant of GGI interpolation
can be performed. The last step after interpolation is reduction of the complete
annulus back to the original portion of the interface.

Such a procedure allows running both transient and steady simulations, as the
non-overlapped part is no longer an issue. In specific cases it is not possible to
have all parts of the domain cut within a proposed circular interval, for instance
in case of bent draft tube.

Figure 3.5: Non-conformal mesh detail with overlap GGI. Coupled interface set (left) and
complete annulus (right) created by copying a single blade passage domain.

However, if the GGI between the rotating part and draft tube is far enough from
the bend so that it is not affected by it, the overlap GGI can be used as well:
only the rotating part will be paved a number of times, thus using single blade
passage, while draft tube will be in its complete form.

The situation which should not be handled using the overlap GGI is a
turbomachine with non-multiple number of blades. The domain can not be split
such that per one rotor blade m stator blades are simulated. This could happen
if rotor has 17 blades and stator has 19 blades, therefore using single rotor and
single stator blade would not be accurate, as the spatial periodicity would not
be satisfied. Relative position of rotor-stator blades would in that case be
different for each paved instance, yielding inaccurate results as if the spatial
periodicity is satisfied.
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Figure 3.6: Non-conformal mesh detail with cyclic GGI periodic boundary.

The problem of non-multiple number of blades can be alleviated in two ways
if just a portion of domain wants to be used. Depending on the wanted outcome,
the user should choose a preferable option. First solution is to modify the given
geometry such that spatial periodicity is assumed: in case of 17 rotor blades and
19 stator blades, single blade passages are 21.1765◦ and 18.9474◦, respectively.
The angular difference is 2.229◦, meaning that one domain could be expanded
by ≈1◦ and the other contracted by ≈1◦ in order to achieve spatial periodicity.
This would give reasonably accurate results in terms of power, torque, efficiency
[72, 73, 46], as well as a modified rotor-stator interaction. The second solution
for non-matching blade count is a Mixing Plane approach, which is described in
the following section.

3.4.3 Mixing Plane

Mixing Plane is the implicit interface interpolation approach used only in
turbomachinery, due to its mathematical model and basic idea which was
derived with turbomachinery in mind [68]. Mixing Plane interpolation mimicks
the temporally averaged flow on the interface by performing the circumferential
averaging. Therefore, the flow from the rotor side of the interface is
circumferentially averaged and yet then it is transferred to the stator side and
vice versa, Figure 3.7. This is extremely useful in cases where wake propagation
is not of main interest, but general flow field and performance is required. One
of the most common usage is for single blade passage simulations with
non-matching blade count between adjacent blade rows. If Mixing Plane is
used, the exchanged variables between rows are smeared, passing on the other
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side variables in a temporally averaged fashion. Therefore, due to
circumferential averaging the relative position between rotor and stator becomes
irrelevant. Furthermore, no wakes are propagated through the interface due to
the averaging (smearing).

The comprehensive comparison of GGI, overlap GGI and Mixing Plane
approach on the same case was performed by [74]. The authors compare the
three methods with the transient results for a single blade passage in a
rotor-stator configuration. All three methods give similar results in the majority
of the domain, with largest differences at the interface when using the Mixing
Plane interpolation. However, a comparison of interpolation methods was
performed against the time-averaged transient simulation, for which all three
methods gave results of the similar accuracy. This states that regardless of
Mixing Plane’s inability to propagate wakes over the interface, the global flow
field will resemble the time-averaged transient flow as well as the remaining two
methods, GGI and overlap GGI.

(a) Overlap GGI, (b) Mixing Plane.

Figure 3.7: Different interpolation procedures on the interface.

3.5 Closure

Numerical concerns related to treatment of equations in terms of finite volume
method; domain treatment and interface treatment have been presented in this
chapter. Discretised forms of equations presented in Chapter 2 have been
covered and followed by discussion on the pressure-velocity coupling and
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iterative procedure employed. Although in the Harmonic Balance form a
number of steady equations are simultaneously solved, the SIMPLE algorithm is
used with inter-equation coupling resolved in a Gauss-Seidel sweep. A SIMPLE
iterative procedure is performed for each time instant separately.

The treatment of the domain should be considered if only a portion of domain
wants to be simulated. This is possible in case of spatial periodicity, such as in
turbomachinery so that a single blade passage per rotor or stator row is simulated.
If the complete considered domain is part of a single frame of reference, an SRF
steady state model can be used. In case of several frames of reference, MRF
steady state model should be used. Furthermore, in case of single blade passage
simulations, additional boundary treatment has to be performed, thus applying
periodic boundary conditions which account for spatial periodicity. However,
for the coupling between two regions, for instance rotor and stator, a suitable
interface interpolation method should be chosen between GGI, overlap GGI and
mixing plane. Figure 3.8 presents a case of single blade passage with notes on
boundary conditions which should be prescribed.

Figure 3.8: Single blade passage consisting of stator, rotor and stator with interface boundary
conditions.
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Start-up and shut-down present a challenging change of operating conditions
in turbomachines. For instance, due to varying power demand through time,
a change of operating conditions should be performed for the output to adjust
to the demand. The turbomachine should be designed with flexibility in mind,
ensuring that a machine is not efficient only in one operating point, but at a whole
range of operating points. Additionally, flexibility means more frequent load
variations and load rejection events as well as off-design operation at prolonged
time. Load variations cause significant volatile events due to change of runner
speed, excessive unsteady pressure loading, mass flow rate variations and large
pressure fluctuations on blade surfaces. Such events cause asymmetric stresses
on surfaces [75] and even resonance conditions, eventually leading to significantly
reduced operating life of the runner [76]. However, most hydroturbines, especially
those of Francis type are not designed with unsteady operation in mind.

Undoubtedly, the increase of flexibility and efficiency is therefore in the
spotlight of turbomachinery development. The only way of affecting flexibility
is designing a machine for a whole range of operating points and optimizing its
operation. This is especially valid for start-up and shut-down as the transients
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impose the largest load variation. Depending on the type of turbomachine,
different start-up and shut-down procedures are used [77], and can be
performed at constant rotor speed by changing the mass flow rate, or by
changing the rotor speed.

In case of a gas turbine, during start-up it undergoes a sequence of increasing
the compressor spin until reaching the firing speed. Sequence consists of ignition,
turbine acceleration to self-sustaining speed, synchronization, and loading. Since
turbines cannot produce torque at zero speed, the starting-system is used to
start the gas turbine rolling, accelerate it to firing speed and assist the fired
turbine to reach the self-sustaining speed. That is accomplished by a motor
or a generator. This arrangement provides the needed torque for turbine start-
up as well as during shut-down when it continues to rotate the turbine rotor
at slow speed until it cools down [78]. There are numerous thermo-mechanical
constraints during the start-up of the gas turbine, including limits on the airflow
velocity through the compressor blades to prevent stall, vibrational limits, and
combustion temperature limits to prevent turbine blade fatigue. Conversely, in
case of a pump start-up, the pump must be filled with liquid up to the level where
the impeller and casing are flooded since the pressure rise created by the impeller
operating in air is virtually zero due to low density. Depending on the size of the
turbomachine, start-up and shut-down processes can last from a few seconds up
to a few hours.

4.1 CFD in Start-up and Shut-down

As presented in previous section, start-up and shut-down processes consist of
a number of transient phenomena and flow variations which is why simulating
a single operating point is not enough. However, if a whole process was to be
simulated, it would require extensive computational resources due to numerical
limitations. One of the main limitations for running a time-accurate simulation
is the CFL (Courant-Friedrichs-Levy) number. CFL number defines the relation
between cell size, timestep and velocity in that cell, limiting the timestep in such a
way that the information does not spread more than one cell per timestep. In case
of turbomachinery, the most sensitive area of the domain is the blade tip, due to
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the highest velocities in that region, while the smallest cells are used for capturing
the boundary layer. This forces the time step to be extremely small (order of 10−6

s). Furthermore, for practical turbine simulations, of the order of 100 time-steps
per one blade pitch passage are needed. On the other hand, if turbine shut-down
to be simulated lasts for several minutes, this means running approximately 107

time-steps. Furthermore, as simulation start and initial conditions should not
affect the final solution, a number of periods should be run prior to performing
the regime change, so that periodic steady state is reached as a starting point.
In case of a standard turbomachinery simulation with several million cells, this
means running a simulation which would take several weeks time on a reasonable
size cluster. As a possibility for speeding up this process, the idea of Harmonic
Balance method appeared – with the goal of turning the time-accurate start-up
simulation into a Harmonic Balance one.

4.2 Harmonic Balance Start-up and Shut-down

In order to alleviate the problems noted in the previous section, a modified version
of the Harmonic Balance method is developed, where the solution procedure is
adjusted. The main idea is to run a small number of steady-state problems, which
form the Harmonic Balance simulation and describe the problem at one scale with
sufficient accuracy. Additional Harmonic Balance treatment is performed on top
of that, creating a nested structure with two coupling levels. In general, the
change of regime cannot be described using a Harmonic Balance method, as it
requires a periodic problem. However, if a change of operating conditions is made
periodic by returning to the initial operating condition, the Harmonic Balance
method is applicable.

4.2.1 Introduction

The Harmonic Balance method is deployed here as a quasi-steady method in
order to reduce the simulation time and capture the behaviour during regime
change. Non-periodic processes such as start-up or shut-down are made periodic
by considering both start-up and shut-down as a complete process, Figure 4.1.
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The period then consists of two complementary regime changes, with 2n + 1

simulations throughout the period of start-up and shut-down. Due to two
distinctive time-scales of the rotor period (inner) and complete
start-up/shut-down period (outer), a nested Harmonic Balance structure is
deployed. Therefore, the 2n + 1 Harmonic Balance simulations for 2n + 1 time
instants are interconnected with additional Harmonic Balance source term for
the outer coupling.

4.2.2 Approach

In terms of the turbine regime change, the periodicity is created by adding a
complementary regime change so to return to initial operating point. Therefore,
if the first regime change is from operating point OP1 to operating point OP2,
the complete considered period is OP1-OP2-OP1. This period can be further
deconstructed to following parts, Figure 4.1:

a Steady-state operation at OP1, followed by

b a change from OP1 to OP2,

c OP2 maintained for a number of periods to reach periodic steady-state,

d change from OP2 to OP1,

e reaching OP1 periodic steady-state.

Figure 4.1 presents a general schematic overview of how the problem should be
decomposed and a similar variation will be used in the following parts of this work.
As two regime changes do not commonly ocurr immediately one after another,
the steady operation plateaues (a, c, e) are added to provide an adequate starting
point for regime change, but also to flush out the phenomena from the previous
regime change. The length of these parts should be arbitrarily chosen according to
the problem, but sufficient number of periods must be permitted. However, based
on results, if no fluctuations exist in those sections, then satisfactory number of
periods are run.
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Figure 4.1: Stages of a complete shut-down and start-up period.
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Figure 4.2: HB approximation functions.

In terms of Harmonic Balance, it is necessary to determine a sufficient number
of harmonics m so that a Harmonic Balance curve follows the original profile
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closely. Figure 4.2 shows an approximation of the original profile using different
number of harmonics. The nested structure is then obtained by running a
2m + 1 coupled Harmonic Balance simulations where each simulation resolves
rotor-stator interaction, while the coupling between the simulations resolves
temporal influence of start-up and shut-down. For m harmonics the period
consists of M = 2m + 1 time instants, while for accuracy in each of the 2m + 1

time instants an additional single-harmonic Harmonic Balance simulation is
run. Therefore, the outer (single) HB loop accounts for changes related to
regime change, while the inner 2m + 1 HB loops account for rotor-stator
interaction and rotor rotation. The two loops are interconnected over mutual
source term. However, as it will be shown in the sequel, the outer loop can be
seen as a larger Harmonic Balance simulation consisting of smaller Harmonic
Balance simulations. Although it is referred to as a simulation, no additional
equations are solved but only the coupling source term is added into the smaller
simulations.

4.2.3 Mathematical Aspect

The nested Harmonic Balance simulation consists of two layers, based on time-
scales (frequencies) to be resolved. The outer layer is based on the start-up/shut-
down period and corresponding frequency, which is of the order from several
seconds to few minutes, depending on the problem. Figure 4.3 shows the outer
layer scheme for m = 6 harmonics for a period To. The horizontal axis denotes
time, the vertical axis is a function of start-up/shut-down feature, such as stator
blade pitch (opening), rotor speed or mass flow rate. A change from a starting
operating condition OP1 to final a operating condition OP2, and then back to
OP1 is presented.
With adequately chosen number of harmonics (see Figure 4.2), the outer
Harmonic Balance layer will closely match the prescribed function. However,
due to large fundamental frequency, only large fluctuations can be captured,
without small fluctuations on a turbulence or blade interaction level. This is
handled by nesting the additional layer with fundamental Harmonic Balance
frequency set to rotor frequency. This layer will be referred to as the inner layer
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Figure 4.3: Outer layer.

with inner period and inner frequency. The inner layer is responsible for
rotor-stator interaction, small disturbances and similar phenomena. The scheme
of the inner layer is shown in Figure 4.4.
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Figure 4.4: Inner layer.

In the presented scheme, a number of Harmonic Balance simulations are run
through a number of operating points. As it will be shown in Chapter 5, the
one-harmonic Harmonic Balance simulation offers good accuracy compared to
computational cost. Therefore, for efficiency reasons, each of the inner Harmonic
Balance simulations is set to solve a single harmonic, i.e. n = 1 harmonic.
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However, in order to assemble a nested two-layer approach, there should be 2m+1

inner simulations, where m is the number of harmonics in the outer layer. In
terms of the equations, the same equations would be solved for the inner and
outer layer, with different base frequency and number of harmonics. If inner
simulations are calculated in exact time instants as the outer time instants, these
two solutions coincide and should be the same, one having a time-history (Suo
coupling term) of a complete period To and the other of an inner period Ti (Sui).
This is the base for assembling joined equations. Figure 4.5 shows the scheme of
two coinciding layers with inner and outer time instants. Each triangle represents
one solved time instant. Larger trangles (on curve) are coupled over complete
period source term Suo, while the inner layer (small) triangles are coupled over
inner period source term Sui.
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Figure 4.5: Inner and outer layer.

If one were solving for time instant tout4 , based on the two layers, this point
would redundantly be solved twice, once within the scope of the outer layer as
tout4 , and once within the scope of inner layer as tin3 . Therefore, it is clear that
it is sufficient to solve them once for a single layer, with the addition of temporal
history arising from the other layer. The final equation is assembled for the
inner layer, with an additional coupling source term for the outer layer. This
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is equivalent to performing the Harmonic Balance procedure (Chapter 2) twice
with different fundamental frequencies:

∇•(uklukl) +∇•(ν∇ukl) =Suk + Sul, where

Sul = − 2ωi

2n+ 1
(

2n∑
i=1

Pi−luki) (4.1)

and

Suk = − 2ωo

2m+ 1
(
2m∑
i=1

Pi−kuiN) ,

for k = 1...2m+ 1 → outer loop

and l = 1...2n+ 1 → inner loop ,

with N = 2n+ 1.

Eqn. (4.1) is valid for solving inner layer simulations with a coupling term which
interconnects the inner simulations into a single outer. The inner source term is
assembled as in a regular Harmonic Balance simulation, while the outer contains
solutions for the same rotor position throughout outer time instants. In terms of
Harmonic Balance simulations, only the ut2n+1 is collected for coupling in each
tn.

In this approach it is assumed that start-up and shut-down last for a large
number of periods, so that when a single time instant is observed (touti) it can
be considered as a steady operating point. This approximation allows having
constant boundary conditions for the whole inner simulation, therefore tin1 , tin2 ,
tin3 have the same boundary conditions, without accounting for the small
change during a single rotor period. However, if short start-stop was considered,
which lasts only for several rotor periods than the change of operating
conditions would be too significant during one rotor period and this approach
would not be valid. This is the reason why in Figure 4.5 the inner time instants
are schematically placed above outer time instants, to denote that they are
taking place approximately at the same time.
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In the work on Francis turbine presented in Chapter 7, one rotor period lasts
0.18018 s, while shutdown lasts 9.23 s, which is 51.2 rotor periods. As the shut-
down and start-up are regulated by the mass flow rate, in the experiment the
mass flow rate changed ≈1.5% during one rotor rotation, while in the numerical
model this variation was neglected.

4.2.4 Additional Notes

In this work, once the start-up and shut-down curves were assembled, the whole
period is adjusted in time so that it is symmetric with respect to the middle time
instant, i.e. t = (n + 1)

T

2n+ 1
. This allows a significant numerical reduction –

only one half of the time instants can be calculated and projected as an opposite-
side solution. This can be done as opposite time instants at a symmetrically
positioned curve have the same boundary conditions, same rotor speed, and blade
angle, but different flow history. However, flow history, or temporal coupling, is
governed by the Harmonic Balance term, which is not affected.

In the case of Francis-99 test case, which is presented in Chapter 7, the flow
rate is regulated by opening and closing guide vanes. The blades are closing
linearly through time between the best efficiency point (BEP) and minimum
load (ML) operating points, which would require mesh morphing or some other
advanced technique, such as Immersed Boundary Method [79, 80, 81] or overset
grid [82, 83] in the simulation. In case of symmetrical Harmonic Balance, only
n + 1 blade positions and meshes are needed, thus allowing to fine-tune each of
the n+ 1 grids if needed.

4.3 Closure

The approach for dealing with efficient turbomachinery shut-down and start-up
simulations was proposed in this chapter. Due to a number of phenomena
appearing during regime change or start-up and shut-down, this topic is of
special interest. However, CFD simulations using conventional time-accurate
approach are still quite CPU time demanding and therefore expensive. The
method proposed here expands the existing time-spectral Harmonic Balance
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method to handle regime changes, thus providing results faster but with
reduced accuracy. As opposed to time-spectral Harmonic Balance, additional
source term is added to account for additional time-scale. Therefore, two time
scales defined by two dominant frequencies are taken into account: rotor
frequency and start-stop frequency. Rotor frequency is defined as f = rpm

60
,

while start-stop frequency is a reciprocal value of the total shut-down and
start-up time f = 1

TSD+TSU
where subscripts SU stands for start-up and SD for

shut-down. The validation using two test cases is presented in Chapter 6, with
validation of the Harmonic Balance for single operating point given in the
following chapter.
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The mathematical model, numerical tools and treatment of solution procedures
was discussed in previous chapters. The Harmonic Balance method was
established mathematically and the algorithm was described with notes on
Harmonic Balance coupling. In this chapter the validation of the method is
presented, followed by investigation of turbomachinery start-up and shut-down
in Chapters 6 and 7.

The Harmonic Balance validation is performed using the ERCOFTAC
centrifugal pump test case. Prior to investigation of significant flow phenomena,
validation of the code has to be performed. Comparison process of the
Harmonic Balance method with experimental data should give insight into
accuracy of the method and its implementation and whether it is considered
validated. Based on proper validation, confidence in achieved results is obtained
and the CFD results can be considered relevant and reliable without the



CHAPTER 5. ERCOFTAC Test Case 57

experimental data or any other measured data from the real existing machine.
ERCOFTAC Centrifugal Pump is a 2D test case, consisting of a rotor and

stator in a full-annulus configuration. Rotor consists of 7 blades and stator of
12 blades with a 6% vaneless radial gap. The domain is discretised using 93 886

hexahedral cells with the GGI interface between the rotor and stator domain.
The domain is depicted in Figure 5.4. Rotational speed is 2000 rpm, operating
at the nominal operating condition, with k − ε model used for turbulence.

There have been a number of numerical studies of both the 2D and 3D
ERCOFTAC centrifugal pump. A 3D analysis of transient flow features was
performed by Combes et al. [84], proving that their computational finite
element method was able to reproduce unsteady flow effects. Their results
closely matched the ones obtained by Ubaldi et al. [85], however, they
proceeded with running 2D steady and unsteady simulation using finite element
Navier–Stokes code [86]. Still, majority of work relates to solving simplified or
reduced problems. 2D results with satisfactory agreement were published by
Ubaldi et al. [85], while Sato and He [87, 88, 89] presented 3D unsteady results
obtained using a single blade passage. Based on incompressible Navier–Stokes
equations with dual time stepping and pseudo-compressibility, the predicted
unsteady results showed good agreement with experimental data. Furthermore,
unsteady 2D simulations were presented by Page et al. [90], showing accurate
prediction of the rotor-stator interaction. Page and Beaudoin [91] and Xie et al.
[92] showed that OpenFOAM can produce similar results as other CFD codes.

5.1 Geometry

The ERCOFTAC centrifugal pump presented here was first introduced by J.F.
Combes [93] within the ERCOFTAC Seminar and Workshop on Turbomachinery
Flow Prediction. The pump consists of an unshrouded impeller of 7 blades with
a rotatable diffuser of 12 vanes. The centrifugal impeller is 420 mm in diameter
and the radial vaned diffuser is 664 mm in diameter. Details and parameters of
the impeller blade and the construction details of the diffuser vane are given in
Ubaldi et al. [85, 94, 95]. The impeller blades are untwisted constant thickness
backswept blades with a 6% vaneless radial gap between the impeller and diffuser.
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The tip clearance is set to a value of 0.4 mm, corresponding to 1% of the blade
span, Figure 5.1.

Figure 5.1: ERCOFTAC Centrifugal Pump geometry [85].

5.2 Experimental Setup

Experimental measurements of the ERCOFTAC centrifugal pump were
performed by Ubaldi et al. [85] at the University of Genova by obtaining the
phase locked ensemble averaged velocity components. Static pressure was
measured at the impeller front end. The impeller was directly driven by a DC
motor, with the model operating in an open circuit. The air is fed to the
impeller through a long straight pipe and discharged into the atmosphere
directly from the radial diffuser. In order to provide a uniform inflow velocity,
the inlet pipe is equipped with a honeycomb, a cloth filtering element, and a
throttling valve.

The measurements were taken by means of a constant-temperature hot-wire
anemometer with single sensor probes and flush-mounted miniature fast response
pressure transducers at the impeller outlet. Furthermore, the impeller outflow
was observed by means of hot-wire probe between impeller blade trailing edge
and vane leading edge (at Dm/D2 = 1.02). The measured signal showed existence
of a periodic part superposed with random non-repeating fluctuation. Periodic
part appears due to circumferential repeating and is related to the blade passing
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frequency, while the random part is usually referred to as unresolved unsteadiness
[96]. The unresolved unsteadiness denotes flow turbulence, vortex shedding, flow
separation and other unsteady phenomena. The periodic signal was separated
from unresolved unsteadiness by phase-locked sampling and ensemble-average
technique [97, 98] of a hot-wire instantaneous signal. The experimental setup is
shown in Figure 5.2. Detailed information regarding the experimental setup is
given in Ubaldi et al. [85].

Figure 5.2: ERCOFTAC Centrifugal pump experiment setup [85].

Overall, the velocity in the axial direction at the impeller outlet was obtained
using 17 measuring points. The distribution of the static pressure was obtained
using 10 radial measuring locations from impeller inlet to outlet through one
blade passage.

5.3 Numerical Setup

The ERCOFTAC centrifugal pump has been discretised using a block structured
mesh consisting of 93 886 hexahedral cells. The domain consists of two regions,
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rotor (inner ring) and stator (outer ring), coupled with the means of a GGI
interface (see Section 3.4). Although the complete geometry was available in
3D, a 2D version is used due to simplicity and conclusions brought by [86], that
relevant information could be recovered from 2D simulations, although the real
flow has 3D features. Therefore, the 2D approach is capable of resolving flow
features with sufficient accuracy for good agreement with experimental data.
Details of the mesh used are presented in Figure 5.3, showing both the complete
mesh and the mesh region at the GGI interface.

Figure 5.3: ERCOFTAC mesh. Complete mesh (left), mesh detail with blade boundary layers
and GGI (right).

5.4 Validation

To prove that Harmonic Balance approach is beneficial over a conventional
transient simulation, three aspects will be presented: local flow field, forces and
CPU time comparison. Along with the transient simulation, the MRF steady
state simulation is performed as a cheaper alternative in terms of CPU time
with less accurate results. MRF is a Multiple Reference Frame method (frozen
rotor approach) with additional source terms in steady state equations
accounting for rotation, but no mesh is rotated, as described in Section 3.3. The
computational domain is presented in Figure 5.4.
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Figure 5.4: ERCOFTAC Centrifugal Pump domain.

Figure 5.5 shows the comparison of pressure contours over a single rotor blade
in three time instants for solutions obtained using one and two harmonics. The
two harmonics solution agrees with the transient one the most closely, which is
expected. The 1 harmonic solution and MRF give similar results, with a major
difference in approach, as MRF is solved for a single rotor position, thus giving no
insight into different rotor-stator interaction occurrences and Harmonic Balance
solving for 3 rotor-stator positions in a coupled manner. It is clear that there are
no strong transients on a single frequency.

Interblade transient effects are presented in Figure 5.6, where the level of
resolving the transient flow features can be noticed with an increase in the number
of harmonics. The Harmonic Balance simulations exhibit wakes in the stator
blade passage, as well as the transient simulation, although it is clear that a
larger number of harmonics could be used to describe the flow pattern more
accurately. The MRF simulation shows no wakes as the rotor is stationary.
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Figure 5.5: Pressure contours on rotor blade at different time instants.

(a) Transient simulation.
(b) Harmonic Balance with 1
harmonic.

(c) Harmonic Balance with 2
harmonics.

(d) MRF simulation.

Figure 5.6: Local transient effects comparison, velocity field.



CHAPTER 5. ERCOFTAC Test Case 63

Torque, head and efficiency of the pump for the MRF and various Harmonic
Balance simulations are compared in table 5.1. Due to the fact that values
oscillate throughout the period, the results are compared in three time instants.
Lowest error of 1.3% in the Harmonic Balance simulation compared to the
transient simulation denotes the significant level of accuracy with as few as 2
harmonics used.

Table 5.1: Global pump parameters comparison.

Transient solver HB, 1h error, % HB, 2h error, % MRF error, %

Efficiency 89.72 88.80 1.0 89.76 0.0 89.65 0.1
t = T

3 Head 81.48 81.80 0.4 80.45 1.3 84.12 3.1
Torque 0.0297 0.0302 1.7 0.0294 0.9 0.0308 3.6

Efficiency 89.92 88.78 1.3 89.81 0.1 89.65 0.3
t = 2T

3 Head 81.48 81.85 0.4 80.6 1.1 84.12 3.2
Torque 0.0296 0.0302 2.0 0.0295 0.4 0.0308 4.1

Efficiency 89.83 88.85 1.1 89.71 0.1 89.65 0.2
t = T Head 81.49 81.79 0.4 80.39 1.3 84.12 3.2

Torque 0.0297 0.0302 1.6 0.0294 1.0 0.0308 3.7

In the remainder of this chapter, comparison of the Harmonic Balance CFD
with experimental data is presented. The Harmonic Balance data is taken from
the case solved with 1 harmonic. Measurements have been performed in several
probing points for three variables: tangential velocity ut, radial velocity ur and
pressure coefficient. However, velocity measurements were provided in a non-
dimensional form, normalised with the measured velocity U2, which is the velocity
at R2 = 0.21 m. The pressure coefficient is obtained from the following relation:

Cp = 2(p− p0)
ρ

U2
2

(5.1)

In this study the comparison is performed against the probe located at
R/R2 = 1.01905 at four different time instants. Figures 5.7-5.14 show angle
versus normalized velocity and pressure coefficient for each time instant. The
symbols of square and triangle at top and bottom horizontal axes represent
rotor and stator blade positions, respectively. This is given for reference only,
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and it can be seen that the complete measured angle spans two rotor blade
passages. The Harmonic Balance results are presented with a dashed line and
experimental data with the solid line. In terms of the general order of
magnitude, good agreement can be reported. However, for specific rotor-stator
positions or measuring angles, a more significant discrepancy may appear. If a
greater level of accuracy is needed, a larger number of harmonics should be
used, as for n = 1 only time instants T/3, 2T/3 and T are solved for, while the
solution in other time instants is obtained by the reconstruction from the
Fourier series. Exactly these time instants (t = 0.126, 0.226, 0.326, 0.426 s)
were not solved in that rotor position, but obtained as a harmonic interpolate of
the solved time instants t = 0.01, 0.02, 0.03 s.
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Figure 5.7: Radial (left) and tangential (right) velocity comparison at t = 0.126 s.
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Figure 5.8: Pressure coefficient comparison at t = 0.1 s.
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Figure 5.9: Radial (left) and tangential (right) velocity comparison at t = 0.226 s.
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Figure 5.10: Pressure coefficient comparison at t = 0.2 s.
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Figure 5.11: Radial (left) and tangential (right) velocity comparison at t = 0.326 s.
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Figure 5.12: Pressure coefficient comparison at t = 0.3 s.
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Figure 5.13: Radial (left) and tangential (right) velocity comparison at t = 0.426 s.
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Figure 5.14: Pressure coefficient comparison at t = 0.4 s.

The CPU time comparison between transient, MRF and two Harmonic Balance
simulations is presented in table 5.2. All of the simulations were run in serial
on an Intel Core i5-3570K, 3.4 GHz computer with the same setup and mesh.
The transient simulation was run at a maximum Courant-Friedrich-Lewy number
equal to 0.5 and 600 time steps per period. In order to conclude the transient
simulation, a periodic steady state has to be reached. In this case 8 periods were
needed, yielding 40 hours of CPU time. The Harmonic Balance simulation with
2 harmonics converged in approximately 78 minutes, being 30 times faster than
transient simulation.

Table 5.2: CPU time comparison for transient simulation, MRF and HB.

Transient 1 period = ∼ 5 hours, 8 periods = 40 hours

MRF 3100 iterations, ∼ 20 minutes
HB, 1h 3000 iterations, ∼ 52 minutes
HB, 2h 2400 iterations, ∼ 78 minutes
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5.5 Closure

The Harmonic Balance simulation for ERCOFTAC centrifugal pump best
efficiency point operation has been presented. The comparison with
conventional time-accurate and steady state methods shows the advantage of
the Harmonic Balance over other methods, due to accuracy and efficiency
backed by flexibility in choice of harmonics resolved. Good agreement with
time-accurate simulation for 1 and 2 harmonics gives additional reliability in
the method, even at lower number of harmonics. Measured by wall-clock time,
the CPU time comparison is performed, culminating in Harmonic Balance being
approximately 30 times faster than the conventional time-accurate simulation.
Based on the observed accuracy, this shows that relevant results can be
obtained in a fraction of time needed by the time-accurate simulation.

Finally, the comparison of Harmonic Balance with experimental data is
performed in four time instants throughout the period. Investigated variables
include radial and tangential velocity and pressure coefficient and a similar level
of accuracy was achieved as in the results presented by several other
authors [85, 90, 92, 99].

Based on this work, a general numerical accuracy of the method has been
assessed and is therefore expected in the following analyses. A number of
aspects have been covered: integral quantities (head, torque, efficiency), local
flow features, pressure fluctuations on the blade, compared with other numerical
methods and experimental data.
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Validation of the general Harmonic Balance method was presented in Chapter 5
using the ERCOFTAC centrifugal pump, a 2D test case with available
experimental results. The Harmonic Balance method is validated against
conventional time-accurate and steady state MRF approach. After the
validation of the conventional Harmonic Balance, a novel application is
presented for simulations of turbomachinery transients, such as start-up and
shut-down, or any other regime change (e.g. load acceptance and load rejection
investigation). The Francis turbine is chosen since experimental data is publicly
available for several steady flow regimes (PL, BEP, HL) and two regime changes
(start-up and shut-down) and the comparison of Harmonic Balance with
experimental results is performed. The main reason for using Harmonic Balance
to investigate the regime change is the significant amount of CPU time saved,
as regime change can last for up to 100 periods, followed and preceded by the
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requirement for reaching the periodic steady-state. In terms of transient
simulation, this means running a number of periods in order to reach periodic
steady state, followed by periods involving the regime change and then reaching
the periodic steady-state to eliminate any occurring flow changes. On the other
hand, the Harmonic Balance method converges directly to periodic steady state,
thus significantly reducing the CPU time.

The presented approach of nested Harmonic Balance is validated on a
preliminary 2D pump test case. The test case presents a smaller and simpler
version of general problems to be solved using this technique. Therefore, the
results could be easily obtained in a fraction of time compared to large
industrial cases, and thoroughly compared based on reduced size of the data
gathered. This allowed running a complete time-accurate simulation of
shut-down and start-up followed by a detailed comparison with nested
Harmonic Balance. Efficiency and accuracy of the model are assessed by
comparing the nested Harmonic Balance results to conventional time-accurate
simulation performed with the same boundary conditions, on the same domain
with equal number of cells and on the same computer. Therefore, the
comparison can be performed both in terms of resulting flow field and in terms
of computational time. The presented results give pressure and velocity
fluctuations throughout time in four probes for the Harmonic Balance and
time-accurate simulations. If good agreement is achieved, the method can then
be further deployed on the Francis 99 test case in Chapter 7.

6.1 Geometry

The geometry is a simplified model of a centrifugal pump in a rotor-stator
configuration. The blades are arbitrarily thin and straight with no profile.
Rotor consists of 4 blades and stator of 3 blades with the aim of obtaining and
observing the rotor-stator interaction on a larger time scale. The geometry is
presented in Figure 6.1.

The inner ring represents the stator, with a radius from r = 0.2 m to r =

0.5 m. Stator blades are 0.145 m long and 0.015 m thick. The outer ring is a
rotor, from r = 0.5 m to r = 1 m, with blades 0.29 m long and 0.029 m thick.
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Vaneless space between rotor and stator blades is 0.18 m or 62% of the rotor
blade.

6.2 Numerical Setup

The computational domain is a 2D annulus consisting of two parts: stator and
rotor. The domain is discretised with 12 580 hexahedral cells, as presented in
Figure 6.1. The interface between rotor and stator regions is modelled using
the overlap GGI boundary condition (see Section 3.4), allowing for contiguous
flow between regions regardless of numerical boundary. Due to GGI, the master
and shadow sides of the interface do not have to have conformal mesh points
as cell weighted implicit interpolation is performed, thus allowing easier mesh
generation.

Figure 6.1: Test case mesh and geometry.

The change of operating conditions is performed between two operating points,
OP1 and OP2, by regulating the inlet velocity (inlet flow rate) at a constant
rotor speed. Rotor speed is set to 60 rpm at all times, with OP1 characterized
by inlet velocity u = 8 ms−1 and OP2 by inlet velocity u = 0 ms−1, resembling
a closed inlet valve. The start-up and shut-down curve is assembled arbitrarily
with complete period set to T = 130 s. The curves describing the change of the
regime are parts of a sine function, described with the equation:
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y = 4 + 4 cos(
2π

T
t) (6.1)

The complete period can be divided into 5 parts as shown in Figure 4.1. The
initial steady state at OP1 is kept unchanged from t = 0 s to t = 15 s. This
is to reach the periodic steady state prior to shut-down, followed by shut-down
lasting from t = 15 s to t = 65 s, during which the inlet velocity is reduced
to uinlet = 0 ms−1. The closed condition, at constant rotor speed of 60 rpm is
maintained for 10 s, to clear out the effects of shut-down. Closed condition is
followed by the pump start-up from t = 75 s to t = 125 s during which the pump
gets to the initial, fully open operating point OP1 with inlet velocity u = 8 ms−1.
This final state is kept for 5 s until the end of the period, t = 130 s. The overview
of the complete period is shown in Figure 6.2.
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Figure 6.2: Inlet velocity profile and time instants of the inner simulations.

For the time-accurate simulation the inlet velocity curve presented in Figure 6.2 is
set as the inlet velocity boundary condition. Simulation is run for one complete
period, T = 130 s and compared with the Harmonic Balance. The Harmonic
Balance simulation is run using n = 6 outer and m = 1 inner harmonics, which
are denoted by red crosses in Figure 6.2. As the inlet velocity curve is symmetrical
in time with respect to t = 70 s (the points left from t = 70 s have the same
operating conditions as those to the right) only 7 time instants can be calculated
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and projected to its matching part, offering additional reduction in computational
cost.

6.3 Results

The comparison between Harmonic Balance and time-accurate simulation for the
changes of operating point is presented in this section. The comparison consists of
velocity and pressure analysis in several probes, followed by a visual comparison
of a 2D flow field. Pressure and velocity samples were taken through time in four
probing points at different parts of the domain. The probing points are presented
in Figure 6.3.

Figure 6.3: Location of probes.

2D flow field in terms of velocity and pressure is presented in a number of time
steps in Figures 6.4 and 6.5. Figures show that the overall trend and flow
features were successfully captured, with minor discrepancies between the
Harmonic Balance and time-accurate simulations. Therefore, the Harmonic
Balance approach gives accurate results for a simple case and should be tested
against experimental results once the numerical accuracy has been assessed.
Comparison in terms of efficiency is covered in the following section.
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(a) HB, t = 13s
(b) Transient, t = 13s

(c) HB, t = 32s (d) Transient, t = 32s

(e) HB, t = 40s (f) Transient, t = 40s

(g) HB, t = 48s (h) Transient, t = 48s

(i) HB, t = 70s (j) Transient, t = 70s

Figure 6.4: Velocity fields over time.
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(a) HB, t = 13s (b) Transient, t = 13s

(c) HB, t = 32s (d) Transient, t = 32s

(e) HB, t = 40s (f) Transient, t = 40s

(g) HB, t = 48s (h) Transient, t = 48s

(i) HB, t = 70s (j) Transient, t = 70s

Figure 6.5: Pressure fields over time.
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Probe 1 is the inlet probe which will show how well the boundary conditions
were captured. Inlet velocity should be captured exactly, as this is a prescribed
boundary condition, while pressure is expected to exhibit some fluctuations.
Probe 2 is located just before the stator blade, while probe 3 is positioned in
the vaneless space between the stator and rotor blade. Probe 4 is located next
to the rotor blade, such that the rotor–stator interaction can be captured.
Figure 6.6 shows pressure and velocity probes comparison between the
Harmonic Balance and time-accurate simulation. Figures on the left show time
versus velocity, while figures on the right show time versus pressure. The thin
black line represents time-accurate simulation and thick red line represents the
Harmonic Balance simulation.

Good agreement can be observed, although the Harmonic Balance results do
not exhibit each blade passing fluctuation as the time-accurate simulation does.
Moreover, the Harmonic Balance solution resembles the averaged time-accurate
measurements. Figure 6.6a shows that the inlet profile is matched exactly
between the two simulations, as expected.

The obtained results show that the approximation that the boundary
conditions are not changing significantly during one rotor period (Section 4.2) is
valid for these types of problems. At full period being 130 s and rotor speed of
60 rpm, the inlet velocity should change 1.6% per rotor rotation, which is
neglected in the Harmonic Balance simulation. However, compared with the
time-accurate simulation where boundary conditions change gradually, this
approximation did not show any deterioration in results.
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(b) Pressure in point 1,
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(c) Velocity in point 2,
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(d) Pressure in point 2,
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(e) Velocity in point 3,
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(f) Pressure in point 3,
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(g) Velocity in point 4,
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Figure 6.6: Velocity and pressure over time in measured probes.
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6.4 CPU Time Comparison

The main idea behind the Harmonic Balance approach for turbine shut-down and
start-up was the reduction of CPU time for prediction of flow features. CPU time
comparison is performed for the Harmonic Balance and time-accurate simulations
and presented in this section. For the comparison to be valid, all of the settings
were the same, as much as the distinctive nature of the two methods allowed.
The computational domain was exactly the same, with all simulations run on a
single Intel Core i5-3570K CPU @ 3.40 GHz and 8Gb RAM computer, using only
one core. The time-accurate simulation was run based on CFL number limited to
0.5, resulting in variable time step between 4− 8 · 10−4 s. The Harmonic Balance
simulation was run with n = 6 outer and m = 1 inner harmonics, yielding overall
18 steady state equations, which is negligible compared to the number of time
steps in time-accurate simulation. This is well demonstrated by the measured
wall-clock time for both simulations, as presented in Table 6.1. Convergence
criterion for the Harmonic Balance simulation was that residuals of all equations
fall below 10−5. Both simulations started from uninitialized flow field. Time-
accurate simulation took 18.7 hours to finish the whole 130 s period, which is quite
long for a simple 2D case with ≈12000 cells. On the other hand, the Harmonic
Balance simulation took ≈40 minutes to reach convergence. This is a reduction
of almost 30 times meaning that significant savings in terms of computational
resources can be achieved. The presented comparison proves the initial goal of
the method is fulfilled, which is to create a less time consuming approach with
good accuracy compared to conventional numerical methods. With time-accurate
simulation lasting almost 19 hours and Harmonic Balance simulation being more
that 28 times faster by converging in 40 minutes, this approach is beneficial for
future use.

Table 6.1: Calculation time.

Full HB simulation Transient simulation Reduction (Transient/HB)

Time 0.66 h 18.7 h 28.3
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6.5 Closure

The application of the Harmonic Balance method for turbomachinery
start-stop simulations was presented in this chapter. The change of operating
regime from arbitrary operating point OP1 to closed condition OP2 is
demonstrated, as well as the start-up from closed-valve mixing regime to OP1.
The comparison of nested Harmonic Balance with the time-accurate simulation
shows good agreement in terms of pressure and velocity measured in four
probes, however, the Harmonic Balance does not exhibit the blade passing
fluctuations . CPU time comparison reveals the main strength of the Harmonic
Balance, as the simulation took 30 times less time compared to time-accurate
one. The comparison of the Harmonic Balance with experimental data is
presented in the following chapter.
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Francis test case and experiment, based on the Francis-99 Workshop [100] is
presented in this section. Organizers of the Workshops provided a large amount
of technical documentation concerning the geometry and operating regime of
the turbine, which is what this work is based on and the authors gratefully
acknowledge the NTNU - Norwegian University of Science and Technology for the
significant amount of valuable publicly released data. Francis turbine is a water
turbine consisting of a spiral inlet, followed by 14 stay vanes, 28 guide vanes and
30 runner blades, ending with the draft tube outlet. Within the Workshop, data
for best efficiency point (BEP), minimum load (ML), high load (HL), start-up
and shut-down are provided. In this study only the BEP, start-up and shut-down
are considered. Simulations are performed using the Harmonic Balance approach
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presented in Chapter 4 and compared with experimental data. Start-up and shut-
down are regulated by changing the inlet mass flow rate, which is achieved in the
experiment by changing the guide vanes angle, i.e. by opening and closing the
flow channels with blade rotation. During start-up and shut-down, the rotational
velocity is held constant. The same start-stop process is modelled here, however,
if a different procedure was undertaken in the experiment, it could have been
modelled differently in the simulation as well. Comparison includes pressure
fluctuation measurements in two probing points and power measurement for the
whole shut-down and start-up cycle. As noted by the experimentalists from the
Workshop, certain inconsistencies related to experimental data exist, which are
analysed in the following sections.

7.1 Experimental Setup

The experimental setup for the Francis turbine, provided within the Francis-99
Workshop [101, 102] is presented in this section. The model of a turbine, in a
scale of 1 : 5.1 was used in the experiment as a part of an open loop hydraulic
system. Both steady state and transient measurements were performed. Steady
state measurements were conducted for three operating points:

• part load (PL),

• best efficiency point (BEP),

• high load (HL),

defined by a guide vane angle and mass flow rate. The transient measurements
correspond to change of operating conditions:

• load acceptance from PL to BEP,

• load reduction from BEP to PL,

• turbine start-up,

• turbine shut-down.

The experimental setup is presented in Figure 7.1.
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Figure 7.1: Francis 99 model test rig [103].

Pressure probes were mounted at three locations: pressure sensor VL2 at the
vaneless space and sensors DT5 and DT6 at the draft tube cone. Exact locations
of the probes are given in Table 7.1.

Table 7.1: Coordinates of the pressure probes.

Sensor VL2 DT5 DT6

x[mm] -320.0 -149.1 149.1
y[mm] 62.2 -100.6 100.6
z[mm] -29.4 -305.8 305.8

Uncertainty[%] ±0.01% ±0.1% ±0.1%

Figure 7.2: Global coordinate system for the measurement locations.

The definition of global coordinates is given in Figure 7.2. The pressure
fluctuations were gathered at a sampling rate of 5 kHz. The uncertainties for
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VL2 probe is ±0.01% and for the remaining two is ±0.1%. Uncertainty was
estimated following the procedure available in IEC 60193 [104] and the
measurement uncertainty was measured by repeating the test several times.

Velocity measurements were performed along three lines, two horizontal and
one vertical in the draft tube cone. The horizontal lines were acquired using
the laser doppler anemometry (LDA) and the vertical one is measured in a PIV
plane, Figure 7.3. Sampling rate for the velocity measurements is 40 Hz. The
exact locations of the lines L1, L2 and L3 are given in Table 7.2.

Figure 7.3: Positions of the pressure sensors and velocity measurement lines.

Table 7.2: Coordinates of the velocity lines.

Velocity lines L1 start L1 end L2 start L2 end L3 start L3 end

x[mm] 25.96 -25.56 25.96 -25.56 0 0

y[mm] 133.55 -131.49 133.55 -131.49 0 0
z[mm] -338.60 -338.60 -458.60 -458.60 -488.6 -308.6

Total points 28 28 28

Due to a difference between the experimental setup and numerical model, the
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measurements provided for the inlet and outlet do not physically match the
location of inlet and outlet in the numerical model. Details of the experimental
model inlet and outlet are included here, to allow data calibration for the
numerical model. Cross sectional areas of the inlet and outlet pressure
measurement locations are 0.0962 m2 and 0.236 m2. The outlet cross sectional
pressure measurement location is 1.58 m before the draft tube outlet in the
numerical model. The height difference between the inlet and outlet pressure
measurement is 1.0715 m, with the remaining data given in Table 7.3.

Table 7.3: Acquired flow parameters and setup for PL, BEP and HL.

Parameter PL BEP HL

Guide vane angle (◦) 6.72 9.84 12.43
Net head (m) 11.87 11.94 11.88
Discharge (m3s−1) 0.13962 0.19959 0.24246
Runner angular speed (rpm) 332.84 332.59 332.59
Casing inlet pressure - absolute (kPa) 218.08 215.57 212.38
Hydraulic efficiency (%) 90.13 92.39 91.71
Water density (kg m−3) 999.8 999.8 999.8
Kinematic viscosity (m2 s−1) 9.57·10−7 9.57·10−7 9.57·10−7

7.2 Data Manipulation

As reported by the experimentalists [103], the provided pieces of data for the
transient operation measurements were not fully accurate. For transient
operation, four transient conditions were measured: load acceptance from PL to
BEP; load reduction from BEP to PL; start-up and shut-down. However, the
provided measurement of the mass flow rate variation is not correct as the
flowmeter response time was too slow, yielding delay in the measurements of
≈2 s. As the working medium is water (with constant density), the mass flow
rate is a linear function of guide vane angle, therefore the mass flow rate
variation can be reconstructed based on initial and final mass flow rate and
guide vane angle variation. It was stated on the Workshop website [103] that
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the used flowmeter response time was too slow for valid readings and was
causing a significant discrepancy between blade angle and measured mass flow
rate. Experimentalists suggest using linearized mass flow rate based on guide
vane angle (openness). The linearized data was used by Minakov et al. [105]
who obtained good agreement. Therefore, the same approach was adopted here.

Flow rate was considered to change from 0.202 m3s−1 at 9.84◦ blade angle to
0.018 m3s−1 at 0.8◦ blade angle. In order to assess the complete experimental
curve, values from the reached steady-state points are used, as flow meter response
time is ≈2 s and other readings cannot be used. Therefore, the real mass flow
rate variation curve could be constructed based on the provided steady state
measurements taken prior to the load variation, and afterwards. Figure 7.4 shows
the comparison of originally provided mass flow rate (triangles), reconstructed
mass flow rate (solid line) and guide vane angle (dots). Normalized curves are
presented for shut-down mass flow rate (measured and linearized) and blade angle
against time. The same variation is used for start-up as well. Therefore, the
reconstructed mass flow rate shown in Figure 7.4 is used in the remainder of this
work.
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Figure 7.4: Normalized flow rate as measured (Q), linearized (Qlin) and blade angle (α).

The provided experimental data needs to be configured to match the numerical
model and prescribed boundary conditions. Therefore, reference pressure at the
referent height needs to be established prior to the comparison. In this study,
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most of the relations are based upon the measured variation of guide vane angle
in time. As in the experiment both the inlet and outlet variations exist, but
only the inlet measurement is provided, the outlet pressure and total pressure
difference through the turbine is calculated based on the measurement of head.
The calculation of pressure difference was needed due to a fixed pressure value
boundary condition at the outlet in the numerical simulation. This allowed the
comparison of measurements in pressure probes. Power variation during the
change of operating regime is then calculated using the reconstructed mass flow
rate and measured head:

P = QHρgη (7.1)

7.3 Geometry

The geometry of the Francis turbine provided by the Francis-99 Workshop [101]
consists of a spiral inlet casing with 14 stay vanes, shown in Figures 7.5 and
7.6, followed by 28 guide vanes responsible for regulating the mass flow rate by
opening or closing, further followed by the runner. The runner consists of main
blades and shorter splitter blades, overall counting 15 of each. The blades are
twisted at 180◦ from inlet to the outlet of the runner. The end of the runner is
continued by a draft tube cone followed by a draft tube.

The experiment and the provided data and geometry refer to the model of a
turbine, scaled 1 : 5.1 to a prototype operating at a Tokke power plant in Norway.
Therefore, all of the data provided are valid at model scale. The size of a spiral
casing is r = 0.73 m at the outer radius, with stay vanes located between radius
r1 = 0.388 m and r2 = 0.5 m. The short guide vanes are positioned close to
the stay vanes and rotate between 0.8◦ at closed condition, to 12.43◦ for high
load. Best efficiency point is obtained at 9.84◦ and 333 min−1. Runner inlet and
outlet diameters are 0.63 m and 0.349 m, respectively. The runner inlet height
is 0.06 m. Draft tube is 5.45 m long with total height difference of 0.5 m. The
comparison between model scale and prototype is given in Table 7.4.
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Figure 7.5: Top view of the Francis-99 turbine model [101].

Figure 7.6: Cut view of the Francis-99 turbine model [101].
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Table 7.4: Francis 99 model and prototype parameters at BEP.

H[m] dinlet[m] doutlet[m] n[min−1] Q[m3s−1] P [kW ] Re[−]

Model 12 0.630 0.349 335 0.2 22 1.8 · 106

Prototype 377 3.216 1.779 375 31.0 110000 4.1 · 107

7.4 Numerical Setup

In this section the details regarding the numerical setup of the Francis-99 case are
presented. Although the mesh was provided within the Workshop along with the
geometry, a new mesh was generated for this study. Software used for meshing
is Pointwise [106] and several meshes were created. Pointwise is a commercial
meshing software for manual mesh generation with various types of finite volume
elements available (tetrahedra, hexahedra, prisms, pyramids). Meshes used in
this study are fully structured. For the best efficiency point simulation, a mesh
consisting of full-annulus guide vanes, runner and draft tube was created. For
shut-down/start-up simulations, a set of identical meshes was created, with each
having a different guide vane angle. The start-stop set of meshes was done using
a single blade passage.

7.4.1 Best Efficiency Point Mesh

BEP mesh was done in a full-annulus configuration, consisting of guide vanes
followed by a runner and a draft tube. The spiral casing inlet was not taken
into account. The domain was discretised with 6 242 679 hexahedral cells in three
numerical regions: guide vanes, runner and draft tube, Figure 7.7. Regions were
numerically connected using the appropriate boundary conditions, with the aid
of the overlap GGI (see Chapter 3). For BEP operating conditions, the guide
vanes were set to 9.84◦ angle. Figures 7.8 and 7.9 present the mesh used for BEP
simulations.
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Figure 7.7: BEP simulation numerical domain.

Figure 7.8: BEP mesh details. Guide vane annulus (top left), guide vane boundary layer (top
right), runner blades (bottom left) and non-conformal GGI interface between the guide vane
and the runner (bottom right).
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Figure 7.9: BEP mesh details. Draft tube (left) and non-conformal GGI interface between the
runner and the draft tube (right).

7.4.2 Shut-down/Start-up Mesh Set

As presented in Section 4.2, the Harmonic Balance shut-down/start-up
simulations require different guide vane angle position for each time instant,
whereas the symmetrical time instants have the same operating conditions and
guide vane angle. Therefore, n + 1 guide vane positions are needed. This is
treated by creating a set of meshes, for each time step beforehand, which allows
inspecting them for any modifications needed. If mesh skewness,
non-orthogonality or aspect ratio was exceeding a prescribed threshold, this was
fixed in advance, prior to running the simulations, yielding n + 1 = 7 meshes
with satisfactory quality.

For the shut-down/start-up simulation, additional model reduction was
performed by reducing the geometry to a single blade passage. With blade
count of 28 guide vanes and 30 runner blades, the single blade passage cannot
be unambiguously matched between the regions, unless the regions have equal
number of blades. Otherwise, the flow conditions on the master side of a
periodic patch should not be the same as on the shadow side of the periodic
patch, meaning that periodic boundary condition would then require more than
just interpolation between patches. The runner blade passage was reduced for
6.666% to match the opposing number of blades, i.e. both regions are set to
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have 28 blades. Running a single blade passage proves great benefit in terms of
computational cost as 28 times less cells are simulated, but consequently forces
spatially aperiodic effects to be neglected. Furthermore, Francis turbine is
known to exhibit vortex rope instabilities in the draft tube, which cannot be
recreated by running a single slice of the draft tube. When investigating
rotating instabilities, vortex rope and other aperiodic effects, the complete
annulus has to be used.

A single mesh for shut-down and start-up consists of 574 431 hexahedral cells.
Figures 7.10-7.12 show the geometry and mesh used for shut-down and start-up
simulations.

Figure 7.10: Numerical domain for start-stop simulations.
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Figure 7.11: Start-stop simulation mesh details. Guide vane mesh (top left), guide vane
boundary layer (top right), draft tube (middle left) and non-conformal overlap GGI interface
between guide vane and runner (middle right), runner main blade and splitter blade (bottom
left), single guide vane (bottom right).
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Figure 7.12: Start-stop simulation mesh details. Top view of a single blade passage assembly
(left), and guide vane and runner blade (right).

The details of the guide vane mesh for different opening angles is presented in
Figure 7.13. Based on the Harmonic Balance requirement for equidistant time
instants, 7 different guide vane positions correspond to these time instants:

• times 1.42 s and 18.46 s: 9.84◦,

• times 2.84 s and 17.04 s: 8.936◦,

• times 4.26 s and 15.62 s: 7.128◦,

• times 5.68 s and 14.2 s: 5.32◦,

• times 7.1 s and 12.78 s: 3.512◦,

• times 8.52 s and 11.36 s: 1.704◦,

• times 9.94 s: 0.8◦.
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(a) 9.84◦ (b) 8.936◦ (c) 7.128◦

(d) 5.32◦ (e) 3.512◦ (f) 1.704◦

(g) 0.8◦

Figure 7.13: Guide vane blade passage mesh detail for different guide vane angles.

7.5 Best Efficiency Point Results

Best efficiency point simulation and results are presented in this section. BEP is
used to assess the accuracy of a single harmonic simulation in case of a periodic
steady state problem with non-changing operating conditions. BEP is
characterized by the rotor rotational speed of 333 rpm at 202 kgs−1 mass flow
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rate and 9.84◦ guide vane angle. These operating conditions yield head of
11.94 m at efficiency 92.39%. The experimental data for power, head and
efficiency are compared to Harmonic Balance in Table 7.5, showing the error
margin of 4%. This shows that global prediction is achieved quite accurately by
Harmonic Balance.

Table 7.5: Comparison of integral quantities.

P [W] H [m] η [%]

Experiment 21 617 11.94 92.39
Simulation 22 457 11.53 94.40

Error 3.74% 3.43% 2.13%

For greater confidence in Harmonic Balance results, local effects such as rotor–
stator interaction should be observed. Within the experiment, measurements at
several probing points were provided: probes VL2, DT5 and DT6. Probe VL2
is located in the vaneless space between the guide vane and runner, Figure 7.3.
Probes DT5 and DT6 are positioned in the draft tube just at the runner exit.
The measured pressure values in probes VL2, DT5 and DT6 are presented in
Table 7.6 and compared with Harmonic Balance. Again, the error margin is
slightly over 4%, showing both local and global accuracy of the method.

Table 7.6: Comparison of pressure values in three different points.

Measurement locations VL2 DT5 DT6

Experimental pressure, [kPa] 173.60 105.01 104.80
Simulation pressure, [kPa] 170.43 109.53 109.15

Error 1.80% 4.12% 3.98%
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The overview of pressure and velocity fields at different sections of the domain
is presented in Figure 7.14. Figure 7.15 shows the pressure field at the runner
and guide vane section, followed by the velocity field for the same section in
Figure 7.16.

(a) Velocity, (b) pressure.

Figure 7.14: BEP runner flow field.

Figure 7.15: BEP operating point guide vane wake propagation, velocity field.
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Figure 7.16: Guide vane and runner pressure field and iso contours.

7.6 Start-up and Shut-down Prediction

Based on the assessment from BEP obtained in the previous section, with error
margin of 4% compared to the experiment, similar discrepancy is expected for
the start-stop simulation and can be considered as a limitation of the method
with a single harmonic. However, based on the experience, the error of 4% is
deemed sufficiently accurate.

In this section comparison of the Harmonic Balance with experimental data
is given. The Harmonic Balance simulation is performed using only a portion
of geometry due to spatial periodicity. Impeller blade passages were modified to
accommodate the guide vane pitch, so to have 14 main and 14 splitter blades,
allowing the use of periodic boundary conditions and overlap GGI. Therefore,
two blade passages were simulated both in the guide vane region and impeller
region, as outlined in Section 7.4. The nested Harmonic Balance simulation
was run solving n = 6 outer harmonics and m = 1 inner harmonic, which was
sufficient to accurately model the imposed inlet flow rate function. In Figure 7.17
the imposed mass flow rate is denoted with a solid black line and the Harmonic
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Balance approximation is shown using red lines and time instants denoted with
crosses.

The start-stop conditions provided by the experiment, state that the impeller
is held at constant speed of 333 min−1 during shut-down and start-up, therefore
the same behavior is prescribed in the simulation. Corresponding to varying the
inlet mass flow rate, the guide vane angle had to be adjusted for the current
operating conditions, changing from 0.8◦ for closed condition to 9.84◦ for BEP.
Therefore, a number of guide vane positions were necessary to fully model the
flow. Turbulence was modelled using the k − ε model with wall functions [107].

Based on the procedure described in Chapter 4, the Francis-99 case is valid
for nested Harmonic Balance approach. At 333 min−1, duration of one period is
0.18018 s, which counts up to 51.2 periods during start-up or shut-down.
Operating regime change is performed by varying the mass flow rate through
the machine, changing from 0.202 m3s−1 to 0.018 m3s−1 or vice versa. Divided
through 51 periods, the change of mass flow rate is 1.5% per period. Within the
scope of this approach, 1.5% is considered sufficiently small, therefore the
operating conditions are held constant during one inner simulation.
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Figure 7.17: Start-stop simulation mass flow rate variation.

Since it is possible to arbitrarily change the steady-state stages of the curve
(stages a, c, e in Figure 4.1), it was used to assemble a symmetric function. As
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the regime change is dictated by guide vane angle, 6 harmonics would require
meshes with 13 blade positions for each time instant. By making the function
symmetrical, only 7 blade positions were needed, yielding additional savings in
terms of man-hour in mesh generation. In Figure 7.17 red crosses represent 2m+1

time instants in which 7 Harmonic Balance simulations are run due to symmetry
with respect to t = 9.94 s. In each of the time instants, the inlet velocity is
prescribed to achieve the correct mass flow rate and guide vane angle is modified
accordingly. Pressure is held fixed at the outlet and the remaining boundary
conditions are left unchanged.

Having in mind that Harmonic Balance is based on Fourier expansion, the
solution from 13 obtained time instants can easily be reconstructed to form a
complete period. The reconstructed solution is presented in the following
figures. Pressure comparison in probing point VL2 is presented in Figure 7.18.
Results are presented as a pressure variation through time for the complete
shut-down and start-up period, with black solid line representing the
experimental measurement and red line denoting Harmonic Balance simulation.
The Harmonic Balance solution can be seen as the mean value of the
experimental measurement, as the agreement is very good, though the
Harmonic Balance curve does not exhibit blade-passing fluctuations that appear
in experimental measurements. Figure 7.19 shows the pressure fluctuation
comparison, measured in probing point DT5 which exhibits similar behavior.
However, the pressure variation in this probing point is quite small (4 kPa)
compared to total pressure variation through the complete turbine (120 kPa). It
can be concluded that the pressure field from simulations shows good agreement
with the experimental data as the trend in pressure drop matches between the
two, suggesting the qualitative agreement between the simulated and real
physical processes. It should be noted that the relative difference in results is
approximately 4%, matching those in BEP simulation.
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Figure 7.18: HB against experimental pressure measurements in probe VL2.
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Figure 7.19: HB against experimental pressure measurements in probe DT5.

Figure 7.20 shows the power curve in time, during shut-down and start-up. Good
agreement between Harmonic Balance and experiment can be observed, with
the largest discrepancy at ≈ 19 s, at the end of the Harmonic Balance period.
However, the value at the beginning of the Harmonic Balance period (t = 0 s)
is equal to the value at the end of the period (t = 19.5 s), while experimental
data differs significantly. In both cases, the first and last point represent BEP,
therefore similar experimental measurements would be expected, which is not the
case here.
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Figure 7.20: HB against experimental measurement of power for start-stop conditions.

The presented start-stop approach closely followed the experimental setup and
procedure of closing/opening the guide vanes at constant rotor speed. However,
the presented approach is not limited to constant rpm, as each time instant can
have different boundary conditions. The only limitation is that the complete
start-stop period lasts sufficiently long, i.e. that the flow conditions are changing
gradually so that constant flow can be assumed in one time instant, during one
rotor period.

Flow fields through the turbine are presented in Figures 7.21-7.24. Runner in
different time instants is presented in Figures 7.21 and 7.22, showing the process
of closing the guide vanes from BEP to fully closed condition. In the last two
time instants, for 1.704◦ and 0.8◦ the turbine behaves mainly like a mixer, due
to the closed inlet at constant rotor speed. Draft tube flow in the same time
instants, Figures 7.23 and 7.24, shows the change of flow structure and direction
as the inlet closes. Fully developed flow is shown in Figure 7.23a, while the flow
structure deteriorates in the following time instants. The central cylindrical flow
shape gradually spreads into a cone, having majority of the flow rotating at the
edges. Finally, due to mixing regime, the flow starts to circulate vertically, which
can be seen in the right hand side of Figure 7.24, showing the uz, a vertical
velocity component (positive z-direction is upwards).
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(a) t = 1.42 s, 9.84◦ (b) t = 2.84 s, 8.936◦

(c) t = 4.26 s, 7.128◦ (d) t = 5.68 s, 5.32◦

(e) t = 7.1 s, 3.512◦ (f) t = 8.52 s, 1.704◦

Figure 7.21: Velocity field in the runner over time.
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(a) t = 9.94 s, 0.8◦

Figure 7.22: Velocity field in the runner over time.

(a) t = 1.42 s, 9.84◦ (b) t = 2.48 s, 8.936◦

(c) t = 4.26 s, 7.128◦ (d) t = 5.68 s, 5.32◦

Figure 7.23: Velocity field in the draft tube over time.



CHAPTER 7. Start-up and Shut-down Prediction: Francis-99 103

(a) t = 7.1 s, 3.512◦ (b) t = 7.1 s, 3.512◦, uz component

(c) t = 8.52 s, 1.704◦ (d) t = 8.52 s, 1.704◦, uz component

(e) t = 9.94 s, 0.8◦ (f) t = 9.94 s, 0.8◦, uz component

Figure 7.24: Velocity field in the draft tube over time. Magnitude (left) and axial component
uz (right). Positive z-direction is upwards.
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7.7 Closure

The main objective of shut-down and start-up comparison of Harmonic Balance
simulation with available experimental data was the assessment of the power
curve and pressure values at two points in the domain. Good agreement for all
three features between Harmonic Balance and experiment was observed, with
the error margin of approximately 4%. Based on the relation between power and
head, good power agreement with experiment also implies a good head prediction.
The Harmonic Balance simulation was run using six harmonics, yielding 2n+1 =

13 time instants with single-harmonic simulations throughout the complete shut-
down and start-up period. The proposed composition of n = 6 and m = 1

harmonics provided close-to-exact boundary conditions for the variation of the
mass flow rate and consequently produced results of notable accuracy compared
to experimental data.



Chapter 8

Conclusion

In this study, the nested Harmonic Balance approach for turbomachinery
start-stop simulations is presented. The common time-spectral Harmonic
Balance method is expanded to apply to change of operating regime in
turbomachinery, specifically shut-down and start-up procedures. The
implementation of the method is done in foam-extend, an open source CFD
library, while the final validation was performed against available experimental
data for the Francis turbine shut-down and start-up.

The Harmonic Balance method is gaining popularity for a number of
periodic problems, mainly in turbomachinery and aeronautical applications
related to vibrational analyses, flutter, limit cycle oscillations, resonance
investigation, airfoils, wings, counter-rotating propellers, helicopters, etc.
Furthermore, recently the method found its application in naval hydrodynamics
as well, but also in haemodynamics [108]. However, so far the method has never
been used for investigation of start-stop effects in turbomachinery. This is the
main focus of this work.

The time-spectral Harmonic Balance has been derived and presented in
Chapter 2, in order to demonstrate the general idea behind the method and its
relation to spectral space. The method is based on Fourier series expansion up
to n harmonics resolving the features of dominant frequency f and its n higher
harmonics. This requires that the considered problem should be periodic in
time and its base frequency should be known in advance. The requirement of
temporal periodicity limits its use, but also allows significant CPU time savings
compared to conventional time-accurate approach. In case of time-accurate
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simulations, only one equation is solved per variable and marched through time
in small increments. The temporal derivation term couples the current time
instant with the previous one, thus accounting for inertial effects and influence
of flow-history. On the other hand, in the Harmonic Balance simulation solved
with n harmonics, 2n + 1 equations per variable are solved. The 2n + 1

equations present 2n + 1 equidistantly placed time instants throughout the
period. Moreover, these equations are coupled as well through a coupling source
term, accounting for inertial effects, although the equations themself are
mathematically steady, as no temporal derivation term exists. A major benefit
of the Harmonic Balance method is that regardless of the time instants solved,
the solution can be reconstructed in any point in time due to Fourier expansion.

The conventional time-spectral Harmonic Balance method is validated using
ERCOFTAC centrifugal pump case and Francis-99 turbine. ERCOFTAC pump is
a 2D case with available experimental data. The comparison of steady MRF frozen
rotor, time-accurate and Harmonic Balance simulations was performed, as well
as comparison of the Harmonic Balance with experiment for BEP. Comparison
with time-accurate simulation shows good agreement with room for improvement
by incorporating higher harmonics, if needed. Up to two harmonics were used as
this was sufficient to obtain accurate predictions for power, head, efficiency, etc.
with the error margin of 4% . By comparing the CPU time, Harmonic Balance is
30 times faster than conventional time-accurate simulation, which fully justifies
the idea of the method. For the Francis-99 turbine case, similar behavior can be
observed. However, it was simulated only using the Harmonic Balance method
and compared with experimental data, yielding good agreement with discrepancy
below 4%. Based on these two validation cases, two main outcomes should be
noted here:

• Harmonic Balance error margin of 4% compared to experimental data for
power, head, efficiency and pressure probes suggests good reliability of the
method,

• CPU time reduction of 30 times than time-accurate simulation justifies the
approach.

Based on this, the expansion of the method was proposed for more demanding
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cases.
It is known that turbomachinery shut-down or start-up simulations require

excessive amount of CPU core-hours, therefore the adapted version of the
Harmonic Balance was proposed to deal with the start-stop procedures. The
main goal was to predict variables of interest (power, head, efficiency...) for the
whole period in a fragment of time needed by the conventional time-accurate
simulation. The proposed approach is presented in Chapter 4, by creating the
nested structure with two Harmonic Balance coupling terms. By doing this, one
coupling term is accounting for smaller time scale, with dominant frequency of
rotor rotation, while the second coupling term accounts for effects on a larger
scale, related to regime change. As the Harmonic Balance requires periodic
problems, both shut-down and start-up are run simultaneously as a complete
period shutting down from BEP and charging back to BEP. The start-up and
shut-down procedure can be performed in a number of ways, where mostly the
variation of mass flow rate or rotor speed dictate the process.

The validation of the nested Harmonic Balance for start-stop simulations is
presented using a 2D simplified model of a turbine, followed by a Francis-99
turbine with available experimental data. A comparison of time-accurate
simulation with Harmonic Balance is performed for 2D test case by comparing
the pressure fluctuations in four probes and CPU time for the whole simulation.
Good agreement of pressure and velocity probes with significant CPU time
savings deemed the proposed approach valid for start-stop investigation and
accurate flow prediction. The validation is therefore continued on real geometry
of a Francis-99 turbine, which was analysed experimentally within the scope of
a Francis-99 workshop. Start-stop data obtained numerically are compared with
real measurements, yielding good agreement of the same order of accuracy as a
regular BEP simulation. Maximum error could again be estimated to
approximately 4%. The compared features include power and two pressure
probes for the complete start-stop period, where the Harmonic Balance results
resemble what could be proclaimed as the mean value of experimental data.
The comparable level of accuracy proves the presented approach is valid for the
prediction of turbine properties and flow patterns during shut-down or start-up.

Based on the presented workflow and results, it can be concluded that the
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research objectives set for this thesis are achieved and the research hypotheses
are confirmed. Although it is clear that often changes of working regime in
turbomachinery are imminent, such occurrences deteriorate the life span of a
machine. Computational fluid dynamics presents an important tool in this
design process, with the major problem of being extremely expensive and time
consuming. A simplified method for investigation of regime change has been
presented and validated, which could be a significant tool in the design stage.
Future work on this topic would need to address a broader spectrum of
problems and types of turbomachinery, as there are a number of processes and
phenomena which were not taken into account in the scope of this work:
compressibility, non–axisymmetric phenomena such as vortex rope,
turbomachinery with large number of stages, etc. All of these aspects impose
serious effects on turbomachinery flow, lifespan and internal phenomena, and
should be investigated as a topic on its own.
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