Određivanje j faktora kod globalnih vertikalnih vibracija brodskog trupa

Galić, Helena

Master's thesis / Diplomski rad

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:562621

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-23

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Helena Galić

Zagreb, 2015.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentor:

Prof. dr. sc. Joško Parunov, dipl. ing.

Student:

Helena Galić

Zagreb, 2015.

Izjavljujem da sam ovaj rad izradila samostalno koristeći stečena znanja tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru prof. dr. sc. Jošku Parunovu što mi je uvijek bio na raspolaganju i svojim savjetima mi pomogao dovesti ovaj rad do kraja. Veliko hvala na trudu uloženom u korigiranje i strpljivosti tokom izrade.

Zahvaljujem se dragim kolegama i prijateljima na uvijek spremnoj i velikoj pomoći.

Zahvaljujem se svojoj obitelji bez kojih moje studiranje ne bi bilo moguće. Ovaj rad posvećujem svojoj baki Regini.

Iznad svega zahvaljujem se Bogu, stvoritelju svega vidljivoga i nevidljivoga na svemu u svakom danu i na najvećem daru života.

Helena Galić

POPIS SLIKA
POPIS TABLICA
SAŽETAK
ABSTRACT
1. UVOD
1.1. Teorijsko razmatranje dodatne mase7
1.2. Numerička metoda određivanja dodatne mase10
 PARAMETRI ZA PRORAČUN VIBRACIJA BRODSKOG TRUPA
3. ANALIZA DODATNE MASE I <i>J</i> faktora
3.1. Lewisova metoda
3.2. Numeričko određivanje dodatne mase
3.3. Model – 1
3.4. Model – 2
3.5. Model – 3
3.6. Model – 4
3.7. Model – 5
3.8. Model – 6
4. DISKUSIJA
5. ZAKLJUČAK
LITERATURA

POPIS SLIKA

Slika 1. Lewisov dijagram za određivanje koeficijenta dvodimenzionalnog strujanja	8
Slika 2. Lewisov dijagram za određivanje koeficijenta trodimenzionalnog strujanja	9
Slika 3. Segment broda definiran MKE	. 11
Slika 4. Dijagram toka	. 15
Slika 5. MKE model broda - 1	. 16
Slika 6. Model kontejnerskog broda 9200 TEU podijeljen na 12 segmenata	. 17
Slika 7. J-n dijagram za kontejnerski brod, Model-1	. 20
Slika 8. MKE model broda 2	. 21
Slika 9. J- n dijagram za tanker, model-2	. 23
Slika 10. MKE model broda - 3	. 24
Slika11. J-n dijagram za ratni brod, model - 3	. 26
Slika 12. MKE model broda 4 (1. oblik vibriranja)	. 27
Slika 13. J- n dijagram za tanker, model - 4	. 29
Slika 14. MKE model broda 5 (2. oblik vibriranja)	. 30
Slika 15. J- n dijagram za tanker, model - 5	. 32
Slika 16. MKE model broda 6 (treći oblik vibriranja)	. 33
Slika 17. J- n Dijagram za tanker, model - 6	. 35
Slika 18. Dijagrami prvog, drugog, trećeg i četvrtog oblika vibriranja za šest modela u ovisnosti o omjeru J_0/J_k	. 37
Slika 19. Dijagrami petog, šestog, sedmog, osmog i devetog oblika vibriranja za šest mode u ovisnosti o omjeru J_0/J_k	la . 38
Slika 20. Srednja vrijednost i standardna devijacija u ovisnosti o oblicima vibriranja	. 39

POPIS TABLICA

Tablica 1. Značajke kontejnerskog broda za model 116
Tablica 2. Podjela broda na sekcije17
Tablica 3. Proračun dodatne mase svake pojedine sekcije za očitani <i>J</i> faktor iz dijagrama 18
Tablica 4. Proračun dodatne mase svake pojedine sekcije za korigirani J faktor
Tablica 5. Odstupanje frekvencija za J faktor
Tablica 6. Značajke kontejnerskog broda za model 221
Tablica 7. Odstupanje frekvencija za J- faktor
Tablica 8. Značajke ratnog broda za model 3
Tablica 9. Odstupanje frekvencija za J- faktor
Tablica 10. Značajke kontejnerskog broda za model 427
Tablica 11. Odstupanje frekvencija za <i>J</i> - faktor
Tablica 12. Značajke tankera za brod 5
Tablica 13. Odstupanje frekvencija za <i>J</i> - faktor
Tablica 14. Značajke tankera za brod 6
Tablica 15. Odstupanje frekvencija za <i>J</i> - faktor
Tablica 16. Srednja vrijednost i standardna devijacija svakog pojedinog oblika vibriranja za šest modela

POPIS OZNAKA

Oznaka	Jedinica	Opis
L_{OA}	m	Duljina preko svega
L_{PP}	m	Duljinabroda između peripeendikulara
В	m	Širina broda
Т	m	Gaz broda
Ey	N/m^2	Modul elastičnosti
[K]		matrica krutosti
[M]		matrica masa
ω	s^{-1}	prirodna frekvencija
ρ	kg/m ³	Gustoća fluida
$\{\dot{\delta_i}\}$	m/s^2	Vektor ubrzanja elementa
$[M^f]$	kg	Matrica dodatne mase
$[M^S]$	kg	Matrica strukturne mase
J		Korekcijski faktor trodimenzionalnog strujanja
C(x)		Korekcijski faktor dvodimenzionalnog strujanja
Α	m^2	Površina rebra
n		Broj čvorova
f_m	Hz	Frekvencije dobivene za Mfluid
f_o	Hz	Frekvencije dobivene za očitani J faktor
f_s	Hz	Frekvencije dobivene sa segmentiranom dodatnom masom
J_k		Korigirani faktor
J_o		Očitani faktor iz Lewisovog dijagrama
m_s	t/m	Sekcijska dodatna masa
$M_{ m ak}$	t/m	Ukupna masa za svaki oblik vibriranja
m_{33}	t/m	Masa dobivena naredbom Mfluid
$m_{ m v}$	t/m	Vertikalna dodatna masa
β		Koeficijent poprečnog presjeka

SAŽETAK

Dodatna hidrodinamička masa premašuje istisninu broda čak i do 60 %, te ima značajan utjecaj na iznos prirodnih frekvencija vibriranja trupa. U uvodnom dijelu razmatran je teorijski i numerički pristup računanju dodatne mase za vertikalne vibracije. Tradicionalna metoda za određivanje dodatne mase uključuje određivanje sekcijske dodatne mase za dvodimenzionalne poprečne presjeke uzduž broda te očitanje J redukcijskog fakora trodimenzionalnog strujanja iz Lewisovog dijagrama. Tradicionalni J faktori su određeni za pojednostavljene brodske forme. Dobivanje J faktora za suvremene brodske forme opisano je u analizi šest brodskih modela uključujući tankere, kontejnerske brodove, te jedan ratni brod. Nakon proračuna dodatne mase u programskom paketu Femap-Nastran slijedi teorijsko određivanje J faktora. Nakon analize rezultata prikazani su diskusija i zaključak.

Ključne riječi: dodatna masa, vertikalne vibracije, J faktor, Lewisova metoda, Femap-Nastran

ABSTRACT

Added mass exceeds the displacement of the ship up to 60 %, and has a significant impact on the natural frequencies of hull girder vibration. The introductory part is dealing with theoretical and numerical approach to calculation of added mass for vertical vibration. Traditional method for calculating added mass includes determination of two-dimensional coefficient for cross- sectional segments along the ship, and determination of three-dimensional coefficient from Lewis diagram. Traditional *J* factors have been identified for simplified hull forms. Calculation of *J* factor for modern hull forms is described in the analysis of the six ships model including tankers, containers and one ware ship. After calculation of added mass, by using software package Femap-Nastran follows the theoretical determination of the *J* factor. After analysis of the results, discussion and conclusion are given.

Key words: added mass, vertical vibration, J factor, Lewis metod, Femap-Nastran

1. UVOD

Vibracije broda su od ključne važnosti kako bi se izbjegla pojava rezonancije koja može biti uzrokovana brodskim motorom, propelerom ili valovima. Drugačijim odabirom motora ili krila propelera te drugačijom raspodjelom masa moguće je eliminirati vibracije ali ne ih u potpunosti i ukloniti. Stoga se nastoji da razina vibracija ne prijeđe dozvoljene granice nepogodne za opremu i strukturne elemente.

Razmatrajući globalne slobodne vibracije broda dodatna masa ima velik utjecaj na vibracije, uzimajući u obzir činjenicu da ona povećava ukupnu masu vibrirajućeg brodskog trupa do 100 %.

1.1. Teorijsko razmatranje dodatne mase

Brod okružen fluidom za vrijeme vlastitog vibriranja uzrokuje vibriranje čestica fluida koje se nalaze uz sam trup broda. Čestice fluida uz oplatu se gibaju brzinom broda, te sa sobom nose kinetičku energiju neograničene tekućine kojoj brzina opada sa udaljenošću od trupa. Energija tekućine se može razmatrati unutar ograničenog volumena, unutar brzina fluida jednakih brzini trupa. Unutar ograničenog volumena okolna tekućina i brod se mogu smatrati kao jedan vibrirajući sistem koji ima veću masu nego što je masa samog broda. Dodavanjem hidrodinamičke ili dodatne mase okolne vode masi broda dobivamo tzv. virtualnu masu, tj. ukupnu masu sistema [1].

Uobičajeni pristup računanju dodatne mase sadrži dva koraka. Prvi je računanje dodatne mase za beskonačnu frekvenciju za 2D presjeke uzduž trupa. Drugi korak je uspostavljanje odnosa između dvodimenzionalnog i trodimenzionalnog strujanja pomoću redukcijskog *J* faktora koji se mijenja sa oblikom vibriranja. Budući da redukcijski faktor predstavlja odnos između kinetičke energije 2D i 3D strujanja uvijek će biti manji od 1.

Problemom određivanja dodatne mase prvi se počeo baviti Lewis 1929. Lewis je razradio metodu za proračun dodatnih masa broda tako što je pomoću komfornog preslikavanja prenosio poznate rezultate za strujanje oko kružnih cilindara na strujanje oko stvarnih poprečnih presjeka, te je na taj način izračunao dodatnu masu po jedinici duljine.

Lewis je razradio dijagrame za proračun dodatne mase, koji ovise o obliku poprečnog presjeka i obliku vibriranja. Šimanski je metodu proračuna dodatne mase vertikalnih vibracija proširio na proračun horizontalnih i torzionih vibracija [1].

Budući da su u ovom radu isključivo razmatrane vertikalne vibracije trupa dovoljno je razmatrati Lewisovu metodu proračuna dodatne mase.

Dodatna masa za dvodimenzionalno strujanje po jedinici duljine [2]:

$$m_{2-D}(x) = \frac{\pi}{8} * \rho * B(x)^2 * C(x) \qquad \frac{t}{m}$$
(1.1)

 $m_{2-D}(x)$ - masa po jedinici duljine za dvodimenzionalno strujanje na presjeku x

 ρ - gustoća fluida

B(x)- širina broda na određenoj sekciji, presjeka x

C(x) – dvodimenzionalni koeficijent

Odstupanje dvodimenzionalnog strujanja oko kružnog cilindra od strujanja oko realnog brodskog presjeka uzima se u obzir koeficijentom C(x) prikazanim na Slici 1.

Slika 1. Lewisov dijagram za određivanje koeficijenta dvodimenzionalnog strujanja

U idućem koraku je potrebno korigirati 2D dodatnu masu korekcijom za trodimenzionalno strujanje fluida oko trupa, koja daje modifikaciju unutar jednadžbe (1.1) te glasi:

$$m_{3-D}(x) = \frac{\pi}{8} * \rho * B(x)^2 * C(x) * J_n \quad t/m$$
(1.2)

Korištenjem J faktora je zadovoljen trodimenzionalni utjecaj fluida oko vibrirajućeg trupa. Unutar jednadžbe (1.2) indeks n ukazuje na zavisnost dodatne mase i oblika vibriranja. Porastom oblika vibriranja sve veći je utjecaj trodimenzionalnog strujanja te se stoga J faktor sve više razlikuje od jedinice. Za određeni oblik vibriranja J faktor se uzima konstantnim duž trupa iako se teoretski mijenja duž trupa, zbog toga što je dodatna masa na krajevima broda jednaka nuli [2,3]. Prikaz Lewisovog dijagrama za određivanje trodimenzionalnog koeficijenta dan je Slikom 2.

Slika 2. Lewisov dijagram za određivanje koeficijenta trodimenzionalnog strujanja

1.2. Numerička metoda određivanja dodatne mase

Za određivanje slobodnih vibracija broda s utjecajem dodatne mase koristi se naredba MFLUID u programskom paketu FEMAP. Programski paket FEMAP koristi za određivanje dodatne mase metodom rubnih uvjeta, poznatu i kao metoda panela.

Ako ne postoji prigušenje, za slobodne vibracije jednadžba dinamičke ravnoteže u matričnom obliku glasi:

$$([M^{S}] + [M^{f}])\{\ddot{\delta}_{i}\} + [K]\{\delta_{i}\} = 0, \qquad (1.3)$$

gdje je $[M^S]$ matrica strukturne mase, $[M^f]$ matrica dodatne mase, a [K] matrica krutosti. Ako se pretpostavi harmoničko rješenje problema u slijedećem obliku, uvodeći $\{d_i\}$ svojstveni vektor:

$$\{\delta_i\} = \{d_i\}\sin\omega t,\tag{1.4}$$

moguće je reducirati jednadžbu (1.3) u oblik:

$$([K] - \omega^2([M^S] + [M^f]))\{d_i\} = 0$$
(1.5)

koja se naziva i jednadžbom svojstvenih vrijednosti. Netrivijalno rješenje $\{d_i\} \neq 0$ postoji ako vrijedi:

$$det([K] - \omega^2([M^S] + [M^f])) = 0.$$
(1.6)

Rješenje navedene jednadžbe dobiva transformacijskim numeričkim metodama (Givens ili Housholder) ili Lanczos metodom.

2. PARAMETRI ZA PRORAČUN VIBRACIJA BRODSKOG TRUPA

Parametri potrebni za provođenje analize vibracija brodskog trupa su krutost i masa za slobodne vibracije, te još prigušenje i uzbuda za analizu prisilnih vibracija [4].

U ovom radu analizirane su samo slobodne vibracije, a utjecaj prigušenja je zanemariv. Razlog tome je da se razmatraju samo vibracije visokih frekvencija, kod kojih se ne generiraju odlazni valovi u okolici trupa, a što je glavni uzrok hidrodinamičkog prigušenja.

Krutost brodske konstrukcije

Modeliranjem brodske konstrukcije definiraju se geometrijske i fizikalne značajke, te je time definirana krutost konstrukcije. U metodi konačnih elemenata krutost se definira preko matrice krutosti sistema. U fizikalne značajke konačnih elemenata važne za određivanje matrice krutosti spadaju modul elastičnosti, modul smika i Poissonov koeficijent [4].

Zadani modeli brodovaa geometrijski su definirani pomoću pločastih konačnih elemenata te čine strukturu, tj. oplatu broda sa svojim glavnim dimenzijama: duljinom, širinom i gazom. Pločasti konačni elementi nemaju definiranu debljinu niti masu već pružaju samo formu broda nužnu za definiranje oplakane površine. Značajke krutosti broda su definirane modeliranjem grednih konačnih elemenata po duljini, na visini neutralne linije. Gredni konačni elementi predstavljaju krutost brodske konstrukcije. Veza između grede i forme broda ostvarena je krutim vezama u čvorovima oplate i grede. Segment broda koji prikazuje gredu smještenu u neutralnoj osi, te spojenu krutim vezama sa oplatom vidljiv je na Slici 3.

Slika 3. Segment broda definiran MKE

Masa broda

Masa vibrirajućeg sistema se sastoji od težine praznog opremljenog broda, težine tereta i dodatne mase okolne vode. Težina praznog opremljenog broda sastoji se od težine čelika, opreme i zaliha. Utjecaj okolne tekućine uzima se u obzir pridruživanjem dodatne mase masi broda. Dodatna masa je virtualna sila inercije određenog volumena tekućine. Ona stvara komponentu dinamičkog pritiska okolne tekućine na brod koja je u fazi s ubrzanjem. Integral te komponente pritiska po oplakanoj površini određuje dodatnu masu. Postoji i druga komponenta pritiska koja je u fazi s brzinom, te predstavlja gubitak energije, a uključuje se u prigušenje. Povećanjem vrijednosti mase vibrirajućeg sistema dobivaju se niže prirodne frekvencije [4].

3. ANALIZA DODATNE MASE I J faktora

U radu su korištene dvije metode za računanje dodatne mase. Prva metoda je uobičajena Lewisova metoda koja se tradicionalno koristi u proračunima vibracija, a druga je numerička metoda rubnih elemenata koja se koristi tek odnedavno. Budući da su u radu razmatrane samo vertikalne slobodne vibracije, korištene su formule i dijagrami za računanje dodatne mase prema Lewisovoj metodi.

3.1. Lewisova metoda

Površina sekcije, te omjer širine i gaza broda za zadanu sekciju se koriste za očitavanje koeficijenta dvodimenzionalnog strujanja iz Lewisovog dijagrama kako je prikazano na Slici 1. Na temelju očitanog koeficijenta, gustoće fluida i širine pojedine sekcije dobiva se sekcijska dodatna masa za dvodimenzionalno strujanje.

Sekcijsku masu je potrebno reducirati s korekcijskim J faktorom za trodimenzionalno strujanje također iščitanim iz Lewisovog dijagrama Slika 2. J faktor koji oviseći o omjeru širine na paralelnom srednjaku i duljine broda za različite vrijednosti oblika vibriranja uzrokuje redukciju sekcijske dodatne mase. Sekcija dodatna masa korigirana sa očitanim J faktorom upisuje se u prethodno definirane masene elemente koji su raspoređeni po duljini grede modela u programskom paketu Femap. Modeli brodova u Femapu moraju biti prethodno definirani sa svojom krutošću i masom. Krutost broda je definirana preko greda, a masa može biti raspoređena po gredi ili koncentrirana u masenim elementima koji su čvorovima vezani za gredu. Uz tako prethodno definiran model potrebno je još definirati raspodjelu masenih elemenata po duljini broda za svaku sekciju unutar kojih je definirana sekcijska dodatna masa sa korekcijskim J faktorom.

3.2. Numeričko određivanje dodatne mase

Prije same analize vibracija prethodno definiranog modela, tj. prije numeričke analize tradicionalno izračunate dodatne mase, provedena je numerička analiza dodatne mase definirane pomoću naredbe Mfluid u programskom paketu Femap-Nastran.

Numerički dobiveni rezultati, prirodnih frekvencija za pojedine oblike vertikalnih slobodnih vibracija, predstavljaju referencu za usporedbu rezultata dobivenih u programskom paketu Femap-Nastran za tradicionalno definiranu sekcijsku dodatnu masu sa utjecajem korekcijskog faktora očitanim iz dijagrama. Usporedbom dobivenih rezultata frekvencija numeričke (Mfluid) i numeričko-analitičke (sekcijski izračunata dodatna masa definirana u masenim elementima modela) metode javlja se odstupanje. Odstupanje od rezultata frekvencija se nastoji smanjiti unutar 1 % na način da korigiramo *J* faktor koji množimo sa sekcijskim dodatnim masama, te na taj način dobivamo nove, korigirane vrijednosti *J* faktora za pojedini oblik vibriranja koje se razlikuju od vrijednosti očitanih iz Lewisovog dijagrama za različite oblike vibriranja. Slijede primjeri modela korištenih u analizi, te je samo prvi model detaljno razrađen, a za ostale su samo prikazani rezultati.

Slika 4 prikazuje dijagram toka analize dodatne mase. Metodom konačnih elemenata i naredbom Mfluid dobivaju se frekvencije ω_i^* za i-ti oblik vibriranja. Zatim se za zadani model određuje tradicionalnom metodom J_0 faktor iz Lewisovog dijagrama za i-te oblike vibriranja. Vrijednost J_0 faktora , za slučaj ako je riješenje odstupanja manje od 1 %, postaje konačna vrijednost. Za slučaj kada je vrijednost korigiranog J_{ik} faktora veča od dozvoljenog odstupanja mora se korigirati dok se ne zadovolji traženo odstupanje od 1%.

Slika 4. Dijagram toka

3.3. Model – 1

Prvi model koji je analiziran je kontejnerski brod 9200 TEU. Tablica 1 prikazuje značajke kontejnerskog broda za model - 1.

Dimenzija	Vrijednost
Duljina preko svega	<i>L_{OA}</i> = 348,5 m
Duljina između perpendikulara	<i>L_{PP}</i> = 328,2 m
Širina	B=42,8 m
Gaz	T= 13,1 m
B/Lpp =0,13	

 Tablica 1. Značajke kontejnerskog broda za model - 1

Na Slici 5 dan je prikaz broda analiziranog u programskom paketu Femap-Nastran. Elementi prikazani narančastom bojom definiraju oplatu broda uronjenu u fluid, gredni elementi su prikazani crnom bojom, a spoj strukture broda i grede ostvaren je krutom vezom naznačenom zelenom bojom. Samo u ovom modelu masa je definirana kao i krutost unutar grednih elemenata, dok će u ostalim modelima masa biti modelirana pomoću koncentriranih elementarnih masa. Modul elastičnosti iznosi : E = 2,06E + 11 N/m²

Slika 5. MKE model broda - 1

Numeričkom metodom računanja dodatne mase koristeći naredbu Mfluid dobivene su vlastite frekvencije broda za prvih devet vertikalnih oblika vibriranja. Masa istisnine broda iznosi 131 402 tone.

Dodatna masa se nakon analize može očitati iz matrice masa za fluid te iznosi m_{33} = 193 818 tona. Dodatna masa je čak za 67 % veća od mase istisnine broda.

Masa m_{33} i dobivene frekvencije se dalje koriste kao referenca za usporedbu rezultata dobivenih analitičkom metodom.

Podjelom modela na sekcije, definiranjem površina poprečnog presjeka i očitavanjem dvodimenzionalnog koeficijenta strujanja dobiveni su rezultati za sekcijsku dodatnu masu za dvodimenzionalne poprečne presjeke. Kako je dodatna masa u Lewisovoj formuli definirana po jedinici duljine, potrebno je još izračunatu masu pomnožiti sa duljinom pojedine sekcije poprečnog presjeka te je time dobivena dodatna masa u tonama za cijeli brod prikazana u Tablici 2. Sekcijska dodatna masa za cijelu duljinu broda iznosi m_s= 204 192 tone. Omjer m₃₃ i m_s iznosi 0,94 te se njime množi sekcijska dodatna masa uzimajući u obzir mogućnost pogreške prilikom očitanja koeficijenta dvodimenzionalnog strujanja iz dijagrama i prilikom određivanja srednje vrijednosti segmentne površine za određenu duljinu segmenta. Tablica 2 prikazuje podjelu broda na sekcije, a Slika 6. podjelu broda na 12 segmenata.

Sekcija	1	2	3	4	5	6	7	8	9	10	11	12
T [m]	13,1	12,9	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,25
B [m]	40,31	42,28	42,8	42,8	42,8	42,8	42,8	42,73	40,46	31,51	19,12	8,49
A [m^2]	219,74	316,21	451,73	513,76	537,79	541,93	536,47	504,94	423,97	287,75	161,05	82,13
B/T	3,08	3,28	3,27	3,27	3,27	3,27	3,27	3,26	3,09	2,41	1,46	0,64
$\beta = A/(B*T)$	0,42	0,58	0,81	0,92	0,96	0,97	0,96	0,90	0,80	0,70	0,64	0,73
Cv	0,79	0,86	1,02	1,16	1,2	1,21	1,2	1,14	1,01	0,91	0,84	0,93
mv(t/m)	516,80	615,32	748,41	855,32	884,82	892,19	884,82	837,75	665,58	363,64	123,63	26,82
L sekcije (m)	32,35	23,11	27,74	27,74	27,74	27,74	27,73	27,74	27,74	27,73	18,49	32,36
mv(t)	15869	13499	19704	22519	23298	23492	23289	22058	17525	9571	2170	824
Σ mv(t)	193818											

Tablica 2. Podjela broda na sekcije

Slika 6. Model kontejnerskog broda 9200 TEU podijeljen na 12 segmenata

Nakon izjednačavanja masa slijedi očitavanje J faktora iz Lewisovog dijagrama koji je različit za svaki oblik vibriranja, a rezultati su prikazani u Tablici 3. Prvi oblik vibriranja sadrži dva čvora, za svaki idući oblik broj čvorova raste linearno. Korigirana sekcijska dodatna masa se zatim definira u svakom čvoru masenog elementa u modelu prikazanog na Slici 6. Nakon korigirane dodatne mase može se izvršiti analiza u programskom paketu Femap-Nastran, te se uspoređuju dobivene frekvencije s referentnim frekvencijama dobivenim pomoću Mfluid naredbe. J faktor se korigira, dok se ne zadovolji odstupanje od referentnih vrijednosti do 1%. Prikaz korigiranih vrijednosti J faktora dan je u Tablici 4., a prikaz odstupanja vidljiv je u Tablici 5.

oblik														
vibriranja	J _o	1	2	3	4	5	6	7	8	9	10	11	12	ukupna <i>M</i> _{ak}
1	0,82	12933	11002	16059	18353	18988	19146	18981	17978	14283	7801	1768	672	157962
2	0,76	12060	10259	14975	17114	17706	17854	17700	16764	13319	7274	1649	626	147302
3	0,70	11108	9450	13793	15763	16308	16444	16302	15441	12268	6700	1519	577	135673
4	0,65	10315	8775	12807	14637	15143	15270	15138	14338	11391	6221	1410	536	125982
5	0,60	9521	8100	11822	13511	13979	14095	13974	13235	10515	5743	1302	494	116291
6	0,57	9045	7695	11231	12836	13280	13390	13275	12573	9989	5456	1237	470	110476
7	0,53	8411	7155	10443	11935	12348	12451	12343	11691	9288	5073	1150	437	102724
8	0,50	7935	6750	9852	11259	11649	11746	11645	11029	8763	4786	1085	412	96909
9	0,47	7458	6345	9261	10584	10950	11041	10946	10367	8237	4499	1020	387	91094

Tablica 3. Proračun dodatne mase svake pojedine sekcije za očitani J faktor iz dijagrama

Tablica 3 prikazuje podjelu broda na 12 sekcija, te ukupnu masu M_{ak} za svaki oblik vibriranja koji je prikazan brojem čvorova. Iz Tablice 3 je vidljivo da očitani J_o ovisi o broju čvorova vibriranja, kako se broj čvorova vibriranja povećava J_o faktor opada, tj. dodatna masa se smanjuje. Kod prvog oblika vibriranja, sekcijska dodatna masa se smanjila sa početnih 193 818 tona na 157 962 tone, te je vidljiv utjecaj redukcije J_o faktora za 18,8 % u odnosu na sekcijsku dodatnu masu. Za deveti oblik vertikalnog vibriranja, sekcijska dodatna masa je reducirana za 53 %, sa početnih 193 818 tona na 91 094 tone. Tablica 4 prikazuje proračun dodatne mase svake pojedine sekcije za korigirani J faktor.

oblik														
vibriranja	J _k	1	2	3	4	5	6	7	8	9	10	11	12	ukupna <i>M</i> _{ak}
1	0,82	12933	11002	16059	18353	18988	19146	18981	17978	14283	7801	1768	672	157962
2	0,78	12378	10529	15369	17565	18172	18324	18166	17206	13670	7466	1692	643	151178
3	0,70	11108	9450	13793	15763	16308	16444	16302	15441	12268	6700	1519	577	135673
4	0,65	10315	8775	12807	14637	15143	15270	15138	14338	11391	6221	1410	536	125982
5	0,60	9521	8100	11822	13511	13979	14095	13974	13235	10515	5743	1302	494	116291
6	0,47	7458	6345	9261	10584	10950	11041	10946	10367	8237	4499	1020	387	91094
7	0,40	6348	5400	7882	9007	9319	9397	9316	8823	7010	3829	868	330	77527
8	0,37	5872	4995	7290	8332	8620	8692	8617	8162	6484	3541	803	305	71713
9	0,30	4761	4050	5911	6756	6989	7048	6987	6618	5258	2871	651	247	58145

_Tablica 4. Proračun dodatne mase svake pojedine sekcije za korigirani J faktor

Tablica sa korigiranim J_k faktorom prikazuje redukciju sekcijske dodatne mase čak do 70 % za deveti oblik vertikalnih vibracija. Tablica 5 prikazuje odstupanje frekvencija za J faktor.

oblik vibriranja	<i>f</i> m(Hz)	Jo	fo (Hz)	(fo-fm)/fm*100	Jk	<i>f</i> s(Hz)	(fs-fm)/fm*100
1	0,50	0,82	0,51	0,76	0,82	0,51	0,76
2	1,06	0,76	1,08	1,41	0,78	1,07	0,54
3	1,66	0,70	1,68	1,24	0,70	1,68	1,24
4	2,28	0,65	2,29	0,62	0,65	2,29	0,62
5	2,92	0,60	2,89	1,12	0,60	2,89	1,12
6	3,54	0,57	3,42	3,39	0,47	3,52	0,54
7	4,20	0,53	3,96	5,56	0,40	4,21	0,34
8	4,79	0,50	4,43	7,53	0,37	4,80	0,18
9	5,42	0,47	4,80	11,50	0,30	5,46	0,78

Tablica 5. Odstupanje frekvencija za J faktor

 $f_{\rm m}$ - frekvencije dobivene za Mfluid

- $f_{\rm s}$ frekvencije dobivene sa segmentiranom dodatnom masom
- $J_{\rm o}$ očitani J iz dijagrama
- J_k korigirani J dobiven analitičkim putem
- n broj čvorova vibriranja

Numeričke dobivene vrijednosti frekvencija *f*m sa karticom Mfluid pokazuju prvo odstupanje od f_0 , frekvencija dobivenih očitavanjem J_0 faktora iz dijagrama, te drugo odstupanje od f_s , frekvencija dobivenih nakon korekcije J_k faktora. Za prvih pet oblika vibriranja kod prvog odstupanja nema značajnih devijacija u vrijednostima, tek kod 6,7,8, i 9 oblika vibriranja javljaju se odstupanja veća od 1,5 %. Za oblike vibriranja gdje je prvo odstupanje veće od 1.5 % provodi se korekcija J_k faktora do vrijednosti drugog odstupanja ispod 1 %. modeli

Slika 7. J-n dijagram za kontejnerski brod, model-1

Slika 7 prikazuje korekciju J_k faktora za 6, 7, 8 i 9 oblik vibriranja, tj. njegovo smanjenje, te idealno poklapanje J_k faktora dobivenog analitičkim putem sa J_o faktorom očitanim iz Lewisovog dijagrama.

3.4. Model – 2

Strukturalna masa zadanog tankera, prikazanih karakteristika u Tablici 6, iznosi 85 262 tone. Dodatna masa izračunata pomoću naredbe MFluid iznosi 130 090 tone, te njen udio u ukupnoj masi iznosi 60 %.

Dimenzija	Vrijednost							
Duljina preko svega	<i>L_{OA}</i> = 292 m							
Duljina između perpendikulara	<i>L_{PP}</i> = 276 m							
Širina	B=40 m							
Gaz	T= 12 m							
B/Lpp = 0,144								

Tablica 6. Značajke kontejnerskog broda za model 2

Strukturalna masa modela broda u stvarnoj veličina nije definirana unutar grednih elemenata već pomoću koncentriranih masenih elemenata. Sekcijska dodatna masa je također definirana za svaku pojedinu sekciju pomoću masenih elemenata, prikazano Slikom 8.

Slika 8. MKE model broda 2

Nakon podjele broda na sekcije, te uz zadani gaz, širinu, površinu i duljinu sekcije te uz očitani dvodimenzionalni koeficijent, ukupna masa broda prema Lewisovoj metodi iznosi 139 499 tona. Kako bi analitička dodatna masa bila jednaka numeričkoj, množi se sa 0,93 te je time koeficijent trodimenzionalnog strujanja J=1. Analitički dobivena masa nakon definiranja u čvorovima modela mijenja se smanjujući J faktor očitan iz Lewisovog dijagrama dok se ne postigne prvo odstupanje, te se korigira smanjivanjem ili povećavajući J faktora dok se ne zadovolji drugo odstupanje prikazano u Tablici 7.

oblik vibriranja	<i>f</i> m(Hz)	Jo	fo (Hz)	(fo-fm)/fm*100	Jk	fs(Hz)	(fs-fm)/fm*100
1	0,67	0,78	0,68	2,54	0,90	0,66	0,30
2	1,69	0,72	1,75	3,13	0,86	1,68	0,49
3	3,16	0,66	3,25	2,92	0,76	3,17	0,31
4	5,07	0,65	5,02	0,94	0,65	5,02	0,94
5	7,36	0,62	7,23	1,78	0,57	7,33	0,40
6	9,95	0,53	9,70	2,47	0,47	9,88	0,71
7	13,37	0,49	13,86	3,66	0,60	13,53	1,24
8	14,94	0,47	14,58	2,37	0,40	14,80	0,94
9	19,48	0,43	20,93	7,44	1,80	19,70	1,14

Tablica 7. Odstupanje frekvencija za J- faktor

Značajno odstupanje dobivenih vrijednosti frekvencija za očitani J_0 faktor od vrijednosti dobivenih naredbom Mfluid je najizraženije za deveti oblik vibriranja, a oznosi 7,44% . Najmanje odstupanje iznosi 0,94 % za četvrti oblik vibriranja. Kako su dodatna masa i J koeficijent proporcionalni najveći redukcijski učinak trodimenzionalnog strujanja javlja se za deveti oblik vibriranja za J_0 = 0,43 za redukciju dodatne mase u iznosu od 57 %.

Slika 9. J- n dijagram za tanker, model-2

Povećanje korigiranog J_k faktora vidljiva je sa slike 9 za prvi, drugi, treći i sedmi oblik vibriranja u odnosu na očitani J_o faktor iz dijagrama. Četvrti oblik vibriranja prikazuje savršeno poklapanje sa J_o faktorom predviđenim prema Lewisu. Peti, šesti, osmi i deveti oblik vibriranja imaju manje vrijednosti od onih očitanih iz Lewisovog dijagrama. Značajno odstupanje zadnjeg, devetog oblika vibriranja daje neočekivane vrijednosti J_k faktora.

3.5. Model – 3

Ratni brod zadanih karakteristika prikazan je u Tablici 8. Strukturalna masa modela broda iznosi 8 006 tona, te je definirana grednim konačnim elementima. Dodatna masa dobivena naredbom Mfluid iznosi 10 403 tone.

Dimenzija	Vrijednost				
Duljina preko svega	L_{OA} = 151,18 m				
Duljina između perpendikulara	<i>L_{PP}</i> = 142,04 m				
Širina	B= 20,03 m				
Visina	D= 12,74 m				
Gaz	T= 6,31 m				
B/Lpp = 0,141					

Tablica 8. Značajke ratnog broda za model - 3

Prilikom očitanja gazova i širina za pojedinu sekciju broda dolazi do pojedinih odstupanja od kontinuiranosti tih veličina jer je paralelni srednjak vrlo kratak, dok su pramac i krma veoma specifični. Duljina između perpendikulara je uzeta od zrcalne krme do pramčanog perpendikulara, te je ujedno ta duljina uzeta za podjelu na sekcije. Model definiran MKE prkazan je Slikom 10.

Slika 10. MKE model broda - 3

Dodatna masa broda dobivena Lewisovom metodom iznosi 11 149 tona koja se množi sa 0,93 i time se izjednačava sa numerički dobivenom dodatnom masom m_{33} . Dodatna masa se postavlja u koncentrirane elemente te se dobivaju odstupanja vertikalnih oblika vibriranja

dobivenih numeričkom metodom od onih dobivenih tradicionalnom. Prikaz odstupanja u Tablici 9.

oblik vibriranja	<i>f</i> m(Hz)	Jo	fo (Hz)	(fo-fm)/fm*100	Jк	fs(Hz)	(fs-fm)/fm*100
1	1,68	0,78	1,68	0,25	0,78	1,68	0,25
2	4,28	0,72	4,47	4,42	0,86	4,29	0,31
3	8,14	0,66	8,54	4,90	0,80	8,17	0,39
4	13,15	0,65	14,01	6,51	0,86	13,21	0,43
5	19,21	0,57	21,33	11,00	0,95	19,36	0,75
6	26,46	0,53	28,13	6,29	0,73	26,49	0,09
7	35,05	0,49	38,30	9,29	0,74	35,36	0,90
8	45,28	0,47	48,57	7,28	0,66	45,26	0,05
9	57,12	0,43	65,85	15,30	0,93	57,71	1,04

Tablica 9. Odstupanje frekvencija za J faktor

Budući da ratni brod ima vrlo malu masu raspon frekvencija je dosta velik, jer su vrijednost mase i frekvencije u recipročnom odnosu. Maksimalna redukcija dodatne mase od 57 % vidljiva je za deveti oblik vibriranja za J_o faktor 0,43. Najmanje odstupanje rezultata vidljvo je za privi oblik vibriranja, te iznosi 0,25 %. Najveće odstupanje rezultata javlja se za peti oblik vibriranja i iznosi 11 %.

Slika11. J-n dijagram za ratni brod, model - 3

Teorijski gledano povećanjem oblika vibriranja J_k koeficijent se smanjuje tj., smanjuje se dodatna masa, vidljivo sa Slike 11. Najmanja vrijednost dodatne mase vidljiva je za deveti oblik vibriranja te ona iznosi 43 % od početne analitičke mase. Prvi oblik vibriranja ima potpuno poklapanje J_o koeficijenta očitanog iz Lewisovog dijagrama sa korigiranim J_k koeficijentom. Dolazi do povećanja mase unutar trećeg, četvrtog, petog i devetog oblika vibriranja, što svakako odstupa od teoretskog razmatranja.

3.6. Model – 4

Masa istisnine broda iznosi 68 939 tona. Dodatna masa dobivena naredbom Mfluid iznosi 97 222 tone, a dodatna masa dobivena analitičkom metodom iznosi 108 119 tona. Tablica 10 prikazuje značajke kontejnerskog broda za model – 4.

Dimenzija	Vrijednost				
Duljina preko svega	$L_{OA} = 273 \text{ m}$				
Duljina između perpendikulara	L _{PP} = 264,62 m				
Širina	B= 37,1 m				
Visina	D= 21,5 m				
Gaz	T= 12,22 m				
B/L = 37,1/254,129=0,145					

Tablica 10. Značajke kontejnerskog broda za model - 4

Budući da krmena forma na zadanom gazu od 12,22 metra ima zanemarivu površinu poprečnog presjeka duljina broda u proračunu je uzeta L=254,13 m. Prikaz modela analiziranog u programskom paketu Femap-Nastran vidljiv je na Slici 12.

Slika 12. MKE model broda 4 (1. oblik vibriranja)

Odstupanje frekvencija za analizirani model dan je u Tablici 11.

oblik							
ODIIK	fm(Hz)	Jo	fo (Hz)	(fo-fm)/fm*100	./k	fs(Hz)	(fs-fm)/fm*100
vibriranja	J(112)	00	<i>J</i> [©] (II <i>L</i>)	go jiii), jiii 100	UII	<i>JS</i> (11 <i>L</i>)	() <i>5</i> jiii), jiii 100
1	0.74	0.70	0.75	1.0.4	0.70	0.75	1.0.4
1	0,74	0,/8	0,75	1,04	0,78	0,75	1,04
2	1,87	0,72	1,92	2,73	0,86	1,85	0,90
3	3,45	0,66	3,60	4,32	0,80	3,47	0,70
4	5,53	0,65	5,57	0,88	0,65	5,57	0,88
5	8,13	0,57	8,03	1,17	0,57	8,03	1,17
6	11,25	0,53	11,32	0,67	0,53	11,32	0,67
7	14,75	0,49	15,17	2,85	0,70	14,84	0,64
8	18,63	0,47	19,48	4,53	0,60	18,65	0,10
9	23,21	0,43	24,33	4,81	0,53	23,48	1,15

Tablica 11. Odstupanje frekvencija za J faktor

Za brod većih dimenzija raspon frekvencija iznosi od 0,7 Hz za prvi oblik vibriranja do 23 Hz za deveti oblik vibriranja. Iz tablice je vidljivo da prvo odstupanje iznosi maksimalnih 4,81 % za deveti oblik vibriranja. Minimalno odstupanje od 0,67% se javlja za šesti oblik vibriranja.

Slika 13. J- n dijagram za tanker, model - 4

Sa Slike 13. za četvrti model tankera jasno je vidljiva pojava velikog porasta mase za zadnja tri oblika vibriranja u odnosu na teoretsku masu koja bi se prema Lewisu trebala smanjivati. Za razliku od ratnog broda gdje su najveća odstupanja za četvrti, peti i šesti oblik vibriranja, zadani tanker upravo ima najveća poklapanja u navedenim oblicima vibriranja.

3.7. Model – 5

Masa istisnine zadanog tankera iznosi 60 100 tona. Dodatna masa u Femapu dobivena naredbom Mfluid iznosi 71 484 tone, dok teoretska dodatna masa iznosi 78 868 tone. Tablica 12 prikazuje značajke tankera za brod 5.

Dimenzija	Vrijednost					
Duljina preko svega	<i>L_{OA}</i> = 182,34 m					
Duljina između perpendikulara	L _{PP} = 174,8 m					
Širina	B= 32,2 m					
Visina	D= 17,5 m					
Gaz	T= 12,77 m					
B/Lpp = 0,184						

Tablica 12. Značajke tankera za brod 5

Drugi oblik vetikalnog vibriranja broda dobiven analizom rezultata u programskom paketu Femap-Nastran prikazan je Slikom 14. Tablica 13 daje odstupanje dobivenih frekvencija.

Slika 14. MKE model broda 5 (2. oblik vibriranja)

oblik vibriranja	fm(Hz)	Jo	fo (Hz)	(fo-fm)/fm*100	Jk	<i>f</i> s(Hz)	(fs-fm)/fm*100	
1	0,80	0,72	0,81	1,47	0,78	0,79	0,53	
2	2,14	0,64	2,23	4,03	0,73	2,16	0,75	
3	4,21	0,59	4,17	0,76	0,59 4,17		0,76	
4	6,68	0,54	6,57	1,71	0,50	6,67	0,16	
5	11,81	0,49	11,74	0,59	0,49	11,74	0,59	
6	15,10	0,45	15,27	1,11	0,45	15,27	1,11	
7	19,79	0,42	20,43	3,22	0,49	19,79	0,00	
8	25,67	0,39	26,19	2,03	0,43	25,81	0,55	
9	32,82	0,36	31,19	4,97	0,25	32,56	0,79	

Tablica 13. Odstupanje frekvencija za J-faktor

Maksimalna redukcija dodatne mase dobivena sa J_o faktorom očitanim iz dijagrama iznosi 64 % za deveti oblik vibriranja, te je to ujedno i najveća redukcija za očitani J_o faktor u odnosu na dosadašnja prva četiri modela. Zbog punije forme prvo odstupanje daje maksimalne vrijednost od 5 %. Za razliku od dosadašnjih modela najveća redukcija mase sa zadovoljavajućim konačnim J_k faktorom iznosi 75 % za deveti oblik vibriranja.

Slika 15. J- n dijagram za tanker, model - 5

Kao i u prethodnom modelu kontejnera najveća poklapanja su u četvrtom, petom i šestom obliku vibriranja, te u ovom modelu tankera i za treći oblik vibriranja. Veća ali ne značajna odstupanja javljaju se za prvi, drugi, sedmi i osmi oblik vibriranja i to povećanjem vrijednosti J_k faktora u odnosu na vrijednosti očitane iz dijagrama. Deveti oblik vibriranja ima njamanju vrijednost J_k faktora, što se poklapa sa očekivanjem.

3.8. Model – 6

Za zadani tanker masa istisnine iznosi 126 007 tona. Dodatna masa izračunata naredbom Mfluid iznosi 164 183 tone, dok analitička masa dobivena Lewisovom metodom iznosi 179 885 tona. Tablica 14 prikazuje značajke tankera za brod 6.

Dimenzija	Vrijednost				
Duljina preko svega	<i>L</i> _{OA} = 245 m				
Duljina između perpendikulara	L _{PP} = 235 m				
Širina	B= 42 m				
Gaz	T= 16,2 m				
B/Lpp = 0,178					

Tablica 14. Značajke tankera za brod 6

Treći oblik vetikalnog vibriranja broda dobiven analizom rezultata u programskom paketu Femap-Nastran prikazan je Slikom 16. Tablica 15 daje odstupanje dobivenih frekvencija.

Slika 16. MKE model broda 6 (treći oblik vibriranja)

oblik vibriranja	<i>f</i> m(Hz)	Jo	fo (Hz)	(fo-fm)/fm*100	Jk	fs(Hz)	(fs-fm)/fm*100
1	0,67	0,73	0,63	4,71	0,63	0,66	0,73
2	1,75	0,67	1,66	4,71	0,57	1,74	0,56
3	3,34	0,60	3,25	2,74	0,53	3,35	0,20
4	5,48	0,55	5,35	2,26	0,50	5,47	0,15
5	8,13	0,50	7,87	3,22	0,45	8,05	0,98
6	11,31	0,46	10,86	3,97	0,40	11,18	1,14
7	15,03	0,43	15,25	1,45	0,45	15,12	0,61
8	19,23	0,40	18,19	5,43	0,30	19,24	0,05
9	23,89	0,37	23,37	2,17	0,32	23,93	0,19

Tablica 15. Odstupanje frekvencija za *J*- faktor

Za zadani model u Tablici 15 dobivena su mala odstupanja od 2 - 5 % za frekvencije izračunate naredbom Mfluid i tradicionalnom metodom. Deveti oblik vibriranja daje najveću redukciju dodatne mase i za očitani i korigirani J faktor.

Slika 17. J- n Dijagram za tanker, model - 6

Zbog punije forme kod tankera ne dolazi do značajnih odstupanjima u vrijednostima J_k koeficijenta. Za svaki oblik vibriranja konačni J_k faktor je manji u odnosu na očitani J_0 faktor iz Lewisovog dijagrama, osim za sedmi oblik vibriranja.

4. DISKUSIJA

Točnost predviđanja dodatne mase za različite oblike vibriranja prikazana je srednjom vrijednošću. Najveću točnost rezultata, prikazana u Tablici 16, postignuta je za prvi, četvrti, šesti i osmi oblik vibriranja s prosječnom greškom manjom od 1 %, dok je najmanja točnost rezultata postignuta za sedmi oblik vibriranja i to s prosječnom vrijednošću od 0.89. Za svih devet oblika vibriranja svih šest modela srednja vrijednost daje točnost omjera J_0/J_k oko 0,96 % što znaći da je koeficijent J_o očitan iz Lewisovog dijagrama u prosjeku za 4 % manji od vrijednosti korigiranog J_k koeficijenta. Za razliku od konstantne srednje vrijednosti standardna devijacija se povecava sa oblikom vibriranja. Prvi oblik vibriranja ima najveću točnost i najmanje odstupanje od rezultata.

Iz Slike 18 za prva četiri oblika vibriranja rezultati omjera J_o/J_k imaju najmanje rasipanje rezultata od 0,09 do 0,12. Drugi oblik vibriranja ima najveću vrijednost omjera za šesti model 1,18, a najmanju vrijednost rezultata 0,76 za četvrti oblik vibriranja za treći model. Za prva četiri oblika vibriranja čak osam modela ima poklapanje konačnih vrijednosti J_k faktora s onima očitanim iz Lewisovog dijagrama. Slika 19 prikazuje peti, šesti, sedmi, osmi i deveti oblik vibriranja. Peti i šesti oblik vibriranja imaju rasipanje od 0,16 do 0,17, te pet poklapanja jednakosti omjera J_o/J_k . Najmanja vrijednost omjera vidljiva je za peti oblik vibriranja za treći model a iznosi 0,6. Sedmi i osmi oblik imaju veliko rasipanje rezultata od 0,22 do 0,26. Deveti oblik vibriranja ima najveće rasipanje rezultata za vrijednosti omjera 0,24 za treći model do vrijednost omjera 1,57 za prvi model. Slika 20 prikazuje kontinuiranu srednju vrijednost rezultata. Najmanja točnost rezultata javlja se za sedmi oblik vibriranja i iznosi 0,89, a najveća točnost za prvi oblik vibriranja 0,99. Standardan devijacija, tj. rasipanje rezultata je najmanje za prvi oblik vibriranja te iznosi 0,09. Najveće rasipanje za deveti oblik vibriranja iznosi 0,49. S obzirom na točnost rezultata i najmanje odstupanje, za svih šest modela vibriranja, najviše zadovoljava prvi oblik vibriranja.

oblik			srednja	standardna				
vibriranja	1	2	3	4	5	6	vrijednost	devijacija
1	1	0,87	1	1	0,92	1,16	0,99	0,09
2	0,97	0,84	0,84	0,84	0,88	1,18	0,92	0,12
3	1	0,87	0,83	0,83	1	1,13	0,94	0,11
4	1	1	0,76	1	1,08	1,1	0,99	0,11
5	1	1,09	0,6	1	1	1,11	0,97	0,17
6	1,21	1,13	0,73	1	1	1,15	1,04	0,16
7	1,33	0,82	0,66	0,7	0,86	0,96	0,89	0,22
8	1,35	1,18	0,71	0,78	0,91	1,33	1,04	0,26
9	1,57	0,24	0,46	0,81	1,44	1,16	0,95	0,49

Tablica 16. Srednja vrijednost i standardna devijacija svakog pojedinog oblika vibriranja za šest modela

Slika 18. Dijagrami prvog, drugog, trećeg i četvrtog oblika vibriranja za šest modela u ovisnosti o omjeru J_0/J_k

Slika 19. Dijagrami petog, šestog, sedmog, osmog i devetog oblika vibriranja za šest modela u ovisnosti o omjeru J_0/J_k

Slika 20. Srednja vrijednost i standardna devijacija u ovisnosti o oblicima vibriranja

5. ZAKLJUČAK

J faktor ovisi o omjeru duljine i širine broda i o obliku vibriranja. Koristeći Lewisovu metodu *J* fakori su očitani iz dijagrama koji je dobiven za rotacijski elipsoid i različite oblike vibriranja. Nastojeći odrediti *J* faktor za suvremene brodske forme dolazi do njegovog odstupanja od vrijednosti očitanih iz dijagram. Omjeri širine na paralelnom srednjaku i duljine za zadane modele dan je u rasponu od 0,13 do 0,18. Brodovi koji su podvrgnuti analizi imaju raspon mase istisnine od 60 000 do 131 000 tona uz izuzetak ratnog broda kojem masa istisnine iznosi 8 006 tona. Ratni brod pokazuje najveće odstupanje rezultata. Za tri kontejnerska broda prvi i četvrti model imaju tri poklapanja vrijednosti *J* faktora za tri oblika vibriranja, dok kod drugog modela dolazi do značajnih devijacija poglavito za deveti oblik vibriranja rezultata su kontinuirana sa malim odstupanjem osmog oblika vibriranja. Puniju formu broda koju imaju tankeri daju manje odstupanje rezultata, dok najveće odstupanje daje ratni brod specifične fome.

J faktor ovisi o obliku vibriranja. Za svih devet oblika vibriranja za sve modele prosječna točnost rezultata *J* faktora iznosi 96 %. Prvi oblik vibriranja ima najveću točnosti i najmanje rasipanje. Najmanju točnost ima sedmi oblik vibriranja, a najveće rasipanje rezultata deveti oblik vibriranja. Srednja vrijednost daje rasipanje rezultata koje je najmanje izraženo za prvi oblik vibriranja, a najviše za deveti oblik.

U svrhu postizanja detaljnijih rezultata potrebno je provesti analizu većeg broja modela brodova kako za kontejnerske bordove, tako i za tankere. Na dobivene rezultate utjecaj može imati raspodjela dodatne mase unutar koncentriranih masenih elemenata duž grede, te veća i preciznija podjela segmenata. Prilikom viših oblika vibriranja, veličina konačnih elementa bi također mogla imati utjecaj na prirodne frekvencije, te time i na *J* faktor.

LITERATURA

[1] Senjanović, I., Vibracije broda II, Sveučilište u Zagrebu, Zagreb, 1980.

[2] Bašić, J., Parunov. J, Analitycal and Numerical Computation of Added Massin Ship Vibration Analysis, časopis Brodogradnja, Vol.64, br.2, lipanj 2013.

[3] William S. Vorus, The Principles of Naval Architecture Series: Vibration, New Jersey, 2010.

[4] Senjanović, I., Vibracije broda III, Sveučilište u Zagrebu, Zagreb, 1981.