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Abstract

The interaction between a moving vessel and incident waves leads to large relative motions
and strong nonlinearities. This can result in violent water dynamics so that water flows
onto the deck of the vessel, known as green water, and reaches crucial equipment and
other deck structures. Green water events are considered as serious threat to the stability
and operability of vessels, which should be reliably predicted and properly assessed in
the design stage. Due to complexity of the problem, classification rules are limited in
predicting the loads during the green water event.

This thesis describes a novel method that is developed for simulating incompressible
flows for the purpose of predicting green water events. The method is: meshless, Lag-
rangian, volume–conservative, second–order accurate in space, efficient, and suitable for
coupling. The foundation of the method is a set of novel spatial operators based on the
weighted–least squares, which are used to describe and solve the Navier–Stokes equa-
tions in strong form. Volume–conservative Lagrangian advection is used, which naturally
handles violent free–surface flows. Boundary conditions are conforming to moving geo-
metry at each time step. This makes coupling with other mesh–based and structural
solvers straightforward.

A completely parallel and efficient implementation of the methodology is described, which
is validated by simulating cavity–flow, slamming, dam–breaking and sloshing experiments.
The methodology is also validated by simulating both isolated and periodic green water
events simulated in a domain–decomposed environment. The computed kinematics and
dynamics of the flows compare well with experimental data and results obtained by other
numerical methods.

Keywords: green water; marine hydrodynamics; free surface flows; meshless method;
Lagrangian method; finite differences; domain decomposition.
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Prošireni sažetak

Uvod

Nepogodni okolišni uvjeti, tj. valovi, vjetar i morske struje induciraju velika gibanja bro-
dova i pomorskih objekata. Osim prekooceanskih brodova, uzimajući u obzir nove granice
za eksploataciju nafte, plutajuće jedinice za skladištenje i prekrcaj (eng. Floating Storage
and Offloading, FSO) te plutajuće jedinice za proizvodnju, skladištenje i prekrcaj (eng.
Floating Production Storage and Offloading, FPSO) su izložene takvim uvjetima. Međud-
jelovanjem okolišnih uvjeta i velikih gibanja broda, nailazeći valovi mogu premašiti nad-
vođe i zalijevati palubu. Uslijed relativnih gibanja morske vode u odnosu na konstrukciju,
pri zalijevanju palube udari vode mogu biti dovoljno snažni da oštete opremu na palubi,
palubu, nadgrađe, ili pak mogu narušiti stabilitet broda. Osim dinamike udara morske
vode pri zalijevanju palube, morska voda koja ostane na palubi doprinosi narušavanju
stabiliteta zbog povećavanja težišta mase sustava i utjecaja slobodne površine. Ovisno o
procjeni kapetana, značajno zalijevanje palube pri plovidbi ublažava se smanjenjem brzine
plovidbe ili promjenom kursa. Međutim, pri projektiranju je potrebno pažljivo izvršiti
analizu za određeno stanje mora uključujući neizvjesnost opterećenja uslijed zalijevanja
palube, koja mogu narušiti stabilitet broda ili oštetiti opremu na palubi i nadgrađe. Zbog
složenosti problema koji uključuje hidroelastičnu konstrukciju sa šest stupnjeva slobode
gibanja u međudjelovanju s nepravilnim valovima, pravila klasifikacijskih društava ogran-
ičena su pri predviđanju opterećenja udara vode uslijed zalijevanja palube. Također,
postojeći eksperimentalni pristupi su preskupi i složeni, a numeričke metode ili ne daju
adekvatnu točnost rezultata ili su previše zahtjevne za proračun. U ovom doktorskom
radu predložena je nova numerička metoda, koja je pogodna za numeričko simuliranje
problema zalijevanja palube.

Matematički model

Strujanje fluida opisano je Navier–Stokesovim jednadžbama u Lagrangeovom obliku. Takav
prirodni oblik gibanja ne sadrži konvekcijski član, koji opisuje razliku gibanja promat-
rača i čestica fluida. Ako se pretpostavi da je polje tlaka funkcija polja brzina, tada
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se uvjet nestlačivosti može uključiti u Poissonovu jednadžbu tlaka. Poissonova forma
Navier–Stokesovih jednadžbi nema nedostatke kao projekcijske sheme te je efikasnija.

Rješavanjem Poissonove jednadžbe u jakoj formulaciji te jednadžbe očuvanja gibanja,
gibanje fluida prikazano je integracijom brzine i položaj domene fluida u vremenu. Lag-
rangeov opis strujanja može kvalitetno odrediti advekciju fluida i njegove slobodne površine.

Kako bi se navedeni matematički problem analizirao u što kraćem vremenu, koristi se
dekompozicija trodimenzijske domene problema. Pomorstvenost broda se rješava lin-
earnom ili nelinearnom potencijalnom teorijom te se strujanje tekućine u blizini trupa
broda, koje prelazi nadvođe broda, koristi kao ulaz u lokalni nelinearni rješavač Navier–Stokesovih
jednadžbi za predviđanje daljnjeg tijeka zalijevanja palube broda.

Numerička metoda

Volumen fluida u potpuno bezmrežnoj metodi prikazan je nizom, odnosno oblakom točaka
bez ikakve topološke povezanosti. Točke se slobodno gibaju, a prilikom međudjelovanja
točaka određena točka utječe na prsten točaka koje je okružuju. Metoda se temelji na
međudjelovanju susjednih točaka te novih diskretnih prostornih operatora, tj. prvih i
drugih derivacija, koji su temeljeni na metodi najmanjih kvadrata. Diskretni operatori
se koriste za opis Navier–Stokesovih jednadžbi u jakoj formulaciji. Dakle, Poissonova
jednadžba tlaka direktno je diskretizirana s novouvedenim operatorima.

Kako bi se adekvatno postavio sustav jednadžbi, oblak točaka se omeđuje nizom točaka
koje služe za narinjavanje rubnih uvjeta. U svakom vremenskom koraku točke fluida
blizu zida se projiciraju na zid, gdje se generiraju rubne točke za trenutni vremenski
korak. Kako je vektor projiciranja uvijek okomit na projiciranu plohu, moguće je točno
diskretizirati rubne uvjete u smjeru normale na plohu.

Rubni uvjeti ulaza i izlaza tekućine iz domene se definiraju preko virtualno postavljenih
stijenki. Na tim stijenkama rubni uvjeti se mogu postavljati u bilo kojem vremenskom
trenutku, kako bi se omogućilo spajanje bezmrežnog rješavača na rubu proračunske domene
s nekim drugim rješavačem izvan te domene. Vrijednosti hidrodinamičkih veličina na
dodirnom mjestu dviju domena se interpoliraju u svrhu prenošenja informacija iz jedne
domene u drugu. Tako se komunikacija između domena može vršiti neovisno o metodi i
diskretizaciji, koju koristi rješavač vanjske proračunske domene.

Nakon generiranja rubnih točaka, identificiraju se točke na slobodnoj površini pomoću
kojih se mora narinuti atmosferski tlak na slobodnoj površini. Navedeni Dirichletov uvjet
osigurava jedinstveno rješenje sustava jednadžbi. Test kojim se provjerava leži li točka na
slobodnoj površini koristi svojstva novouvedenog Laplaceovog operatora. Matrica sustava
jednadžbi jest M–matrica, koja osigurava dobra konvergencijska svojstva.
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Nakon rješavanja jednadžbe tlaka, aproksimiraju se članovi vremenske derivacije brzine,
gradijenta tlaka i difuzijskog člana u Navier–Stokesovoj jednadžbi. Na taj način kao
nepoznanica u običnoj diferencijalnoj jednadžbi preostaje jedino brzina, koja se ekspli-
citno izračunava. Bezmrežne točke koje opisuju fluid napreduju u prostoru izračunatom
brzinom.

Poznato je da točke u Lagrangeovom opisu strujanja prate strujnice te se razdvajaju ili
sakupljaju, što narušava zakon očuvanja mase. Nakon eksplicitnog pomaka, točke oblaka
se organiziraju na način da svaka točka zauzima jednaki volumen što se osigurava rješavan-
jem optimizacijskog problema Jacobijevim iteracijama dok se ne zadovolji kriterij jednake
udaljenosti između susjednih točaka. Hidrodinamičke veličine na novim položajima, na-
kon reorganizacije točaka dobivaju se interpolacijom na neorganiziranom oblaku točaka.
Pokazano je kako ovakav način prikaza strujanja može opisati impulzivne udare, pri kojima
je potrebno dopustiti određenu stlačivost fluida.

Implementacija

Pri razvoju metode, napravljena je generička računalna biblioteka za implementaciju
bezmrežnih algoritama, koristeći moderne C++meta–programske tehnike, koje omogućuju
jedan, a optimalan kod za različite ulazne parametre, poput broja dimenzija.

Svi implementirani algoritmi izvode se paralelno na centralnim i grafičkim jedinicama
za obradu podataka. Prikazano je kako metoda ima odlična konvergencijska svojstva te
je pogodna za paralelno izvršavanje, što rezultira numeričkim simulacijama u kratkom
vremenu na današnjim računalima.

Verifikacija i validacija

Pomoću računalne implementacije provedena su istraživanja numeričkim simuliranjem
različitih problema za koje su već poznata numerička rješenja ili su provedeni eksperi-
menti. Novouvedeni diskretni Laplaceov operator je verificiran na nizu umjetno stvorenih
problema, koji uključuju aproksimaciju Laplaceovog operatora i rješavanje Poissonove
jednadžbe. Implementirani rješavač je primijenjen za simulaciju uobičajenog pokusa za
verifikaciju rješavača računalne dinamike fluida bez utjecaja slobodne površine tj. pokusa
strujanja u šupljini s pomičnim poklopcem. Validacija impulzivnog razvoja tlaka izvršena
je simuliranjem udaranja klina o tekućinu te udaranja pramca kontejnerskog broda. U oba
slučaja numerički razvoj tlaka je uspješno reproducirao eksperimentalne podatke. Povrh
toga, simulirani su eksperimenti pucanja brane te zapljuskivanja tekućine u gibajućim
tankovima, kako bi se pokazalo da metoda može simulirati snažne udare tekućine o krute
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stijenke, pri kojima uspješno reproducira udarne tlakove. Potom su provedene numeričke
simulacije koje opisuju problem zalijevanja palube. Izolirani događaji zalijevanja palube
su simulirani na sličan način kao i pucanje brane, pri čemu su stvoreni valovi koji se lome
preko palube. Također je uspoređena sila na palubu dobivena numeričkim simulacijama
s eksperimentalnim vrijednostima. Najvažniji validacijski pokus izvršen u ovom doktor-
skom radu je simulacija FPSO modela na pravilnim valovima dekompozicijom domene.
Numerički razvoj tlakova na palubi tijekom zalijevanja zadovoljavajuće prati eksperiment-
alni razvoj tlakova. Također, prikazano je kako se osim valova mogu narinuti i gibanja
broda, koja značajno utječu na opterećenja uslijed zalijevanja vode na palubu.

Zaključci

Doneseni su sljedeći zaključci:

• Poissonova forma Navier–Stokesovih jednadžbi u Lagrangeovom opisu strujanja je
točnija i stabilnija od projekcijskih shema.

• Novouvedeni diskretni prostorni operatori u obliku konačnih razlika su stabilni te
rezultiraju dobrom konvergencijom pri rješavanju Navier–Stokesovih jednadžbi.

• Fluid se prilagođava geometriji tako da se domena fluida projicira na geometriju
definirajući rubne uvjete u svakom vremenskom koraku.

• Lagrangeov opis strujanja prirodno upravlja razvojem slobodne površine složenog
oblika. Svojstva Laplaceovog operatora mogu poslužiti za prepoznavanje točaka na
slobodnoj površini.

• Zakon očuvanja mase u Lagrangeovom opisu strujanja adekvatno se postiže optimir-
anjem udaljenosti između susjednih točaka.

• Lagrangeove metode moraju imati kontrolu nad ulaznim i izlaznim granicama uk-
lanjajući i generirajući diskretne točke fluida po potrebi, što je preduvjet za dekom-
poziciju domene.

• Generalizirane ulazne i izlazne granice te bezmrežna aproksimacija omogućuju da
se domena bezmrežne metode može spregnuti s bilo kojom metodom koja rješava
vanjsku domenu.

• Metoda temeljena na opisanim postavkama uspješno reproducira eksperimente za-
lijevanja palube, udaranja pramca i zapljuskivanja u tankovima, čime je dokazano
da je metoda pogodna za simuliranje problema sa snažnim udarima tekućine.

• Metoda ne ovisi o diskretizaciji geometrije te je pogodna za spregu s rješavačima
elastične strukture.
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Konačni zaključak: bezmrežne aproksimacije konačnim razlikama u Lagrangeovom opisu
strujanja mogu adekvatno riješiti Navier–Stokesove jednadžbe i prikazati strujanje sa
slobodnom površinom uz jednostavnu spregu s drugim rješavačima, a u svrhu analize
opterećenja broda ili plutajuće konstrukcije uslijed nailaska valova.

Ključne riječi: zalijevanje palube; brodska i pučinska hidrodinamika; strujanje sa slobod-
nom površinom; bezmrežna metoda; Lagrangeov opis strujanja; metoda konačnih razlika;
dekompozicija domene.
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1. Introduction

1.1. Problem of Water on Deck

Harsh environmental conditions comprise of waves, wind and current, which induce large
ship motions. Consequently, encountering waves of high sea states can exceed the free-
board of ships and other floating structures. Large relative motions between the vessel and
water can result in violent water dynamics that either produce foam and spray causing
little harm, or they can result in solid water that flows onto the deck of the vessel, which
is known as “green water” or “green sea”. Foam and spray, which is sometimes termed
“white water”, distract the crew on deck and degrade visibility from the bridge. However,
large amount of momentum of the water on deck can be destructive to ship equipment,
crew and ship itself. Green water has been considered as an important problem for the
safety and operability of naval and merchant vessels, and other floating structures with
an exposed deck. Temarel et al. [1] describe that if the wave breaks and overtops the
structure, then the flow becomes multi–phased and chaotic. A large aerated region is
formed in the flow in the vicinity of the structure while water runs up on to the structure.
The timeline of breaking of a high wave that overtops the bow is shown in figure 1.1.
Water on deck may build enough momentum to impact against a structure on the deck.
Damages done by water impacts are usually not critical for large vessels, but may lead to
loss of production time.

Significant shipping of water is in practice usually handled by changing the course and
reducing the speed in order to avoid serious damages. Tan [2] reported that green water
was the most important indicator for captains to change the speed and course of Dutch
merchant ships to avoid serious damages. For example, large containerships sail with
higher speeds, and their containers not covered by any means on deck are highly at risk
to green water.

Buchner [3] quotes from the book ‘The Battle of the Atlantic’: “Their hulls whipped and
shuddered in the huge Atlantic seas . . . solid green water swept destructively along their
decks . . . For hour after hour this process repeated itself. Damage mounted, hull plates
splitting, boats being smashed, men swept overboard and delicate anti-submarine devices
put out of order”. A couple of photographs showing historical naval ships in green water
events may be seen in figure 1.2.
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Figure 1.1.: A typical timeline of green water over the bow. The vessels heads into high
waves that break just above the bow generating large amount of momentum.

MV Derbyshire was an ore-bulk-oil carrier that was lost on 9th of September 1980 with
44 fatalities. The investigation report [4] concluded that the occurrence of green water
was the main culprit. Model tests conducted at MARIN evidenced that Derbyshire had
accentuated pitching and considerable amplification of relative vertical motion in the
problematic sea state, thus exposing the bow and forward hatch covers to heavy and
repeated green water loading. It was concluded with reasonable confidence that the
initiating cause of the loss was the destruction of some or all of the ventilators and air
pipes located on the foredeck by sustained green water loading over many hours. Water
was thereby able to enter vessel that developed a trim by the bow which had the effect of
accentuating green water loading on the hatch cover as the sea conditions became more
severe. Once that hatch cover collapsed, water rapidly filled the large ullage space above
the cargo. It caused the vessel to go further down by the bow by another 3.7 metres
within 5 to 16.5 minutes, with a final result of loss of the vessel.

Nowadays, it is common to produce oil from offshore vessels in order to eliminate the need
of laying expensive long–distance pipelines. Floating Production Storage and Offloading
(FPSO) vessels are permanently moored at a certain offshore position where they produce
and process hydrocarbons and store oil. Compared to most of other ship types, FPSOs
have a lot of sensitive equipment installed on the deck. Since they are moored by the bow,
rotating and exposing the box to waves leads to green water events, which causes damage
to its equipment and the superstructure. From 1995 to 2000, 17 green water incidents
have been identified on 12 UK FPSOs and Floating Storage Units (FSUs) [5]. The vessel
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Figure 1.2.: Two historical photographs capturing green water events on naval ships. USS
Maryland (top image) steaming through a gale in the South China Sea, 1907.
USS Utah (bottom image) taking green water over the bow while returning
from the Mediterranean Sea, 1913.

parts on FPSOs specifically designed for green water loading, were also damaged by green
water [6]. In conclusion, FPSOs designed according to existing classification rules and
regulations still suffer from green water loading damages.

It is also well known that green water can have strong impact on the stability of vessels,
i.e. water on deck has also been the cause of casualties for smaller ships and boats. Water
flowing on the deck changes loads distribution and consequently damages the stability
of the vessel by reducing its metacentric height. In addition, lateral movement of the
shipped water with free surface can amplify lateral motions of a ship, and therefore induce
a catastrophe. A lot of research has been carried out on the effect of water-on-deck of
fishing vessels after a number of capsize incidents.

Numerous damages caused by green water events have prompted researchers to solve the
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problem, or at least to try to predict severe events. Green water is an example of a
classical hydrodynamic problem with three-dimensional interaction between fluid and a
structure. Due to complexity of the problem, classification rules and regulations have
limitations in predicting green water loading. Early studies were based on experiments
with different bow forms and head waves [7, 8], and statistical methods for the predic-
tion of slamming and shipping of green water [9]. Design methods assessing green water
that have been developing through more than half of century haven’t managed to reliably
predict or completely stop these events. Accidents have taken place, quoting green water
and limitations in design standards being the culprits. The Derbyshire report [4] con-
cludes that classification societies need to introduce improved design approval and survey
procedures for new buildings.

In conclusion, green water is considered a serious threat to the safety and operability of
vessels, which should be reliably predicted and properly assessed in the design stage.

1.2. Physics of Green Water Incidents

Besides an amount of the water that has shipped onto the deck, dynamics of both water
and the vessel are responsible for inducing loads onto the deck, deck equipment and
superstructures, too. Typically a green water incident can be separated into four stages:

I. the impact of the hull (usually the bow) and water (usually an incoming wave),
which results in water sliding up the freeboard,

II. building of the water that enters the deck,

III. flowing of the water on the deck, forming a jet with complex structures,

IV. the impact of the flowing water and deck structures.

The listed stages are visually depicted in figure 1.3. Hirdaris et al. [10] argue that the
green–water problem in a certain sense is a counterpart of the slamming problem, provided
that the water column impinges the structure from above. However, the green water
problem shares similar flow features with sloshing. Various components are responsible
for the possibility of occurrence and harshness of green water incidents. The components
are linked to one another, but their separated overview is given in the following text.

1.2.1. Relative Wave Motions and the Freeboard

Relative wave motions around the vessel hull are the main input to the green water
problem, which is given by the following expression:

rW (t) = η (t)− z (t) , (1.1)
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Figure 1.3.: The main stages of water wetting the deck of a ship defined in [11], shown
schematically in profile (left image) and top view (right image).

where rW is the local relative wave elevation, η is the incident wave elevation, and z is
the local vertical vessel motion. The relationship is schematically drawn in figure 1.4.
In the linear analysis, the incident wave elevation and local vertical vessel motion are
respectively defined as:

η (t) =
HW

2
cos (ωW t− k x) , (1.2)

z (t) = Az cos (ωz t− ξz) , (1.3)

where ωW is the wave frequency, k is the wave number, Az is the amplitude of the vertical
vessel motion, and ξz is the phase angle of the vertical vessel motion. In the linear analysis,
if a relative wave elevation exceeds the freeboard level, the water will flow onto the deck.
The freeboard exceedance height, hE, is defined as:

hE (t) = rw (t)− hFB, (1.4)

where hFB is the height of the freeboard. Since this is the basis of the green water
prediction, the relative wave motions should be predicted accurately in order to reliably
predict green water loading. It can be assumed that the initial shape of green water is
sinusoidal with the height equal to the freeboard exceedance, but Buchner [12] has shown
that the freeboard exceedance does not necessarily lead to the same value of water height
on deck. Buchner and Voogt [13] noted that the relation between the water height on the
deck and the freeboard exceedance is almost independent of the underwater hull shape,
the wavelength, the current speed and the wave direction. As input to the green water
problem the incoming waves can be an important source of nonlinearities in the relative
wave motion result [14], and some authors take the nonlinearity in the waves as the main
component in the prediction of the extreme relative wave motions, e.g. [15].
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freeboard height
relative wave elevation

Figure 1.4.: Relative wave elevation compared to the vessel freeboard.

1.2.2. Vessel Motions

Vessel motions and the forward speed have additional influence on the development of
green water dynamics [16]. For example, the vessel pitching increases relative vertical
motion of the vessel quite substantially. The more the relative vertical motion, the greater
will be the head of green water on the bow. For a ship with large forward speed, a very
significant amplification of the consequent loads may occur. Linear and nonlinear potential
flow methods form the basis for most green–water prediction tools. The main assumptions
are that the fluid is assumed to be ideal, that the waves are sinusoidal, and that the waves
and vessel motions are small, so the fluid is taken into account up to the initial waterline.
Since the problem can be linearised, the frequency domain can be employed to obtain the
relation between the ship motion and the incoming wave amplitude for each frequency.
Whether these assumptions are justifiable, is still debatable [3].

1.2.3. Flare and Bow Shapes

The effect of the bow shape on the occurrence of green water has always been a point of
discussion. It is certain that the flare in the bow region of a ship with its outward curvature
of the hull above the waterline, like shown in figure 1.5, affects the relative motion and
the diffraction of the incoming wave. The flare does not only push the water up, but also
away from the bow. Also, the disturbance of the bow flare stops when the relative wave
motion comes above the deck edge [3, 17]. This influences the resulting height of water on
the deck and the dynamics of the shipped water on the deck. As an example, O’Dea and
Walden [18] have shown how the increase of the flare on traditional ship types can reduce
deck wetness. On the other hand, Lloyd [19] has shown how the increase of the flare also
increases deck wetness on a frigate type of ship. Buchner and Voogt [13] have deduced
linear relation between the freeboard exceedance and the resulting water height on deck
by including factor that depends on the flare of the ship bow. They also note that the
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effect of the bow flare increases with the distance from the fore perpendicular (FP). In
conclusion, bow geometry and motion can decrease or increase relative wave motion and
thus decrease or increase the amount of shipped water on deck. There are many different
opinions of this complex problem, and consequently, it can be stated that specificity and
influence of a single parameter such as flare cannot be analysed straightforwardly, but
requires prediction methods that couple as much parameters as possible [17]. Due to the
complexity of the problem, a bow shape that is very effective to keep the deck dry in one
condition can be less ideal in other environmental conditions [3].

Figure 1.5.: Bow flare of USS Wisconsin at her berth in Norfolk, VA. Photograph taken
by Steve Hersey.

1.2.4. Water Flow on the Deck

Vermeer [20] noted that there is resemblance between a usual case of green water flow onto
the deck and the theoretical dam breaking problem, which is similar to a shallow water
wave. At initial time, it is assumed that the column of liquid is released by immediate
removal of a dam that holds the column. Therefore, the water flows in the empty region, as
depicted in figure 1.3. The velocity of the flow is assumed proportional to the square–root
of the height of the liquid before the dam breaks:

U = 2
√
gh, (1.5)

where h is the height of the liquid column, and g is the gravitational constant. Instead
of assuming the stage II as an initially static problem, the actual problem is much more
complex, because the deck is moving, the height of the freeboard is varying in time,
and the initial velocity in not zero, especially for steep waves that reach the deck [21].
Nevertheless, the theoretical dam break problem is useful for understanding the water
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flow on the deck. As the wave breaks and overtops the structure, the flow becomes
multi–phased and chaotic as a large aerated region is formed in the flow in the vicinity
of the structure while water runs up on to the structure [1]. The water on the deck
forms a high velocity water jet and violently impacts the structure like an impinging
jet. In addition, the green water on the deck can have a significant effect on the ship
motions, especially in shorter waves, due to its large moment arm with respect to the
centre of gravity of the ship [3]. Generally, pressure on the deck caused by the water flow
is influenced by the initial velocity and water column height (stage II), the acceleration
of the deck, and the combination of the deck velocity and the rate of change of water
height on the deck. Unfavourable combination of the listed conditions leads to significant
pressures, which load the deck and form a powerful jet that impacts structures on the
deck. For ships with zero speed, or very low speeds, the accelerations usually reach their
maximum when the water reaches the deck (stage II).

Obstacle

Water column

Virtual dam

Computational domain

Figure 1.6.: Modelling green water flow as a dam breaking problem.

1.2.5. Water Impact on Structures

When water on the deck reaches a structure with high velocity, it results in a violent
impact with significant impact loading, which is depicted as stage IV in figure 1.3. On
the impact, the water flows up the structure and builds significant amount of water, which
falls back on the deck. Besides the immediate loads at the impact, the loads from the
water falling on the deck can also be significant. Therefore, pressure measurements in
green water experiments are usually characterised by two pressure peaks: the first one
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caused by the water impact on the structure, and the second one caused by the water
falling down on the deck near the structure. Worst–case scenarios frequently include
breaking waves, which induce significant loads. Snapshots from an in-house experiment
of a breaking wave that wets the deck is depicted in figure 1.7. Besides a complex shape
of the free surface, large spray, splashes and aerated regions are generated, which makes
the problem hard to numerically simulate. Breaking waves can also develop on the deck
and violently impact deck superstructures.

Figure 1.7.: Snapshots of an experiment in which a breaking wave wets the deck. Free
surface, splashing and aerated regions are depicted by blue, green and yellow
colours, respectively.

1.3. Reducing Green Water Loads

Breakwaters are usually used to reduce green water loads. Buchner [3] tried to qualitat-
ively evaluate the efficiency of breakwaters protecting the deck by comparing V–shaped,
vertical and vane–type breakwaters, drawn in figure 1.8. The author reported that a
vane–type breakwater effectively reduced water that piles up in front of the breakwater,
and that less water reached the deck structures. Some CFD studies on the performance
of breakwaters were carried out by Pham and Varyani [22, 23]. The loads on breakwaters
and protected structures were compared to find out the advantages and disadvantages of
each type of breakwater. However, the authors did not present a validation with experi-
mental data. They also added perforations, and concluded that the arrangement of holes
on rectangular breakwaters does not have advantages.

Major classification societies do not give details on the efficient design of the breakwater,
but only simplified formulas to predict loads without taking into account the shape of
the obstruction. However, it is shown in practice that FPSOs have been benefiting from
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vane–type breakwaters that are fitted along the ship sides. It must be noted that any
obstruction on the deck restricts flow, which leads to the increase in pressures on the deck
plating forward of the obstruction. Vane–type breakwaters are complex to construct,
and require support from the deck. Simpler V–shaped breakwaters are often mounted
since they are more cost–effective. Due to the lack of experimental data, non-validated
numerical methods, and the lack of classification rules, there is significant amount of
uncertainty in the design process of breakwaters. Besides breakwaters that physically
stop water that has shipped on the deck, modifications of the ship bow may mitigate the
shipping of water on the deck. As already noted in section 1.2.3, there exists no general
conclusion on how the bow shape correlates with reducing the green water loads.

Figure 1.8.: Traditional V–type breakwater (left image), vertical wall breakwater (middle
image) and vane type breakwater (right image) [3].

1.4. Past Research Overview

There are hundreds of scientific papers and research reports that deal with green water
effects, i.e. the physics of water on deck and possible prediction methods. Some of the
most notable and recent studies are listed in the following text.
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1.4.1. Numerical Methods

Temarel et al. [1] conclude that the green water problem has been investigated exper-
imentally and numerically, but with very limited success. The issues arise due to the
fact that green water is very difficult to measure either under laboratory conditions or in
the field, and very difficult to simulate numerically. The problem, due its fast moving,
multiphase and highly turbulent nature, is not very amenable for accurate numerical sim-
ulation, although 3D models help to understand and simulate the mechanisms of green
water impinging on deck. Computations of green–water loads with various wave headings
is still a challenge. Qualitative benchmark studies are required to validate and improve
numerical approaches.

Bellezi et al. [24, 25] analysed the green water phenomenon on three-dimensional models
using the Moving Particles Semi–Implicit (MPS) method, which is a fully Lagrangian
method for incompressible flow. They focused on the validation of the method comparing
the numerical results with experimental results for green water on reduced scale models.

Buchner [12] showed how the impact of green water on FPSO design will become more
important in the future, and based on a series of model tests he presented an orientation
into the various aspects which play a role in the green water loads on FPSO units.

Buchner and Voogt [13] investigated the water shipping pattern and the pressure distribu-
tion on the deck of FPSO due to green water with varying bow flare angles. They showed
that the amount of green water and the resulting impact loads on structures at the deck
are not only functions of the freeboard exceedance level, but also of the bow flare angle
of the FPSO.

Colicchio et al. [26] analysed the water shipping caused by head sea waves for a FPSO
ship at rest with a 3D Domain Decomposition (DD) strategy, where a linear potential
flow seakeeping analysis of the vessel is coupled with a local nonlinear rotational–flow
investigation for the prediction of water-on-deck phenomena.

Silva and Rossi [27] tried to simplify the green–water loads determination by proposing a
methodology to estimate these loads considering the water elevation above deck measured
from experiments or numerical tools.

Drake [28] investigated instantaneous wave profiles associated with green water events for
a stationary vessel heading into long-crested random waves.

Ersdal et al. [6] described five production ships in Norway and included their green water
incidents. Furthermore, they described the status of the methods for evaluating the green
water phenomenon as well as precautions taken to prevent further incidents.

Faltinsen et al. [29] studied green water in the bow region of a FPSO unit in head sea
waves by employing a 2D method satisfying the exact nonlinear free–surface conditions
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within potential–flow theory, as a step towards a fully 3D method. They concluded that
the wave steepness of the incident waves causes important nonlinear effects, and that the
hydroelasticity effects can be ignored. They also showed the importance of accounting for
the coupled flow between the deck and outside the ship.

Gatin et al. [30] validated a FVM solver for green water simulations by employing Volume
of Fluid (VOF) and Ghost Fluid Method (GFM) to discretise the free–surface boundary
conditions at the interface. The solver was later used for calculating extreme green water
loads upon a vertical–deck structure of an Ultra Large Container Ship (ULCS) in full
scale.

Gómez–Gesteira et al. [31] analysed the phenomena within the framework of the Smoothed
Particle Hydrodynamics (SPH) method, and noted how the flow in the wave crest is split
into two, showing a different behaviour above and below the deck.

Gong et al. [32] established an engineering approach, named moving foredeck model, to
simulate green water flow and its impact on deck structure for high speed vessels. The
motion of a vessel was obtained with a potential flow solver, which was used as an input
to a commercial CFD solver.

Greco et al. [33, 34] developed a 3D domain decomposition (DD) strategy to deal with
violent wave–ship interactions involving water-on-deck and slamming occurrence, by coup-
ling a linear potential–flow seakeeping solver with a Navier–Stokes solver. The coupling
was applied for the case of a freely floating patrol ship in head regular waves and com-
pared against experiments in terms of flow evolution, body motions, and pressure on the
hull.

Greco et al. [35, 36] conducted a synergic 3D experimental and numerical investigation
for wave–ship interactions involving the water-on-deck and slamming phenomena. A
weakly nonlinear external solution for the wave–vessel interactions was combined with a
2D shallow–water approximation. They confirmed that the water shipping features are
qualitatively and quantitatively affected by the parametric roll of the ship.

Hamoudi and Varyani [37] investigated the probability of green water occurrence by taking
into account the threshold of the vertical relative motion exceeding the freeboard. They
concluded that there is no direct relation between the velocities in the waves and the
water velocity over the deck. The water velocities around the bow are heavily distributed
by the presence of the bow.

Kendon et al. [38] considered results from a 2D model test setup and compared the
measured vertical loads on the deck against two simple potential theory based methods
and against results from a commercial CFD code. They concluded that for isolated impact
events the simple potential flow based models, which do not consider the influence of one
impact event on another, are adequate to predict vertical loads.
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Kleefsman et al. [11] simulated green–water loads including vessel motions through a
domain decomposition: far–field and ship motions were calculated by the potential theory
and were used to simulate the local flow around the deck using a VOF method, improved
by introducing a local height function.

Landrini et al. [39] studied free–surface bow flow around a fast and fine ship, with an
emphasis on the generation and evolution of the breaking and splashing bow wave using
the 2D+t theory. The Boundary Element Method (BEM) was coupled with the Smoothed
Particle Hydrodynamics (SPH) method to simulate the jet evolution and splashing.

Le Touzé et al. [40] applied the SPH method to predict the fluid behaviour for two different
dynamic flooding scenarios: the interaction between a vessel and travelling waves, and
the transient flooding behaviour that occurs on a side collision between two vessels.

Lee et al. [41] studied the behaviour of green water impacting a fixed rectangular structure,
and investigated the flow kinematics of a series of experiments and CFD simulations based
on the Finite Volume Method (FVM).

Lu et al. [42] performed CFD simulations of wave overtopping 2D and 3D fixed decks, and
a green water impact on the deck and deckhouse of a moving FPSO model. The introduced
Finite Element Method (FEM) solver in arbitrary Lagrangian–Eulerian (ALE) frame was
thus verified by comparison to experimental measurements of the each simulated case.

Nielsen and Mayer [43] numerically modelled green water loads on a moored FPSO ex-
posed to head sea waves by employing a FVM CFD solver, and the results were compared
with the experimental ones [36, 13].

O’Dea and Walden [18] examined the importance of nonlinearities in large-amplitude
motions, and conducted a series of experiments with a model of a frigate in steep head
waves. They pointed out the disadvantages of the linear theory and that a time–domain
nonlinear solver should be used for such complex problems.

Ogawa et al. [16] conducted a series of model tests to develop a method for practical
estimation of ship motion and green–water loads using a model of general cargo ship.
It was concluded that the difference of ship type should be taken into account for the
determination of rational criteria of green sea loads.

Östman et al. [44] presented numerical simulations of green water events and wave impacts
on a FPSO using a commercial FVM solver. The computations showed that CFD tools
can be used when studying the physics of green water. However, due to heavy time
requirements, this type of CFD analysis is not yet a practical tool for parametric design
studies and deck structure optimizations.

Pakozdi et al. [45] showed the feasibility of the SPH method to give more detailed forecast
of the hydrodynamics on the deck than the simplified water-on-deck estimation.
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Pham and Varyani [22] developed a model of dam breaking with initial velocity using
CFD, with which they investigated the green water loads on a high–speed containership.

Qin et al. [46] built a 2D numerical wave flume in which a nonlinear freak wave is
generated. An elastic deck was used to consider the fluid–structure interaction (FSI)
during the green water event. The simulations showed that although the elasticity of the
deck barely influenced the global evolution of the fluid motions, it affected the local fluid
pressures significantly.

Ryu et al. [47, 48] applied Ritter’s dam–break flow solution for the prediction of overtop-
ping green water on an offshore structure.

Schønberg and Rainey [49] developed a tool for the calculation of water velocities on the
deck of a ship as a result of green water incidents. The flow of water is modelled using
a numerical method, which applies the potential flow theory and uses a desingularised
boundary integral equation method combined with an implicit time–stepping procedure.

Shibata et al. [50] have proposed an incompressible variant of the Moving Particle
Semi–implicit (MPS) method. They compared the estimated pressure with the exper-
iments for a ship in head waves. The investigation has shown that there is still some
lack of agreement in terms of both pressure and forces acting on the deck due to relevant
oscillations in time.

Shibata et al. [51] have extended the MPS method for a three-dimensional ship mo-
tion under high wave-height conditions where shipping of water occurs. The nonlinear
effect of shipping water was successfully simulated by the MPS method, although there
quantitative differences between the calculated and experimental results still remained.

Silva et al. [52, 53] evaluated the green water on FPSOs subjected to beam and quartering
irregular seas through a combination of ocean basin model tests and CFD simulations.
The model test was performed with measurements of water elevations and loads during
green water events. The identification of critical regions near the deck edge and the water
on deck propagation are characterized.

Song et al. [54] investigated green water velocities and impact pressures caused by the
impact of overtopping waves on a fixed deck structure in a large–scale, deep–water wave
basin. The impact pressures on the structures were strongly affected by the changing
front shape of the broken wave and the impulsiveness of the impinging wave that contains
a considerable amount of air entrainment.

Sun et al. [55] numerically investigated the green water on the tumblehome hull, which is
different from that of hulls with flare freeboard. The motions of the hull were calculated
with the potential theory, and the dam–break flow model was used to calculate green water
height and pressure distribution, which resulted in lower values than those obtained in
the experiment.

14



1. Introduction

Stansberg and Karlsen [15] presented results from model tests with an FPSO in irregular
waves. The results showed that critical events often occur in steep and energetic nonlinear
waves and that the ship pitch motion is also essential. Wave spectra with moderate wave
periods may therefore be more critical than long waves.

Wang et al. [56] presented a frequency–domain numerical approach of green water pre-
diction for FPSOs in irregular waves, including the effects of bilge keels, spread mooring
system, and asymmetrically arranged risers. Analysis of the results indicated that the
relative wave elevation at sides of the FPSO in oblique waves was strongly affected by
bilge keel, mooring, and risers.

Warmowska [57] introduced a numerical model, based on shallow water flow, which de-
scribes water flow on the deck.

Xiao et al. [58] conducted an experimental study to investigate the wave run-up and green
water of a FPSO in shallow water, considering non-collinear environments and different
water depths. The results showed that wave run-up and green water along the broadside
can be significant in oblique waves, especially at midship, and that the water depth has
an important influence on wave run-up.

Yamasaki et al. [59] developed a Finite Difference Method (FDM) to predict the water
impact pressure caused by green water phenomena, where the density function method
was employed in the framework of a locally refined overlapping grid system.

Yilmaz et al. [60] carried out experiments with models of FPSOs, which showed that the
flow of water over the deck resembled a suddenly released wall of water rather than a
breaking wave. The developed semi-analytical method predicted a jet-like formation at
the forefront of dam in the simulation of green–water flow on the deck.

Zhu et al. [61] introduced a dynamic mesh technique and numerically simulated 2D green
water occurrence on a fixed FPSO model in head waves and an oscillating vessel in beam
seas.

Zhu et al. [62] extended a commercial CFD code to model green water occurrence on
floating structures. The motions of an FPSO were calculated by potential theory, and
CFD tools were used to investigate the details of green water impacts.

1.4.2. Experimental Methods

Experiments reproducing green water incidents are still being carried out. The objective
of experiments is to determine extreme loads or to validate numerical methods. Scaled
experiments violate scaling laws with respect to the effects of air entrapment. Most of
the experiments are done for fixed structures at zero speed (e.g. FPSOs) using simplified
wave conditions (e.g. regular waves or one focused wave).
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Lloyd [19] conducted experiments to examine the deck wetness process and to determine
the effect of bow form above the waterline on deck wetness in head seas, with a systematic
series of bow forms with varying flare and overhang. The author found that the freeboard
bow form had remarkably little effect on relative motions or deck wetness and the greatest
incidence of deck wetness occurred with one of the extremely flared forms.

Cox and Ortega [63] conducted a small–scale laboratory experiment to quantify a transient
wave overtopping a horizontal deck, fixed above the free surface. Free surface and velocity
measurements were made with and without the deck structure to quantify the effect of
the deck on the wave kinematics.

Fundamental experiments were carried out by Ryu et al. [47], in a wave flume with a
focused wave overtopping a fixed structure. The authors have developed Bubble Imaging
Velocimetry (BIV) technique to measure fluid velocities. The experiments correlate to
analytical dam break models if the initial water height, i.e. the front velocity of the
analytical model, is properly tuned [48].

Ariyarathne et al. [64] conducted experiments to serve as validation material for numerical
codes. They generated an extreme event on a simplified wedge–shaped model of an FPSO,
rigidly connected to the bottom of the tank. They have investigated green water impact
pressures due to plunging breaking waves impinging on a simplified, 3D model structure
[65]. Impact pressure was found to be quite different between the wave conditions even
though the incoming waves are essentially identical.

Ryu and Chang [66] measured the water velocity fields of a plunging wave breaker at the
front face of the deck and bubbly flow after overtopping of the deck using Particle Image
Velocimetry (PIV) and Bubble Image Velocimetry (BIV) techniques.

Varyani and Pham [23] experimentally investigated the employment of whaleback fore-
castle, studying its effectiveness and adequacy as an option to reduce green water loads
on high–speed container vessels.

Lee et al. [67] analysed the experimental results for three different FPSO bow shapes in
regular head waves, and compared them to each other. They used a fixed model with a
vertical bow, an inclined bow and a rounded bow to measure the pressures on the deck.
Based on the results, a database for computational fluid dynamics code validation was
built, and some design considerations were proposed.

Guo et al. [68] conducted model experiments for an FPSO in shallow water exposed to
wind, waves and current. The authors used the data to validate their CFD calculations,
without sharing the details of the experiments for the sake of reproduction by other
researchers.
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Table 1.1.: Comparison of various advantages and disadvantages of numerical simulations
and experiments.

Category Physical experiment Numerical simulation
Results Flow measurements Flow prediction

Readings Equipment–limited number of
points

All quantities at any
time/space

Price Relatively expensive Relatively cheap
Time Slow process Relatively quick
Scaling Smaller models Any

Setup Limited range of operating
conditions Any operating conditions

Repeatable Mostly Yes
Safe Not all Yes

Error sources Measurement errors, flow
disturbances, etc.

Discretisation, numerical
method, etc.

1.5. Numerical Hydrodynamics

Fluid flows are described by PDEs, which represent laws for the conservation of mass,
momentum, and energy. CFD provides qualitative and quantitative prediction of fluid
flows through software tools: solvers, preprocessing and postprocessing tools. Various
numerical methods, i.e. discretisation and solution techniques, are used in order to solve
the problem described by relevant PDEs. CFD enables scientists and engineers to perform
numerical simulations on computers. As a rule, CFD still cannot completely replace the
real experiment and its measurements, but the amount of experimentation and the overall
cost can be significantly reduced. The amount of trustworthiness of the results of a CFD
simulation depends on the level of uncertainty and on the accumulative effect of introduced
errors. Uncertainty can come from the lack of comprehension of the phenomena, e.g.
turbulence modelling. Errors can emerge from various sources, such as physical modelling
uncertainty or introduced simplifications or spatial and temporal discretisation errors. In
addition, the implementations may enforce low convergence criterions, add finite–precision
errors while doing arithmetic operations or programming “bugs”. Lastly, the user may
introduce errors while forming the solver input. Table 1.1 compares well known aspects
of numerical simulations and experiments.

1.5.1. Mesh–Based Methods

Mesh–based methods for solving Partial Differential Equations (PDEs) have achieved
remarkable success and they have been successfully applied in various fields of engineering.
They divide a continuum domain into discrete subdivisions. A set of subdivisions is usually
called a mesh or grid, which requires connectivity information based on a topological map.
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Figure 1.9.: Meshless or point–cloud description of a fluid continuum compared to the
polygonal/polyhedral mesh counterpart.

An example of a mesh part is shown in figure 1.9.

Creating topologically correct and geometrically conforming mesh, which needs to be
appropriate for an investigated problem, is time–consuming work and often requires
user interventions within mesh generation steps. In addition, a simulation that requires
large mesh deformations is difficult to maintain in geometrically complex problems, e.g.
fluid–structure interaction. Deformations require cautious node movements or re-meshing
of deforming areas to avoid mesh tangling and loss of mesh regularity.

Popular classes of mesh–based methods are listed in the following text, and their charac-
teristics are briefly described.

1.5.1.1. Boundary Element Method

Boundary Element Methods (BEMs) are usually used where simplifications of the poten-
tial–flow theory can be employed, i.e. for inviscid non-rotational flows. The integrals over
the whole fluid domain can be transformed to integrals over the boundaries of the fluid
domain. This 3D-to-2D transformation simplifies grid generation and often accelerates
computations, even though the problem–matrix is dense. Practical applications for poten-
tial flows around ships that deal with wave problems use BEM, which is often termed the
panel method. In the panel method, the wetted surface of the hull and the surrounding
free surface is divided into discrete elements, quadrilaterals and triangles, called panels.
Each of these elements fulfils the Laplace equation. Indirect methods determine the ele-
ment strengths so that at the collocation points (usually centres of the panels) a linear
boundary condition of zero–normal velocity is fulfilled. This involves finding the solution
to a dense system of linear equations with the source strengths as unknowns. The re-
quired velocities are computed in a second step, hence it is an “indirect” method. Direct
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methods determine the potential directly. They are less suited for boundary conditions
involving higher derivatives of the potential, but yield higher accuracy for lifting flows.
Most commercially used codes for ship flows are based on indirect methods, where the
pressure field is obtained through Bernoulli’s equation.

1.5.1.2. Finite Difference Method

Finite Difference Methods (FDMs) were one of the first class of methods that was de-
veloped to solve diverse initial-boundary-value problems (IBVPs). FDMs divide the whole
fluid domain into discrete nodes, almost always forming a regular mesh. Starting with
the governing equations in partial–differential form, the differential terms are replaced by
finite differences (FDs) via a truncated Taylor series expansion or polynomial fitting to
the first or second order in terms of nodal values at each grid point. A single algebraic
equation at each node represents some flow characteristic at that location by a specific
number of neighbouring locations, which are unknowns. Discretisation errors can lead to
a violation of conservation of mass or momentum, i.e. during the simulation the amount
of fluid might continuously diminish. Due to the need of a regular mesh, it is difficult to
automatically discretise boundary conditions, especially in the case of complex–shaped
domains. On the other hand, the FDM is conceptually simple, easy to implement, and
effective on structured grids.

1.5.1.3. Finite Volume Method

Finite Volume Methods (FVMs) use a numerical grid defined by a finite number of con-
trol volumes, rather than the computational nodes, as in the FDM. Connected control
volumes fill the fluid domain usually in a complex manner, defining an unstructured mesh.
Frequently the flow variables are collocated at computational nodes that can be placed
at the centre of control volumes. FVMs also employ FDs for the temporal discretisation.
However, spatially they are based on integrated equations for mass and momentum con-
servation over the individual cell before variables are approximated by values at the cell
centres. Conservativeness is ensured by applying the Gauss divergence theorem, i.e. mass
and momentum are conserved because errors at the exit face of a cell cancel with errors
at the entry face of the neighbour cell. Most Reynolds–averaged Navier–Stokes (RANS)
solvers nowadays are based on the FVM that work with unstructured body–conforming
meshes. An effective alternative to dealing with dynamic conforming meshes are mesh
methods that capture the geometry of the free boundary. Examples include methods
based on the adaptive grid refinement of Quadtree and Octree grids, for which re-meshing
is straightforward and efficient [69]. Such methods have satisfactory parallel scalability
and can be extended to perform massively parallel computations [70].
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1.5.1.4. Finite Element Method

The Finite Element Method (FEM) is similar to the FVM, but the domain is subdivided
into discrete volumes called finite elements. In the FEM, a function that describes vari-
ations of the flow variable, known as the shape function, is substituted in governing equa-
tions obtained by multiplying a weighting function before the integration. The method
is robust for variable grid refinements. FEM dominate structural analysis, but is also
applicable to fluids. For ship hydrodynamics they play only a minor role. As a rule of
thumb, FEMs for CFD generally require more memory and have slower solution times
than FVMs, although discontinuous Galerkin method receives some attention in the CFD
community. Finally, while the conservation is natural in the FVM, the FEM requires
special treatments to ensure a conservative solution.

1.5.1.5. Immersed Boundary Method

Over the last few decades, it has become popular to extend FDMs and FVMs to handle
immersed boundaries. Otherwise stated, Immersed Boundary Methods (IBMs) are formed
so that they can handle complex geometries that are simply overlaid or “immersed” in
the background grid. This enables the flow to be calculated through the regular grid
where the geometry is not intersecting it, but the spatial derivatives around cells that are
intersected by the geometry must be carefully discretised. To enforce the desired solid
boundary, a body force is introduced in the momentum equations at the desired points
in the fluid domain, without the necessity of performing the mapping procedures. As a
result, generation of grids is greatly simplified and bodies immersed into the grid are free
to move. For these reasons, it has become attractive to test IBMs on problems of ship
hydrodynamics.

1.5.2. Meshless Methods

A wide variety of meshless methods have been proposed over the years and are currently
under active development [71]. One of the main motivations is the recent advances in
data–parallel algorithms and corresponding parallel–execution hardware, and the ease of
applying such algorithms to methods that are based on compact support. The concept of
meshless points employing spherical compact support is shown in figure 1.9 and compared
with the equivalent mesh. During recent years, meshless methods have emerged as a class
of effective numerical methods which are capable of avoiding the difficulties encountered
in conventional computational mesh–based methods.

A meshless or mesh-free method can be used as a general approach for the numerical
solution of problems in continuum mechanics, such as the simulation of fluid flows. The
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medium is numerically represented by a finite set of points, which may be seen either as
particles (discrete chunks of the medium) or as interpolation points (discrete nodes used
to describe continuous fields in space). In any case, each point is endowed with the relev-
ant local properties of the medium such as density, velocity, pressure, and temperature.
The points can move with the medium, as in the Lagrangian approach to fluid dynamics,
or they may be fixed in space while the medium flows through them, as in the Eulerian
approach. In the Eulerian approach, the points are fixed in space, but new points may
be added where there is need for increased accuracy. A schematic comparison of the
Eulerian approach and the Lagrangian approach is shown in figure 1.10. Alternatively, a
mixed Lagrangian–Eulerian approach may also be used. Due to the freedom of movement
without mesh, meshless methods are ideal to be described by the Lagrangian approach.
From figure 1.10 it can be noticed that the Lagrangian approach is natural as compared
to the Eulerian, in which the observers are fixated to specific locations. For this reason,
Eulerian approaches require special care when calculating the spatial derivatives. Non-
linear convective derivative (Latin convectio is “act of carrying”) must be added to the
partial derivative, D/Dt = ∂/∂t+u ·∇, which means that the physical quantity is carried
by the velocity field u (x, t). More than three decades of research have shown that the
simplicity of the convection term does not extend to its discretisation.

Meshless Lagrangian methods are free of the term u · ∇ due to the natural observation
of the movement, and thus easily adapt to domains with complex and/or time–evolving
geometries and moving phase boundaries without the software complexity that would be
required to handle those features with topological data structures. They can be useful for
nonlinear problems involving viscous fluids, heat and mass transfer, linear and nonlinear
elastic or plastic deformations, etc. Meshless methods have been developing under two
branches of formulations: methods based on the weak form of PDEs, and methods based
on the strong form of PDEs. Classification and overview of mesh-free methods is given
in [72, 73]. Brief descriptions of some of the most used and researched meshless methods
are given in the following text.

1.5.2.1. Smoothed Particle Hydrodynamics

The most popular, and nowadays widely used meshless method is the Smoothed Particle
Hydrodynamics (SPH) method, which represents quantities as discrete particles and uses
a kernel function to smooth their volumetric contributions. The method was originally
introduced to solve problems in astrophysics without boundaries [74, 75]. The method
has been further extended to solve varieties of problems like compressible inviscid flows,
incompressible inviscid flows, multiphase flows. A weakly compressible SPH (WCSPH)
approach was introduced by Monaghan [76], who used it to simulate free–surface flows
[77]. The incompressible limit is obtained by choosing a very large value of the speed of

21



1. Introduction

t = T t = T + Δt

t = T t = T + Δt

One observer in time per one fixed spatial location

One observer in time per one moving parcel

Figure 1.10.: Comparison of the Eulerian viewpoint where the quantities are observed at
fixed points in space (top image), and the Lagrangian viewpoint where the
points are carrying physical quantities (bottom image).

sound in the equation of state, such that the Mach number becomes small. However, a
large value of the speed of sound restricts the time step to be very small. SPH methods
have a number of problems that require special fixes, which sometimes come at great cost,
but do not eliminate all low–order inconsistencies [73]. The other principal difficulty of
the SPH method is imposing boundary conditions. Other inherent characteristics of the
method are tensile stability, energy conservation, and lack of interpolation consistency.

1.5.2.2. Moving Particle Semi–Implicit

The Moving Particle Semi–Implicit (MPS) method is similar to the incompressible SPH
method, because both methods provide approximations to the strong form of PDEs on
the basis of integral interpolants. However, the MPS method applies simplified differential
operator models solely based on a local weighted averaging process without taking the
gradient of a kernel function. The standard MPS is formulated assuming a set of particles
located inside obstacles and along their boundary. Tamai and Koshizuka [78] improved
the MPS method with the Least Squares (LS) approach for high–order accurate spatial
discretisation with consistent time integration and generalized treatment of boundary
conditions.
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1.5.2.3. Generalized Finite Difference Method

The Generalized Finite Difference Method (GFDM), sometimes referred to as the meshless
FDM, evolved from the classical FDM. It can be applied over general or irregular clouds
of points. The basis of the GFDM was published by Jensen [79], where Taylor’s series
expansion on six–node stars was used to derive the FD formulae approximating derivatives
of up to the second order. Benito et al. [80] reported that the solution of the generalized
FD method depends on the number of nodes in the cloud, the relative coordinates of
the nodes with respect to the star node, and on the weight function employed. The
GFD methods have been used in many engineering applications and in papers where
irregular geometries and free–moving boundaries are involved. In the GFDM, the MLS
approach is adopted to derive the expressions of the spatial derivatives and approximation
of the primary variable, which are expressed as linear combination of nearby function
values. To enforce the satisfactions of governing equations at every interior node and
boundary conditions at every boundary nodes via a collocation approach, a sparse system
of algebraic equations is solved. Then the numerical solutions are acquired by solving the
resultant system of algebraic equations. The GFDM may achieve high order of accuracy,
depending on the order of the MLS. On the other hand, for unsteady problems MLS
operations need to be redone each time step, which yields poor efficiency of the method
for such problems.

1.5.2.4. Finite Pointset Method

The Finite Pointset Method (FPM) is a particle method, fully Lagrangian and mesh-free,
in which a fluid is replaced by a finite number of particles (a pointset). Boundaries are also
approximated by a finite number of boundary particles and boundary conditions are pre-
scribed on them. The robustness of this method is shown by the simulation results in the
field of airbag deployment in car industry, since the boundary of the airbag changes very
rapidly in time and takes a quite complicated shape [81]. Initially, the FPM simulations
of incompressible flows were performed as the limit of the compressible Navier–Stokes
equations with the quasi compressible equation of state, and later the method was ex-
tended to employ the Chorin’s projection method [82] in a local iteration procedure [83].
The Poisson problem in the projection method was adopted in the MLS approximation
procedure with the condition that the Poisson equation and the boundary condition must
be satisfied on each particle [84]. In conclusion, the FPM is a variant of GFDM as the
strong solution of the considered problem is determined by direct approximation of the
differential operators.
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1.5.3. Hybrid Methods

Of course, the listed approaches have different strengths and weaknesses. The Lagrangian
approach adequately handles the advection, but has problems with the evaluation of the
pressure and incompressibility constraint. On the other hand, the Eulerian–grid approach
is suitable for solving the pressure and incompressibility constraint, but the approach
encounter problems with the advection. Hybrid methods were developed in order to
minimise the issues on advection and pressure arising when simulating incompressible
flows.

1.5.3.1. Particle In Cell

The Particle In Cell (PIC) concept represents the earliest hybrid approach where a grid
evaluates the particles that represent the motion of a fluid and its properties [85]. The
advection step is handled using particles and the rest of the simulation steps, i.e. the
diffusion, external forces, pressure projection, and boundary conditions, are computed on
a grid. One of the main drawbacks of the PIC method is that it suffers for severe numerical
diffusion due to the averaging and interpolation of velocities when transferring them from
the grid onto the particles. Basically, particle characteristics are diffused, because their
velocities are overwritten by a fluid flow computed on the grid. A fluid simulated with
the PIC method will, therefore, appear more viscous than it should be in reality.

1.5.3.2. Fluid Implicit Particle

Brackbill and Ruppel [86] solved the main problem of the PIC method by instead of in-
terpolating the newly calculated velocities to the particles from the grid and replacing
the velocities, they interpolated the change in velocity and added it to the already ex-
isting particle velocities. Except for the velocity update step, the Fluid Implicit Particle
(FLIP) and PIC methods are basically identical. However, resulting fluid simulations with
the FLIP method is less viscous than with the PIC method, and therefore is suited for
simulation of water. FLIP method that simulate fluids with the free surface experience
undesirable noise on the free surface, which is often assessed by linearly combining the
PIC and FLIP methods.
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1.6. The Research

1.6.1. Problem Definition and Objectives

The problem described in section §1.1 arising due to complex physics described in sec-
tion §1.2 is a significant problem for vessels and offshore structures. The listed exper-
imental and numerical methods give limited insight in determining the occurrence and
magnitude of green water loads. There are no validated tools that are both computa-
tionally efficient and reliable for evaluating vessels and offshore structures for the risks
of green water loads. Consequently, classification societies seek for new procedures that
may approve and improve designs of new buildings.

The aim of this thesis is to introduce a new meshless numerical methodology for single–phase
(water without air) flow modelling in marine hydrodynamics, which can be coupled with
some other mesh-based solver for the purpose of simulating a ship on waves and cor-
responding green water incidents. The methodology should be: accurate and validated,
possible to couple with other solvers, computationally efficient, and easy to use.

The research is based on the following hypotheses:

1. The Lagrangian description of flow naturally describes the advection of fluid with
the free surface, as compared to the Eulerian description of flow.

2. It is possible to solve the nonlinear problem of green water with high–fidelity by
solving Navier–Stokes equations based on the Lagrangian description of flow.

3. The global domain can be decomposed to improve computational efficiency, by coup-
ling the Lagrangian nonlinear region with some simpler solver for the outside region.

1.6.2. Rationale

The high–hierarchical level of the mind map, showing rationale for establishing the method
proposed in this thesis, is rendered in figure 1.11. While the main arguments for the
methodology are given in the following text, assertion details of the each methodology
item/step are given in the remainder of the thesis.

1.6.2.1. Requirements

The nonlinearities in green water incidents can be related to the effect of water-on-deck on
the ship motions, the effect of the hull shape above water, and the effect of nonlinearities
in the waves. Therefore, high-fidelity prediction of the flow in the vicinity of the vessel
is needed, which accounts for all the nonlinearities of the problem, and for a complex
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Figure 1.11.: High-hierarchical level of the mind map, showing rationale for establishing
the novel method. Requirements are colourised green, deal–breakers red,
and favourable properties blue.

nature of violent impacts of fluid onto the structure. When steep waves and other factors
contribute to forming a complex shape of the free surface that surpasses the freeboard,
it is important to further simulate the flow as accurate as possible. In conclusion, even
if it is assumed that the potential flow theory can be used to simulate ship motions
on waves, an Euler or Navier–Stokes equations solver of high–fidelity that can capture
the nonlinearities must be used both in the vicinity of the vessel and on the deck. The
solver should simulate complex free surface shapes and handle their fragmentation and
reconnection before, during, and after the violent impact of water on deck structures.
These requirements termed “Navier–Stokes”, “free surface” and “impacts”, are colourised
green in figure 1.11. Other two requirements include coupling of multiple domains, i.e.
the speeding up of the simulations by a potential–flow solver for the ship motions and
far–field waves, and the requirement that a simulation should be easily set-up so that an
engineer using the procedure does not waste enormous amount of time on pre-processing
tasks, which is usually the case when using mesh–based flow solvers.
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1.6.2.2. Discretisation

A solution to the requirements of predicting violent fluid–structure impacts with complex
free surface fragmentation, is to employ a meshless and Lagrangian method for the spatial
discretisation and representation of water flow. Lagrangian advection has various advant-
ages over the Euler representation of water flow. The main advantage is that it can handle
fluid domains, whose boundaries change rapidly without any additional computational ef-
fort. As it was schematically depicted in section 1.5.2, meshless methods intrinsically do
not require mesh generation with topology in the pre-processing stage, which is the most
substantial task when setting up a numerical simulation for a mesh–based solver. In the
meshless context, a simpler and automatic generation of the continuum is used, i.e. a fluid
domain is simply filled with points bounded by the input solid geometry, which makes a
simulation fast to set-up.

1.6.2.3. Numerics

Commonly used meshless methods presented in section 1.5.2 have different advantages and
disadvantages. Most promising methods concerning the solution accuracy are based on
MLS, which can be extended to reach arbitrary order of accuracy. However, they require
high computational power, and therefore, they are not suitable for transient problems
with rapidly changing geometry. A compromise between fast and relatively inaccurate
SPH methods, and slow and accurate MLS–based methods, are fast second–order accurate
Weighted Least Squares (WLS) methods, used in this thesis. The disadvantage of the WLS
methods is that the second derivatives are not directly obtained from their formulation.
Therefore, this thesis deals with finding a solution to this problem in order to obtain
high–fidelity solutions to Navier–Stokes equations, which depend on the robustness and
accuracy of the Laplace operator.

1.6.2.4. Boundaries

The Lagrangian nature of the newly introduced method allows for direct interaction
between the fluid and geometry, i.e. the geometry can simply be moved in time, and
the fluid adjusts to moving boundaries by respecting the imposed boundary conditions.
Moreover, geometry can be transformed into discrete points at the start of the simula-
tion, or the points close to walls can be projected at each time step to generate boundary
points. Consequently, the only input are the boundary surfaces defining the domain and
bodies of the simulation, without the need of any kind of mesh preparation. The combin-
ation of the Lagrangian approach for the fluid advection and arbitrarily moving (or even
deforming) boundaries is suitable for the simulation of green water events, where the ship
hull moves along with complex flows around the hull and on the deck.
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1.6.2.5. Domain Decomposition

A rigid–body solver and a Navier–Stokes solver may be coupled to simulate waves and
vessel motions in waves in time, along with water flow on the deck. The unified simulation
is alluring, but is not feasible in everyday engineering projects due to time–cost, i.e. the
current status of hardware. State-of-the-art seakeeping software based on the potential
flow theory are validated, and their constraints are well known. The solvers based on
the potential flow theory swiftly simulate characteristics of vessel motions under different
environmental conditions. Therefore, they are usually used to predict worst case scenarios
and their probability. In order to speed up the simulation of a green water incident, the
solver introduced in this thesis allows for coupling with another solver though the domain
decomposition approach. In other words, the boundaries of the fluid domain communicate
with the other solver to transfer the flow information between each other. The most
feasible approach for the evaluation of a green water incident is to calculate ship motions
with a potential flow solver and to impose those motions and inlet conditions to the
Navier–Stokes solver with a domain built just around the hull where nonlinearities occur.
In conclusion, the reduced–size domain of the Navier–Stokes solver coupled with some
fast external–domain solver allows the engineer to quickly simulate necessary scenarios,
in lieu of making unified simulations in a large domain using only a Navier–Stokes solver.

1.6.3. Contributions

Based on the rationale argumented in section 1.6.2, new contributions to the field of
numerical hydrodynamics are made. The research resulted in a new meshless and Lag-
rangian numerical methodology, which can be used to simulate green water phenomena
on dynamically floating vessels and to obtain the corresponding loads on the deck and
its structures. The main contributions of this thesis to the field of CFD and marine
hydrodynamics are summarised as follows.

Lagrangian velocity–pressure formulation of the NSE is used to evolve fluid
flow. Contrary to vast majority of implicit meshless methods that use projection schemes,
proposed numerical methodology is built on top of the velocity–pressure formulation.
Without intermediate sub-steps, it requires solving one Poisson equation per time step,
irrespective of the dimensionality of the problem. This is, performance-wise, the best that
one can achieve for incompressible flows.

The Poisson equation is solved in finite difference (strong) form by employing
the novel discrete Laplacian. The main ingredient for adequately solving a Poisson
equation is the discrete form of the Laplacian. In this thesis, the Laplacian is defined
by extending the renormalisation technique, i.e. a least–squares technique used for the
gradient. The introduced Laplacian is efficient, reproduces the central finite difference
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results for regular arrangements, and has a linear convergence rate even for extremely
irregular point arrangements.

Boundaries are represented by directly importing geometry models. Lagrangian
meshless methods are well known due to the fact that they don’t require volumetric
meshes, but most of the methods prepare boundaries by converting them to (multiple
layers of) points. The introduced method goes a step further and directly interacts with
boundaries by projecting near fluid points onto them to generate boundary conditions
each time step. It is shown that skipping the step of preparing boundary points benefits
accuracy through better boundary conditions.

Novel second–order directional derivatives. Directional derivatives evaluated at
boundaries to impose the Neumann boundary condition are often discretised less accurate
than the discrete gradient, which deteriorates accuracy of the solution. Since boundary
points are generated by projecting fluid points, there always exists an adjacent fluid point
along the normal of the boundary. This enables new discrete forms of the directional
derivative to be derived by using information from the wall and relevant fluid point. The
new form of the directional derivative has been proven to yield second–order accurate
approximation and consistent system of equations for the Poisson equation.

The free surface is robustly detected. Meshless method have troubles detecting the
points on the edge of a point cloud, i.e. points that are located on the free surface. The
detected points impose the free surface boundary condition that is imperative for obtaining
a unique and correct pressure field each time step. The renormalisation correction for the
novel Laplacian in combination with a spherical geometrical test are used to quickly and
robustly detect the points on the free surface.

Volume–conservative Lagrangian advection. The advection of meshless points is
done in Lagrangian manner for each point, and simultaneously the volume conservation is
handled by solving a set of geometrical constraints. The conservation can be interpreted
as a re-meshing or optimisation method enforcing virtual volumes of points by enforcing
equidistances between neighbouring points. The global volume of fluid is conserved at all
time despite relying on finite differences and Lagrangian movement.

Unified inlet and open boundaries for the coupling. While flux–based methods
control fluxes on boundary faces to generate/release flow from the domain, Lagrangian
methods need to physically generate and remove parcels of the fluid. At boundaries of the
domain, any boundary condition describing inlets or open boundaries may be implicitly
imposed. On the other hand, explicit movement of the point cloud needs to be handled
near the boundaries: a part of fluid leaving the domain is deleted, while a part of fluid that
tries to enter the domain has to be created. A procedure for unifying these requirements
is introduced.
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Validation of the method for green water and other violent free surface flows.
The method was used to simulate water entry, dam break, and sloshing experiments.
The simulated characteristics of the flow were found to be in a good agreement with the
experimental results. For impulsive fluid–structure impacts, where potential flow and
FVMs can flounder, the proposed method was found to adequately reproduce velocity
fields and the pressure rise/decline and peak values.

The implementation runs fully in parallel. State-of-the-art high performance com-
puting requires of algorithms to be locally (by-node) parallelised, and only then distributed
to nodes in order to be competitive. The global time–stepping procedure is sequential, but
each step is a parallelised algorithm. New parallel techniques described in this thesis have
been implemented to speed up: neighbour searching, linear–system solving, visualising
results.

1.6.4. Structure of the Thesis

The remainder of the thesis is organised as follows.

Chapter 2 summarises the governing equations of incompressible flows, and presents the
solution–scheme for the NSE in the Lagrangian context to model water on deck. The NSE
equations are then simplified in order to model the waves and ship motions. The domain
decomposition is introduced to couple the complex and simplified solvers for efficient
solving of the global problem.

Chapter 3 deals with establishing a numerical method that solves the introduced governing
equations efficiently. The chapter introduces the novel spatial operators and boundary
conditions, for both solid boundaries and the free surface, that are used to model the
problem. Lagrangian marching in space and time is described, which conserves the volume
of fluid by constraining distances between closest neighbours.

Chapter 4 gives the overall solution procedure. Then the implementation of the method
steps are discussed in detail. The chapter discusses how the system of linear equations is
efficiently solved, and how the neighbours in the point cloud are quickly found.

Chapter 5 presents the verification and validation of the numerical method and its imple-
mentation, which is done by simulating various test cases and comparing the computed
results to data from literature. The tests include artificial Poisson problems, cavity flow,
water entries of various bodies, dam breaks, sloshing experiments, and isolated and peri-
odical green water events.

Chapter 6 presents the conclusions regarding this thesis. In addition, proposals for future
research are discussed.
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This chapter presents the mathematical modelling of the physics of incompressible fluid
flow. The chapter starts by introducing the Navier–Stokes equations that describe the
flow in the Lagrangian context. Two efficient approaches for solving the Navier–Stokes
equations applicable to green water problems are described, and their advantages and
disadvantages are explained. The equations are then simplified to describe the potential
flow theory. The coupling of two domains using complex and simplified equations is
presented in order to model the global domain.

2.1. Navier–Stokes Equations

For an incompressible fluid, the time–dependent initial-boundary-value problem (IBVP)
for Navier–Stokes equations (NSE) is given as:

Du

Dt
= −1

ρ
∇p+ ν∇2u+ f x ∈ Ω, (2.1)

∇ · u = 0 x ∈ Ω ∪ Γ, (2.2)

u = g x ∈ Γ, (2.3)

u (t = 0) = u0 x ∈ Ω, (2.4)

where D/Dt is the Lagrangian derivative, u is the velocity vector, ρ is the fluid density, p is
the pressure, ν is the kinematic viscosity of the fluid, f is the external acceleration vector
acting on the fluid, g is the boundary velocity vector, u0 is the initial velocity vector. The
time and spatial dependency is not explicitly written, but is implied. The fluid is moving in
a Rd domain Ω, bounded by Γ, where d = 2 or d = 3 is the number of spatial dimensions.
The system of equations (2.1)–(2.4) is sometimes referred to as the primitive–variable
formulation of the incompressible NSE. Formally, the initial condition (2.4) should also
satisfy the divergence-free condition through equation (2.2), i.e. ∇ · u0 = 0 should hold
everywhere in the domain. The governing equations describe a mixed elliptic–parabolic
system of equations which must be solved simultaneously. The system of equations is
parabolic in time, and elliptic in space. The unknowns in the equations are the velocity
field u (x) and the pressure field p (x), which evolve through time t.
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The advantage of the Lagrangian description of the system of equations is the absence of
the convective term, u · ∇u, which is included in the Eulerian description of the system
of equations. The convective velocity is defined as the difference between fluid particle
velocity and the mesh velocity, and without a mesh, the fluid particles physically move by
their velocities. This inertial term is nonlinear and responsible for the transfer of kinetic
energy in the turbulent cascade. In the Lagrangian description of the flow, the nonlinear
characteristics of the flow are reproduced by direct movement of fluid particles, avoiding
the need of the discretisation of the convective term, which is a cumbersome task for any
Eulerian CFD method.

The system of equations for the incompressible NSE (2.1)–(2.4) can be discretised in a
variety of ways. Straightforward discretisations of equations (2.1) and (2.2) can lead to
checker-board instabilities [87]. In any case, the pressure must maintain solenoidal or
divergence-free condition of the velocity field described by the continuity equation (2.2)
at every time instant. Since there exists no direct connection for the pressure between
the continuity and momentum equations, some mathematical manipulations have to be
made based on assumptions in order to establish a connection between the equations. An
accurate, but also costly way to numerically advance equation (2.1) is to solve for u and p
in a fully coupled manner. For better efficiency, it is useful to decouple the solution of the
velocity from the solution of the pressure. The efficient split–step schemes that decouple
the velocity and pressure are often used in meshless Lagrangian methods (e.g. [88]).

This decoupling is the source of a long discussion related to the proper numerical discret-
isation of NSE in the presence of boundaries, since the pressure term in equation (2.1)
is not explicitly dependent on time, p (x). Many numerical approaches require imposing
extra boundary conditions, either for the pressure or for an intermediate velocity field,
which can be non-trivial to choose and difficult to implement. Projection schemes have
limited temporal accuracy as a result of matrix splitting errors and produce errors near
boundaries where the pressure equation is not solved, which results in the formation of
a numerical boundary layer, i.e. area of compressible fluid with non-solenoidal velocity
[89]. This raises a question of proper boundary conditions for the pressure to satisfy
equation (2.2) everywhere in the domain, which should be assessed in order to achieve
first or second order of accuracy for the pressure and velocity [90, 91].

2.2. Projection Schemes

The projection schemes (also known as splitting methods, pressure correction meth-
ods, etc.) have been introduced as efficient way to reduce the computational cost of
time–dependent incompressible viscous flow simulations in the velocity–pressure formula-
tion. Meshless methods commonly utilise the classical projection scheme introduced by
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Chorin [82] and Temam [92], or its derivatives, which are based on the Helmholtz–Hodge
decomposition theorem for a vector field.

A vector field, such as the velocity vector field, may be written as the sum of the solenoidal
(divergence–free) part and the irrotational (curl–free) part:

u = usol + uirr. (2.5)

The divergence of the sum yields:

∇ · u = ∇ · uirr, (2.6)

and conveniently, a curl-free vector field can be substituted by the gradient of some scalar
function (uirr = ∇φ):

∇ · u = ∇2φ, (2.7)

which is called the Poisson equation for the scalar function φ. If u is known, equation (2.7)
can be solved for the scalar function φ and the solenoidal part can be simply obtained
from:

usol = u−∇φ. (2.8)

The main idea of the projection methods in CFD is to split the resolution of the momentum
equation into two steps. In the first step, an estimation of the velocity is computed, which
does not satisfy the incompressibility constraint. Then, the projection operator is used
to project this estimated velocity field onto the space of divergence-free vector fields.

2.2.1. Non-Incremental Projection Scheme

The classical, or non-incremental, projection scheme that is written in Lagrangian context
[93] is described in the following text. In the first step, sometimes called the prediction
step, estimated velocity is computed based on the viscous and external forces, without
taking the pressure gradient of the previous time step into account:

u? − un
δt

= ν∇2u? + f , (2.9)

where u? is the estimated intermediate velocity field, δt is the time step size, and n is
the number of the iteration in time domain. Equation (2.9) can be made explicit if some
diffusion approximation is introduced, e.g. if the previous time–step velocity ∇2un is
used instead of ∇2u?, or if some extrapolation method is used to estimate ∇2u?. Due
to the Lagrangian nature of the method, locations of discrete points are also updated by
an explicit integration in time without enforcing the incompressibility, i.e. the points are
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shifted to their intermediate positions:

x? = xn + δtu?. (2.10)

In the second step, often referred to as the correction step, the estimated velocity is
corrected through its projection onto the vectorial space of divergence-free vectors, by
employing the pressure gradient:

un+1 − u?
δt

= −1

ρ
∇pn+1, (2.11)

and Lagrangian points are moved explicitly using the corrected velocity, e.g.:

xn+1 = xn + δt

(
un+1 + un

2

)
.

Before applying the correction equation (2.11), the pressure field is computed through the
pressure Poisson equation (PPE), which is defined as:

∇2pn+1 =
ρ

δt
∇ · u?, (2.12)

which corresponds to the enforcement of the incompressibility constraint (2.2) on equa-
tion (2.11). The boundary condition to solve equation (2.12) is obtained by projecting
equation (2.11) onto the wall normal, which yields:

n · ∇pn+1 = − ρ
δt
n ·
(
un+1 − u?

)
= 0, x ∈ Γ, (2.13)

since no-slip boundary condition must hold, n · un+1 = 0. This homogeneous Neumann
condition is artificial and was shown to induce a numerical boundary layer which deteri-
orates the scheme convergence [94].

When the explicit version of equation (2.9) is used, projecting equation (2.11) onto the
wall normal yields non-homogeneous boundary condition, which reads:

n · ∇pn+1 =
ρ

δt
n · u? = ρn ·

(
f + ν∇2un

)
, x ∈ Γ,

which results in more accurate pressure solutions near walls than those obtained by the
homogeneous Neumann condition [90]. However, particularly for moderate and low Reyn-
olds numbers, the effects of the numerical boundary layers can still be problematic [89].
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2.2.2. Incremental Projection Schemes

By including the pressure gradient from the previous time step, it is possible to increase
the accuracy of the scheme, which corresponds to incremental projection schemes. The
standard incremental projection scheme includes the pressure gradient in the first step of
the scheme, but keeps the wall boundary condition for the pressure homogeneous. The
rotational incremental projection scheme besides including the pressure gradient solves the
PPE for χ, which is defined as χ = pn+1−pn+ν∇2u?. More information on the increased
accuracy of rotational projection schemes, validated in the context of the incompressible
SPH method, is given in [95]. In the prediction step, any order of backward difference
formula may be used to approximate the time derivative of the velocity (if it is considered
as continuous in time). Although, non-incremental schemes with inaccurate boundary
conditions do not benefit from higher–order difference formulae [89].

2.2.3. Velocity–Correction Schemes

Within velocity–correction schemes, the roles of the pressure and viscous terms are inver-
ted as compared to previously introduced pressure–correction schemes. In the prediction
step, the pressure gradient is kept, while the viscous term is either ignored or treated
explicitly. The pressure is obtained through a Poisson equation, and the schemes can be
built in non-incremental or incremental form.

2.3. Velocity–Pressure Formulation

Velocity–pressure formulations retain the efficiency of the projection methods, while not
suffering from the numerical boundary layers, or restrictions in temporal accuracy. The
price for the increased accuracy are more complicated boundary conditions.

If one takes the divergence of the momentum equation (2.1) and applies the divergence-
free constraint equation (2.2), then equation (2.2) is replaced by the elliptic equation for
the pressure, i.e. Poisson pressure equation (PPE), and the divergence-free boundary
condition. The new IBVP is expressed as:

Du

Dt
= −1

ρ
∇p+ ν∇2u+ f x ∈ Ω, (2.14)

∇2p = ρ (∇ · f) x ∈ Ω, (2.15)
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with the boundary and initial conditions:

∇ · u = 0 x ∈ Γ, t ≥ 0, (2.16)

u = g x ∈ Γ, t ≥ 0, (2.17)

u = u0 x ∈ Ω, t = 0. (2.18)

The viscous term and the term with a time derivative is eliminated from equation (2.15)
due to equation (2.2). Equation (2.15) also suggests that the pressure field can be obtained
provided that the velocity field is known, which can be formulated as:

p (x) = P (u (x)) , (2.19)

where P is the function that yields the pressure for any given velocity field that solves the
NSE. On the other hand, the formulation in the presented form does not provide boundary
conditions for the pressure. Therefore, for the solution of the system of equations (2.14)
and (2.15), an additional boundary condition should be introduced in order to make the
problem well posed. It is often not emphasised in the literature, but methods implicitly
or explicitly impose divergence-free boundary condition, equation (2.16), because the
continuity constraint equation (2.2) should hold everywhere in the domain Ω ∪ Γ, and
equation (2.15) has replaced equation (2.2) in Ω. Such boundary condition cannot easily
be known a priori as a function of u [96]. Even though this additional boundary condition
does not look like a direct pressure boundary condition, it is responsible for satisfying the
following important conditions:

1. it makes the system of equations (2.14) and (2.15) well posed,

2. it is consistent with the original formulation of NSE (2.1) and (2.2),

3. it makes the velocity–pressure formulation equivalent to the velocity–divergence
formulation.

2.3.1. The Pressure Equation

The explicitly imposed divergence-free boundary condition requires a global constraint
[97], which is in practice rarely used. Alternatively, a natural candidate for the implicitly
imposed divergence-free boundary condition is given by the normal component of the
momentum equation along Γ, i.e. by dotting equation (2.14) through by n and evaluating
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at the boundary. The PPE with the appropriate boundary condition is given as:

∇2p = ρ

(
∇ · f − ∂ (∇ · u)

∂t

)
, x ∈ Ω, (2.20)

n · ∇p = ρn ·
(
f − ∂g

∂t
+ ν∇2u

)
, x ∈ Γ. (2.21)

Although the continuity constraint demands that the velocity field is free of divergence
at any time, the term ∇ · u missing from equation (2.15) is formally preserved in equa-
tion (2.20) in order to reinforce assumptions from which the discrete version is derived in
section §3.6.

Recall the “curl of the curl” vector identity, which applied to the velocity is written as:

∇2u = −∇×∇× u+∇ (∇ · u) . (2.22)

By applying the incompressibility constraint (2.2), the Neumann boundary condition
(2.21) can be rewritten as:

n · ∇p = ρn ·
(
f − ∂g

∂t
− ν∇×∇× u

)
, x ∈ Γ. (2.23)

The idea of the correct pressure boundary condition equation (2.21) was first proposed for
projection methods by Orszag et al. [98], which was later validated by various researchers.
Henshaw [99] showed that using the curl–curl boundary condition (2.23) is numerically
more stable than equation (2.21), because it adds new information to the system and
removes the velocity divergence on the boundary in the highest order term. If equa-
tion (2.16) holds at the start of the simulation, the normal derivative of equation (2.16)
will be zero for all time. Some remarks on the boundary condition for the pressure are
given in Appendix A.

2.3.2. The Momentum Equation

The non-iterative velocity–pressure formulation relies on the fact that the pressure term is
always treated explicitly in time so that the velocity and pressure updates are completely
decoupled. In the Eulerian specification of the flow, the nonlinear convection term (which
is absent in the Lagrangian case) is also treated explicitly in time discretisation, together
with the pressure.

What remains to be decided is the temporal discretisation of the viscous term, which evid-
ently does not affect the discretisation of the pressure in the PPE formulation. Whether
to treat the viscous term explicitly or implicitly in time should depend on the Reynolds
number and the required spatial resolution. Implicit treatment of the viscous term does
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nothing to stabilise the convection for large Reynolds numbers, but e.g. semi-implicit
time discretisation of the momentum equation with Crank–Nicholson scheme applied to
the viscous term could stabilise the convection for low Reynolds number [97].

In conclusion, the numerical scheme is free to solve equation (2.14) for the velocity by
any integration technique in which the pressure is obtained beforehand.

2.3.3. Advantages of the Formulation

Velocity–pressure formulations of the NSE have important advantages over the standard
formulation:

• The pressure is not implicitly coupled to the velocity through the momentum equa-
tion and incompressibility. Therefore, it can be directly recovered from the known
velocity field by solving a Poisson equation. This allows for marching the velocity
field in time straightforwardly, using the momentum equation with the pressure
interpreted as a function of the velocity.

• There are no spurious boundary layers for the velocity or the pressure, since there are
no boundary conditions ambiguities concerning the pressure, i.e. errors induced by
incorrect boundary conditions do not occur, while the incompressibility is enforced
at all times.

It should be noted, however, that the PPE formulation and the classical formulation of
the NSE are not equivalent in the case of steady state flows [97].

2.4. Boundary Conditions

Imposing appropriate boundary conditions (BCs) is of preeminent importance for the
success of every numerical algorithm. For the incompressible Navier–Stokes equations,
the type of boundary conditions to be imposed are dependent on the physics of the flow
once the geometry and topology of the selected problem have been determined. In this
thesis, the applications and the flow geometry solved in general belong to external flow
problems, where the normal unit vector out of the solid surface points away from the
surface into the fluid. For external flows, boundary conditions are grouped into:

• physical boundaries due to solid bodies and water–air free surfaces,

• domain truncation boundaries due to limiting infinitely unbounded fluid to an area
of interest.

Mathematical formulations of the relevant boundary conditions are listed in table 2.1,
which are explained in the following text.
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Table 2.1.: Various boundary conditions for the NSE.
Type Location Mathematical formulation

No-slip wall Γwall

{
u = g

∇ · u = 0

Free-slip wall Γslip


n · u = n · g
n · ∇ (t · u) = 0

∇ · u = 0

Free surface Γfs

{
u = ǧ

p = P

Imposed velocity Γin

{
u = g

n · ∇p = 0

Imposed velocity and pressure Γin

{
u = g

p = P

Symmetry Γsym

{
n · u = 0 n · ∇ut = 0

n · ∇p = 0

Open Γopen

{
(n · ∇)u = 0

∇ · u = 0

2.4.1. Free Surface

The free–surface boundary condition can formally be treated as a condition that truncates
the domain. Since the air flow can be ignored when predicting events under consideration
(not to be mixed with the water compressibility), the air is not explicitly modelled. In
contrast to two-phase methods that naturally embed interfacial jump conditions within
their formulation, here the dynamic jump condition is enforced explicitly. Therefore, the
free surface boundary condition serves solvability of the NSE and additionally truncates
the domain. The kinematic free–surface boundary condition used to compute the evolu-
tion of the free surface is naturally handled by the Lagrangian advection, of course, if the
NSE are accurately solved. The dynamic free–surface boundary condition requires con-
tinuous pressure and shear stress across the free surface. The external stress and surface
tension are assumed zero, the gradients of the normal velocity in the tangential directions
are assumed small. Under these assumptions, an adequate approximation to enforce the
boundary condition is to take the pressure as constant:

p (x) = pair, x ∈ Γfs, (2.24)

where pair is the imposed pressure, taken as zero or as atmospheric pressure value meas-
ured at the interface, Γfs. Surface tension can be easily included by adding the term σκ

to the right-hand-side of equation (2.24), where σ is the surface tension coefficient and κ
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is the interfacial curvature defined as the divergence of the normals of the free surface.
Equation (2.24) is a Dirichlet boundary condition for the PPE described in section 2.3.1,
which ensures a unique solution to the problem.

2.4.2. Solid Walls

Bodies, i.e. solid surfaces, may be stationary or moving by either imposed or calculated
velocities. Physically, the fluid molecules at the solid boundary move with the boundary,
i.e. the following holds for each time instant:

u (x) = g (x) , x ∈ Γwall, (2.25)

where g is the boundary velocity vector at a specific location on the boundary Γwall.
This boundary condition is usually referred to as the “no-slip” or “non-slip” wall boundary
condition.

The divergence-free condition for the no-slip wall, listed in table 2.1, results in the Neu-
mann boundary condition equation (2.23) for the PPE as described in section 2.3.1, with
the boundary velocity g (x). Some researchers note that the no-slip condition is physically
correct, but numerically may be too strict which yields discrepancy with experiments (e.g.
see [100, 101]). This may be due to the spatial discretisation near the walls, the correct-
ness of the diffusion discretisation near walls, etc. In such cases, they suggest using the
“free-slip” wall condition, listed in table 2.1. The primary goal of the free-slip boundary
condition is to eliminate the velocity component perpendicular to the boundary.

2.4.3. Inlet Boundaries

When forcing the fluid to flow into the computational domain, the profile of the flow
should be specified while retaining the properties of the NSE. The velocity of the fluid on
the inlet boundary is imposed:

u (x) = g (x) , x ∈ Γin, (2.26)

where g is the vector of the fluid velocity defined on the inlet boundary surface Γin.
In most cases, the pressure distribution on the inlet boundary surface is known, and
therefore, can be imposed when solving the PPE:

p (x) = P (x) , x ∈ Γin, (2.27)

where P (x) is the scalar field of the fluid pressure defined on the inlet boundary surface or
volume. However, when the Dirichlet boundary conditions for the pressure are imposed on
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some boundaries, the incompressibility constraint is not necessarily satisfied on them [102].
One should be careful when imposing the pressure without using relaxation and small
time steps, since the numerical velocity divergence 〈∇ · u〉 can build up and destabilise
the simulation. This is described in chapter 3 in the context of the numerical methodology
used in this thesis.

If P (x) is not known or the Dirichlet boundary condition is to be avoided, the Neumann
boundary condition for the PPE must be defined by the rate of change in pressure in the
normal direction of the boundary. Generally, equation (2.23) should hold. For flows with
pressure gradient mostly tangential to the boundary, as for waves, it can be taken that
the pressure does not change in the direction normal to the inlet boundary surface:

n · ∇p = 0, x ∈ Γin, (2.28)

where one should pay attention that the bodies in the simulation are not too close to
the inlet, in order to let the flow fully develop before meeting the solid surfaces. In
addition, relaxation zone in front of the inlet boundary is usually considered to alleviate
the problems of the discrepancy between the numerical and target solution, which is
described in section 3.9.4.

2.4.4. Open Boundaries

Ideally, an infinite unbounded fluid represents the physical domain for a problem featuring
external–flow hydrodynamics. Computationally realistic domains are truncated to sizes
which should have no influence on the computed solution. Open boundaries enable the
fluid to enter and leave the computational domain, while insignificantly affecting the
development of the flow. Fluid parts are removed when they cross the open boundary. In
addition, fluid parts are generated when flow pushes the fluid into the domain. Sometimes
open boundaries are improperly equalised to outlet boundaries, which force the flow to
only leave the domain. With open boundaries, there is no general agreement on which
kind of boundary conditions are physically and mathematically correct, and numerically
appropriate [103]. To simplify the implementation of the numerical scheme, it can be
assumed that at open boundaries far away from bodies, the velocity does not change in
space, which is written in table 2.1. As in the case of inlet boundaries, a relaxation zone
adjacent to the open boundary can be set-up to force non-reflecting outlet flow.

Liu [104] suggested to use the Dirichlet type boundary condition for the PPE, and proved
unconditional stability of a semi-implicit scheme for the Stokes equation. The condition
is defined as:

p = ν n · (n · ∇)u− coν∇ · u, x ∈ Γopen, (2.29)
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where co is a multiplier term in the range [0, 2] that is important to the accuracy and
stability of scheme [105]. The Dirichlet boundary condition ensures a unique solution to
the PPE, which is favourable for internal flows [95], but for free surface flows it would
not be an easy task to add the missing hydrostatic part to the equation, based on the
dynamic free surface elevation. In [106] an additional Poisson equation is introduced,
which is solved for surfaces of open boundaries. The result is then taken as the Dirichlet
boundary condition for the main PPE.

In this thesis, Neumann type boundary condition for the PPE is simply used. Since the
fluid body is bounded by free surface, a unique solution is guaranteed. There is no point
in adding complexity by introducing another Poisson equation, but to specify directional
derivative with approximated values, assuming that the boundary is far enough from the
area of interest not to alter the solution. With respect to equation (2.21), the boundary
condition is written as:

n · ∇p = ρn ·
(
f − ∂u

∂t
+ ν∇2u

)
, x ∈ Γopen, (2.30)

where the acceleration of the flow, ∂u/∂t, and the velocity Laplacian, ∇2u, is either
known or extrapolated at the boundary, x ∈ Γopen.

2.5. Turbulence

NSE present chaotic behaviour for high values of Reynolds number, which is known as the
turbulence. Turbulent flows are varying rapidly in time, and are very sensitive to initial
conditions. If the NSE are numerically solved on a extremely fine spatial discretisation,
turbulence does not need to be modelled. This straightforward approach is called the
Direct Numerical Simulation (DNS). DNS is used mostly to study turbulent behaviours,
and is not suitable for industrial applications due to its computational cost, since it
requires fine three-dimensional discretisation, and therefore, small time steps. A coarse
grid is able to resolve larger eddies in the flow but not the ones smaller than the cell
size. Physically, there is an interaction between the motions on all scales, in a way that
the result for the large scales is somewhat inaccurate without taking into account the
influence of the fine scales on the larger ones.

2.5.1. Dam Break as Reference

When talking about the dam break as an event that is similar to the event of wetting the
deck, resolving the turbulence leads to most accurate numerical solutions of the wave front.
Nevertheless, the shape of the wave front, when resolved with the direct discretisation of
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the diffusion term, compares well with experimental observations both in horizontal and
sloped channels [107]. This direct discretisation of the diffusion term exactly reproduces
laminar flows. If applied to turbulent flows with non-DNS grids, the simulation can
formally be described as an under–resolved DNS. Park et al. [108] presented numerical
results of dam breaks obtained by the modelled turbulence and inviscid flow, and noted
that inviscid flow model should not be used to simulate dam breaks. On the other hand,
artificially amplifying the turbulence intensity yielded smoothed results of the pressure
at impact, but the authors did not account for the effects of water compressibility at the
impact or physically justify the turbulence intensity values. Arnold [109] obtained similar
results with turbulence models and direct simulation. Janosi et al. [110] experimentally
found that the vertical cross-section of the flow in a dry channel is smooth, while a front
that flows over a fluid layer generates unstable jets, wave breaking, bubble trapping, etc.

In conclusion, the laminar model (or under–resolved DNS) with sufficient spatial discret-
isation reproduces similar flow to experiments of dam break over a dry bed.

2.5.2. Green Water and Turbulence

For events like green water, where impulsive fluid impacts on the structure dominate
the physics, turbulence effects are of minor or negligible importance just around the
time instant of the impact. The impact is usually an inertia–dominated event, which
happens in just a few milliseconds. As described, viscosity effects should not be neglected
at the time interval at which the flow develops before the wave front hits an obstacle.
Nonlinearities that occur when the wave hits the ship (often the bow flare) are of high
importance for further development of the flow of water on the deck. The interaction of
high waves, and usually strong ship motions, produces large jets and backflow near the
point of impact. The backflow usually contains large eddies, which can be reproduced
by under–resolved DNS, and are of importance in fluid–structure problems. Lagrangian
nature of the NSE, along with fine spatial discretisation where needed, favourably answers
to such requirements of reproduction of eddies and rapid jets. Gatin et al. [30] haven’t
employed turbulence modelling in their numerical study on green water, which was done
by a FVM–VOF solver. The authors consider that the modelling has a negligible influence
on pressure distribution at the structure, but that the influence of turbulence should be
investigated in the future.

In conclusion, fine spatial discretisation of the problem, i.e. dense meshless point cloud
to represent the water, by direct simulation is sufficient to capture relevant turbulent
structures in green water incidents. Therefore, NSE are solved without the additional
modelling of the turbulence. Future work should include an investigation of the effects of
a turbulence model on the flow development before the impact of water on deck. Most
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often meshless methods implement Large Eddy Simulation (LES) for the turbulence,
which is introduced in Appendix B.

2.6. Potential Flow

2.6.1. The Theory

In the potential flow theory, it is assumed that the fluid is incompressible, inviscid and that
the flow is irrotational. Therefore, a velocity potential function φ (x) can be introduced
to describe the flow velocity field:

u (x) = ∇φ (x) , (2.31)

since the velocity field of an irrotational flow is curl-free (∇ × u = 0) and the curl of
the gradient of any scalar field is always null vector (∇ × ∇φ = 0). Considering that
the velocity field of an incompressible fluid is solenoidal (∇ · u = 0), the divergence of
equation (2.31) leads to the Laplace equation of the potential flow:

∇2φ (x) = 0. (2.32)

Physically, the introduced flow restrictions prevent the reproduction of important fluid
flow behaviours such as the separation, skin–friction drag and transonic shocks [111]. The
fluid domain is bounded by the free surface, the wetted body surface, the bottom, and
the control surface in the far field. The flow is strictly tangential to the solid boundary
and the resulting potential is zero in the body interior, i.e. fluid is neither able to enter
or leave a closed surface.

The impermeability boundary condition is imposed at the bottom, which states that the
velocity is strictly tangential to the bottom:

n · ∇φ = 0, (2.33)

where n = {0, 0, 1} if the bottom is considered to be horizontal.

The particles on the free surface remain there at all time, bearing constant pressure across
the interface. The fully nonlinear free surface boundary conditions can be written in terms
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of surface quantities:

∂φs
∂t

= −gη +
1

2

[
(1 +∇η · ∇η)

(
∂φ

∂z

)2

−∇φ · ∇φ
]
, (2.34)

∂η

∂t
= (1 +∇η · ∇η)

∂φ

∂z
−∇φs · ∇η, (2.35)

where φs (x, y, t) is the surface potential, and η (x, y, t) is the free surface elevation where
z is evaluated at. Therefore, φs (x, y, t) = φ ({x, y, η} , t). Equations (2.34) and (2.35)
are nonlinear PDEs defining boundary conditions that can be marched in time, while the
remaining volumetric quantity of the vertical velocity, ∂φ/∂z, may be evaluated according
to [112].

For small elevations compared to wavelengths (∂φ/∂x)2 � ∂φ/∂t, so equation (2.34)
becomes:

∂φs
∂t

= −gη, (2.36)

while equation (2.35) becomes:
∂η

∂t
=
∂φ

∂z
. (2.37)

Since the wave elevation, which is proportional to the wave amplitude, is small com-
pared to the wavelength, equations (2.36) and (2.37) may be further simplified taking the
Taylor’s series expansion of φs about z = 0. It can be shown that nonlinear terms are
very small and can be neglected. Substituting z = 0 for z = η everywhere, the free surface
boundary conditions are written as:

∂φ

∂z
= −1

g

∂2φ

∂t2
, (2.38)

η = −1

g

∂φ

∂t
. (2.39)

2.6.2. Waves Modelling

Linear–wave boundary–value problem consists of the Laplace equation (2.32) for z < 0,
sea floor boundary condition (2.33) and the free surface boundary conditions (2.38) and
(2.39). The simplest wave description that is used in CFD methods is the linear wave
description, also referred to as the Airy wave theory. The solution for linear free–surface
waves can be obtained as follows. Since the free surface slope is very small, the potential
may be written as:

φ (x, z, t) = PW (z) sin (ω t− k x) , (2.40)
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where k is the wave number, and PW is obtained by substituting the equation into the
Laplace equation and solving for PW :

φ (x, z, t) = {C1 exp (kz) + C2 exp (−kz)} sin (ω t− k x) , (2.41)

where C1 and C2 are the constants that will be obtained from the boundary conditions
at the free surface and sea floor. Substituting equation (2.33) into the above equation
yields:

φ (x, z, t) = C cosh {k (z + h)} sin (ω t− k x) , (2.42)

where h is the water depth. Now the unknown constant C is determined from the linear-
ised dynamic boundary condition at the free surface, equation (2.39). The free surface
elevation defined by equations (2.39) and (2.42) writes:

η (x, t) = ηa cos (ω t− k x) , (2.43)

where ηa = −ω/g C cosh (k h), from which the C is obtained and substituted back into
equation (2.42) yields the final expression for the velocity potential:

φ (x, z, t) = −ηa g
ω

cosh {k (z + h)}
cosh (k h)

sin (ω t− k x) . (2.44)

The linearised free surface kinematic boundary condition equation (2.38) leads to the
dispersion relation, which connects the wave number and wave frequency:

k tanh (k h) =
ω2

g
, (2.45)

which for deep water reduces to k = ω2/g. The velocity vector u is obtained by equa-
tion (2.31), i.e. the components of the velocity vector are written as:

ux (x, z, t) =
ηa g k

ω

cosh {k (z + h)}
cosh (k h)

cos (ω t− k x) , (2.46)

uz (x, z, t) = −ηa g k
ω

sinh {k (z + h)}
cosh (k h)

sin (ω t− k x) . (2.47)

The range of the applicability of the theory is constrained to waves with small height
HW = 2 ηa compared to its wavelength λW , as strict as HW/λW < 0.0062 according to Le
Méhauté [113]. The linear wave theory can be used to generate irregular sea states, by
applying the superposition principle. By specifying vectors of frequencies, amplitudes and
phases, an irregular linear wave can be built as the sum of the individual components. The
linear theory gives elliptic particle paths in Lagrangian coordinates, while the free surface
and lines of equipressure are trochoidal. On the other hand, the theory of Stokes at some
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order of approximation is characterised by the sum of number of sinusoidal components
equal to the order of the approximation, i.e the solution is represented by Fourier series.
The coefficients in the series can be written as perturbation expansions found by satisfying
boundary conditions on the free surface, and solving the resulting set of ordered equations.
As a result, the wave crest are more peaked and the troughs are flatter. The validation
problems solved in this thesis are modelled by the linear wave theory, but the introduced
numerical method is not limited to the linear wave theory.

Linear wave theory is limited to infinitesimally small waves, and assumptions regarding
wave kinematics above the mean waterline must be introduced. Rough approximation is
that above the mean waterline, wave kinematics may be assumed equal to the value at z
= 0. An alternative is to stretch the limits of vertical coordinates adjust to instantaneous
free surface elevation, which is referred to as Wheeler’s modification. This is achieved by
substituting the vertical coordinate z with the scaled coordinate z̃:

z̃ = [z − η (x, t)]
d

d+ η (x, t)
. (2.48)

It is more appropriate to use Wheeler’s modification than the constant extrapolation,
since it always satisfies zero pressure at the instantaneous free surface.

2.6.3. Seakeeping

The problem of vessel seakeeping may be solved by introducing the wetted hull surface
to the boundary–value problem, which is shortly presented here. In addition to the
boundary conditions for waves, the impermeability boundary condition is imposed at the
hull surface:

n · ∇φ = n · g, (2.49)

where g is the vector of body velocity, and n is the surface normal vector pointing inside
the fluid. The hull surface is usually discretised into quadrilateral or triangular panels.
The panel method is based on a form of the Green theorem where the velocity potential
of the fluid at any point is represented by the surface distribution of singularities over the
boundary surfaces. To solve the first–order boundary value problem, one may consider
the fundamental solution:

∇2G (P , Q, t) = 4 π δ (P −Q) , (2.50)

where P is the field point with coordinates {x, y, z}, Q is the singular point with co-
ordinates {x′, y′, z′}, and the Dirac function is defined as δ (P −Q) = δ (x− x′) δ (y − y′)
δ (z − z′). By applying Green’s formula to the couple of harmonic functions {φ, G}, it
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follows:
4π φ (P ) =

ˆ
S

[
∂φ (Q)

∂n (Q)
G (P , Q)− φ (Q)

∂G (P , Q)

∂n (Q)

]
dS (Q) , (2.51)

where S combines the boundary surfaces: the hull (ΓH), mean free surface (ΓF ), sea
floor (ΓB) and the surface at infinity (ΓC). The left-hand-side is the result of the domain
integral while the terms on the right-hand-side come from the transformation of the
domain integral to the surface integral on the boundaries according to the formula of
Ostrogradsky.

Since the integral over the surface at infinity is zero, and the integral over the sea floor is
zero as well, equation (2.51) is then reduced to evaluating at the hull surface and adding
the integral over the free surface by employing equation (2.38). This free surface integral
is simplified or zero in most cases of wave radiation and diffraction without forward speed,
or can be transformed into a line integral for the wave radiation and diffraction around an
advancing ship at a uniform speed [114]. Therefore, equation (2.51) is solved for φ on ΓH

and ΓF . The velocity potential and the Green function are assumed to be harmonic, so the
time–harmonic potential is expressed as the sum of radiation components due to 6–DOF
oscillations, incoming waves and the potential due to diffracted waves. The solution to
the problem is thoroughly explained in [114]. The pressure determined from the potential
on each panel is integrated in order to obtain required forces and moments.

Obstacle Specified inlet

Computational domain

Figure 2.1.: Modelling green water flow by generating flow that wets the deck.
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2.7. Domain Decomposition

The domain decomposition technique, also known as the zonal modelling, separates the
problem spatially into two parts that are calculated by different solvers, even though they
are physically overlapping. There are multiple advantages in using the zonal modelling.

The most rigorous approximation introduced to predict green water loads is described
by figure 1.6. A water column is released and flows along the deck until it reaches an
obstacle where loads of the impact are measured. This technique was a precursor to the
zonal modelling, because it deals only with a local domain describing the deck and an
obstacle, while the input is pre-calculated from various assumptions [20]. The improved
local modelling includes an inlet boundary that generates a wave into the local domain
capturing the deck, which is depicted by figure 2.1. The domain may or may not move with
an imposed motion to simulate the ship movement. The disadvantages of this technique
are:

• inlet boundary conditions must be imposed as a function in time,

• the function must be known, i.e. assumed, by using some simpler methods that
neglect flow nonlinearities near the ship,

• the simulation can properly capture a single impact, before the reverted flow mixes
with the generated flow by the inlet.

It is close to impossible to adequately assume the flow to be generated at the inlet shown
in figure 2.1 by using linear solvers. Therefore, in order to suppress the errors that
come out of assumptions needed to model the flow locally, but to keep the computational
performance on a high level, the complete domain is decomposed into two physically
overlapping domains which may communicate to simulate the problem in whole. This
concept is drawn in figure 2.2, where the two domains and their communication are
described as follows.

2.7.1. Lower–Fidelity Domain

Waves are generated, diffracted and radiated around the vessel by a fast solver solving
a large fluid domain, which is usually based on the linearised potential–flow equations,
described in section §2.6. In addition to the flow, the motions of the vessel are usually
solved by the solver. This solver is employed to evaluate a wide range of scenarios, usually
in the frequency domain. From the performed simulations, critical events are isolated to
be simulated in another domain of interest, i.e. another zone.

Alternatively, High–Order Spectral (HOS) methods enable the simulation of highly non-
linear wave–fields [115]. They are applied to study freak waves made of high count
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Obstacle

High-fidelity computational domain

Specified inlet

Lower-fidelity
computational
domain

Figure 2.2.: Modelling green water flow by coupling two domains that overlap, where the
localised domain takes input from the global domain.

of wave components. Fast calculation of long–term evolution of wave–fields makes the
HOS methods attractive for coupling with higher–fidelity localised solvers that evaluate
wave–structure interaction.

2.7.2. High–Fidelity Domain

The second domain, used for the higher–fidelity simulation can be of small size, i.e. en-
circling only the area of interest while imposing the flow calculated by the lower–fidelity
solver for the large domain. It is still debatable how small this domain that contains the
area of wave–structure interaction can be made, while still providing reliable output due
to the linearised input.

In modern Eulerian CFD methods, the overset grid technique is used to allow rigid body
motion in 6–DOF free floating–body simulations [44]. In other words, the high–fidelity
domain composes of domains moving inside a background domain. It is important to
enforce conservation properties between the sub-domains and the background domain. A
very important advantage of Lagrangian methods, as the one introduced in this thesis, is
that by their definition they do not require overset grids. The whole fluid body and solid
bodies in the simulations are physically moving in time, as compared to Eulerian CFD
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methods which need to unite flux–based flow with an object movement.

As the performance of computing is getting better, engineers are extending the size of
domains of interest for high–fidelity unsteady simulations. The final goal is to create tools
that will simulate vessel motions on nonlinear wave–fields in a reasonable amount of time.
This thesis deals with providing the proofs of the novel CFD concept using the approach
rendered in figure 2.2, but the high–fidelity domain may be extended without constraints
to enable computation of vessel motions on highly nonlinear wave–fields, e.g. evolved by
the HOS method.

2.7.3. Communication Between Domains

An important ingredient to the success of the spatially decomposed simulation is the
communication between the domains that is taking effect through boundary conditions.
If the domains are overlapping, the lower–fidelity domain shares its information with the
meshless domain. To couple high–fidelity solvers with some linearised or HOS solver, the
latter must provide the velocity field, ulo.fi. (x, t), and free surface elevation information,
ηlo.fi. (x, y, t). This information is imposed at the boundaries of the high–fidelity domain,
shown in figure 2.2. One may wonder what happens when the wave–structure interaction
strongly affects the flow in a way that it reaches the boundaries by diffraction, radiation
or by repulsing wave impacts. To prevent the unwanted effects, the high–fidelity domain
is either made larger or relaxation zones are employed. In chapter 3, the numerical
solution to the domain decomposition problem will be described in detail. The described
approach is sometimes referred to as the one–way coupling, since the flow at boundaries of
the meshless domain is imposed by taking relevant information from another mesh–based
(or even meshless–based) solver, but the information from the meshless domain is not
shared back. This is an adequate approach when investigating local events, such as water
on deck, providing that all relevant nonlinearities are taken into account.

It should be noted that two–way coupling is not complex to implement, although it is
not crucial for the set of problems this thesis investigates. Marrone et al. [116] showed
that an explicit Lagrangian solver, based on the weakly compressible SPH method, can
be reliably coupled to a classical FVM solver. The FVM solver was used to resolve
the bulk flow while the SPH solver captured flow near the free surface region. Simply
termed, the two domains have an overlapping zone in which the pressure and velocity are
blended. Since the space and temporal discretisation differ, interpolation in space and
time is used to obtain the hydrodynamic variables and share them between the domains
in weakly coupled manner. The consistent meshless boundary conditions, interpolation
and relaxation zone technique described in chapter 3 qualify the introduced methodology
to be weakly coupled in a two–way manner with another mesh–based solver.
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2.8. Vessel Motions

Since the two domains described above are overlapping, the motions of the floating body
may be calculated by the lower– or higher–fidelity solver. A floating body moving due to
hydrostatic and hydrodynamic forces is considered to be rigid. The rigid body assump-
tion does not consider forces acting between individual elements of mass. The second
assumption eliminates forces due to the Earth’s motion relative to a star–fixed inertial
reference system. The forces on a marine craft due to the Earth’s rotation of 7.2921 ·10−5

rad/s are small compared to the hydrodynamic forces [117].

2.8.1. Rigid Body Kinetics

Newton’s second law relates the force, object mass and its acceleration:

F = ma, (2.52)

where F is the resultant force acting on the body centre of gravity (COG), m is the body
mass, and a is the acceleration vector measured at COG of the rigid body. Newton’s
second law can be expressed in terms of conservation of linear momentum and angular
momentum. The rotational dynamics following Euler’s second law states:

Q = ICOGα+ ω × ICOGω, (2.53)

where Q is the resultant torque acting on the body, ICOG is the tensor of the moment of
inertia about the COG, α is the angular acceleration vector, and ω is the angular velocity
vector. α and ω are considered for a body coordinate axes. The moment of inertia tensor
about COG is defined as:

ICOG =

 Ix −Ixy −Ixz

−Iyx Iy −Iyz

−Izx −Izy Iz

 ,
which is a symmetric tensor filled by values of the products of inertia about chosen body
axes. The tensor is constant in the body frame, not in an inertial frame. Therefore, the
second term in equation (2.53); zero torque Q does not imply constant angular velocity
ω. It is generally possible to find some orientation in which the products of inertia are
zero and the tensor is diagonal.
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2.8.2. Fluid–Structure Coupling

Due to efficiency, motions of floating objects are often calculated by a potential flow solver.
It is straightforward to impose the calculated motions in the simulation by moving bound-
ary surfaces representing the body. The no-slip boundary condition, equations (2.16) and
(2.17), is imposed through equation (2.23) in the PPE on each boundary point placed on
the body surface. Since the location of the boundary point does not coincide with the
body COG, the velocity and acceleration at that location has to be corrected due to the
body rotation [117]. Therefore, the velocity vector of a point x moving with the rigid
body is defined as:

g (x) = gCOG + ω × (x− xCOG) , (2.54)

where gCOG is the velocity vector at the body COG, and xCOG is the global coordinate of
the body COG. The acceleration vector of a point x moving with the rigid body is given
as:

∂g (x)

∂t
=
∂gCOG
∂t

+α× (x− xCOG) + ω × [ω × (x− xCOG)] . (2.55)

Equation (2.55) is used in equation (2.23) to impose equation (2.54) within the fluid at
solid boundaries. Equation (2.54) is used when calculating spatial derivatives of the fluid
points near rigid walls.

One–way coupling implies that the fluid flow conforms to the imposed body motion
through the fluid. The two–way coupling of disturbed water and a moving vessel requires
the integration of pressure and shear stress on the wetted surface to obtain the fluid
force acting on the body. The integration of some function along the surface described
by meshless points is not straightforward, because the surface area around a boundary
meshless point in not strictly defined. An option for obtaining the relevant surface area
is to either perform the Delaunay triangulation to obtain the discrete surface or to use
the underlying triangulated boundary surface to perform quadrature. Therefore, the ad-
ded implementation complexity is currently avoided by calculating the motions using a
potential flow solver.
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3.1. Interpolation

A truly mesh-free system is represented only by a point cloud that contains a set of points
Ω, and does not incorporate any topological information. Each point in the cloud i ∈ Ω

carries some system properties in a specific time instant t at its coordinate xi (t). The
points are classically moved along the characteristic curves of the field v. Due to a lack of
topology, the differential volume dV at any coordinate x in the continuous domain must
be fractionally partitioned among a set of near points N , usually referred to as neighbour
points. Hence it is necessary to introduce a continuous and symmetric distance–based
weighting functionW (r, h) for the interpolation points. The weighting function, which is
also known as the smoothing kernel function, is compactly supported based on the chosen
smoothing radius h, i.e. W = 0 for r ≥ κh. A fraction ψi (x) of a differential volume dV

is associated with an interpolation point i around an arbitrary location in the following
way:

ψi (x) =
1

ω (x)
W (‖x− xi‖ , h (x)) , (3.1)

where the term ω is used to normalise the weights:

ω (x) =
∑
i∈N

W (‖x− xi‖ , h (x)) , (3.2)

and guarantees that the sum of the weights equals unity:∑
i∈N

ψi (x) = 1, (3.3)

which makes absolute normalisation of the weighting function irrelevant. Equation (3.1)
that satisfies the partition of unity equation (3.3) reproduces a constant, and is tradi-
tionally referred to as Shepard’s interpolant. The interpolant can be derived from the
Moving Least Squares (MLS) using only the constant in the monomial basis, and thus
MLS techniques can be used to obtain higher order interpolation [73]. Shepard’s volume
partitioning resembles Voronoi tessellation with smooth transition over edges of cells,
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which consequently avoids discontinuities when the point cloud deforms. From equa-
tion (3.1) it follows that a weighting function can be designed in such a way that all
the weight is attributed to the nearest interpolation point, which would exactly recover
Voronoi tessellation [118, 119]. Two neighbour cells in Voronoi tessellation are divided by
a perpendicular bisector of the line segment that joins two cell centres, in the meshless
case the interpolation points, consequently producing convex–only cell shapes. It might
also be observed that this is a desirable feature when applying the divergence theorem,
which is based on the normal vector of the edge of a control volume [119]. Finally, inter-
polation of a function f (x) at an arbitrary coordinate x uses discrete function values at
the neighbour points in the support domain, which can be written as:

〈f (x)〉 =
∑
i∈N

ψi (x) f (xi) , (3.4)

where the term f (xi) describes the discrete value at the interpolation point i. It should be
noted that equation (3.4) is more appropriately depicted as an approximation instead of an
interpolation expression, since the weighting function does not reach infinity at the origin
compared to the traditional usage of inverse distance weighting. Equation (3.4) converges
to the true value of f (x), when the average distance to near neighbours tends to zero.
The standard SPH formulation of a field interpolation does not use a normalisation, and
does not guarantee zero–order consistency (the exact reconstruction of a constant field).
Unlike in the SPH method where the smoothing function must meet the requirements
of the quadrature, here a smoothing function is used for an interpolation weighting and
thus can be of any shape. The comparison of equation (3.4) and cell–based and SPH
interpolation is shown in figure 3.1.

One should be careful with the meshless interpolation, because a compact radius that
is too large or the shape of the interpolation weighting function that is too blunt can
lead to excessive numerical diffusion. Generally, a compact sphere should include the
nearest neighbour points, and the weighting function should monotonically decrease with
the increase in the distance. Moreover, additional weights of interpolation points, such as
a particle’s mass, can be incorporated by including a multiplication term along with the
weighting function W (r, h) inside equations (3.1) and (3.2). Popular weighting functions
are listed and described in Appendix C.
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Figure 3.1.: Types of interpolation: Shepard’s (left image), cell–based (centre image),
SPH (right image), taken from [119].

3.2. Hamilton operator

3.2.1. Gradient

Generally, approximate spatial derivatives of a function f (x) should be derived using
the known discrete values. In practice, at least a linearly consistent discrete gradient is
desirable and this can be obtained by the MLS interpolation or by the LS method that
adjusts a lower order polynomial through the data in a best–fit manner. The approxima-
tion starts from the Taylor series expansion, which is a representation of a function with
an infinite sum of terms that are calculated from the values of the function’s derivatives
at a single point:

fj = fi + xij · ∇fi +
1

2
(xij∇)2 fi + . . .+Rn, (3.5)

where the simplifications are introduced as fi ≡ f (xi), fj ≡ f (xj), xij ≡ xj−xi, and Rn

is the Lagrange remainder term. The exact content of Taylor’s theorem is not universally
agreed on, but mostly any smooth and continuous function can be approximated via
equation (3.5). If the first two terms from the right-hand-side of equation (3.5) are kept
for the analysis of a linear approximation, the expression can be rearranged as follows:

∇fi · xij = fij −R1, (3.6)

where fij = fj− fi. By multiplying equation (3.6) by (3.1) and xij, the gradient operator
at point i with linear accuracy is given by N equations at node i:

ψijxij (xij · ∇fi) = ψijxijfij − ψijxijR1, j = 1, . . . ,N , (3.7)
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where ψij ≡ ψi (xj). The system described by equation (3.6) is overdetermined for a
sufficient number of neighbour points N > d, and the solution can be found by a best–fit
in the LS sense [120, 121]. Applying the sum on equation (3.7) for neighbour interpolation
points yields: (∑

j∈N

ψijxijx
T
ij

)
∇fi =

∑
j∈N

ψijxijfij −
∑
j∈N

ψijxijR1, (3.8)

where ∇fi is taken out of the sum, because the sum is valid for j 6= i. The LS problem
described by the system (3.8) is solved by multiplication by the inverse of the tensor
expressed by the sum on the left-hand side. Let Bi be the so-called renormalisation
tensor, defined as:

Bi =

(∑
j∈N

ψijxijx
T
ij

)−1

. (3.9)

From equations (3.8) and (3.9), it follows that the discrete gradient operator of an arbit-
rary scalar function at some coordinate xi is given by the following expression:

〈∇f〉i = Bi

∑
j∈N

ψijfijxij, (3.10)

where the error of equation (3.10) equals:

ε〈∇〉 = Bi

∑
j∈N

ψijxijR1,ij, (3.11)

which includes the missing Taylor series terms and the irregularity of the neighbour points.
Let oi be the offset vector of the i–th point, defined as:

oi =
∑
j∈N

ψijxij, (3.12)

which points from the location of the point i to the point where the neighbourhood point
distribution dominates. Now it can be written that the approximation error equals:

ε〈∇〉 = Ci ·Bioi, (3.13)

where Ci is the error accumulated from the terms left out of the Taylor series. The offset
vector oi is a null vector for a point surrounded by regularly positioned neighbours that
encircle it. In such a case, the error of equation (3.10) depends only on the spacing of the
neighbour points and is analogous to the error of the central difference scheme applied to
a regular FD stencil. The size of the “stencil” in a mesh-free method is controlled by the
compact radius value of the weighting function.

The renormalisation tensor Bi depends only on the placement of the neighbour points, and
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thus can be precomputed for each point before evaluating equation (3.10). The calculation
of the renormalisation tensor Bi requires the computation effort of an analytical inversion
of a small symmetrical tensor with size d× d, which has a memory footprint of 3 scalars
in two dimensions, or 6 scalars in three dimensions. This method can be used to calculate
approximate spatial derivatives on a highly irregular distribution of points where the ill-
conditioned inversion of the tensor can occur for some poor spatial arrangements, e.g.
where weighting points are extremely close to each other or aligned in a nearly co-linear
or planar manner [122]. These situations can be treated straightforwardly, either by
enlarging the radius of the support domain to reach other scattered points, or by falling
back to other kinds of discrete gradient operators for the problematic points (e.g. SPH,
FV or FD depending on the solution methodology). On the other hand, a compact radius
that is too large on a scattered point arrangement introduces some numerical diffusion
and discrepancies in accuracy between the nearby grid points. In such a case, the compact
sphere which occupies a nonlinear part of a function includes the weights of undesirable
and relatively distant neighbour points. Readers interested in the rigorous mathematical
derivation and convergence theorems are referred to the original papers [120, 122, 123].
When a meshless method is used in the context of a Godunov scheme, the available
information is usually an inter–particle flux evaluated at the centroid of the overlapping
region and then multiplied by the effective area of two particles to achieve second–order
accuracy [124]. Based on this idea, a class of mesh-free FV methods which are both
high–order consistent (convergent) and fully conservative have been developed [122, 123,
118, 119]. Theoretical analysis based on a Taylor series expansion for regular and irregular
particle distributions in [125] has shown that this renormalisation technique is the proper
way of calculating the gradient for a SPH method. Furthermore, equation (3.10) does not
incorporate a smoothing function gradient, but only a smoothing function similar to that
in the KGF–SPH method.

3.2.2. Directional Derivative

The rate of change of a function f in the direction n is called the directional derivative,
∂f/∂n. Formally, the directional derivative is the dot product of the gradient and the
directional vector:

∂f (x)

∂n
≡ n · ∇f (x) , (3.14)

where n is assumed to be a unit directional vector. Directional derivatives are needed at
boundaries, where the Neumann boundary condition imposes a specific value of the first
derivative along the boundary normal. The accuracy of the solution to a IBVP is tightly
connected to the consistency and robustness of the discrete directional derivative used to
impose the Neumann boundary condition.
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Assume that the point i is located at the boundary Γ. Straightforward discretisation of
equation (3.14) by procedure presented in section §3.2.1 yields:

〈n · ∇f〉i = n ·Bi

∑
j∈N

ψijfijxij, (3.15)

which is equivalent to:
〈n · ∇f〉i = (Bin) ·

∑
j∈N

ψijfijxij. (3.16)

The linear fitting procedure shown in section §3.2.1 at the edge of a point cloud will
moderately miscalculate the gradient of nonlinear functions due to void, i.e. missing
neighbour points on one side, which would normally contribute to the fitting procedure.
An interpretation would be that the generalised central FD expression is reduced to a
generalised one–sided FD expression. Therefore, a study on improving the directional
derivative at the edge of a point cloud was needed.
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Figure 3.2.: An example of irregular point arrangement near a boundary. The red point
and circle renders the boundary point and its compact circle, the blue point
and circle renders its parent fluid point and compact circle, while other black
points are possible neighbours.

Many meshless numerical methods prepare points that describe boundaries before the
simulation [126]. In such cases, points describing fluid do not necessarily lie on lines normal
to the boundary points. Consequently, straightforward usage of the discrete gradient is
needed to approximate equation (3.14). As an alternative, some meshless methods mirror
fluid points along the boundary which keeps them perpendicular [127, 128]. The numerical
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Solid interior Fluid

icb

icb

icb

n

rw

rw

rw = 0

Γ

Figure 3.3.: The relationship of the boundary point b and its parent fluid point i. The
directional derivative at the boundary ? is derived with the help of virtual
average point c.

method introduced in this thesis generates appropriate boundary points each time step by
projection onto/inside near boundary surfaces. This grants the method a valuable feature
that there always exists one fluid point near the boundary, which by definition lies along
the normal of the generated boundary point. This is explained in detail in section §3.4.
An example of an irregular neighbourhood distribution around the boundary point with
an adjacent point positioned along the normal is shown in figure 3.2.

Figure 3.3 shows how a generated boundary point b can interact with its parent fluid
point i. The directional derivative equation (3.14) needs to be evaluated exactly at the
boundary Γ, at points marked as ? in the figure. The one–sided FD between points b
and i is exact only for linear functions f (x). Since the solution to a Poisson equation is
crucial for the success of the numerical method, one higher order of accuracy is needed.
In other words, FD between points b and i yields the central FD expression for the point
c shown in figure 3.3:

〈n · ∇f〉c =
1

‖xib‖
(fi − fb) , (3.17)

where the point c is located at the middle of line segment connecting the points i and b,
xc = (xi + xb) /2.

There are now two options how to obtain the directional derivative at the boundary by
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the help of imaginary point c with known directional derivative at its location. The first
one is the linear extrapolation:

〈n · ∇f〉? =

(
1 + 2

rw
‖xib‖

)
〈n · ∇f〉c −

(
2
rw
‖xib‖

)
〈n · ∇f〉i , (3.18)

where rw is the distance from the point c to the boundary, and the term 〈n · ∇f〉i is
obtained by equation (3.16) at xi, because the fluid point i is encircled by other fluid and
boundary points to yield second–order accurate approximation.

Another option is to expand the value of directional derivative in Taylor series, which
gives:

〈n · ∇f〉? = 〈n · ∇f〉c − λL,i rw
〈
∇2f

〉
i
, (3.19)

where 〈∇2f〉i is the discrete Laplacian evaluated at the point i location, whose derivation
is shown in section §3.3. Here the expansion was done about the location xc instead of xi,
where the second order accuracy is guaranteed and not dependent on the function change
in the direction tangential to the boundary. Since the Laplacian cannot be derived at the
location xc that is closer to the boundary, 〈∇2f〉i is used with the multiplication term
0 < λL ≤ 1 that accounts for nonlinearity of the Laplacian along the normal.

Figure 3.4 shows four simple tests made on random point distributions, like the one shown
in figure 3.2. First thing noticeable in the figure is the discrepancy of equation (3.15).
The regular gradient expression evaluated at boundary is first–order accurate or worse if
it is contaminated by tangential nonlinearities. In the best case it reproduces the results
of one–sided FDs. Therefore using it as a boundary condition in the system of linear
equation does not make much sense. The equation (3.18) that linearly extrapolates from
known values at xi and xc is second–order accurate, since both 〈n · ∇f〉c and 〈n · ∇f〉i are
second–order accurate. Taylor–based extrapolation equation (3.19) yields similar results
to the linear interpolation, and has a tuning parameter to improve its results. If it is used
for a boundary condition of the Poisson equation, it is a convenient option considering
the consistency with the Laplacian. On the other hand, the Taylor–based extrapolation
mixes one-dimensional and d-dimensional operators. Bearing in mind that discrete oper-
ators evaluated around the fluid point i are sensitive to the change of f in the direction
perpendicular to n, equation (3.19) may result in overshooting if it is not controlled by
the parameter λL. In conclusion, linear or Taylor–based extrapolation should be used in
lieu of direct evaluation of the WLS operator at boundary locations.

3.2.3. Divergence and Curl

Physically the divergence of a two- or three-dimensional vector field is the extent to
which the vector field behaves like a source at a given location. If the divergence is not
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Figure 3.4.: Test of approximating the directional derivative along the boundary normal
by various techniques. Scalar fields are functions of y2, y3, y4, and y5, re-
spectively.
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zero at the location, then there must be a source or sink at the location. Consequently,
the incompressibility of fluid is enforced by constraining the velocity divergence to zero,
equation (2.2). By definition the divergence a vector field is the scalar–valued function
obtained as the sum of partial derivatives of the field components:

∇ · f =
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

, (3.20)

where subscripts indicate components of the vector field. The equivalent expression writ-
ten in the gradient form:

∇ · f = ex · ∇fx + ey · ∇fy + ez · ∇fz, (3.21)

where ex, ey and ez are unit vectors of a Cartesian system in three-dimensional Euclidean
space. If each term from equation (3.21) is substituted by equation (3.16) it follows:

〈∇ · f〉i =
∑
j∈N

ψijBixij · (fx,ijex + fy,ijey + fz,ijez) , (3.22)

that reduces to:
〈∇ · f〉i =

∑
j∈N

ψijBixij · f ij, (3.23)

The curl is a local property at a point which defines the extent of a rotation around that
point. If the curl operator is applied to the velocity vector field, it describes the vorticity
of the flow. The curl of a vector function at some location yields a three-dimensional
vector that points along the axis of the rotation and whose length corresponds to the
speed of the rotation. The curl of a in-plane flow is perpendicular to the plane. The
spatial operator is defined as:

∇× f =

{
∂fz
∂y
− ∂fy

∂z
,
∂fx
∂z
− ∂fz
∂x

,
∂fy
∂x
− ∂fx

∂y

}
, (3.24)

and with mathematical manipulations analogous to the above description, the discrete
version of the operator is given as follows:

〈∇ × f〉i =
∑
j∈N

ψijBixij × f ij. (3.25)

By analysing equations (3.10), (3.23) and (3.25), the term Bixij can be interpreted as a
part of the Hamilton (nabla or del) operator, ∇. It is a “part” in a way that it forms the
complete operator by summing separate neighbour weights ∀ j ∈ N . As in the formal
definition, that term in combination with a specific product operator defines the gradient,
divergence and curl spatial operators. Hence, second–order first spatial operators are
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introduced in the WLS context, based on the linear terms from the Taylor series.

3.3. Laplace Operator

3.3.1. State of the Art

Reliable and accurate approximations of a gradient and a Laplacian are needed when
solving various PDEs described by strong formulations: Navier–Stokes equations, the
diffusion equation, the Helmholtz equation, the Schrödinger equation, the wave equation,
and, of course, other general Laplace and Poisson equations. The Laplace operator, or the
Laplacian, is defined as the divergence of the function gradient in Euclidean space, which
is equivalent to the sum of unmixed second partial derivatives. The accuracy of discrete
spatial operators is not the same on irregular grids as it is for corresponding operators
on structured grids, i.e. the accuracy diminishes with an increase of mesh irregularity. In
the finite volume (FV) method, the Laplacian used to model viscous forces is obtained
by applying the Green–Gauss theorem, often with an explicit artificial dissipation added
at each time step. De Foy and Dawes [129] have shown that the repeated action of a FV
Laplace operator could lead to zero–order accuracy, with errors up to 50% on irregular
meshes. In addition, the positivity of coefficients is not even satisfied on regular grids,
which leads to a lack of robustness when the operator is used for smoothing or solving the
Poisson equation. Juretic et al. [130] have shown that the accuracy of the diffusion term
is dependent on the interpolation scheme for skewed cells’ faces, and on the discretisation
procedure for surface normal gradients. The Laplacian in non-continuous form cannot
guarantee the “divergence of gradient” identity, and Owen et al. [131] have shown that
the discrete Laplacian should be used to obtain a stable velocity correction scheme that
depends on the pressure Poisson equation.

Brookshaw [132] and Monaghan and Gingold [133] have introduced smoothing kernel
gradient–based SPH discretisations of the Laplacian, which still today are one of the
most widely used formulas, although they are inconsistent and should be corrected [126,
134, 125]. Chaussonnet et al. [135] have shown how sensitive the accuracy of typically
used SPH Laplacian schemes can be to the particle disorder and smoothing radius. Fatehi
and Manzari [125] have reviewed typically used schemes for the second derivative using
theoretical analysis, and have introduced first–order consistent second derivatives based
on the renormalisation tensors.

The original Laplacian used in the moving particle semi–implicit (MPS) method was pro-
posed by Koshizuka et al. [136]. Isshiki [137] successfully reproduced it via the Gauss
divergence theorem. Zhang et al. [138] have shown its inconsistencies and the numerical
difficulties that emerge when solving the Poisson equation, and introduced the enhanced
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version of the operator [139]. Ng et al. [140] have evaluated the accuracy of various
MPS Laplacian models by solving the Poisson equation subjected to both Dirichlet and
Neumann boundary conditions, and proposed a more general model with the altered
kernel function. They deduced that refining the grid spacing while retaining the num-
ber of neighbour interpolation points is not applicable due to the numerical errors, and,
moreover, the optimal number of neighbours is dependent on the degree of grid irregu-
larity. Ikari et al. [141] have proposed a corrected higher order Laplacian scheme, which
is derived by taking the divergence of the corrected LS gradient model. The resulting
correction tensor is used in combination with the first– and second–order derivative of
a smoothing kernel function, which produces more accurate results. Ma et al. [134]
have reviewed the meshless pressure projection procedure by solving the Poisson equation
with the most popular discretisations of the Laplacian, often adopted in the incompress-
ible smooth particle hydrodynamics (ISPH) method and moving particle semi–implicit
(MPS) methods. Recently, Tamai et al. [126] have tested the accuracy and consistency of
meshless discretisation schemes for the Laplacian, and employed the studied schemes to
find the solution to the Poisson equation in strong formulation with the imposed Dirichlet
boundary conditions.

Huang et al. [142] have proposed that the Laplacian for the kernel gradient free (KGF)
SPH method is obtained by carrying out two first derivative operations, i.e. by means of
two inversions of symmetric tensors of size (d + 1) × (d + 1), where d is the number of
dimensions. The computational cost of the two–pass Laplacian done for each particle is
inconvenient for dynamic meshless simulations, and it is difficult to implement boundary
conditions. Lei and Peng [143] have proposed an approximate Laplacian model, which is
sensitive to particle distribution without using a large smoothing radius, thus requiring
frequent particle shifting for dynamic simulations.

In the finite point–set method (FPM) [83], a function and its derivatives are approximated
by the second–order moving least squares (MLS) method for each point in a domain.
Higher order derivatives are obtained directly since the Hessian coefficients are included
while solving the MLS problem. The method proved to be accurate when solving the
Poisson equation for incompressible flows [144, 83], although the vector of ten unknowns
solved for each point in three dimensions is not computationally efficient for non-static
point distribution, e.g. for transient Lagrangian applications.

In the particle strength exchange (PSE) method, the Laplacian is approximated by an
integral operator, which is then transformed into the discrete form by a quadrature over
the particles [145]. The symmetry in the PSE method can conserve properties that are
inherent when two particles “exchange strength” with one another. On the other hand,
the PSE method requires that the uniformity of the particle distribution is periodically
restored on a well–ordered field, which often requires mesh interpolation [146] or other

65



3. Numerical Methodology

correction functions at each time step [145].

The meshless radial basis function finite difference (RBF–FD) method tries to alleviate
the high computational cost of global RBF methods by using virtual FD stencils. Bayona
et al. [147] have noted that the optimal value of the shape parameter at each particle
location can be obtained if the value of a function and its derivatives is known, which in
practical cases is not true. Finally, Davydov et al. [148] have investigated the influence
of the shape parameter within the RBF–FD method with irregular centres on the quality
of the approximation of the Laplacian, and consequently on the solution of the Poisson
equation.

3.3.2. Novel Operators

Based on the referenced literature, it can be deduced that employing corrective tensors
derived from a Taylor series expansion is a common approach to guarantee the consistency
of the first spatial derivatives. Least–squares methods are computationally more efficient
than full–matrix MLS methods, and they are often used with parallel algorithms that
drive dynamically changing meshless domains. Accurate and reliable approximations of
first and second derivatives are a requirement for a variety of numerical techniques that
describe physical phenomena. The aim of the following study is to deduce stable and
accurate meshless Laplace operators, based on the least–squares corrective tensors that
are already used in many so-called renormalised meshless methods, in order to keep the
simplicity and computational efficiency that are needed for dynamic simulations of large
meshless systems.

After the second–order accurate discrete gradient operator is defined, the discrete Lapla-
cian operator of a scalar function ∆f ≡ ∇2f should also be defined. Unfortunately, the
operator in a non-continuous form cannot guarantee “divergence of gradient” identity, i.e.
it holds for a numerical method that ∇2f 6= ∇ · (∇f). Therefore, approximations of
the operator are needed in order to avoid solving equation (3.5) with higher–order terms
included, which is computationally inefficient for a frequently changing neighbourhood
around a considered point. The starting point of the derivation of the discrete Laplacian
is again the Taylor series expansion, which includes the first three terms in equation (3.5),
and is conveniently written as:

fj = fi + xij · ∇fi +
1

2
li · sij +mi · pij +R2,ij, (3.26)

where li is the vector of the second derivatives at xi (e.g. {fi,xx, fi,yy} for d = 2), sij
is the vector containing the squared components of xij, mi is the vector of the mixed
derivatives at xi (e.g. {fi,xy} for d = 2), and pij is the vector of the mixed components
of xij (e.g. {xijyij} for d = 2). Hessian matrix components are decomposed into two
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vectors, li and mi, which contain second and mixed derivatives, respectively. This way,
equation (3.26) can be solved for li, and the Laplacian is obtained using the following
definition:

∇2fi = li · I, (3.27)

where I is the identity vector, e.g. for 2D I = {1, 1}. The terms in equation (3.26) are
rearranged to include the second derivatives on the left-hand-side in the following way:

li · sij = 2
(
fij − xij · ∇fi −mi · pij −R2,ij

)
. (3.28)

The following sections will show how equation (3.28) can be used to obtain the Laplacian
using neighbour points from the set N .

3.3.2.1. Naive Version

In order to leave only the Laplacian on the left-hand-side, equation (3.28) is multiplied
by I · I/ ‖xij‖2 according to equation (3.27):

∇2fi =
2d

‖xij‖2

(
fij − xij · ∇fi −mi · pij −R2,ij

)
, (3.29)

where d is the consequence of double multiplication by identity vectors, i.e. I · I = d.
Equivalent to the derivation of the discrete gradient operator described in Section 3.2.1,
both sides of equation (3.29) can be summed with the weights of the neighbour inter-
polation points around i taken into account. In that case, the left-hand-side remains
unmodified due to equation (3.3), and the term that contains mixed derivatives is can-
celled due to the symmetrical smoothing function property. The discrete Laplacian of an
arbitrary scalar function at some coordinate xi expression is written as:

〈
∇2f

〉
i

= 2d
∑
j∈N

ψij

‖xij‖2 (fij − xij · 〈∇f〉i) , (3.30)

where the gradient term is precalculated by equation (3.10). The absolute error of equa-
tion (3.30) includes the error of the discrete gradient operator described by equation (3.13),
along with the error accounting for the truncated higher–order Taylor series terms:

ε〈∇2〉 = 2d
∑
j∈N

ψij

‖xij‖2

(
R2,ij + xij · ε〈∇〉

)
. (3.31)

The formulation of an approximate Laplacian described by equation (3.30) is called the
“naive version” of the operator, since it is expected that the sum of error contributed
by the discrete gradient operator and truncated higher–order terms is insignificant. Fur-
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thermore, equation (3.30) straightforwardly sums contributions of neighbour particles by
relying on Shepard’s interpolation. It can be expected that the utmost regular distribu-
tion or amortisation by a high number of points in set N are needed in order to achieve
accuracy suitable for reliable numerical simulations. It will be shown in Section 5.1.1 that
a proper smoothing function, different from the one used for the gradient, can alleviate
the mentioned problems.

3.3.2.2. Sum Version

The naive version of an approximate Laplacian is derived from equation (3.26) with the
assumption that the discrete gradient operator described by equation (3.10) yields results
with inconsequential discrepancy when compared to the continuous gradient operator.
That assumption holds for nearly linear function areas encompassed by the smoothing
sphere, but high error would occur otherwise. If the discrete gradient described by equa-
tion (3.10) is substituted back into equation (3.26) taking its error into account, the
following expression of the discrete Taylor series expansion is obtained:

fj = fi + xij ·Bi

∑
j∈N

ψijxij

(
fij −

1

2
li · sij −R2,ij

)
+

1

2
li · sij +R2,ij. (3.32)

In order to leave terms coupled with the Laplacian on the left-hand-side, equation (3.32)
is reorganised into the following form:

li · sij − xijBi

∑
j∈N

ψijxij (li · sij) = 2

[
fij − xij ·Bi

∑
j∈N

ψijxij (fij −R2,ij)−R2,ij

]
.

(3.33)
Equation (3.33) is multiplied by I · I in order to obtain the Laplacian term as a scalar.
Considering that it holds sij · I = ‖xij‖2 and equation (3.27), the following expression is
obtained:

∇2fi

(
‖xij‖2 − xij ·Bi

∑
j∈N

ψijxij ‖xij‖2

)
≈ 2d

(
fij − xij ·Bi

∑
j∈N

ψijxijfij

)
, (3.34)

where the error terms are left out for the sake of simplicity. Both sides of equation (3.34)
can be summed, with the weights of neighbour interpolation points around i taken into
account. In that case, the Laplacian will remain unmodified due to equation (3.3), and
the sum applied to the parentheses of each side of the equation can be reorganised as
follows:

∑
j∈N

ψijAij −
(∑
j∈N

ψijxij

)
·Bi

∑
k∈N

ψikxikAik ≈
∑
j∈N

ψijAij (1− xij ·Bioi) , (3.35)
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where Aij is ‖xij‖2 or fij, which yields the formulation of an approximate Laplacian
operator applied to a scalar function at the location of a point i:

〈
∇2f

〉
i

= 2d

∑
j∈N ψijfij (1− xij ·Bioi)∑

j∈N ψij ‖xij‖
2 (1− xij ·Bioi)

, (3.36)

where the Bioi term can be pre-calculated for each point i, by equations (3.9) and (3.12).
If the offset vector oi is a null vector (e.g. which holds for a regular distribution of
neighbour points), then equation (3.36) reduces to the central difference expression when
the nearest points are taken in N . On the other hand, when the offset vector has finite
length, then the difference fij and the squared distance ‖xij‖2 are corrected inside the sum.
Hence, the formulation of an approximate Laplacian described by equation (3.36) is called
the “sum version” of the discrete operator. It resembles the KGF–SPH form introduced
in [142], but it is improved with renormalisation. The scalar product within the sum
virtually “shifts” each neighbour relative location, based on the irregularity correction
and the weights offset correction of the neighbour point locations. This correction can
also be rendered as a cancelling of the second–order gradient error due to the offset vector,
for an investigated quantity Ai. Corrected values are summed in Shepard’s interpolation
manner, and finally the sums are divided. The absolute error of equation (3.36) includes
the truncated higher–order Taylor series terms error:

ε〈∇2〉 = 2d

∑
j∈N ψijR2,ij (1− xij ·Bioi)∑
j∈N ψij ‖xij‖

2 (1− xij ·Bioi)
. (3.37)

Evidently, equation (3.37) does not contain lower–order error R1,ij as equation (3.31)
does, but depends on averaged error collected from the neighbour points. The presented
version of the discrete operator is attractive since it is first–order accurate, and does not
require the gradient value to be precalculated before evaluating equation (3.36), but only
the offset vector oi that can be done in the same loop as for the renormalisation tensor
Bi.

3.3.2.3. Least–Squares Version

In section §3.3.2.2 it was shown how the de-vectorisation of equation (3.33) provided that
the final result could be obtained simply by a division of summations. Alternatively, an
LS procedure similar to the one described in section §3.2.1 can be applied to elicit more
accurate results. The term li on the left-hand-side of equation (3.33) can be taken out
of the summation and thus the left-hand-side can be written as li · qij, where qij is the
vector defined as:

qij = sij − xTij
∑
j∈N

ψijBixijs
T
ij. (3.38)
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If equation (3.33) is multiplied by qij and afterwards, taking summation with the weights
of neighbour points into account, a problem similar to equation (3.8) needs to be solved.
The new renormalisation tensor is defined as:

B̂i =

(∑
j∈N

ψijqijq
T
ij

)−1

, (3.39)

which is used to yield the formulation of an approximate Laplacian operator:

〈
∇2f

〉
i

= I · B̂i

∑
j∈N

2ψijqij (fij − xij · 〈∇f〉i) . (3.40)

and which will be referred to as the “full inversion version” of the Laplacian. The absolute
error of equation (3.40) is:

ε〈∇2〉 = I · B̂i

∑
j∈N

2ψijqij

(
xij ·Bi

∑
j∈N

ψijxijR2,ij −R2,ij

)
. (3.41)

The derivation of equation (3.40) presented here is analogous to one in [126], and similar
to [125] in the context of the SPH method. The disadvantage of the presented scheme is
its computation inefficiency for dynamically deforming point clouds. Besides an iteration
loop over the neighbour points that is needed to compute the renormalisation tensor Bi, an
additional loop and memory space is needed to compute and store the summation tensor
evaluated in equation (3.38), and finally a loop is needed to evaluate equation (3.39).
Instead of manipulating equation (3.33) with the vector qij, the expression is multiplied
by the vector sij. By classically doing the summation, the following is obtained:

li ·
(∑
j∈N

ψijsijs
T
ij −

∑
j∈N

ψijxijs
T
ij

∑
k∈N

ψikBixiks
T
ik

)
≈
∑
j∈N

2ψijsij (fij − xij · 〈∇f〉i) ,

(3.42)
where the same tensors are found in the second product of summations on the left-hand-
side. If the tensor elements of cubic order are taken as zero due to the symmetrical
property of the smoothing function, the renormalisation tensor can be defined as:

B̃i =

(∑
j∈N

ψijsijs
T
ij

)−1

, (3.43)

which can be evaluated in the same loop along with Bi. Equation (3.43) is used to yield a
more approximate, but also a more computationally efficient, formulation of the Laplacian
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operator than equation (3.40) in the following way:

〈
∇2f

〉
i

= I · B̃i

∑
j∈N

2ψijsij (fij − xij · 〈∇f〉i) , (3.44)

which will be referred to as the “basic inversion version” of the Laplacian. Equation (3.44)
still requires the gradient of the relevant field to be evaluated before the evaluation of the
Laplacian, unlike the sum version of the Laplacian described by equation (3.36). One
potential drawback of equations (3.40) and (3.44) is related to the fact that vectors qij
and sij can contain elements close to zero; floating point constraints can lead to errors
when calculating inverse tensors by equations (3.39) and (3.43), and using them within
the Laplacian expressions.

3.4. Solid Boundaries

Lagrangian mesh-free set of points deforms freely, it is not topologically bound to any
surrounding geometry. Therefore, the geometry can simply be moved in time, and the
fluid adjusts to moving boundaries by respecting the imposed boundary conditions, as
each point on the moving body also performs Lagrangian motion.

3.4.1. State of the Art

The researchers working with the SPH methods have not found a simple and efficient
scheme for boundary conditions, and that problem is listed among the ‘Grand Challenges’
by the SPH European Research Interest Community [149]. Meshless methods that are
derived from the SPH and MPS theories cannot handle points with truncated compact
spheres. Hence multiple rows of boundary points are placed on walls and behind them to
fill the compact spheres of fluid points near walls.

Some methods transform the geometry into discrete points at the start of the simulation
[126], which can be classified as a kind of meshing preprocess. Uniform distributions of
points on walls and behind walls (dummy points) on complex surfaces is hard to obtain.
These layers of dummy particles are linked to their corresponding wall particles and carry-
ing equal pressure and velocity values. Other mesh-free methods mirror fluid points each
time step against the boundary normal until their compact spheres are filled [128, 127].
Mirrored particles have velocities extrapolated from the fluid and wall velocities. There
are a few attempts to solve semi-analytically for the non-existent points of the truncated
kernel [150, 151, 152], but the method mixes Eulerian and Lagrangian description of the
flow and the boundary has to be meshed in an appropriate way.
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In contrary to the described problems, GFDMs are based on generalised FD operators,
and thus do not require multiple rows of points to be placed behind boundaries [83, 81,
84] as they are immune to incompletely filled compact spheres.

3.4.2. Boundary Points

In this thesis, a scheme for treating wall boundaries is introduced, which is consistent with
the other mesh-free Lagrangian parts of the method. Most importantly, the introduced
spatial operators work adequately if the point under consideration is encircled by one ring
of neighbour points, as explained in section §3.2. It can be deduced that only one array of
points is needed on the boundary to impose the boundary conditions, because the nearby
fluid points will adequately calculate spatial operators at their locations.

Γ

Ω

Figure 3.5.: Schematic of points that are used for no–slip (red) and free–surface (white)
boundary conditions, and corresponding interior fluid points (blue). The grey
gradient denotes an interpolated pressure field.

Secondly, the incompressibility constrains the fluid points to be equidistant, so that each
point carries approximately same fluid volume. Consequently, points close to walls can
be projected to generate equidistant points as well, where the boundary conditions are
going to be imposed. An example of preparing boundary points for a time step is shown
in figure 3.5.

Boundaries can be represented in any form for two and three dimensional domains: ana-
lytic curves and surfaces, polygonal surface meshes, point clouds, etc. In terms of compu-
tational performance, discrete edges and triangles for two- and three-dimensional prob-
lems, respectively, are the fastest elementary shapes for solving the projection problem.
Since the shapes can describe complex geometries, there is no need for any kind of mesh
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preparation before simulating, the only input for a simulation are those discrete boundary
surfaces defining the domain and bodies of the simulation.

At the start of a time step, all boundary points from the previous time step are discarded.
Fluid points which lie on the edge of the point cloud, and are located near the boundaries,
are projected onto those boundaries. New points for the current time step are then
generated on the projected locations. Fluid points normally take into account generated
boundary points when evaluating spatial operators, i.e. each point i in the point cloud
can have neighbours of different types, written as:

N = F ∪ B, (3.45)

where N is the set of all neighbour points, F is the subset of fluid neighbour points, B is
the subset of neighbour boundary points.

Instead of generating the boundary point at the projected location, it can be generated
by mirroring about the projection location, xb, using the surface normal, n. The direc-
tional derivative at the wall would be adequately defined by the central FD expression
(3.17), because the wall is positioned at the middle of the line segment connecting fluid
and generated points. On the other hand, the hydrodynamic values at the generated
location (behind the wall) do not correspond to the situation at the wall. To avoid the
complications, mirroring of points is not considered in this thesis.

The generated boundary point is assigned the velocity and acceleration of the wall at the
corresponding location, which is explained in section 2.8.2. For the mirrored points, those
values would have to be extrapolated from the fluid and wall to locations within the solid
body.

The significance of solid boundary points is manifested through the PPE defined in sec-
tion 2.3.1. The pressure gradient that results by imposing the boundary conditions en-
forces the fluid to align to movement of boundaries. The details on imposing the boundary
conditions in the PPE are given in section §3.6.

3.5. Free Surface

A free surface is a boundary between two homogeneous fluids, e.g. liquid water and the
air. Unlike liquids, gases cannot form a free surface on their own. In this thesis, the air
has not been modelled by meshless points, in order to speed up the computation time of
transient simulations. At a specific time instant, the meshless point cloud describes the
fluid and boundaries: wall and inflow/open boundary points. Therefore, fluid points that
lie on the edge of the point cloud, which are not boundary points, are certainly located on
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the free surface, i.e. they discretely form the free surface by imposing suitable boundary
conditions along the free surface.

Usually the process classifying such points in meshless methods is named free surface
detection. The detection of free surface has an important role in methods for free surface
flow, because the pressure values on free surface points should be equal to atmospheric
pressure by imposing the Dirichlet boundary condition. The solvability of a PPE and
the accuracy of its solution greatly depends on the boundary conditions, as described in
section §2.4. Specifically, the points on the edge of a fluid point cloud lie on the free
surface, where the Dirichlet boundary condition must be imposed so that the PPE has a
unique solution.

The free surface detection algorithm consists of two steps, similar to a verification and
validation process:

1. the first step classifies points that are potentially on the edge of a point cloud,

2. the second step additionally evaluates those classified points in order to corroborate
that they really are located on the free surface.

3.5.1. Point Cloud Edge

The first step of the free–surface detection evaluates each point in the point cloud with a
test that proves whether it is inside the point cloud. Inner points are those points which
are sufficiently encircled by neighbour points in their compact domains. The test usually
takes into account a combination of the following factors: the number of neighbours in the
compact sphere (

∑
j∈N 1), the sum of neighbour weights (

∑
j∈N Wij), and renormalisation

properties. Properties of the renormalisation tensor can ease the identification of the
points which lie on free surface, e.g. by inspecting its eigenvalues [153]. In this thesis, the
properties of the renormalisation tensor are used in a more simple, but robust manner.
The first step of the free surface detection makes use of the neighbourhood irregularity
correction from the Laplacian expression, i.e. the deficiency of equation (3.36) described
in section §3.3, which will be described in the following text.

A free–surface normal vector ni is pointing away from the fluid, towards the void. At a
discrete meshless point, it is approximately turned to the negative direction of the offset
vector oi, defined by equation (3.12), which points to where the neighbourhood point
distribution dominates. In other words, an edge point has all or most of its neighbours
j ∈ N located on one side (mostly it holds xij · oi > 0). Consequently, the sum of the
neighbourhood irregularity correction from equation (3.36),

∑
j∈N (1− xij ·Bioi), yields

a non-dimensional value that is much smaller for an edge point then for an inner point.
This value can be used to identify edge points if a proper limiting condition is used.
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Figure 3.6.: Scatter and contour plots of the non-dimensional neighbourhood volume for
each point in square point clouds defined by c = 70% (left image) and c =
120% (right image).

It should be noted that Bioi depends on the choice of the weighting function. Let Ṽi
be some non-dimensional volume of the neighbourhood defined through the sum of the
neighbourhood irregularity correction:

Ṽi =
∑
j∈N

(1− xij ·Bioi) . (3.46)

Then the following expression holds for an edge point i:

Ṽi < λFSVd, (3.47)

where Vd is the non-dimensional compact sphere volume:

Vd = π

(
d+ 1

3

)(
h

∆

)d
, (3.48)

and λFS is the arbitrary chosen constant used to denote the portion of Vd, which defines
minimum non-dimensional volume of the neighbourhood around an inner point. Equa-
tion (3.46) is quickly evaluated, since it requires only a scalar product operation of neigh-
bours relative locations and the vector Bioi, which was noted to be precomputed for each
point in the renormalisation stage.

Figure 3.6 shows how the test performs on highly distorted point clouds. After spawning
points on a regular grid, they are moved by a vector ei c∆/2, where c is the measure of
irregularity or randomness, and ei is the d-dimensional vector with random components
values between –1.0 and 1.0. Figure 3.6 shows rectangular point clouds that are distorted
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Figure 3.7.: Scatter and contour plots of the non-dimensional neighbourhood volume for
each point in a complex-shaped point cloud defined by c = 70%, and ∆ = 0.05
(left image) and ∆ = 0.025 (right image).

by randomness levels of c = 70% and c = 120%. Equation (3.46) yields smooth results for
extremely distorted point clouds, validating that candidates for boundary points may be
found by evaluating equation (3.47). Equation (3.48) is used as a relevant measure for the
default volume, which equals to 24.6 for an interior point with h = 2.8∆. Approximately
λFS = 30% may be used as a good starting point, which means that the volume below
7.5 indicates a boundary point, also proved by figure 3.6.

Furthermore, equation (3.46) is evaluated on a point cloud with curved boundaries. The
complex shape was obtained by parabolically compressing the top and right sides of the
square point cloud, which resulted in a variable-spaced or compressed point distribution.
The distribution of points is then distorted to achieve a randomness level of c = 70%.
Figure 3.7 shows how the Laplacian-based test performs on point clouds of complex shapes
and variable point spacing, for ∆ = 0.05 and ∆ = 0.025. It can be observed that
equation (3.46) yields smooth results with a distinct transition between certainly interior
and certainly boundary points, regardless of the initial point spacing.

Indeed, tested distorted conditions rarely arise in numerical simulations of incompressible
flows, where the spacing between adjacent points should remain roughly uniform at all
time. One may wonder what should be done with transitional values of the volume. If
in some cases the test gives false–positive results, those points are later rejected as free
surface points in the second step of the algorithm. Therefore, one can choose relatively
high value for λFS in order to identify more possible candidates, since the second step will
take care of the false–positives.
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Figure 3.8.: Two examples of a scan–sphere test in 2D, one that passed (left image) and
one that failed (right image). The neighbour points inside the grey com-
pact–sphere are coloured dark-blue, and the points inside the red test–sphere
are marked with ×.

3.5.2. Validating Found Points

The second detection step is used to validate if points are lying on the edge of a point
cloud. It is usually performed by employing various geometrical overlapping tests, e.g.
Marrone et al. [153] introduced an idea of using a scan cone around the expected normal
vector of the fluid surface to make a further check if there is any particle covering the
test particle. Barecasco et al. [154] added into account an overlapping spheres test to
improve the methods and geometrically detect free surface particles in a robust way. The
scan–cone test for each j point in the compact sphere of point i is given as:

xij
‖xij‖

· ni > cos

(
θi
2

)
, (3.49)

where θi is the cone threshold angle, e.g. taken as constant θ = π/3. Equation (3.49) is
true for a free surface point, i.e. there exists no point j that neighbours the point i in the
area of expected void where ni points. Otherwise, a point is classified as inner.

Here a more computationally efficient geometrical test is considered, by employing a “scan
sphere”. The test holds true for a free surface point if a sphere, which is of radius R < ∆

and centred ∆ away from the point i in the normal direction ni, overlaps with no points.
Otherwise, a point is classified as an inner point of a fluid, since the sphere overlaps
with some neighbouring points where void was expected. The scan–sphere concept is
schematically drawn in figure 3.8. The scan–sphere test only uses a small compact sphere
(R < ∆ < h), as compared to the scan–cone test that uses the full neighbourhood compact
sphere (h > ∆), in addition to evaluating equation (3.49) for each neighbouring point.

The second step that successfully eliminates false–positives adds to the robustness of the
detection algorithm that must be applied at each time step of a simulation in order to
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correctly solve the NSE. Figure 3.9 renders a situation where a complex free surface profile
is adequately captured.

Figure 3.9.: An example of a successful detection of the free surface with a complex shape.
Red–coloured points are classified as free surface points.

3.6. Pressure Equation

For numerical reasons, it is easier to solve a set of equations different from the original
NSE given in section §2.1. It was shown in section §2.3 how the original divergence-free
constraint was replaced by an Poisson equation for the pressure. The introduced set of
equations is proven to be equivalent to the original formulation of the NSE. A numerical
scheme built on the velocity–pressure formulation is efficient, with the primary computa-
tional cost per time step consisting of solving one Poisson equation, irrespective of a 2D
or 3D type of the problem. This is, in fact, the best that one can achieve for incompress-
ible flows [155]. By virtue of the advantages listed in section §2.3 and the computational
efficiency equivalent to projection methods, the velocity–pressure formulation of the NSE
extended to Lagrangian specification of the incompressible flow is used. Incompressibility
is enforced at all times, i.e. if the flow contains divergence errors, they will be damped in
time both inside the fluid and on the boundaries.

3.6.1. Linear System of Equations

For inner fluid points, the discrete version of the Poisson equation (2.20) writes:

〈
∇2p

〉
i

= bi, xi ∈ Ω, (3.50)
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where bi denotes the right-hand-side, which is formally written as:

bi = ρ

(
∇ · f −

〈
∂ 〈∇ · u〉i

∂t

〉)
, xi ∈ Ω. (3.51)

In this thesis, solenoidal external acceleration vector field is always assumed, i.e. ∇·f = 0

holds everywhere at all time for the gravitational acceleration or some imposed acceler-
ation. The second term in equation (3.51) is also zero in continuous context due to
equation (2.2), but never in the discrete and computational context. Since absolutely
solenoidal velocity field cannot be computationally achieved, the divergence must be
damped as much and as fast as possible. For this reason, the term was formally pre-
served in (2.20), and the inclusion of the discrete time derivative of the discrete velocity
divergence in equation (3.51) is described in section 3.6.3.

In addition to inner fluid points included in the PPE through (2.20), boundary points
give closure to the system of equations. The boundary points imposing the Neumann
boundary condition are included in the PPE as:

〈n · ∇p〉i = bi, xi ∈ Γ, (3.52)

where the right-hand-side is evaluated based on the required boundary condition, from
those listed and described in section §2.4. The right-hand-side is calculated using discrete
versions of the spatial derivatives introduced in section §3.2 and section §3.3.

Finally, boundary points imposing the Dirichlet boundary condition are included in the
PPE as:

pi = bi, xi ∈ Γ, (3.53)

where the right-hand-side is simply the known value. The Dirichlet boundary condition
assures that the Poisson equation has a unique solution. Free surface points impose
the Dirichlet boundary condition by equalising their pressure values to the atmospheric
pressure. Therefore, a robust free surface detection scheme is crucial for the success of the
numerical method. The robustness of the detection scheme is explained in section §3.5.

It is important to recall that all spatial derivatives are written in the FD context, i.e. as
weighted summation of finite differences between interacting points, see section §3.2 and
section §3.3. It is straightforward to merge the equations completely forming the discrete
PPE, i.e. equations (3.50), (3.52), and (3.53), into a linear system of equations written
in the matrix form as:

Ap = b, (3.54)

where A is the coefficients matrix, p is the vector containing pressure solutions for all
points forming the system, and b is the vector containing the right-hand-side values.
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Obviously, the number of elements in vectors p and b equals to the number of active
points in the simulation at the current time step. The coefficients matrix A is a square
matrix with the number of rows and columns equal to the number of active points in
the simulation at the current time step. Since the discrete spatial operators are non-
global, the matrix A is sparse. The amount of its sparsity depends on the size of compact
radius, i.e. the size of the neighbourhood around points. Sparsity of the system matrix
benefits memory consumption and Krylov–iteration performance, as the total number of
neighbouring points is proportional to the effort of multiplying the matrix by a vector
[156].

In order to define the matrix, the Laplacian is analysed. The sum version of the novel
Laplacians, equation (3.36), is the fastest among formulations derived in this thesis, be-
cause the gradient is not required for its calculation in contrast to the naive and inverse
versions. The renormalisation of the offset vector Bioi is precalculated, so the sum version
can be evaluated about as fast as the classical SPH Laplacian. Furthermore, the tests in
chapter 5 show that the sum version provides the best compromise between efficiency and
accuracy. Finally, it has characteristics that help to detect which points represent free
surface, as explained in section 3.5.1. For these reasons, the following mathematical ma-
nipulations are based on the sum version of the Laplacian, but the analogous techniques
can be used on other versions of the Laplacian to prepare equation (3.54) for solving.
According to equation (3.36), the coefficient Aij of the matrix A for a i-th (row) inner
fluid point and a j-th (column) neighbour point is defined as:

Aij =
2dψij (1− xij ·Bioi)∑

j∈N ψij ‖xij‖
2 (1− xij ·Bioi)

, (3.55)

and is non-zero if and only if j ∈ N . From the equation (3.36), it follows that the diagonal
coefficient Aii equals to the negative sum of other row coefficients. The dimensionality
number and the denominator are constant within the i-th row of the matrix and they can
be transferred to the right-hand-side:

bi =
ρ

2d

〈
∂ 〈∇ · u〉i

∂t

〉∑
j∈N

ψij ‖xij‖2 (1− xij ·Bioi) , xi ∈ Ω. (3.56)

The expression for the coefficient Aij now simplifies to:Aij = ψij (1− xij ·Bioi) i 6= j,

Aii = −∑k∈N ψik (1− xik ·Bioi) i = j.
xi ∈ Ω, xj ∈ Γ ∪ Ω, (3.57)

Matrix coefficients for the Neumann boundary condition (3.52) are defined according to
the chosen discrete representation of the directional derivative explained in section 3.2.2,
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while the right-hand-side is imposed according to the chosen boundary condition lis-
ted in section §2.4. The simplest approach is to use the one–sided FD equation (3.17)
between the boundary point i and the parent fluid point j located some distance away
from the boundary in the boundary normal direction, xj = xi + ‖xij‖n, as explained in
section §3.4. Furthermore, the rows can be multiplied by ‖xij‖ to remove the order-of-
magnitude dependency from the left-hand-side of the system. Therefore, the left-hand-side
of equation (3.52) translates to:Aij = 1,

Aii = −1.
xi ∈ Γ, xj ∈ Ω, (3.58)

Taylor series–based correction of the FD equation (3.17) using the Laplacian term yields
equation (3.19) that is more fitting for the PPE. The second term in equation (3.19) is
a known quantity taken from equation (3.50), and is transferred to the right-hand-side.
The left-hand-side of equation (3.58) stays unmodified, while the right-hand-side for the
point i imposing the Neumann boundary condition writes:

bi = ‖xij‖ (qw + λL rw bj) , xi ∈ Γ, (3.59)

where qw is the imposed directional derivative value at the boundary, and bj is the right-
hand-side of equation (3.50) evaluated by equation (3.51). The directional derivative
equation (3.18) is more stable than equation (3.19) when explicitly approximating, but not
when solving an system of linear equations. The typical gradient helping to describe the
directional derivative may convolute the system matrix, due to destroying the favourable
properties described in the next section. Particularly, Aij = ψij xij ·Bini does not have
a consistent sign. In future work, this will be further investigated.

The Dirichlet boundary condition equation (3.53) written according to equation (3.54) is
written as Aii pi = bi, i.e.:Aij = 0 i 6= j,

Aii = 1 i = j.
xi ∈ Γ, (3.60)

To keep the same sign of the matrix diagonal entries, the rows describing Dirichlet
boundary conditions are multiplied by –1. The following text analyses the diagonal and
off–diagonal entries, and matrix properties in detail.
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3.6.2. Solvability

A drawback of mesh-free finite difference approaches is that the resulting linear systems
are in general non-symmetric, i.e. the matrix A is a non-symmetric square matrix. Nev-
ertheless, the sparsity of the system matrix promises a fast solution of system (3.54) with
(semi-)iterative linear solvers, assuming that the convergence properties are reasonable
[156]. Analysing equation (3.57), the renormalised offset vector Bioi does not particip-
ate in keeping the FD form, and therefore is the culprit for making most of the matrix
non-symmetric. The other culprits are Neumann boundary conditions, i.e. discrete direc-
tional derivatives, which are non-symmetric by their definition. Therefore, an appropriate
Krylov subspace iterative solvers that can handle non-symmetric matrices should be used
to solve equation (3.54) achieving adequate convergence [157], such as GMRES, BiCG-
Stab, QMR, QMRCGStab, etc.

Analysing the definitions of spatial derivatives or coefficients they form in the matrix by
equations (3.57) and (3.58), it is apparent that diagonal entries equal to the negative sum
of other entries within the row:

Aii = −
∑
j∈N

Aij, (3.61)

while each row corresponding to a Dirichlet boundary condition, equation (3.60), is strictly
diagonally dominant :

|Aii| >
∣∣∣∣∣∑
j∈N

Aij

∣∣∣∣∣ = 0, (3.62)

which means that the diagonal dominance property of the matrix is satisfied:

|Aii| ≥
∣∣∣∣∣∑
j∈N

Aij

∣∣∣∣∣ . (3.63)

A strictly diagonally dominant matrix is non-singular. The matrix A is mostly weakly di-
agonally dominant except for the rows imposing Dirichlet boundary conditions. Resolving
equation (3.61) computationally may accumulate impurities of machine floating number
operations, and miss the diagonal dominance by some small value. In order to provide un-
conditional diagonal dominance for such numerical problems, the diagonal can be slightly
scaled. To implement this scaling, left-hand-sides of the equations that form the PPE
system are modified by adding the term −εiipi, where εii is a small number that helps
the diagonal dominance property from a computational point of view, e.g. εii = 10−8.
The diagonal term is known to smooth the pressure field for methods that use Lapla-
cian of low accuracy. Inaccurate discrete operators forming the linear system sometimes
require high values of the term εii for the PPE to converge, which results in compress-
ible solutions [158]. Appropriate iterative solvers applied to equation (3.54), which is
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described by the introduced spatial derivatives, have been shown to always converge. In-
deed, small values of εii have been shown to help the convergence. With assistance of
the technique that damps the velocity divergence and the technique that conserves the
fluid volume on advection, the incompressibility is soon recovered after any non-fatal de-
viations from equation (2.2) are obtained. These techniques are explained in section 3.6.3
and section 3.8.3, respectively.

The sum version of the Laplacian, equation (3.36), for a highly irregular point cloud can
have a small value of the denominator. Imbalance of matrix coefficients due to small
values, in combination with machine precision, yield sensitive linear system whose results
oscillate locally around the problematic points. The dominator is transferred to the right-
hand-side, thus yielding equation (3.57) for the coefficients of inner points. This grants
two favourable attributes of the system: the Laplacian coefficients Aij of the matrix have
comparable order of magnitude, and problematic low value has lowered the source term
for that row alleviating the possible damage.

This paragraph describes the positivity of matrix coefficients. Usually matrices that
describe Laplacian graphs or regular grids are symmetric with negative and weakly dom-
inant diagonal entries, while off-diagonal entries are positive. Looking at equation (3.57),
it holds that ψij > 0, but (1− xij ·Bioi) may be negative in which case their product is
negative. To keep Aij always positive, one may use the constrained value of the neighbour
irregularity correction min {1.0, xij ·Bioi} when evaluating equations (3.56) and (3.57),
which results in a so-called positive stencil. The desirability of positive stencils has been
pointed out in [159]. While optimal stencil selection [160] makes positive stencils likely,
the introduced constraining technique guarantees it. These modifications to the system
are justifiable to help the convergence, because unfavourable irregularity correction oc-
curs only for edge cases where all or most of the neighbour points are located on one
side. Positive stencils imply that the system matrix A is an L–matrix. The class of
L–matrices are those matrices whose off-diagonal entries are less than or equal to zero
(Z–matrices), but whose diagonal entries are constrained as positive. The matrix A is
therefore a L−–matrix, and is made as L–matrix by negation.

As already mentioned in section §3.5, the scheme that detects the points on the free sur-
face is very important for the solvability of the linear system. Points that are marked on
the free surface impose Dirichlet boundary condition which provides that the system has
a unique solution. A FD matrix is called essentially irreducible if every point is connected
to a Dirichlet boundary point. A FD matrix that is not essentially irreducible is singular,
as the points that are not connected to a Dirichlet point form a singular sub-matrix. Con-
sequently, if the simulation handles fragmented fluid parts, each fluid clump must have at
least one point that imposes the Dirichlet boundary condition (3.53). The matrix A is es-
sentially diagonally dominant, because it is weakly diagonally dominant (equation (3.61))
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and each point is through the graph connected to some Dirichlet point satisfying the strict
diagonal dominance (equation (3.60)). An essentially diagonally dominant L–matrix is an
M–matrix, i.e. A is an M–matrix because it is discretised by positive stencils and every
point is connected to a Dirichlet point [156]. The benefits of an M–matrix structure with
respect to linear solvers can be found in [161].

Finally, it should be noted that future work will include making the system matrix sym-
metric. This is possible if the interaction between neighbours is not forced to be evaluated
from a specific point using the renormalisation property of the i-th point, but using the
average of neighbours renormalisation properties. In other words, within summations∑

j∈N forming the system of equations, one would write (Bi + Bj) /2 instead of Bi, and
(Bioi + Bjoj) /2 instead of Bioi. Similar averaging technique was employed in [122, 123]
with respect to simulating points of variable spacings, i.e. volumes.

3.6.3. Source Term

Due to initial conditions, truncation errors, machine precision and other sources of errors,
the discretely calculated divergence of the velocity will not be identically zero in the
numerical computation:

〈∇ · u〉 6= ∇ · u = 0. (3.64)

Therefore, in numerical computations one often modifies equation (2.15) by introducing
the source term on the right-hand-side that accounts for the discrete time derivative of
the discrete velocity divergence. Henshaw [162] includes some amount of the divergence
error to the equation: 〈

∇2p
〉

= ρ λF 〈∇ · u〉 , (3.65)

in which case it holds: 〈
∂ 〈∇ · u〉

∂t

〉
= ∇2 〈∇ · u〉 − λF 〈∇ · u〉 . (3.66)

The term λF 〈∇ · u〉 relaxes the source of divergence errors, provided that the coefficient
is a positive scalar, λF > 0 [162]. Hence, this term, sometimes named the “discrete
divergence–damping term”, is used on the right-hand-side of the pressure equation. The
incompressibility condition is enforced “exponentially”, i.e. any errors in satisfying the
incompressibility condition are rapidly damped in time. Thus this condition is enforced
in a robust way, without expected troubles for “reasonable” numerical discretisations of
the equations [97, 96]. This technique has been used previously by a number of researchers
in the field of incompressible flows. A detailed description of the damping coefficient, with
an analysis showing that the term does not degrade the accuracy of the numerical method,
is given by Henshaw et al. [162, 163, 99, 164]. Within their implicit method, the authors
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relate the coefficient to the viscosity and grid size,

λF =
C ν

∆2
. (3.67)

In comparison to fully implicit methods, explicit methods in time require an explicit
relation of the divergence-damping coefficient. Since it is required, or better said desired,
that the divergence is zero in the next time step 〈∇ · u〉n+1 = 0, first order backward
differencing (BDF1) yields: 〈

∂ 〈∇ · u〉
∂t

〉
= − 1

δt
〈∇ · u〉n , (3.68)

where λF = δt−1. This assumption leads to oscillations in the pressure fields.

Impulsive impacts need to be carefully assessed, because the change of the situation is
processed at discrete time intervals δt. It should be reminded that pressure is transmitted
through the fluid at a rate that depends on the speed of sound in the medium and the
shape of the container due to the refraction and reflection. The progress of an impact in
continuum that is discretely modelled by spatial resolution ∆ depends on physical time
intervals in which the pressure travels between the points:

δτ =
∆

cS
, (3.69)

where cS is the pressure propagation velocity. Simulations based on explicit schemes
mostly run with numerical time steps smaller than physical time steps, δt < δτ , i.e. a
pressure wave rarely propagates further than one cell in a numerical time step.
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Figure 3.10.: An example of an impact with induced oscillations in the pressure by using
the discrete instead of the physical time-step within the pressure source
term.
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This implies that successive steps of an impact physically described with δτ intervals are
numerically shortened to δt, which leads to high frequency oscillations in the pressure
field with oscillation amplitudes increasing as δτ → 0. By taking the PPE source term
described in section 3.6.3 inversely proportional to the discrete time step δt, a divergence-
free solution will try to be forced immediately, which leads to an overshoot of predicting
values for the next step, and that iteratively leads to the oscillations. An example of such
deliberately induced pressure oscillations after an impact of water on a wall is shown in
figure 3.10, for three simulations performed with different CFL numbers.

Cheng et al. [158] note that an impulse computed numerically should correspond to the
physical value of the impulse. They note that the ratio of the numerical and physical
time steps, δt/δτ , should be used to stabilise high numerical pulses in the pressure field.
Namely, the discrete point cloud or any discretisation should respect the physical pressure
propagation velocity cS and the distance between points/cells ∆ when exchanging the
pressure information between adjacent points/cells.

The calculation of pressure is decoupled from velocity. Therefore, the remedy for the
oscillations in the pressure field should be applied in the source term of the PPE. Without
a doubt, higher order schemes for the momentum equation will also benefit the smoothness
of velocity and pressure fields. Following [158], the divergence damping coefficient should
be defined as λF = cS/∆. In their numerical simulation, cS is set to a very low value to
stabilise the MPS method. This thesis acknowledges that physical time step should be
used in order to relax the amount of divergence, but the velocity to relax the divergence
should not be a global value as suggested in [158]. In this thesis, the damping coefficient
is defined for each point as:

λF,i = max
{
λC
cmax,i

∆
,
cmin

∆

}
, (3.70)

where cmax,i is the maximum relative speed between the point i and its neighbours, ci =

‖ui − uj‖max, λC is the multiplier term, and cmin may be used to always enforce the source
term by some amount of virtual speed of sound.

3.6.4. Divergence Damping at Boundaries

In the following text, it will be shown how the discrete divergence damping is handled
at the boundary, which is derived based on the approach introduced by Shirokoff and
Rosales [96].

If the momentum equation (2.14) is dotted with the normal n and evaluated at the bound-
ary Γ, the pressure derivative along the normal, equation (2.21) is obtained. However, if
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after dotting it is evaluated in the fluid near the boundary, it follows:

n · ∇p = ρn ·
(
f − ∂ u|Γ

∂t
+ ν∇2u

)
, x ∈ Γ. (3.71)

Almost all terms are eliminated from the equation by subtracting by the boundary con-
dition equation (2.21). Then the following Ordinary Differential Equation (ODE) for the
normal component of the velocity at the boundary is obtained:

∂

∂t
[n · (u|Γ − g)] = 0, x ∈ Γ. (3.72)

Therefore, provided that n · (u|Γ − g) = 0 initially holds, equation (3.72) holds for all
time. However, this is true in the continuous context, but discretely the normal boundary
condition for the flow velocity is enforced in a rather weak fashion, i.e. occurring errors
in satisfying the condition are not damped. The condition lacks the inherent stability
provided by the heat equation. Through the pressure derivative, the velocity at the
boundary tries to be enforced for the following time step. In practice, this results in a
drift of the normal velocity component, which can have destabilising effects on a numerical
scheme and must be corrected. In order to resolve the issue, Shirokoff and Rosales [96]
simply substitute the ODE by a FD:

∂

∂t
[n · (u|Γ − g)] = −λB n · (u|Γ − g) , x ∈ Γ, (3.73)

and use it as feedback term in the pressure boundary condition:

n · ∇p = ρn ·
[
f − ∂g

∂t
+ ν∇2 u|Γ + λB (u|Γ − g)

]
, x ∈ Γ, (3.74)

where λB is the divergence–damping coefficient, which is a positive scalar λB > 0. In
equation (3.74), the terms refer to the next time step, n + 1. The system of the NSE
with the modified pressure boundary condition equation (3.74) is still equivalent to the
original formulation of the NSE given in section §2.1 for smooth enough solutions of the
velocity and pressure.

The feedback term is responsible for relaxing divergence errors at the boundary in time, if
the value of λB is appropriately chosen. In [96] details on the choice of the coefficient are
not given, but the authors remark that only the order of magnitude must be guessed in
order to relax the errors in time. While this is true for fully implicit numerical schemes,
semi-implicit and explicit numerical schemes are more sensitive. As it was the case with
damping the divergence errors within fluid, a more explicit description of λB is needed
for the robust stabilisation. One could naively argue that n · (u|Γ − g) = 0 should be
zero in the next time step, so the λB can be taken inversely proportional to δt. However,
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this has shown to be too rigorous for the semi-explicit method described in this thesis.
Alternatively, the feedback term in equation (3.74) can be interpreted as a relaxation
factor assisting the boundary acceleration, ∂g/∂t, that is desired to be reached in the next
time step. Therefore, equation (3.72) evaluated directly using the known accelerations of
the boundary itself and fluid at the boundary is added to the pressure boundary condition,
and the following expression is obtained:

n · ∇p = ρn ·
[
f − ν∇×∇× u− (1 + λB)

∂g

∂t
+ λB a|Γ

]
, x ∈ Γ, (3.75)

where the curl–curl viscous term is used according to equation (2.23). The fluid acceler-
ation near the boundary a|Γ is assumed to be constant in the next time step, n + 1, so
the acceleration from the current time step n may be used.

3.7. Momentum Equation

Since the pressure is considered to be a function of the velocity, equation (2.19), the
pressure field is obtained by solving equation (3.54). All terms from the right-hand-side
of the momentum equation (2.14) are ready to be approximated.

By using the method of lines (MOL) approach, the discretised equations are solved in
time. This technique converts PDEs into an ODE initial value problem, discretising all
but one dimension. In this thesis, the considered spatial derivatives are discretised using
mesh-free FDs, i.e. they are replaced with algebraic approximations. In effect, only
one independent variable remains, the time variable t. This means that any integration
algorithm solving initial value ODEs can be used to compute the numerical solution of
the PDE. Discretising the momentum equation (2.14) in space yields the resulting system
of ODEs:

Du

Dt
= f (t, u, p) . (3.76)

The following text describes numerical solutions to the ODE (3.76).

3.7.1. Time Integration

The discrete version of the momentum equation is written as:〈
Du

Dt

〉
= −1

ρ
〈∇p〉+ ν

〈
∇2u

〉
+ f , (3.77)

where 〈〉 is implied for the solving time step (n+ 1), and the right-hand-side of the equa-
tion denotes the acceleration, an+1. The explicit or direct computation of the velocity is
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done in terms of known quantities of the pressure and diffusion, as implicit computation
would add some amount of numerical damping without actually stabilising the convec-
tion of violent flows. The pressure, and therefore its gradient, is known after solving
the PPE. Moreover, flows under consideration are characterised as impulsive and iner-
tia–dominated, so the diffusion term can be approximated as constant throughout the
time step, 〈∇2u〉n+1 ≈ 〈∇2u〉n, or extrapolated from previous values of the velocity,
〈∇2u〉n+1 ≈ 〈∇2uext〉. In this thesis, the Laplacian of the current velocity field is used
to explicitly calculate the diffusion term, since the extrapolation technique did not show
difference when estimating impacts loads. The implicit treatment of the diffusion term
will be tested in future work.

In an survey [165], 105 out of 124 studies (85%) on DNS used second order scheme, while
125 out of 132 studies (95%) on LES used second order scheme for the time integration.
Most engineers and researchers use second order discretisation schemes both in space and
time. In particular, there are no important differences with results with low order in time
and high order in space. In this thesis, the first and second order differentiation for the
time integration of the velocity are considered.

The FD approximation of the Lagrangian acceleration, using the first–order backward
Euler approximation (BDF1) is given as:〈

Du

Dt

〉
=
un+1 − un

δt
+O (δt) , (3.78)

where δt is the current time step. Evidently, equation (3.78) assumes the acceleration to
be constant throughout the time step. The most significant errors arise when capturing
rapidly changing flows, i.e. impacts. By applying the Taylor series expansion one more
time for the time step n, the second–order backward Euler approximation (BDF2) that
holds for variable time steps is given as:〈

Du

Dt

〉
=

1

δt

[(
1 + 2rt
1 + rt

)
un+1 − (1 + rt)un +

(
r2
t

1 + rt

)
un−1

]
+O

(
δt2
)
, (3.79)

where rt is the ratio of the current and previous time step values. For constant time
stepping, equation (3.79) reduces to:〈

Du

Dt

〉
=

3un+1 − 4un + un−1

2 δt
+O

(
δt2
)
. (3.80)

equations (3.79) and (3.80) incorporate the change in acceleration, i.e. the jerk term,
through the discrete velocity derivative between the time steps. In contrast to equa-
tion (3.79), the Taylor series expansion may be written by directly using the discrete
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change in the acceleration term between two time steps:

un = un+1 − δt
〈

Du

Dt

〉
− 1

2
δt2
〈

D2u

Dt2

〉
+O

(
δt2
)
, (3.81)

which leads to acceleration–based backward Euler approximation (BDFA):〈
Du

Dt

〉
=
un+1 − un

δt
− 1

2
(an+1 − an) +O

(
δt2
)
, (3.82)

which one may find convenient since an+1 is known by evaluating the right-hand-side of
equation (3.77).

Table 3.1.: Solution to the Lagrangian velocity of fluid points for the next time step.

Scheme Time stepping Solution to un+1

BDF1 Variable un + δtan+1

BDF2 Constant 2
3

(
δtan+1 + 2un − 1

2
un−1

)
BDF2 Variable

(
1+rt
1+2rt

) [
δtan+1 + (1 + rt)un −

(
r2t

1+rt

)
un−1

]
BDFA Variable un + δt

(
3
2
an+1 − 1

2
an
)

The velocity vector at the time step n+ 1, un+1, is the only unknown in equation (3.77)
independently of the chosen BDF approximation. Therefore, it is directly calculated from
the chosen FD approximation. The solutions are listed in table 3.1 for the described
backward–differencing schemes.

Due to the explicit calculation of the velocity used for the advection, this part of the
method is formally conditionally stable, indicating that there must be some limit on the
size of the time step for there to be a proper solution. Conveniently, the Lagrangian
advection described in section §3.8 is well behaved for arbitrarily large values of the time
step, i.e. it is unconditionally stable [166, 167]. Consequently, larger time steps applied
to solve equation (3.77) will accumulate error during the simulation, but the advection
will sustain. In fact, if large time steps are used in areas of high pressure gradients, then
the point cloud representing fluid might advect too much and burst.

3.7.2. Time Step Limitations

The diffusive stability constraint is generally defined as:

ν δt

∆min

<

(
1

2

)d
, (3.83)

90



3. Numerical Methodology

where ∆min is the smallest grid resolution or in the meshless context the point spacing,
and δt is the duration of the time step. According to the constraint (3.83), the time step
is limited by the ratio of the grid resolution (∆min ≡ ∆ since the spacing is constant) and
viscosity:

δtν,max = εν

(
1

2

)d(
∆

ν

)
, (3.84)

where εν is the diffusive time–step limiter, i.e. a positive scalar smaller than 1.0. The
convective stability constraint of the usual CFL type is defined as:

umax δt

∆min

< εc, (3.85)

where umax is the maximum magnitude of the velocity found in the velocity field, and εc
is the value of CFL limit, often taken as 1.0 or lower. According to equation (3.85), the
convective stability constraint limits the time step by the ratio of the grid resolution and
viscosity:

δtc,max = εc

(
∆

u

)
min

. (3.86)

If the point spacing is constant, i.e. adaptive refinement is not used, the term (∆/u)min

is evaluated for the point with the maximum speed in the point cloud.

If the viscous term is treated explicitly, then the stability is determined by both con-
straints (3.83) and (3.85). If the viscous term is treated implicitly, then the standard
CFL constraint (3.85) is sufficient for stability for a first or second order semi-implicit
time discretisation [97]. Fine point spacing resolution and large kinematic viscosity of the
fluid limits the maximum allowed time step to small values. In this thesis, the problems
include fresh and sea water with the kinematic viscosity of approximately ν = 10−6 m2/s.
If one takes that very fine point spacing resolution comes down to 0.5 mm for model–scaled
problems, equation (3.84) limits the time step to large values, δtν,max � 1, due to low
viscosity of water. Therefore, the diffusive stability constraint is not relevant for the
problems introduced in this thesis.

The introduced convective constraint holds for the Eulerian description of the flow. In
the Lagrangian context, the convective derivative is absent. Lagrangian advection is not
constrained to classical CFL limiting. It can intrinsically be stable for time stepping
with high classical CFL numbers, εc > 1.0, because the continuity constraint (2.2) forces
neighbouring points to travel with relatively similar velocities, assuming fine discretisation
that captures the flow well. In other words, fluid in a static mesh cell always impacts cell
boundaries, while in Lagrangian movement the boundaries move with the flow. Due to
the connection of the velocity and position integration, the discussion of limiting the time
step is continued in section 3.8.4 after introducing the position integration technique.
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3.8. Lagrangian Advection

A moving Lagrangian framework often provides better approximations of unsteady flows
with free surface and multiphase flows with moving interfaces than a fixed, i.e. Eulerian
framework. Moreover, a Lagrangian framework avoids dealing with the non-linear advec-
tion term, which often leads to a more accurate representation of transport phenomena.
Mesh-free methods intrinsically cohere with Lagrangian movement, since points are free of
topology. This flexibility of free–form movement can hamper the conservation laws, which
must be assessed. Specifically, inaccurate movement of mesh-free points in incompressible
flows produce errors in volume conservation that results in numerical compressibility.

3.8.1. Explicit Movement of the Point Cloud

After solving the momentum equation without implicitly advecting meshless points, Lag-
rangian movement is usually done explicitly along the solved streamlines. It leads to the
distortion of the particle distribution and thus introduces volume and mass conservation
errors, especially in flows with higher Reynolds numbers, e.g. this can be illustrated by
a rotating disc which boundary points move in the tangential direction and increase the
volume of the disc [168]. Figure 3.11 shows an example of such distorted particle distri-
bution, where the volume conservation is clearly violated. The volume beneath falling
water column has compressed, while the mixing area got unstable.

Figure 3.11.: Gravity–induced test (top image) that results in a distorted particle distri-
bution without explicit volume conservation (middle image), compared to
an ordered particle distribution that conserves volume (bottom image).

The first order movement of points at n-th time step is described as:

δxi,n = un (xi) δt, (3.87)
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where the velocity u at the location of the point i may be taken as the point’s own velocity
ui, or as the “smoothed” velocity of the neighbourhood calculated by the interpolation
equation (3.4), etc. Despite the significant inaccuracies that are accumulated when using
equation (3.87), the first order movement is still used in most of Lagrangian SPH methods,
e.g. [88]. Instead of assuming that the velocity is constant between two time steps, the
velocity derivative can be used and assumed to be constant between two time steps. From
the Taylor’s series expansion, it follows:

δxi,n = un δt+
1

2

un − un−1

δt
δt2, (3.88)

=

(
3

2
un −

1

2
un−1

)
δt,

which is called the second order time integration method. Higher order time integration
methods, which use multiple time levels before the current one, should be used with
caution in violent flows, e.g. on impacts, due to accounting for velocities before the
abrupt flow change happening at the current time instant. As a compromise, the higher
order term of the Taylor’s series, i.e. the acceleration rate of change, can be introduced
using the current and previous time step and assuming that the jerk is constant between
two time steps:

δxi,n = un δt+
1

2

un − un−1

δt
δt2 +

1

6

an − an−1

δt
δt3, (3.89)

=

[
3

2
un −

1

2
un−1 +

1

6
(an − an−1) δt

]
δt,

where a is the acceleration at the location of the point i, taken as the point’s own accel-
eration obtained from the Navier–Stokes momentum equation. Taylor’s series expansion
holds for continuous and smooth functions. Therefore, the explicit movements of points
by equations (3.88) or (3.89) that experience violent impacts on solids should use time
step small enough to smoothly represent the functions of the position and velocity in time.

A treatment to avoid the highly anisotropic particle distribution that usually triggers in-
stability, as seen in figure 3.11, is slightly shifting particles away from their streamlines,
which was firstly introduced by Xu et al. [169]. The shifting technique was later improved
by Lind et al. [170] by using Fick’s law of diffusion, in order to control the particle distri-
bution. Khorasanizade and Sousa [149] adjusted the technique for flows at high Reynolds
numbers. Suchde and Kuhnert [168] tried to improve the Lagrangian movement without
the introduction of any additional artificial movements. They approximated streamline
velocities by an ODE, and moved points along these approximated streamlines. It can be
argued that the ODE approach in lieu of additional shifting yields more accurate results
for rapidly changing flow profiles. However, the sloshing test case in [168] suggests that
the improved movement methods even with small time steps yield volume conservation
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errors in the order of magnitude of 10%. Furthermore, it was shown, and it will be also
validated in this thesis, that the artificial movements do not contaminate simulations if
the time–step and movement distance is restricted to adequate values, i.e. Lagrangian
characteristics are preserved [170]. Consequently, a shifting technique that preserved the
Lagrangian property of the system keeps a simulation stable for any amount of time due
to explicit reordering of points in the point cloud. Finally, a shifting technique without
time dependency and parameters tweaking, that can also naturally handle solid boundar-
ies, is desirable. Therefore, Position Based Dynamics (PBD) technique is investigated, as
an alternative to the shifting introduced in [169], due to its unconditionally stable time
integration and robustness [166]. In the following text, the “classical” shifting and PBD
techniques are described.

3.8.2. The Shifting Technique

The particle or point shifting is also known as corrective displacement and particle regu-
larization. The particle flux is defined by:

J = −D∇C, (3.90)

where C is the particle concentration and D is the diffusion coefficient. Assuming that
the flux is proportional to the velocity of the particles, a particle shifting velocity us,
and subsequently a particle shifting distance, δrs = us ∆t, can be found. Consequently,
the particle shifting distance is proportional to J∆t. Special attention needs to be given
to the value of diffusion coefficient D , which should be large enough to provide effective
particle shifting and redistribution, but small enough to avoid error by excessive diffusion.
An upper limit on the diffusion coefficient can be found through a Von Neumann stability
analysis of the advection–diffusion equation. Skillen et al. [128] suggest D ≤ h ‖u‖i.
Therefore, the proportionality mentioned before leads to:

δrs = −Ah ‖u‖i ∆t∇C, (3.91)

where A is the problem–dependent dimensionless constant, with a value within an order
of magnitude of unity.

3.8.3. Position Based Dynamics

A set of nonlinear constraints that enforce constant density is solved using Jacobi itera-
tions by updating particle positions each iteration [167], which is described in the following
text. The PBD applied to constraining the fluid density is referred to as Position Based
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Fluids (PBF). The constraint is defined as:

C (xi) ≡ Ci =
ρi
ρrest

− 1, (3.92)

where ρi is the numerical density estimated in a SPH fashion as ρi =
∑
N Wij, and ρrest

is the numerical density estimated for the chosen regular point distribution: uniform
Cartesian grid or hexagonal point distribution. When reorganising points via the PBD,
the compact radius hP does not need to have the same value as the compact radius h
used for calculating gradients and Laplacians.

The idea is to find a correction to the current point location, δxi, so that C (xi + δxi) = 0

holds. The change in constraint (3.92) can generally be represented through equation (3.5)
in the following way:

C (xi + δxi) ≈ Ci + δxi · ∇Ci = 0. (3.93)

Assume that the location correction δxi should be in the direction of ∇Ci, i.e. the vectors
are co-linear with each other:

δxi = λ∇Ci, (3.94)

which substituted back in equation (3.93) yields:

Ci + λP,i∇Ci · ∇Ci = 0. (3.95)

Now the scaling factor λP,i can be obtained:

λP,i = − Ci∑
k ‖∇kCi‖2 + εP

, (3.96)

where εP is the relaxation parameter taken as constant, and ∇kCi is defined as:

∇kCi =
1

ρrest


∑

j∇Wij, k = i,

−∇Wij, k = j,
(3.97)

in order to solve in a parallel Jacobi fashion [167], instead of the sequential Gauss–Seidel
iterations [166], and ∇Wij is estimated in an SPH fashion. Equation (3.96) is used for
the position update by including corrections from neighbours:

δxi =
1

ρrest

∑
j

(λP,i + λP,j)∇Wij, (3.98)

By empirical evaluation, it was found that a small compact radius is efficient, hP < 2∆,
and that εP = 10−5 is adequate. The point cloud is firstly advected as described in
section 3.8.1 and then those new positions are corrected by iteratively applying corrections
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described by equation (3.98). After the points are corrected, velocities at the new locations
are updated by meshless interpolation at the uncorrected locations by equation (3.4).

3.8.4. Time Step Limitations

PBD techniques are said to be unconditionally stable [166]. Equation (3.98) that up-
dates the position does not extrapolate into the future as explicit schemes do, but move
the points to a physically valid configuration computed by the constraint solver. It is
parameter-free and thus problem–independent, unlike the shifting technique described in
section 3.8.2 that relies on the point velocity and problem–dependent coefficients. In
other words, the PBF technique can recover point cloud regularity from highly irregular
distributions that may have arisen from inadequate or defective point cloud movement,
assuming enough iterations of equation (3.98) are performed. In conclusion, the PBF
technique does not append time step restrictions.

On the other hand, one should be careful with the fact that the point cloud movement
described in section 3.8.1 in combination with the PBF technique can handle large time
steps, because stepping restrictions for the velocity still apply. Large time steps and point
movements may accumulate velocity divergence errors that cannot be damped faster than
they are generated. In such cases, abrupt and immense pressure gradients produced after
solving the PPE blow up problematic areas. The time step should be chosen to ensure
sufficient accuracy of the solution, but in any case can be equal or greater than for an
Eulerian scheme. For example, for a situation in which adjacent fluid parcels mix, time
step should be smaller than for a situation in which fluid parcels advect in the same
direction. Due to the consideration of violent flows, it follows that in addition to the
mixing sensitivity, the choice of the time step should also be sensitive to impacts of the
free surface on the boundary, and impacts of fluid fragments between themselves.

ji xij

Δmin δt ujδt ui

xij
*

Figure 3.12.: Extrapolated paths of two neighbour points and their predicted distance
from each other.

The question of adaptively choosing the value of the next time step can be formed as
follows: how long does it take for two neighbour points to collide, i.e. their paths to
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become too close to each other? The problem is schematically drawn in figure 3.12, where
the first order integration is assumed, the predicted distance vector of two neighbour
points is obtained by equation (3.87):

x?ij = xij + uij δt, (3.99)

which is approximate, because the velocities of the current time step are used. Now we
are interested into finding the maximum time step, δtmax, for which the two points are
going to be too close to each other,

∥∥x?ij∥∥ ≤ ∆min. The problem is posed by squaring
the above equation, i.e. by dotting it with itself, which yields a quadratic equation. The
solution to the equation is:

δtmax =
1

‖uij‖2

{
±
√

(xij · uij)2 + ‖uij‖2 (∆2
min − ‖xij‖2)− xij · uij} . (3.100)

If the sum under the radical sign is negative or if the result of δtmax is negative, then the two
points are distancing away from each other. Otherwise, if the equation has two positive
solutions the points are passing by each other like shown in figure 3.12, so the minimum
of the two solutions is chosen. The minimum allowed distance is a fraction of the initial
spacing, ∆min = 0.4 ∆ was empirically found to be appropriate. Finally, the solutions of
equation (3.100) may be limited by the CFL constraint (3.86), δtmax ≤ εc ∆/ ‖ui‖, where
εc limits the number of initial points spacings that the point can travel in a time step,
e.g. εc = 1.8.

3.8.5. Volume Conservation

The PBF technique can be depicted as a re-meshing method, not as an integration method.
Its objective is to conserve the volume of fluid in the domain after the integration step,
based on virtual volumes of points by enforcing equidistant neighbour points.

For the sake of comparison, flux–based conservative methods conserve the volume in in-
compressible flows by controlling the flux through faces from both sides. A solenoidal
velocity field has to exist, equation (2.2), in order to describe the incompressible flow.
When integrating over the area, the continuity states that the net mass accumulation in
the control volume is zero. When ∇·u 6= 0, some amount of mass nonphysically increases
or disappears from each cell. If a flux–based method fails to ideally satisfy the incom-
pressibility constraint, it may accumulate the error through time, which is pronounced
in Discontinuous Galerkin (DG) methods [171]. Moreover, when dρ/dt +∇ · (ρu) = 0 is
not ideally satisfied in multiphase free surface flows, a FVM may accumulate the error
through time, yielding high L∞–norm of the error. Alternatively, the existence of Lag-
rangian points and the constantness of distances between closest neighbour points in the
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point cloud guarantee the required fluid volume at all time. Figure 3.13 shows the noted
difference of conserving the volume in a ill-prepared simulation by a flux–based solver
and a PBF solver that optimises the volume of a point cloud. Non-ideal convergence
when constraining equidistances between points with the PBF leads to slight oscillations
of global fluid volume in the domain, but it cannot result in uncontrollable loss or gain
in volume. In conclusion, the PBF technique conserves the global volume of fluid at all
time.
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Figure 3.13.: An example of the conservation of total fluid volume through simulation
time: flux–based accumulation of error versus the PBF technique trying to
optimise the point cloud arrangement.

3.9. Coupling Between Domains

3.9.1. State of the Art

The numerical treatment of inflow and outflow boundary conditions in Lagrangian mesh-
less methods deserves special attention. For the most popular meshless method (SPH), the
problem is listed among the ‘Grand Challenges’ by the SPH European Research Interest
Community [149].

Some researchers instead of dealing with open boundaries try to employ periodic boundar-
ies, which obviously offer limited capabilities. Generally, when imposing an open boundary
condition for incompressible flows, volume conservation is a primary factor that needs to
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be appropriately accounted for. SPH and MPS particles need to be carefully created and
removed in order to keep an adequate distribution near open boundaries. For the sake of
comparison, it’s worth noting that Eulerian methods that work with fluxes do not deal
with such challenges connected to physical “cell” movement, but need to take care about
cells intersected by the free surface.

Often the open boundary conditions in the SPH method are implemented by means of
buffer regions whereby physical quantities are either imposed or extrapolated from the
fluid region [172]. This is due to the fact that SPH operators cannot yield accurate
results if the kernel is truncated. Khorasanizade and Sousa [149] proposed a buffer–based
inflow/outflow boundary treatment for the semi-implicit SPH method for high Reynolds
numbers. They modify particle shifting technique to limit possible volume conservation
errors. Hirschler et al. [127] formulated the open boundary as an impermeable wall
boundary by mirroring particles that move with the specified velocity of the boundary.
This technique can lead to large errors if the velocity profile at the open boundary is
very steep. As opposed to the buffer–based methods, Ferrand et al. [173] extended their
semi-analytical boundaries for the SPH method that account for truncating the kernel
[152]. Since it relies on mixing the Lagrangian and Eulerian concepts for the boundary
segments, it uses Riemann invariants to impose compatible density and velocity fields.

The referenced schemes use buffers of particles due to the nature of the SPH spatial
operators, which cannot handle partially truncated neighbourhoods. On the contrary,
the renormalised operators used in this thesis work adequately when a point is encircled
by a single ring of neighbour points. They are to a degree immune to the point cloud
irregularity, and always exact for linear fields in the neighbourhood. Consequently, bound-
ary conditions can be applied by using a single array of points placed on the boundary,
because the boundary points will contribute to encircling fluid points located near the
boundary surface when calculating renormalised spatial operators. In conclusion, the
boundary–projection technique applied to solid walls is applicable to all boundaries, since
buffers of points behind boundaries insignificantly affect the accuracy of solutions to the
PPE.

3.9.2. Inlet Boundaries

For the class of problems this thesis investigates, the velocity profiles are available at inflow
cross sections, Γin. Therefore, the velocity of points is prescribed at the inlet boundary,
x ∈ Γin, according to the known profile to impose the Dirichlet boundary condition (2.26)
on the velocity. In this thesis, inlet boundaries are exclusively used for the propagation of
waves generated by potential flow theory that is described in section §2.6. The potential
flow solver provides the velocity field, ulo.fi. (x, t), and free surface elevation information,
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ηlo.fi. (x, y, t). As discussed in section 2.4.3, it can be assumed that the pressure does
not change in the direction normal to the inlet boundary surface, so the zero–Neumann
boundary condition (2.28) is imposed on the pressure when solving the PPE.

Now that imposing the boundary conditions is conclusive, the remaining issue to be dealt
with is controlling the Lagrangian advection of points into the domain. After obtain-
ing the solution to the pressure field, the velocity is marched in time. Points entering
the domain need to be adequately arranged near the open boundaries, i.e. each newly
generated point has to be assigned the same virtual volume. This issue is taken care
of by the volume conservation technique illustrated in section 3.8.3. When considering
the generation of waves at the boundary, positive and negative velocities relative to the
boundary are periodically occurring, i.e. fluid flows inside and outside of the domain.
This is schematically drawn in figure 2.2. The points that are generated to impose the
boundary condition for waves, which also do not enter the domain in the next time step,
do not pose any problems for the method as they are simply discarded.

The main pieces of the scheme are summarised below.

• Fluid points near the boundary generate temporary boundary points for imposing
the inlet boundary conditions for the current time step. If the solution is known
only at the boundary, then the boundary point is generated by projecting on the
boundary surface. Else if the solution is also known behind the boundary surface,
then the generated boundary point b is distanced by the value of point spacing ∆

from their parent fluid point i, xb = xi −max {∆, rin}n, where rin is the distance
from the fluid point to the boundary surface, and the normal n points into the fluid.

• The known value of the velocity ub is assigned to the generated boundary point b.

• The zero–Neumann boundary condition (2.28) is imposed in the PPE. The simple
central FD equation (3.17) is used for the directional derivative in equation (2.28),
because pb ≈ pi.

• The temporary boundary points advect with fluid points. Before advecting the
points, the relaxation of the velocity field is done in the volume that stretches from
the boundary surface in the normal direction of the surface. This stabilises the
simulation, as described in section 3.9.4. Temporary points that enter the fluid
domain after the movement are converted to fluid points, and those that stay out
of the domain are discarded.

3.9.3. Open Boundaries

When analysing spatially decomposed external–flow problems with an inlet that forces
the fluid to flow into the computational domain, the flow properties at the remaining
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boundaries are usually unconstrained. Therefore, instead of using outlet boundaries that
force the flow outside the domain, open boundaries are used. They let the fluid to freely
enter and leave the computational domain while insignificantly affecting the development
of the flow. The numerical scheme for open boundaries follows the principle of inlet
boundaries illustrated in figure 5.13, with some differences. The main pieces of the scheme
are listed as follows.

• Fluid points near the boundary generate temporary boundary points in the direction
normal to the boundary surface. The generated boundary point b is distanced by
point spacing ∆ from their parent fluid point i, xb = xi −∆n.

• An approximate value of the velocity ub is assigned to the generated boundary point.
More accurate approximation would be set using extrapolation, but as argumented
in section §2.4, the assumption that the velocity does not change in space and time
is a valid approximation for open boundaries far away from the body, ub = ui.

• The Neumann boundary condition (2.30) is imposed in the PPE as it is for the
boundary points on the wall. The right-hand-side of equation (2.30) is calculated
by assuming that the velocity does not change in time, ∂u (xb) /∂t = 0. The simple
central FD equation (3.17) is used for the directional derivative in equation (2.30),
which evaluates at (xb + xi) /2, as it does not make much difference where the
boundary exactly is.

• The boundary points advect with fluid points. Those points that cross the boundary
and enter the fluid domain are converted to fluid points, and those that leave the
fluid domain are removed from the simulation.

In a simulation where an inlet boundary is the main source of flow development, e.g. by
generating waves, the remaining open boundaries of the domain must not feed the domain
with new energy. For whatever reason, the flow solution may be rotational or reverting
near the open boundary, u|Γ ·n > 0. In addition, it may be accelerating into the domain,
n · ∂ u|Γ /∂t > 0, thus pushing new flow from unknown origin (unlike inlets do). This is
avoided by combining the three following components:

• Open boundaries from the objects under consideration should be “far enough”.

• The boundary condition should not extrapolate from the unknown; the velocity is
assumed to be constant in time and space.

• Flow may be damped or relaxed before reaching the boundary. There are various
techniques to damp the free surface waves [174]. Principles of the relaxation zone
used in this thesis are described in the next section.
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Figure 3.14.: Schematic of a common domain setup.

3.9.4. Relaxation Zones

Spurious reflections from boundaries, waves reflected internally or incomplete convergence
in numerical simulations contaminate the results. Reflections between the wave generator
and an object add extra energy to the simulation. Relaxation zones are often employed
to solve the problems from the boundaries by weighting between the computed solution
and some target solution. Generally, the relaxation can be done explicitly or implicitly,
depending on the time integration scheme. The momentum equation is treated explicitly
in time due to the characteristics of the NSE solving scheme and the Lagrangian nature
of the method, as described in section §3.7. Therefore, the relaxation technique within a
defined zone is also done explicitly, after the momentum equation had been solved for the
velocity at the next time step. The explicit approach of the relaxation of some scalar or
vector field inside the relaxation zone is defined as the linear combination of the computed
and target solutions:

f (x) = αR fcomputed + (1− αR) ftarget, (3.101)

where αR is the relaxation weighting function, 0 ≤ αR ≤ 1, and f is some scalar or vector
field under consideration. The concept of relaxation weighting is drawn in figure 3.15.
Relaxation zones are located within the computational domain. In those zones the flow
variables are regularly computed, but afterwards they are relaxed by a fraction of the
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imposed solution. The presence of relaxation zones in the domain does not conflict with
the concept that is responsible for managing the spawning of fluid points entering the
domain and removing of fluid points leaving the domain.

Relaxing the flow at the inlet boundary is straightforward, i.e. equation (3.101) is eval-
uated to correct the velocity field ucomputed (x) after it has been solved for the next time
step. On the other hand, open boundaries require not to impose some solution, but to
smooth out the flow as depicted in figure 3.15. Sometimes a relaxation zone in front of
the open boundary smooths out the flow in order to model the outlet boundary. In this
thesis, such heavy modifications to the flow are not needed.

The zones in front of open boundaries relax the flow firstly by interpolating the source
term in equation (3.50) by equation (3.101), where btarget = 0. This results in minimal
production of pressure gradients near open boundaries. Secondly, the flow is regularised
in a way that it flows normal to the boundary. This is achieved by interpolating the
velocity field from its computed solution to the normal projection of the velocity field,
i.e. utarget = n (n · u). Assuming that the open boundary is an outlet boundary, the
relaxation imposes the velocity vector to be directed outside of the domain, utarget =

n min {0, (n · u)}, where the boundary surface normal n is pointing from the boundary
towards the fluid.
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Figure 3.15.: The relaxation zone technique.

Similar to the choice of weighting function for meshless operations, there are numerous
options for relaxation weighting introduced in the literature. The exponential weighting
function is a sigmoid–like function, which is often used for the relaxation in incompressible
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flows [175]. It has the following form:

αR (xR) = 1−
exp

(
xβR

)
− 1

exp (1)− 1
, (3.102)

where xR is the distance from the relaxation boundary normalised by the length of the
relaxation zone (xR = 1 at the physical boundary), and β is the exponent that dictates
the steepness of the relaxation, often taken as β = 3.5 [176]. The function very gently
interpolates from the computed solution, and later abruptly into the target solution. The
exponential weighting function would belong to a class of spiked functions used in meshless
methods. The Spiky kernel [177] is an often used weighting function in the SPH method,
which transformed to coordinates of the relaxation zone writes:

αR (xR) = 1− xβR, (3.103)

where the exponent β is commonly taken as 3.0.
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Figure 3.16.: A comparison of the relaxation weighting functions: the exponential weight-
ing functions, Spiky kernels, and Wendland’s kernels with various steepness.

The comparison of equations (3.102) and (3.103) is shown in figure 3.16. For the usual
exponential weighting function, the Spiky kernel yields a similar curve if β = 4.5. Gen-
erally, relaxation zones require the domain to be extended. Similarly when choosing a
meshless weighting function, for a relaxation zone it is questionable how the slight the
transition αr → 1 exhibited in the exponential weighting actually benefits the relaxation
for the price of performance. By lowering the exponent β in the exponential and Spiky
functions, the relaxation is hastened as shown in figure 3.16. Therefore, the relaxation
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zone may be reduced by ca. 15%. The Spiky kernel Equation (3.103) with an integer
exponent, β = 3 or β = 4, has a simpler form than equation (3.102) and much better
computational performance. Figure 3.16 also includes two curves that represent Wend-
land’s weighting functions, which belong to a class of bell–shaped functions. Bell–shaped
functions, compared to the spiked functions, have zero–derivative when relaxing from the
target to the computed solution. This implies that Wendland’s and other bell–shaped
weighting functions should be used in relaxation zones where the computed results are
not ideally converging, e.g. at the start of simulation where waves are generated into the
tank filled with still water.

Figure 3.17.: Schematic of common physical wave maker types: piston–type (left) and
flap–type (right).

3.9.5. Waves Generation

Calculating green water loads can be performed without the numerical generation of
waves, by modelling the deck and by imposing the entry of water on the deck. Reliable
wave generation procedure allows for the calculation of green water loads in more detail,
i.e. the calculation contains the interaction between the hull form of a ship form and waves.
This was described in section §2.7. There are multiple possibilities how to numerically
generate waves to spread through the fluid domain.

• The waves can be generated by physically moving a (semi)immersed body. In
experiments, there are two common types of the physical wave maker: the pis-
ton–type and flap–type, which are depicted in figure 3.17. Appendix H describes
the flap–wavemaking theory that is used to impose the movement of a flap to gen-
erate the specific wave. This technique is suitable when trying to reproduce the
wave generation similar to the experimental wave tank. The disadvantage is that
the domain has to be extended in order to allow the wave generated from the flap
movement to fully develop before reaching the structure under consideration. In ad-
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dition, physical wave makers induce complex flow structures in their vicinity which
introduce additional difficulties concerning time stepping.

• Another option is to impose the inflow boundary conditions from section 2.4.3 in
combination with a relaxation zone. This takes care of prescribing velocities, pres-
sures and waves amplitude using description methods of waves. At each time step,
the description of waves is computed. Then the obtained solution is imposed at
the inlet boundary as described in section 3.9.2. Before the Lagrangian advection,
the computed flow is relaxed as described in section 3.9.4. The combination of the
Dirichlet boundary condition and relaxation technique has proven to be provide
adequate computational efficiency and low reflections of both short and long waves
[178].

• Choi and Yoon [179] introduced an internal wave–making scheme based on the mo-
mentum conservation. The momentum source term, or an internal force, derived
from the regular wave theories is added into the NSE. Therefore, waves are gen-
erated through the periodic application of internal forces within a specified virtual
box. Like other schemes, this one also requires enough space for wave making as it
generates an evanescent wave mode near the source region, similar to the piston–type
wave maker. Details are given in Appendix I.
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In the following sections, it will be explained how the numerical methodology presented
in chapter 3 is implemented to solve the mathematical problems presented in chapter 2.
The implementation algorithm is given in section §4.1. Furthermore, section §4.2 and
section §4.3 explain how the software implementation executes the solution algorithm
efficiently on current hardware.

4.1. Solution Procedure

Although the solution procedure consists of steps which are implemented to execute in
parallel as it will be shown later, the solution procedure itself is a sequential algorithm.
The sub-steps of a time step are listed as follows:

1. Discard all generated boundary points for the previous time step.

2. Generate boundary points at inlet boundary surfaces using the technique described
in section 3.9.2.

3. Generate boundary points at open boundary surfaces using the technique described
in section 3.9.3.

4. Generate boundary points at solid surfaces, as illustrated in section §3.4.

5. Find neighbours between points, as described in section 4.2.2.

6. Calculate the renormalisation tensor of each point by equation (3.9) and the offset
vector by equation (3.12).

7. Detect points on the free surface using the technique described in section §3.5.

8. Compute the diffusion term using the Laplacian approximation equation (3.36).

9. Set up the right-hand-side vector of the PPE (3.54) by evaluating equations (3.56)
for fluid points, equation (3.59) for Neumann boundary points, and by setting values
for Dirichlet boundary points.

10. Prepare the preconditioner and solve the PPE (3.54) by an iterative solver without
constructing the system matrix as described in section 4.2.4.
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11. Calculate the pressure gradient by equation (3.10).

12. Solve the momentum equation for the velocity of fluid points as described in sec-
tion §3.7.

13. Advance points to their new locations as described in section 3.8.1.

14. Conserve the volume of fluid points by the iterative scheme described in section 3.8.3.

15. Remove points outside the domain.

16. Write results to a file and/or render them on the display as described in section 4.2.5.

4.2. Implementation Specifics

The implementation of the solver is made in a cross–platform manner and therefore can be
executed on Linux, Windows, and Mac OS X operational systems. The solver library is
made as a stand-alone library that can be used by some other application, and a Graphical
User Interface (GUI) is made to visualise and interact with the simulation in real-time.
The next few sections describe some of the important implementation details of the solver
library and the GUI.

4.2.1. Simulation Set-up

The simulation input file does not incorporate any volumetric mesh, but only bounding
surfaces of the domain and objects in the scene. The surfaces can be defined using
primitives: list of connected line–segments, list of triangles, box, plane, etc. Alternatively,
a surface can be imported into the scene as a list of triangles from the commonly used
Sterelithography (STL) file format. JavaScript Object Notation (JSON) open–standard
file format, that uses human readable text in form of attribute–value pairs and array data
types, is used as an input for the solver. Detailed description of the file format and input
examples are given in Appendix J.

The meshing process is present in the form of an automatic generation of the fluid point
cloud. Generally, a body of liquid is surrounded by various boundaries: solid walls, virtual
boundaries (inflow, outflow, symmetry), and the fluid free surface. The simulation input
defines the geometry of those boundaries. With all relevant boundaries defined, source
locations for fluid flooding must also be defined. The space is automatically filled starting
from the defined flooding locations by generating points with defined initial spacing ∆,
until nearest boundaries are reached. The concept of the flood filling is schematically
rendered in figure 4.1. The free surface shape is used as a boundary surface, which is
removed after the fluid is filled. Multiple source points can be defined, which then fill

108



4. Implementation

Flood source point

Walls and/or domain boundaries

Initial free surface shape

Object

Figure 4.1.: The concept of flood filling algorithm, which fills the fluid domain bounded
by boundary surfaces from a source point that is defined in the fluid domain.

some separate spaces with fluid as rendered in figure 4.2. For instance, this feature can be
used to fill separate spaces of fluid for the dam–break experiment, where a moving wall
releases high column of water. In future, the feature can be used to fill different fluids
(e.g. water and air) into the specified domain.

4.2.2. Neighbour Search

Due to lack of the topology information in the meshless point cloud, each point must find
its neighbours inside the compact domain at each time instant to perform the interaction.
Background grids are usually employed to avoid testing of all points with each other to
see if they are close enough to interact. Background grids, also known as acceleration
grids, are used to tackle the computational efficiency issue of nearest neighbour search,
by dividing the domain space and inserting the meshless points inside the cells. In such
a way, any point has potential neighbours in its cell and the surrounding cells, i.e. all
background cells that overlap with the compact domain of the point under consideration.
The concept is schematically depicted in figure 4.3.

The Cartesian background grid was implemented within the solver by employing atomic-
ally built linked lists [180], which allow dynamic insertion of temporary boundary points
into cells, needed by the idea presented in section §3.4. More information on the imple-
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Initial free surface shape

Figure 4.2.: The concept of flood filling algorithm, which fills the fluid domain(s) bounded
by boundary surfaces from multiple source points that are defined in physic-
ally separated spaces.

mentation and background grids is given in Appendix E.

One should weigh the ratio of the grid cell size and compact sphere size, since it affects
the performance of neighbour search. In order to avoid unnecessary accesses through the
computer memory, the number of points in cells should not be too high, nor the number of
overlapping cells with the compact domains should be to high. Empirically, it was found
that the cell size of 2.1h yields adequate neighbour search performance.

4.2.3. Operations with Boundaries

This section explains how the interaction of fluid points with boundaries is implemented,
since it is of crucial importance for the efficiency and robustness of the introduced meth-
odology. Methods that work with many discrete elements that represent surfaces and
volumes must employ data structures that enable optimised spatial operations related
to the problems of ray–geometry intersecting, geometry–geometry overlap detection, etc.
Filling the space with fluid points as described in section 4.2.1 concludes when points
reach a boundary. At some location, it should be quickly evaluated whether the fluid can
spread or it will hit the boundary that is represented by e.g. triangles in three dimensions.
Therefore, a fast ray–triangle intersection algorithm defined by the direction of spreading
is needed. Moreover, when the boundary points are needed to be generated as described
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Figure 4.3.: A schematic concept of uniform background grid, where each point is put
inside of a square cell indexed in a matrix fashion.
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Figure 4.4.: A schematic concept of hierarchical background grid for boundary meshes,
where triangles (gray) are put inside of a cell indexed in a tree fashion, and
tested location (blue point) propagates to all levels.

in section 3.4.2, points on the edge of the point cloud should be quickly evaluate to check
if they are positioned against a wall or another virtual boundary. This is achieved by
projecting the points onto the nearby geometry.

If the problem under consideration is described by small amount of triangles, then the
necessary test can be performed simply by iterating through the triangles forming the

111



4. Implementation

boundary and testing each triangle. The information that described the geometry takes
up a small region in the Random Access Memory (RAM) and may be cached at all time.
The pseudo–code is given in the following text.

for_each (point in relevant_points):
for_each (triangle in triangles_list):

projection = project(point.location, triangle)
if (distance(point.location, projection.location) < min_distance):

generate_boundary_point(projection, point) # new and original point
connectivity

When the problem contains complex geometry described by large amount of triangles,
hierarchical data structures known as “spatial data partitioning trees” are often employed
to speed up access to only relevant triangles in the specific volume. Each object may
have its own spatial partitioning structure, which remains unchanged while geometry of
the object is unchanged, irrelevant of the object translation and rotation. The test being
performed for such structure firstly transforms global coordinates of a location vector
into local coordinates of the partitioning structure. GPU implementations of sparse data
structures are problematic, because updating sparse structures usually involves scattered
writing to memory addresses, and traversing involves scattered pointer de-references to
access the data. In this thesis, a static tree-like structure is employed where each cell points
to the first element inside it, similar to the implementation of nearest–neighbour searching.
The idea is depicted in figure 4.4, in which the blue point describes a location being
tested for elements by searching cells on multiple hierarchical levels. The pseudo–code
considering this space partitioning approach is given in the following text.

for_each (point in relevant_points):
for_each (object in objects):

local_location = object.transform(point.location)
triangles_list = object.get_triangles_in_cells(local_location)
for_each (triangle in triangles_list):

projection = project(local_location, triangle)
if (distance(local_location, projection.location) < min_distance):

generate_boundary_point(projection, point) # new and original point
connectivity

4.2.4. Linear–System Solver

The pressure equation is solved iteratively by a Krylov subspace (KSP) method, which
is implemented using the matrix–free multiplication kernel without keeping the sparse
matrix in memory. Instead of preparing the system matrix before solving, the matrix-
row–vector multiplication is repeatedly done when needed. By an empirical evaluation,
it was found that performing these mathematical operations in the kernel is faster than
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preparing the system matrix before solving. The following iterative methods were imple-
mented and are shown to converge when solving the PPE:

• Conjugate Gradient (CG) method,

• Bi–Conjugate Gradient Stabilized (BiCGStab) method [181], which is a stabilised
version of Bi–Conjugate CG, naturalised generalization of the classical conjugate
gradient algorithm for Hermitian positive definite matrices to general non-Hermitian
linear systems,

• Generalized Minimal Residual (GMRES) method [182], which uses Arnoldi iteration
is used to find the vector in a Krylov subspace with minimal residual,

• Transpose–Free Quasi–Minimal Residual (TFQMR) method [183], which overcomes
the problems of Bi–Conjugate CG by a look-ahead version of the non-symmetric
Lanczos algorithm.

• Quasi–Minimal Residual Conjugate Gradient Stabilized (QMRCGStab) method
[184], which is a QMR variant of the BiCGStab method that yields smoother con-
vergence behaviour.

The solvers converge if and only if the boundary conditions are properly posed, which is
thoroughly explained in section 3.6.2. It may seem peculiar that the CG method, which
is applicable for symmetric system matrices, also works for these cases that are char-
acterised by non-symmetric matrices. This confirms the robustness and stability of the
introduced method, although the simulation quickly explodes when the CG solver does
not properly converge. The diagonal preconditioner was used to improve the perform-
ance and convergence of KSP methods [185]. The QMRCGStab method was found to be
the best compromise between efficiency, smoothness of the convergence, and number of
iterations needed. Therefore, if not otherwise specified, the solver based on the QMRCG-
Stab method is used in the simulations recorded in this thesis. More information on KSP
methods and their optimised implementation is given in Appendix D.

4.2.5. Postprocessing

There are two options on how to examine results of a simulation results: by post-processing
exported data or by visualising the results in real-time. The solver can be used as:

• a dynamically linked library that is called from another software,

• a console application with defined input and output parameters,

• a desktop application with a real-time GUI.

The need for creating a GUI arose from the user experience feedback to help users simulate
their cases with ease. The application with the GUI was made with the help of Qt cross-
platform application framework (www.qt.io), and offers:
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• an interface for setting up a simulation,

• controls for the simulation running process,

• real-time visualisation of the results while the simulation is running.

These features of the application are shown in figure 4.5. OpenGL rendering pipeline
(www.opengl.org) was used for drawing the simulated scene while the solver is running.
Meshless point cloud is drawn as a set of spheres by using the pipeline “geometry shaders”
for quickly instancing millions of spheres on the screen. The implementation method is
given in Appendix F. A simulation scene rendered inside the GUI application is shown
in figure 4.5. The bottleneck of the rendering is the transfer of the solver data from
the computing device to the GPU. If the solver is being run on the GPU, then the data
does not need to be transferred, but is directly used with the help of CUDA/OpenGL
interoperability framework.

Figure 4.5.: The graphical user interface of the implemented solver.

Even though the GUI application can immediately render the simulation as it progresses,
usually users require more detailed inspection of the results in some software specialised for
CFD post-processing. Therefore, the simulation input specifies the frequency and other
options for exporting the results. The results are written in Visualization Toolkit (VTK)
file format [186]. ParaView, which is a post-processing, data analysis and visualisation
application (www.paraview.org), was used to inspect the exported data-set of the results
in an non-real-time manner.
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4.3. High Performance Computing

This section presents the reasoning for the current implementation. Generally, High Per-
formance Computing (HPC) is the aggregation of computing power that delivers higher
performance than it is possible to get out of a typical desktop computer or workstation,
and is employed to solve large problems in science, engineering and business. HPC is the
use of parallel processing for running advanced application programs efficiently, reliably
and quickly. The term HPC is occasionally used as a synonym for supercomputing, al-
though technically a supercomputer is a system that performs at or near the currently
highest operational rate for computers. A cheaper alternative to a expensive supercom-
puter is a cluster, which is a group of computers considered as a single machine, connected
through a high speed network. Clusters can be extended by adding more computers into
the group. A short analysis of the current status of hardware is presented in Appendix
G.

4.3.1. Parallelism in Computing

HPC includes various techniques of parallel and distributed computing. Parallel comput-
ing is a type of computation in which many calculations or the execution of processes
are carried out simultaneously. The forms of parallel computing are: bit–level, instruc-
tion–level, data, and task parallelism. Distributed computing is a type of computation
in which separate computers, called nodes, coordinate their actions by passing messages,
i.e. they interact with each other in order to achieve a common goal, thus achieving
computing concurrency. A node in a distributed system can also use parallel computing
techniques for its part of the work.

This work does not deal with the optimised execution of the solver on a distributed system
or a supercomputer. In order to show the feasibility of the method for everyday engineer-
ing use, this thesis rather deals with the problem of fast execution on a single personal
computer or a workstation. When the implementation works efficiently on a single com-
puter, it is straightforward to extend its execution on a distributed system via Message
Passing Interface (MPI), a library of functions that enables communication between the
nodes in a cluster. The problem described in section §4.1 needs to be numerically solved
as fast as possible. Contrary to task parallelism problems, which divide the work into
different jobs that execute at once, the problem presented here needs to be solved by steps
in sequential order, since one step depends on the solution of the former step. The proper
technique to assess the problem is to deal with each step by utilising data parallelism,
i.e. each processor performs the same task on different pieces of distributed data. In
some situations, a single execution thread controls operations on all pieces of data, e.g.
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in Graphical Processing Units (GPUs). In other situations, different threads control the
operation, but they execute the same code, e.g. in Central Processing Units (CPUs).

4.3.2. Parallel Implementation

By analysing the status of the current hardware, presented in Appendix G, it is obvi-
ous that scientific software should perform efficiently on massively parallel architectures.
Given the pending convergence of massively parallel architectures, there is little reason
to worry about a particular architecture, i.e. if the right algorithms are used, one will be
well prepared for any upcoming architecture. For this reasons, the implementation of the
methodology, i.e. the pre-processor, solver and post-processor, was programmed in C++
programming language using data–parallel algorithms. After trying and testing various
programming libraries that help with data–parallel programming, a HPC library named
Kokkos [187] was chosen. The library implements a programming model in C++ for
writing performance portable applications targeting all major HPC platforms. For that
purpose, it provides abstractions for both parallel execution of code and data manage-
ment. It currently can use system threading, OpenMP, CUDA, and ROCm as backend
programming models, and employ MPI for distributed computing. In conclusion, the
employed programming models enable the solver to be executed efficiently on multi-core
devices (CPUs, GPUs, and other similar acceleration devices) in an optimised manner,
adjusted appropriately for each architecture that the solver is running on.

116



5. Verification and Validation

Verification and validation (V&V) are the primary means to assess accuracy and reliability
in computational simulations, i.e. their goal is to ensure that a methodology implement-
ation produces reasonable results for a certain range of problems. Verification is the
process of testing the correctness of a mathematical model that describes a specific phys-
ical phenomena. It answers to a question whether the equations are solved in the right
way. Verification is usually done by comparing the computational results with analytical
and numerical solutions for standard benchmark configurations, i.e. representative test
cases. Validation is the process of testing the correctness of the description of the actual
problem with the proposed model and methodology. It answers to a question whether the
right equations are being solved for the specific problem by means of comparing the res-
ults with available numerical and experimental data. In the next sections, the numerical
methodology introduced in chapter 3 and its implementation described in chapter 4 are
verified and validated.

5.1. Novel Laplacians

5.1.1. Approximation

The rate of convergence, the error, and the computational efficiency of the introduced
operators will be demonstrated in this section. The features of the operators are compared
to the corresponding regular FD five–point stencil formulations and to the typically used
SPH scheme. In a unit square, Franke’s bivariate function has two Gaussian peaks of
different heights and a sharper depression, which is superimposed on a surface sloping
towards the first quadrant [188]. It is used as a standard test function for two-dimensional
scattered data fitting. The function is defined as:

f (x) = 0.75 exp
[
− (9x− 2)2 /4− (9y − 2)2 /4

]
(5.1)

+ 0.75 exp
[
− (9x+ 1)2 /49− (9y + 1) /10

]
+ 0.5 exp

[
− (9x− 7)2 /4− (9y − 3)2 /4

]
− 0.2 exp

[
− (9x− 4)2 − (9y − 7)2] .
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Total root-mean-square error (RMSE) normalised with the `2 norm of the vector that
contains exact values is used as a measure of the accuracy of the obtained numerical
results, which is defined as:

Error =

√∑
i [〈∇2f〉i −∇2f (xi)]

2√∑
i [∇2f (xi)]

2
, (5.2)

where ∇2f (xi) is obtained analytically from equation (5.1). Equation (5.2) is used as
a relevant measure due to its sensitivity to the discrepancy, while its value is presented
relatively to the global situation.

5.1.1.1. Regular Point Arrangement

Firstly, tests were conducted for regular point arrangements, where the points were placed
on Cartesian grid nodes with uniform spacing ∆. Six various resolutions were used to
study the convergence, ∆ = {0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125}. Wendland’s C2

quintic kernel [189] is used as a smoothing function, which is defined as:

W (r, h) = W0 ·

(1− r/h)4 (4 r/h+ 1) 0 ≤ r < h

0 h ≤ r
, (5.3)

where the absolute normalisation coefficientW0 is irrelevant due to the normalisation. The
results of the tests conducted with two smoothing radii, h = 1.5∆ and h = 2.5∆, are shown
in figure 5.1 where the values of errors are shown on a log-log scale as functions of the
particle spacing. All meshless Laplacians perform the same as the second–order accurate
FD method when the neighbour points around the i point form the same arrangement
as the FD stencil does. When the smoothing radius expands to include multiple rings of
neighbour points, then the discrepancy between the meshless and FD method increases,
but the second–order slope is preserved and discrete results converge to the analytical
solution as h → ∆ → 0. Numerical errors for h = 2.5∆, which are plotted in figure 5.1,
show that the discrepancy depends on the level of neighbour averaging. Similar to the
interpolation and gradient calculation, this implies that the form of the utilised smoothing
function has an impact on the accuracy, and that it can be designed to sufficiently lower
the error. The introduced Laplacians and the gradient operator are given in FD form.
Therefore, when a non-linear function is considered, similar accuracy sensitivity connected
with the choice of smoothing function is expected. The superiority of a meshless method
is its natural ability to form arbitrary point cloud arrangements. The importance of the
smoothing function will therefore be shown in the next section that considers the scattered
arrangement of points.
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Figure 5.1.: Relative errors of approximate discrete Laplace operators applied to Franke’s
function and a regular point arrangement, for h = 1.5∆ (left graph) and
h = 2.5∆ (right graph).

5.1.1.2. Scattered Point Arrangement

In this section, the rate of convergence and computational efficiency of approximate Lapla-
cian operators are examined for scattered or irregular arrangements of points. The scat-
tering of the locations of points is done after the points are placed on a regular grid with
uniform spacing ∆, as described in the previous section. Each point is randomly shifted
by a vector eic∆/2, where c is the measure of chaos or randomness, and ei is the spa-
tial vector whose components are random values between –1.0 and 1.0. Evidently, for
c = 100% two neighbouring points spawned on a regular grid can be shifted in such a way
that their new locations coincide. Conversely, shifting points can move them farther away,
so the minimum smoothing radius should be controlled to keep the nearest neighbours
inside the compact radius after the shift. In order to keep diagonal neighbours after the
shift, to provide each point with a sufficient number of encircling points, the compact
radius value should exceed:–

rmin =
√
d∆ (1 + c) . (5.4)

Before going into detail about each of the introduced Laplacian formulations, a proper
smoothing function should be chosen. It follows from equation (3.31) that the naive ver-
sion of an approximate Laplacian is sensitive to the error of close neighbours, scaled by
their weight and inverse squared distance. As an example, the image on the left in fig-
ure 5.2 shows a coarse Voronoi representation of the Laplacian values of the test function
obtained with the naive version using the smoothing function expressed by equation (5.3),
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for ∆ = 0.05, h = 2.7∆ and c = 90%. The error defined by equation (3.31) can be lever-
aged by modifying ψij so that closer points have less influence. Therefore, a compromise
smoothing function can be introduced, where the near points contribute maximally, and
the farthest neighbour points do not contribute excessively, since it would produce a sur-
passingly averaged result for functions that non-linearly change inside the smoothing area.
In conclusion, a new function of a blunt shape is given as:

W (r, h) =

1− (r/h)8 0 ≤ r < h

0 h ≤ r
. (5.5)

It should be noted that equation (5.3) is still used for the evaluation of the gradient, while
equation (5.5) is used for equation (3.30). Functions given with equations (5.3) and (5.5)
are plotted in figure 5.3, and an improved result that employs both equations is shown in
the image on the right in figure 5.2. The sum version does not use a precalculated gradient,
but a renormalisation tensor and offset vector are used in equation (3.36). Therefore,
the sum version uses a single smoothing function, which should be designed so that the
operator performs adequately. It was empirically found that an example of such a function
is the spiked symmetrical function defined by the following equation:

W (r, h) =

1− (r/h)0.4 0 ≤ r < h

0 h ≤ r
. (5.6)

It was found that both naive and inverse versions are somewhat sensitive to the shape
of the smoothing function for the gradient. The inverse version uses a combination of
equations (5.3) and (5.6) for the gradient and Laplacian expressions, respectively. It
should be noted that the introduced smoothing functions are designed empirically to
prove the adequate performance of the derived discrete operators, and that their optimal
variants are topics for future work.

Numerical tests were performed for the three levels of randomised scattering, c = {30%,
60%, 90%}. Each test was repeatedly executed minimally twenty times, and the average
value of the errors calculated with equation (5.2) for each execution is used as the measure
of accuracy. Figures 5.4, 5.5 and 5.6 show the obtained relative errors of the approximate
discrete Laplace operators applied to equation (5.1) for levels of scattering c = 30%,
c = 60%, and c = 90%, respectively. It can be noticed that the numerical error on the
coarse distributions is generally lower for a smaller smoothing radius, and that the error
increases with an increase in the smoothing radius. The same is noticed for regular point
arrangements, which implies that far neighbour points on a highly non-linear changing
area are not desirable candidates for the approximation. Nevertheless, equation (5.4)
should be satisfied, which is challenging for dynamical problems in practice where the
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Figure 5.2.: Qualitative representation of the Laplacian naive version values for ∆ = 0.05,
h = 2.7∆ and c = 90%, obtained with the default smoothing function (left
image), and modified smoothing function (right image).
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Figure 5.3.: Smoothing functions: Wendland’s kernel (left graph), blunt function (centre
graph), and spiked function (right graph)

scattering level of points is high, often c > 30%. Figure 5.4 shows that the error slope
for relatively low chaotic scattering is almost second–order as observed for the regular
arrangement, and evidently smaller errors are obtained with larger smoothing radii as
∆ → 0. For the sake of comparison, SPH Laplacian results are also graphed to present
its divergence property (for a more detailed review, interested readers are referred to
[134]). Figures 5.5 and 5.6 show results for high levels of irregular scattering and present
a similar trend to figure 5.4, i.e. results converge when ∆ → 0 and h/∆ → ∞. For
the most chaotic case shown in figure 5.6, the error slopes of the tested Laplacians still
obey the first–order convergence rate, until they reach a minimum error calculated with
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equation (5.2). The difference between the error expressions of the naive and the sum
version were analysed in section §3.3, but they still seem to offer a similar performance
for any combination of a randomness and smoothing radius. This can be attributed
to the fact that equation (3.31) can diminish with the proper choice of two smoothing
functions, and that equation (3.37) cannot diminish as desired since a single trade-off
smoothing function is used. The basic inversion version of the Laplacian achieves better
results, and has a longer convergence slope in any case for the price of an additional tensor
inversion computation. Readers interested in an analysis of the full inversion version of
the discrete Laplacian are referred to [126], where the authors present results for the
scattered arrangement of points perturbed with a Gaussian distribution with σ = 0.1.
For small values of ∆, a maximum relative error of the full inversion is moderately lower
than that of the basic inversion version. In this thesis, the levels of chaotic irregularity
c < 30% are not considered in detail, because dynamic point clouds in practice are rarely
regular in such an amount.
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Figure 5.4.: Relative errors of approximate discrete Laplace operators applied to Franke’s
function and a scattered point arrangement c = 30%, for h = 2.0∆ (left
graph), h = 2.7∆ (centre graph) and h = 3.5∆ (right graph).

5.1.1.3. Computational Efficiency

Numerical tests were implemented in Python 3 scripting language. Table 5.1 presents
the relative time needed to evaluate the Laplacian value for a single interpolation point.
The results are normalised with respect to the measured time of the execution of the
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Figure 5.5.: Relative errors of approximate discrete Laplace operators applied to Franke’s
function and a scattered point arrangement c = 60%, for h = 2.2∆ (left
graph), h = 2.7∆ (centre graph) and h = 3.5∆ (right graph).
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Figure 5.6.: Relative errors of approximate discrete Laplace operators applied to Franke’s
function and a scattered point arrangement c = 90%, for h = 2.7∆ (left
graph), and h = 3.5∆ (right graph).

naive version of Laplacian approximation, done with h = 2.0∆. It can be seen that the
sum version is the fastest among formulations derived in this thesis, which is due to the
fact that the renormalised gradient is not required within the calculation in contrast to
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the naive version and versions that include additional tensor inversion. As expected, the
classical SPH method is even faster since it does not use renormalisation techniques, but
direct summations. If the renormalised offset vector Bioi is known, the sum version can
be evaluated about as fast as the SPH Laplacian.

h Naive Sum Basic inverse Full inverse SPH
2.0∆ 1.00 0.82 1.17 1.72 0.23
2.7∆ 1.68 1.30 2.09 2.87 0.38
3.5∆ 3.01 2.30 3.62 4.50 0.69

Table 5.1.: Relative CPU time needed for an evaluation of the approximate Laplacians.

5.1.1.4. A Remark on the Effect of Boundaries

James Clerk Maxwell proposed to call ∇2f (x) the concentration of f at the point x,
because it indicates the excess of the mean value in the neighbourhood of x, over the
value at that point. The Laplacian can be interpreted up to the scaling factor, as an
operator that computes the rate at which the average value of f on a sphere’s surface
centred at x deviates, as the sphere grows. If the f (x) is C2 in the neighbourhood of x,
from the Taylor series expansion (3.5), the following can be proven:

∇2f (x) = lim
r→0+

2d

r2

1

A (Sr)

ˆ

Sr

(f (x̃)− f (x)) dA (x̃) (5.7)

= lim
r→0+

2d

r2
(fA − f (x))

where Sr is the geometry of the (d− 1)-dimensional sphere of radius r located in x, and
the term A is the surface area of the sphere. This interpretation of the operator states that
the correct evaluation of equation (5.7) requires the existence of field values around x, i.e.
evaluation of the discrete Laplacian requires surrounding neighbour points, which is not
fulfilled near the boundaries. A common treatment for the problem is to introduce ghost
points that carry extrapolated field values, or to modify discrete operator expressions that
implicitly take extrapolated values into account. The extrapolation procedure in any case
cannot yield fully accurate values since it depends on the derivatives calculated without
the missing neighbour points.

5.1.2. Boundary Value Problems

In this section, Poisson and diffusion equations are solved in a strong formulation and the
results are analysed. The equations are solved in two and three dimensions, on regular
and irregular domains. Discrete Laplacians that are covered in this thesis are generally
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described with a summation of finite differences, and therefore the problem is described
and solved straightforwardly in a strong formulation. A linear system is built by trans-
forming a summation expression for each point i, e.g. 〈∇2f〉i = ∇2f (xi), into a matrix
row and by setting known values for boundary points to impose the Dirichlet boundary
condition. Analogous to the approximation analysis in section §5.1.1, the relative error of
a solution is given by the following expression:

Error =

√∑
i [〈f〉i − f (xi)]

2√∑
i [f (xi)]

2
, (5.8)

where 〈f〉i is the numerically computed solution at the location of i-th point, and f (xi)

is the exact solution obtained analytically. The tests described in section §5.1.1 have
verified that the introduced Laplacians yield the same results as the FD method for a
sufficiently small smoothing radius. Indeed, the solutions of the Poisson equation on a
regular grid will follow the same trend. Thus, the tests on scattered point arrangements
will be analysed in the following text.

5.1.2.1. Square Domain with Dirichlet BC

The forcing term of the Poisson equation is a scalar field described by the analytical Lapla-
cian of equation (5.1), and the solution is found for a unit square domain with Dirichlet’s
boundary condition. Figure 5.7 shows solutions on a Voronoi tessellation for the purpose
of a qualitative review of the sum version of the Laplacian, where the tests were done for
points with an irregularity level of c = 60%, and a smoothing radius h = 2.7∆, for two
different resolutions ∆ = {0.05, 0.025}. The trend of the exact solution is preserved in
both cases. Moreover, the results show that even divergent approximate Laplacian for-
mulations used within the SPH method weakly converge to the exact solution. Figure 5.8
shows relative errors of the Poisson equation solution obtained with the direct solver, for
three levels of scattering and smoothing radii, c = 30% with h = 2.0∆, c = 60% with
h = 2.7∆, and c = 90% with h = 3.5∆. The errors of the solutions when employing
the introduced discrete operators are compared to the FD method on the regular grid,
and the KGF–SPH method, since its Laplacian shows some similarity to the sum ver-
sion [142]. Firstly, it should be noticed that the KGF–SPH method quickly reaches the
constant convergence slope, meaning that the diverging curve shown in figure 5.4 blocks
further convergence on finer resolutions, i.e. even linearisation by decreasing the particle
spacing does not improve the results. Although the inversion version perform better than
the sum version for the performed approximation tests, larger discrepancies are yielded
for the Poisson–equation solutions when compared to the sum version results on highly
irregular arrangements. In contrast, it is still slightly more accurate for the c = 30% level
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of irregularity. This non-synchronised behaviour of the inversion version of the Laplacian
may be attributed to the non-optimal choice of the smoothing function. The sum version
of the discrete Laplacian shows improved performance in any case, and its computational
efficiency is covered in section 5.1.2.5.

Figure 5.7.: The Poisson equation solution for the Laplacian sum version, c = 60%, and
h = 2.7∆. The solution for the coarser resolution ∆ = 0.05 is shown on the
left, and the finer resolution ∆ = 0.025 is shown on the right. Thick curves
represent qualitative contour levels of the exact solution.

5.1.2.2. Irregular Domain with Dirichlet BC

A diffusion problem ∇ · (β∇u) = f taken from [190] is considered, which is defined with
a variable diffusion coefficient given as β (x, y) = 2 + sin (xy) and the exact solution
of the problem given as u (x, y) = ex (x2 sin y + y2). The Dirichlet BC is applied to
the irregular boundary with the geometry of a star–shaped function parameterised by
(x (θ) , y (θ)), where x (θ) = cos (θ) [0.5 + 0.2 sin (5θ)] and y (θ) = sin (θ) [0.5 + 0.2 sin (5θ)]

with θ ∈ [0, 2π]. The scattering of the points is determined after the points are placed on a
regular grid inside the irregular domain. The points closest to the boundary are projected
onto the boundary and tagged to impose the Dirichlet boundary condition. This results in
irregular point distribution along the boundary, as well as inside the domain. Figure 5.9
shows a solution example using the sum version of the Laplacian. The relative errors of
the solution for the described diffusion problem is shown in figure 5.10 for three levels
of scattering and smoothing radii, c = 30% with h = 2.0∆, c = 60% with h = 2.7∆,
and c = 90% with h = 3.5∆. The SPH method diverges in this case, and therefore, the
results are omitted from the graphs. The FD solution with the irregular boundary was
obtained by setting c = 0% and by using the smallest possible compact radius. While the
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Figure 5.8.: Relative errors of the Poisson equation solutions for three scattered point
arrangements, c = 30%, and h = 2.0∆ (left graph), c = 60%, and h = 2.7∆
(centre graph), and c = 90%, and h = 3.5∆ (right graph).

sum version of the Laplacian performs adequately, the inversion version of the Laplacian
performs worse than expected.

5.1.2.3. Irregular Domain with Robin BC

In the following test, the diffusion equation defined as du
dt

= ∇2u + g is solved with the
Robin BC ∇u ·n+αu = f imposed on the irregular interface, where g is the source term,
and n is the outward normal pointing to the outer region of the domain. An example
taken from [191] is considered, with the irregular domain in two spatial dimensions given
by the zero isocontour φ = 0.4 cos (8θ)+

√
x2 + y2−π with θ ∈ [0, 2π]. Firstly, the points

are placed on a regular grid inside the square domain [−1.5π, 1.5π]2. After the scattering
of the points is determined, the points closest to the zero isocontour are projected onto it
and tagged to impose the Robin BC. The BC is imposed with an α coefficient set to 1.0,
and the diffusion equation is solved from time t = 0 to t = 1 with the implicit–Euler time
discretisation. The discrete gradient operator for the Robin BC is described by equa-
tion (3.10). The analytical solution is given as u (x, y) = −e−2t cosx cos y. Figure 5.11
shows a solution example using the sum version of the Laplacian, and the relative errors
of the solution for the described diffusion problem are shown in figure 5.12 for three levels
of scattering, c = 30%, 60% and 90%. In contrast to the former test cases, where the
compact radius varied according to the level of the scattering, here the compact radius
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Figure 5.9.: Solution to the Poisson equation on an irregular domain for the Laplacian
sum version, ∆ = 0.0375, c = 60%, and h = 2.7∆. Thick curves represent
qualitative contour levels of the exact solution.
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Figure 5.10.: Relative errors of the Poisson equation solutions on an irregular domain for
three scattered point arrangements, c = 30%, and h = 2.0∆ (left graph),
c = 60%, and h = 2.7∆ (centre graph), and c = 90%, and h = 3.5∆ (right
graph).
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was kept constant, h = 2.7∆. For the described problem, the solutions made with the
SPH and naive version of the Laplacian show a linear rate of convergence. However, the
solutions made with the sum and inversion versions of the operator in any case follow
the FD convergence trend, although with somewhat shifted values. The three graphs in
figure 5.10 show how the level of scattering affects the convergence slopes.

Even though the Neumann and Robin BCs can be properly imposed with the introduced
spatial operators, various difficulties when solving problems with shocks and jump con-
ditions are encountered. Apart from the mixing of the domains inside a compact sphere
near an interface, the other difficulties are similar to those of classical central–difference
methods. FD methods simply discretise the relevant equations on interpolation points,
often without conserving quantities like mass, momentum, and energy. They are proven
useful mostly for phenomena where there are no strong shocks. In contrast, an elliptic
equation with discontinuities in the solution, its gradient, the diffusion coefficient and
the flux across an irregular interface, is efficiently solved with a FV method [192]. The
contributions from the discontinuities can be included on the right-hand-side of the lin-
ear system, preserving its positive symmetric definiteness. In a meshless context, Hopkins
[119] solves the sharp shock–capturing problem by employing spatial operators introduced
in section §3.2.1 and a Riemann solver in a moving frame to describe the physics of the
interaction between the particles, which results in a FV meshless method.
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Figure 5.11.: The contour plot of a diffusion equation solution for the Laplacian sum
version, ∆ = 0.2, c = 60%, and h = 2.7∆. The thick curves represent
qualitative contour levels of the exact solution.
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Figure 5.12.: Relative errors of the diffusion equation solutions for three scattered point
arrangements, c = 30% (left graph), c = 60% (centre graph), and c = 90%
(right graph), for the constant compact radius h = 2.7∆.

5.1.2.4. Spherical Domain with Dirichlet BC

A three-dimensional diffusion problem ∇ · (β∇u) = f taken from [190] is considered
and is defined by a variable diffusion coefficient given as β (x, y, z) = xyz, and the
exact solution of the problem is given as u (x, y, z) = sin (4πx) sin (4πy) sin (4πz). The
Dirichlet BC is imposed on the spherical boundary defined by the zero isocontour φ =√(

x− 1
2

)2
+
(
y − 1

2

)2
+
(
z − 1

2

)2 − 0.3. Firstly, the points are placed on a regular grid
inside the cubical domain [0, 1]3. After the scattering of the points is determined, the
points closest to the zero isocontour are projected onto it and tagged to impose the
Dirichlet BC. The compact radius was kept constant, h = 2.7∆, to test the robustness
of the introduced operators for high levels of scattering in three-dimensional space. The
relative errors of the solution for the described problem are shown in figure 5.13 for three
levels of scattering, c = 30%, 60% and 90%.

5.1.2.5. Computational Efficiency

Compactly supported meshless methods form large sparse linear systems to mathemat-
ically model various phenomena, and ordinarily their implementations rely on efficient
iterative solvers such as the bi–conjugate gradient (BiCG) method, the generalised min-
imal residual (GMRES) method, etc. In this thesis, the quasi–minimal residual (QMR)
method was employed for the analysis. Unlike the GMRES method, the QMR method
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Figure 5.13.: Relative errors of the 3D diffusion equation solutions for three scattered
point arrangements, c = 30% (left graph), c = 60% (centre graph), and
c = 90% (right graph), for the constant compact radius h = 2.7∆.

contains one convergence loop that makes computational efficiency evaluation easy to in-
terpret. In addition, the convergence behaviour of the QMR method is typically much
smoother than that of the BiCG method.

The evaluation of the invested solver’s effort (i.e. its number of iterations) needed to
reach a certain relative error of the solution is shown for one representative problem in
figure 5.14, i.e. for the scattered point arrangement defined with the following parameters:
∆ = 0.025, c = 60% and h = 2.7∆. The FD method noticeably reaches the lowest relative
error value, but slowly converges due to the fact that the QMR solver is unsuitable for
the FD matrix. Figure 5.8 confirms that the sum version of the Laplacian offers the
best performance among the tested meshless operators and converges very fast with the
employed solver. The SPH Laplacian shows very weak convergence progress, and the
naive version follows a similar trend, but with a noticeably stronger convergence slope.
Interestingly, the inversion version of the Laplacian starts with the strongest convergence
slope, which weakens and thus never reaches a lower error value than the sum version error,
even though its approximation errors are lower, as presented in figure 5.5. More insight on
this discrepancy is needed, which may be partially attributed to the non-optimal choice
of the smoothing function. To conclude, fast convergence rates of the QMR solver with
the sum version of the Laplacian and its approximation efficiency presented in table 5.1
prove that the sum version offers a good compromise between computational efficiency
and accuracy.
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Figure 5.14.: Linear–system solver convergence applied to the Poisson equation in strong
form, for the scattered point arrangement: ∆ = 0.025, c = 60% and h =
2.7∆.

5.2. Cavity Flow

The lid–driven cavity problem involves viscous flow inside a cavity in which the top wall
moves horizontally, while other walls remain stationary. The classical cavity problem
features a square cavity and a constant velocity of the lid. Because of the simple two-
dimensional geometry and boundary conditions, it is widely considered as a benchmark
case for new CFD solvers. The problem does not have an analytical solution, unless it is
modified to include a specific source term in the momentum equation [193]. The schematic
of the flow problem is shown in figure 5.15.

U = 1

No-slip walls

ρ, 𝜈

Figure 5.15.: Schematic of the lid–driven cavity flow set-up.

There is no free surface, so the PPE is subjected only to Neumann boundary conditions.
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The Neumann problem does not have a unique solution, i.e. it has a solution that is
unique up to a constant. There are various approaches how to deal with the problem, but
in this thesis, the matrix diagonal dominance is enhanced as explained in section 3.6.2
and QMRCGStab iterative solver is used. BiCGStab and GMRES solvers can also handle
the system of equations, but too many solver iterations results in the divergence.

Internal flow problems, such as the flow inside a cavity, are challenging for meshless Lag-
rangian methods. Slight numerical compression and expansion of the fluid point with free
surface is hard to detect, while the solid boundaries force a constant volume throughout
the simulation. Therefore, a Lagrangian method must oblige to the continuity constraint
through the velocity field and physical volume conservation at all time in order to keep
the simulation stable.

Figure 5.16.: Contour plot of the velocity magnitude inside the cavity, for the 200×200
grid and Re = 400.

The imposed lid velocity is constant, U = 1 s−1, and the cavity is a unit square. The
Reynolds number considers the lid velocity, cavity size, and fluid viscosity. Therefore,
the Reynolds number is defined by Re = ν−1, and the kinematic viscosity of ν = 0.0025

corresponds to the considered test case Re = 400. The flow was thoroughly studied by
Ghia et al. [194] on two different spatial resolutions that yielded negligible difference
between the corresponding results. The results obtained by the meshless solvers are
compared to those obtained by Marchi et al. [193]. The authors revisited the square cavity
problem using the FVM on a 1024×1024 grid and verified their results by comparing them
to 18 other studies, in order to provide a reliable set of data for comparisons. The problem
is simulated by the implemented solver on three discretisation refinement levels. The
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initial discretisations, i.e. point clouds, that filled the cavity were initialised as uniform
grids made of: 50×50, 100×100, and 200×200 points. Figure 5.16 shows the magnitude
of the velocity field after the simulation initialised by 200×200 points has converged to a
steady state.
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Figure 5.17.: Velocity profiles normal to the vertical (top graph) and horizontal (bottom
graph) centrelines, for Re = 400 and different discretisation densities, com-
pared with the results of Marchi et al. [193].

The main features of the flow for benchmarking are the horizontal velocity profile along
the vertical centreline, and the vertical velocity profile along the horizontal centreline of
the cavity. The velocity profiles in the two directions at cavity centrelines are shown in
figure 5.17. The results obtained on the three discretisations are in good agreement to
the referent data. Furthermore, the results converge to the true solution by refining the
discretisation, that is the initial point cloud. The velocity–profile curves extracted from
the finest discretisation excellently fit to the referent data, which is gratifying since the
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referent results were obtained on much finer grid.

Marchi et al. [193] note that they do not aim to present an optimized numerical model
neither for CPU time nor for computational memory consumption. Their single core
implementation converged to the solution in 5 days and 16 hours. The GPU solution for
the 200×200 grid was obtained in circa 10 minutes for which the simulation reached 40
seconds of physical time, which is yet to be optimised.

Since the results are in very good agreement, it may be concluded that the introduced
Laplacian adequately drives the viscous flow through adequate discretisation of the viscous
term and the PPE. Moreover, the Lagrangian advection of the fluid remains stable and
conservative at all time.

5.3. Water Entry Experiments

In this section a set of experiments is numerically reproduced to verify that the solver can
handle complex FSI and impacts. The problem of water entry was firstly motivated in
the design of seaplane structures by von Kármán and Wagner. Water entry or slamming
problems usually include a moving body that impacts or slams the undisturbed free
surface and enters water. During the water entry, the body may completely submerge,
depending on the body momentum, shape, etc. This section verifies the introduced solver
for such impacts under various circumstances. The experiments include symmetrical and
non-symmetrical water entries of simple and complex shapes in deep and shallow water.

5.3.1. Symmetrical Wedge

Various experiments on an accelerated wedge with a flare angle of 30◦ were conducted at
MARIN, in order to study bow–flare slamming and the wave run-up around the bow of an
FPSO. The wedge was 202 mm wide and 175 mm high. During the experiments, a pressure
transducer was located 30 mm above the wedge tip. The two selected experiments were
numerically reproduced in [195] using a IBM–VOF solver. The authors used time traces
of the wedge movement from the experiment as the input for the numerical solver, which
are graphed in figure 5.18. In similar fashion, the two experiments are reproduced using
the introduced method and the numerical evolution of pressure signal is compared to the
experimental data and numerical results from [195]. The authors note that the measured
movement contained high-frequency noise, which was filtered out to enable numerical
differentiation. The simulations were performed on two discretisations defined by initial
point spacing ∆ = 5 mm and ∆ = 10 mm.

In the first experiment, the wedge started to fall from the height of 200 mm above the
initial waterline, which resulted in relatively high entrance velocity of 1.43 m/s. The
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Figure 5.18.: The vertical component of the wedge velocity for the two slamming experi-
ments [195].

value of the time step was set to 0.5 ms. The evolution of the vertical component of
the wedge velocity is plotted in figure 5.18. The pressure evolution obtained by the
simulation is plotted in figure 5.19, and compared to the experimental data and numerical
solution obtained by the IBM–VOF solver. During the water entry, the wedge had entirely
submerged and not lifted out of the water. The simulated pressure signals are in good
agreement with the experimental signal, and overall more accurate than the IBM–VOF
results. All numerical simulations yield somewhat higher pressure magnitude at the start
of the water entry. The two simulated discretisations give approximately the same results.
The discrepancy at the start of the entry obtained by the novel method and the IBM–VOF
solver may also be attributed to the imposed movement, since the oscillating experimental
signal was filtered.

In the second experiment, the wedge started to fall while its tip was touching the initial
waterline. This resulted in a much smaller value of the entrance velocity compared to
the first experiment. The value of the time step was set to 1 ms. The pressure evolution
obtained by the simulation is plotted in figure 5.20. The reaction of water on the body
entrance is less impulsive than the first experiment. Therefore, the total pressure is com-
parable to the hydrostatic pressure. Dynamic effects were still reproduced, represented
by the two peaks and a hollow in the signal. It should also be noted that the simulated
pressure signals in figures 5.19 and 5.20 are not filtered, while the IBM–VOF signal is
filtered, because the solver yielded pressure spikes that were pronounced directly after the
high-velocity water entry [195].
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Figure 5.19.: Pressure sensor readings for the first numerical experiment of symmetrical
water entry compared to the experimental measurements [195].
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Figure 5.20.: Pressure sensor readings for the second numerical experiment of symmetrical
water entry compared to the experimental measurements [195].

5.3.2. Tilted Wedge

Non-symmetric water entries are studied to understand various problems in marine en-
gineering. The hydrodynamic behaviour of the impact is different from those predicted
by the symmetric entry. Generally, the non-symmetric problem is less investigated com-
pared to the symmetric entry. During the campaign “Wave–induced loads on ships (WILS
III)”, drop experiments of a wedge with 30◦ of deadrise angle and mass of 68.3 kg were
conducted. The wedge was titled by 20◦ about the tip, and then dropped from a height of
500 mm above the initial waterline. A pressure sensor was located on the titled side that
formed an angle of 10◦ with the waterline, distanced 50 mm from the wedge tip along
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the flare. The tilting of the wedge produced a pressure signal with a steeper rising and
declining slope than non-tilted experiments. In the comparative study [196], 20 solvers
were tested by simulating the problem.

Compared to other numerical experiments described in this thesis, this experiment was
simulated by using weakly coupled FSI. In other words, the wedge was falling under
the influence of gravity, and its movement during the water entry was also dictated by
forces in fluid acting on the wedge. The force was obtained by integrating the pressure
along the wetted surface in a simplistic manner, i.e. by summing the product of the
pressure value and approximate surface area of all boundary points generated on the wedge
geometry, F ≈

∑
ini pi ∆

2. Except for validating the solver for hydrodynamic loads, this
numerical experiment proves that the methodology may be extended for coupling with a
more complex rigid–body solver or a FEM structural solver.

Figure 5.21.: Snapshots of four time instants of the non-symmetrical water entry simula-
tion, rendering contours of the pressure field.

A series of snapshots of the simulation is shown in figure 5.21. The visualised pressure
field shows how during the entry a concentration of high-pressure area moves from the
wedge tip along the flare. The high gradient of the pressure diminishes when it reaches
the wedge corner, which generates a strong jet that separates from the wedge.

The evolution of the pressure signal recorded by the pressure sensor is plotted in fig-
ure 5.22. The experimental signal was shifted in time to overlap with the simulation. The
left image compares the experimental signal with the results of simulations performed on
two spatial discretisations, and the right image compares the experimental signal with
the results of simulations performed on the finer discretisation and two time step values.
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Due to an extremely short rise and decay time of the pressure at impact, and the simple
implementation of force integration for the weak coupling, the value of the time step was
chosen to be rather small. The two tested time–step values were 0.1 ms and 0.25 ms,
which correspond to classical CFL numbers of 0.3 and 0.7, respectively. First thing is
to observe that the simulations yield stable similar non-oscillating pressure signals for
two discretisations and time–step values. The larger time step produced a smoothed-out
solution in between the steps where the smaller time step detects some changes in the pres-
sure. Nevertheless, the simulated pressure signals correspond well to the experimentally
obtained pressure signal and referent numerical results given in [196].
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Figure 5.22.: Pressure sensor readings for the non-symmetrical water entry simulations
with different time steps and point spacings, compared to the experimental
measurements [196].

5.3.3. Wedge and Shallow Water

A high-speed impact on the free surface results in impulsive hydrodynamic loads, which
is controlled by the entry speed and the vessel geometry. For shallow water impact, the
presence of the bottom may significantly amplify the hydrodynamic loads, by constraining
the water motion beneath the object. Jalalisendi et al. [197] experimentally investigated
the problem of shallow–water entry of a wedge by using PIV, which provides means to
determine slamming loads and insight into the flow physics that can be further used to
validate numerical models. By tracking particles one may obtain the velocity field, and
the pressure field can be reconstructed by solving the PPE. Therefore, an experiment
described in [197] is simulated in order to validate the novel methodology.
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Figure 5.23.: Contour plot of the velocity magnitude in m/s around the wedge for the
entry depth of 5 mm. Comparison of the numerical solution (bottom image)
and the PIV experiment [197] (top image).

An impact of a two-dimensional wedge against a shallow water column of finite height is
considered. The water tank was 800 mm wide and the water was filled up to the height
of 50 mm. The wedge had a deadrise of 25◦ and width of 200 mm. At the time instant
when the wedge tip touched the free surface, the wedge was moving with speed of 1.5
m/s, and the following 10 ms the speed of the wedge dropped linearly to 0.98 m/s. This
movement is set as input for the numerical solver. The simulation was set-up with ∆ =

0.5 mm, which is also in the order of magnitude of the PIV equipment that tracked the
experiment. The time step was set to a constant value of 0.2 ms.

Figure 5.23 compares the simulated velocity field to the PIV results. The velocity mag-
nitude and contours are plotted, while the experimental values are taken from [197], which
are normalized with respect to the instantaneous wedge speed. For deep water, the ve-
locity of water near the bottom is zero. For shallow water, the presence of the bottom
wall forces the fluid to advect along the transverse direction. This is visible in figure 5.23,
where the contours indicate movement near the bottom wall. The contour shapes corres-
pond to experimental ones in both low and high-velocity areas in fluid. The area of fluid
where the high-velocity gradient and maximum velocity occurs is located at the intersec-
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Figure 5.24.: Contour plot of the pressure coefficient around a wedge entering the shallow
water for three entry depths (top to bottom): 5 mm, 7.5 mm, and 10 mm.
The numerical solution (right column) is compared to the PIV–reconstructed
results [197] (left column).

tion of the still free surface and the wedge, which is also well reproduced. In addition, the
numerical simulation reproduced a small area at the bottom, below the wedge tip, where
the fluid particles do not move. As the wedge enters fluid, maximum fluid speed becomes
much larger that the speed of the wedge, e.g. the maximum velocity magnitude in fluid
is 2.2 m/s at the entry depth of 10 mm.

The pressure field was reconstructed from the experimental velocity field by solving the
PPE. Since the gravity was neglected, the simulations were also performed in zero-gravity
conditions, thus comparing the hydrodynamic pressures. The comparison of reconstructed
and simulated contours of the pressure coefficient is shown in figure 5.24. The pressure
coefficient was obtained by normalising the pressure value by ρU (t)2 /2, where U (t) is the
instantaneous speed of the wedge. The rows in the figure correspond to three time instants
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Figure 5.25.: Free fall of the ship–bow section. Comparison of the numerical solution
(right column) to the experiment photographs [198] (left column) for two
time instants: 240 ms (top row) and 260 ms (bottom row).

captured for entry depths of 5 mm, 7.5 mm, and 10 mm. The numerical solution and the
experiment are in close agreement for each entry depth. Numerically obtained shapes of
contours and the coefficient magnitude coincide with those obtained by PIV and pressure
reconstruction, while there is some discrepancy in the thickness of the high-pressure area.

5.3.4. Ship Bow Section

During the campaign “Wave–induced loads on ships (WILS III)”, drop tests of two-
dimensional ship sections were conducted. The drop test #11 of a containership bow
section (SS11) is chosen for the validation purposes, as it represents the most difficult test
case to reproduce numerically due to the concave geometry and air entrapment [198]. The
experimental model III is characterized by the bulbous shape, which is dropped from 300
mm, i.e. at the start of the drop, the bottom touches the free surface. The readings from
three pressure sensors located along the bow flare are used to validate numerical solutions.
Information on the section geometry and sensor locations can be found in Monroy et al.
[198].

Pressure sensor #1, which is located on the flare just above the bulbous shape, experiences
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Figure 5.26.: The pressure and magnitude of the velocity field after the flare impacts the
free surface, at two time instants: 270 ms (left image) and 300 ms (right
image). Locations of the sensors are plotted as squares and designated as 1,
2, and 3.

much larger pressure peaks than the other two sensors. The reason for this is that the
formed air cavity, shown in figure 5.25, implodes with high velocity. Figure 5.26 renders
snapshots of two instants after the implosion, with the pressure and velocity–magnitude
field plotted. The pressure peaks at the low–velocity area from where the implosion
begins, which is located just below sensor #1. PBD and Lagrangian advection allow
for slight compressibility in cases of immediate implosions or tensile forces, keeping the
scheme stable. The evolution of pressure in time is plotted in figures 5.27–5.29 for the
three pressure sensors, respectively. For all three sensors, the simulated pressure spike and
peak values are in good agreement with the experimental measurements. Both simulated
and experimental curves exhibit a rise in pressure due to added mass after 0.4 s.

Figures 5.28 and 5.29 also include results presented by Monroy et al. [198]. The authors
note that BV–Slam, which is an in-house potential flow solver based on a Generalized
Wagner Model (GWM), fails to accurately predict the force and pressure applied to the
concave part of the section, but overall results are satisfactory. The authors also present
a FVM–based solution using OpenFOAM, which was shown to be mesh dependent, and
the overpredicted pressure peak in figure 5.28 may be attributed to neglecting important
compressibility effects in the solver. In terms of pressure peak values and slope, the
proposed method shows better agreement with the experiment than the FVM solver and
potential–flow solver. However, the impact and the pressure spike is somewhat shifted
in time. The shift occurs due to slower closure of the cavity from excessive relaxation of
PPE near the boundaries and slightly weaker advection of points near free surface where
points have low neighbour count.
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Figure 5.27.: Evolution of the pressure read by sensor #1. Comparison of the proposed
method and the experimental results [198].

Figure 5.28.: Evolution of the pressure read by sensor #2. Comparison of the proposed
method and the experimental results [198].

5.4. Dam Break

Compared to water-entry problems in which water is still while objects move, dam break
problems consider fixed geometry while water moves. A dam break experiment is nu-
merically simple to set up, since no inflow or outflow boundary conditions need to be
imposed. Moreover, there is a resemblance between a usual case of green water flow on
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Figure 5.29.: Evolution of the pressure read by sensor #3. Comparison of the proposed
method and the experimental results [198].

the deck and the theoretical dam breaking problem [20, 48]. Water on the deck forms a
high velocity water jet and violently impacts a structure like an impinging jet.

Some dam break studies that were done numerically have reported various issues. For
instance, Kleefman et al. [199] and Hu and Kashiwagi [200] reported highly unstable
pressure peaks, while Arai et al. [201] observed diverging peak pressure when refining
the mesh. The issues mostly arise due to sudden changes in the flow direction that the
model formulation cannot properly describe. The authors agree that the stabilisation of
the pressure evolution in numerical techniques will contribute to further studies. Mokrani
and Abadie [202] employed a RANS–VOF method for dam break simulations over the
dry bed. Their analysis of the results shows the large spatial and temporal variability of
the pressure field after impact, highlighting the need for extreme care when performing
measurements. Arai et al. [201] note that for finer grids more accurate impact pressures
are obtained, while in the case of coarse grids, lower impact pressure are computed due
to the local averaging effect.

Figure 5.30.: Test arrangement for the dam–break experiment with a trapezoidal obstacle
[203]. All dimensions are in cm.
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Figure 5.31.: Comparison of free surface profiles for the flow over the trapezoidal step
obtained experimentally [203] (left column) and numerically (right column)
at various time instants (top to bottom): t = 2.5, 3.0, 3.26, 3.54, 3.66, 3.80
s. The computed velocity magnitude is qualitatively plotted.

Two validation experiments are given in the following text, which are used to investigate
the abilities of the introduced solver to reproduce the kinematics and dynamics of the
impulsive fluid motion during dam breaking.

5.4.1. Trapezoidal Obstacle

Ozmen-Cagatay and Kocaman [203] presented an experimental investigation of dam–break
flow over initially dry bed with a bottom obstacle, for the purpose of validation of RANS
and Shallow Water Equations (SWE) codes for problems with bottom slope effects. A
water column, which is 0.25 m high and 4.65 m long, is released to flow downstream on a
dry bed. As shown in figure 5.30, a trapezoidal obstacle located on the bed is responsible
for developing complex flow patterns. This test case highlights not only the bottom slope
effects but also those of abrupt change in channel topography, with the formation and
propagation of negative bore behind the obstacle. The free surface profiles that were
acquired with cameras along the channel are compared to the computed results.
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Figure 5.31 renders the evolution of free surface profiles in time and the magnitude of
velocity field for a flow over the trapezoidal step. A complex flow pattern develops due to
the presence of the obstacle, i.e. the wave is reflected and forms a bore travelling upstream.
The negative bore observed on the free surface behind the obstacle is successfully predicted
with the numerical solver. As the bore progresses, velocities increase while other parts
move up the obstacle. The general characteristics of this mixed flow regime, i.e. the fluid
kinematics behind the obstacle, are well captured.

The discrepancy of the free surface contour evolution commences after the reflected wave
breaks. The process of wave breaking usually entraps some amount of air, which is revealed
as foam in figure 5.31. Furthermore, the high-magnitude vorticity near the free surface
entraps more air as the broken wave progresses, which is shown in figure 5.31. Most of
numerical methods for incompressible flows suffer from such issues, since the main reason
for the discrepancy is vorticity damping near the free surface and neglecting the entrapped
air. This can be alleviated by utilising fine discretisation near the free surface, and by
allowing slight fluid compressibility with vorticity confinement. These issues are not top
priority, since they occur after the impacts and do not significantly affect the general flow
characteristics.

5.4.2. Impact Against the Wall

Lobovsky et al. [204] conducted classical dam–break experiments in a tank, with the
set-up arrangement shown in figure 5.32. The fixed prismatic tank was divided into two
separate parts by a removable gate, which was controlled by a release system with a sliding
mechanism, a weight inducing the gate motion and a damping system. The tank with
inner dimensions of 1610 × 600 × 150 mm was 20 mm thick to avoid hydroelastic effects.
The breadth of the tank was chosen so that the resulting dam break flow experiments
could be idealized as a two-dimensional phenomenon and wall effects could be considered
as not affecting the main flow dynamics [205]. Nevertheless, this experiment is simulated
as a three-dimensional problem to test the introduced solver in a complex experiment
defined by moving parts and strong dynamics. For the experimental runs when digital
images and videos were recorded, the fluid was dyed using a small amount of fluorescein
in order to increase fluid’s contrast, without exhibiting notable influence on the studied
fluid dynamics. The vertical motion of the gate was induced by a falling weight with the
median velocity value of 3.46 m/s, which is large enough so that its effect on the liquid
column collapse is minor. The fresh water could be considered Newtonian with the density
of 997 kg/m3 and the kinematic viscosity of 8.9 × 10−7 m2/s. The authors experimented
with two filling heights: 300 mm and 600 mm. The smaller filling height presents more
complex experiment to simulate due to thinner wave front and larger average velocity.
Moreover, for the 600 mm case the front develops a wave tongue at the initial instances
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Figure 5.32.: Schematic view of the experimental dam–break setup made by Lobovsky et
al. [204]. All dimensions are in mm.

of the wave propagation. Therefore, the experiment with the filling height of 300 mm is
chosen for the simulation.

Pressure sensors were embedded in the downstream wall on four heights from the bottom.
Unlike in the previous dam break studies, the impact pressure is recorded right above the
horizontal bed as the pressure probes of a small diameter are used [204]. The pressure
signal from the lowest sensor #1, which is located only 3 mm from the bottom, is chosen
as the most relevant data for validation. This sensor experiences highest magnitude of
the pressure peak and lowest rising time of the pressure during impacts.

The authors presented an analysis of the experimental repeatability of a general dam
break problem with emphasis on impact pressures when the wave front hits the down-
stream wall. They varied different factors, and analysed the changes in the measured
peak pressures without managing to attribute them to a particular physical cause. For
this reason, median pressure value and the 2.5% and 97.5% levels are plotted along with
the numerical solutions, for which the authors note to be relevant for design aspects when
considering transient loads in these types of flows. Repeatability of the pressure signal is
more certain for the tail of the signal than for the impact event. Slightly varying hydro-
dynamic characteristics of the wave front before the impact results in different peaks of
the pressure. It is expected that the issue of numerical repeatability and uncertainty is
comparable to that observed in such experiments.

The experiment is conducted to analyse two-dimensional flow characteristics, so the prob-
lem is numerically modelled in three dimensions in order to validate that the solver ad-
equately reproduces two-dimensional flow characteristics of the solution in three dimen-
sions. The initial point spacing was set to ∆ = 5 mm, which resulted in a point cloud
made of 238000 points that represent the body of water. The value of the time step was
constant and set to 1 ms. One time step took 228 ms on average to compute on the GPU.
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Figure 5.33.: Evolution of the simulated dam break with filling height of 300 mm, and
comparison with the photographs of the experiment [204].

Three pressure sensors were placed on the impact wall on the same level, 3 mm above
the bottom, which verified two-dimensionality of the solution. Besides the sensor located
in the centreplane, two other sensors were shifted 4 mm from the centreplane. Three
snapshots captured during the simulation are shown in figure 5.33, which are compared
to the images extracted from the video of experiment #91 [204]. The contour plot of
the pressure field shown in the figure verifies the smoothness of the solution in the whole
fluid domain before, during, and after the impact. Like in the experiment, the front of
the downstream wave, travelling along the horizontal bed, does not display significant
instabilities prior to the impact on downstream wall.

The numerically obtained pressure signals calculated at the sensor locations are compared
to the experimental signal in figure 5.34. The figure shows the results of two different sim-
ulations, which differ only in the imposed value for the gate velocity. It is evident that the
pressure signal evolves differently for different initial parameters, i.e. slower gate removal
induces a bit slower wave front and consequently lower pressure peaks. In either case,
the three sensors reproduced almost the same pressure signal, validating that the solver
reproduced two-dimensional flow in an three-dimensional environment. It is important to
note that the numerical signal remains smooth during the impact of the water front and
the wall, which lasts for less than 20 ms. Usually projection–based meshless methods,
such as the incompressible SPH and MPS methods, suffer from significant oscillations in
pressure field during impacts. The trends of the pressure curves extracted from numerical
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Figure 5.34.: Evolution of the pressure signal during the impact. Comparison of the pro-
posed method and the experimental measurements [204].

simulations follow the experimental ones.

5.5. Sloshing Experiments

The sloshing of liquids is a strongly nonlinear problem, where such pressures arise that
may cause structural damage of the tank or may endanger the ship stability. Variously
shaped waves that break, jets, spraying and splashing are involved in a moving tank.
In the last twenty years, many approximate and complex numerical methods have been
introduced in order to predict the loads that arise during sloshing [1]. Peak pressure
values during impulsive impacts vary due to the stochastic nature of sloshing, even under
a simple harmonic excitations [206]. As such, the phenomenon is very challenging to
predict using existing numerical algorithms. Analogous to the water entry experiments,
sloshing experiments are simulated in order to investigate abilities of the introduced solver
to reproduce kinematics and dynamics of the sloshing in tanks.
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Figure 5.35.: The container filled with water before and after the sudden impact. Com-
parison of the experimental [207] (left column) and simulated (right column)
free–surface profiles at various time instants (top to bottom): t = 1.34, 1.68,
1.94, 2.04, 2.17, 2.44, 2.97 s.

5.5.1. Sudden Impact

Khezzar et al. [207] conducted experiments using a moving test rig to study the water
sloshing phenomena. The container partially filled with water, with dimensions of 550 ×
175 × 175 mm, was moved along its longitudinal axis and subjected to a sudden stop.
The acceleration defined by a = 0.68t−0.11 was imposed on the container until t = 1.98

s, when it suddenly stopped. The reached terminal velocity was U = 1.41 m/s. The
kinematics of water before and after the sloshing in the half-filled tank under sudden
impact is investigated numerically and compared to the experimental results.

After 1 s of tank motion, a wave starts travelling in the direction opposite to the movement.
The numerical simulation reproduced the travelling wave before the impact with the build-
up of the water against the aft wall, which can be seen in the top three images of figure 5.35.
Immediately after the impact, the water moves forward and accumulates on the top–front
corner of the container, similar to impacts that occur in dam break problems. Then a
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high–velocity jet is formed from the corner, which travels to the other end of the container
and falls down against the aft wall. Finally, the joined body of water oscillates left–right.
Free surface profiles computed numerically and extracted from the experiment show a
good agreement, which are rendered in figure 5.35.

5.5.2. Rectangular Tank

Single degree-of-freedom (1–DOF) harmonic motions are simple to model and simulate,
but such excitations can lead to unbalanced responses, especially when the frequency is
close to the resonance frequency. Kishev et al. [208] conducted 1–DOF sloshing experi-
ments in a rectangular tank with dimensions of 600 × 300 × 100 mm. The tank filled with
water level, H, was oscillated in sway with the motion described as η (t) = A sin (2π t/T ),
where T is the oscillation period and A is the oscillation amplitude, which was constrained
to A = 50 mm.

The two following experiments were simulated to validate the accuracy of the solver with
particular regard to the pressure field. Firstly, the test case defined with H = 250 mm and
T = 1.0 s was fitted with a pressure sensor on the left wall of the tank, 235 mm above the
bottom. The comparison between the numerically and experimentally obtained pressure
evolution at the sensor location is shown in figure 5.36. Peak values, and rise and decline of
the simulated pressure for the developed flow in the swaying tank are in good agreement
with the experimental measurements. The solver also managed to reproduce negative
pressure values where tensile forces occur due to sway oscillation, i.e. changes in the
motion direction. Secondly, the test case defined with H = 120 mm and T = 1.5 s was
fitted with a pressure sensor on the left wall of the tank, 100 mm above the bottom.
The numerically and experimentally obtained pressure evolution at the sensor location is
shown in figure 5.37, which shows a very good agreement between the results.
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Figure 5.36.: Numerically and experimentally obtained [208] pressure at the sensor loca-
tion for the swaying rectangular tank defined by H = 250 mm and T = 1.0
s.

The low–filling case is more challenging to simulate due to occurrence of plunging and
collapsing waves forming in the shallow water before the impact. Even if the two-
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Figure 5.37.: Numerically and experimentally obtained [208] pressure at the sensor loca-
tion for the swaying rectangular tank defined by H = 120 mm and T = 1.5
s.

Table 5.2.: Comparison of the average pressure impulse within a rectangular–tank oscil-
lation period, obtained numerically and experimentally [208].
Test case Experiment, Pa s Simulation, Pa s Relative deviation, %

H = 250 mm 257.2 267.7 +4.1
H = 120 mm 479.0 493.0 +2.9

dimensionality of the flow is ensured, the pressure peak values on impulsive impacts
vary due to the stochastic nature of sloshing. Local differences in flow compared to the
small sensor area and instrument limitations yield different magnitudes of the peaks at
impacts [206]. To overcome the problem of comparing scattered experimental and nu-
merical values, the pressure is integrated in time and the average pressure impulse of a
period is used as a comparable measure. The pressure impulse is also a relevant para-
meter for the structural response, and their comparisons for the two test cases are listed
in table 5.2. Very good agreement is shown between the numerically and experimentally
values, obtained by integration in time.

To validate the accuracy of the solver with regard to flow kinematics, an experiment
defined with H = 120 mm and T = 1.3 s was simulated, and the resulting free surface
profiles are compared to those from the photographs of the experiment. The comparison is
shown in figure 5.38, where the pressure field is coloured in order to show the smoothness
of the solution. The simulation adequately reproduces the development of the free surface,
even the stages of its fragmentation and splashing.

5.5.3. LNG Carrier Tank

Bunnik and Huijsmans [209] conducted sloshing experiments on a 1:10 scale section of
an LNG carrier. Compared to previous sloshing model experiments, the experiments are
conducted on a significantly larger model scale, which should reduce the effect of stochastic
measurements [206]. The case with a rather low tank filling ratio of 10% was simulated,
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Figure 5.38.: Comparison of the sloshing experiment photographs [208] (left column) and
simulated free surface profiles (right column) for H = 120 mm and T = 1.3
s, at time instants (top to bottom): t = 1.1T , 1.2T , 1.3T , 1.4T .

which corresponds to the initial water depth of 438 mm. The 1–DOF sway motion was
imposed with a period of 3.2 seconds and the motion amplitude of 100 mm.

Table 5.3.: Comparison of the average pressure impulse within a oscillation period of the
LNG tank, obtained numerically and experimentally [209].

Experiment, Pa s Simulation, Pa s Relative deviation, %
9668.0 9148.9 –5.4

Although the motion amplitude is small compared to the tank width of 5.4 m, significant
sloshing motion is developed as shown in figure 5.39, and hence significant pressure peaks.
Figure 5.40 shows the numerically and experimentally obtained pressure evolution for the
sensor fitted at the location x = {1656, 152} mm from the centre of the tank bottom. The
numerically obtained pressure curve is consistent with the experimental measurements
after the sloshing flow has fully developed, i.e. after simulating 15 seconds of the swaying
motion. The average pressure impulse of a oscillation period is given in table 5.3. The
numerically obtained value is close to the experimentally obtained one, although slightly
underestimated. After the impact, the jet rises along the side–wall and impulsively falls
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Figure 5.39.: The free surface profiles and velocity magnitudes during the impact (left
image) and after the formed jet falls back down (right image).
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Figure 5.40.: Numerically obtained and experimentally measured [209] pressure at the
sensor location for the swaying tank section of an LNG carrier.

down disturbing the flow near the sensor as shown in figure 5.39. The momentum of the
falling jet is the culprit of the underestimation, which will be assessed in future work.
The magnitudes of peak values are almost constant after the oscillatory flow has fully
developed, quite as in the experiment. In other words, the flow over the period remained
consistent and two-dimensional both in the experiment and simulation.

5.6. Green Water by Dam Breaking

Green–water flow on the deck has commonly been related to the dam–break flow, as
explained in section §1.2, so the standard design analysis approach to estimate the velocity
in a green water incident is to use dam–break solutions. Various solutions were proposed
for various scenarios of the dam–break flow [48]. When simulating wave trains to study
local details, reflected waves must not contaminate results. Therefore, the first numerical
experiments conducted to validate the introduced numerical methodology for green water
events are simulating dam breaking that results in a wave overtopping a structure. After
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the dam breaks, through the action of gravity the column of water interacts with the dry
or wet bed and generates a single incoming wave. Different parameters of the experiment
generate different waves, i.e. types of green water. Features of the resulting wave depend
mainly on the ratio of the initial water depths upstream, h1, and downstream, h0, of the
gate.

Figure 5.41.: The dam–break experimental set-up: main dimensions dimensions of the
tank and the rectangular structure [210].

5.6.1. Wave Patterns

Hernández–Fontes et al. [210] experimentally investigated the generation of isolated events
of green water on a fixed structure using the wet dam–break approach. They verified
that it is possible to reproduce different types of green water resembling those obtained
with unbroken regular waves reported in literature. The experimental setup is shown in
figure 5.41, where H = 450 mm, W = 335 mm, H1 = 150 mm, L1 = 195 mm, L2 = 505

mm, and L3 = 300 mm. The testing matrix is presented in table 5.4. The ratios were
chosen to generate incoming waves with undular bores [210]. The tests were repeated five
times to calculate mean values, which are actually chosen as simulation parameters.

Figure 5.42 shows the free surface patterns captured by the video camera during the
experiments, which are compared to those obtained by numerical simulations. The images
captured the situation 120 ms after the water level reached the deck level. The simulations
have successfully reproduced three different wave patterns from the experiments described
in [210]. First four cases form a plunging wave on the deck and an elliptical cavity at
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Table 5.4.: Target and measured initial water levels and freeboard heights for the experi-
ment [210].

Case # Target Measured
h0, mm h1, mm h0/h1 FB, mm h0, mm h1, mm h0/h1 FB, mm

1 108 180 0.6 42 109.8 179.7 0.611 40.2
2 120 200 0.6 30 122.2 201.0 0.608 27.8
3 126 210 0.6 24 128.6 212.7 0.605 21.4
4 132 220 0.6 18 134.4 221.6 0.606 15.6
5 144 240 0.6 6 145.1 238.2 0.609 4.9
6 108 270 0.4 42 110.4 272.4 0.405 39.6
7 120 300 0.4 30 124.8 305.6 0.408 25.2

the deck leading edge. Cases with lower depth, i.e. higher freeboards, form steeper waves
whose peaks are close to the deck leading edge. The case #4 is transitional, forming a mild
wave wetting the deck. The case #5 forms the second pattern where the water simply
rises above the deck level while the wave peak is still far from reaching the structure.
While the image from the three-dimensional experiment shows no cavity, the ideally two-
dimensional simulation forms a very small cavity. The third pattern generated by the
last two cases, #6 and #7, forms a large cavity and a fluid arm that falls under gravity
effects, hits the deck and traps the cavity air. This type of pattern is sometimes referred
to as a hammer–fist. The peak of the travelling wave is near the deck edge or above the
deck. The authors in [210] note that the cases #1 and #6 have the largest cavities for
their water height ratios presented in table 5.4. The magnitude of the velocity shown in
figure 5.42 validate the formation of water patterns on the deck. Generally, the velocity
magnitude is high near the deck corner, where the high pressure gradient develops. The
cavities are formed depending on the magnitude of the pressure gradient near the deck
corner. Areas of high velocity magnitude are also generated around the wave peaks that
travel towards the structure. The water in case #5 smoothly progresses onto the deck
due to the low pressure gradient near the corner and the wave peak, which remained
far from the deck. Therefore, the resulting complex motion of the shape of free surface
stems from the pressure gradient evolution near the interface and along the structure
wall. In conclusion, the resulting free surface of each test case is properly reproduced by
the numerical method. Hernández–Fontes et al. [210] demonstrated that it is possible
to generate isolated green water events of different types on a fixed structure using the
wet dam–break approach, and here it is demonstrated that these green water events of
different types may also be numerically reproduced. Therefore, future work will deal with
simulating yet untested scenarios with various parameters to find new forms of isolated
green water events.

The dynamics of dam breaking process is sometimes not modelled in numerical experi-
ments, i.e. the dam or gate simply disappears instead of moving upwards. In cases of
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Figure 5.42.: The patterns found for the different cases. The experiment photographs
[210] (left column) and simulation snapshots (right column) were taken 120
ms after the water level reached the deck level for each case.

158



5. Verification and Validation

dam breaks over a wet bed, the movement of the gate plays an important role for forming
the incoming wave. The described numerical experiments needed to incorporate precise
gate movement, as modifying the gate velocity for 10% leads to completely different wave
pattern than the expected. Two probes, WP0 and WP1, which are depicted in figure 5.41
measured the water depth at locations 150 mm left and 250 mm right from the gate,
respectively. Figure 5.43 compares the measurements made in two simulations to those
obtained experimentally. Since the authors of the experiment note that the gate release
was tuned to ensure opening times t <

√
(2h1/g) by using a free fall weight, it is challen-

ging to reproduce the exact movements from the experiment. The two simulations differ
only in the imposed movement for the gate. It can be seen that slightly varying the gate
movement yield different steepness of the incoming wave. Nevertheless, the numerically
obtained values at wave–probes are in very good agreement to the experimental data.
It should be noted that the bump detected by WP1 is a small wave that travels back-
wards after opening the gate, due to a vortex forming by the accelerating flow around the
moving gate bottom. Finally, the oscillations in numerical readings of the small backflow
wave occur due to a simple, non-smooth implementation of wave probing in numerical
simulations.
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Figure 5.43.: Readings of the wave probes for two different simulation cases that differ
only in imposed velocity of the gate, which are compared to the experimental
measurements [210].

Without the gate modelled, the high water column falling under the action of gravity forms
a mushroom-like jet structure [211]. The mushroom grows while travelling downstream
and eventually the front breaks. The broken wave front continues travelling downstream,
while inducing subsequent small-scale wave breakings. This flow development significantly
affects the wave pattern on the deck, which is characterised mostly by separation of fluid
clumps from the incoming wave, due to the built-up momentum at the interface. The
development of these events and how they contaminate the resulting wave pattern is
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rendered in figure 5.44. Validation of numerical methods for coastal engineering usually
relies on experimenting with dam breaks and their complex patterns, such as mushroom-
like jets. Therefore, the proposed method may be considered to be used for problems such
as the tsunami wave run-up.

Figure 5.44.: The development of the wet dam–break flow simulated without the gate with
shown areas of high vorticity and mushroom-like structures.

5.6.2. Force on the Deck

After validating the generation of isolated shipping water events, the following numerical
experiments deal with vertical loads due to the shipping of water onto the deck. The
numerical experiment is set-up according to the experiments conducted by Hernández-
Fontes et al. [212]. The configuration of the experimental set-up is similar to that shown
in figure 5.41, where H = 475 mm, W = 500 mm, H1 = 150 mm, L1 = 392 mm,
L2 = 1258 mm, and L3 = 300 mm. Additionally, a force balance was embedded into the
deck that measured the slowly varying vertical force on the deck. The heights of the water
columns were chosen as h0 = 144 mm and h1 = 240 mm. The authors of the experiment
note that the chosen ratio of water columns, h0/h1 = 0.6, yields a stable undular bore
without three-dimensional effects due to wave breaking. A wave probe was located 5 mm
in front of the deck edge, which measured the freeboard exceedance, i.e. the difference
of the incoming wave and the deck heights. Time series of vertical loads were obtained
experimentally from the force balance measurements. The experiments were repeated five
times, and the averaged time series is used here to validate the simulation results. At
the peak of the force curve, relative minimum and maximum deviations from the average
curve are less than 2%. Due to the good repeatability, this experiment is taken as the
first validation experiment for green water loads. The authors of the experiment also
tried to validate the new convolution model to predict the loads. Results demonstrated
that using the convolution model improved the representation of the time series of loads
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compared with the traditional dam–break approach. It managed to capture the peaks and
the decay tendencies observed in the experimental data in an approximated way, although
significantly over-predicting the loads.
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Figure 5.45.: Numerical and experimental readings [212] of the wave probe for the wave
generated by the dam break. The simulations differ in imposed velocity of
the gate.

Two simulations with initial point spacing of 2.5 mm and 1.5 mm were performed, which
consisted of 44000 and 112000 number of points, respectively. The readings of the wave
probe located in front of the deck edge are shown in figure 5.45 through values of freeboard
exceedance. The finer discretisation yielded 3% higher freeboard exceedance compared to
the coarse discretisation. On the other hand, both simulations had similar evolution of
the force excreted on the deck, which are graphed in figure 5.46. The simulations have
adequately predicted the rise of the force as the water enters the deck. The experiment
has detected a sudden drop in pressure as water slides along the deck, which was not
detected by the simulations and may be due to aeration effects, similar to those captured
by the experiment shown in figure 1.7. Some amount of oscillations are present in the
numerical curves before the peak, which are due to the high pressure–gradient area at the
edge of the deck that is responsible for developing and imploding air pockets. The convo-
lution and dam break models from [212] have excessively over-predicted the experiment
measurements, while the results of the numerical simulations are in very good agreement
with the experiment measurements.

5.7. Green Water on a FPSO Model

In this section, a validation of green water loads on a static structure is conducted. Several
experimental results on green water have been published, but there is small amount of
data available to be useful for CFD validation. Here the experiments conducted by Lee
et al. [67] are numerically reproduced to understand the physics of green water and to
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Figure 5.46.: Simulated and experimentally measured [212] force on the deck imposed by
the wave that is generated by the dam break.

quantify the pressure distributions due to green water on deck. The model geometry and
the locations of the pressure sensors are shown in figure 5.47.
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Figure 5.47.: Fixed FPSO model main dimensions and positions of the pressure sensors
on the deck.

The shown geometry, named ’Rect0’ by the authors of the experiment, is a simplified
model of an FPSO vessel. Other tested geometries have a stem angle of 5 degrees (named
’Rect5’) or a rounded edge deck with a vertically straight stem (named ’Round’). The
model was fixed since the focus of the thesis was on the flow behaviour and pressure on
deck due to green water. Ten pressure sensors were installed at the deck of the model,
and the camera was recording the flow development on the deck. The validation study
focuses on comparing pressure signals from five innermost sensors that record complex
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pressure evolutions during green water events: P11, P12, P13, P21, P22. The results from
all three different models showed very similar shapes with the largest pressure measured
at P11. Nine regular wave cases were investigated by the authors of the experiment. The
cases were chosen as a combination of three wavelengths (λW = 2.25, 3.0 and 3.75 m)
and three wave steepness values (2AW/λW = 0.04, 0.05, and 0.06), which are listed in
table 5.5. The experiment with Rect0 model and wave #9 is chosen to be reproduced for
the validation study, which yields largest impact pressures.

Table 5.5.: Wave calibration results for the experiments conducted by Lee et al. [67].

Wave # Target Measured
AW λW AW λW

1 45 2.25 45.07 2.25
2 56.25 2.25 56.74 2.25
3 67.5 2.25 67.13 2.25
4 60 3.0 60.38 3.001
5 75 3.0 74.11 3.003
6 90 3.0 90.56 3.002
7 75 3.75 75.37 3.746
8 93.75 3.75 90.84 3.749
9 112.5 3.75 109.8 3.75

Figure 5.48.: Couple of snapshots captured during the green–water simulation defined
with wave #9 and ∆ = 20 mm.

One way coupling of the potential–wave flow and meshless solver is done using the relax-
ation zones, i.e. by imposing known solution at the boundaries of the meshless domain
and gradually transitioning to the nonlinear solution towards the middle of the domain.
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Figure 5.49.: Comparison of the experimental [67] (left column) and numerical (right
column) green water behaviour on the deck for wave #9 at various time
instants.

Literature is sparse when it comes to validating green water experiments by numerical
means. A study published by Gatin et al. [30] is used for the comparison of the numerical
results, in which the authors used unsteady RANS solver based on the FVM and VOF
approach.

The domain size of the meshless solver was chosen to be small enough to save computa-
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tional time, but to capture relevant nonlinearities. The domain extended 1.0 m in front
of the model, 1.0 m back from the vertical wall, 0.5 m below the model, and 0.5 m from
the sides of the model. The velocity known from the potential–flow solver was imposed
at all domain boundaries, except for the downstream boundary, which imposed the open
boundary condition. Multiple point spacing values were tested, and 12 mm was found to
be adequate. A couple of screenshots in figure 5.48 show a wave run-up for larger point
spacing ∆ = 20 mm.

The authors in [30] adjusted the time step during the simulations to maintain a maximum
value of 0.75 for the CFL number, which corresponds to an average time step of 1 ms for
their finest grid. The adaptive time stepping technique introduced in this thesis allowed
time–step values that corresponded to classical CFL numbers larger than 1.0. For the
sake of comparison, a constant time–step value of 3 ms was used for extracting the results
of the study, which corresponds to a classical CFL number of 0.75 at time during the
impact.

Firstly the behaviour of the computed green water events is investigated. The progress
of a green water event may be seen in figure 5.49, which compares the experimental and
numerical behaviour of flow on the deck for wave #9. The meshless points are coloured
by the magnitude of their velocity vector. They are also rendered small so the deck can
be visible. Typically, water ingress started at the fore end of the deck, and progressively
water from the deck side merged. The merging built large momentum, which resulted in
a violent impact against the wall. The water slided along the wall upwards, and then fell
back on the deck, thus receding away from the wall and the deck. The numerical solver
successfully reproduced the free surface evolution of the extremely nonlinear event, i.e.
the ingress of water on the deck, piling against the wall during the impact, and falling of
the water on the deck.

Table 5.6.: Comparison of average magnitudes of pressure peaks in a green–water event
for wave #9 and relative deviations.

Experiment Meshless simulation FVM simulation
Location p, Pa p, Pa Rel. dev., % p, Pa Rel. dev., %

P11 2498 2403 –3.8 3697.7 +48.0
P12 1357 1615 +19.0 1877.3 +38.3
P13 977 1151 +17.8 1069.5 +9.5
P21 939 1033 –10.0 846.1 –9.9
P22 857 915 +6.7 719.6 –16.0

During the simulation run, pressure was registered at five relevant sensor locations using
the meshless interpolation. The numerically obtained pressure signals of ten sequential
green water events are plotted in figure 5.50 and compared to the experimental data
and the results obtained by the FVM [30]. It should be noted that the plotted numerical
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signals of 10 typical green water events are shifted in time in order to overlap with a part of
the stable experimental signal for easier comparison. The pressure signals usually exhibits
two peaks during the green water event. The first peak with a very short rising time is
caused by the impact of the merged water front against the wall, and the second peak with
a longer rising time is caused by the fall of the piled-up water. This resembles to typical
sloshing events, some of which are simulated in section §5.5. The meshless solver managed
to reproduce both peaks within a period of the green water event at all sensor locations.
The pressure at location P11, where the impact pressure was most frequently observed,
showed the largest uncertainty suggesting a strongly nonlinear and irregular feature of
the green water impact [67]. The meshless simulation yielded somewhat more uniform
peak magnitudes at location P11 than the experiment, i.e. the simulated magnitudes on
impacts were in the range from 2900 Pa to 3500 Pa, and the magnitudes of the secondary
peak were in the range from 1500 Pa to 1750 Pa. For comparison, the FVM has under-
predicted the second peak in all cases, while the pressure peak at impact oscillated in the
order of magnitude. In addition, the farther the pressure sensor was located from the wall
and the centreline, that much miss-predicted the numerical signal shape was.

Lee et al. suggest that the average values of the sensors peak magnitudes are taken for
validation of CFD solvers. The comparison of the average peak magnitudes is presented
in table 5.6, and also graphed in figure 5.51. At the location P11, results of the numerical
simulations in average have relative deviations less than 4% from the experiment, while
results of the FVM have a discrepancy of 48% from the experiment, due to the uncertain
pressure response during the initial impact of the wave front against the wall. Overall,
the meshless simulation follows the experimental trend.

Table 5.7.: Comparison of average pressure impulses in a green–water event for wave #9
and relative deviations.

Experiment Simulation Gatin et al.
Location p, Pa p, Pa Rel. dev., % p, Pa Rel. dev., %

P11 938.1 842.5 –10.2 727.4 –22.5
P12 748.0 780.8 +4.4 632.9 –15.4
P13 642.8 668.0 +3.9 522.2 –18.8
P21 620.6 621.8 +0.2 452.8 –27.0
P22 550.5 634.2 +15.21 443.8 –19.4

However, the pressure–peak magnitude itself does not reveal enough information describ-
ing a green water event, or generally an impact event. The pressure impulse, or pressure
integral over time, is a more relevant measure from the structural point of view. It was
noticed that the results of experimental pressure integrals given in the appendix of [30]
are lower up to 10% than those obtained by the author from the data shared by Rhee
and Seok. Due to the consistency with the graphed pressure signals in figure 5.50, the
integrals of those graphed pressure signals are considered in this validation study.
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Figure 5.50.: Comparison of pressure readings obtained numerically and experimentally
[67] for wave #9 at locations (top to bottom): P11, P12, P13, P21, P22.

The comparison of the pressure impulse is presented in table 5.7, and also graphed in
figure 5.52. By comparing tables 5.6 and 5.7, it is evident that the peaks and impulses are
not strongly correlated. For example, the impulse at P21 is accurately predicted, while
the average pressure peak magnitude is under-predicted by 10%. In addition, the pressure
impulse at P11 obtained by the FVM is under-predicted, while the peak magnitudes are
over-predicted. The results of the meshless simulation at locations P12, P13, and P21
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Figure 5.51.: Graphed comparison of average magnitudes of pressure peaks in a
green–water event for wave #9.

are in extremely good agreement with the experimental results, while the results at P11
and P22 are slightly under- and over-predicted, respectively. Looking at the graph of the
signal at location P11, it can be noticed that the simulation does not smooth-out the
pressure while water is receding from the location of the sensor. Similarly, at P22 a single
row of Lagrangian points remains there at all time, i.e. the deck stays wet. This is due
to the relatively large point spacing value ∆ = 12 mm for such conditions. In either case,
those points that remain at the deck influence the pressure signal only in between the
impacts, which is irrelevant from the structural point of view, but may be relevant if the
stability of the vessel is investigated.
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Figure 5.52.: Graphed comparison of average pressure impulses in a green–water event for
wave #9.

The culprit of non-smooth ending of the pressure signal is that Lagrangian points are
either there or not, therefore contributing or not contributing to the hydrostatic pressure,
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i.e. wetting the deck. This may be alleviated by making the points spacing smaller,
which would lead to many unnecessary points in the whole simulation domain. A cur-
rent limitation of the implementation is that each point is considered to represent the
same amount of fluid volume. In Eulerian methods, this is equivalent to using a uniform
grid cell size throughout the domain. A solution to this limitation is to size down both
point spacing and the domain volume, but not too excessively that would contaminate
the results by too close boundaries imposing the flow. Future work will deal with imple-
menting adaptively sized points spacing in order to allow for better spatial precision in
areas where user specifies. On the other hand, one may choose to couple an FVM solver
and the meshless solver in a way that the meshless domain captures only the deck and
its structures. This discrepancy arising from the pressure in between impacts is not of a
significant importance when analysing structural loads. Therefore, it can be concluded
that the introduced meshless method and the domain decomposition technique can be
used to accurately predict green water loads.

5.8. Heaving Vessel

The following numerical experiment is used to test the robustness of the implemented
solver by simulating the FPSO model experiment by adding complexity of prescribed
vessel movement. The vessel model oscillates in the vertical direction, i.e. it heaves with
an amplitude of 50 mm. The amplitude of incoming waves is 112.5 mm, and the period
is constrained to TW = 1.55 s, but two heaving periods of the vessel were chosen in the
simulations: TH = 0.75 s and TH = 1.0 s.

The numerically obtained pressure signals of four sequential green water events on the
moving vessel are plotted in figure 5.53 and compared to the numerical results obtained for
the fixed vessel. Since the value of the first chosen heaving period equals to almost half of
the value of the waves period, it is expected that the pressure signals will repeat over time.
Indeed, figure 5.53 shows that the signal is similar for each green water event, except for
some discrepancy of secondary pressure peaks at P21. It is observable that this heaving
period significantly amplifies magnitudes of the secondary pressure peak, and alleviates
magnitudes of the primary pressure peak. This is due to the vertical acceleration of the
deck that occurs while the piled-up water falls on the deck. The second chosen heaving
period TH = 1.0 is not in scale of the waves period. The pressure signal varies from event
to event. Overall, it can be deduced that magnitudes of the primary pressure peak are
significantly amplified, while magnitudes of the secondary pressure peak are only slightly
modified.

It should be noted that computational performance of the solver employing moving geo-
metry is the same as if the geometry is fixed. Methods based on conforming meshes
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would have to perform mesh deformation and advection corrections each time step. In
combination with physically moving geometry, Lagrangian fluid advection without a mesh
simulates physics of green water events just as it is.

5.9. Discussion of the Results

The V&V study consisted of problems, which contain all relevant phenomenons that
occur in green water events, in which the set of problems used for the verification had
somewhat simpler set-ups than validation problems. For example, slamming includes an
area of extremely high pressure that moves as the body enters the water, which generates a
thin and strong jet. Dam break problems are opposite of slamming problems, since water
moves and impacts a fixed wall, producing high pressure gradients and pile of water along
the wall that falls. Sloshing problems include both moving walls and water, which can
generate various nonlinear phenomenons, such as wave–breaking, splashing, spraying, etc.
Therefore, it can be stated that the verification study has captured a range of problems
of ship hydrodynamics under various conditions. The numerical results were in very good
agreement with the experimental measurements, showing that the method can handle
violent impacts of fluid onto walls, while accurately reproducing impact pressures. In
addition, the solver managed to adequately reproduce expected flow kinematics, i.e. free
surface evolution and velocity field from the experiments.

Moreover, a green–water event can comprise of all of separately tested phenomenons, i.e.
a breaking wave on the moving deck impulsively impacts a moving wall while generating
a jet, falling pile of water, spray, etc. The validation cases of isolated events of wetting
the deck, and periodic green water events in regular seas, were successfully simulated
in a short amount of time. The study showed that wave impact pressures and pressure
impulses can be predicted with very good accuracy. Furthermore, a test with moving
ship has shown the capability of the method to take all motions into account through the
domain–decomposition approach.

There is an infinite amount of possible combinations of conditions formed by the 6–DOF
vessel movement and incoming waves that can occur in harsh ocean environments. Po-
tential flow methods can quickly approximate vessel motions in waves, but this V&V
study has shown that unsteady CFD analyses should be made for questionable combin-
ations of conditions. The introduced method has been shown to efficiently and robustly
simulate local green water events and accurately predict hydrodynamic loads. A solver
implemented based on the introduced method can simulate questionable conditions relat-
ively quickly on the modern PC. The validation cases have shown that the domain may
be small, taking into account only the space where nonlinearities occur. The number of
points forming fluid in such small domains may be less than 200000. A modern high-end
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GPU can compute one time step in less than 200 ms, i.e. it takes less than 1 microsecond
per point per time step. Considering that the method is Lagrangian and can handle
large classical CFL numbers, simulations can be made relatively quickly. To the author’s
knowledge, this is the fastest reported implicit Lagrangian method, which is still not fully
optimised.

Results of the validation cases could benefit adaptive refinement techniques, which were
not implemented in the solver. By choosing larger point spacing and adaptively refining
the discretisation near high–pressure areas, the domain could be made larger with the
same number of points. On another note, the meshless domain can be made as small as
possible by taking flow input from another mesh–based, e.g. FVM, solver. In either case,
these issues are not directly connected to the methodology, but to the implementation of
the solver.
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Figure 5.53.: Comparison of simulated pressure readings for wave #9, for the fixed and
heaving models at sensor locations (top to bottom): P11, P12, P13, P21,
P22.
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6.1. Conclusions

Large relative motions between a vessel and water can result in violent water dynamics
so that the water flows onto the deck and reaches crucial equipment and other deck
structures. Damages done by water impacts may be critical for small vessels, or may
lead to loss of production time for large vessels. Predicting the effects of green water
on the stability and structure of the vessel is a challenging problem, which needs to
be assessed in the design process. Many numerical and experimental methods may be
found in literature that try to solve these problems, but rarely such methods are designed
specifically for the green–water problem. By analysing the limitations of currently used
methods, a rationale was developed and the research resulted in a novel design tool, i.e.
a methodology for incompressible flows suitable for simulating green water events. The
introduced methodology can be described as: meshless, Lagrangian, volume–conservative,
FD–based, second–order accurate, efficient and suitable for coupling.

As the Lagrangian description of the flow is suitable for violent free–surface flows, the
mesh-free description of the fluid volume is assumed. The WLS–based second–order
gradient in its generalised FD form works on highly irregular meshes and point clouds. The
disadvantage was that the WLS did not specify a simple and accurate Laplacian, which is
the main aspect for adequately solving a Poisson equation. In this thesis, the Laplacian is
defined by extending the WLS method used for the gradient. The introduced Laplacian
was shown to be efficient, having linear convergence rate even for extremely irregular point
arrangements. The generalised second–order FD operators were employed to simulate
incompressible fluid flow by solving the velocity–pressure formulation of the NSE in strong
form. The combination of meshless fluid description and novel boundary conditions results
in eliminating the meshing pre-processing step and enabling free advection of fluid that
adjusts to boundaries at each time step. Furthermore, possible loss or gain in fluid volume
during the Lagrangian advection is prevented by enforcing equidistant neighbours using
the PBD method. It was shown that the volume is conserved at all time.

The implementation of the methodology was extensively verified and validated by simulat-
ing various problems that include violent fluid–structure interaction. The set of problems
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used for the verification included problems with simpler set-ups. The novel Laplacians
were verified on a set of approximation and Poisson problems that are artificially created.
The lid–driven cavity problem was then simulated to verify the ability of the method to
maintain unconditional stability within a confined volume, which is a challenging problem
for Lagrangian methods. The first set of validation experiments were entries of bodies in
still water, which included a wedge and a section of a ship bow. The pressure results were
found to be in good agreement with the experimental measurements. The dam break
experiments and sloshing experiments in rectangular and LNG–type tanks were used to
validate that the method can handle violent impacts of fluid onto walls, while accurately
reproducing impact pressures.

The simulation results were found to be in very good agreement with the experimental
data from the literature. The numerical solver managed to adequately reproduce expected
flow kinematics (free surface evolution and velocity field) and dynamics (pressures and
forces) from the experiments. This confirmed the methodology to be ready for validation
by simulating green water events. Moreover, it can be argued that the method has poten-
tial to become a general design tool when impacts between a structure and incompressible
or nearly–incompressible fluid need to be predicted.

The final validation was performed by simulating isolated events of green water on a
fixed structure, and regular waves wetting the deck of a FPSO model. Isolated green
water events were simulated using the wet dam–break approach. The incoming waves
with bores and plunging were successfully reproduced, as well as the force due to the
shipping of water onto the deck. A fixed model of an FPSO was simulated on a regular
wave–field by the domain decomposition approach. The study showed that wave impact
pressures and pressure impulses can be predicted with very good accuracy. The FPSO
was imposed with heaving motions to study the effect of vessel movement on the loads,
and the applicability of the method on realistic scenarios where the vessel may move with
6-DOF.

Since the verification and validation study has captured a range of problems of marine
hydrodynamics under various conditions, it may be concluded that the proposed method
provides good estimates of the evolution of pressure in fluid–structure problems, which
may be used for structural analyses.

Besides coupling to another flow solver, the flow solver implemented through the intro-
duced methodology is ready to be coupled to a structural or a rigid–body solver. The
flow solver handles geometry described by triangles and quadrilaterals, so the discrete
structural model may be directly used in the fluid simulation, which makes the transfer
of loads straightforward.

Finally, it should also be noted that the solver was implemented to run fully in parallel,
which enables state-of-the-art simulations to be performed efficiently on personal com-
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puters, proving the efficiency of the methodology. It was shown how detailed simulations
are computed in a reasonable amount of time, faster than contemporary methods used
for simulating same or similar problems.

To conclude the thesis:

Mesh-free FD approximations and the volume–conservative Lagrangian description of flow
are employed to accurately solve the NSE and naturally handle free surface flows. This
combination is appropriate for solver coupling and simulating FSI in harsh ocean envir-
onments.

6.2. Proposals for Future Work

The present methodology can further be improved in several directions. Some of the
proposed improvements related to numerical features and physical modelling are listed as
follows.

Domain Coupling Enhancements

Regular waves are rarely found in the environment, therefore, irregular waves are of great
practical interest. First–order irregular waves are represented through the superposition
of a set of linear regular waves with varying frequencies and amplitudes. The short–term
prediction of irregular waves is described statistically, and is applicable to numerical
wave generation. Future work will deal with modifying the implemented wave generation
procedure to generate irregular waves of specified spectrum.

Besides one–way coupling, the method is mature for two–way coupling with another
mesh–based flow solver. A Lagrangian solver can be reliably coupled to a Eulerian solver,
while both solvers differ in the space and temporal discretisation [116]. It will be tested
if the two–way coupled simulation can benefit the global vessel seakeeping problem, in
which the Eulerian solver resolves the bulk flow and the Lagrangian solver resolves the
regions where the complex free surface flow develops.

Two–Way Structural Coupling

As the introduced method generates boundary points each time step by projecting to
nearby boundary geometry, it naturally handles deformations and movements of the
geometry within the simulation. Without introducing any complexity, a partitioned
fluid–structure interaction may be implemented through data exchange between the mesh-
less solver and some chosen FEM solver. The discrete triangular or quadrilateral structural
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meshes will be used directly in the fluid simulation, so the data exchange from the fluid
solver to the structural solver is straightforward through the meshless interpolation, while
the mesh elements and nodes movements are obtained from the structural solver. The
ability of multi-physics coupling of the method will be exposed through some popular
frameworks, such as preCICE [213] or MOOSE [214].

Adaptive Point–Cloud Refinement

The solver implementation should support variable spacing between points. A point
virtually describing some amount of volume can be split into multiple smaller points
where needed. On the other hand, points with smaller compact radius can be merged
into a point with larger compact radius where the finer discretisation is not needed to
represent flow structures. The list of criterions for splitting a point could include: distance
from the body or free surface, overlapping with user–specified virtual bounding boxes, too
excessive pressure or velocity gradient, etc. A criterion to merge group of split points can
be a lack of pressure or velocity gradient. When merging a group of points, the resulting
point is placed at the centre of gravity of the original particles. Splitting of a point into
multiple points is performed by generating a new set of particles within the radius of the
parent particle. Researchers of the SPH method have developed various techniques for the
adaptive refinement, e.g. [215, 216], which are going to be considered for implementation.

Optimisations

The implemented algorithms should be thoroughly optimised for memory access. Cached
and coalesced memory access reduce the computing time to an order of magnitude, because
randomised or scattered global memory access can be more than 100 times slower. Since
the meshless points are placed in a Cartesian grid, Morton or Z–curve hashing may be
used for the sorting of allocated memory for the point cloud. The hashing assures that
the data which Cartesian cells holds is close in space, but also close in the memory space.
This improves caching. Furthermore, the shared memory model of accelerating devices
will be also used, which offers extremely fast access to data.

The current implementation of the proposed methodology runs on a single node, i.e.
one chosen device in the system, a CPU or a GPU. The base framework uses efficient
node–level parallelism optimisations to get most out of the hardware it runs on. For some
data–heavy problems that require large amount of simulating points, it would be conveni-
ent to split the problem into multiple problems and distribute the workload and memory
among multiple computing nodes. A portable message–passing standard will be used for
the communication between multiple instances of the solver that runs concurrently on
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several homogeneous or heterogeneous nodes, i.e. multiple GPUs, CPUs, or CPU–GPU
combinations.

When solving the PPE, i.e. the discretised linear system of equations, iterative Krylov
subspace solvers use the Jacobi preconditioner to speed up the convergence. The pre-
conditioner scales linear equations by the inverse of matrix diagonal coefficients, which
is very effective for matrices having dominant diagonals. The parallel initialisation of
preconditioners is an actively researched problem. In order to speed up and make the
convergence more robust, parallely initiable preconditioners other than Jacobi’s should
be tested.

Flux–Based Solution

In the presented numerical approach, interactions between mesh-free points were treated
with FD–like operators rather than assigned conserved quantities. Alternatively, one may
attempt to utilise a Godunov approach by solving a hydrodynamic Riemann problem in
a moving frame, between each pair of interacting particles, and thus obtain the fluxes
from the solution [118]. Godunov methods have traditionally been used on Eulerian grids
which introduce advection and angular momentum conservation problems. In Lagrangian
context, the Riemann problem should be solved across faces distorting with the relative
fluid flow, although the assumed motion of the face in the Riemann problem will not
exactly match the real motion of the face [119]. Future work will include an attempt to
implement a meshless Godunov approach and compare its performance and accuracy to
those obtained by the proposed methodology.

Turbulence

For internal flows, and in general, LES allows the solution of more complex problems.
Modelling of the Navier–Stokes equations by a meshless Lagrangian approach can be
revisited from the point of view of Large Eddy Simulation (LES) [165]. The LES filtering
procedure can be recast in a Lagrangian framework by defining a filter that moves with
the positions of the fluid particles at the filtered velocity [217].
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A. Remarks on the Boundary Condition for the

Pressure

Enforcing the incompressibility constraint through the use of the PPE has been a main
focus in the development of numerical methods for incompressible flow. There has been
a long debate among researchers concerning proper boundary conditions for the PPE
equation. One of the topics was whether it is appropriate to use the normal or tangential
component of the momentum equation on the boundary as a boundary condition, or some
other type of boundary condition; see e.g. [102, 103, 163, 155, 98, 89, 90].

Gresho and Sani [102] were the first to propose an equivalence theorem regarding the
PPE for the incompressible Navier–Stokes equations, although without proving it. They
claimed that if the Navier–Stokes momentum equation is solved simultaneously with the
PPE equation whose boundary condition is the Neumann boundary condition obtained
by applying the normal component of the momentum equation on the boundary on which
the normal component of velocity is specified as a Dirichlet boundary condition, then the
solution of velocity and pressure would be exactly the same as if the primitive equations
(with the usual divergence-free constraint) were solved instead. Unfortunately, their par-
ticular PPE formulation does not incorporate explicit boundary conditions that can be
used to recover the pressure from the velocity.

Sani et al. [103] investigated the claim to actually prove the theorem for some specific
conditions. Additionally, like the primitive equations that require no boundary condition
for the pressure, the new results establish the same requirement when the PPE equation
approach is employed.

Finally, it is worth noting that even though researchers are familiar with the listed facts,
it is not uncommon to use the simplest pressure boundary condition ∇p · n = 0, which
makes easy to attain a stable scheme. For a laminar boundary layer flow with a relatively
high Reynolds number, it can be a good approximation since∇p·n = O

(
Rn−1/2

)
tends to

zero as Rn → ∞. However, the flow around some body always experiences deceleration
and detachment, where the simplified boundary condition will always yield significant
discrepation, as validated for flow around a circular cylinder [99]. This is also the case for
violent flows analysed in this thesis.
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B. Large Eddy Simulation

There are several common ways of reducing the number of degrees of freedom in the
numerical solution [218]:

• calculating the statistical average of the solution directly (RANS), which is used
mostly in engineering calculations,

• calculating certain low-frequency modes in time and the average field (URANS,
Semi–Deterministic Simulation (SCS), Very Large Eddy Simulation (VLES) and
Coherent–Structure Capturing (CSC)),

• projecting the solution on the ad-hoc function basis and retaining only a min-
imum number of modes, to get a dynamic system with fewer degrees of freedom
(Proper–Orthogonal Decomposition (POD)),

• calculating the low-frequency modes in space directly (Large Eddy Simulation (LES)).

LES modelling represents eddies down to a certain scale, and uses a sub-grid to represent
smaller eddies that occur below the threshold scale. Unsteady applications investigated
with Lagrangian methods often employ LES, e.g. [165, 217, 219]. The sub-grid properties
are included through a statistical model [218], and the theoretical scale separation is
formalized in the form of a frequency low-pass filter. A LES model is incorporated into the
momentum equation of the incompressible NSE by taking turbulence stress into account:

Du

Dt
= −1

ρ
∇p+ ν∇2u+ f +

1

ρ
∇τ , (.1)

where τ is the sub-point scale (SPS) turbulence stress tensor, which is analogous to the
sub-grid scale (SGS) in grid-based CFD methods. The eddy viscosity assumption is often
used to model the SGS/SPS turbulence stress as:

τij = 2ρ

(
νtSij −

1

3
δijk

)
, (.2)

where Sij is SPS strain tensor, k is the turbulence kinetic energy, δij is the Kronecker–delta
function and νt is the eddy viscosity, e.g. which can be based on Smogorinsky SGS model.
The eddy viscosity is defined as:

νt = (∆Cs)
2
√

2S : S, (.3)

where Cs is the Smagorinsky constant, and S : S is the double–inner product that in
Einstein notation is written as SijSij.
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C. Weighting Functions

Most of the mesh-free methods do not incorporate a topology map. Compact–support
methods employ arbitrary shaped domains around each point in the point cloud where
the exchange of the information between close points is made. It is assumed that points
outside of the domain do not influence the point under consideration. Therefore, the
strength of the interaction between points is based on the distance criteria. The group
of points that is located in the compact domain may be referred to as the neighbour-
hood, and the points are neighbours of the point under consideration. The geometrical
shape of the compact domain is most often a sphere, and rarely an ellipse or a rectan-
gular cuboid. Non-sphere domains have the advantage to enclose neighbours in a chosen
relevant direction from the considered point. This is not as important, because even
when choosing neighbours within a spherical domain, neighbours can be picked and even
weighted based on criteria other than the distance from the considered point. Like in most
other compact–support meshless methods, the present method employs spherical shapes
of the compact domain. For a spherical compact domain, the weighting function depends
on the distance and compact radius,W (r, h), which can be written in the univariate form
by using the ratio of the distance and sphere radius, W (q), where q = r/h.

Due to the nature of spatial operators in the SPH method, the performance of an SPH
model is critically dependent on the choice of the weighting function, sometimes referred
to as the smoothing kernel. The shape of the smoothing kernel must satisfy various
conditions in order to yield stable and successful simulations. The kernel must be a smooth
and monotonically decreasing function that satisfies the Dirac delta function condition as
h → 0, and has normalised area below its curve. The SPH derivatives take directly the
derivatives of the smoothing kernel into account, which makes the SPH method sensitive
to the choice of the smoothing kernel.

On the other hand, the weighting function in the present method assigns weights to each
neighbour point in the compact domain, which are used in the WLS fitting procedure
described in section §3.2.1. The values of weights do not directly contribute to the evalu-
ation of spatial operators, but the combination of all of the weights in the neighbourhood
determines the outcome of the evaluation of spatial operators. The classical LS form is
obtained if the weighting function is taken as W (q) = const. It may be regarded as cer-
tain that weighting functions benefit from monotonically decreasing shapes, since farther
neighbours should have less influence on the point under consideration.

Many researchers have dealt with introducing compactly supported radial functions of
small degrees, e.g. [189, 220], and some of those were modified to be used in the SPH
method. Some of the most popular and efficient compactly supported radial functions
used in meshless methods are listed in table C.1. Note that the absolute scale of the
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listed functions is irrelevant for weighting in the LS or Shepard’s procedure. The listed
weighting functions are graphed in figure C.1. Properties of the functions are given in
table C.2, which describes fullness of the functions through reaching 1% of weighting,
and reaching 99.9% of the area under the curve. Figure C.2 shows how the bell–shaped
weighting functions would be shaped if they are horizontally scaled by the ratio of their
area and the area of Wendland’s C2 weighting function. The curves are similar, which
confirms that Wendland’s C2 function is a reasonable choice for the weighting implemented
within the solver.

Table C.1.: Compactly supported weighting functions.
# Name W (q) Degree Author
1 Linear 1− q Linear n/a
2 Quadratic q2 − 2q + 1 Quadratic Johnson et al. [221]
3 Spiky (1− q)3 Cubic Desbrun [177]
4 Lucy’s (1− q)3 (3q + 1) Quartic Lucy [74]
5 Liu’s −1

4
(1− q)2 (15q2 − 8q − 4) Quartic Liu et al. [220]

6 Wendland’s C2 (1− q)4 (4q + 1) Quintic Wendland [189]
7 Poly6 (1− q2)

4 Sextic Müller [177]
8 Wendland’s C4 (1− q)6 (35

3
q2 + 6q + 1

)
Octic Wendland [189]

Table C.2.: Some properties of compactly supported weighting functions.
# Name q for W = 0.01 q for

´ q
0
Wdx

reaching 99.9%
of the area

Area

1 Linear 0.990 0.968 0.500
2 Quadratic 0.900 0.900 0.333
3 Spiky 0.784 0.822 0.250
4 Lucy’s 0.859 0.855 0.400
5 Liu’s 0.792 0.780 0.375
6 Wendland’s C2 0.778 0.792 0.333
7 Poly6 0.827 0.823 0.406
8 Wendland’s C4 0.687 0.710 0.296
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Figure C.1.: Comparison of the weighting function shapes. The top image shows
bell–shaped functions, and the bottom image shows other shapes.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Poly6

Wendland’s C2

Wendland’s C4

Liu’s

Lucy’s

Figure C.2.: Bell–shaped weighting functions horizontally scaled by the ratio of their area
and the area of Wendland’s C2 weighting function.
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D. Krylov Subspace Methods

Krylov subspace (KSP) methods are often used when solving a linear system:

Ax = b,

where A ∈ Rn×n is the large, sparse and non-symmetric n × n matrix, and b ∈ Rn is
the given right-hand-side vector, and x ∈ Rn is the vector of unknowns. Let x0 be some
initial guess to the solution vector, and r0 = b − Ax0 is the initial residual vector. A
KSP method incrementally finds approximate solutions within k-th Krylov subspace:

Kk (A, v) = span
{
v, Av, A2v, . . . , Ak−1v

}
.

To construct the basis of the subspace Kk (A, v), most commonly used procedures are
the (restarted) Arnoldi iteration, and the bi-Lanczos iteration (Lanczos or tridiagonal
biorthogonalization) [157]. The most used Arnoldi-based method Generalised Minimal
Residual (GMRES) [182] stores basis vectors, and its computational cost is increases with
the iteration count. Large memory footprint remains even with the restarting of the solver
after some iterations count. Bi-Lanczos iterations need two matrix-vector products, retain
three-term recurrence, have fixed performance, but can suffer from breakdown. Rule of
the thumb is: if the Arnoldi-based method converges before a restart is needed, it may
be the most effective method; if the bi-Lanczos method converges before any breakdown,
it is typically more robust than the restarted Arnoldi-based methods [222].

Bi-conjugate gradient stabilised (BiCGStab) method [181] is the most used bi-Lanczos
iteration method, since it doesn’t require transposing of the coefficient matrix (AT),
and is very robust even without the preconditioning. It was proposed in an attempt
to curb the excesses of Conjugate Gradient Squared (CGS) method while retaining the
advantages of more rapid convergence and the non-use of transposes. However, it does
not guarantee monotonically decreasing residuals. The conventional implementation of
the method is shown in algorithm D.1. The bottleneck of the BiCGStab algorithm are
two sparse-matrix/vector multiplications per iteration, vi = AK−1pi and t = AK−1s.

In order to improve the performance and convergence of KSP methods, a preconditioner
should be used. A preconditioner is a matrix of transformation, M, whose inverse approx-
imates the inverse of A, i.e. M−1 ≈ A−1. Generally, the preconditioned system is easier
to solve than the original system. Preconditioning is the most important element when
developing efficient iterative solvers for challenging large-scale problems. It has intens-
ively been researched, although an optimal general-purpose preconditioner is unlikely to
exist [223]. A preconditioner matrix transforms the initial system to a similar system that
should be easier to solve iteratively by improving the spectral properties of the coefficient
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Algorithm D.1 Original right–preconditioned BiCGStab.
Require: iMAX // iterations limit
Require: rMAX // relative residual limit
Require: x0 // e.g. solution from the previous step
1: r0 = b−Ax0

2: p0 = r0 // arbitrary vector such that p0 · r0 6= 0
3: ρ0 = α = ω = 1
4: for i = 1, 2, . . . , iMAX do
5: ρi = r0 · ri−1

6: β = (ρi/ρi−1) (α/ω)
7: pi = ri−1 + β (pi−1 − ωsi−1)
8: p̂ = M−1pi // precondition
9: s = Ap̂ // matrix-vector product

10: α = ρi/ (r0 · s)
11: q = ri−1 − αsi
12: q̂ = M−1q // precondition
13: y = Aq̂ // matrix-vector product
14: ω = (q · y) / (y · y)
15: xi = xi−1 + αp̂i + ωq̂
16: ri = qi − ωy
17: if ‖ri‖ / ‖b‖ < rMAX then

return // xi is accurate enough
18: end if
19: end for

matrix A. The right–preconditioner matrix transforms the linear system into:

AM−1y = b, x = M−1y,

which is often used in methods where the residual is being minimised. The transformed
equation has the same solution as the initial one. A preconditioner should be easy and
fast to construct and benefit to the convergence of the method. In other words, the
solving time with the additional cost of constructing and using the preconditioner in
an iterative method should be smaller then the solving time for the target tolerance.
Anzt et al. [185] investigated the effect of Jacobi and ILU preconditioning of GPU-
accelerated Krylov solvers (BiCGStab, CGS, QMR, and IDR(s)). They concluded that
solvers typically benefit from using the Jacobi preconditioner, i.e. embarrassingly parallel
diagonal scaling. Incomplete factorization preconditioning improves the robustness of the
solvers, but it is difficult to parallelize, which can become a bottleneck thus increasing
the overall solver run-time. For these reasons, the Jacobi preconditioning was chosen to
improve the solver convergence and efficiency. The optimised version of the BiCGStab,
which merges operations and does not store a matrix, is shown in algorithm D.2. The same
optimisation techniques in the shown algorithm were also applied within implementations
of CG, TFQMR and QMRCGStab solvers.

205



Algorithm D.2 Optimised matrix-free implementation of the BiCGStab method with a
diagonal preconditioner.
1: m = M−1 (A) // parallel matrix-free preconditioner
2: for i = 1, 2, . . . , iMAX do
3: s = Ap̂ // parallel matrix-free SPMV product
4: α = ρi/ (r0 · s)
5: for j = 1, 2, . . . , n in parallel do
6: qj = rj − αsj
7: q̂j = mjqj // precondition
8: end for
9: y = Aq̂ // parallel matrix-free SPMV product

10: ω = (q · y) / (y · y)
11: for j = 1, 2, . . . , n in parallel do
12: xj += αp̂j + ωq̂j
13: rj = qj − ωyj
14: end for
15: if ‖r‖‖b‖ < rMAX then

return // xi is accurate enough
16: end if
17: ρi = r0 · r
18: β = (ρi/ρi−1) (α/ω)
19: for j = 1, 2, . . . , n in parallel do
20: pj = rj + β (pj − ωsj)
21: p̂j = mjpj // precondition
22: end for
23: end for

E. Nearest-Neighbour Search

Compact–support meshless methods usually rely on the distance criteria within the com-
pact domain. In other words, since the point cloud does not incorporate a topology map,
a point picks its neighbours within the range of specified compact domain size. A compact
domain is most often a sphere, and rarely an ellipse or a rectangular cuboid. Non-sphere
domains have the advantage to enclose neighbours in a chosen relevant direction from
the considered point. This is not as important, because even when choosing neighbours
within a spherical domain, neighbours can be picked and even weighted based on criteria
other than the distance from the considered point.

In any case, points in a point cloud need to find nearest neighbours as fast as possible to
eliminate the bottleneck of the neighbour traversal, which is a operation present in each
step of the solving procedure (and sometimes executed multiple times). To tackle this
computational efficiency issue, most researchers of meshless methods employ background
grids, which help the nearest-neighbours search. Background grids are usually uniform
Cartesian grids, which cells are squares in 2D or cubes in 3D. Non-uniform grids may
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contain cells with sizes different in each direction.

Background Grid Insert

In this thesis, atomic functions are used to build up a uniform grid in the form of a set of
linked lists [180]. The grid is represented in computer memory by two arrays:

• head array (one entry per cell), which stores the index of the first point in list of
cell points,

• next array (one entry per point), which stores the index of the next point in the
list of cell points.

With this configuration, the basic steps to achieve a concurrent insert of a point identified
with point_ID, in a cell identified with cell_ID, are as follows:

cell_ID = cell_from_point_coordinate(point_ID)

next[point_ID] = atomic_exchange(&head[cell_ID], point_ID)

where atomic_exchange is the “atomic exchange” function implemented on all modern
parallel architectures, which enables concurrent write (of point_ID) on a memory location
(&head[cell_ID]) after retrieving the current value at the location (the result of the
function). The retrieved value in this case is used to build linked list, i.e. the former
first item in the list becomes the second one, and the new item becomes the first item
on insert. The beauty of the method is the simplicity and the performance of elements
insertion in the grid [180], without the need of sorting algorithms, e.g. as in [224, 225].
The drawback of the method is that the identifiers of the elements in the same linked
list are not sequential in memory. This can be assessed by sorting the data in optimal
sequential manner from time to time, e.g. after solving 50 time-steps.

Neighbour Search

After the points are inserted in the background grid, it can be used to find the nearest
neighbours of a point under consideration.

cells_list = cells_around_point_coordinate(point_ID, compact_radius)
for_each (cell_ID in cells_list):

neighbour_ID = head[cell_ID]
while (neighbour_ID >= 0):

if (distance(point_ID, neighbour_ID) < compact_radius):
# calculate stuff between the point and its neighbour

neighbour_ID = next[point_ID]
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F. Fluid Rendering Shaders

The OpenGL Shading Language (GLSL) is the principal shading language for OpenGL.
An OpenGL shader is a user-defined program designed to run on some stage of a graphics
processor. Its purpose is to execute one of the programmable stages of the rendering
pipeline. The stages are:

• The vertex shader is the programmable shader stage in the rendering pipeline that
handles the processing of individual vertices. Each meshless point is a vertex in the
shader.

• A geometry shader is the programmable shader stage that governs the processing of
primitives. In this case the geometry shader makes a quadrilateral primitive, which
centre is the vertex location. The quadrilateral is always facing the camera.

• A fragment shader is the programmable shader stage that will process a fragment
generated by the rasterisation into a set of colours and a single depth value. For
each sample of the pixels covered by the quadrilateral, a "fragment" is generated.
Fragment shaders create the illusion of a sphere on the flat quadrilateral.

The GLSL code snippets of the vertex, geometry and fragment shaders used to visualise
meshless points as spheres are listed in the following text, respectively. The code can
process millions of meshless points in real-time on modern GPUs, outputting smooth
visuals with more than 30 frames per second (FPS).

#version 330 core
#extension GL_EXT_gpu_shader4 : enable
// input:
layout(std140) uniform colormap { vec4 colormap_values[16]; }; // colormap
LUT
uniform vec2 range; // {min, 1/(max-min)}
uniform vec4 clip_plane_near;
uniform vec4 clip_plane_far;
layout(location = 0) in vec4 pos;
// output:
out vec3 sphere_color;
out float gl_ClipDistance[2];
// kernel:
void main() {

int idx = clamp(int((pos.w - range.x) * range.y * 16), 0, 15);
sphere_color = colormap_values[idx].xyz;
vec4 pos4 = vec4(pos.xyz, 1.0);
gl_Position = pos4;
gl_ClipDistance[0] = dot(clip_plane_near, pos4);
gl_ClipDistance[1] = dot(clip_plane_far, pos4);

}
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#version 330 core
#extension GL_EXT_geometry_shader4 : enable
// input:
layout(points ) in;
uniform mat4 mv_matrix;
uniform mat4 p_matrix;
uniform float sphere_radius;
in vec3 sphere_color[];
// output:
layout(triangle_strip , max_vertices =4) out;
flat out vec3 color;
smooth out vec2 texcoord;
flat out vec4 eye_position;
// kernel:
void main() {

eye_position = mv_matrix * gl_in[0].gl_Position;
color = sphere_color[0];
gl_ClipDistance[0] = gl_in[0].gl_ClipDistance[0];
gl_ClipDistance[1] = gl_in[0].gl_ClipDistance[1];

// generate four vertices of the quad:
texcoord = vec2(-1.0, -1.0);

gl_Position = eye_position;
gl_Position.xy += vec2(-sphere_radius, -sphere_radius);
gl_Position = p_matrix * gl_Position;

EmitVertex ();
texcoord = vec2(-1.0, 1.0);

gl_Position = eye_position;
gl_Position.xy += vec2(-sphere_radius, sphere_radius);
gl_Position = p_matrix * gl_Position;

EmitVertex ();
texcoord = vec2(1.0, -1.0);

gl_Position = eye_position;
gl_Position.xy += vec2(sphere_radius, -sphere_radius);
gl_Position = p_matrix * gl_Position;

EmitVertex ();
texcoord = vec2(1.0, 1.0);

gl_Position = eye_position;
gl_Position.xy += vec2(sphere_radius, sphere_radius);
gl_Position = p_matrix * gl_Position;

EmitVertex ();
EndPrimitive ();
}
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#version 330 core
// input:
uniform mat4 p_matrix;
uniform float sphere_radius;
uniform vec3 light_dir;
uniform float ambient_shade;
flat in vec3 color;
smooth in vec2 texcoord;
flat in vec4 eye_position;
// output:
out vec4 out_color;
// kernel:
void main() {

float x = texcoord.x;
float y = texcoord.y;
float z_sq = 1.0 - x*x - y*y;
if (z_sq <= 0.0) discard;
float z = sqrt(z_sq);
vec4 pos = eye_position;
pos.z += sphere_radius * z;
pos = p_matrix * pos;
gl_FragDepth = 0.5 * (pos.z / pos.w) + 0.5;
vec3 normal = vec3(x, y, z);
float diffuse = clamp(dot(normal, mix(light_dir, normal, ambient_shade)),

0.1, 1.0);
out_color = vec4(diffuse * color, 1.0);

}
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G. Status of Hardware

The many-core revolution in computational hardware can be characterized by increas-
ing thread counts, decreasing memory per thread, and architecture specific performance
constraints for memory access patterns. GPUs have recently become extremely power-
ful HPC devices used to perform general purpose calculations. Generally, accelerators
and co-processors are great for providing HPC in terms of floating point operations per
second (FLOP/sec). When talking about parallelism, one frequently talks about the
number of cores, e.g. 22 CPU cores in a highest-end CPU sound like a lot, but are
few compared to the 3584 processing units in a GPU. The comparison of theoretical
peak performances for single precision arithmetic, plotted in figure G.3, shows a five–
to fifteen–fold margin when comparing high-end CPUs with high-end GPUs over time.
It should be noted that the difference in performance peaks between single and double
precision arithmetic of current GPUs can be up to a factor of 32, whereas for CPUs
is up to a factor of 2. Comparison of theoretical peak memory bandwidth is graphed
in figure G.4. In contrast to raw performance, the advantage of GPUs and Xeon Phi
over a single CPU socket in terms of peak memory performance has increased from
about three-fold in 2007 to ten-fold in 2016. The graphs in figures G.3 and G.4 are
obtained from Karl’s Rupp survey on hardware characteristics progress over time, given
at https://github.com/karlrupp/cpu-gpu-mic-comparison. In conclusion, massively
parallel architectures (AMD and NVIDIA GPUs, Intel Xeon Phis) currently provide sim-
ilar peak performance, so a preference of one architecture over another should be based on
development effort, maintainability, and portability aspects rather than minor differences
in peak performance.
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Figure G.3.: Comparison of modern hardware theoretical peak performance (top image)
and theoretical peak floating-point operations per clock cycle (right image).

Figure G.4.: Comparison of modern hardware theoretical peak memory bandwidth.
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H. Flap Wavemaking Theory

By finding the ratio between the wave height H and the wavemaker stroke s, both the
direct and the inverse problems are solved at the same time [226]. The direct problem
means that by prescribing the wavemaker stroke, the wave height far from the wavemaker
follows as an outcome. The inverse problem means that if a certain wave height is desired
far away from the wavemaker, the stroke needed as an input to the wavemaker can be
calculated. By using the linear-wave theory, an explicit relation between the wave height
of generated wave was in the far field and the stroke of the wavemaker can be found.
This relation depends explicitly on the water depth, the hinge position, and the wave
frequency, shown in figure H.5. The linearized equation model for the boundary value
problem is given as:

∇2φ = 0,−h ≤ z ≤ 0,

∂φ

∂z
= 0, at z = −h,

∂η

∂t

∂

∂z
, at z = 0,

η +
1

g

∂φ

∂t
= 0, at z = 0,

∂φ

∂x

∂s (z, t)

∂t
, at z = 0.

The lateral boundary motion s (z, t) for a single-flap wavemaker and sinusoidal flap is
defined as:

s (z, t) =
1

2
S (z) sin (ωt) ,

which describes the wavemaker motion with maximum stroke S (z) at a specific height,
and wavemaker frequency ω. According to the solution of the problem presented by
Kusumawinahyu et al. [226], the ratio of the wave height and the stroke at initial free
surface is given by the following expression:

H

S (0)
= 4

(
sinh (kh)

kd

)
cosh [k (h− d)] + kd sinh (kh)− cosh (kh)

2kh+ sinh (2kh)
,

and when the hinge of the flap is located at the bottom of the wave tank, i.e. d = h,
cosh 0 = 1, the ratio becomes:

H

S (0)
= 4

(
sinh (kh)

kd

)
1 + kd sinh (kh)− cosh (kh)

2kh+ sinh (2kh)
.
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When the H/S ratio is obtained, maximum flap deflection angle is obtained:

αMAX = arctan

(
S (0)

d

)
,

and the rotational motion of the flap is simply simulated with a sinusoidal motion:

α (t) = αMAX sin (ωt) .

Usually, Galvin’s simple theory gives a good approximation to the wave height to stroke
ratio for small values of kh, but the presented solution should be used for larger values of
kh [226]. The authors also apply the linear theory to a wave-maker made of two connected
flaps, which is useful in generating waves in a wider range of frequencies.

x

h

H
z

S(0)

d

Figure H.5.: Sketch of a two-dimensional wave tank with a single-flap wavemaker.
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I. Momentum-Source Wavemaking

Waves can be generated by adding source to the momentum equation within some virtual
volume. The components of the momentum source vector s = {sx, sy, sz} for a linear
monochromatic wave can be defined as explained in [179]:

sx = −2 β g x exp
{
−β x2

} D

ω
sin (kyy − ωt) ,

sy = g exp
{
−β x2

} D

ω
cos (kyy − ωt) ,

sz = 0,

where β = 20/w2, w is the source function width Classically, ω is the wave frequency, and
ky = k sin θ, where k is the wave number and θ is the angle between the wave direction
and x axis. The source function amplitude, D, is obtained from the following expression:

D =
H (ω2 − λ1 g k

4 d3) cos θ

ω I k
[
1− λ (k d)2] ,

where H is the wave height, I =
√
π/β exp {−k2/4β}, and d is the initial water depth.

For the extended Boussinesq equations of Nwogu [227], the following holds:

λ =
za
d

( za
2d

+ 1
)

= −0.38955,

λ1 = λ+ 1/3 = −0.0562,

where za = −0.53d is chosen for a good agreement between the linear and the exact
dispersion relation for a wide range of water depths. Using a linear combination of mono-
chromatic waves, the momentum source function for random waves can be written as:

sx = −2 β g x exp
{
−β x2

}∑
j

Dj

ωj
sin (ωjt+ εj) ,

sy = g exp
{
−β x2

}∑
j

Dj

ωj
cos (ωjt+ εj) ,

where εj is the random phase, and j is the frequency component of a random wave
spectrum.
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J. Simulation Input

General parameters of the input file are as follows:

name Short name of the simulation, dictating how the exported files will be named. The
default value is the name of the input filename.

description Optional textual description of the simulation.

dimensions Number of dimensions, 2 or 3. Must be specified.

precision Machine precision of numbers, “single” for 32-bit precision and “double” for
64-bit precision. The default value is “double”.

device Device on which to perform the computation, “cpu” or “gpu”. If not set, the solver
automatically chooses the best device.

gravity Constant external acceleration. The default value is [0, –9.81] for 2D and [0, 0,
–9.81] for 3D problems.

fluid Fluid parameters:

density Density of the fluid. Must be specified.

viscosity Kinematic viscosity of the fluid. Must be specified.

flood_points Point from where to start filling the fluid until reaching the bound-
aries, specified as [ [x1, y1, z1], [x2, y2, z2], ... ]

pressure_solver Pressure solver parameters:

solver Type of the iterative solver: “bicgstab”, “qmrcgstab”, “qmr”, “gmres”, “cg”.
The default value is “qmrcgstab”.

max_iterations Number of maximum allowed iterations of the solver. The default
value is 700.

max_error Maximum relative residual. The default value is 1e–6.

integration The integration of the velocity and position.

velocity The class of velocity integration technique: 1, 2 or 3, which corresponds
to BDF1, BDF2 and BDFA, respectively. The default value is 2.

position The order of position integration: 1 or 2. The default value is 2.

domain Domain parameters:

min The minimum location of the domain bounding box. Optionally specified for
better performance.

max The maximum location of the domain bounding box. Optionally specified for
better performance.
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resolution Discretisation parameters:

spacing Spacing between adjacent points. Must be specified.

compact_radius Radius of the compact sphere around points, where neighbours
are found. The default value is 2.4.

reordering PBD parameters:

iterations Number of iterations for the PBD. The default value is 7.

radius Radius of the compact sphere around points, where neighbours are found for
the PBD. The default value is 1.6.

compression Allowed compression factor between neighbours. The default value
is 1.0. Values lower than 1.0 do not allow compression (and even force some
amount of expansion), and values higher than 1.0 allow some amount of com-
pression.

patches Information on patches forming bodies:

“patch_name” User-chosen name of the patch:

type Type of the patch. Can be “free_surface” or “solid”.

geometry Geometry representation: “polyline”, “triangle”, “quad”, “box” or
“mesh”.

file If the type is “mesh”, relative file path should be specified.

points If the type is “polyline” as 2D primitive, or “triangle” or “quad” as 3D
primitive, the array of points forming the primitive should be specified.

velocity Imposing motion by defining list of velocities in time as: [ [tt, [u1, v1,
w1]], ... ]

oscillation Imposing oscillating motion:

period Period of the oscillation.

direction Direction vector of the oscillation, magnitude defines the amp-
litude.

axis Axis vector around which the oscillating rotation happens, magnitude
defines the amplitude.

damping The damping factor.

probes An array of point probes that are fixed to the patch, with their loca-
tions specified as: [ [x1, y1, z1], [x2, y2, z2], ... ]

tank Specify external open boundaries:

min Coordinates of the minimum point of the tank box, [xMIN , yMIN , zMIN ].
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min Coordinates of the maximum point of the tank box, [xMAX , yMAX , zMAX ].

wave_probes An array of points from where to measure the height of the free surface,
specified as [ [x1, y1, z1], [x2, y2, z2], ... ]

probes An array of non-moveable probes, with their locations specified as: [ [x1, y1, z1],
[x2, y2, z2], ... ]

An example of the input file used to simulate the experiment described in section 5.5.3:

"description": "Sloshing in a swaying LNG tank",
"dimensions": 2,
"precision": "single",
"device": "gpu",
"gravity": [0, -9.81],
"pressure_solver": {

"solver": "qmrcgstab",
"max_iterations": 200,
"max_error": 1e-6

},
"integration": {

"velocity": 2,
"position": 2

},
"domain": {

"min": [-2.2, -0.1],
"max": [2.2, 3.0]

},
"resolution": {

"spacing": 0.01,
"compact_radius": 2.8

},
"fluid": {

"density": 999,
"viscosity": 1e-6,
"flood_point": [0.0, 0.1]

},
"patches": {

"water": {
"type": "free_surface",
"geometry": "polyline",
"points": [ [-10, 0.438], [10, 0.438] ]

},
"tank": { "type": "solid",

"geometry": "polyline",
"points": [ [1.51, 0.0], [1.948, 0.438], [1.948, 1.859], [1.11, 2.697], [-1.11,

2.697], [-1.948, 1.859], [-1.948, 0.438], [-1.51, 0.0], [1.51, 0.0] ],
"oscillation": { "period": 3.25, "direction": [-0.1, 0] },
"probes": [ [1.656, 0.152] ]

}
}
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K. Post-processing with ParaView

The current implementation of the proposed methodology exports simulation results to
VTK file format. Exported results may be imported into ParaView post-processing soft-
ware. Formally, each point is a cell with one vertex, so the cells do not have topological
information. To work with mesh–based post-processing features, the vertex cloud can be
triangulated using the Delaunay triangulation filter. After the mesh is obtained, Para-
View can use all relevant analysis options, such as section cutting, contouring, drawing
streamlines, etc. For example, figure K.6 shows a screenshot captured while running
the cavity–flow problem within the GUI that was rendered in a real–time manner. Fig-
ure K.7 shows a screenshot of a ParaView instance that loaded the same time instant
of the cavity–flow problem, performed a Delaunay triangulation, and plotted a couple of
cuts through the fluid domain.

Figure K.6.: A screenshot of the real-time GUI simulating the lid-driven cavity test case.
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Figure K.7.: A screenshot of the ParaView setup for analysing the lid-driven cavity test
case.
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