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Summary

The focus of this thesis is the numerical modelling of liquid-wall interaction, also

referred to as wetting. Wetting is an important part of many industrial applications, and,

for aerospace industry, it is relevant as it relates to hazardous ice accretions. Numerical

study of the phenomenon could lead to safety improvements and cost reductions, which

was the motivation behind the thesis.

This thesis examines the feasibility of wall wetting simulations by means of Com-

putational Fluid Dynamics (CFD), using two model formulations: a 3-D two-fluid free

surface Volume of Fluid (VoF) flow model and a 2-D thin liquid film model. Both are

implemented within the CFD toolbox foam-extend.

Implementation of wetting was performed within the VoF interFoam solver and

within the thin liquid film liquidFilmFoam solver. In interFoam, wetting is realized

using a boundary condition, while in liquidFilmFoam, an additional force term was

added into the momentum equation, resulting in a new mathematical formulation.

The VoF boundary condition was tested using an experiment related to droplet

deposition on an inclined plate. Thin liquid film model was tested using experimental

and numerical data related to rivulet flows. Methods were compared using a case of

droplet exposed to shear flow on an inclined plate.

Keywords: wetting, contact angle, Volume of Fluid, thin liquid film model, CFD,

foam-extend
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Sažetak

Ovaj rad se bavi numeričkim modeliranjem fenomena kvašenja, odnosno interak-

cije kapljevine i nepropusne stijenke. Kvašenje je esencijalan dio mnogih industrijskih

procesa, a radi svoje poveznice sa stvaranjem leda, relevantno je za zrakoplovstvo. U

zrakoplovnoj industriji, numerička simulacija fenomena bi mogla dovesti do značajnih

pobolǰsanja na polju sigurnosti kao i do smanjenja troškova, što je bila motivacija za

pisanje ovog rada.

Ovaj rad istražuje mogućnosti simulacije kvašenja korǐstenjem proračunskih metoda

računalne dinamike fluida (RDF). U radu su razmatrana dva pristupa: 3-D dvofazni

model slobodne površine i 2-D formulacija tankog tekućeg sloja. Obje formulacije su

implementirane unutar foam-extend softverskog paketa.

Kvašenje je implementirano u 3-D rješavač interFoam i u 2-D rješavač liquidFilmFoam.

U interFoam-u, kvašenje je realizirano primjenom rubnog uvjeta, dok je u liquidFilmFoam-

u isto ostvareno dodavanjem sile u jednadžbu očuvanja količine gibanja, dovodeći do nove

matematičke formulacije modela.

Rubni uvjet modela slobodne površine je testiran usporedbom s eksperimentalnim

podacima vezanim uz gibanje kapljice niz nagnutu ploču. Model tankog tekućeg sloja

je testiran usporedbom s eksperimentalnim i numeričkim podacima o odvajanju struja

tankog filma kapljevine. Metode su medusobno usporedene simulacijom gibanja kapljice

pogonjene strujom zraka niz nagnutu ravninu.

Ključne riječi: kvašenje, kontaktni kut, model slobodne površine, model tankog

tekućeg sloja, RDF, foam-extend
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Prošireni sažetak

Kvašenje, definirano kao sposobnost kapljevine da ostvari kontakt s krutom pod-

logom, je integralan dio mnogih industrijskih procesa, a za zrakoplovstvo predstavlja

relevantan fenomen radi svoje poveznice s ledenjem aerodinamičkih površina. Stvaranje

leda na krilima zrakoplova je direktna posljedica kvašenja: kondenzirane vodene kapljice

iz oblaka, promjera većih od 50 µm, kada dospiju na površinu krila imaju tendenciju

širiti se prije nego što predu u kruto agregatno stanje. Aerodinamička hrapavost koja

nastaje akumulacijom leda mijenja sliku strujanja u graničnom sloju, te posljedično do-

vodi do nepoželjnih promjena u raspodjeli tlaka, smanjenja uzgona, povećanja otpora

te smanjenja upravljivosti zrakoplova. S obzirom da su postojeći sustavi za zaštitu

od zaledivanja energetski neefikasni, numerička analiza fenomena bi mogla dovesti do

razvoja adekvatnijih rješenja.

Dinamičko ponašanje kapljevine na podlozi je fenomen kompleksnog fizikalnog opisa,

gdje kontaktni kut predstavlja odlučujući parametar:

• Povlačenje kapljevine na podlozi je prisutno za kontaktne kutove manje od povlačećeg

kontaktnog kuta, θr;

• Širenje kapljevine na podlozi je prisutno pri kontaktnim kutovima većim od na-

predujućeg kontaktnog kuta, θa;

• Kapljevina ostaje nepomična na podlozi za kontaktne kutove u području histereze,

odnosno za kontaktne kutove izmedu prethodno pomenutih graničnih vrijednosti,

θr < θ < θa.

Ovaj rad se bavi numeričkim modeliranjem dinamičkog ponašanja kapljevine korǐstenjem

dvaju metoda računalne dinamike fluida. Razmatrana je 3-D formulacija modela slo-

bodne površine i 2-D formulacija modela tankog tekućeg sloja.

xvii
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0.1. Kvašenje u formulaciji modela slobodne površine

Kvašenje u formulaciji modela slobodne površine je ostvareno kroz rubni uvjet koji

koristi Kistlerov model dinamičkog kontaktnog kuta:

θd = fH(Ca + f−1H (θe)) , (0.1)

gdje je θd dinamički kontaktni kut, Ca kapilarni broj, θe ravnotežni kontaktni kut, a fH

Hoffmanova funkcija, definirana kao:

fH = arccos

{
1− 2 tanh

[
5.16

[ x

1 + 1.13x0.99

]0.706]}
. (0.2)

Kapilarni broj iz jednadžbe (0.1) predstavlja bezdimenzijski omjer viskoznih sila i površinske

napetosti:

Ca =
µvcl
σ

. (0.3)

U jednadžbi (0.3), µ je dinamička viskoznost, vcl je brzina kontaktne linije a σ je

površinska napetnost. Brzina kontaktne linije vcl se računa prema izrazu:

vcl =
v · nI√

1− nb · nI
, (0.4)

gdje je v vektor brzine fluida, nI jedinična normala na slobodnu površinu izmedu plina

i kapljevine i nb jedinična normala na podlogu.

U slučaju napredovanja kapljevine na podlozi, izraz (0.5) je istinit, te se jednadžba

(0.1) računa s θe = θa. U slučaju istinitog izraza (0.6), kapljevina se povlači s podloge,

a u jednadžbu (0.1) ulazi θe = θr.

v · nI > 0 (0.5)

v · nI < 0 (0.6)

0.2. Kvašenje u formulaciji modela tankog tekućeg

sloja

U formulaciji modela tankog tekućeg sloja, kvašenje je ostvareno uvodenjem sile

kontaktnog kuta fθ u jednadžbu očuvanja količine gibanja. Ova sila je definirana kao:

fθ = βσ(1− cos θ)ncl , (0.7)
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gdje je β faktor korekcije, σ površinska napetost, θ kontaktni kut, a ncl jedinična normala

na kontaktnu liniju.

Jedinična normala na kontaktnu liniju izražena je putem površinskog gradijenta deb-

ljine filma h:

ncl =
∇sh

|∇sh|
. (0.8)

Dinamički kontaktni kut je proračunat uporabom Kistlerovog modela (0.1), s kapilar-

nim brojem Ca definiranim jednadžbom (0.3). Brzina kontaktne linije vcl, potrebna za

računanje kapilarnog broja, koristi izraz:

vcl = ncl · v̄ , (0.9)

gdje je v̄ osrednjena vrijednost brzine tankog sloja kapljevine. Ovisno o predznaku

brzine vcl, kapljevina napreduje ili se povlači s podloge. Za vcl < 0, kapljevina se povlači

s podloge i jednadžba (0.1) se računa s θe = θr. Za vcl > 0, kapljevina kvasi podlogu te

u jednadžbu (0.1) ulazi θe = θa.

S ciljem što fizikalnijeg numeričkog opisa, sila kontaktnog kuta fθ se računa samo za

one kontrolne površine u kojima kontaktni kut postoji. Identifikacija kontrolnih površina

se provodi pomoću granične visine hp. Sve kontrolne površine kvašene visinom filma hp

se smatraju potpuno suhima. Kontrolne površine s visinom filma h > hp, a koje imaju

barem jednu potpuno suhu susjednu kontrolnu površinu su identificirane kao parcijalno

mokre. Sukladna matematička formulacija jednadžbe očuvanja količine gibanja glasi:

d

dt

∫
Sw

hv̄dS +

∮
∂Sw

m · (hvv)dL =
1

ρ

∫
Sfs

τfsdS −
1

ρ

∫
Sw

τwdS

+
1

ρ

∮
Lcl

fθdL+

∫
Sw

hftdS −
1

ρ

∫
Sw

h∇spdS .

(0.10)

U jednadžbi (0.10), h je debljina filma, v̄ je osrednjena brzina filma, m je jedinična

bi-normala na podlogu, ρ je gustoća kapljevine, τfs je tangencijalno naprezanje na slo-

bodnoj površini, τw je viskozno naprezanje na podlozi, ft je tangencijalna komponenta

volumenske sile i p je tlak.

Integral po duljini kontaktne linije je numerički aproksimiran izrazom:

1

ρ

∮
Lcl

fθdL ≈
1

ρ

(
fθ
LPN

)n
P

SP , (0.11)
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gdje je LPN geodetska duljina izmedu dvaju susjednih konačnih površina. Diskretizirana

jednadžba očuvanja količine gibanja glasi:

avP v̄nP +
∑
N

avN v̄nN = rvP −
1

ρ
{[∇s(hp)]

n
P − pnP (∇sh)nP} , (0.12)

gdje se izvorski član rvP za parcijalno mokre kontrolne površine računa s članom sile

kontaktnog kuta (0.11), dok se za sve ostale kontrolne površine u domeni računa bez

navedenog člana.

0.3. Rezultati

Rubni uvjet napisan za 3-D model slobodne površine je implementiran u rješavač

interFoam. U svrhu testiranja rubnog uvjeta, izvršena je numerička simulacija gibanja

kapljice niz hidrofilnu i hidrofobnu nagnutu ploču. Kvalitativna usporedba s eksperi-

mentalnim podacima za slučaj hidrofilne podloge je prikazana Slikom 0.1, dok je slučaj

hidrofobne podloge prikazan Slikom 0.2. Simulacija je pokazala odlično poklapanje s

eksperimentalnim rezultatima za napredujuće gibanje kapljice. Nesukladnosti postoje

za povlačenje kapljevine, pogotovo u slučaju hidrofilne podloge.

Slika 0.1: Promjena oblika kapljice na hidrofilnoj podlozi
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Slika 0.2: Promjena oblika kapljice na hidrofobnoj podlozi

Slika 0.3: Odvajanje struja filma kapljine
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Formulacija modela tankog tekućeg sloja, prilagodena za uvjete djelimičnog kvašenja

podloge, je implementirana u rješavač liquidFilmFoam. U svrhu testiranja modela,

provedena je simulacija odvajanja struja tankog tekućeg sloja na vertikalno postavljenoj

ploči. Rezultati simulacije su prikazani Slikom 0.3. Odvajanje struja kapljevine je

ostvareno simulacijom, medutim uočeni su problemi s divergencijom rješenja. Budući

da ove nestabilnosti nisu rezultat promjena uvedenih u kod u svrhu pisanja ovog rada,

razlozi za oscilacije rješenja ostaju pitanje za buduća istraživanja.

Kvalitativna usporedba rješenja dobivenih razmatranim metodama za slučaj gibanja

kapljice pogonjene strujom zraka niz nagnutu ploču prikazana je Slikom 0.4. S obzirom

na pomenute probleme liquidFilmFoam rješavača, nesukladnosti medu rješenjima nisu

iznenadujuće. Unatoč nefizikalnim oscilacijama u trenutnoj verziji rješavača, 2-D model

tankog tekućeg sloja ostaje atraktivna potencijalna alternativa 3-D modelu slobodne

površine; ekonomska isplatljivost ove metode opravdava mogućnost za daljnji razvoj.

Slika 0.4: Usporedba promjene oblika kapljice: model slobodne površine (iz-

nad), model tankog tekućeg sloja (ispod)



Chapter 1.

Introduction

Wetting, defined as the ability of a liquid to get in contact with a solid substrate, is a

complex process to describe, both from scientific and engineering viewpoint. There are

several outcomes for a droplet impacting a substrate. Between the initial contact and

the equilibrium state, the droplet may spread, slide, roll-off, retract or remain immobile

on the surface, depending on physical and chemical properties of the liquid-substrate

combination and external influences, such as exposure to aerodynamic forces. Dynamic

behaviour of liquid is governed by adhesion forces which arise at the contact line -

the place which separates dry and wet substrate area. The pivotal property of these

adhesion forces is the surface tension, defined as excess free energy per unit area linked

to the formation of interface between liquid-gas phases. Influence of surface tension

is observable through existence of contact angles. However, mechanisms of surface

tension are resulting from molecular interactions and depend highly on the microscopic

morphology of the substrate. Having a problem associated with length scales well beyond

observation is the main cause of difficulty when studying wetting flows.

1.1. Droplets in Technical Processes

In spite of complexity of its physics, droplet wetting is essential to a great number of

industrial applications. For example, [1] lists these technical processes where liquid-solid

interaction is important:

• insecticides on leaves,

1
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• oils on metallic surfaces,

• paints and inks,

• soldering and brazing,

• blending of polymers,

• reinforcement of polymers with fibre,

• biocompatibility of polymers,

• powder coating,

• cleaning and dyeing of fabrics,

• detergents,

• waterproofing fabrics,

• preventing deterioration of blacktop roads.

Significance of droplet flows is further illustrated by the amount of scientific interest. Ac-

cording to [2], topic of ”droplet” is a subject of more than 6700 papers published between

1964 and 2014, in the areas of engineering, chemistry, physics, material science, ener-

getics, environmental science, agricultural sciences, chemical engineering, biochemistry,

biology, mathematics, medicine, pharmacology and others. Considering the omnipres-

ence of water on Earth, the variety of these areas is far from surprising. Consequently,

droplet flows are a frequent subject for CFD simulations. Some examples are CFD

modelling of wind-driven rain [3, 4] and liquid film flow on inclined plates [5].

1.2. Wetting in Aeronautical Engineering

1.2.1. Ice Accretion

Ice accumulation on the lifting surfaces hazardously affects flight performances and

reduces overall handling capabilities. Since ice poses a serious threat to flight safety,

mechanisms of ice accretion are a subject of numerous research. For example in [6],
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effects of ice accretion on wings, tail surfaces, engine inlets and rotary wings were ex-

perimentally investigated. Impact of supercooled large droplet ice accretions on aircraft

controls was studied in [7]. The most severe consequences of icing include decreased lift,

increased drag, decreased stall angle, changes in the pressure distribution, vibrations,

early boundary layer transitions and reduced controllability.

In-flight icing occurs usually due to supercooled droplets impacting and freezing on

a solid structure. Droplets of different diameters, impact velocities and temperatures

tend to form different types of ice. These types are described in [8] as:

• Rime ice – rough, milky, opaque ice formed by the instantaneous freezing of small,

supercooled droplets as they strike a solid surface. Rime ice normally occurs at

low temperatures, below −15◦C, low liquid water content and low airspeed;

• Glaze ice – clear and smooth ice resulting from supercooled droplets striking a

surface but not freezing rapidly on contact. It is denser, harder, and sometimes

more transparent than rime ice. Glaze ice normally occurs at warmer water tem-

perature (between −5◦C and 0◦C) and higher liquid water content. In glaze icing

conditions, water may flow downstream and create ice shapes including “horns”,

protruding from unprotected leading edge surfaces;

• Mixed ice – a condition where both rime and glaze ice coexist. It is observed at

intermediate temperatures between −15◦C and 5◦C.

Considering the severe consequences of icing on flight safety, numerical simulation

represents a helpful tool for prediction of ice accretion and design of systems for protec-

tion. Some examples are numerical simulation of ice accretion on a helicopter rotor [9]

and numerical simulation of rime ice accretions on an aerofoil [10].

Numerical description of ice accretion is complex and multidisciplinary, with physics

of wetting being of importance when studying impact of supercooled large droplets.

These droplets, with diameters above 50 µm, tend to slide and spread on the surface

before freezing and forming glaze ice. A reliable CFD description of liquid-surface

interaction could potentially increase the accuracy of glaze ice accretion simulations.
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1.2.2. Ice Protection Systems

There are two distinct types of in-flight ice protection systems: de-icing systems,

which control the ice formation, and anti-icing systems, which prevent the ice formation.

De-icing systems are designed to work periodically, removing the ice after it begins to

accumulate. They are typically used on parts of aircraft structure where a small amount

of ice accretion does not critically affect the flight performances.

Anti-icing systems are designed to completely avoid any ice formation. They are

turned on before entering icing conditions and they work continuously during the entirety

of flight-time. Anti-icing systems are necessary in the most critical areas, where it is

required to prevent impinging droplets freezing. Most common are the thermal anti-

icing systems, which either use hot bleed air from the engine compressor or an electrical

power supply.

Usual modus operandi of the thermal anti-icing systems involves keeping the surface

at temperatures well above freezing point, which causes the water droplets to evaporate

upon the impact. High energy consumption needed for maintaining the evaporation

temperature is justified by the avoidance of runback ice.

The phenomenon of runback ice was studied in [11], where it is described as ice

accretion which occurs on wings with thermal anti-icing systems when the system does

not evaporate 100% of the water that impinges on the surface. The water runs back

from the impingement zone, leaving the leading-edge region without ice. When the

water reaches the region where the added heat no longer raises the surface temperature

above freezing, the water begins to freeze and a ridge line develops. Frozen rivulets

follow the ridge line in cases where the air temperature is close to freezing, which leads

to ice shapes with large chordwise extent.

According to [8], more than 70% energy consumed by a thermal anti-icing system

is used for water evaporation. In order to reduce the cost of typical anti-icing mecha-

nisms, which require a continuous supply of hot air, chemicals, or electrical power, ice

mitigation techniques are used. These passive techniques use special properties of some

coatings to reduce water and ice adhesion to the surface. For example, superhydrophobic

coatings, studied in [8], exhibit extreme water repellency. They prevent ice formation

by promoting water shedding from the surface, before freezing occurs.

Ice build-up on aircraft structure also occurs while on ground, during cold weather
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in the presence of high relative humidity, rain and/or snow. In order to fulfil the re-

quirements for airworthiness, de-icing must be performed on the affected surfaces prior

to take-off. According to [12], de-icing is generally carried out by using heated fluids

dispensed from spray nozzles mounted on specially designed de-icing trucks. Similar

procedure is carried out when applying anti-ice coating, used as an ice mitigation tool.

In both cases, liquid-solid interaction is critical for successful aircraft ground operation.

1.2.3. Other Applications

Apart from ice-related issues, droplet wetting is important when studying effects of

heavy rain on the aircraft structure. For example, [13] studied erosion damage caused by

rain drops. During taxiing and take-off, rain may reduce visibility and affect handling

of the aircraft. One of possible rain-removal systems includes applying a hydrophobic

coating on the aircraft wind-shield [14].

Liquid-solid interaction is also important for the issues related to aircraft main-

tenance, e.g. removing the contamination of lifting surfaces using cleaning liquids.

Furthermore, obvious droplet wetting applications, such as spray painting and direct

fuel injections in internal combustion engines, could be considered as aeronautical when

applied to an aircraft.

Considering the variety of possible applications, CFD simulation of wetting could be

beneficial to aerospace industry – especially when related to prediction of icing events,

where it could be used as a valuable tool for reducing safety risks, as well as the cost. The

utmost importance of both for the aeronautics was the motivation behind this thesis.

1.3. Thesis Outline

The focus of this thesis is the numerical modelling of liquid-wall interaction, also

referred to as wetting.

Chapter 2. deals with the physical description of wetting phenomenon, with the most

of the attention given to the nature of surface tension and how it relates to contact angles

and contact line motion. Several dynamic contact angle models are described within

the same chapter.

Wetting could be potentially modelled using any of the existing methods which
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describe the free surface flow. Consequent to the increasing amount of scientific interest

in two-phase flows, the current state of art offers several approaches, described for

example in [15, 16]. This thesis considers two model formulations: a 3-D two-fluid free

surface Volume of Fluid (VoF) flow model and a 2-D thin liquid film model.

Mathematical and numerical description of the VoF method is given in Chapter 3.

The VoF method uses an indicator function to differentiate between the phases. From

numerical point of view, the indicator function is defined as the volume phase fraction,

which describes how much of a computational cell is occupied with the regarded phase.

When applied to droplet flows, height of the computational cell has to be in the scale

of a few dozens micrometers, in order to properly capture liquid spreading. This leads

to very slow computational times, and thus makes the method expensive.

Mathematical and numerical formulation of the thin liquid film model is given in

Chapter 4. Here, the computational domain is represented by the substrate surface

which is completely covered by an arbitrary number of non-overlapping flat polygonal

control areas. Centroids of controls areas carry the information of liquid film thickness.

Being two-dimensional, this model formulation has the potential to be more efficient

than the VoF method. However, two-dimensionality also limits the model to flows over

hydrophilic substrates, with contact angles less than 90◦.

Numerical modelling of wetting is described in Chapter 5. Wetting in the VoF

interFoam solver is realized using a boundary condition which utilizes the Kistler’s

dynamic contact angle model, while in the thin liquid film liquidFilmFoam solver,

wetting is accounted for by adding a force term into the momentum equation, which

governs the liquid spreading.

Boundary condition written for the interFoam solver was tested by performing a

simulation of water droplet impact onto an inclined plate. The results were compared

to experimental data. Same experiment could not be recreated in liquidFilmFoam

solver, due to its limitation to contact angles less than 90◦. Instead, a rivulet flow

simulation was performed and compared to experimental and numerical data. Methods

were compared using a case of droplet exposed to shear flow on an inclined plate. Results

are given in Chapter 6. Conclusion is given in Chapter 7.



Chapter 2.

Physics of Droplet Flows

2.1. Surface Tension

Surface tension is the key phenomenon of an equilibrium liquid-gas system: while the

gaseous phase freely fills up the entire available domain, the liquid phase assumes a stable

shape. Liquid, as a phase with greater density, has considerable intermolecular forces.

These forces are balanced in the bulk fluid, where each liquid molecule is surrounded by

an equal number of liquid molecules. However, in the interface region, where liquid and

gas molecules meet, stronger attraction between liquid molecules causes an imbalance

resulting in intermolecular forces acting towards the bulk region. In nature, this is most

commonly observed in the spherical shape of water droplets.

According to [17], while the interface is a few molecular diameters order of thickness,

at a macroscopic level it appears as a sharply defined region with a discontinuous change

of density and other thermodynamic properties, often considered as a thin, uniformly

stretched membrane. Thus, the surface tension σ, can be defined as a force acting

per unit length across a line on this fictitious membrane in such a way that the liquid

behaves as if enclosed in an envelope of constant tension.

Another interpretation of surface tension defines it as the excess free energy per unit

area associated with the formation of interface between two phases [18]. Surface tension

is not a unique property of liquid-gas systems; it exists for any combination of two

phases and also in the case of two immiscible same-phase fluids. Its quantity depends

on physical and chemical properties of the phases.

7
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2.2. Equilibrium Contact Angle

Figure 2.1 depicts a three phase equilibrium system: a sessile liquid droplet on a

horizontal solid substrate, surrounded by a gas. Circular edge of the droplet (represented

by points A and B, since Figure 2.1 is a two-dimensional side-view) is a location where

all three phases interact. This line is known as the contact or triple line. Coexistence

of three phases at the contact line results in three surface tensions: σls – between liquid

and solid, σgs – between gas and solid, and σgl – between gas and liquid, which is, for

the sake of clarity, further simply denoted as σ. The horizontal solid surface and the

tangent of liquid-gas interface form the equilibrium contact angle θe.

A B

σgl ≡ σ

σgs σlsθe

substrate

liquid

gas

Figure 2.1: Force balance at the contact line

The balance of forces at the contact line leads to the Young equation [19]:

σgs = σls + σ cos θe , (2.1)

which defines the relationship between the three surface tensions and the contact angle.

As described in [18], wetting can be viewed as a direct consequence of the Young

equation. Situation where the substrate is partially covered with liquid (as depicted

in Figure 2.1 and on the left side of Figure 2.2) is called the partial wetting state. In

partial wetting, a unique equilibrium contact angle exists for the given thermodynamic

state and the gas-liquid-substrate combination. A change in any of the thermodynamic

properties leads to a change in the three surface tensions along with the establishment

of a new equilibrium contact angle, such that the balance of forces in equation (2.1) is

satisfied.

For example, a change in temperature could lead to such a change in surface tensions

that the surface tension at the gas-solid interface becomes equal to the sum of liquid-

solid and gas-liquid surface tensions. In this case, the equilibrium contact angle reduces
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to zero and the liquid forms a film which completely covers the substrate. This situation,

depicted in the middle of Figure 2.2, is called the complete wetting state.

The opposite extreme situation, with an equilibrium contact angle of 180◦, is called

the complete drying state, depicted on the right in Figure 2.2. Here, by changing the

temperature (or some other thermodynamic property), the sum of gas-solid and liquid-

gas surface tensions becomes equal to the liquid-solid surface tension. Wetted area now

becomes reduced to a point, leaving the substrate completely dry.

partial wetting complete wetting complete drying

Figure 2.2: Wetting of a liquid droplet on a solid substrate

The equilibrium contact angle is uniquely defined for the thermodynamic state and

the gas-liquid-solid combination. In the case of air-water combination (with constant

thermodynamic properties of the system) material of substrate surface greatly affects

the value of equilibrium contact angle. Substrate materials where θe < 90◦ promote

wetting and are commonly referred to as hydrophilic (Figure 2.3, left). Analogously,

materials where θe > 90◦ are called hydrophobic (Figure 2.3, right).

θe

θe < 90◦

θe

θe > 90◦

Figure 2.3: Hydrophilic and hydrophobic substrate

2.3. Advancing and Receding Contact Angle

As described in [20], the Young equation (2.1) gives only one equilibrium contact

angle for a homogeneous pure liquid on a perfectly flat, rigid, and smooth substrate
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without any impurity or heterogeneity. Since these conditions are practically unachiev-

able, experimental measurements of the apparent contact angle differ from the analytical

solutions. Due to substrate roughness and other causes of heterogeneity, several values

of contact angles for a droplet in the state of static equilibrium can be experimentally

observed. These values range from the receding contact angle θr to the advancing con-

tact angle θa, with the equilibrium contact angle θe from (2.1) laying somewhere between

these two extremes. Difference of advancing and receding contact angle is referred to as

the contact angle hysteresis [21]:

∆θ = θa − θr . (2.2)

A direct consequence of the contact angle hysteresis can be seen in cases where a droplet

remains immobile on an inclined surface (Figure 2.4). Only after the inclination angle

reaches a critical value, will the droplet slide or roll-off the surface. So, if a horizontal

substrate surface, where a sessile droplet is deposited, was slowly rotated, the contact

line would not displace immediately. The effect of gravitational force would instead shift

the droplet’s centre of gravity initiating an internal flow field. Consequently, the contact

angles would adjust while leaving the contact line attached to its original position.

θr

θa

α

Figure 2.4: Droplet on an inclined substrate

This behaviour becomes obvious when the balance of forces along the inclined plane

is observed. At the contact line, there are two forces counteracting the gravity: the

adhesion force due to the hysteresis and the friction force due to the shear stress at the

surface. Only when gravity overcomes the sum of aforementioned forces, contact angles

reach out of the hysteresis band and the contact line becomes mobile.
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For an idealised frictionless scenario, [22] proposes the following relation as a force

balance at the contact line:

H = σ(cos θr − cos θa) =
mg sinα

w
. (2.3)

Here, the hysteresis force per unit length is denoted as H and it is a function of the

gas-liquid surface tension σ and the receding and advancing contact angles, respectively

θr and θa. The gravity force per unit length is given by the right hand side of equation

(2.3), where m is the mass of the droplet, g is the gravitational acceleration, w is the

droplet’s width and α is the minimum tilting angle to make the droplet slide. Therefore,

the motion of a droplet is realised only when the gravitational force becomes greater

than the hysteresis force which keeps the droplet pinned to the substrate.

Description of the hysteresis consequences clarifies the premise behind naming its

extreme values. The advancing contact angle is determined for an increase in wetted

area, where liquid is advancing across a dry substrate. This is seen in Figure 2.4, where

the droplet advances downhill, wetting the previously dry area. Uphill, the opposite

happens: the receding contact angle corresponds to a decrease in wetted area, where

liquid retracts on a wet substrate. Another illustration of contact line motion is shown

in Figure 2.5, where the left side depicts droplet spreading on a flat substrate (advancing

motion) and the right side depicts droplet retracting (receding motion).

Figure 2.5: Advancing and receding motion of the contact line

2.4. Dynamic Contact Angle

The motion of contact line is possible only for contact angles beyond the hysteresis.

The dynamic contact angle, which is observed on a mobile droplet, is a result of molec-

ular interactions and its value is strongly linked to the microscopic landscape of the

substrate. Since such a detailed description isn’t possible within the scope of continuum
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mechanics, the existing models for dynamic contact angles are mostly empirical and

based on relations between the equilibrium contact angle θe and the capillary number

Ca. One of those empirical models is that of Kistler [23]:

θd = fH(Ca + f−1H (θe)) , (2.4)

which uses the Hoffman function defined as:

fH = arccos

{
1− 2 tanh

[
5.16

[ x

1 + 1.13x0.99

]0.706]}
. (2.5)

The capillary number Ca in equation (2.4) is a dimensionless quantity which represents

the ratio of viscous and surface tension forces, defined as:

Ca =
vµ

σ
, (2.6)

with v being the magnitude of the characteristic velocity, µ the dynamic viscosity and

σ the surface tension.

Another well known empirical model is the Hoffman-Voinov-Tanner law [24, 25, 26]:

θ3d − θ3e = cTCa1/3 , (2.7)

where cT is a numerical constant dependent on the substrate-fluids combination. This

model is valid only for surface tension dominated flows (Ca < 1), which presents an

important restriction. The Hoffman-Voinov-Tanner law is a simplified version of what

is often referred to as the Cox-Voinov model, defined in [27] as:

θ3d − θ3m = 9Ca ln
x

Lm
, (2.8)

also valid only for flows with Ca < 1. In (2.8), θm is the microscopic contact angle,

observable in the scale of surface roughness. This angle is often assumed to either have

a constant value equal to the equilibrium contact angle θe or to change as a function

of capillary number Ca. The dynamic contact angle θd is the one observable by the

experiments. Quantity x is the distance from the contact line where the apparent

(dynamic) contact angle is measured and Lm represents the microscopic length scale.

Value of this parameter is typically in the range of 10 µm [28].

Conclusively, all dynamic contact angle models presented in this section are based

on the hydrodynamic theory. Kistler’s model (2.4) is the only one which isn’t restricted
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by the capillary number and for surface tension dominated flows (Ca < 1) it reduces

to the Hoffman-Voinov-Tanner law [27], which demonstrates the similarity between the

models.

In literature, e.g. [29], contact angle models based on the molecular-kinetic theory

can also be found. These models take into account the microscopic properties of the

solid substrate and they relate the change of the contact angle to the displacement of

molecules at the contact line. Due to the complexity of molecular-kinetic models, they

weren’t thoroughly investigated in this thesis.



Chapter 3.

Volume of Fluid

Volume of Fluid (VoF) is a mathematical model consisted of partial differential

equations which describe the free surface flow. In order to differentiate between the

phases, VoF method uses an indicator function, which is, from the numerical perspective,

defined as a phase volume fraction. Mathematical formulation of the method, given in

Section 3.1., is taken from [15].

To make the VoF method appropriate for computational handling, the mathematical

model is discretised using the Finite Volume Method (FVM). The resulting numerical

model, along with the discretisation procedure, is given in Section 3.2. All of the equa-

tions presented in aforesaid section are also taken from [15], unless otherwise noted.

According to the FVM principles, discretisation procedure is performed on the com-

putational domain and on the partial differential equations. Computational domain is

discretised spatially by splitting the flow domain into a finite number of non-overlapping

control volumes or cells and temporally by splitting the time interval into a finite number

of time steps of equal or varying duration. Final result of the discretisation procedure

is a set of linear algebraic equations, which can be solved numerically.

3.1. Mathematical Model

3.1.1. General Transport Equation

Every fluid flow can be mathematically described using the transport equations of its

conservative properties - namely mass, momentum and energy. For an arbitrary control

14
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volume V , as depicted in Figure 3.1, the general form of transport equation for a flow

quantity ϕ is the following:

d

dt

∫
V

ϕdV +

∮
∂V

FC · dS−
∮
∂V

FD · dS =

∫
V

QV dV +

∮
∂V

QS · dS , (3.1)

where t is the time, FC = ϕv is the flux over the boundary due to convection, v is

the fluid velocity, FD flux over the boundary due to diffusion, QV internal source, QS

source at the boundary, ∂V boundary of the control volume V and dS outward pointing

surface element vector. Flow quantity ϕ is completely generic and it could represent

scalar, vector or a tensor field. Applying Gauss’ theorem to equation (3.1) leads to:

d

dt

∫
V

ϕdV +

∫
V

∇ · FCdV −
∫
V

∇ · FDdV =

∫
V

QV dV +

∫
V

∇ ·QSdV , (3.2)

which represents the integral form of the transport equation, valid for an arbitrary

control volume of a finite size. If the volume tends to a single point, transport equation

(3.2) becomes reduced to its differential form:

∂ϕ

∂t
+∇ · FC −∇ · FD = QV +∇ ·QS . (3.3)

V

QS

∂V
QV

dS

FC

FD

Figure 3.1: General form of the conservation law

3.1.2. Governing Equations

There are three conservation laws which govern any fluid flow: conservation of mass,

conservation of momentum and conservation of energy. For a laminar incompressible

isothermal flow of two immiscible fluids, only mass and momentum conservation have to

be considered. However, there is a discontinuity in fluid properties at the interface region
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which has to be specially treated. Thus, each fluid (phase) is tracked by a different value

of an indicator function. The interface between the fluids is then implicitly defined as

the region where the indicator function undergoes a step change.

Conservation laws are derived by substituting the generic flow quantity ϕ in equation

(3.3) with the relevant flow property. The differential form of mass conservation is thus

obtained by substituting ϕ with mass per unit volume, i.e. fluid density ρ:

∂ρ

∂t
+∇ · ρv = 0 . (3.4)

Equation (3.4) states that, under the assumption that there are no mass sources, the

mass in a control volume can only be changed by flow across the boundaries.

Conservation of linear momentum is derived in a similar manner from equation (3.3).

Here, the quantity ϕ is substituted by momentum per unit volume ρv. It is assumed

that there is no momentum diffusion when the fluid is at rest: FD = 0. The source terms

stem from surface and body forces acting upon the control volume. The only body force

considered here is due to gravity: ρg, where g is the gravitational acceleration. Surface

forces manifest themselves as stresses acting across the control volume boundary. The

stress tensor σ for a Newtonian fluid in a local thermodynamic equilibrium is defined

as:

σ = −
(
p+

2

3
µ∇ · v

)
I + µ

(
∇v + (∇v)T

)
, (3.5)

where p is pressure, µ dynamic viscosity and I unit tensor.

For a two-phase flow, there is an additional internal force due to surface tension,

denoted as fσ, acting upon the interface region. Therefore, the transport equation for

linear momentum is the following:

∂(ρv)

∂t
+∇ · (ρvv − σ) = ρg + fσ . (3.6)

Conservation equations (3.4) and (3.6) treat the two immiscible fluids as a con-

tinuum, which means that density ρ and dynamic viscosity µ are defined as weighted

averages of the two-phase system:

ρ = αρ1 + (1− α)ρ2 , (3.7)

µ = αµ1 + (1− α)µ2 . (3.8)
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Subscripts 1 and 2 denote different fluids and α = α(x, t) is the indicator function

defined as:

α(x, t) =

1, for the point (x, t) inside fluid 1

0, for the point (x, t) inside fluid 2
. (3.9)

The indicator function associates different values with different fluids. As defined in

(3.9), it is a step function, implying discontinuous change of density and viscosity in the

interface region. To allow treatment of a two-phase system as a continuum, a transitional

area of small finite thickness δ is introduced, where function α(x, t) experiences a smooth

change in its value:

α(x, t) =


1, for the point (x, t) inside fluid 1

0, for the point (x, t) inside fluid 2

0 < αδ < 1, for the point (x, t) inside transitional area

. (3.10)

Value of α(x, 0) is given by the initial fluid distribution. Further propagation of α in

space and time is described by the phase mass conservation equation:

Dα

Dt
=
∂α

∂t
+ v ·∇α = 0 . (3.11)

Equation (3.11) completes the mathematical description of a laminar two-phase flow.

In order to make the mathematical model more suitable for numerical solution, first

the continuity equation (3.4) is rewritten as:

∂ρ

∂t
+ v ·∇ρ+ ρ∇ · v = 0 . (3.12)

By rearranging the terms in equation (3.12), the divergence of velocity can be expressed

as:

∇ · v =
−1

ρ

(∂ρ
∂t

+ v ·∇ρ
)

=
−1

ρ

Dρ

Dt
= −D(ln ρ)

Dt
. (3.13)

For incompressible fluids, the material derivative of density, Dρ
Dt

, reduces to zero. In the

case of a two-phase flow, this can be proved by using the definition of average density

ρ from (3.7) and then applying the relation (3.11) to the indicator function material

derivative:

∇ · v =
−1

ρ

D

Dt

(
α(ρ1 − ρ2) + ρ2

)
=
−(ρ1 − ρ2)

ρ

(
Dα

Dt

)
= 0 , (3.14)
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which represents the continuity equation for incompressible fluids. Using the incom-

pressibility condition (3.14) allows the transport equation for α (3.11) to be written in

its conservative form:
∂α

∂t
+∇ · (αv) = 0 . (3.15)

Applying the incompressibility condition (3.14) to the momentum equation (3.6) reduces

it to the following:

∂(ρv)

∂t
+∇ · (ρvv)−∇ · (µ∇v) = −∇p+ ρg + fσ + (∇v) · (∇µ) . (3.16)

Finally, the set of governing equations for a two-phase consists of the continuity equation

(3.14):

∇ · v =
−1

ρ

D

Dt

(
α(ρ1 − ρ2) + ρ2

)
=
−(ρ1 − ρ2)

ρ

(
Dα

Dt

)
= 0 ,

the momentum equation (3.16):

∂(ρv)

∂t
+∇ · (ρvv)−∇ · (µ∇v) = −∇p+ ρg + fσ + (∇v) · (∇µ) ,

and the indicator function transport equation (3.15):

∂α

∂t
+∇ · (αv) = 0 ,

along with the two constitutive relations for fluid density (3.7):

ρ = αρ1 + (1− α)ρ2 ,

and dynamic viscosity (3.8):

µ = αµ1 + (1− α)µ2 .

The momentum equation (3.16) has an internal force due to surface tension fσ, which is

described in the following section.

3.1.3. Surface Tension

The momentum equation (3.16) features an internal force due to surface tension,

which manifests itself as a tension acting upon the interface. This tensile force is tan-

gential to the interface and separates the two fluids of diverse densities. If the interface
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is curved, there is also a normal component of this force (Figure 3.2). When the flu-

ids are in the state of static equilibrium, the normal component of surface tension is

mechanically balanced by the pressure jump across the interface.

σ σn

σt

σσn

σtfσpi

po

Figure 3.2: Forces on a curved interface

The pressure jump across the interface ∆p is proportional to the mean interface

curvature κ:

∆p = pi − po = σ

(
1

R1

+
1

R2

)
= σκ , (3.17)

In the equation above, pi is the higher pressure, present on the concave side of the curved

free surface. Analogously, po is the lower pressure, on the convex side of the free surface.

Quantities R1 and R2 denote the principal radii of the curvature.

Surface tension force fσ is a function of the pressure jump, as defined in (3.17).

To include this force into the momentum equation (3.16), it has to be expressed as

a pressure gradient fσ = ∇p. This formulation would make the force differentiable

across the whole domain, hence allowing a description in accordance with the continuum

mechanics principles. However, the force acts only in the transitional interface area, so

it has to be expressed as a function which is equal to zero everywhere else in the domain.

Another difficulty arises from the fact that the pressure jump is discontinuous at the

transitional area.

Formulation which overcomes the aforementioned issues is called the Continuum

Surface Force (CSF) model, developed by [30]. This model relates the unit normal

vector to the interface, nI , with the gradient of the indicator function α:

nI =
∇α
|∇α| . (3.18)

Since the indicator function experiences a change only in the transitional area between

the two fluids, its gradient reduces to zero in the rest of the domain. This property
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makes the interface normal nI continuous throughout the entirety of the flow domain.

The mean interface curvature κ can now be expressed as a function of nI :

κ = −∇ ·
(
∇α
|∇α|

)
. (3.19)

The pressure jump ∆p is a discontinuity which occurs at the interface layer. As de-

scribed in the previous section, this layer is defined as an area of finite thickness δ,

throughout which the indicator function α experiences a smooth change. Therefore, it

is reasonable to assume that the change in pressure would behave similarly. In other

words, pressure gradient in the transitional area can be expressed as proportional to the

indicator function gradient. This leads to the definition of the surface tension force fσ,

in accordance with the CSF model:

fσ = ∇p = −σ
(
∇ ·

( ∇α
|∇α|

))
(∇α) . (3.20)

By substituting the relation (3.20) into the momentum equation (3.16), the set of gov-

erning equations becomes fully defined. In order to complete the mathematical model,

the initial and boundary conditions have to be specified.

The adhesion forces which arise at the contact line weren’t yet addressed. Since

these forces act only where the two fluids come in contact with the solid boundary, this

behaviour is defined within the boundary conditions and will be discussed in Chapter

5.

3.2. Numerical Model

The derivation of numerical model given in this section is taken from [15]. Discreti-

sation procedure follows the Finite Volume Method, described in detail in [31, 32].

3.2.1. Spatial Discretisation

In order to spatially discretise the model, the entire flow domain is split into a finite

number of non-overlapping control volumes or cells. Control volumes may have an

arbitrary number of flat faces, as depicted in Figure 3.3. The computational point P

is located at the centroid of the control volume and vector d = PN connects it to the
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centroid of the neighbouring control volume, denoted with N . Vector A is the face area

vector, outward pointing and normal to the face. If there is a non-zero angle between

vectors d and A, the control volume is non-orthogonal. In that case, the contributions

to gradients at cell faces are split into orthogonal and non-orthogonal contributions.

Vector D is introduced to account for orthogonal contributions:

D =
d

d ·A |A|
2 , (3.21)

and vector k for non-orthogonality:

k = A−D . (3.22)

P

f

Nd

D k

A

Figure 3.3: Geometric quantities of a control volume

3.2.2. Discrete Equations

To discretise the partial differential equations, first the volume integrals have to be

represented as surface integrals. For that a generalized form of Gauss’ theorem is used.

Gauss’ theorem applied to divergence of an arbitrary vector function ϕ is the following:∫
V

∇ ·ϕdV =

∮
∂V

dS ·ϕ . (3.23)



Chapter 3. Volume of Fluid 22

The same theorem applied to gradient of an arbitrary scalar function ϕ leads to this

relation: ∫
V

∇ϕdV =

∮
∂V

dSϕ . (3.24)

Similarly, for gradient of an arbitrary vector function ϕ, Gauss’ theorem reads as:∫
V

∇ϕdV =

∮
∂V

dSϕ . (3.25)

In above equations, dS is the surface area vector and ∂V is the surface area of the control

volume. Since the control volumes are bound by a finite number of flat faces, the surface

integrals can be approximated as sums of face integrals. Thus equation (3.23) can be

written as: ∫
V

∇ ·ϕdV =

∮
∂V

dS ·ϕ =
n∑
f=1

(∫
f

dS ·ϕ
)
≈

n∑
f=1

Af ·ϕf , (3.26)

where f denotes the face centroid, Af is the face area vector and n is the number of flat

faces of the control volume. Every face (except those at the boundaries of the domain)

is shared by two cells. One of those cells is the owner with face area vector Af pointing

towards the other, neighbouring cell. Thus, the sum in equation (3.26) is split into sum

over owner faces and sum over neighbouring faces:

n∑
f=1

Af ·ϕf =
∑
owner
faces

Af ·ϕf +
∑

neighbouring
faces

Af ·ϕf . (3.27)

The face values are (unless otherwise stated) linearly interpolated from cell-centred

values:

ϕf = LPϕP + (1− LP )ϕN , (3.28)

where LP is the interpolation factor defined as ratio of distance |fN | between face center

f and neighbour cell centroid N , and distance |PN | between computational point P

and neighbour cell centroid N :

LP =
|fN |
|PN | . (3.29)

Similarly, equations (3.24) and (3.25) can be transformed into:∫
V

∇ϕdV ≈
n∑
f=1

Afϕf , (3.30)
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and ∫
V

∇ϕdV ≈
n∑
f=1

Afϕf . (3.31)

Finally, the equations (3.26), (3.30) and (3.31) can be used to express the gradient of a

flow property over a cell:

(∇ ·ϕ)P ≈
1

VP

n∑
f=1

Af ·ϕ , (3.32)

(∇ϕ)P ≈
1

VP

n∑
f=1

Afϕ , (3.33)

(∇ϕ)P ≈
1

VP

n∑
f=1

Afϕ . (3.34)

3.2.3. Indicator Function

On a discrete mesh, the indicator function α is defined as a volume fraction of fluid

which occupies the cell:

αP =
Volume of fluid 1

Total volume of the control volume
. (3.35)

The above definition of indicator function α is in accordance with definition (3.10).

Thus, αP = 1 indicates that the cell volume is completely filled with fluid 1. Accordingly,

αP = 0 indicates that there is none of the fluid 1 in the cell, i.e. the cell is completely

occupied with fluid 2. Finally, if 0 < αP < 1, the cell is partially filled with fluid 1,

which indicates existence of interface between the fluids in the cell.

The integral form of indicator function transport equation (3.15) is the following:∫ t+δt

t

(∫
V

∂α

∂t
dV

)
dt+

∫ t+δt

t

(∫
V

∇ · αvdV

)
dt = 0 . (3.36)

Discretisation of the equation above is done by splitting the values at the new time level

(denoted by superscript n) from the ones evaluated at the old time-level (superscript

o) and writing the latter into the source term. Thus, fully discretised form of equation

(3.36) is:

αnP
VP
∆t

+
n∑
f=1

1

2
(αF)nf = SαP

, (3.37)
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with source term SαP
defined as:

SαP
= αoP

VP
∆t
−

n∑
f=1

1

2
(αF)of . (3.38)

In equations (3.37) and (3.38), VP is the volume of the cell, ∆t is the duration of the

time-step between new and old time instance and Ff is the volumetric flux defined as:

Ff = Af · vf , (3.39)

where Af is the face area vector and vf is the face-centred value of velocity. Discreti-

sation of convective term from equation (3.36) is done by first applying Gauss’ theorem

(3.32) in order to represent it as a sum over faces. Temporal discretisation is done by

using the second order accurate Cranck-Nicolson scheme. Face-centred values of the

indicator function αf are interpolated from cell-centred values of neighbouring cells:

αf = βαP + (1− β)αN , (3.40)

with β being the weighting factor. Relation (3.40) allows equation (3.37) to be refor-

mulated in terms of cell and its nearest neighbours:

aPα
n
P =

n∑
nb=1

anbα
n
nb + SαP

, (3.41)

where subscript nb denotes the nearest neighbours. Equation (3.41) is linear algebraic

with diagonal coefficient aP and neighbouring coefficients anb.

3.2.4. Momentum Equation

The integral form of the momentum conservation equation (3.16) is the following:∫ t+δt

t

(∫
V

∂ρv

∂t
dV

)
dt+

∫ t+δt

t

(∫
V

∇ · (ρvv)dV

)
dt−

∫ t+δt

t

(∫
V

∇ · (µ∇v)dV

)
dt

= −
∫ t+δt

t

(∫
V

∇pdV
)
dt+

∫ t+δt

t

(∫
V

ρgdV

)
dt

+

∫ t+δt

t

(∫
V

σκ∇αdV
)
dt+

∫ t+δt

t

(∫
V

(∇v) · (∇µ)dV

)
dt .

(3.42)
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Integrating the above equation over the control volume leads to its partially disecretised

form:∫ t+δt

t

((
∂ρv

∂t

)
P

VP +
n∑
f=1

ρfFfvf −
n∑
f=1

µfAf (∇v)f

)
dt =

∫ t+δt

t

(SvP
VP )dt , (3.43)

with the source term SvP
defined as:

SvP
= −(∇p)P + gρP + σκP (∇α)P + (∇v)P · (∇µ)P . (3.44)

Discretisation procedure follows a similar routine as described in the previous section.

The main difference stems from the fact that the momentum equation (3.42) is con-

servation of a vector quantity, thus volume integrals are approximated as sums of face

integrals using Gauss’ theorem in forms (3.32) and (3.34). Terms of interest in equations

(3.43) and (3.44) are the convection term, the diffusion term and the curvature term

κP . Important issues during the discretisation are prediction of the face values from cell

centred values of two cells sharing the face, treatment of the mesh non-orthogonality

and keeping the consistency in the discretisation.

Convection Term

The partially discretised convection term takes this form:∫
V

∇ · (ρvv)dV ≈
n∑
f=1

ρfFfvf , (3.45)

where Ff is the volumetric flux defined in (3.39). Product ρfFf represents the mass

flux through face, thus the approximation of densities has to be done in such a way

that the mass is also conserved. Face values of density are approximated using the old

time-level and new time-level face values of the indicator function α, combined with the

constitutive relation for density (3.7):

ρf =
1

2
(αof + αnf )ρ1 +

(
1− 1

2
(αof + αnf )

)
ρ2 . (3.46)

The definition of face densities above guarantees conservative mass fluxes at the faces.

Approximation of face-centred velocity requires accurate and bounded differencing

scheme. Upwind differencing scheme complies with the boundedness criteria, but intro-

duces large amount of numerical diffusion. Central differencing scheme produces more
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accurate solution, but doesn’t comply with the boundedness criteria. Thus, for predict-

ing the face values of velocity a specially developed High Resolution differencing scheme

is used [33].

Diffusion Term

Partially discretised diffusion term takes the following form:∫
V

∇ · (µ∇v)dV ≈
n∑
f=1

µfAf (∇v)f . (3.47)

Face value of dynamic viscosity µf is linearly interpolated using equation (3.28). Same

equation is also applied to face value of velocity gradient (∇v)f .

Calculation of dot-product Af · (∇v)f differs for orthogonal and non-orthogonal

meshes. For an orthogonal mesh, the face area vector Af is equal to vector Df , defined

in equation (3.21). In that case, the dot-product is the following:

Af · (∇v)f = Df · (∇v)f = |Df |
vN − vP
|df |

. (3.48)

For a non-orthogonal mesh, it is necessary to include the non-orthogonal correction kf ,

defined in (3.22). Thus, the dot-product is the following:

Af · (∇v)f = Df · (∇v)f︸ ︷︷ ︸
orthogonal contribution

+ kf · (∇v)f︸ ︷︷ ︸
non−orthogonal correction

, (3.49)

with the orthogonal contribution Df · (∇v)f calculated as in (3.48).

Curvature

In the momentum equation (3.42), the term containing the free surface curvature κ

is discretised in the following way:∫
V

σκ∇αdV = σκP (∇α)PVP . (3.50)

In the equation above the cell-centred gradient of the indicator function (∇α)P is calcu-

lated using the Gauss’ theorem (3.33) with linearly interpolated face value αf according

to equation (3.28).

The free surface curvature is defined in equation (3.19) as a divergence of unit normal

to the interface nI . The unit normal nI is expressed using the gradient of the indicator
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function α in (3.18). Using Gauss’ theorem for divergence of a vector quantity (3.32),

the cell-centred value of curvature is the following:

κP = −
(
∇ ·

( ∇α
|∇α|

))
P

=
1

VP

n∑
f=1

Af ·
(

(∇α)f
|∇α|f

)
. (3.51)

Here, the face value (∇α)f is obtained using linear interpolation (3.28), with cell-centred

gradient (∇α)P calculated as described.

Temporal Discretisation

Temporal discretisation of the momentum equation (3.43) is done in a manner sim-

ilar to temporal discretisation of the indicator function α. New time-level values are

separated from the old time-level values, with the latter added into the source term.

Using the Euler implicit time differencing scheme yields this form of fully discretised

momentum equation:

(ρv)nP
∆t

+
1

VP

n∑
f=1

ρfFfv
n
f +

1

VP

n∑
f=1

µfDf · (∇v)nf = SvP
− (∇p)P , (3.52)

with the source term SvP
defined as:

SvP
=

(ρv)oP
∆t

+ gρP + σκP (∇α)P + (∇v)P · (∇µ)P +
n∑
f=1

µfkf · (∇v)f . (3.53)

Since all face velocities at the right hand side of equation (3.52) are dependent only on

cell-centred values of the cell and its nearest neighbours, the equation can be reformu-

lated to:

aPvnP =
n∑

nb=1

anbv
n
nb + SvP

− (∇p)P , (3.54)

where subscript nb denotes the nearest neighbours. For derivation of the pressure equa-

tion, it is useful to reformulate the equation above into:

vnP =
H(v)P
aP

− 1

aP
(∇p)P , (3.55)

where H(v)P is defined as:

H(v)P =
n∑

nb=1

anbv
n
nb + SvP

. (3.56)
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3.2.5. Pressure Equation

The pressure equation is derived from the incompressibility condition (3.14) and

from the momentum equation (3.55). Integral form of the incompressibility equation

(3.14) is spatially discretised using Gauss’ theorem (3.26):∮
V

∇ · vdV ≈
n∑
f=1

Af · vf = 0 , (3.57)

with new time-level velocities.

The new time-level face value of velocity is expressed from the momentum equation

(3.55) by interpolating it to the face:

vf =

(
H(v)

aP

)
f

−
(

1

aP

)
f

(∇p)f . (3.58)

All face values in the above equation except the pressure gradient, i.e.
(H(v)

aP

)
f

and(
1
aP

)
f
, are calculated using linear interpolation (3.28). Substitution of vf from (3.58)

into (3.57) yields:

n∑
f=1

(
1

aP

)
f

Af · (∇p)f =
n∑
f=1

Af ·
(

H(v)

aP

)
f

. (3.59)

For the face value of pressure gradient (∇p)f it is necessary to include orthogonal and

non-orthogonal contribution:

Af · (∇p)f = Df · (∇p)f︸ ︷︷ ︸
orthogonal contribution

+ kf · (∇p)f︸ ︷︷ ︸
non−orthogonal correction

, (3.60)

with the orthogonal contribution defined as:

Df · (∇p)f = |Df |
pN − pP
|df |

, (3.61)

and the non-orthogonal correction given by:

kf · (∇p)f = kf ·
(
LP
(

1

VP

n∑
f=1

Afpf

)
P

+ (1− LP )

(
1

VP

n∑
f=1

Afpf

)
N

)
. (3.62)

This non-orthogonal correction is added into the source term in equation (3.59):

n∑
f=1

(
1

aP

)
f

Df · (∇p)f = SP , (3.63)
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with the source term SP defined as:

SP =
n∑
f=1

Af ·
(

H(v)

aP

)
f

−
n∑
f=1

(
1

aP

)
f

kf · (∇p)f . (3.64)

Since the pressure in equation (3.63) is given in terms of a cell and its nearest neighbours,

it is possible to reformulate the equation to the following:

aPpP =
n∑

nb=1

anbpnb + SP , (3.65)

where nb represents the nearest neighbours.

The face velocity from (3.58) is used for calculation of volumetric fluxes in (3.39):

Ff = Af ·
((

H(v)

aP

)
f

−
(

1

aP

)
f

(∇p)f
)
. (3.66)

3.2.6. Boundary Conditions

The two most widely used boundary conditions are the Dirichlet and the Neumann

boundary conditions (BC). The former is also known as value specified with this math-

ematical formulation given by [34]:

ϕb = ϕref , (3.67)

where ϕb is a generic physical quantity at the boundary denoted with subscript b and

ϕref is the known prescribed value of the regarded quantity ϕ.

In cases where value is unknown, but flux is known, the Neumann BC is used. In

[34], the Neumann or flux specified BC is mathematically written as:

Fϕ
b Sb = Fϕ

b · nb︸ ︷︷ ︸
specified flux

Sb = qrefSb , (3.68)

where Fϕ
b denotes the flux of generic quantity ϕ at the boundary b with surface area

vector Sb, of magnitude Sb and unit outward pointing normal vector nb. Quantity qref

represents the known flux per unit area.

Since the flux is associated with gradient of the regarded physical quantity, equation

(3.68) can be rewritten as:

(∇ϕ)b · nb = qref . (3.69)
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In some cases a combination of both aforesaid BCs is needed. This type of boundary

condition is known as mixed or Robin BC with this mathematical formulation (given

for example in [27]):

ϕb = wϕref + (1− w)(ϕP + (∇ϕ)ref ·∆) . (3.70)

In the equation above w represents the weighting factor between the boundary condition

types, ϕP is the cell centred value of the regarded quantity and ∆ is the face-to-cell

distance.

3.2.7. Solution Procedure

The discretisation procedure results in a set of linear algebraic equations which are

strongly coupled with each other. The pressure-velocity coupling is satisfied by using

the PISO (Pressure Implicit with Splitting of Operators) algorithm which is described

first. Then, full solution procedure for a two-phase system is given.

PISO Algorithm

The PISO algorithm consists of the following steps:

1. Momentum Prediction: solve (3.54):

aPvnP =
n∑

nb=1

anbv
n
nb + SvP

− (∇p)P

with a guessed pressure filed p∗ (usually from the previous time step) to get the

velocity field v∗;

2. Pressure Solution: use v∗ to assemble H(v∗) from (3.56):

H(v)P =
n∑

nb=1

anbv
n
nb + SvP

to calculate the pressure field p∗∗ using (3.65):

aPpP =
n∑

nb=1

anbpnb + SP .

For a non-orthogonal mesh update the source term from (3.64):

SP =
n∑
f=1

Af ·
(

H(v)

aP

)
f

−
n∑
f=1

(
1

aP

)
f

kf · (∇p)f ;
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3. Explicit Velocity Correction: use the new pressure field p∗∗ in equation (3.66):

Ff = Af ·
((

H(v)

aP

)
f

−
(

1

aP

)
f

(∇p)f
)

for a new set of conservative volumetric fluxes. With the new pressure field p∗∗

solve (3.55):

vnP =
H(v)P
aP

− 1

aP
(∇p)P

to get new velocity field v∗∗ consistent with the pressure field.

Solution Procedure for a Two-Fluid System

The solution sequence of a two-fluid system is the following:

1. initialize all the variables;

2. calculate the Courant number and adjust the time step if necessary;

3. solve α equation (3.37):

αnP
VP
∆t

+
n∑
f=1

1

2
(αF)nf = SαP

,

using the old time-level volumetric fluxes;

4. use the new α values together with the constitutive relations (3.7) and (3.8):

ρ = αρ1 + (1− α)ρ2 ,

µ = αµ1 + (1− α)µ2 ,

to obtain an estimate for the new viscosity, density and the face densities from

(3.46):

ρf =
1

2
(αof + αnf )ρ1 +

(
1− 1

2
(αof + αnf )

)
ρ2 ;

5. use the above values to do a momentum prediction and continue with the PISO

algorithm;

6. if the final time has not yet been reached, advance to the next time level and

return to step 2.



Chapter 4.

Thin Liquid Film

Thin liquid film model represents a two-dimensional mathematical description of two-

phase flows. Discretisation of the model according to the Finite Area Method (FAM),

developed by [35], makes it suitable for CFD simulations.

The mathematical formulation in Section 4.1. is written as described by the original

author of liquidFilmFoam solver [36]. The appropriate numerical model presented in

Section 4.2. is taken from [35, 36]. Similar to the FVM, the discretisation procedure

used in the FAM includes discretisation of computational domain and discretisation of

mathematical model, where partial differential equations are transformed into a set of

linear algebraic equations.

Thin liquid film model formulation as implemented in the current version of foam-extend1

is given in Section 4.3.

4.1. Mathematical Model

Fluid flows are intrinsically three-dimensional. However, under certain circum-

stances, fluid flow can be accurately described using a reduced, two-dimensional math-

ematical model such as the thin liquid film model. Application of this model is limited

to flows where the liquid layer thickness is significantly smaller than the other two

dimensions, which provides the basis for the depth-averaged integration.

The thin liquid film model considers laminar liquid flow over an arbitrarily curved

solid surface (Figure 4.1). The flow is isothermal and driven by forces due to surface

1foam-extend 4.0

32
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tension, gravity, Coriolis force due to the rotation of the substrate and gas shear stress

at the free surface. Since the film is sufficiently thin, the boundary layer approximation

is valid:

• gradients in tangential direction are negligible compared to gradients in normal

direction;

• normal component of velocity is negligible compared to tangential component;

• liquid film pressure is constant across the film thickness.

In addition to the boundary layer approximation, the velocity profile function is pre-

scribed as a cubic polynomial. This assumption allows velocity to be expressed as a

depth-averaged quantity, thus enabling the two-dimensional mathematical representa-

tion.

v

h
v̄

σ
τfs

f

Figure 4.1: Thin liquid film

4.1.1. Continuity Equation

Figure 4.2 shows thin liquid film control volume V enclosed within a boundary control

surface S. Integral form of the continuity equation for the control volume is:

d

dt

∫
V

dV +

∮
S

n · (v − vS)dS =
1

ρ

∫
V

QmdV , (4.1)

where n stands for the outward-pointing unit normal vector to the control surface,

v is the liquid velocity, vS is the control surface velocity, ρ is the liquid density and Qm



Chapter 4. Thin Liquid Film 34

is the mass source volume density. In order to simplify the net surface flux integral,

the boundary surface S is split into segments, following the nomenclature presented

in Figure 4.3. Subscript w denotes quantities at the solid substrate surface, subscript

fs denotes the free surface and subscript io the inlet/outlet surface. Accordingly, the

continuity equation (4.1) takes the following form:

d

dt

∫
V

dV +

∫
Sw

nw · (v − vw)dS +

∫
Sio

nio · (v − vio)dS

+

∫
Sfs

nfs · (v − vfs)dS =
1

ρ

∫
V

QmdV .
(4.2)

n

v

vfs

h v̄

V

S = ∂V

Figure 4.2: Thin liquid film control volume

Sio Sio

V
Sw

Sfs

nio nio
nw

nfs

m m

n n

Figure 4.3: Control volume boundary surface
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In the case of immobile substrate surface Sw the velocity vw is equal to zero. Fur-

thermore, due to the prescribed cubic velocity profile, the liquid velocity at the substrate

boundary is also equal to zero. This implies that there is no flux at the substrate bound-

ary. There is no flux at the free surface as well, since the free surface moves with the

same surface-normal velocity as the liquid particles, implying nfs ·(v−vfs) = 0. Finally,

the inlet/outlet boundaries are fixed (vio = 0), so the only contributor to the net surface

flux stems from the liquid velocity at the inlet/outlet boundary. Therefore, equation

(4.2) is reduced to:
d

dt

∫
V

dV +

∫
Sio

m · vdS =
1

ρ

∫
V

QmdV , (4.3)

where m ≡ nio is the outward pointing unit bi-normal vector to the inlet/outlet bound-

ary surface. The equation (4.3) is a three-dimensional mathematical representation of

the mass conservation within the control volume V . To make it two-dimensional, the

volume integrals are written as surface integrals using dV = hdSw and surface integrals

are written as line integrals using dSio = hdLio. Quantity h represents the local liquid

film thickness and Lio = ∂Sw represents the boundary line of the surface Sw. Finally,

by introducing the mass source surface density as Q̄m = hQm, equation (4.3) is written

as:
d

dt

∫
Sw

hdS +

∮
Lio

m ·
(∫ h

0

vdh

)
dL =

1

ρ

∫
Sw

Q̄mdS . (4.4)

Since the depth-averaged velocity, which, in accordance to the boundary layer approxi-

mation, is tangential to the surface Sw, is defined as:

v̄ =
1

h

∫ h

0

vdh , (4.5)

the continuity equation takes this final form:∫
Sw

∂h

∂t
dS +

∮
Lio

hm · v̄dL =
1

ρ

∫
Sw

Q̄mdS . (4.6)
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4.1.2. Momentum Equation

Sio Sio

V

v

τfs

τw

h v̄

fn

ft

Sw

Sfs

σ

m m

n n

Figure 4.4: Thin liquid film flow driving forces

The main driving forces behind the flow are the body force, the surface tension

force and the gas shear force at the free surface. Influence of those is included in the

momentum equation. For the control volume V presented in Figure 4.4, the integral

form of the momentum equation is the following:

d

dt

∫
V

vdV +

∮
S

n · v(v − vS)dS =
1

ρ

∮
S

n · (µ∇v)dS +

∫
V

fdV

−1

ρ

∫
V

∇pdV +
1

ρ

∫
V

QV dV ,

(4.7)

where µ is the liquid dynamic viscosity, f is the body force vector, p is the pressure and

QV is the momentum source volume density.

Equation (4.7) is transformed in similar manner as the continuity equation (4.1).

First, the surface is split into segments. Liquid and surface velocities at the boundaries

are as described previously, thus fluxes at the substrate and at the free surface are zero

in the convective term. According to the boundary layer approximation, the tangential

components of gradients are negligible, hence the diffusive term integrals for inlet/outlet

surface are also zero. The equation is then reduced to a two-dimensional form by again

writing the volume integrals as surface integrals and surface integrals as line integrals.

The momentum source volume density is included into the momentum source surface
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density: Q̄V = hQV . The equation (4.7) is hence reduced to:

d

dt

∫
Sw

(∫ h

0

vdh

)
dS +

∮
Lio

m ·
(∫ h

0

vvdh

)
dL =

1

ρ

∮
Sfs

n · (µ∇v)dS

+
1

ρ

∮
Sw

n · (µ∇v)dS +

∫
Sw

hftdS −
1

ρ

∫
Sw

h∇spdS +
1

ρ

∫
Sw

Q̄V
t dS .

(4.8)

Pressure gradient, body force and the source term vectors are split into normal and

tangential components. Thus, ∇sp is the tangential component of the pressure gradi-

ent. Due to the boundary layer approximation, the normal component of the pressure

gradient is set to zero. Quantities ft and Q̄V
t refer to the tangential components of the

body force and the source term. The respective normal components of aforementioned

quantities are taken into account via the pressure term. Using the mean velocity (4.5),

the equation (4.8) becomes:

d

dt

∫
Sw

hv̄dS +

∮
∂Sw

m · (hvv + ξ)dL =
1

ρ

∫
Sfs≈Sw

τfsdS −
1

ρ

∫
Sw

τwdS

+

∫
Sw

hftdS −
1

ρ

∫
Sw

h∇spdS +
1

ρ

∫
Sw

Q̄V
t dS ,

(4.9)

where τw is the tangential viscous stress force at the substrate boundary defined as:

τw = nw · (µ∇v)w. The tangential viscous stress force at the free surface τfs is treated

as specified and the correction tensor ξ is defined as:

ξ =

∫ h

0

vvdh− hvv . (4.10)

The purpose of introducing the correction tensor ξ is to recover the difference in the

convection term due to the usage of the mean velocity instead of the velocity profile

function. Finally, the pressure term in equation (4.9) is reformulated according to the

product differentiation rule:

h∇sp = ∇s(hp)− p∇sh . (4.11)

This formulation ensures coupling of pressure and film thickness in the numerical pro-

cedure.

4.1.3. Liquid Film Velocity Profile

In order to determine the velocity profile, needed for calculation of the tangential

viscous stress force τw and correction tensor ξ in equation (4.9), a dimensionless distance
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η is introduced:

η =
h′

h
, (4.12)

where h′ is the corresponding dimensional distance from the substrate across the film

thickness: 0 ≤ h′ ≤ h. Using this dimensionless distance, velocity is expressed as:

v(η) = diag(vfs) · F(η) . (4.13)

Equation (4.13) stems from the assumption that the flow variables are similar in the

direction normal to substrate surface. The diagonal tensor diag(vfs) consist of compo-

nents of the film velocity at the free surface. Profile function F(η) is prescribed as:

F(η) = aη + bη2 + cη3 , (4.14)

where a,b and c are profile coefficients of the cubic polynomial, determined from the

boundary conditions, as it will be described later. To express the mean liquid film

velocity v̄, the profile integral vector I is introduced:

I =

∫ 1

0

F(η)dη =
1

2
a +

1

3
b +

1

4
c . (4.15)

Using the expression (4.15), the mean velocity is written as:

v̄ = diag(vfs) · I . (4.16)

Profile coefficients in equation (4.14) have to be determined from boundary conditions,

since they change in space and time. These boundary conditions are:

• at the substrate (η = 0):

F ′′i (0) = Ii
h2

µv̄i
[(∇sp)i − ρ(ft)i] , (4.17)

• at the free surface (η = 1):

Fi(1) = 1 , (4.18)

F ′i (1) = Ii
(τfs)ih

µv̄i
. (4.19)
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Index i in equations (4.17), (4.18) and (4.19) denotes i-th component of the Cartesian

vector and F ′i and F ′′i are the first and second derivatives of the profile function. Writing

out the profile function and its derivatives in accordance to (4.14) leads to a system of

linear algebraic equations:

ai + bi + ci = 1 ,

ai + 2bi + 3ci = Ii
(τfs)ih

µv̄i
,

2bi = Ii
h2

µv̄i
[(∇sp)i − ρ(ft)i] .

(4.20)

This system is then solved for the unknown coefficients ai, bi and ci. The quantities

(τfs)i, (ft)i, p, h and v̄i are treated as specified. So, once the profile coefficients are

calculated, the velocity profile is also determined, and the tangential viscous stress force

at the substrate can be calculated as:

τw =
µ

h
Γ · v̄ , (4.21)

with the diagonal tensor Γ is defined as:

Γ = diag−1(I) · diag[F′(0)] . (4.22)

Tangential viscous stress force, as defined in (4.21), tends to infinity when h = 0. To

avoid this, it is assumed that the whole area is pre-wetted by introducing the precursor

film thickness. Finally, for the calculation of the correction ξ, with the known profile

coefficients, the integral in equation (4.10) takes the following form:

Ivv =

∫ h

0

vvdh = diag2(vfs) ·
(

1

3
aa +

1

5
bb +

1

7
cc +

1

2
ab +

2

5
ac +

1

5
bc

)
. (4.23)

4.1.4. Liquid Film Pressure

The pressure term in the momentum equation (4.9) is written as a sum of two parts:

the capillary pressure due to the surface tension and the hydrostatic pressure due to

the normal component of body force vector. Capillary (or Laplace) pressure can be

expressed as:

pσ = −σC , (4.24)
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where σ is the surface tension coefficient and C is the mean interface curvature approx-

imated as:

C ≈
(

1

R1

+
1

R2

)
+

(
h

R2
1

+
h

R2
2

)
+∇s ·∇sh . (4.25)

In (4.25), R1 and R2 denote the principal radii of curvature of the substrate surface.

Under the assumption that the ratio between the film thickness and the minimal princi-

pal radii of substrate surface curvature is small enough, second term in equation (4.25)

is neglected. Therefore, the expression is reduced to:

C ≈ Cw +∇s · (∇sh) . (4.26)

Quantity Cw is the mean curvature of substrate surface expressed as:

Cw = ∇s · nw . (4.27)

The hydrostatic part of the pressure takes into account the normal components of the

body force:

ph = −nw · fh . (4.28)

With both capillary and hydrostatic pressure determined, the total liquid film pressure

is the following:

p = pσ + ph = −σCw − σ∇s · (∇sh)− nw · fh . (4.29)

4.2. Numerical Model

Numerical formulation presented in this section is taken from [35, 36].

4.2.1. Discretisation of Computational Domain

The computational domain consists of the time interval and the computational space.

Temporal discretisation is performed by splitting the time interval into a finite number

of time steps ∆t, of equal or varying durations. The equations are then solved in a time-

marching manner, so that the solutions in the current time instance t = tn depend on

the already determined ones from the previous time instance t = to. The two instances

are separated by the duration of time step: tn = to + ∆t.
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Spatial discretisation is performed on the curved substrate surface, so that the com-

putational space is completely covered by a finite number of non-overlapping control

areas (CA). The CAs are flat and convex polygons, bounded by an arbitrary number of

edges.

i

j

SP
P

Le

nP

N

SN

nNme

ne
e

e

Figure 4.5: Polygonal control area

Figure 4.5 shows two sample neighbouring CAs, denoted as SP and SN with their

respective unit normal vectors nP and nN pointing outward from the computational

points, P and N , located at their centroids. Their shared edge of length Le has its local

orthogonal coordinate system, determined by its vertices i and j.

Edge-based unit normal vector ne is calculated as an average of unit normal vectors

at the vertices:

ne =
ni + nj
|ni + nj|

. (4.30)

Unit bi-normal vector me is tangential to the discretised surface and points towards the

neighbouring CA. It is determined as orthogonal to the edge and its unit normal vector

ne, using the following relation:

me = e× ne , (4.31)

where e is the unit vector parallel to the edge.
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4.2.2. Discretisation of Mathematical Model

Fully discretised form of the momentum equation (4.9) for the control area SP reads

as:

3hnP v̄nP − 4hoP v̄oP + hooP v̄ooP
2∆t

SP +
∑
e

hne (m · v̄)neLe +
∑
e

(m · ξ)neLe =
1

ρ
(τfs)

n
PSP

−1

ρ
(τw)nPSP + hnP (ft)

n
PSP −

1

ρ
[∇s(hp)]

n
PSP +

1

ρ
pnP (∇sh)nPSP + (Q̄V

t )nPSP .

(4.32)

Here, subscript P refers to the centroid of the CA and subscript e refers to centre points

of its bounding edges. According to the FA method, surface integrals from (4.9) are

approximated by the face values defined at the centroid of CA, while the line integrals

are represented by sums of edge integrals. Both are approximated by using the midpoint

rule, which indicates second order accuracy. Superscript n refers to values at a new

time-level, o refers to values at the old time-level, and oo to values at the ”second old”

time-level, defined as too = to − ∆to – the three time-levels are due to the implicit

backward temporal discretisation scheme of second order accuracy. At the first time

step only one time-level is available, so the first order accurate Euler scheme is used for

temporal discretisation.

The edge-centre value of mean liquid film velocity is interpolated from corresponding

face-centre values using the expression which accounts for surface curvature:

v̄e = (Te)
T[exTP · v̄P + (1− ex)TN · v̄N ] , (4.33)

where TP , TN and Te are transformation tensors from the global Cartesian coordinate

system to the edge based local orthogonal system. Interpolation factor ex is defined as

the ratio of geodetic distances eN and PeN (Figure 4.5):

ex =
eN

PeN
. (4.34)

Other tensor or vector quantities at the edge centre are also interpolated using the

equation (4.33), while scalars, for example edge-centre value of film thickness, do not

need to be transformed from global to local coordinate system and are evaluated using

this expression:

he = exhP + (1− ex)hN . (4.35)
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Face-to-edge interpolation of convected velocity is performed using the deffered cor-

rection approach. Thus, the convection flux (m · ξ)ne is evaluated using the following

expression:

(m · ξ)ne = (Ivv)
n
e − hne (m · v̄)ne v̄

n
e , (4.36)

where integral (Ivv)
n
e is determined by linear interpolation of neighbouring face values.

The tangential viscous stress force at the substrate (τw)nP is also interpolated using the

deffered correction approach:

(τw)nP =
µ

hnP
max(Γn

P )v̄nP +
µ

hnP
[Γn

P −max(Γn
P )I] · v̄nP , (4.37)

which implies implicit treatment of the first term on the right hand side of the equation

and explicit treatment of the second (correction) term. Approximation of surface gra-

dients is carried out using the following expression, written out for the example of film

thickness:

(∇sh)P =
1

SP
(I− nPnP ) ·

∑
e

meheLe . (4.38)

The pressure term from (4.32) is obtained by discretisation of equation (4.29):

pP = −σPCP − σP (∇s ·∇sh)P − nP fPhP . (4.39)

The laplacian term from (4.39) is expressed as:

(∇s ·∇sh)P =
1

SP

∑
e

me · (∇sh)eLe , (4.40)

with edge bi-normal derivative calculated as:

me · (∇sh)e = |∆e|
hN − hP
LPN

+ ke · (∇sh)e . (4.41)

The first term of the right hand side of equation (4.41) represents the orthogonal contri-

bution while the second term represent the non-orthogonal correction. Hence, quantity

∆e represents the orthogonal part of the unit bi-normal me defined as:

∆e =
te

te ·me

, (4.42)

where te stands for the unit vector tangential to the geodetic line PeN at the edge

centre e. Quantity LPN in the orthogonal contribution from equation (4.41) is the
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length of mentioned geodetic distance PeN . Finally, the non-orthogonal part of the

unit bi-normal me is calculated as:

ke = ∆e −me . (4.43)

The described procedure allows equation (4.32) to be written as a linear algebraic

expression:

avP v̄nP +
∑
N

avN v̄nN = rvP −
1

ρ
{[∇s(hp)]

n
P − pnP (∇sh)nP} , (4.44)

with the diagonal coefficient aP , the neighbouring coefficients aN and the source term

rP all depending on the unknown film thickness and velocity.

The continuity equation (4.6) for the control area CA takes this fully discretised

form:
3hnP − 4hoP + hooP

2∆t
SP +

∑
e

(m · v̄)neh
n
eLe = (Q̄m)nPSP . (4.45)

To achieve effective coupling between film thickness and velocity, bi-normal edge velocity

(m·v̄)ne is calculated using the momentum interpolation method. The face value velocity

is expressed from equation (4.44) as:

v̄P =
HP (v̄n)

avP
− 1

avP

1

ρ
{[∇s(hp)]

n
P − pnP (∇sh)nP} , (4.46)

with:

HP (v̄n) = −
∑
N

avN v̄nN + rvP . (4.47)

Therefore, the bi-normal edge velocity becomes:

(m · v̄)ne = me ·
(

H

a

)n
e

−
(

1

a

)n
e

1

ρ
{me · [∇s(hp)]

n
e − pneme · (∇sh)ne} , (4.48)

where terms (H/a)ne and (1/a)ne are calculated using face-to-edge linear interpolation.

Finally, the continuity equation (4.45) takes the following linear algebraic form:

ahPh
n
P +

∑
N

ahNh
n
N = rhP . (4.49)

4.3. liquidFilmFoam Solver

The current version of foam-extend2 utilizes a modified thin liquid film mathemat-

ical formulation. The key difference lies in the handling of viscous stress term τw.

2foam-extend 4.0
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The viscous stress term is calculated using a version of Manning’s formula [37]. First,

the friction factor Cf is calculated using standard gravity for stabilisation:

Cf =
2 · 9, 81M2

(h+ 1 · 10−7)1/3
, (4.50)

where M is the internal field value of Manning field coefficient, usually set to 0, 01

m, for smooth surfaces. Using the friction factor based on Manning coefficient and

film thickness h, makes this formulation practical for cases with material-based surface

friction [38].

With the surface friction factor Cf determined, the viscous stress is the following:

τw = 0, 0125Cf |v̄|v̄ , (4.51)

where |v̄| is the mean velocity magnitude. Major consequence of this formulation is that

the velocity profile becomes obsolete: in previous formulation (Section 4.1.), the shape

of the velocity profile determined the viscous drag on the wall. Here, the wall drag is

calculated using the material-sensitive Manning’s coefficient, meaning that the velocity

profile is a consequence of the wall drag and not vice versa [39].

Thus, the correction tensor ξ can be neglected from the momentum equation (4.9),

reducing it to the following form:

d

dt

∫
Sw

hv̄dS +

∮
∂Sw

m · (hvv)dL =
1

ρ

∫
Sfs≈Sw

τfsdS −
1

ρ

∫
Sw

τwdS

+

∫
Sw

hftdS −
1

ρ

∫
Sw

h∇spdS .

(4.52)

Since none of the momentum source terms were considered in this thesis, term Q̄V
t from

equation (4.9) is also neglected. Similarly, in the continuity equation (4.6), mass source

term Q̄m is set to zero, making the continuity equation read as:∫
Sw

∂h

∂t
dS +

∮
Lio

hm · v̄dL = 0 . (4.53)

Discretisation procedure remains as described in Section 4.2.

4.4. Conclusion

Using the prescribed cubic polynomial velocity distribution implies that the velocity

at the substrate is equal to zero. This is in accordance with the no-slip boundary
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condition. However, as shown by [40], when applied to two-phase flows, no-slip boundary

condition leads to a stress singularity at the contact line. This is described in Section

4.1.3., where equation (4.21) shows that the tangential viscous stress at the substrate

τw tends to infinity when h = 0. Resolution of this contact line singularity is achieved

by assuming that the whole substrate area is pre-wetted with a microscopic liquid film

called precursor film. The precursor film thickness hp is greater than zero, thus solution

of equation (4.21) becomes definite.

Although the formulation of thin liquid film model, as described in Section 4.3.,

neglects the velocity profile, the assumption of precursor film is still justified. Reducing

the film thickness h to zero would bring inconsistency to the momentum equation (4.52).

Direct implication of adopting the precursor film thickness is that of complete wet-

ting. In other words, the thin liquid film formulation as given in this chapter represents

the whole computational domain as the free surface between the fluids, which makes it

unsuitable for simulations of partial wetting.

Thus, an expanded formulation of the thin liquid model is given in Chapter 5.,

which allows simulation of liquid-wall interaction. Numerical solution procedure for the

expanded model is also given within the following chapter.



Chapter 5.

Modelling of Wall Wetting

A mathematical description of wall wetting was implemented in the CFD toolbox

foam-extend, using two distinctive approaches. The first approach uses the 3-D Volume

of Fluid method, in foam-extend realized within the interFoam solver. In interFoam,

liquid-wall interaction is described using a boundary condition. Mathematical and nu-

merical formulation of the boundary condition is given in Section 5.1.

The second approach uses the 2-D thin liquid film model, realized in the liquidFilmFoam

solver within the foam-extend CFD toolbox. Here, the wall wetting is modelled by

adding a force term directly into the momentum equation, resulting in a new thin liquid

film mathematical formulation. The formulation is given in Section 5.2.

5.1. Volume of Fluid

5.1.1. Specification of Interface Normal

For physically accurate description of wetting, the boundary of interest is the wall,

i.e. the impermeable solid substrate. With this solid boundary the liquid forms a contact

angle which governs the spreading. In interFoam, this is accounted for by specifying

the interface normal nI needed for the calculation of interface curvature at the wall

boundary [15]:

nI = nw cos θe + nt sin θe . (5.1)

In the above equation, nw is the unit normal vector to the wall boundary pointing

towards the wall and nt is the unit tangential vector to the wall pointing towards the

47
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liquid. This formulation uses the static equilibrium contact angle θe for specification of

the interface normal nI . However, as it was described in Chapter 2., using a constant

value of the contact angle is insufficient since liquid tends to assume varied contact

angles in dynamic situations. Thus, the equation (5.1) is rewritten in a more general

form:

nI = nw cos θ + nt sin θ , (5.2)

using the apparent contact angle θ instead of the equilibrium contact angle θe. The

calculation of θ is described within the following section.

Considering that the interface normal is defined by (3.18):

nI =
∇α
|∇α| ,

the corrected value of nI from (5.2) is used to adjust the gradient of the indicator

function α at the wall boundary, thus limiting the liquid spreading.

5.1.2. Dynamic Contact Angle

Existing dynamic contact angle models were discussed in Section 2.4. Since the

nature of liquid spreading is yet to be fully understood by science, it is hard to find a

model which would accurately describe the contact line motion in all possible scenarios.

Models based on the molecular-kinetic theory are generally more consistent with the

nature of liquid spreading. However, the price comes in form of their complexity: these

models take into account the microscopic morphology of the substrate and thus reach

out of the scope of continuum mechanics.

Models based on the hydrodynamic theory neglect microscopic properties of the

substrate and consequently have a simpler mathematical formulation. However, the

Cox-Voinov model (2.8) and its simplified version, the Hoffman-Voinov-Tanner law (2.7),

are both limited by the contact line velocity and can be used only for surface tension

dominated flows with Ca < 1. A model without this limitation is that of Kistler (2.4):

θd = fH(Ca + f−1H (θe)) ,

with the Hoffman function defined by (2.5):

fH = arccos

{
1− 2 tanh

[
5.16

[ x

1 + 1.13x0.99

]0.706]}
.
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Due to its applicability to the full range of liquid velocities, the model above was im-

plemented into the VoF-based interFoam solver.

In order to calculate the local capillary number Ca used in equation (2.4), local

contact line velocity has to be specified.

Several ways of modelling the contact line velocity can be found in literature. The

conventional approach, as used in [41], estimates the contact line velocity as a wall

parallel projection of the interface-normal component of the cell-centre velocity:

(vcl)P =
nI − (nb · nI)nb
|nI − (nb · nI)nb|

· vP , (5.3)

where nI is the unit normal to the interface from (3.18) and nb is the unit normal

vector to the substrate boundary. Subscript P denotes the cell-centred values. However,

velocity calculated by expression (5.3) is not physical, as shown in [42], and has to be

corrected with the following expression:

(vcl,calculated)P = (vcl)P
θ sin2 θ

θ − cos θ sin θ
, (5.4)

where θ stands for the apparent contact angle, determined from the old time-level of

the indicator function gradient.

In [27], velocity of the contact line propagation is calculated using the following

expression:

(vcl)P =
vP · nI√

1− nb · nI
. (5.5)

Expression (5.5) was also used for the estimation of the contact line velocity in this

thesis.

Once the contact line velocity is determined, local capillary number is calculated

using the equation (5.18):

CaP =
µ(vcl)P
σ

.

The apparent contact angle can be then determined using the Kistler’s model (2.4),

where the equilibrium contact angle θe would be equal to receding or advancing contact

angle, depending on the contact line propagation direction. Determination of the propa-

gation direction is performed using the procedure given by [27], where the computational

point velocity is compared to the interface normal:

v̄P · (ncl)P > 0 , (5.6)
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v̄P · (ncl)P < 0 . (5.7)

If expression (5.6) is true, the computational cell is identified as a part of the advancing

front and equation (2.4) is calculated with θe = θa. In the opposite case, when (5.7) is

true, the cell is a part of the receding front and θe = θr is used.

With the dynamic contact angle determined, new-time level interface normal nI is

calculated using the expression (5.1):

nI = nw cos θ + nt sin θ .

Resulting interface normal aligns the indicator function gradient at the solid boundary,

used for the calculation of curvature in the surface tension term fσ, thus introducing the

liquid-wall interaction into the momentum equation 3.16:

∂(ρv)

∂t
+∇ · (ρvv)−∇ · (µ∇v) = −∇p+ ρg + fσ + (∇v) · (∇µ) .

5.2. Thin Liquid Film

5.2.1. Introduction

The formulation of thin liquid film model implemented in liquidFilmFoam assumes

the state of complete wetting, due to the usage of percursor film thickness. To take into

account phenomena which emerges as the result of partial wetting, area wetted with

precursor film must be considered as dry. Accordingly, film of greater height than that

of the precursor must be treated as a macroscopic liquid object.

As described in Chapter 2., partial wetting is inherently linked to the existence of

contact angles. A surface-tangential force due to interaction of surface tensions at the

contact line governs the dynamic behaviour of the liquid object. Quantity of this force in

isothermal conditions varies only with the variation of the contact angle. Thus, to enable

modelling of partial wetting flows (such as flows of droplets and rivulets), an additional

term must be included into the momentum equation (4.9), where the influence of the

contact angle would be accounted for.

Disjoining Pressure Approach

In thin liquid film theory, a common approach is to model the contact line behaviour

using the disjoining pressure term, first introduced by [43, 44]. For example in [45], this
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term is added into the stress balance condition at the free surface:

n · (−pI + σ) · n = σκ+ Π(h) . (5.8)

Here, n is the unit normal vector to the free surface, p is the pressure, I is the identity

matrix and σ is the viscous stress tensor. The normal component of the stresses is

mechanically balanced out by the surface tension σκ, where σ is the surface tension

coefficient and κ is the interface curvature, and by the disjoining pressure, Π(h), which

takes into account the influence of intermolecular forces. Disjoining pressure is a function

of film thickness h. In [46], it is defined as:

Π(h) =
B

hnp

[(
hp
h

)n
+

(
hp
h

)m]
, (5.9)

where hp is the precursor film thickness and coefficients (n,m) are such that n > m > 1.

For example, [47] used values (3, 2) for (n,m) and [46] used (9, 3). An important relation

between the disjoining pressure Π(h) and the equilibrium contact angle θe was given by

[47]:

cos θe = 1− 1

σ

∫ ∞
hp

Π(h)dh , (5.10)

which allows the coefficient B from (5.9) to be expressed in terms of the equilibrium

contact angle. Thus, [45] gives this final relation for the disjoining pressure:

Π(h) =
(n− 1)(m− 1)σ(1− cos θe)

(n−m)hp

[(
hp
h

)n
+

(
hp
h

)m]
. (5.11)

From equation (5.11), it follows that the disjoining pressure depends only on the film

thickness h, since quantities m, n, hp are all constants, while σ and θe remain constant

in isothermal conditions. However, a drawback of this approach is the fact that the

disjoining pressure term is calculated across the entirety of the domain, while, from the

perspective of physics, the effect of intermolecular forces is only observed at the contact

line. Also, as seen in (5.10), disjoining pressure is linked to the equilibrium contact

angle. Thus, applying a dynamic contact angle model to the relation (5.10) would be

questionable.

Tangential Tension Approach

Different, less common approach to modelling the contact line behaviour in the thin

liquid film theory, is including the contact angle influence into the tangential stress
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term. This approach was successfully implemented and validated through simulation of

a rivulet flow in [48]. Here, the tangential stress term includes influences of the viscous

forces at the substrate, the tangential component of the body force and the stress due

to contact angle force. This force is denoted as tangential force due to surface tension

and defined as:

Fσ = σ + σls − σgs . (5.12)

It is important to point out that while Fσ is denoted as force, it is not a vectorial

quantity and has a dimension of force per unit length. Using Young’s equation (2.1) to

express the surface tension at the gas-solid interface, relation (5.12) becomes:

Fσ = σ(1− cos θ) , (5.13)

where θ refers to the apparent contact angle at the contact line. Force Fσ is then

included into tangential stress due to contact angle τθ as:

τθ = β
σ(1− cos θ)

∆cl

ncl , (5.14)

where ∆cl is the computational cell width in the direction normal to the contact line,

ncl is the unit normal vector to the contact line in the surface-tangential plane and β is

an empirical coefficient introduced to account for discrepancies between the theory and

observed behaviour of real surfaces.

This approach has the same drawback as the disjoining pressure approach: the stress

term is calculated across the whole domain and thus introduces a tangential tension

component inconsistent with the physical description of the phenomenon. However,

since (5.14) is a function of the apparent contact angle it allows usage of a dynamic

contact angle model. In [48], the apparent contact angle was approximated statistically,

using a normal distribution with the equilibrium contact angle as a mean value.

5.2.2. Momentum Equation for Partial Wetting

As described in Section 4.1.2., the body force and source terms acting upon the

liquid film are split into their normal and tangential components. Normal influence

of surface tension is modelled through the capillary pressure term pσ (Section 4.1.4.,

equation (4.24)). Tangential influence of surface tension, affected by the contact angle,

has to be written into its separate term.
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To achieve this, a slightly modified formulation of the tangential tension approach

from [48] was used. The major difference lies in the contact line treatment. While in

[48], the tangential influence was calculated throughout the entirety of the domain, here

it was attempted to keep the mathematical formulation as close to the observed physical

behaviour as possible. Thus, the contact angle influence is calculated only at the contact

line location.

To keep the mathematical model unburdened by numerical quantities, the tangential

stress is expressed as contact angle force per unit length:

fθ = βσ(1− cos θ)ncl , (5.15)

and included the into momentum equation (4.52) as a line integral. Thus, the final form

of the momentum equation for partial wetting is the following:

d

dt

∫
Sw

hv̄dS +

∮
∂Sw

m · (hvv)dL =
1

ρ

∫
Sfs

τfsdS −
1

ρ

∫
Sw

τwdS

+
1

ρ

∮
Lcl

fθdL+

∫
Sw

hftdS −
1

ρ

∫
Sw

h∇spdS .

(5.16)

Integration of contact angle force fθ across the contact line length Lcl enhances the fact

that this force exists only at the location of gas-liquid-solid interface.

Inclusion of the contact angle influence is not the only difference between the partial

wetting and the complete wetting model. The stress term at the free surface, in the

complete wetting momentum equation (4.9), was integrated over the substrate surface

area, under the assumption that the difference between free surface and substrate area

is negligible. However, for partial wetting flows this approximation does not hold up.

Macroscopic liquid objects such as droplets and rivulets have considerable curvature of

the interface, which makes their free surface shape entirely different from that of the

substrate.

To calculate the contact angle force fθ needed for the momentum equation, the

contact angle θ must be specified. The calculation of the contact angle follows a similar

procedure as in the VoF method, described in Section 5.1.2., with the key differences

outlined in Section 5.2.4.
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5.2.3. Numerical Model for Partial Wetting

In the previous section, a line integral was added into the momentum equation (5.16):

1

ρ

∮
Lcl

fθdL ,

to model the dynamic behaviour of the contact line. However, considering the FAM

principles, this integral cannot be discretised in the same manner as line integrals, since

those are treated as sums of edge integrals. Contact line spreads itself somewhere across

the width of the CA and it does not envelop all of the bounding edges. Therefore,

relevant quantities for the contact angle force should be evaluated at face centroids and

the integral should be numerically treated as a surface integral.

Inherent quality of the contact angle force is that it acts only upon the location of

the gas-liquid-substrate interface. This would be justified by applying the force only

to CAs which contain the contact line, while treating the rest with the momentum

equation (4.32) which assumes complete wetting. Thus, first the ”partially wet” CAs

must be identified as such and then a discretised form of the contact angle force should

be applied only to them.

Contact Line Location

h

h > hp

hp

θ

Figure 5.1: Droplet with precursor film
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Thin liquid film model introduces the precursor film thickness in order to avoid

singularities at the contact line. However, this leads to the conclusion that the whole

substrate surface is wetted. In order to separate the macroscopic liquid objects from

the precursor film, first the location of the contact line must be determined.

Figure 5.1 shows a side-view of a droplet deposited onto a substrate pre-wetted by

a precursor film of uniform thickness hp. The contact line is found where an abrupt

change of thickness gradient takes place. At the location, an apparent contact angle can

be measured, since the change in thickness introduces free surface curvature.

Considering that FAM is a two-dimensional method, information of the third dimen-

sion, the film thickness distribution, is carried within the control area face-centre values.

Thus, from the FAM point of view, a droplet is seen as a set of all control areas where

the average face-centre value of thickness is greater than the precursor film thickness

(Figure 5.2). In other words, CAs with face-centre thickness equal to hp are considered

completely dry. Since the precursor film is uniformly distributed across the whole dry

spatial domain, interpolated edge-centre thickness values for dry CAs will also be equal

to hp.

h > hp

h = hp

contact line

dry control areas

Figure 5.2: Droplet represented by finite area mesh
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N

P

h > hp

h = hp

Figure 5.3: Contact line location in the control area

The partially wet CAs (where the contact line exists) inevitably have face-centre

thickness greater than the dry CAs. However, partially wet CAs need to have at least

one edge-centre value of thickness equal to hp as they share an edge with a dry CA, as

illustrated in Figure 5.3. Thus, CAs which contain the contact line can be determined

as those which have at least one completely dry neighbouring CA.

5.2.4. Discretisation of the Contact Angle Force

The contact angle force is given by the equation (5.15) as:

fθ = βσ(1− cos θ)ncl .

Film thickness represents the quantity which separates wet from dry areas and the unit

normal vector to the contact line ncl can be expressed with the relation developed for

the continuum surface force model by [30]:

(ncl)P =
(∇sh)P
|(∇sh)P |

, (5.17)

with the thickness surface gradient used as the color-function. The face-centre gradient

(∇sh)P is approximated using the expression (4.38).

In order to calculate the apparent contact angle θ using the Kistler’s model (2.4)

local capillary number has to be known:

CaP =
µ(vcl)P
σ

, (5.18)
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with vcl being the contact line velocity. Several ways of modelling the contact line

velocity were given in Section 5.1., all of which represent the velocity as a function of

dot-product nw · ncl. In FAM, the normal to contact line ncl is defined as tangential

to the substrate surface. Thus, the dot-product is equal to zero, and both expressions

(5.3) and (5.5) get reduced to:

(vcl)P = (ncl)P · v̄P . (5.19)

Once the contact line velocity is determined, local capillary number is calculated using

the equation (5.18). The apparent contact angle can be then expressed using Kistler’s

model (2.4):

θP = fH(CaP + f−1H (θe)) ,

with θe taking the values of the advancing θa or the receding contact angle θr, depending

on the contact line velocity direction.

With the contact angle force fθ determined, the additional line integral from (5.16)

can be approximated as:

1

ρ

∮
Lcl

fθdL ≈
1

ρ

(
fθ
LPN

)n
P

SP , (5.20)

and added into equation (4.32). Quantity LPN stands for the length of geodetic distance

PeN (Figure 4.5), included to keep dimensional consistency. Having the tangential term

inversely proportional to the geodetic distance introduces high mesh dependency on the

solution.

Finally, the fully discretised momentum equation for the partially wet CAs reads as:

avP v̄nP +
∑
N

avN v̄nN = rvP −
1

ρ
{[∇s(hp)]

n
P − pnP (∇sh)nP} , (5.21)

with the contact angle force term 1
ρ
(fθ/LPN)nP included into the source term rvP , together

with other tangential contributions.

5.2.5. Solution Procedure

Numerical solution procedure is composed of these steps:

1. switch to the new time step and initialise the values of all dependent variables

with the values from the previous time step;
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2. update velocity profiles for all computational points in the mesh;

3. identify partially wetted cells;

4. for partially wetted cells:

(a) calculate interface normal in the surface-tangential plane from (5.17):

(ncl)P =
(∇sh)P
|(∇sh)P |

,

(b) calculate contact line propagation velocity using (5.19):

(vcl)P = (ncl)P · v̄P ,

and identify the front as advancing or receding with (5.6) and (5.7):

v̄P · (ncl)P > 0 (advancing front) ,

v̄P · (ncl)P < 0 (receding front) ;

(c) calculate the local capillary number from (5.18):

CaP =
µ(vcl)P
σ

,

(d) calculate the dynamic contact angle using (2.4):

• for advancing front:

(θd)P = fH(CaP + f−1H (θa)) ,

• for receding front:

(θd)P = fH(CaP + f−1H (θr)) ;

(e) calculate the contact angle force from (5.15):

fθ = βσ(1− cos θ)ncl .

(f) assemble the momentum equation (5.21) for partially wetted CAs:

avP v̄nP +
∑
N

avN v̄nN = rvP −
1

ρ
{[∇s(hp)]

n
P − pnP (∇sh)nP} ,

with the contact angle force term 1
ρ
(fθ/LPN)nP included into the source term

rvP ;
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5. assemble the momentum equation (4.44) for every completely wetted and dry CAs:

avP v̄nP +
∑
N

avN v̄nN = rvP −
1

ρ
{[∇s(hp)]

n
P − pnP (∇sh)nP} ;

6. assemble equations (5.21) and (4.44) into:

[Av][v̄] = [rv] , (5.22)

where [Av] is a sparse matrix consisted of coefficients avP on the diagonal and avN

off the diagonal, [v̄] is a vector consisting of the mean film velocity for each CA

and [rv] is a vector consisting of right hand side of equations and for each CA in

the mesh;

7. solve equation (5.22) for average film velocity v̄;

8. calculate the edge bi-normal velocity using (4.48):

(m · v̄)ne = me ·
(

H

a

)n
e

−
(

1

a

)n
e

1

ρ
{me · [∇s(hp)]

n
e − pneme · (∇sh)ne} ;

9. write the continuity equation (4.49) for each CA:

ahPh
n
P +

∑
N

ahNh
n
N = rhP ;

10. assemble equation (4.49) into:

[Ah][h] = [rh] , (5.23)

with [Ah] being a sparse matrix consisted of coefficients ahP and ahN , [h] vector

containing film thickness values for every CA and [rh] being the vector containing

right hand sides of equation for every CA in the mesh;

11. solve equation (5.23) for film thickness h;

12. update liquid film pressure using (4.39):

pP = −σPCP − σP (∇s ·∇sh)P − nP fPhP ;

13. return to step 1 if converged solution is reached, otherwise return to step 2.
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Results

Boundary condition written for the interFoam solver was tested by performing

a simulation of water droplet impact onto an inclined plate (Section 6.1.). The re-

sults were compared to experimental data. Same experiment could not be recreated

in liquidFilmFoam solver, due to its limitation to contact angles less or equal to 90◦.

Instead, a rivulet flow simulation was performed and compared to experimental and

numerical data (Section 6.2.). Methods were compared using a case of droplet exposed

to shear flow on an inclined plate (Section 6.3.).

6.1. Wetting of an Inclined Plate with VoF method

6.1.1. Experimental Set-Up

Droplets impacting inclined, dry walls were studied experimentally in [49], using

high resolution digital photography and short exposure times. The geometry of impact

is given in Figure 6.1 (a). Inclination angle α is defined as the angle between the droplet

velocity vector (parallel to gravity and denoted with u in [49]) and the tangent to the

plate.

Definition of measured quantities is shown in Figure 6.1 (b). Here xback refers to the

length of the contact line in backwards direction from the point of impact. Similarly,

xfront is the contact line elongation in forward direction from the point of impact. Length

ya refers to the droplet height.

60
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Figure 6.1: Geometry of droplet impact (a) and side view of a droplet on an

inclined surface (b)

The aforesaid parameters were made dimensionless by dividing them with the droplet

initial diameter:

x∗ =
x

D
. (6.1)

Spread factor x∗ from the equation above determines the amount of spreading: front

spread factor is defined for x = xfront and back spread factor is defined for x = xback.

Time is also made dimensionless by multiplying it with the ratio of impact velocity

magnitude v and initial diameter D:

t∗ =
tv

D
. (6.2)

Instant t∗ = 0 corresponds to the droplet’s first contact with the surface. Another

quantity of interest is the initial Weber number, which represents the ratio of inertia to

surface tension forces:

We =
ρv2D

σ
, (6.3)

where ρ is the liquid density, v the initial velocity magnitude, D the initial droplet

diameter and σ the surface tension coefficient. Liquid and substrate properties are

shown in Table 6.1.
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Table 6.1: Water and substrate properties

Smooth glass hysteresis θr = 6◦, θa = 10◦

Smooth wax hysteresis θr = 95◦, θa = 105◦

Surface tension, [N/m] 0,073

Dynamic viscosity, [mPas] 1,0

Density, [kg/m3] 996

Droplet diameter, [mm] 2,7

6.1.2. Case Set-Up

In order to test the contact angle boundary condition, three experimental cases were

numerically recreated:

• droplet impacting smooth glass substrate, α = 10◦ and We = 391;

• droplet impacting wax substrate, α = 10◦ and We = 391;

• droplet impacting smooth glass substrate, α = 45◦ and We = 90.

The computational domain for all cases consists of a rectangular cuboid of dimensions

6 × 14 × 4 mm3, with one of the boundaries representing the substrate and other 5

representing the atmosphere (Figure 6.2). Types of boundary conditions used at these

boundary patches are given in Table 6.2.

substrate

atmosphere

Figure 6.2: Computational domain for interFoam simulations

The wax substrate case used orthogonal mesh of 2, 7·106 cells, with 0, 05×0, 05×0, 02

mm3 being the dimensions of the cells at the substrate boundary. Glass substrate cases
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used coarser mesh of 420 · 103 cells, with cells of dimensions 0, 1 × 0, 1 × 0, 03 mm3

at the substrate boundary. Since it was determined that the mesh resolution did not

significantly affect results for the glass substrate cases, additional mesh refinement was

not performed.

Initial position and velocity of the droplet is specified using setFields utility. Plate

inclination angle is accounted for by rotating the gravity vector. All cases used ad-

justable time step, with the maximum Courant number of 0,2. Numerical schemes used

for interFoam simulations are given in Table 6.3.

Table 6.2: Boundary condition types

Substrate

Velocity fixedValue

Pressure fixedFluxPressure

Water phase fraction dynamicKistlerAlphaContactAngle

Atmosphere

Velocity pressureInletOutletVelocity

Pressure totalPressure

Water phase fraction inletOutlet
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Table 6.3: Finite volume numerical schemes

Time schemes

default Euler

Gradient schemes

default Gauss linear

grad(U) Gauss linear

alpha1 Gauss linear

Divergence schemes

div(rho*phi,U) Gauss limitedLinearV 1

div(phi,alpha) Gauss Gamma 0.2

div(phirb,alpha) Gauss interfaceCompression

Laplacian schemes

default Gauss linear corrected

Interpolation schemes

default linear

Surface normal gradient schemes

default corrected

6.1.3. Results

Comparison of numerically predicted and experimentally determined droplet shape

evolution for the case of smooth glass substrate, inclination angle of α = 10◦ and Weber

number We = 391 is shown in Figure 6.3. Time between the exposures is 1 ms.

Experiments confirmed that upon impacting glass, a highly hydrophilic substrate,

droplet should experience only spreading motion. Numerical results, however, showed

both spreading and sliding motion. The failure to capture this local contact line pinning

is apparent in Figure 6.5. While the elongation in forward direction showed excellent

agreement with the experiment, the backward spread factor progressively deviated in

time.

Shape-wise comparison for the case of smooth wax substrate, inclination angle α =

10◦ and Weber number We = 391 is shown in Figure 6.4. Opposed to glass, wax is

a hydrophobic substrate, and allows both spreading and sliding motion. However, the
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sliding motion achieved by the simulation was moderately exaggerated compared to the

experiment, which is evident in the backward spread factor curve shown in Figure 6.6.

Estimation of front spread factor again showed excellent agreement with the experiment.

Figure 6.3: Deposition of water droplet on a smooth glass substrate

Figure 6.4: Deposition of water droplet on a wax substrate
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Figure 6.5: Spread factor for a smooth glass substrate, α = 10◦ and We = 391



Chapter 6. Results 67

10−2 10−1 100 101

t∗, [ - ]

−2

−1

0

1

2

3

4

5

x
/D

,[
-]

front
back
front, experimental
back, experimental

Figure 6.6: Spread factor for a wax substrate, α = 10◦ and We = 391

Figure 6.7 shows spread factors for the case of a smooth glass substrate, inclination

angle α = 45◦ and Weber number We = 90. The increase of surface tension influence,

compared to previous cases, had a negative effect on the results: back spread factor

is highly overestimated and front spread factor moderately in later stage of droplet

deposition. Prediction of droplet apex height (Figure 6.8) exhibited excellent agreement

with the experiment.
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Figure 6.7: Spread factor for a smooth glass substrate, α = 45◦ and We = 90
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Figure 6.8: Droplet height for a smooth glass substrate, α = 45◦ and We = 90

Discrepancies between the experiments and numerical results regarding the receding

motion could be due to the contact angle model itself. While the contact line should

locally impinge on the glass substrate (Figure 6.5), simulation predicted sliding motion.

Impingement is a consequence of the contact angle hysteresis and represents a static sit-

uation. Kistler’s contact angle model, by its definition, calculates only dynamic contact

angles, outside of the hysteresis band. Thus, receding motion problems could potentially

be solved by expanding the boundary condition so that it takes contact angle hysteresis
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into account.

Negative effects of increased surface tension influence on the results could be linked

to numerical errors in calculation of 3-D gradients, needed for interface curvature terms.

This is a well-know issue in literature, and it is described for example in [50].

6.2. Rivulet Flow with Thin Liquid Film Model

6.2.1. Experimental Set-Up

In order to validate their model for partial wetting, [48] conducted experimental

simulation of rivulet flow, using test apparatus specially designed to generate uniform

water flow. A vertical cast acrylic plate (0, 61 m wide and 1, 22 m long) was used as

a substrate. Heated tap water (43◦) was discharged onto the upper end of the plate

through laterally positioned perforated copper tube (1, 27 cm diameter and 0, 51 m

long). Water was discharged onto the plate out of sixty holes of 1 mm diameter. In

order to achieve uniform initial flow, prior to impacting the plate, water streams were

forced through a diffusive medium attached to the upper end of the plate. Water flow

rates were measured using a flow meter and images were captured using an IR camera.

Heated water properties are shown in Table 6.4.

Table 6.4: Water properties at 43◦

Surface tension, [N/m] 0,0696

Dynamic viscosity, [mPas] 0,618

Density, [kg/m3] 991

6.2.2. Case Set-Up

In [48], rivulet flow was observed for low flow rates. In this thesis, the case of

water being discharged onto vertically positioned plate at flow rate Γ = 73 g/m/s was

numerically recreated. The flow rate was approximated by specifying the film thickness

at the inlet boundary with value of 9, 24 · 10−5 m and by specifying the internal field

with velocity of magnitude 1,56 m/s.
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The computational domain is a rectangle of dimensions 0, 61 × 1, 22 m2 (Figure

6.9). Upper edge is denoted as inlet. Here the initial film thickness is specified, using

fixedValue boundary condition type, with value given by a non-uniform scalar list.

Velocity at the inlet uses zeroGradient boundary condition type. Other three edges

are denoted as atmosphere. Both velocity and film thickness at atmosphere edges use

zeroGradient boundary condition type. Internal field value of Manning field, needed

for viscous stress calculation, is set at 0,01 m.

atmosphere

inlet

Figure 6.9: Computational domain for liquidFilmFoam simulations

In order to test mesh-dependency, three grid sizes were considered:

• coarse mesh of 61× 122 control areas, with edge length of 10 mm;

• medium mesh of 122× 244 control areas, with edge length of 5 mm;

• fine mesh of 244× 488 control areas, with edge length of 2,5 mm.

Water on an acrylic substrate has the equilibrium contact angle in the range of

70◦. Numerical simulation in [48] used statistical approach for determining dynamic

contact angles, with standard deviation of 10◦ and a mean value of 75◦. Thin liquid film

formulation used in this thesis, uses Kistler’s model for calculation of dynamic contact

angles. Thus, here the receding contact angle is specified as θr = 66◦ and the advancing

contact angle is specified as θa = 76◦.

All cases used adjustable time step, with the maximum Courant number of 0,2.

Numerical schemes used for liquidFilmFoam simulations are given in Table 6.5.
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Table 6.5: Finite area numerical schemes

Time schemes

ddt(h,Us) Euler

ddt(h) Euler

Gradient schemes

default Gauss linear

grad(p) Gauss linear

Divergence schemes

default none

div(phis,h) Gauss upwind

div(phi2s,Us) Gauss upwind

Laplacian schemes

default none

laplacian(h) Gauss linear corrected

Interpolation schemes

default linear

Surface normal gradient schemes

default corrected

6.2.3. Results

A qualitative visual comparison of the flow behaviour achieved in experimental con-

ditions and by numerical simulation from [48] is shown in Figure 6.10. Experiments

observed meandering flow for low flow rates. This break-up of liquid into meander-

ing streams occurs due to fluctuations at the inlet, surface roughness of the substrate,

thermocapillary instabilites and other causes of upstream disturbances. Simulation per-

formed by [48], achieved this behaviour by statistical treatment of the contact angle: at

each computational cell a random contact angle is chosen from a normal distribution

and is fixed for the duration of the calculation. The result of this approach is a contact

angle that varies over the surface in a random manner. This gives rise to non-uniform

flow and leads to the formation of rivulets and dry regions.
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Figure 6.10: Rivulet flow - experiment (left), numerical solution (right)

Since contact angle model used in liquidFilmFoam depends on the velocity and

substrate-liquid combination, the velocity vector was inclined at 1◦ in respect to the

gravity axis, in order to introduce numerical error which would cause non-uniform ve-

locity distribution across the computational space.

This method did yield a meandering flow, however, it took longer for the distur-

bance to propagate, causing a flooded flow at the top of the domain and rivulet flow

at the bottom, as visible in Figure 6.11, 6.12 and 6.13. The flooded flow showed ten-

dency to propagate in time, meaning that the contact angle force, as implemented in

liquidFilmFoam, was not able to counteract the effects of inertia.

To test the mesh-dependency of the solution, three uniform grid spacings were con-

sidered:

• a coarse mesh, with edge length of 10 mm (Figure 6.11);

• a medium mesh, with edge length of 5 mm (Figure 6.12);

• a fine mesh, with edge length of 2,5 mm (Figure 6.13).

Numerical solution from [48] used uniform grid spacing of 3,8 mm.
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Figure 6.11: Rivulet flow - coarse mesh
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Figure 6.12: Rivulet flow - medium mesh
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Figure 6.13: Rivulet flow - fine mesh

Mesh resolution has a two-fold effect on the solution:

1. Coarse mesh produced thick streams, as visible in Figure 6.11. Decreasing the edge

length of the control area produced narrow streams and also captured individual

droplets separating, as seen in Figure 6.13. In order to obtain physically consistent

solutions, numerical length scales have to be appropriate. For rivulets and droplet

flows, this implies very fine mesh resolutions.

2. In order to keep the dimensional consistency, the contact angle force was divided

with the geodetic distance between the neighbouring computational cell centroids.

This leads to inverse proportionality: small geodetic distance implies large force

magnitude. Dependence of the contact angle force on the film thickness gradients

(equation (5.17)) leads to numerical errors which give rise to un-physical velocities
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and cause the divergence of the solution. In the case of fine mesh (Figure 6.13),

simulation diverged at time step t = 0, 27 s, not reaching the final solution.

Figure 6.14: Gauss upwind scheme (left), Gauss Gamma 0.5 scheme (right)

The case of medium mesh (5 mm control area edge length) was recreated using the

blended Gamma 0.5 divergence scheme. Figure 6.14 shows comparison of the solutions for

time step t = 0, 15 s. The Gamma 0.5 divergence scheme caused liquid film separation,

but in an un-physical manner, not observed by the experiment. Issues concerning the

solution divergence become even more apparent when applied to droplet flows, which
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will be described within the following section.

6.3. Method Comparison

6.3.1. Case Set-Up

In order to compare results obtained by both methods, a simulation of droplet ex-

posed to a shear flow on an inclined plate was performed. Initial shape of the droplet is a

cut sphere, with contact line radius of 1,5 mm and droplet height of 1 mm. In interFoam,

initial droplet shape is set using the setFields utility, while in liquidFilmFoam the

same was done using the setInitialDroplet utility.

The inclination angle of the plate is 45◦, which was accounted for by rotating the

gravity vector. In both cases the velocity vector was tangential to the substrate surface

with magnitude of 1 m/s. Liquid and substrate properties are shown in Table 6.6.

Table 6.6: Liquid and substrate properties

Smooth glass hysteresis θr = 6◦, θa = 10◦

Surface tension, [N/m] 0,073

Dynamic viscosity, [mPas] 1,0

Density, [kg/m3] 996

The interFoam case used a domain of dimensions 8×12×3 mm3, with 160×240×60

cells. Expansion rate for cells in z direction was set to 5, which amounts to a cell of

dimensions 0, 5× 0, 5× 0, 2 mm3 at the substrate boundary. Boundary conditions and

numerical schemes are the same as described in Section 6.1.2.

The liquidFilmFoam case used a domain of dimensions 8× 12 mm2, with 160× 240

control areas. At all domain edges zeroGradient boundary condition type was specified.

Numerical schemes used for the liquidFilmFoam simulation are as given in Table 6.5.

Both simulations used adjustable time step, limited with maximum Courant number

of 0,2.
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6.3.2. Results

The comparison of droplet shape evolution achieved by both methods is shown in

Figure 6.15. The droplet is shown for time instances: t = 0, t = 3, 5 ms and t = 7

ms. The 3-D solution obtained by the interFoam solver is shown above, while the 2-D

liquidFilmFoam solution is shown below, using deformed surface technique to represent

scalar value of film thickness.

Figure 6.15: Droplet shape evolution with VoF (above) and thin liquid film

model (below)

As seen in Figure 6.15, the solution obtained by liquidFilmFoam exaggerated both

advancing and receding motion compared to the solution predicted by interFoam.

Knowing that the interFoam solver has a tendency to overestimate the amount of slid-

ing and spreading at low Weber numbers, it can be concluded that the liquidFilmFoam

solver did not yield satisfactory results.

Back and front spread factor curves for both methods are shown in Figure 6.16.

Receding and advancing motion was defined with the respect to the initial contact line

centre. The advancing isohypses predicted by the thin liquid film model are moderately

overestimated compared to the VoF front spread factor curve. Discrepancy is higher

when the receding motion is compared.

Figure 6.17 shows droplet apex height predicted by both methods. It is visible

that both methods experience some un-physical oscillations of liquid thickness. These

oscillations are most noticeable in the solution obtained by liquidFilmFoam and are



Chapter 6. Results 80

linked to divergence issues described in Section 6.2.

It is important to note that these issues exist even without the model for partial

wetting developed in this thesis. Thus, elimination of the oscillations remains a possible

subject for future work.
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Figure 6.16: Spread factor for a smooth glass substrate, α = 45◦ and We = 40
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Figure 6.17: Droplet height for a smooth glass substrate, α = 45◦ and We =

40
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Conclusion

The focus of this thesis was to examine the feasibility of CFD wall wetting simula-

tions, using two model formulations. In 3-D VoF method, wetting was realized within a

boundary condition based on Kistler’s dynamic contact angle model. In 2-D thin liquid

film model, a force term was added into the momentum equation to limit the liquid

spreading. Quantity of the force term also depends on Kistler’s contact angle model.

Implementation of Kistler’s contact angle model in the 3-D VoF-based interFoam

solver proved itself relatively successful when compared to experimentally observed

behaviour of droplet wetting. Major disagreement with experiments was found for

the receding motion of a droplet: for a hydrophilic substrate, simulation was not

able to capture local contact line impingement and, for a hydrophobic substrate, the

amount of sliding motion was overestimated. When implemented in 2-D thin liquid

film liquidFilmFoam solver, Kistler’s contact angle model exhibited a similar problem.

Thus, probable cause for the discrepancies lies in the model itself. Being based on the

hydrodynamic theory, this model is not able to recreate all of the phenomena associated

with droplet wetting, most notably the hysteresis. More physically-consistent solution

could be obtained by expanding the model with relations for contact line pinning.

The VoF method showed noticeably better results for inertia-driven flows. Issues

related to surface tension dominated flows probably stem from numerical errors linked

to the calculation of 3-D gradients needed for the interface curvature terms, which is a

well-known problem in literature.

When studying wetting flows, mesh size is of utmost importance. In order to avoid

premature and/or un-physical break-up of the interface, cell height has to be in the scale

82
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of a few micrometers. Being three-dimensional, this makes the VoF method very time-

consuming and therefore expensive. Thin liquid film model formulation has an advantage

here, since this method approaches the matter two-dimensionally. However, being two-

dimensional limits this method to contact angles less or equal to 90◦. Thus, this method

could potentially be used only for studying liquid interaction with hydrophilic substrates.

Being still in the development phase, liquidFilmFoam solver exhibits major issues

related to solution divergence, which cause un-physical osciallations in liquid film thick-

ness. Since these issues were not the focus of the thesis, causes remain undetermined.

Thus, the final conclusion is yet to be found; a fair comparison of the methods remains

a possible subject for future work.
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