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Symbols and Abbreviations

Latin symbols

Symbol Unit Description

a [-] vector of polynomial coefficients

A [mm2] section area

Aε [-] strain concentration tensor

Bε [-] strain concentration tensor

C [MPa] stiffness

C [MPa] elasticity matrix

C [MPa] macro stiffness

Calg [-] algorithmic tangent operator

Cep [-] continuum tangent operator

d [mm] diameter

E [MPa] Young’s modulus

E [mm/mm] uniform remote strain

F [MPa] proportionality constant

G [MPa] shear modulus

Hε (I,C0,C1) [-] single inclusion strain concentration tensor

I [-] fourth-rank identity tensor

J2 [-] J2 plasticity

K [-] strain hardening modulus

k [-] isotropic hardening coefficient

l [mm] length

m [-] isotropic hardening exponent
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n [-] strain hardening exponent

N [-] vector of shape functions

p [mm/mm] plastic strain

R(p) [MPa] hardening stress

S [MPa] engineering stress

S [mm2/N] compliance matrix

t [mm] thickness

u [mm] displacement

u [mm] displacement vector on the RVE boundary

u [mm] displacement vector

V [m3] volume

v [mm] vector of nodal displacements

w [mm] width

Greek symbols

Symbol Unit Description

α [-] hardening parameter

α [-] matrix of polynomials

ε [-] tolerance

ε∗ [mm/mm] stress-free eigenstrain

ε∞ [mm/mm] far field strain

ε [mm/mm] strain

〈ε〉ω [MPa] volume average of strain

εe [mm/mm] elastic strain
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εp [mm/mm] plastic strain

εtot [mm/mm] total strain

εε [mm/mm] engineering strain

ε(X) [mm/mm] macro strain

ν [-] Poisson’s ratio

νi [-] volume fraction of phase i

σ [MPa] stress

σI, σII, σIII [MPa] principal stress

〈σ〉ω [MPa] volume average of stress

σ(X) [MPa] macro stress

σeq [MPa] equivalent stress

σtr
eq [MPa] elastic predictor

σY [MPa] yield strength

ζ (I,C0) [-] Eshelby’s tensor
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Abbreviations

Abbreviation Meaning

1D one-dimensional

2D two-dimensional

3D three-dimensional

BC boundary condition

EIP equivalent inclusion problem

FE finite element

FEA finite element analysis

FEM finite element method

GF glass fiber

MF mean-field

MFH mean-field homogenization

MT Mori-Tanaka

ODF orientation distribution function

PBT Polybutylene Terephthalate

PMC polymer matrix composite

RVE representative volume element
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Summary

The goal of this thesis is to determine the effect of pores on the stiffness of the material

used for manufacturing of automotive connectors. A representative material model was

generated to account for the nonlinear properties which are a result of the presence of

pores in the material used: Polybutylene Terephthalate (PBT).

The model was established through the use of a representative volume element

(RVE) and periodic boundary conditions. The RVE is a statistically representative

sample of the microstructure of the material. The RVE is seen as a composite material,

which is composed of an elasto-plastic matrix (PBT) and a certain volume fraction of

inclusions (pores). It was shown that the pore fraction affects the strength of the

material; with more pores present, the strength of material, together with maximum

strain values, was lower for the same loads and boundary conditions. By knowing

the fact that the material under investigation has excellent thermal properties, which

is one of the reasons why it is used in underhood applications, a thermal analysis

was omitted because there is no indication that temperature affects its mechanical

properties significantly.

For the modeling of the material, the first-order homogenization approach was used,

primarily the Mori-Tanaka method. This approach made it possible to obtain macro

stresses and strains, which gave an indication of the actual behavior for the material

at hand. With this approach, the material response could be predicted with enough

accuracy, while lowering the computational cost compared to a direct FE analysis. The

obtained results were compared to experimental data.

Key words: Polybutylene Terephthalate (PBT), homogenization, multi-scale approach,

RVE, porosity, anisotropy, micro-level, macro-level, composite materials
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Prošireni sažetak (Abstract in Croatian)

U ovom radu pokazana je primjena homogenizacije u modeliranju konstitutivnog meha-

ničkog modela PBT smole. Homogenizacija se primjenjuje za modeliranje heterogenih

materijala koji pokazuju nelinearno ponašanje. U tu skupinu spadaju materijali u

kojima je prisutna poroznost i kompozitni materijali. Pri modeliranju ponašanja

tih materijala, promatra se njihova mikrostruktura. Zbog eksplicitnog modeliranja

mikrostrukture na mikrorazini javlja se anizotropija, koja nakon homogenizacije na

markorazini daje izotropno ponašanje. Ovdje se homogenizacija primarno koristi kako

bi se uzeo u obzir utjecaj poroznosti na mehanička svojstva PBT smole.

Nakon uvodnog prvog poglavlja u kojem je dan pregled rada, po poglavljima su

redom opisani: svojstva PBT smole, materijalni model korišten pri modeliranju PBT

smole, homogenizacija i njena primjena, osnove metode konačnih elementa te rezultati

analize mehaničkog ponašanja PBT smole.

U drugom poglavlju je ukratko opisan polibutilen tereftalat (PBT). Zbog svojih

iznimnih mehaničkih, termalnih, kemijskih i električnih svojstava, PBT se koristi u

raznim granama industrije, a osobito u automobilskoj industriji. PBT se često ojačava

staklenim vlaknima i dvije najčešće varijante su PBT ojačan s 20% vlakana (PBT-

GF20) i PBT ojačan s 30% vlakana (PBT-GF30).

U trećem poglavlju je opisan materijalni model koji je korišten pri modeliranju pon-

ašanja PBT-a. U uvodu je dan pregled osnovnih konstitutivnih jednadžbi s naglaskom

na anizotropnost materijala. Potom je opisan elasto-plastični materijalni model koji se

temelji na von Mises-ovom kriteriju tečenja.

U četvrtom poglavlju su izložene osnove homogenizacije. Uveden je pojam reprezen-

tativnog volumnog elementa (RVE). RVE predstavlja uzorak mikrostrukture materijala

čijom se analizom može utvrditi ponašanje cijelog modela. Da bi to bilo moguće, defini-

rani su periodični rubni uvjeti. Periodični rubni uvjeti nameću deformaciju s makro

razine na rubove RVE-a pri čemu se nameće kinematičko ograničenje na polje pomaka

između dviju suprotnih strana RVE-a. Na kraju je opisana Mori-Tanaka metoda koja

se vrlo često koristi za homogenizaciju dvofaznih materijala.

U petom poglavlju je ukratko opisana metoda konačnih elemenata. Dan je prikaz

korištenih elemenata pri diskretizaciji simulacijskih modela. Za svaki korišteni element
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opisana su njegova osnovna svojstva.

U šestom poglavlju je prikazana analiza mehaničkog ponašanja PBT-a te je pro-

matran utjecaj poroznosti na spomenuta svojstva. Određeni su parametri potrebni

za definiranje materijalnog modela. Prvo je izvršena verifikacija rezultata dobivenih

simulacijom RVE-a. Potom je napravljena usporedba s rezultatima koji su dobiveni

pomoću Mori-Tanaka metode i rezultatima dobivenim direktnom simulacijom epru-

vete gdje se u svakom iteracijskom koraku vrši homogenizacija materijalnih svojstava.

Na kraju je za PBT B1305 napravljena usporedba rezultata višerazinske simulacije s

eksperimentalnim rezultatima.

Konačno, u sedmom poglavlju dan je osvrt na prikazanu analizu i rezultate. Ob-

jašnjen je utjecaj različitih parametara na dobivene rezultate i dani su prijedlozi za

daljnje istraživanje.

Faculty of Mechanical Engineering and Naval Architecture XIII



Toni Jelušić Master’s thesis

1 Introduction

Automotive connectors are components which provide an interface between two subsys-

tems. Usually, they are used to connect electric wiring and other electric components

like circuit boards and batteries. With higher demands in terms of cost, size, weight

and performance, improved materials are used in the manufacturing process of such

connectors. With that, new challenges arise in the optimization of connectors made

from those materials. For such applications, polymers and fiber-reinforced composite

materials, usually polymer matrix composites (PMC), are mostly used. Composites are

particularly interesting, especially in the automotive industry, because of their superior

mechanical properties, the ability to create various materials with desired properties

for a specific application and weight savings in the range of 30-70% for some suspension

and power train components [1

.

]. The behavior of polymer materials will be the matter

of investigation of this thesis.

The material used for manufacturing of the connector component is usually one of

the following variants of Polybutylene Terephthalate (PBT): non-reinforced PBT resin,

and PBT reinforced with glass fibers. Out of the two, the non-reinforced PBT resin

was tested to obtain the response under the usual loading conditions. The properties

of the material are described in more detail in Chapter 2

.

.

The motivation for this investigation was to study the effect of pores on the strength

of the material. When pores are present, a numerical analysis for the assumption of

a homogeneous and isotropic material does not yield valid results. The occurrence of

pores is tied with the injection molding process used during manufacturing. During

the injection molding process, air bubbles may ensue which leads to an overall lower

strength and degradation of the material. If fibers are added, some might be misaligned

and some may even break. This is disadvantageous because there is no accurate way to

determine the orientation of the fibers once the molding process has finished. Therefore,

a case study is carried out to determine the actual maximum loads the component with

lowered mechanical properties can handle before failure occurs.

For this purpose, the assumption that the material is heterogeneous and anisotropic

is made, with the goal being to predict the actual behavior of the component that is

comparable with experimental results. The term anisotropy refers to a characteristic
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of real materials where it is assumed that the material properties are not equal in all

directions and in all sections of the material, i.e. the material is not locally homoge-

neous. An elasto-plastic material model is used for the component and more details

about it can be found in Chapter 3

.

.

With heterogeneity in mind, a micro-mechanical approach was employed together

with homogenization methods for the purpose of obtaining the actual response of the

material. Homogenization methods were used because of their simplicity, lower compu-

tational costs, and the fact that one requires only the material properties of composite’s

constituents, thus eliminating the requirement to obtain the properties of the compos-

ite [2

.

]. For this purpose, the Digimat software suite was used, which makes it possible

to predict nonlinear behavior of anisotropic and composite materials. In this thesis,

first-order homogenization methods were primarily used and more details about these

methods can be found in Chapter 4

.

.

With the concept of a representative volume element (RVE), homogenization meth-

ods are coupled with the finite element analysis. This approach consists of generation

of a representative volume element of the material microstructure, which is then used

as a model in a finite element analysis. The obtained results of stress distribution on

the RVE are then homogenized to obtain the volume average values, thus giving the

homogenized response of the material. The fundamentals of finite element method and

the finite element model are laid out in Chapter 5

.

.

Finally, Chapter 6

.

shows the obtained results. Various parameters were tested to

see their effect on the behavior of the material. Size variation of the RVE was carried

out to generate RVEs which include different number of pores to observe at which

number of pores the microstructure becomes statistically representative. Different ran-

dom geometries were generated to show that random geometry has no effect on the

obtained response. The results obtained by small strain theory were compared to the

results obtained by employment of the large strain approach. In the end, the predicted

mechanical response obtained through a representative volume element was compared

to experimentally obtained stress-strain curves of PBT 1305.
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2 Material

2.1 Introduction

An overview of PBT and its properties is given. Furthermore, injection molded PBT

reinforced with 20 and 30 percent of glass fibers is described.

2.2 Polybutylene Terephthalate (PBT)

"Polybutylene Terephthalate (PBT) is a semi-crystalline engineering thermoplastic ma-

terial. ... PBT is produced by polycondensation of terephthalic acid or dimethyl

terephthalate with 1,4-butanediol using special catalysts", [3

.

]. The chemical formula

of Polybutylene Terephthalate is (C12H12O4)n and the molecular structure of PBT is

shown in Figure 2.1

.

.

Figure 2.1: Molecular structure of Polybutylene Terephthalate [3

.

]

Because of its outstanding properties, PBT has a wide range of use in automo-

tive industry, electrical and electronic industry and in medicine. The PBT polymer is

predominantly used as a material for electrical components in automotive industry, es-

pecially underhood applications, because of its excellent mechanical, thermal, chemical

and electrical properties [3

.

]. The components that are usually made of PBT include:

connectors, fans, mirror housings, fuel system components, sensor housings and fuse

boxes. PBT components are usually manufactured by a process called injection mold-

ing.

With regard to its mechanical properties, it stands out with its excellent machining

characteristics, reduced weight and cost of components, high strength, good creep

resistance, toughness and stiffness [3

.

]. The main advantages of PBT are its ability to

withstand thermal stress and high chemical resistance which is the reason it is used as
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a material for the connector component. Therefore, it is expected that temperature

will not play a significant role in the loading of the component and the thermal analysis

will be omitted from this thesis.

Polybutylene Terephthalate also has outstanding electrical properties, serving as

a protector of electrical and electronic components and can block UV radiation. Al-

though PBT exhibits great mechanical, thermal and electric properties, it does not

come without limitations. Some of them are high mold shrinkage, sensitivity to hot

water and notch sensitive unreinforced PBT. A more detailed overview of Polybutylene

Terephthalate can be found in [3

.

].

2.2.1 Mechanical properties of PBT

For this certain application, we are mostly interested in the mechanical properties of

PBT. The material used is produced by one of the leading specialty chemicals suppliers

worldwide, Lanxess, with its brand Pocan. The mechanical properties of Pocan B1305

000000 are shown in Table 2.1

.

.

Table 2.1: Mechanical properties of PBT, non-reinforced, injection molding
[4

.

]

Tensile modulus 2800 MPa

Stress at break 60 MPa

Strain at break 9 %

Tensile creep modulus, 1h 2400 MPa

Tensile creep modulus, 1000h 1400 MPa

Density 1310 kg/m3

Temperature dependent stress-strain curves for PBT obtained experimentally can

be seen in Figure 2.2

.

.
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Figure 2.2: Stress-strain curves of PBT for various temperatures [4

.

]

2.3 Glass reinforced PBT

Because the tensile strength and the yield strength are too low if pure PBT is used,

the material is reinforced with glass fibers. This way a material which is a lot more

capable of handling higher stresses is obtained. Compared to the Young’s modulus of

PBT which is somewhere between 2-3 GPa, with the reinforcement of 20 percent glass

fibers the value becomes 7.1 GPa which shows a two- to threefold increase in strength.

In the linear elastic case, the radius of inclusions does not affect the strength of

the material. The shape of inclusions has to be defined properly, because it has a

major effect on mechanical properties. On the other hand, if an elasto-plastic material

model is used, it is expected that the size of inclusions will have a significant effect.

The longer the fibers are, the higher the tensile strength will be. The mechanical
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properties of Polybutylene Terephthalate (PBT), reinforced with glass fibers with a

volume fraction of 20 percent and produced with injection molding, labeled as Pocan

B3225 000000, are shown in Table 2.2

.

.

Table 2.2: Mechanical properties of PBT, 20 % glass fibers, injection mold-
ing [5

.

]

Tensile modulus 7100 MPa

Stress at break 120 MPa

Strain at break 3.4 %

Tensile creep modulus, 1h 6900 MPa

Tensile creep modulus, 1000h 6300 MPa

Density 1460 kg/m3

Temperature-dependent stress-strain curves of PBT-GF20 are shown in Figure 2.3

.

.

Figure 2.3: Stress-strain curves of PBT-GF20 for various temperatures [5

.

]
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To define the microstructure of PBT-GF20, mechanical properties of the matrix and

the mechanical properties together with shape of inclusions are needed. The tensile

modulus of the PBT matrix is E = 2800 MPa [4

.

], and the Poisson’s ratio of PBT is

ν = 0.3902− 0.406 [6

.

]. The inclusions are glass fibers E-Glass with a tensile modulus

of E = 72400 MPa and a Poisson’s ratio of ν = 0.21− 0.23. The size and shape of the

fiber are determined with the length and diameter of the fiber. It is assumed that the

fibers are sphero-cylindrical. The fiber diameter is d = 14 µm and the fiber length is

l = 150 µm [7

.

, 8

.

]. All properties are shown in Table 2.3

.

.

Table 2.3: Mechanical properties of PBT & E-Glass

Material E [MPa] ν [-]

PBT 2800 0.3902-0.406

E-Glass 72400 0.21-0.23

It is important to note that the fiber length is an average estimate of all fibers,

because in reality, not all fibers will be of equal length. It is also possible that some

of the fibers break in the process of injection molding into the polymer matrix (PBT).

This has to be taken into account during the prediction of the real behavior of the

new-formed material, because it is expected that this will have an effect on the solution

obtained with numerical analysis; i.e. there will be a discrepancy in experimental and

numerical results.

The material properties of glass reinforced PBT, with a volume fraction of glass

fibers of 30 percent, denoted as Pocan B3235 000000, can be found in [9

.

].

Table 2.4: Mechanical properties of PBT, 30 % glass fibers, injection mold-
ing [9

.

]

Tensile modulus 9800 MPa

Stress at break 140 MPa

Strain at break 2.9 %

Tensile creep modulus, 1h 9800 MPa

Tensile creep modulus, 1000h 8900 MPa

Density 1550 kg/m3

Figure 2.4

.

shows the experimentally obtained stress-strain curves for PBT-GF30.
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Figure 2.4: Stress-strain curves of PBT-GF30 for various temperatures [9

.

]

PBT, especially the variant reinforced with 30% of fibers, is hard and rigid, and its

ability of withstanding dynamic load at wide range of temperature makes it a material

of choice for designing mounting brackets and control module casings for automotive

lamps. For lamps installed near vehicle exhaust or in areas with extreme temperatures,

PBT-GF30 is the most suitable material [10

.

]. Finally, for reference, Figure 2.5

.

shows

a representative microstructure of PBT reinforced with 30 percent of glass fibers.
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Figure 2.5: Microstructure of PBT reinforced with 30% of glass fibers [11

.

]

2.4 Summary

An overview of Polybutylene Terephthalate is given. This material has a wide range of

use in the automotive industry because of its outstanding properties. It can be rein-

forced with glass fibers (usually 20 and 30 percent) to form a composite material which

has more desirable properties for a particular application. Out of the three variations

(non-reinforced PBT, PBT reinforced with 20 or 30 percent glass fibers), the first one

will be the primary focus of this investigation. Analysis of PBT’s microstructure and

the effect of pores on its properties will be conducted and shown in Chapter

.

6

..

.
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3 Material model

3.1 Introduction

To define a material model means to find the constitutive matrix that correlates stresses

and strains. This is a simple task for elastic materials, but if a heterogeneous anisotropic

material is studied, complications may arise. Therefore, the nonlinear response of

heterogeneous materials is determined by means of homogenization methods. This is

achieved through the constitutive matrix of homogenized material which describes the

relation between macro stresses and strains. In the following section the basic relations

of elasticity theory are shown.

3.2 Anisotropy

When the material with its microstructural properties has to be modeled, it can no

longer be assumed that the material is ideal, homogeneous and isotropic. In this case,

it is assumed that the material is anisotropic. Anisotropy describes the material whose

properties are not evenly distributed in all directions.

Generally, the stress-strain relation for linear elastic anisotropic materials is pre-

sented in matrix form as in equation (3.1

.

). This form is obtained by using the con-

tracted notation where indices are mapped to obtain a simpler form. This equation is

known as the generalized Hooke’s Law.



σ1

σ2

σ3

σ4

σ5

σ6



=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66


︸ ︷︷ ︸

C



ε1

ε2

ε3

ε4

ε5

ε6



(3.1)

The matrix C is obtained through the reduction of the number of components of

the fourth-order stiffness tensor Cijkl from equation (3.2

.

). The tensor Cijkl has 81
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components, but those can be reduced to only 36 independent components. This is

possible because the stress and strain tensors are symmetric (σij = σji, εkl = εlk). If

(3.2

.

) is rewritten as (3.3

.

), (3.4

.

) has to hold true, thus showing that the tensor Cijkl is

symmetric.

σij = Cijklεkl (3.2)

σji = Cjilkεlk (3.3)

Cijkl = Cjikl = Cijlk = Cjilk (3.4)

In equation (3.1

.

), the material constant Cij is called stiffness, and the matrix C

is called the elasticity matrix. The elasticity matrix relates the stresses and strains.

Through the derivation of the strain energy function, it can be shown that the elas-

ticity matrix has to be symmetric. This means that 15 non-diagonal constants are

independent, resulting in the reduction of the number of independent elastic constants

from 36 to 21 in the most general case of anisotropic elasticity [12

.

, 13

.

].

To obtain the compliance matrix S the inverse form of the elasticity matrix has to

be found. The compliance matrix expresses the explicit relation of strains as a function

of stresses. This matrix is also symmetric and it can be written as shown in (3.5

.

).



ε1

ε2

ε3

ε4

ε5

ε6



=



S11 S12 S13 S14 S15 S16

S22 S23 S24 S25 S26

S33 S34 S35 S36

S44 S45 S46

S55 S56

S66


︸ ︷︷ ︸

S



σ1

σ2

σ3

σ4

σ5

σ6



(3.5)

Frequently, an idealized material is used where it is assumed that the properties of

the material are independent regarding to orientation. Such materials have an infinite

number of symmetry planes. Materials that have such properties are called isotropic

materials. An elastic material is considered isotropic when the loading direction has no

effect on its material properties. Linear elastic isotropic materials have the elasticity

matrix as shown in equation (3.6

.

).
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

σ1

σ2

σ3

σ4

σ5

σ6



=



C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0

C11 − C12

2
0 0

C11 − C12

2
0

C11 − C12

2





ε1

ε2

ε3

ε4

ε5

ε6



(3.6)

It can be seen that there are only two independent material constants in the elas-

ticity matrix of isotropic materials. If the inverse of the elasticity matrix for isotropic

materials is found, the compliance matrix can be written in terms of Poisson’s ratio

(ν) and Young’s modulus (E). If the assumption of isotropy holds, by using those two

parameters the shear modulus G can be expressed as:

G =
E

2(1 + ν)
. (3.7)

Then the following compliance matrix is obtained:

S =
1

E



1 −ν −ν 0 0 0

1 −ν 0 0 0

1 0 0 0

2(1 + ν) 0 0

2(1 + ν) 0

2(1 + ν)



. (3.8)

From that, the inverse matrix which is the elasticity matrix (3.10

.

), where the constants

C11 and C12 can also be expressed in terms of the Poisson’s ratio and Young’s modulus,

can be determined.

C11 =
E(1− ν)

(1 + ν)(1− 2ν)
, C12 =

Eν

(1 + ν)(1− 2ν)
. (3.9)
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C =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0
1− 2ν

2
0 0

0 0 0 0
1− 2ν

2
0

0 0 0 0 0
1− 2ν

2



(3.10)

This matrix is generated when an anisotropic material is defined and modeled with the

use of Digimat MF and FE modules. Those modules simplify the modeling process of

anisotropic materials in a way that the mean-field linear elastic isotropic representation

of the anisotropic material is generated. For example, if a material consists of nmultiple

phases, each with it’s own stiffness C1, C2, ..., Cn, an isotropic representation of the

nonlinear material can be generated with the use of homogenization methods. This way

an elasticity matrix C0 can be obtained, which defines a representative linear elastic

isotropic material, in the form of the matrix from equation (3.6

.

). A detailed overview

can be found in [12

.

].

3.3 Plasticity model

J2-plasticity model is used as the constitutive model. The foundation for this model is

the equivalent von Mises stress σeq which is given by the equation (3.11

.

).

σeq =
√
J2(σ) =

(
3

2
s : s

)1/2

, (3.11)

where

J2(σ) =
3

2
s : s =

1

2

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2

]
+ 3

[
σ2
12 + σ2

23 + σ2
31

]
.

(3.12)

The von Mises yield criterion is well known and stated as:

σeq ≤ σY , (3.13)

where σY is the yield stress. Equation (3.12

.

) defines a yield surface in the shape

of a circular cylinder around the hydrostatic axis (principal stresses are equal) in a
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coordinate system of principal stresses σI, σII and σIII. Figure 3.1

.

shows the graphical

representation of the von Mises yield criterion. The intersection of the von Mises yield

surface with the deviatoric plane (where the sum of principal stresses is zero) is in

the form of a circle. For a point inside the von Mises surface, the material is in the

elastic regime; when a point is on the von Mises surface, the material enters the plastic

regime. An alternative to the von Mises yield function is the Tresca yield function

which is represented by a hexagonal yield surface in the space of principal axes. The

von Mises yield criterion is usually used because it is more suitable for numerical

analysis. For more information about the von Mises yield criterion refer to [14

.

, 15

.

].

Figure 3.1: Von Mises yield surface [16

.

]

The total strain is defined as:

εtot = εe + εp. (3.14)

The Cauchy stress is obtained through:

σeq = σY +R(p). (3.15)

The R(p) term represents the hardening stress and p is the plastic strain. The hardening

stress can be described with an isotropic hardening model called power law [17

.

]:
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R(p) = kpm, (3.16)

where k and m are isotropic hardening parameters. For the power law, the parameters

were obtained with linear regression using a rewritten form of (3.15

.

) which is equivalent

to the power law equation (3.16

.

):

σeq − σY︸ ︷︷ ︸
R(p)

= k(εtot − σY
E︸ ︷︷ ︸

p

)m. (3.17)

If we take the logarithms of equation (3.17

.

)the following equation is obtained:

log (σeq − σY ) = log k +m log
(
εtot − σY

E

)
, (3.18)

where the values σeq, σY , εtot and E are known and provided by the manufacturer

through experimental data. The only unknown values are the strain hardening param-

eters k and m which can be easily obtained if there’s a set of data, given the fact that

they are parameters of a linear equation. Those parameters are shown in Chapter

.

6

..

.

3.3.1 The Ramberg-Osgood equation

Equation (3.16

.

) is, in fact, analogous of the well-known Ramberg-Osgood equation

which is used for materials which exhibit hardening with plastic deformation. There

is, although, a significant difference. The power law describes the strain hardening of

the material in the plastic region and the relationship among stress and strain. The

Ramberg-Osgood equation, on the other hand, is used for materials which exhibit an

exponential relation between stress and strain both in the linear elastic and plastic

region. It is assumed, that even in the linear elastic region, there are small permanent

plastic deformations which are usually insignificant and thus neglected in the general

case. The full Ramberg-Osgood equation found in [18

.

] is:

ε =
σ

E
+
σn

F
= εe + εp, (3.19)

where F is a proportionality constant and n is the strain hardening exponent.

It is also often written as:

ε =
σ

E
+K

( σ
E

)n
, (3.20)
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where K is the strain hardening modulus and n is the strain hardening exponent.

Furthermore, if a new parameter α = K (σ0/E)n−1 is defined, where σ0 is the yield

strength, (3.20

.

) can be rewritten as:

ε =
σ

E
+ α

σ

E

(
σ

σ0

)n−1
, (3.21)

which is yet another Ramberg-Osgood from used in Abaqus and described in [19

.

].

The process of obtaining the strain hardening coefficient K and exponent n consists

of plotting the stress-plastic strain curve in a log to log axis scale, where the curve

becomes a straight line. Then the offset is equal to K and the slope to n. If the data

doesn’t fall on a straight line, then the Ramberg-Osgood equation is not suitable for

that material.

For the material at hand, PBT Pocan B1305 000000, Figure 3.2

.

shows the plot of

stress versus plastic strain in logarithmic scale.

Figure 3.2: A plot of log(stress) versus log(plastic strain) for PBT Pocan
B1305 000000

It can be clearly seen that the data does not fall on a straight line, therefore, it

can be concluded that this material does not obey the Ramberg-Osgood law. Also,

Figure 3.3

.

and Figure 3.4

.

show the same diagrams for Pocan B3225 and Pocan B3235.
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An analogous conclusion can be made, i.e. those materials do not obey the Ramberg-

Osgood law.

Figure 3.3: A plot of log(stress) versus log(plastic strain) for PBT Pocan
B3225 000000

Figure 3.4: A plot of log(stress) versus log(plastic strain) for PBT Pocan
B3235 000000
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3.4 Summary

An insight into the concept of anisotropy is given. For the analysis, elasto-plastic

material model will be used where the von Mises yield criterion is used. It was shown

that the material PBT Pocan B1305 000000 does not obey the Ramberg-Osgood law,

nor do its glass fiber reinforced variants.
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4 Homogenization methods

4.1 Introduction

Fiber-reinforced composite materials are widely used in various industries. To model

such materials, a micro-macro approach, which predicts the influence of the microstruc-

ture on the macroscopic properties was developed. The methods used in a micro-macro

approach are known as homogenization methods. Homogenization methods are used to

predict the response of heterogeneous materials, primarily composites, where the phases

aside from the matrix can be inclusions, micro-cavities or micro-cracks. These meth-

ods are suitable for prediction of the response of thermoplastic polymers (PBT), which

can be reinforced with glass fibers. If the properties of the phases and their volume

fractions are known, a mean-field elasticity matrix which represents the homogenized

material can be generated and used in further calculations while eliminating the need

to measure the mechanical properties of the composite. The goal of homogenization is

to reduce analysis time and memory use, with a reasonable accuracy.

Mean-field homogenization (MFH) provides the means for predicting the stresses

and strains on the macro level with the use of the representative volume element (RVE),

but it is not only limited to the macro level, meaning that the values for every phase in

the composite can also be obtained [17

.

]. A major role in this formulation is played by

the concentration tensors that connect averaged fields in reinforcements or the matrix

with the corresponding macroscopic fields [20

.

]. In MFH, the inclusions must be made

of the same material and have the same shape and orientation. This, in reality, is not

the case, and the predictions may not always be completely accurate.

To obtain the most accurate predictions of micro stresses and strains in the phases,

the direct finite element analysis (FEA) is used. Unfortunately, FEA has some draw-

backs. For realistic micro-structures, complications arise during mesh generation. Fur-

thermore, such analyses are very resource heavy and time consuming, especially for

nonlinear problems. The main advantages of mean-field (MF) approaches are lower

computational cost compared to the direct FEA approach, ease of use and low memory

requirements.

The key parameters that have to be taken into account during the process of homog-

enization are the volume fraction and shape of the phases and their spatial distribution.
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Homogenization methods provide very accurate predictions for the thermo-elastic prop-

erties of linear composites, although the use of these methods in the plastic regime may

not always yield accurate results [21

.

]. But, the high computational cost and the com-

plexity of a direct finite element analysis of materials with high volume fractions and

aspect ratios of inclusions are in favor of homogenization methods, such as the Mori-

Tanaka method [20

.

]. Figure 4.1

.

shows a representative microstructure sample with

fibers and pores which can be homogenized.

Figure 4.1: The microstructure of a composite material comprised of a ma-
trix and inclusions, with pores present

4.2 The scope of mean-field homogenization

Homogenization methods are based on an analytical approach. They are used if the

material is not locally homogeneous. In that case, the microscopic and macroscopic

level have to be distinguished. The link between those two levels is the representative

volume element (RVE), which has to be large enough to represent the heterogeneous

microstructure while being as small as possible when compared with the solid body.

With the RVE only a small sample of the material is observed to predict the microscopic

response. Once the homogenized response of the composite is obtained, the macro

constitutive equation is used for the prediction of material behavior, while the high

computational cost is eliminated [17

.

, 22

.

].

The main objective of mean-field homogenization is to find the relationship between

the volume averages of stress 〈σ〉ω and strain 〈ε〉ω over a RVE occupying a domain ω.
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The simplest case where homogenization can be used is for a single inclusion problem

which is based on Eshelby’s solution [23

.

]. For two-phase composites, homogenization

methods based on single inclusion solution are used. For multi-phase composites, a

two-step homogenization is usually carried out where the RVE is decomposed into

homogenized pseudo-grains and homogenized over all pseudo grains [24

.

, 25

.

].

4.2.1 The representative volume element

The representative volume element (RVE) represents a small volume of the material on

the microscopic level which is representative of the entire material. The RVE maps a

heterogeneous medium to an equivalent homogeneous medium with average properties

of the heterogeneous nonlinear material via homogenization. Although the RVE can

be defined as 3D and 2D, the 3D RVE will be primarily used in this thesis because the

2D finite element models give invalid predictions compated to those obtained by 3D

models [20

.

]. Figure 4.1

.

shows a RVE with sphero-cylindrical inclusions and pores.

The RVE is primarily restricted by size in a sense that increasing its size results in

problems with microstructure generation and meshing of the RVE as it can easily exceed

the computational capabilities of modern day computers. In terms of generation of an

acceptable mesh, the distance between inclusions also plays a significant role. Two

important factors in RVE generation are the number and positioning of inclusions.

"The number of inclusions is considered statistically representative if the composite

response is unchanged when the number of inclusions is raised further at constant

volume fraction", [22

.

].

The orientation and length of inclusions present in the RVE can be obtained during

the injection molding process with the use of software that can predict the second-rank

orientation tensor, which replaces the orientation distribution function (ODF). The

reason for this is that it is very hard to predict the ODF. For further elaboration on

the concept of RVE see [26

.

].

4.2.2 Periodic boundary conditions

To accurately fill the RVE with the desired volume of inclusions, periodic boundary

conditions are introduced and the RVE must satisfy the periodicity criterion. The

periodicity criterion ensures that the prescribed displacement remains conserved in all
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three directions. If the inclusion is cut on one boundary side of the RVE, the cut part

has to be present on the opposite side of the RVE. If two separate RVE cubes were put

together side by side, there would be no discontinuity in the constructed sample and

all particles would have equal geometries [20

.

]. This means that mesh compatibility

is preserved and that it can be assumed that the RVE is infinite. As a consequence,

the periodic boundary conditions make it possible to simulate an entire system by

only simulating a small part. The periodic boundary conditions are governed with the

following equation [21

.

]:

u(x, y, 0)− uz = u(x, y, L)

u(x, 0, z)− uy = u(x, L, z)

u(0, y, z)− ux = u(αL, y, z)

. (4.1)

In (4.1

.

) u is the displacement vector in the different faces of a quadrilateral prism

and the vectors ux, uy and uz are the result of the loading on the RVE. The displace-

ment vector is obtained when macro strain is applied to the RVE boundary. Figure

4.2

.

shows an illustration of periodic unit cells (RVEs). Periodic boundary conditions

also contribute to reduction in computation time and better predictions of effective

properties of heterogeneous materials.

x

y

Figure 4.2: An illustration of periodic unit cells
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4.2.3 The macro constitutive relation

If we have a body, and choose an arbitrary point X of that body, for a known macro

strain ε(X) we can obtain the corresponding macro stress σ(X) and vice-versa. The

average value over the domain ω of a volume V can be defined as:

〈f(X,x)〉 ≡ 1

V

∫
ω

f(X,x)dV, (4.2)

where f(X, x) represents the micro field in the RVE. If the relation between the macro

values of stress σ(X) and strain ε(X) is found, this means that the average values of

stress 〈σ〉ω and strain 〈ε〉ω are known because those values are equal [17

.

, 27

.

]. Therefore,

the problem reduces to finding the macro stiffness C shown in (4.3

.

) and in Figure 4.3

.

.

〈σ〉 = C : 〈ε〉 (4.3)

Figure 4.3: Depiction of macro stiffness [17

.

]

Before the foundation for homogenization of two-phase composites is laid out, an

overview of Eshelby’s solution and the single inclusion problem will be presented.

4.2.4 Eshelby’s solution

Eshelby’s solution [23

.

] serves as the cornerstone for the single inclusion problem and

for two-phase homogenization. The assumption is that there’s an infinite solid body

with uniform stiffness C0. If an ellipsoidal volume (I ) of the body is cut out, subjected

to a stress-free eigenstrain (radial expansion) ε∗, and then placed into the volume of
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the solid body it occupied, the strain that occurs in that ellipsoidal volume will be in

relation with the stress-free eigenstrain. The occurring strain is uniform and linked

with the stress-free eigenstrain through (4.4

.

) where ζ (I,C0) is the Eshelby’s tensor.

Eshelby’s tensor depends on the shape of the ellipsoidal volume (I), its orientation and

the uniform stress in the solid body C0.

ε(x) = ζ (I,C0) : ε∗, ∀ x ∈ (I). (4.4)

A detailed overview of Eshelby’s tensor can be found in [2

.

, 21

.

, 26

.

]. For circular in-

clusions, Eshelby’s tensor has the form which is only dependent on the Poisson’s ratio

found in [28

.

].

4.2.5 The single inclusion problem

The single inclusion problem is formulated for an infinite solid body which consists of

a matrix with uniform stiffness C0 and a single ellipsoidal inclusion (I ) with uniform

stiffness C1 and to which linear displacements are applied. Those displacements are in

correlation with the uniform remote strain E. The relation between the remote strain

E and the strain inside the inclusion (I ) is:

ε(x) = Hε (I,C0,C1) : E, ∀ x ∈ (I), (4.5)

where the strain inside the inclusion ε(x) is uniform and H the single inclusion strain

concentration tensor [27

.

]:

Hε (I,C0,C1) =
{
I + ζ (I,C0) : C−10 : [C1 −C0]

}−1
. (4.6)

The single inclusion problem has an analytical solution and is therefore used as a basis

for multi-inclusion problems which are based on a semi-analytical approach.

4.2.6 Two-phase composites

The assumption is that we have a two-phase composite, made of a matrix reinforced

with multiple identical inclusions (same material, shape and orientation). To calculate

the volume averages of strains in the RVE the following equation is used:

〈ε〉ω = ν0〈ε〉ω0 + ν1〈ε〉ω1 , (4.7)
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where the subscript 0 and 1 represent the volume average strain values associated with

the matrix and the inclusions phase.

The following equation (4.8

.

) describes the relation of strains in the inclusions (〈ε〉ω1)

with the strains in the matrix (〈ε〉ω0) and the average macro strain in the composite

(〈ε〉ω) through the strain concentration tensors Bε and Aε respectively:

〈ε〉ω1 = Bε : 〈ε〉ω0 = Aε : 〈ε〉ω, (4.8)

where the relation between the strain concentration tensorsBε andAε can be expressed

as [22

.

]:

Aε = Bε : [(1− ν0)Bε + ν0I]
−1. (4.9)

The average strains of the matrix and inclusion related to the average macro strain can

the be written as:

〈ε〉ω0 = [(1− ν0)Bε + ν0I]
−1 : 〈ε〉

〈ε〉ω1 = Bε : [(1− ν0)Bε + ν0I]
−1 : 〈ε〉

(4.10)

The domain ω represents the average values of strain, ω0 the strain value in the

matrix, and ω1 the strain value in the inclusion. I represents the fourth-rank symmetric

identity tensor. The macro stiffness is defined as:

C = [ν1C1 : Bε + (1− ν1)C0] : [ν1B
ε + (1− ν1) I]−1 . (4.11)

For the next step, the boundary conditions have to be defined. Displacement boundary

conditions are applied as:

u(x) = ε∞ · x ∀x ∈ ∂ω∗. (4.12)

ω∗ is the domain of the isolated inclusion cell and ε∞ is the far-field strain.

To obtain the average strain of all inclusions, the inclusions are replaced with an

equivalent single inclusion. This is known as the equivalent inclusion problem (EIP).

To obtain the displacement field the following boundary value problem has to be solved:
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

div(σ) = 0, ∀x ∈ ω∗

u(x) = ε∞ · x ∀x ∈ ∂ω∗

ε(x) = 1
2

(
∇u(x) +∇Tu(x)

)
(constitutive equations)

(4.13)

The matrix average strain is unknown, so iterations over the values of 〈ε〉ω0 must be

carried out, each of them requiring the FE resolution of the EIP and leading to an

updated value of 〈ε〉ω1 , until (4.7

.

) is satisfied.

Once the phase strains are known, the average stress in each phase can be calculated.

The macroscopic stress is defined as the stress average over the composite:

〈σ〉 ≡ ν0〈σ〉ω0 + ν1〈σ〉ω1 . (4.14)

For a further reference on this problem, see [29

.

].

4.2.7 Multi-phase composites

In contrary to two-phase composites, which have only one inclusion phase, multi-phase

composites may have two or more inclusions phases. The inclusion phases can be made

of different materials, with different shapes and orientations. Therefore, for multi-phase

composites, the multi-level method is used [17

.

]. At each level, a similar procedure as

for two-phase composites is used. The first set of inclusions is homogenized with the

matrix on the deepest level, usually by using the Mori-Tanaka method. This new

homogenized medium assumes the role of a matrix for the next level where it is further

homogenized with that level’s set of inclusions. This procedure repeats until all the

inclusion sets have been homogenized and we have one homogenized medium.

The order of inclusion sets to be homogenized at each level has to be accounted for

because it may result in poor predictions. Currently, it is recommended to to add the

inclusions sets with the lowest rigidity first [17

.

].
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4.2.8 Numerical procedure

To initialize the numerical procedure it is assumed that the average strain in the matrix

equals the macroscopic strain:

〈ε〉ω0 ← 〈ε〉 (4.15)

Iteration is carried out in the following steps and can be found in [22

.

], p. 720.

1. Apply displacement boundary conditions (4.13

.

) to the EIP.

2. Solve the EIP by the FE method for the considered time increment, starting from

the deformed state at tn.

3. Compute the average strain in the inclusions of the actual composite as:

〈ε〉ω1 = 〈ε〉ω∗
1

=
1

V (ω∗1)

Nk∑
k=1

εkVk (4.16)

where εk is the strain at the integration point k; Vk is the volume associated

with the integration point k, and Nk the total number of integration points in

the discretized domain ω∗1

4. Check compatibility of average strain in the inclusions by computing residual:

R =
〈ε〉 − ν1〈ε〉ω1

ν0
− 〈ε〉ω0 (4.17)

5. If |R| < TOL then exit the loop.

6. Else: new iteration with new 〈ε〉ω0 .

〈ε〉ω0 ← 〈ε〉ω0 +R (4.18)

After convergence, the average matrix stress 〈σ〉ω0 is approximated by calling the

constitutive box with the average strain 〈ε〉ω0 , average strain increment 〈∆ε〉ω0 and

the history variables at tn. The macroscopic stress can then be calculated using (4.14

.

).

This procedure is also described in [27

.

, 29

.

].

4.2.9 Nonlinear inelastic materials

If two-phase composite materials made of elasto-plastic phases are considered, a tangent

operator based on incremental formulation is used to relate the phase stresses and
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strains and linearize the response. The relation can be stated as:

σ̇(x, t) = Cr(ε(x, t), t) : ε̇(x, t), ∀ x ∈ ωr, r = 0, 1, (4.19)

where r = 0, 1 denotes either the matrix phase or the inclusion phase as stated before.

The relation is comparable to linear elasticity where instead of stress and strain we

have stress and strain rates, while Hooke’s elastic stiffness tensor is replaced with the

tangent operator. The difference is that the operator relating the stress and strain

rates is no longer uniform per phase.

But, one issue arises with this approach if an elasto-plastic matrix reinforced with

stiffer elastic inclusions is considered. If this approach is used, the predicted response

will be as in Figure 4.4

.

. It can be seen that the predictions marked as plus and cross

signs are stiffer than the FE results. This issue arises because the incremental for-

mulation is based on anisotropic tangent operators (continuum and consistent tangent

operators), but if only the isotropic part of tangent operators is used, better results

can be obtained which are marked with star signs.

Figure 4.4: Comparison of the stress-strain predictions for an elasto-plastic
matrix with stiffer inclusions [29

.

]

Here, the main focus will be on the J2 elasto-plasticity which is covered in more detail

in [29

.

]. The continuum tangent operator for elasto-plasticity with J2 flow theory and
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isotropic hardening is can be stated as:

Cep = Cel − (2G)2

h
N⊗N, N =

∂f

∂σ
=

3

2

dev(σ)

σeq
, h = 3G+

dR

dp
. (4.20)

As it was described earlier, p is the accumulated plastic strain and R(p) the harden-

ing stress. N represents the normal to the yield surface in stress space. An algorithmic

tangent operator for numerical procedure can be defined after discretizing the equation

with the implicit backward Euler scheme. The discretized equation is then linearized:

Calg = Cep − (2G)2∆p
σeq

σtr
eq

∂N
∂σ

,
∂N
∂σ

=
1

σeq

(
3

2
Idev −N⊗N

)
, (4.21)

where σtr
eq is the elastic predictor (denotes the trial value for the iterative procedure,

usually obtained from the assumption that, initially, the stiffness tensor is elastic,

hence the name elastic predictor). The obtained consistent tangent operator is used

to describe the relation of stress and strain after each time increment. It is clear

that, if ∆p reaches zero, Calg = Cep. As we have seen the tangent operators are not

isotropic, so isotropization has to be carried out by applying either the spectral or

general isotropization method [29

.

].

4.3 Mori-Tanaka model

The Mori-Tanaka model was introduced by Mori and Tanaka in 1973 [30

.

]. It is obtained

through the derivation of Eshelby’s solution. It is based on the assumption of an infinite

body subjected to the average matrix strain equal to the far field strain [17

.

, 22

.

, 31

.

, 32

.

].

For this model, the strain concentration is:

Bε = Hε (I,C0,C1) (4.22)

where the operator Hε is the operator for the single inclusion problem [27

.

]. The

behavior of every inclusion in the RVE is described with the behavior of one equivalent

single inclusion present in the matrix as seen in Figure 4.5

.

. The Mori-Tanaka’s tensor

can be found in [2

.

].
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Figure 4.5: Mori-Tanaka Model [17

.

]

The Mori-Tanaka formulation yields a symmetric stiffness tensor only if all the

inclusions have the same aspect ratio and orientation. Furthermore, to obtain valid

results, the inclusions must have identical aspect ratios and be all equally aligned

[2

.

, 24

.

, 32

.

, 33

.

].

The Mori-Tanaka method can be used for the modeling of two-phase elasto-plastic

composites for low to moderate volume fractions of inclusions. Other semi-analytical

schemes based on the M-T method should yield valid predictions. The Mori-Tanaka

method can be extended to model inhomogenieties of non-ellipsoidal shapes by defining

replacement stiffness tensors [28

.

].

A further extension of the Mori-Tanaka model was made with the incremental

approach. In this approach, the MT model is employed at the element Gauss points

as a micromechanical constitutive model that describes the effective (macroscopic)

response of a heterogeneous material. Different approaches on the incremental Mori-

Tanaka method can be found in [29

.

, 34

.

], where the latter, AD-based formulation of

the MT scheme, shows a improved efficiency and drastically reduces the computation

time.
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4.3.1 Limitations of the Mori-Tanaka method

The Mori-Tanaka model can accurately predict the properties for two-phase compos-

ites with the volume fractions of inclusions lower than 25 percent, but it gives good

predictions even beyond this range. The predictions of phase averages are accurate

for volume fractions below 15 percent. The poor predictions for composites with the

volume fraction of inclusions above 25 percent is a consequence of plastic localization

which occurs between inclusions of the composite, which is not taken into account by

the MF model. If the inclusions aren’t identical, the results may be invalid [17

.

, 22

.

].

4.4 Summary

Homogenization was described and its application was shown. The concept of a RVE

was introduced and the periodic boundary conditions were discussed. An overview of

Eshelby’s solution and the single inclusion problem was shown. After that, homoge-

nization of two-phase composites was described. Finally, the Mori-Tanaka model was

shown.

The homogenization approach simplifies the modeling of nonlinearity in the mate-

rial. However, caution is advised because in some cases (short fiber reinforced thermo-

plastic polymers), the predictions may differ with FE results or experimental results. If

this is the case, second-order MFH can provide better results [17

.

]. More recent studies

in the field of porous plasticity in regards of macroscopic yielding and plastic behavior

of isotropic porous materials with spherical pores are discussed in [35

.

, 36

.

, 37

.

].
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5 The finite element method

5.1 Introduction and overview

The finite element method is a method developed to model and predict the responses of

various systems. This ranges from structural analyses to computational fluid dynamics

problems. It is primarily used in structural analyses. The principle the method is based

on assumes that a body can be modeled by discretizing it to smaller parts, thus reducing

an infinite number of degrees of freedom to a finite number of degrees of freedom. With

the increase of number of elements, we can obtain a closer representation of the real

behavior, but this comes at a cost, namely the computation time is longer. The finite

element method gained traction with the development of more sophisticated computer

systems and is one of the predominant methods for problem solving in the area of

mechanical engineering. For a more detailed overview refer to [12

.

, 14

.

, 38

.

].

5.2 Element types

Various types of elements have been developed for many different applications. One-

dimensional, two-dimensional and three-dimensional elements are distinguished. If the

geometry can be simplified, the use of 1D and 2D elements is recommended, thus

greatly reducing the computation time because in this case we are dealing with a

simpler model and the number of elements is greatly reduced. The FE analyses of

RVEs are carried out in Abaqus, and the element types used are from Abaqus element

library. Second-order elements are used.

For the analysis of a RVE, 2D and 3D elements are used. 2D models are discretized

with 6-node triangular elements (CPE6) which have 2 degrees of freedom in every node.

The element CPE6 has 3 integration points. The displacement vector is described by

a second-order polynomial:

u
v

 =

1 x y x2 xy y2 0 0 0 0 0 0

0 0 0 0 0 0 1 x y x2 xy y2





a1

a1

.

a12


(5.1)
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For simplicity, (5.1

.

) is rewritten in matrix form:

u = αa. (5.2)

From that, the matrix of shape functions which correlates the displacement vector u

and the vector of nodal displacements v can be found:

u = Nv. (5.3)

The stress and strain distribution in this element is linear. The element can be seen in

Figure 5.1

.

.

Figure 5.1: The 6-node triangular element (CPE6) [19

.

]

For the 3D models, two types of elements are used. For the 3D RVE, 10-node

tetrahedron elements (C3D10), which can be seen in Figure 5.2

.

, are used. This element

type has 10 nodes with a total of 30 degrees of freedom. The displacement vector is

also described by a second-order polynomial in the following form:


u

v

w

 =


p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 p 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 p





a1

a1

.

a30


,

p =

[
1 x y z x2 y2 z2 xy yz xz

]
(5.4)

Shape functions can be obtained similarly to the procedure described for the CPE6

element. This element also has a linear stress and strain distribution. Furthermore,
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a variant of this element labeled as C3D10M which has hourglass control, is used to

prevent volumetric locking. The C3D10M element type uses a modified second-order

interpolation.

Figure 5.2: The 10-node tetrahedron element (C3D10) [19

.

]

For the tension specimen, a 20-node brick element with reduced integration (C3D20R)

is used (Figure 5.3

.

). Reduced integration is used for non-linear problems to reduce the

stiffness of the element and computation time. This element only has nodes distributed

along its edges. Each node has 3 degrees of freedom for a total of 60 degrees of freedom.

More about the elements used can be found in Abaqus Analysis User’s Guide [19

.

].

Figure 5.3: The 20-node brick element (C3D20R) [19

.

]

5.3 Summary

An overview of the finite element method is given and the elements used are shown.

Basic characteristics of used elements are described. For the 2D analysis plane strain el-

ements are used (CPE6) and for 3D analysis solid elements are used (C3D10, C3D10M,

C3D20R). The C3D10M elements will be used for discretization of a 3D RVE and the

C3D20R elements for discretization of a tension specimen.
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6 Mechanical behavior of PBT resin - analysis and

results

6.1 Introduction

The first step is to verify the elasticity matrix. A comparison of the analytically ob-

tained elasticity matrix, an elasticity matrix generated by Digimat MF and a matrix

obtained through a strain perturbation technique, is made. Afterwards, different ap-

proaches are taken in the modeling of the constitutive response of PBT.

The first approach includes the testing of the material response by the use of a RVE.

Samples of different microstructures are generated and tested to obtain the volume

average response of the material. The intention is to use the homogenized properties

for different sets of pore volume fractions and show that the stress fields are indeed

dependent on the heterogeneity of the material. With the rise of pore volume fraction

we expect the stiffness of models to drop for the same loading and boundary conditions.

After that, a model of a tension specimen is created and tested under the appropri-

ate loads and boundary conditions. This approach uses a UMAT subroutine through

the Digimat CAE interface, where in every iteration, homogenized fields are obtained

with the use of the Mori-Tanaka method.

6.1.1 Prerequisites and assumptions

The microstructure of PBT where pores are present is modeled. The matrix (PBT) is

modeled as an elasto-plastic material. With the standard Poisson’s ratio and Young’s

modulus, the hardening parameters have to be defined. Pores are defined by the volume

fraction and the average radius of pores. An idealization of shape is made and pores

are modeled as spheres. Two types of analyses are carried out for the RVE. First, small

strains are considered. After that, the large strain approach is taken. The obtained

results are then compared. For small strains, the strain tensor has the following form:

εij =
1

2
(ui,j + uj,i) =


∂u1
∂x1

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
1
2

(
∂u1
∂x3

+ ∂u3
∂x1

)
1
2

(
∂u2
∂x1

+ ∂u1
∂x2

)
∂u2
∂x2

1
2

(
∂u2
∂x3

+ ∂u3
∂x2

)
1
2

(
∂u3
∂x1

+ ∂u1
∂x3

)
1
2

(
∂u3
∂x2

+ ∂u2
∂x3

)
∂u3
∂x3

 (6.1)
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When large strains are considered, the assumption that the undeformed and de-

formed configurations are equal is no longer valid. For large deformations, the deformed

configuration exhibits geometric nonlinearity, and the equilibrium has to be defined for

the deformed configuration. The finite strain tensor has the following form:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi
− ∂uk
∂xi

∂uk
∂xj

)
. (6.2)

Compared to the infinitesimal strain tensor (6.1

.

), the finite strain tensor has an addi-

tional term. When small strains are assumed, the last term of (6.2

.

) vanishes and the

infinitesimal strain tensor is obtained.

6.2 Elasticity matrix verification

Three methods are used to determine the elasticity matrix of PBT. An analytical

solution is obtained by using equation (3.10

.

). Following that, Digimat MF is used.

Finally, a direct FE simulation where uniaxial loadings are applied as 100 percent of

deformation for each component, thus obtaining a homogenized stress tensor which

corresponds to a single row and column of an elasticity matrix. For the analytical

solution, parameters E = 2800 MPa and ν = 0.3981 are used. With substituting those

parameters into (3.10

.

), the following elasticity matrix is obtained:

C =



5914.8 3912.1 3912.1 0 0 0

3912.1 5914.8 3912.1 0 0 0

3912.1 3912.1 5914.8 0 0 0

0 0 0 1001.4 0 0

0 0 0 0 1001.4 0

0 0 0 0 0 1001.4



(6.3)

With Digimat MF, the following stiffness matrix is obtained:
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Figure 6.1: Stiffness matrix of PBT obtained with Digimat MF

Finally, with a direct FE analysis, the same stiffness matrix is obtained. The stress

values correspond to the elements of the elasticity matrix of PBT, namely: C1111 =

5927.68, C1122 = 3922.08, C1133 = 3920.84, C1212 = 1003.56. All other elements of the

matrix are zero.

If the values obtained with those three methods are compared, it clearly shows that

the same elasticity matrix is obtained (Table 6.1

.

).

Table 6.1: Comparison of elasticity tensor components

\ C1111 C1122 C1133 C1212

Analytical 5914.8 3912.1 3912.1 1001.4

Digimat MF 5914.8 3912.1 3912.1 1001.4

Strain perturbation 5927.68 3922.08 3920.84 1003.56

6.3 RVE model

The representative volume element is used in this approach. RVE’s are generated for

different volume fractions of pores. Then a comparison is made to observe how the

increasing of pores volume fraction affects the strength of PBT.

The generation of the representative volume element can be a challenging task,

especially if random orientation is desired. Another constraint is imposed by the aspect

ratio of inclusions. "Inclusions with an ellipsoidal shape and an aspect ratio larger

than 10 can lead to errors during the automatic meshing" [17

.

]. In such cases, the

resulting geometry is very complex and can even be invalid, which invokes meshing

difficulties. Therefore, it is necessary to repeat the representative volume element

generation procedure until the random geometry becomes valid and does not cause

meshing difficulties.
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On a side note, caution is advised because the generated geometry is not always the

same if random orientation is enabled. Even if the valid geometry criterion is satisfied,

it may take a large number of finite elements to obtain accurate stress and strain results.

Another option is to allow size reduction, which helps in geometry generation, with a

drawback that this option causes difficulties with reaching reference volume fractions

in the RVE.

The RVE’s are discretized with tetrahedron elements labeled as C3D10M. This

modified tetrahedron has hourglass control enabled and exhibits minimal volumetric

locking during plastic straining, thus capturing the strain gradients in the matrix be-

tween the inclusions better than the standard 10-node tetrahedron because it has three

extra internal degrees of freedom [21

.

]. When combined with 3D orientation, parabolic

elements can be very resource demanding, so it is better to do the testing with linear

elements and only the final analysis with parabolic elements.

The whole process can be summed as:

1. Generate the geometry

2. Mesh the geometry

3. Carry out the FE analysis

4. Obtain the average values over stress and strain fields

6.3.1 Elasto-plastic model

First, an overview of true stress and true strain is shown. True stress and strain differ

from engineering stress and strain in that, when calculating the true values, we assume

that the section area changes, contrary to engineering values where we assume that

the section area doesn’t change and is constant throughout the whole loading regime.

This can be summed by the following equations. Equation (6.4

.

) shows the expressions

for calculating the engineering values of stress and strain and (6.5

.

) shows the same for

true stress and strain:

S =
F

A0

= σε, εε =
l − l0
l0

=
∆l

l0
, (6.4)

Faculty of Mechanical Engineering and Naval Architecture 38



Toni Jelušić Master’s thesis

σ =
F

A
, ε =

∫ l

l0

dl
l

= ln
l

l0
, (6.5)

where A is the time-dependent section area which changes during loading, and A0 is

the initial section area. From (6.4

.

) and (6.5

.

) we can obtain the relation between the

true and engineering values of stress and strain. We can observe that εε = l
l0
− 1;

therefore, we can express the true strain as a function of engineering strain as:

ε = ln (εε + 1) (6.6)

From the fact that the volume has to be the same for both cases we have:

V0 = A0l0 = V = Al, (6.7)

and then can obtain the relation of area ratio vs. length ratio:

A0

A
=

l

l0
(6.8)

If we define a ratio of true and engineering stress as:

σ

S
=
A0

A
=

l

l0
, (6.9)

then we can obtain the relation between those two values by substituting the expression

εε+1 instead of l
l0
as shown before. Finally, we obtain the expression for the true stress

as a function of engineering stress and engineering strain:

σ = S (εε + 1) . (6.10)

If we assume a material which has a stress strain curve as shown in Figure 6.2

.

, we

can calculate the plastic strain of any given data point. For a more accurate definition

of plastic behavior, true stress and trues strain values can be used.
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ε

σ

A

E

B

σy

σB

εtot

εp εe

Figure 6.2: Elasto-plastic material model

With experimental data, we know the total strain and stress values at every mea-

sured point. For the relation for total strain see (3.14

.

). To obtain the elastic strain

for a measured strain value in the plastic region we need to know the true stress and

Young’s modulus E. For example, if we look at point B in Figure 6.2

.

, the elastic strain

can be obtained as:

εe =
σB

E
. (6.11)

If we generalize (6.11

.

), we can assume that it is valid for any measured total stress

value. Therefore, we can write the expression for calculating the plastic strain from

experimentally obtained true stress and true strain.

εp = εtot − σ

E
(6.12)

To define the elasto-plastic model, the data from [4

.

] was used and can be seen in

Table 6.2

.

. The data was approximated by the power law. Prior to that, an approxi-

mation of the elastic line was created to determine the limit between the elastic and

plastic region. It was determined that the limit is at strain value ε = 2.0582 % and

stress value σ = 49.459 as shown in Figure 6.3

.

. After that, linear regression was used

in Python to determine the strain hardening parameters. The comparison of suppliers

data and the approximation is shown in Figure 6.4

.

.
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Table 6.2: Stress-strain data for Pocan B1305 000000 at 23 ◦C

Strain, [%] Stress, [MPa] Strain, [%] Stress, [MPa]

0 0 2.0582 49.459

0.0491 1.386 2.1971 51.5

0.0991 2.797 2.3625 53.574

0.1491 4.209 2.5798 55.726

0.1991 5.62 2.8773 57.751

0.2491 7.031 3.2531 59.12

0.3357 9.447 3.6592 59.608

0.423 11.833 4.0667 59.639

0.5114 14.198 4.4738 59.7

0.601 16.549 4.8807 59.858

0.6922 18.896 5.2877 60.073

0.7853 21.249 5.6948 60.309

0.8806 23.622 6.1019 60.526

0.9781 26.023 6.5093 60.695

1.0778 28.456 6.9169 60.817

1.1795 30.927 7.3246 60.904

1.2829 33.433 7.7325 60.966

1.3878 35.947 8.1404 61.014

1.494 38.427 8.5484 61.057

1.601 40.834 8.9566 61.098

1.7088 43.128 9.3647 61.136

1.819 45.309 9.773 61.174

1.9341 47.408 10.1813 61.21

Although the suppliers data shown in Table 2.1

.

states that the yield strength is 60

MPa, it was determined from Figure 6.3

.

that the elastic limit is at σY = 49.459 MPa

and this value was used to obtain the hardening parameters because it gives a better

approximation of the given data.
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Figure 6.3: Approximation of the elastic region

Figure 6.4: Approximation of the provided suppliers data for PBT

With approximation, the hardening modulus k and the hardening exponent m can

be found. For the provided data the parameters are:

k = 22.78, m = 0.234504.
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The procedure of obtaining the hardeing parameters is shown in Appendix A.1

.

.

When the strain hardening parameters are determined, an appropriate model in

Digimat can be defined. A comparison of the predicted response obtained by Digimat-

MF with the suppliers data for Pocan B1305 is shown in Figure 6.5

.

.

Figure 6.5: Comparison of predicted MF results with the suppliers data

6.3.2 2D vs. 3D RVE

An extensive analysis of PBT with various volume fractions of pores was carried out.

A test case was simulated using a 2D and 3D RVE model for PBT with 2%, 4%, 6%

and 8% of pores. All models have the same shape of pores with the average radius of

pores of 50 µm. The properties of the matrix, PBT, are given in Table 2.1

.

, with the

hardening parameters k = 22.78 and m = 0.234504 as determined by the power law

approximation.

A necessary step before the analysis of the mechanical behavior of PBT is to deter-

mine the number of inclusions at which the response remains unchanged. This is done

by varying the size of the RVE for PBT with 2% pores on a 2D model and for PBT

with 8% of pores on a 3D model. Only the RVE size was varied, and with that the

number of pores present in the generated geometry, while the other parameters have

been kept constant. In Digimat-FE, the first step is to generate the RVE. After that,
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an analysis is carried out using either the Digimat solver or the Abaqus solver. The

2D analysis is carried out with the built-in Digimat FE solver, while the 3D analysis

is carried in Abaqus. The generated geometries for each respectable RVE alongside

their respectable meshes are shown in Figure 6.6

.

for the 2D model and Figure 6.7

.

for

the 3D model. Table 6.3

.

shows the number of elements for each mesh. For the 2D

model, quadratic 6-node elements were used, while for the 3D model, quadratic tetra-

hedron elements C3D10M, which are described in Chapter 5

.

, were used. The obtained

responses are shown in Figure 6.8

.

.

Table 6.3: The number of elements for each mesh of the 2D and 3D model
used for RVE size variation

2D analysis

PBT, 2% pores

RVE Mesh
0.5 mm, 3 inclusions 2131 elements
1 mm, 10 inclusions 3140 elements
1.5 mm, 23 inclusons 3696 elements
2 mm, 41 inclusions 3342 elements

3D analysis

PBT, 8% pores

RVE Mesh
0.15 mm, 4 inclusions 29859 elements
0.2 mm, 10 inclusions 30293 elements
0.25 mm, 19 inclusions 37753 elements
0.3 mm, 33 inclusions 58189 elements

As seen in Figure 6.8

.

, as long as the pore volume fraction remains the same, the

homogenized response does not change significantly with the number of pores. For

the 2D model, there is a slight deviation for 3 pores. It can be concluded that the

size of the 2D RVE where the predicted response remains unchanged is 1 mm. For

the 3D RVE, this size is 0.15 mm. It is recommended that the number of inclusions

in a microstructure sample be at least 10 or more, but usually RVE’s with around 30

inclusions are studied [22

.

].
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(a) RVE 0.5 mm (b) RVE 0.5 mm, mesh

(c) RVE 1 mm (d) RVE 1 mm, mesh

(e) RVE 1.5 mm (f) RVE 1.5 mm, mesh

(g) RVE 2 mm (h) RVE 2 mm, mesh

Figure 6.6: RVE size variation: geometries and meshes of the 2D model for
PBT, 2% pores
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(a) RVE 0.15 mm (b) RVE 0.15 mm, mesh

(c) RVE 0.2 mm (d) RVE 0.2 mm, mesh

(e) RVE 0.25 mm (f) RVE 0.25 mm, mesh

(g) RVE 0.3 mm (h) RVE 0.3 mm, mesh

Figure 6.7: RVE size variation: geometries and meshes of the 3D model for
PBT, 8% pores
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(a) 2D model, PBT, 2% pores

(b) 3D model, PBT, 8% pores

Figure 6.8: Comparison of the predicted responses for different sizes of the
RVE

When generating the geometry of the RVE, randomness is included, therefore a test

case was created to observe how the random geometry effects the predicted results.

This test was carried out for PBT with 4% of pores on a 2D RVE model and for PBT

with 8% of pores on a 3D RVE model. For both models, material properties of PBT

were unchanged and the respective volume fraction of pores for each model was kept

constant. Four test cases for both the 2D and 3D RVE model were created where
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the only changing parameter was the random distribution of pores. The generated

geometries are shown in Figure 6.9

.

and Figure 6.10

.

. The predicted responses are shown

in Figure 6.11

.

and Figure 6.12

.

. As both figures clearly show, the random geometry

has no effect on the predicted response. This goes in hand with the assumption that

geometry of the volume examined has no effect, hence the name of the representative

volume element.

(a) Geometry 1 (b) Geometry 2 (c) Geometry 3 (d) Geometry 4

Figure 6.9: Random geometries for PBT with 4% of pores, 2D RVE

(a) Geometry 1 (b) Geometry 2

(c) Geometry 3 (d) Geometry 4

Figure 6.10: Random geometries for PBT with 8% of pores, 3D RVE
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Figure 6.11: Predicted responses for PBT with 4 % of pores for different
cases of random geometry (2D RVE)

Figure 6.12: Predicted responses for PBT with 8 % of pores for different
cases of random geometry (3D RVE)
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Furthermore, the effect of pore size is tested on a 3D RVE model for PBT with 2

% of pores. The size of pores is increased and responses for the following values are

obtained: 50 µm 100 µm, 200 µm and 500 µm.

Figure 6.13: The effect of pore size on the predicted response for PBT, 2%
pores

As Figure 6.13

.

shows, pore size has no effect on the average results, for spherical

pores.

The next step is the variation of the pore volume fraction on a 2D RVE model. For

every volume fraction of pores a different RVE was used. For 2% of pores, the size of

RVE is 2 mm; for 4% of pores 1.4 mm, for 6% and for 8% of pores the RVE size is

equal and its value is 1 mm. The results of the 2D case show an unexpected response

(Figure 6.14

.

). The predicted values with the 2D RVE are higher than expected, the

reason being that 2D RVE’s give accurate predictions only for microstructures which

are consisting of a matrix and long unidirectional fibers [17

.

]. Given that the created

a 2D model has a geometry with pores which are small in size and have low aspect

ratios, the predictions are inaccurate.

The results obtained on the 3D RVE differ from the 2D case and give a much better

prediction (Figure 6.15

.

).
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Figure 6.14: Comparison of predicted responses with 2D analysis for PBT
with different volume fractions of pores

Figure 6.15: Comparison of predicted responses with 3D analysis for PBT
with different volume fractions of pores
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Figure 6.16

.

shows a comparison of the predicted responses with 2D and 3D analysis.

Although it was expected for the results to be nearly matched, this is not the case.

The 2D model, although less computationally expensive, gives wrong predictions for

the reasons mentioned earlier. Therefore, 3D RVE models were used for all subsequent

analyses.

(a) PBT, 2% pores

(b) PBT, 4% pores
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(c) PBT, 6% pores

(d) PBT, 8% pores

Figure 6.16: Comparison of the predicted responses obtained with 2D and
3D analysis for PBT: a) 2%, b) 4%, c) 6%, d) 8% of pores
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6.3.3 Mori-Tanaka Method

For a reference, a prediction was acquired with Digimat MF by using the Mori-Tanaka

homogenization model. The comparison is visible in Figure 6.17

.

.

Figure 6.17: The effect of pores on the response of PBT

Figure 6.18

.

shows the comparison of the predicted responses with Digimat MF and

the 3D RVE model in Digimat FE. It clearly shows a good match of results, with a note

that Digimat MF doesn’t predict the maximum strain values correctly when pores are

present, compared to the analysis carried out on a RVE, which is clearly seen in the

figures below. The reason for this discrepancy is that the Mori-Tanaka method does

not take the geometry into account when homogenization is carried out. The maximum

strain value drops from 10.181 % for pure PBT to 9.142 % for the microstructure with

8% of pores in the case of a 3D RVE. The Mori-Tanaka approach can still give a good

indication when there are time constraints, because the computation time for that

approach is several times lower.
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(a) PBT, 2% pores

(b) PBT, 4% pores
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(c) PBT, 6% pores

(d) PBT, 8% pores

Figure 6.18: Comparison of the predicted responses obtained with Digimat
MF and Digimat FE
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6.3.4 3D RVE - large strain theory

Next, the results obtained with the assumption of large strains are shown. Figure 6.19

.

shows the comparison of predictions with small strains and large strains (NLGEOM).

The geometric non-linearity is taken into account by toggling the NLGEOM option in

Abaqus.

(a) PBT, 2% pores

(b) PBT, 4% pores
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(c) PBT, 6% pores

(d) PBT, 8% pores

Figure 6.19: Comparison of predicted responses with small strain theory
and large strain theory (NLGEOM): a) 2%, b) 4%, c) 6%, d)
8% of pores

It can be clearly seen that the large strain theory predicts smaller strains, i.e. the

model is stiffer. The difference, although, is negligible because PBT exhibits elastic-

ideal plastic behavior and the model can be simplified by using the small strain theory.
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Next, a comparison of the responses predicted with large strain theory with the sup-

pliers data for PBT can be seen in Figure 6.20

.

.

Figure 6.20: Comparison of predictions with 3D RVEs and assumption of
large strains for PBT with different pore volume fractions

Finally, Figure 6.21

.

shows the correlation of the volume fraction of pores versus the

total strain as predicted by small strain and large strain theory. As the volume fraction

of pores rises, the maximum strain values become smaller. At 8% of pores, for small

strain theory the strain value is 9.14% and for large strain theory 8.79%.
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Figure 6.21: Volume fraction vs. strain - 3D RVE
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6.4 Tension test verification

A tension test implies an uniaxial or biaxial test where a controlled tension is applied

to a specimen until failure occurs. A tension test makes it possible to measure the

reduction in area section, ultimate tensile strength, maximum elongation and breaking

strength. From these measurements Young’s modulus, Poisson’s ratio, yield strength,

and strain-hardening constants can be determined.

The goal is to show how various percentages of pores included in the material affect

the strength of the material. Therefore, a simple tension specimen has been created and

subjected to tensile loads, for the purpose of showing that for the same geometry, loads

and boundary conditions the material imperfections have an effect on the strength of

the material.

The analysis was carried out in two FE software packages, namely: Abaqus and

Digimat. Digimat is a software for modeling microstructures and mapping the micro

level to the macro level. A comparison of results obtained with this coupled analysis

was compared to the predictions with the 3D RVE.

The tension test was carried out on a standard tensile test specimen. The dimen-

sions of the specimen under examination are: 10 x 4 x 80 mm (width x thickness x

length). The cross-section is shown in Figure 6.22

.

.

w = 10 mm

t
=

4
m
m

Figure 6.22: Cross-section area of the tension specimen

The load, boundary conditions and mesh can be seen in Figure 6.23

.

. The lower part

is fixed, and the upper part is supported, allowing displacement in the global direction

Y . On the upper end of the specimen a displacement is prescribed that corresponds to

the maximum strain of 10.18%, also in the direction of Y . Therefore, a displacement of

u = 8.145 mm is prescribed. The geometry is discretized with 190 quadratic elements

of type C3D20R.
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(a) Load and BC’s (b) Mesh

Figure 6.23: Load, boundary conditions and mesh of the tension specimen

The coupled analysis in Digimat CAE and Abaqus is created through a modified

input file where all the parameters are defined according to the usual input file struc-

ture, with the difference that the material is updated from the microstructure defined

in Digimat CAE. The input file can be seen in Appendix A.2

.

. One advantage of this

approach is that homogenization can be applied to real geometry. Furthermore, the

computation time is greatly reduced if the geometry is simple and mesh density isn’t

too high. The predicted responses are comparable to the 3D RVE analysis, with a

noticeable discrepancy as the volume fraction of pores increases.
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(a) PBT, 2% pores

(b) PBT, 4% pores
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(c) PBT, 6% pores

(d) PBT, 8% pores

Figure 6.24: Comparison of the predicted responses obtained with a 3D
RVE and a coupled Digimat-Abaqus analysis of a tension spec-
imen
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6.5 Experimental results

The experiment was carried out in cooperation with Yazaki Europe Ltd. - Zagreb

branch. Tension specimens of pure PBT resin and porous PBT were tested. To induce

the occurrence of air bubbles, PBT was mixed with 1% of Hydrocerol chemical foam-

ing. After the expansion of the chemical foaming, air bubbles ensue in the specimens

where Hydrocerol was added. To obtain the necessary data to define the pore phase,

tomography is used. This procedure is carried out on a CT machine to obtain section

images of an object. More about the concepts of tomography and its use in mapping

of porous materials can be learned in [39

.

].

Porous tension specimens are scanned and information about their microstructure

can then be obtained with the use of a dedicated software accompanying the CT ma-

chine. Two porous specimens are scanned and the information about their pore phase

can be seen in Table 6.4

.

.

Table 6.4: Experimental data for the pore phase

Specimen Pore radius
[mm]

Volume fracion of pores
[%]

PBT B1305, 1% Hydrocerol,
Specimen #1

0.081 0.95

PBT B1305, 1% Hydrocerol,
Specimen #3

0.1225 2.01

Furthermore, a tension test is carried out for pure PBT B1305 to obtain the nec-

essary data of the matrix phase. After that, two 3D RVE models are created, each

representing the microstructure of the appropriate specimen according to Table 6.4

.

.

The 3D RVE models are shown in Figure 6.25

.

(a) Specimen #1 (b) Specimen #3

Figure 6.25: Microstructure of PBT B1305, 1% Hydrocerol: a) Specimen
#1, b) Specimen #3
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The necessary parameters of the matrix phase (PBT 1305) are obtained from the

experimental stress strain-curve of pure PBT B1305 by the procedure shown in Sub-

section 6.3.1

.

. The parameters for defining the elasto-plastic model of pure PBT B1305

are shown in Table 6.5

.

.

Table 6.5: Parameters for defining the elasto-plastic material model, PBT
B1305

E [MPa] ν [-] k [-] m [-]

2400 0.3981 2.54 0.169531

The experimental stress-strain curve of PBT 1305 and the approximation of said

curve are shown in Figure 6.26

.

.

Figure 6.26: Experimental stress-strain curve of PBT 1305 and its approx-
imation in Digimat FE

Finally, the predicted responses of a 3D RVE model obtained with Digimat FE

are compared to the experimentally obtained stress-strain curves for PBT 1305 with

1% Hydrocerol. Figure 6.27

.

shows the comparison of the predicted responses with

experimental data for Specimen #1 and Specimen #3. In the linear elastic regime,

there is good match of results for both specimens. In the plastic regime, there is a

considerable discrepancy between experimental data and the prediction obtained with

the use of a representative volume element. The prediction overestimates the response
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compared to experimental results. It is known that homogenization doesn’t always

yield accurate results in the plastic regime [21

.

], therefore a better procedure for that

regime has to be found. For a further elaboration see the section 6.6 Discussion

.

.

(a) Specimen #1

(b) Specimen #3

Figure 6.27: Comparison of experimentally obtained data with predicted
responses obtained with Digimat FE for PBT 1305, 1% Hy-
drocerol: a) Specimen #1, b) Specimen #3
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6.6 Discussion

An elasto-plastic model for PBT is used for the prediction of its mechanical behavior.

After the definition of the material model, verification of used methods is carried out.

Then, the results of a tension test simulation are compared with the results obtained

through a simulation of a RVE. Finally, the results obtained by the simulation of a 3D

RVE are compared to experimental data for PBT B1305.

By increasing the size of the RVE, it is shown that a minimal size, where the

microstructure sample is representative of the material behavior, can be determined.

If the size of the RVE is increased beyond that limit, no change in the predicted response

is observed. The change of distribution of pores and the size of pores also has no effect

on the predictions. Furthermore, it is shown that a 3D RVE yields better predictions

than a 2D RVE and the Mori-Tanaka method. The approach where large strains are

employed does not show a considerable difference in predicted responses when compared

to the results obtained with small strain theory. A coupled Digimat-Abaqus simulation

of a tension specimen yields less accurate results, but greatly reduces the computation

time.

The analysis of mechanical behavior of PBT resin has shown that the predictions

obtained with homogenization, when compared to experimental results, are accurate

in the linear elastic regime. In the plastic regime, the predicted response drifts away

from experimental data by overestimating the actual response.

The reasons for this overestimation lies in the fact that homogenization does not

always yield accurate predictions in the plastic regime. Furthermore, it was assumed

that the shape of pores is spherical, to avoid numerical problems with rough edges.

This way, the possibility that stress concentration will invalidate the results is reduced.

With the assumption that all pores are identical in terms of shape and size and modeled

as spheres also contributes to the error. Another possibility for the discrepancy is that

the properties of PBT 1305 are deteriorated with the addition of Hydrocerol during the

injection molding process, and this behavior cannot be captured with this approach.

With all of the above in mind, steps that tackle those issues must be taken to solve

this problem.
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7 Conclusion

The thesis deals with the impact of porosity on the mechanical properties of PBT. For

various percentages of pores in the PBT resin, it was shown that the strength of PBT

decreases. This results in breaking of components made of such defective materials

earlier than expected. The objective of this study is to predict the behavior of PBT

with pores present. A multi-scale approach is taken, where the microstructure of PBT

is observed and its effect on the macro results is taken into account.

First, a research of PBT and its properties is carried out. This material exhibits

outstanding mechanical, thermal and electrical properties and because of that it is

used in a wide range of applications. If reinforced with fibers, even better mechanical

properties can be obtained. Usually, glass fibers are used as a reinforcing component.

The most common variants are PBT with 20% of glass fibers (PBT-GF20) and PBT

with 30% of glass fibers (PBT-GF30). It exhibits great ductility, which is why an

approximation by Ramberg-Osgood approach was considered, but, unfortunately, none

of the variants (PBT, PBT-GF20, PBT-GF30) obey the Ramberg-Osgood law.

In this thesis, PBT is modeled as an elasto-plastic material where the von Mises

yield criterion is used. The isotropic hardening is modeled with a power law. The ap-

proximation of the isotropic hardening with the power law yields the isotropic hardening

parameters which are used to define a constitutive material model in a FE analysis.

This approach makes it possible to predict the effect of porosity in the plastic regime.

The analysis of the constitutive mechanical behavior of PBT, where porosity is

included, is determined by means of homogenization methods. The concept of a repre-

sentative volume element (RVE) is introduced. The RVE is a sample of the microstruc-

ture of the material. Periodic boundary conditions, which link the micro and macro

scale are applied to the RVEs boundary. The displacements at the RVE boundaries are

prescribed to correspond to the macro strain. An FE analysis of the microstructure is

then carried out and volume average stress and strain fields are obtained. With this

approach, material properties of PBT can be obtained by simulating only a small part

of the material, thus achieving a great reduction in computation time. An approach

with the Mori-Tanaka method is also taken, where the anisotropy of porous PBT is

described with the known characteristics of constituents (PBT, pores). This approach
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simplifies the modeling phase, but it is only accurate for volume fractions of inclusion

phase which are lower than 25%.

The analysis of the mechanical behavior of porous PBT was carried out in Digimat

and Abaqus. The process consisted of generating the microstructure in Digimat and

carrying the FE analysis either in Digimat or Abaqus. Firstly, the size of the RVE

at which the microstructure sample is representative was determined. For a 2D RVE,

the size was 1 mm with 10 inclusions, and for a 3D RVE the size was 0.15 mm with

4 inclusions. It has been demonstrated that distribution of pores doesn’t affect the

volume average stress and strain fields if spherical pores are modeled. Furthermore, the

size of pores also didn’t influence the predicted response, if the volume fraction of pores

remained constant. With increase of the volume fraction of pores, the strength of PBT

was lower compared to pure PBT. It was determined that the 2D RVE overestimates

the mechanical response of PBT, while the 3D RVE yields better predictions. It was

also shown that the effect of geometric nonlinearity is negligible.

Finally, the predicted mechanical response of PBT 1305, obtained through the em-

ployment of a RVE, was compared to an experimentally obtained result. The compari-

son showed that the prediction is accurate in the linear elastic regime, but, in the plastic

regime, this was not the case. Therefore, a further investigation of homogenization in

the plastic regime, as well as experimental measurements, is recommended.
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Appendix A

A.1: Linear regression-isotropic hardening parameters

linear_regression.py

1 import numpy as np

2 from scipy import optimize

3

4

5 def power_law(e_tot , G_tot):

6 ’’’

7 Determines the coefficients k and m of the power law

8 equation Rp(p) = k*p**m.

9 e_tot: array , total strain values in the plastic regime ,

10 1st element is the yield strain value

11 G_tot: array , stress values in the plastic regime ,

12 1st element is the yield stress value

13 ’’’

14 Gy = G_tot [0]

15 e_el = e_tot [0]

16

17 p = (e_tot - e_el) / 100

18 # if the strain values are decimal already ,

19 # remove the division by 100

20 p = np.delete(p, 0)

21 # removes the 1st element which is zero;

22 # eliminates a runtime error ,

23 # doesn’t change the obtained parameters

24

25 Rp = G_tot - Gy

26 Rp = np.delete(Rp , 0)

27

28 popt , pcov = optimize.curve_fit(

29 lambda t, k0 , m0: k0 * t ** m0, p, Rp , p0=(5, 0.1))

30 # p0 - initial guess

31 k, m = popt[0], popt[-1]

32 print(’k = ’, round(k, 3), ’\nm = ’, round(m, 6))

33

34
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35 if __name__ == ’__main__ ’:

36

37 e_tot = np.array ([2.0582 , 2.1971 , 2.3625 , 2.5798 , 2.8773 ,

38 3.2531 , 3.6592 , 4.0667 , 4.4738 , 4.8807 ,

39 5.2877 , 5.6948 , 6.1019 , 6.5093 , 6.9169 ,

40 7.3246 , 7.7325 , 8.1404 , 8.5484 , 8.9566 ,

41 9.3647 , 9.773 , 10.1813])

42 # strains are in percent

43

44 G_tot = np.array ([49.459 , 51.5, 53.574 , 55.726 , 57.751 ,

45 59.12, 59.608 , 59.639 , 59.7, 59.858 ,

46 60.073 , 60.309 , 60.526 , 60.695 , 60.817 ,

47 60.904 , 60.966 , 61.014 , 61.057 , 61.098 ,

48 61.136 , 61.174 , 61.21])

49

50 power_law(e_tot , G_tot)

A.2: Coupled Digimat-Abaqus analysis

An example of an input file for a coupled Digimat-Abaqus analysis is shown. For

simplicity, only the general layout is shown, with the actual model definitions omitted.

The model is defined in Abaqus and an input file is generated. Then, only the material

is called from files generated in Digimat CAE. Parts which have to be added to the input

file have been marked in color. The material name in section and material definition

has to be the same as in the generated Digimat files. For the analysis to complete

successfully, the files containing information about the material have to be in the same

working directory as the input file when the job is executed. The *Depvar keyword is

used to define the number of internal state variables for a user-defined material. Then

the internal state variables are defined. In this input file example, a reduced number

of internal state variables is defined. For all the available state variables in Digimat,

refer to [17

.

]. Finally, the output of the defined state variables is requested through the

*Element output command. The EVOL parameter makes it possible to obtain volume

average values.
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tension_specimen.inp

1 ** Tension -Specimen

2 *Heading

3 *Preprint , echo=NO, model=NO , history=NO , contact=NO

4 **

5 ** PARTS

6 **

7 *Part , name=Tension_Specimen

8 *Node

9 **

10 ** Nodes

11 **

12 *Element , type=C3D20R

13 **

14 ** Elements

15 **

16 *Node

17 1549, 0., 75.,

18 *Elset , elset=Set -2, generate

19 1, 190, 1

20 ** Section: Section -1

21 *Solid Section , elset=Set -2, material=PBT08Pores

22 ,

23 *End Part

24 **

25 ** ASSEMBLY

26 **

27 *Assembly , name=Assembly

28 **

29 *Instance , name=Tension_Specimen -1, part=Tension_Specimen

30 *End Instance

31 *End Assembly

32 **

33 ** MATERIALS

34 **

35 *Material , name=PBT08Pores

36 *User Material , Type = mechanical , constants = 1

37 0.,
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38 *Depvar

39 12

40 1,"001 _E11_macro ","Average macro 11-strain"

41 2,"002 _E22_macro ","Average macro 22-strain"

42 3,"003 _E33_macro ","Average macro 33-strain"

43 4,"004_2*E12_macro ","2 * Average macro 12-strain"

44 5,"005_2*E23_macro ","2 * Average macro 23-strain"

45 6,"006_2*E13_macro ","2 * Average macro 13-strain"

46 7,"007 _S11_macro ","Average macro 11-Cauchy stress"

47 8,"008 _S22_macro ","Average macro 22-Cauchy stress"

48 9,"009 _S33_macro ","Average macro 33-Cauchy stress"

49 10 ,"010 _S12_macro ","Average macro 12-Cauchy stress"

50 11 ,"011 _S23_macro ","Average macro 23-Cauchy stress"

51 12 ,"012 _S13_macro ","Average macro 13-Cauchy stress"

52 **

53 ** BOUNDARY CONDITIONS

54 **

55 **

56 ** OUTPUT REQUESTS

57 **

58 *Restart , write , frequency =0

59 **

60 ** FIELD OUTPUT: F-Output -1

61 **

62 *Output , field , variable=PRESELECT

63 *Element output

64 SDV , EVOL

65 **

66 ** HISTORY OUTPUT: H-Output -1

67 **

68 *Output , history , variable=PRESELECT

69 *End Step
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