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Sažetak

Ubrzan napredak računalne dinamike fluida (RDF) omogućio je nadilaženje jednos-

tavnih zadataka te prelazak na složenije probleme poput turbostrojeva. Zbog složenosti

turbostrojeva, često se uvode pojednostavljenja geometrije s ciljem smanjenja vremena

trajanja simulacije. Pojednostavljenja je takoder moguće provesti primjenom adekvatnih

stacionarnih simulacija za modeliranje gibanja unutar domene. Kako bi se omogućila

komunikacija izmedu dijelova domene s različito definiranom rotacijom, nepovezanih

ili djelomično povezanih dijelova domene te kružno ponavljajućih rubnih ploha, prim-

jenjuju se različita sučelja. U sklopu ovog rada, izložena je teorijska pozadina po-

jedinih sučelja uz primjere primjene istih u računalnim simulacijama trubostrojeva s

nestlačivim radnim fluidom. Simulacije su provedene u svrhu validacije različitih pris-

tupa u korǐstenju sučelja za osnivanje komunikacije izmedu rotora i statora. Izvršen

je niz simulacija na primjeru para kontra-rotirajućih brodskih propelera navedenih u

nastavku:

• Stacionarne simulacije s cjelovitom domenom propelera uz korǐstenje ggi sučelja.

• Stacionarne simulacije s četvrtinom domene propelera uz korǐstenje cyclicGgi i

overlapGgi sučelja te istovjetne simulacije s različitim medusobnim položajem

propelera.

• Stacionarne simulacije s četvrtinom domene propelera uz korǐstenje cyclicGgi i

mixingPlane sučelja.

• Tranzijentne simulacije s četvrtinom domene propelera uz korǐstenje cyclicGgi i

overlapGgi sučelja.

Provedena je analiza rezultata navedenih simulacija na temelju kojih su izračunati

koeficijenti hidrodinamičkih performansi seta propelera. Pokazana je dobra usuglašenost

rezultata simulacija s cjelovitom domenom te onih iz simulacije s četvrtinom domene.

Usporedba rezultata stacionarnih simulacija pokazuje dobru usuglašenost s eksperimen-

talnim podacima za područja vǐse efikasnosti propelera, dok je za radne točke u po-

dručjima niže efikasnosti potrebno provesti tranzijentne simulacije.

Ključne riječi: RDF, rotorska i statorska sučelja, kontra-rotirajući propeleri, ggi,

overlapGgi, cyclicGgi, mixingPlane, foam-extend
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Abstract

Rapid progress of Computational Fluid Dynamics (CFD) allowed CFD to move past sim-

ple tasks and become a viable tool for the analysis of complex problems, such as turbo-

machines. Nevertheless, due to the complexity of turbomachinery, some simplifications

regarding interface and domain handling are sought in order to allow for reasonable sim-

ulation execution times. Most often, only a part of the whole turbomachine geometry is

simulated, which decreases computational demands. To enable communication between

domain regions wherein different rotation (or other movement) is modelled, between ill-

connected or overlapping regions, or between cyclic patches bounding partial geometry

domains, various interfaces are used. Moreover, steady-state ”frozen rotor” methods

are frequently used to approximate transient problems but avoid computationally de-

manding transient simulations. This Thesis offers an overview of several rotor-stator

interfaces available in foam-extend, with both theoretical background and numerical

simulations. A series of numerical simulations is performed on a Contra-Rotating Pro-

peller set (CRP), investigating different rotor-stator interface handling methods:

• Steady-state simulations using the Multiple Reference Frame (MRF) approach and

the whole CRP geometry with General Grid Interface (ggi).

• Steady-state MRF simulations of a quarter CRP geometry using overlapGgi and

cyclicGgi interfaces across periodic boundaries. Additional simulations are per-

formed to investigate the effects of initial propeller position.

• Quarter CRP geometry steady-state MRF simulations using cyclicGgi and mixingPlane

interfaces.

• Transient simulation of a quarter CRP geometry with the cyclicGgi and overlapGgi

interfaces.

The results were analysed in terms of hydrodynamic performance coefficients, showing

good agreement between quarter and full CRP simulations and validating the interfaces

used. Comparison to experimental data revealed good agreement with steady-state

results for high-efficiency conditions and good agreement with transient simulations for

lower-efficiency conditions.

Keywords: CFD, rotor-stator interfaces, Contra-rotating propellers, ggi,

overlapGgi, cyclicGgi, mixingPlane, foam-extend
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Prošireni sažetak

Turbostrojevi predstavljaju skupinu složenih strojeva koje je moguće klasificirati u

velik broj različitih kategorija uzimajući u obzir značajke odredene njihovom konstrukci-

jom te strujanjem fluida kroz radni volumen stroja. Primjena računalne dinamike fluida

za proučavanje strujanja fluida u radu turbostrojeva otvara nove spoznaje rada, kons-

trukcije i pobolǰsanja turbostrojeva. Istovremeno, kompleksna konstrukcija turbostro-

jeva zahtijeva korǐstenje odredenih pojednostavljenja prilikom postavljanja računalnih

simulacija. Ta se pojednostavljenja najčešće svode na različite pristupe modeliranja gi-

banja (rotacije) u domeni (računalnoj mreži) te povezanosti dijelova domene. U slučaju

kada je numerička mreža stacionarna, a samo dio mreže rotira, relativni položaja izmedu

stacionarnog i rotirajućeg dijela mreže varira izmedu vremenskih koraka simulacije.

Kako bi se proveo RDF proračun, mrežu je potrebno povezati u jednu domenu. S

obzirom na to da jedan dio mreže rotira, dok je drugi stacionaran, računalna mreža

ne može biti izvedena cjelovito, već se sastoji od dvije povezane domene. Povezanost

dijelova domene ostvaruje se korǐstenjem različitih sučelja koja ostvaruju komunikaciju

izmedu mirujućih i rotirajućih dijelova domene.

Kontra-rotirajući propeleri predstavljaju primjer turbostroja bez kućǐsta, koji zah-

tijevaju modeliranje dvije rotacijske zone unutar jedne proračunske domene. Upravo su

iz tog razloga ovi propeleri izvrstan odabir za pregled metoda povezivanja rotirajućih i

stacionarnih dijelova računalne mreže.

xx
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Metode povezivanja mreže

Kako bi se ostvarila adekvatna komunikacija izmedu odvojenih dijelova mreže po-

trebno je korǐstenje nekog od niza sučelja za povezivanje mreže rotora i statora. Budući

da se dijelovi mreže u kojima se modelira rotacija izvode kao zasebne zone odvojene

plohama koje pripadaju unutrašnjosti numeričke mreže, komunikacija izmedu takvih

domena i ostaka mreže ostvaruje se sučeljima koja omogućuju komunikaciju izmedu

rubnih ploha unatoč nepodudaranju mrežnih čvorova na plohama. Takoder, numerička

se mreža može pojednostaviti korǐstenjem samo jednog dijela domene koji se periodički

ponavlja. Na rubnim plohama takve domene koriste moraju se koristiti posebna sučelja

kako bi se ostvarila komunikacija.

Osnovna sučelja koja su korǐstena prilikom izrade ovog rada te se mogu pronaći

unutar paketa foam-extend nabrojana su u nastavku:

• ggi (eng. General grid interface) - Osnovno sučelje koje se koristi za povezivanje

dijelova domene čije se granice ne poklapaju, a komunikaciju ostvaruje interpo-

liranjem varijabli izmedu granica domena. Primjena ggi sučelja pretpostavlja

potpuno preklapanje ploha s obje strane sučelja.

• overlapGgi- Izvedenica osnovnog ggi sučelja koja se koristi za povezivanje graničnih

ploha kod kojih je ostvareno samo djelomično preklapanje.

• cyclicGgi- Izvedenica ggi sučelja kod koje se poklapanje ploha ostvaruje tran-

slacijskom ili rotacijskom transformacijom koordinata, a koristi se na granicama

dijela domene koji se periodički ponavlja kako bi se ostvarila komunikacija s dru-

gim, cjelovitim ili djelomičnim, dijelovima domene.

• mixingPlane- Sučelje koje omogućava komunikaciju izmedu granica s djelomičnim

preklapanjem, slično kao i overlapGgi, uz uvodenje dodatnog osrednjavanja vri-

jednosti koje se prenose izmedu granica.

Primjena navedenih sučelja, kao i njihov utjecaj na konačne rezultate, ispitani su

nizom simulacija provedenim unutar ovog rada te opisanim u nastavku.
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Kontra-rotirajući propeleri

Ovakav se tip brodskog pogona sastoji od para propelera sa zajedničkom osi vrtnje,

koji rotiraju u suprotnim smjerovima te se nalaze na istom ili dva odvojena vratila.

Njihovom se primjenom ostvaruju prednosti u odnosu na korǐstenje samo jednog pro-

pelera, kao što su: bolja razdioba opterećenja izmedu propelera, povećanje efikasnosti

pogona, smanjenje mogućnosti pojave kavitacije, produžen životni vijek pojedinog pro-

pelera, itd. Jedna od osnovnih prednosti kod primjene kontra-rotirajućih propelera je

smanjenje momenta koji izaziva zakretanje (izboj) broda. Primjena seta propelera s

jednakim i parnim brojem lopatica izaziva pojavu fluktuacije potiska. S druge strane,

koristi li se set s neparnim brojem lopatica, fluktuacija potiska će biti manja, ali dolazi

do pojave bočnih sila.

Iako je ovaj tip brodskih propelera odavno poznat u brodogradnji, prve su izvedbe

ovih propelera koristile jedno vratilo (Slika 1), što je dovodilo do velikih problema s

trenjem izmedu unutarnjeg i vanjskog dijela vratila. Upravo je zbog tog razloga dalj-

nji razvoj kontra-rotirajućih propelera zaustavljen. Do ponovnog jačanja interesa za

ovakvim propelerima dolazi tek naglim razvojem elektromagnetskih motora te pojave

moderne inačice ovog sustava. Kod modernih izvedbi jedan se propeler nalazi na vra-

tilu glavnog pogonskog stroja broda, a drugi je pogonjen elektromotorom u pomičnoj

gondoli iz glavnog propelera (Slika 2).

Slika 1: Izvedba s gondolom [1]. Slika 2: Izvedba s jednim vratilom [2].
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Hidrodinamičke karakteristike propelera

Rad propelera može se kvantificirati pomoću hidrodinamičkih karakteristika na te-

melju kojih se formira dijagram slobodne vožnje brodskih propelera. Dijagram se temelji

na koeficijentima poriva i momenta te efikasnosti propelera koji se računaju za radne

točke definirane koeficijentom napredovanja J :

J =
U

nDf

.

Pomoću vrijednosti J izračunate temeljem promjera prednjeg propelera (Df ), moguće

je izračunati vrijednosti koeficijenta poriva, momenta te efikasnosti za prednji i stražnji

propeler:

KTf =
Tf

n2D4
fρ
, KQf =

Qf

n2D5
fρ
,

KTa =
Ta

n2D4
aρ
, KQa =

Qa

n2D5
aρ
,

ηf =
KTf

KQf

J

2π
, ηa =

KTa

KQa

J

2π
.

Ukupne se vrijednosti koeficijenata potiska i momenta dobivaju zbrajanjem vrijednosti

za pojedinačne propelere, dok se ukupna efikasnost računa prema izrazu:

η =
KT

KQ

J

2π
.

Konačne se vrijednosti navedenih koeficijenta i efikasnosti unose u dijagram u ovisnosti

o koeficijentu napredovanja, što se naziva dijagramom slobodne vožnje propelera.

Numerička mreža

Numerička mreža izradena je na temelju modela kontra-rotirajućih propelera koji je

opisan u tablici (Tablica 1). Model sa sastoji od dva propelera s jednakim brojem lopa-

tica koji rotiraju sinkronizirano brzinom od 12 okretaja u sekundi oko iste osi rotacije.
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Korǐstene su dvije numeričke mreže, od koji je jedna temeljna na punoj geometriji

(Slika 3, lijevo) propelera, dok se druga temelji na četvrtini geometrije (Slika 3, desno).

Obje se numeričke mreže sastoje od tri regije (odvojne domene) povezane adekvatnim

sučeljima. Uz svaki je propeler definirana zona rotacije, koje su okružene stacionarnom

mrežom koja predstavlja područje neporemećenog strujanja fluida.

Tablica 1: Karakteristike propelera.

Propeller type 3686 3687A

Position in set FORE AFT

Blades 4 4

Diameter [ m ] 0.2991 0.3052

Rotation CW CCW

Expanded area ratio 0.303 0.324

Section Meanline NACA a = 0.8 NACA a = 0.8

Thickness Distribution NACA 66 NACA 66

Slika 3: Puna geometrija (lijevo) i četvrtina geometrije propelera (desno).
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U numeričkoj mreži cjelovite geometrije, komunikacija izmedu domena propelera i

ostatka mreže ostvarena je pomoću ggi sučelja. Mreža djelomične geometrije zahti-

jeva korǐstenje cyclicGgi sučelja za ostvarivanje komunikacije na periodičkim grani-

cama te overlapGgi za povezivanje domena četvrtina propelera s ostatkom mreže. Za

testiranje mixingPlane sučelja, korǐstena je mreža temeljena na četvrtini propelera s

cyclicGgi sučeljem te mixingPlane sučeljem na granici domena četvrtina propelera i

ostatka mreže.

Rezultati simulacija

Za potrebe rada proveden je niz simulacija koristeći prethodno predstavljene nu-

meričke mreže kontra-rotirajućih brodskih propelera:

• Stacionarne simulacije s cjelovitom domenom propelera uz korǐstenje ggi sučelja.

• Stacionarne simulacije s četvrtinom domene propelera uz korǐstenje cyclicGgi i

overlapGgi sučelja te istovjetne simulacije s različitim medusobnim položajem

propelera.

• Stacionarne simulacije s četvrtinom domene propelera uz korǐstenje cyclicGgi i

mixingPlane sučelja.

• Tranzijentne simulacije s četvrtinom domene propelera uz korǐstenje cyclicGgi i

overlapGgi sučelja.

Rezultati svake simulacije analizirani su grafičkim prikazom relevantnih polja, te su

izračunati koeficijenti hidrodinamičkih značajki svakog od propelera i cijelog seta. Na

temelju rezultata formirani su dijagrami slobodne vožnje propelera.
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Simulacija pune geometrije

Rezultati izračunati na temelju stacionarne simulacije pune geometrije prikazani su

u dijagramu slobodne vožnje na slici (Slika 4). Vrijednosti dobivene u numeričkoj simu-

laciji usporedene su s dostupnim eksperimentalnim podacima. Vidljivo je odlično sla-

ganje eksperimentalnih podataka i dobivenih rezultata, za vǐse vrijednosti koeficijenta

napredovanja J što odgovara području veće efikasnosti propelera. Za niže vrijednosti

J , tj. za područje niže efikasnosti gdje je izražen utjecaj tranzijentnih pojava, mogu se

uočiti odstupanja od eksperimentalnih podataka. Ona su objašnjena činjenicom da sta-

cionarna simulacija ne uspijeva uhvatiti nestacionarne pojave čiji je utjecaj vrlo izražen

za područja niskog koeficijenta J .
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Slika 4: Dijagram slobodne vožnje simulacije čitavog propelera.
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Simulacija četvrtine geometrije

Rezultati simulacija provedenih s četvrtinom geometrije usporedeni su s rezultatima

cjelovite geometrije, kako bi se validirala upotreba cyclicGgi i overlapGgi sučelja. Na

slici (Slika 5) vidljivo je vrlo dobro poklapanje rezultata dviju navedenih geometrija,

čime je opravdano daljnje korǐstenje mreže temeljene na četvrtini propelera. Ta mreža

sadrži manji broj kontrolnih volumena što smanjuje vrijeme potrebno za postizanje

zadane razine konvergencije.
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Slika 5: Dijagram slobodne vožnje simulacije četvrtine propelera.

mixingPlane simulacija

Primjena mixingPlane sučelja ispitana je korǐstenjem mreže četvrtine geometrije

uz primjenu cyclicGgi sučelja. Rezultati prikazani na slici (Slika 6) pokazuju bo-

lje podudaranje simulacije s eksperimentalnim podatcima za niža područja koeficijenta

J . Takoder, korǐstenjem mixingPlane sučelja uvedeno je osrednjavanje vrijednosti na

granici. Upravo iz toga razloga ovo sučelje nije smisleno primijeniti u tranzijentnim

simulacijama.
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Slika 6: Dijagram slobodne vožnje simulacije uz mixingPlane sučelje.

Tranzijentna simulacija

Zbog dugog perioda trajanja simulacija potrebnog za postizanje periodičke staci-

onarnosti, izvršena je tranzijenta simulacija za samo jednu radnu točku u području nižih

vrijednosti koeficijenta J . Cilj je provjeriti može li se tranzijentnom simulacijom postići

rezultat koji odgovara eksperimentu, a kojeg nije bilo moguće postići stacionarnom si-

mulacijom. Dobiveni su rezultati pokazali da je moguće postići vrlo dobro poklapanje

s eksperimentom, ako je simulacija dostigla stanje periodičke stacionarnosti (Tablica

6.6).
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Utjecaj početnog položaja propelera

Posljednji niz simulacija proveden je na četvrtini geometrije te koristeći cyclicGgi

i overlapGgi sučelja. U simulacijama je variran početni položaj prednjeg propelera u

odnosu na stražnji, te je promatran utjecaj na rezultate stacionarne simulacije (Tablica

6.4). Utvrdeno je kako različiti kutevi zakrenutosti izmedu propelera znatno utječu

na konačan rezultat, što je pripisano prirodnim varijacijama u iznosu sile i momenta

tijekom rotacija propelera, vidljivim iz rezultata tranzijentne simulacije.

Zaključak

Na temelju simulacija provedenih prilikom izrade ovog rada, istražena su pojednos-

tavljenja geometrije te pristupi modeliranju rotacije koje je moguće koristiti u računalnim

simulacijama turbostrojeva. Većina metoda korǐstenih za modeliranje rotacije, kao i si-

muliranje dijela geometrije, zahtjeva korǐstenje sučelja, a čiji odabir ovisi o promatranim

pojavama.

Za računalne simulacije turbostrojeva poput kontra-rotirajućih propelera, moguće je

koristiti samo dio geometrije uz periodične rubne uvjete. Korǐstenjem dijela geometrije

nisu uočena značajna odstupanja u odnosu na primjenu čitavog modela. Takoder, za

simulacije radnih točaka blizu projektne radne točke, tj. radne točke u području vi-

soke efikasnosti, stacionarne simulacije daju zadovoljavajuće rezultate. Ako je potrebno

simulirati točke za područja niže efikasnosti, potrebno je koristiti tranzijentne simulacije.



1 Introduction

In general, the term turbomachinery describes a series of different machines oper-

ating on the principle of exchanging energy with a fluid which is continuously flowing

around rotating and/or stationary elements of the machine. The presented definition

of turbomachinery includes a wide range of machines operating on the same principle,

yet involving different functions, operating environments and characteristics. Thus, a

general classification of turbomachines is presented.

The simplest categorisation of turbomachines would be according to type of flow

through the machine. Turbomachines are grouped into three categories depending on the

direction of flow in regards to rotational axis of the machine: radial, axial and mixed flow

machines [3]. The fluid flow in radial machines is perpendicular to the rotational axis,

while fluids in axial machines flow parallel to the axis of rotation. Machines with mixed

flow, represent a category of turbomachinery where the flow does not show dominantly

axial or dominantly radial nature, having both radial and axial components of velocity

instead. The difference between radial and axial flow machines is made evident by the

mechanism of energy transfer between the machine and the fluid, that is, by the change

in the velocity entering and exiting the rotor. While radial machines transfer energy

by changes in the velocity angle and changes in radius, radial flow machines usually

transfer work solely by changes in the velocity angle [4].

Further classification can be performed by examining the streamlines around the

rotor. If the rotor of the machine is enclosed in a casing or shrouded in such a way that

the streamlines cannot diverge to flow around the side of the rotor, the turbomachine can

be considered a closed-type or enclosed machine (e.g. centrifugal pumps, turbopumps,

1
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compressors). If streamlines are allowed to diverge around an unshrouded rotor, i.e.

the machine operates without a stationary shroud, it can be considered an open-type or

extended turbomachine (e.g. ship propellers or wind turbines) [3].

Closed-type turbomachines are usually sub-categorized depending on the type of

fluid used. Hydraulic machines, such as centrifugal pumps or fans, work with fluids

which can be considered incompressible for normal operating conditions. On the other

hand, in thermal machines, such as steam and gas turbines or jet engines, work with

compressible fluids.

If the energy exchange between the turbomachine and the working fluid is considered,

turbomachines can be categorised as machines that use energy to increase the pressure

of the working fluid (e.g. fans, pumps, compressors) or those that expand the fluid to

generate energy (turbines).

The large number of turbomachines covered by the classification above are used

for different applications in multiple industries. Turbomachines had an important part

in energy generation, transportation and manufacturing since the Industrial revolution

and continue to do so today, proving that further study of such devices and connected

phenomena continues to have a vital role in modern science.

1.1. CFD in Turbomachinery

With various industries shifting towards greater fuel efficiency, cost reduction and

lower emissions, new requirements are imposed on the construction and operation of

turbomachinery. Older plants, vehicle and processes using turbomachines are also being

retrofitted for greater efficiency and lower emissions. The need for improvement over the

existing design and modelling processes calls for a modern approach to the prediction

and verification of turbomachinery designs, such as Computational Fluid Dynamics.

Computational Fluid Dynamics (CFD) is a branch of fluid dynamics which uses

numerical analysis to investigate fluid flow in various circumstances. The use of CFD

for standard external aerodynamics such as heating, ventilation and air conditioning

(HVAC) simulations and simple wall-bounded turbulent flows has been standard prac-

tice for years [5]. On the other hand, using CFD in turbomachinery brings far greater

challenges concerning the geometry used, mesh resolution, simulation of rotating com-

ponents, etc.
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Complex geometry of most turbomachines supersedes simple geometries of most CFD

simulations. Large numbers of rotating and stationary parts found in turbomachines

further complicate the transient flows which are to be modelled. Interactions between

rotating and stationary elements of such machines bring forth the occurrence of com-

plex phenomena not usually found in external flow. Furthermore, turbulent boundary

layers and wake-to-rotor interactions become of great importance in the CFD study of

turbomachinery which, combined with complex multi-part geometry, demands very fine

resolution of the computational mesh. This makes the simulations more demanding in

terms of computational effort and CPU time. To deal with rotational effects of flow

in single or multi-rotor turbomachines, relative motion needs to be taken into account.

This is usually achieved either by introducing non-inertial rotational frames of reference

or by topological changes of the computational mesh [5].

Taking into account the complex geometries and consequent phenomena connected

with turbomachinery, the difficulties of CFD simulations of turbomachines become ap-

parent. Complex flows, occurrence of transients, geometry optimisation, both design

and off-design conditions are to be investigated and taken into account. Furthermore,

the simulations need to produce quasi-stationary data applicable for machine design pur-

poses and need to be acceptable in respect to both turnaround time and computational

demands.

The need to deal with such high demands brought about the idea of simplifying the

computational mesh by using only part of the whole geometry and introducing cyclic

boundary conditions. To make such simplification possible, the problem of connecting

different regions or geometries (e.g. rotor, stator) of the computational mesh was ad-

dressed by introducing various interfaces as means of enabling communication between

disjoint or partially connected sections.

A good example of an extended turbomachine with complex rotor interaction is a

set of Contra-Rotating Propellers (CRP). A CRP set consists of two unshrouded co-

axial rotors, rotating in opposite directions. Having an increasingly important role in

maritime propulsion, the CRP set presents an ideal choice of turbomachiery to be used

for study of various interfaces in available turbomachinery CFD.
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1.2. Scope of Thesis

This Thesis investigates different mesh-to-mesh interfaces used to connect stationary

and rotational mesh components in turbomachinery CFD simulations. The theoretical

background needed to understand the basic principles of the Finite Volume Method

(FVM) and different approaches to domain and interface modelling is covered. Different

approaches to turbomachinery simulation are presented on a CRP set, with an analysis of

results gathered from both transient and steady-state simulations run in foam-extend.

1.3. Thesis Outline

This thesis is organised in seven Chapters, as follows: Chapter 1 offers an overview of

turbomachinery and serves as an introduction to the Thesis. Chapter 2 introduces the

basic notions of FVM used for CFD simulations. Chapter 3 gives a detailed overview of

different approaches to interface and domain handling. Chapter 4 introduces the concept

of CRP with details on the characteristics of CRP sets and offering an overview of re-

lated studies. Chapter 5 defines the different geometries used, listing the corresponding

boundary conditions. Chapter 6 presents the results of CFD simulations both graphi-

cally and numerically, offering appropriate comments and explanations where needed.

Chapter 7 serves as the Conclusion of the Thesis, followed by an Appendix offering

examples of interface-setup in foam-extend.



2 Finite Volume Method

2.1. Introduction

The previous chapter served as a short introduction describing the intricacies of

turbomachinery and the use of CFD to analyse the characteristics and performance of

turbomachines. The following chapter shall introduce the Finite Volume Method and

overview some of the theoretical background required to understand the implementation

of the method in turbomachinery CFD.

2.2. The Scalar Transport Equation

If the Reynolds Transport Theorem (RTT) is applied to a region of space which is of

interest when analysing a certain problem, it can be used to describe the rate of change

of a general property φ in region (control volume, CV). The CV represents a closed

system where the rate of change of the general property φ is equal to the sum of the

change of property inside of the CV and the net rate of outflow through the surfaces

defining the CV. The RTT for a CV like the one shown in Fig. 2.1, can be written as

follows [6]:

d

dt

∫
Vm

φ dV =

∫
Vm

∂φ

∂t
dV +

∮
Sm

φ(n•u)dS . (2.1)

Next, the general form of the Gauss’ Theorem must be introduced to transform the

surface integral from Eq. 2.1:

5
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∫
VP

∇ · a dV =

∮
∂VP

ds•a =

∮
∂VP

dn•a dS . (2.2)

By applying Eq. 2.2 to Eq. 2.1, a volume integral form of the RTT is shown:

d

dt

∫
V

φ dV =

∫
V

[
∂φ

∂t
+∇ · (φu)

]
dV , (2.3)

which is used to model the convective transport of a general property φ facilitated by

the convective velocity u. The inflow of the general property φ is given by (u · n) < 0

and the outflow by (u · n) > 0.

��
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u

dS
n

CV
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OUTFLOW

Figure 2.1: Closed system or Control

Volume (CV).
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u

dS
n

CV

INFLOW

OUTFLOW

qs

Qv

Figure 2.2: Surface and Volume sources

of a CV.

As well as the convective transport, surface and volume sources also add to the change

of a general property inside the CV. The contribution of surface and volume sources,

shown in Fig. 2.2, is represented by:

d

dt

∫
V

φ dV =

∫
V

qv dV −
∮
S

(n•qs)dS . (2.4)

By applying the Gauss’ Theorem to the source term in Eq. 2.4, matching the left-hand

side of the resulting equation with Eq. 2.3 and integrating over the volume of the CV

(V = const.), the following equation is obtained:
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∂φ

∂t
+∇ · (φu) = qv −∇ · qs . (2.5)

The terms representing surface sources, which act on the surface S of the CV, are

modelled using Diffusive Transport. In physical terms, a general property φ in a closed

domain (CV) will be transported from regions of greater concentration to regions of

lower concentration until uniformity of concentration is achieved. The diffusion model

is based on the fact that ∇φ points in the direction of greater concentration of the

property φ and the fact that the diffusive transport occurs in the opposite direction

governed by the diffusivity γ [6]:

qs = −γ∇φ . (2.6)

By inserting Eq. 2.6 into Eq. 2.5 and rearranging, the general form of the Scalar Trans-

port Equation may be presented:

∂φ

∂t︸︷︷︸
temporal derivative

+ ∇ · (φu)︸ ︷︷ ︸
convection term

−∇ · (γ∇φ)︸ ︷︷ ︸
diffusion term

= qv︸︷︷︸
source term

. (2.7)

The temporal derivative from Eq. 2.7 represents the inertia of the system, i.e. the ability

of the system (CV) to accumulate a general property. The convection term represents

a coordinate transform of the property, i.e. the amount of property φ transported into

or out of the system, by the velocity u. The diffusion term represents the gradient

transport of property φ, defining the amount of φ transported by diffusive transport.

Finally, source (or sink) terms define local production and/or destruction of the general

property φ.

2.2.1. Governing Equations

The Scalar Transport Equation 2.7 represents one of the constitutional equations

of Continuum Mechanics. It is the core equation describing how a scalar quantity is

transported in a defined space. By replacing the general property φ with different

properties, other governing equations of Continuum Mechanics can be derived:
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Conservation of Mass

By substituting the general property φ in the Scalar Transport Equation 2.7 with

fluid density denoted by ρ and defining a zero value source term, the equation describing

the Conservation of Mass is derived:

∂ρ

∂t
+∇ · (ρu) = 0 . (2.8)

For incompressible flow, the density of the fluid can be defined as constant ρ = const.,

further simplifying Eq. 2.8:

∇ · u = 0 . (2.9)

The form of the Conservation of Mass equation presented above (Eq. 2.9) is called the

continuity Equation.

Conservation of Linear Momentum

The equation describing the Conservation of Linear Momentum can be derived from

Eq. 2.7 by replacing the general variable φ with the linear momentum vector ρu:

∂(ρu)

∂t
+∇ · (ρuu) = ρg︸︷︷︸

gravitational force

+ ∇ · σ︸︷︷︸
surface forces

. (2.10)

For incompressible flow and usually ignoring gravitational forces for turbomachinery

CFD, Eq. 2.10 can be transformed as follows:

∂u

∂t︸︷︷︸
local production

+∇ · (uu)︸ ︷︷ ︸
convection

−∇ · (νeff∇u)︸ ︷︷ ︸
diffusion

= − ∇p
ρ︸︷︷︸

pressure gradinet

, (2.11)

where the Cauchy stress tensor is given as the sum of the pressure gradient ∇p and

viscous stress tensor represented in the diffusion term. It should be noted that the fluid

velocity u occurs in Eq. 2.11 both as the transporting and the transported variable,

making the convection term non-linear [6].
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An alternative from of the momentum equation can be defined using the definition of

the total (material) derivative Dφ
Dt

= ∂φ
∂t

+∇ · uφ with u as the variable φ:

Du

Dt
= ∇ · (νeff∇u)−∇p

ρ
. (2.12)

The momentum equation presented in Eq. 2.12 is usually coupled with the continuity

equation shown in Eq. 2.9 to form the Navier-Stokes set of equations for incompressible

fluid flow.

Conservation of Energy

If the general property φ in Eq. 2.7 is replaced by specific internal energy ρe and the

source/sink terms made equal to the sum of the power of different forces exerted on the

CV and the net heat flux defined by specific heat flux q and volumetric heat source Q,

the equation describing the Conservation of energy can be presented:

∂(ρe)

∂t
+∇ · (ρeu) = ρg•u︸︷︷︸

power of gravity force

+ ∇ · (σ•u)︸ ︷︷ ︸
power of surface forces

−∇ · q + ρQ︸ ︷︷ ︸
net heat flux

. (2.13)

2.3. Discretisation

For the governing equations presented in the previous chapter to be implemented in

CFD software such as foam-extend, they need to be discretised. The process of discreti-

sation allows for the Scalar Transport Equation and the resulting governing equations

to be solved numerically. The discretisation process consists of representing differential

equations as algebraic expressions of equivalent properties, usually a matrix [6].

The discretisation of the transport equation in foam-extend is performed by imple-

menting the Polyhedral Finite Volume Method in several steps [6]:

• Per-operator discretisation is performed by evaluating each term explicitly follow-

ing a predetermined strategy and discretisating it.

• Space dicrtisation is performed use of a computational mesh as the spatial domain.
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• Time is discretised by a series of time-steps adding up to the observed time interval.

• Spatial and temporal variations of a property φ are used to discretely represent

field data.

• Integration over a cell (CV) is preformed.

• Spatial and temporal variations are use for discrete interpretation of operator

terms.

The basis of the discretisation process is the definition of the space and time domains

to be used. The temporal domain is defined by observing the chosen time interval as a

series of consecutive time-steps. The spatial domain is represented by a finite number

of control volumes (cells). A representation of one CV is given by a convex polyhedron

shown in Fig. 2.3.

A polyhedral cell of volume VP is defined with the cell centroid P and the centroid

position vector rP in regard to the origin of the global coordinate system. For a selected

cell face f a surface normal vector sf is defined with a magnitude equal to the area of

the selected face Sf . Any neighbouring cell has a centroid N connected to the centroid

of the main cell P by the delta vector df = PN [6].

The definition of the cell centroid P as the main computational point is given by:∫
VP

(x− xP ) dV = 0 , (2.14)

with the face centre f defined in the same manner:∫
Sf

(x− xf ) dS = 0 . (2.15)

In practice, faces of the polyhedral cell are not flat surfaces, meaning that the surface

normal vector sf must be calculated from the given integral:

sf =

∫
Sf

n dS . (2.16)
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Solutions to discretised equations are stored in the cell centroid whereas the boundary

data is stored in face centres of the boundary faces. Depending on situation and purpose

of the data required, it may be necessary to access data stored in face centres of the

finite volume cell. To access such data face interpolation schemes are used.
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Figure 2.3: Polyhedral finite volume.

The second order discretisation of spatial variation for a general property φ is denoted

by the following expression:

φ(x) = φP + (x− xP )•(∇φ)P , (2.17)

while second order temporal discretisation is given by:

φ(t+ ∆t) = φt + ∆t

(
∂φ

∂t

)t
. (2.18)

Where the value of φ at the centroid is given by φP = φ(xP ) and the value of φ at time

t by φt = φ(t).
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Using Eq. 2.17 the volume integral can be evaluated as follows:∫
V

φ dV =

∫
V

[φP + (x− xP )•(∇φ)P ] dV

= φP

∫
V

dV + (∇φ)P •

∫
V

(x− xP )dV (2.19)

= φPVP ,

and the surface integral can be evaluated as:

∮
S

nφ dS =
∑
f

∫
Sf

nφf dSf (2.20)

=
∑
f

∫
Sf

n[φf + (x− xf )•(∇φ)f ] dSf (2.21)

=
∑
f

sfφf .

The discretisation of the Scalar Transport Equation 2.7 is performed on a term-by-term

basis starting from the integral form of the equation:∫
V

∂φ

∂t
dV +

∮
S

φ (n•u) dS −
∮
S

γ (n•∇φ) dS =

∫
V

Qv dV , (2.22)

resulting in the transfomation of the equation from a differential equation to a set of

algebraic equations solved in matrix form.

2.3.1. Temporal Derivative Discretisation

The time derivative in Eq. 2.22 represents the rate of change of the property φ and

can be disctretised as:

∂φ

∂t
=
φn − φo

∆t
. (2.23)

Eq. 2.23 represents the first order approximation of the temporal derivative where:
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• The field value of variable φ calculated for the new time-step tnew is defined as:

φn = φ(t = tnew) . (2.24)

• The field value of variable φ calculated for the previous time-step told is defined as

follows:

φo = φ(t = told) . (2.25)

• The time-step size ∆t can be expressed as:

∆t = tnew − told . (2.26)

Backward differencing can be applied to express the second order approximation of the

temporal derivative:

3
2
φn − 2φo + 1

2
φoo

∆t
, (2.27)

where the term φoo is expressed as φoo = φ(tnew − 2∆t) and the time-step is assumed to

remain constant. Integrating Eq. 2.26 and Eq. 2.27 over the volume of the cell produces

yields: ∫
V

∂φ

∂t
dV =

φn − φo

∆t
VP , (2.28)∫

V

∂φ

∂t
dV =

3
2
φn − 2φo + 1

2
φoo

∆t
VP . (2.29)
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2.3.2. Convection Term Discretisation

The dicretisation of the convection term from Eq. 2.22 is accomplished by using the

Gauss’ Theorem 2.2 to transform the volume integral to a surface integral. The same

process is applied for the discretisation of any terms consisting of either the gradient or

the divergence operator. The convection term can now be expressed as:∫
V

∇ · (φu) dV =

∮
S

φ(n•u)dS . (2.30)

The surface integral can now be expressed as a sum of face integrals:∮
S

φ(n•u)dS =
∑
f

φf (sf •uf ) =
∑
f

F φf , (2.31)

where φf represents the value of φ at the face of the cell face and the flux F can be

expressed as a product of the surface normal vector and the convective velocity uf :

F = sf •uf . (2.32)

Discretising the convection term as a sum of the products of all face-centred values of

the property φf and the corresponding face flux F . The value of φf need to be evaluated

by using φP and φN which can be achieved by using one of many existing interpolation

schemes, e.g.:

• Central differencing - second order accuracy, but causing oscillation:

φf = fxφP + (1− fx)φN , (2.33)

where fx = fN/PN .

• Upwind differencing - which takes into account the upstream information, produc-

ing no oscillations but smearing the solution:

φf = max(F, 0)φP +max(−F, 0)φN . (2.34)
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2.3.3. Diffusion Term Discretisation

The diffusion term from the Scalar Transport Equation 2.22 can be discretizied by

implementing the same method as the one used for the discretization of the convection

term:

∫
V

∇ · (γ∇φ) dV =

∮
S

γ(n•∇φ)dS

=
∑
f

∫
Sf

γ(n•∇φ) dS (2.35)

=
∑
f

γf sf •(∇φ)f .

The term describing the face-normal gradient sf •(∇φ)f can be expressed as the difference

of property φ across the face:

sf •(∇φ)f = |sf |
φN − φP
|df |

. (2.36)

Eq. 2.36 is valid for orthogonal meshes, while for large non-orthogonality, correction

terms must be applied.

2.3.4. Source/Sink Term Discretisation

Sources and sinks describe local effects and may be modelled by a function of space

and time or any complex variable S. Thus, the discretisation produces:∫
V

S dV = SVP , (2.37)

where S may be linearised with respect to the general property φ as:

S(φ) = Su − Spφ . (2.38)
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2.3.5. Linear System of Equations

A system of linear equations is developed by discretisation of the Scalar Transport

Equation 2.7. A linear equation is solved for every computational point (cell centroid P ),

where the solution of the equation depends on the values of neighbouring cell centroids

N . A general form of the linear equation for a cell centroid P is given by:

aPxP +
∑
N

aNxN = b . (2.39)

For every time xP depends on itself, contribution is added into aP and for every

time xN depends on itself, contribution is added into aN . Other contributions are added

to b. If equation Eq. 2.39 is developed for each cell of the domain, a system of linear

equations is constructed. It is usually written in matrix form:

[A][x] = [b] . (2.40)

The matrix [A] contains the coefficients aP and aN , the vector [x] contains values of

xP for all cells in the domain and the vector [b] represents the right-hand side. As the

domain contains a large number of cells, each described by a separate linear equation,

the matrix [A] has a dimension of N × N cells, making it a square matrix. This can

make the matrix large, however many coefficients are equal to zero and the matrix is

sparse with the number of non-zero terms in each row being equal to the number of cell

faces.

2.4. Boundary Conditions

As described in [6], boundary conditions are used to isolate the studied system

from the rest of the environment and to limit what is to be modelled. The type and

position of the boundary conditions to be applied depend on the physics governing the

observed phenomena and good engineering practice. Numerical boundary conditions

are frequently used in CFD to prescribe boundary behaviour. Most frequently used

numerical boundary conditions include:

• The Dirichlet boundary condition, which prescribes a fixed value of φ at the
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boundary:

φ = const. (2.41)

• The Neumann boundary condition, prescribing a zero gradient or no flux condition:

n · qs = 0 . (2.42)

• A generalised Neumann boundary condition, which prescribes a fixed gradient or

fixed flux at the boundary:

n · qs = qb . (2.43)

• Mixed conditions can be used as a linear combination of Neumann and Dirichlet

conditions:

αφ+ (1− α) n · qs . (2.44)

• Geometric and Coupled boundary conditions such as symmetry plane, cyclic or

periodic boundary conditions.

2.5. Pressure-Velocity Coupling Algorithms

The set of equations shown in Eq. 2.12 and 2.9 represents the Navier-stokes equations

for incompressible flow. This set of equations represents one vector field governed by one

vector equation and one scalar field governed by a scalar equation. These two equations

are linearly coupled as the velocity governed by the momentum equation also appears as

a velocity divergence in the continuity equation. As the pressure gradient is also present

in the momentum equation, linear coupling between the pressure and the velocity is

present.

As the pressure field is a scalar field and velocity represents a vector field, the two

cannot be put in direct relation without the derivation of the pressure equation. The

pressure equation can be derived by discretisation of the momentum equation as follows:

auPuP +
∑
N

auNuN = r−∇p . (2.45)
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All the right-hand-side contributions and the off-diagonal part of the matrix describing

the momentum equation are combined in the newly introduced H(u) operator:

H(u) = r−
∑
N

auNuN . (2.46)

By using Eq. 2.46, Eq. 2.45 can be transformed:

auPuP = H(u)−∇p , (2.47)

which can be rearranged as:

uP = (auP )−1(H(u)−∇p) . (2.48)

The resulting expression for up can now be substituted into the continuity expression

for incompressible flow 2.9, producing the expression:

∇ ·
[
(auP )−1∇p

]
= ∇ · ((auP )−1H(u)) . (2.49)

Eq. 2.49 represents the pressure equation for incompressible flow and can be used to

establish a direct coupling between pressure and velocity. To deal with solving the

pressure-velocity coupling several coupling methods are used (e.g. SIMPLE, PIMPLE,

PISO, block-coupled solvers, etc.). For the purpose of this Thesis, the SIMPLE and

PIMPLE algorithms are used. The two algorithms are explained in the following sec-

tions with an addition of the PISO algorithm, as it its necessary for understanding the

PIMPLE algorithm.

2.5.1. SIMPLE Algorithm

The Semi-Implicit Algorithm for Pressure-Linked Equations (SIMPLE) is the earli-

est pressure-velocity coupling algorithms used [7].

The SIMPLE algorithm as described in [6] follows the following sequence:

1. Initial guess of the pressure field p∗
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2. The Momentum Predictor step: Momentum equation is solved using the guessed

pressure.

auPuP = H(u)−∇p∗ (2.50)

3. The Pressure Correction Step: New pressure calculation based on the velocity

field.

∇ ·
[
(auP )−1∇p

]
= ∇ · ((auP )−1H(u)) (2.51)

4. Conservative face flux F assembly based on the pressure solution.

F = sf •H(u)− apN(pN − pP ) (2.52)

5. Repeat until convergence is reached.

The algorithm presented above will diverge unless under-relaxation is introduced:

p∗∗ = p∗ + αP (p− p∗) , (2.53)

u∗∗ = u∗ + αU(u− u∗), (2.54)

where the following constraints must be met:

0 < αP ≤ 1 ,

0 < αU ≤ 1 , (2.55)

αP + αU ≈ 1 .

The terms p and u in Eq. 2.54 represent the current solution for pressure and velocity,

while p∗ and u∗ denote the solution of the previous time-step. The terms αP and αP

are the pressure and velocity under-relaxation factors and they define how much of the

current solution and how much of the solution from the previous time-step will be taken

into account for the new solution denoted by p∗∗ and u∗∗.

2.5.2. PISO Algorithm

The Pressure-Implicit algorithm with Splitting of Operators (PISO) is an extension

of the basic SIMPLE algorithm using one predictor and two corrector steps [8].

An overview of the PISO sequence is given below:
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1. The pressure field p∗ from previous corrector or time-step is used, with the con-

servative fluxes corresponding to p∗ also being available.

2. The momentum equation is discretised using the available flux field.

3. The Momentum Predictor step: Momentum equation is solved using the guessed

pressure.

auPuP = H(u)−∇p∗

4. The Pressure Correction Step: New pressure calculation based on the velocity

field.

∇ ·
[
(auP )−1∇p

]
= ∇ · ((auP )−1H(u))

5. Conservative face flux F assembly based on the pressure solution.

F = sf •H(u)− apN(pN − pP )

6. Cell-centred velocity field is updated explicitly with the assembled momentum

coefficients.

uP = (auP )−1(H(u)−∇p)

7. If convergence is not reached, repeat from the pressure correction step.

8. Start from the beginning for new time-steps.

The main use of the PISO algorithm is for cases where the simulation time-step is

controlled by physical constraints and where temporal accuracy is of great importance,

i.e. Large Eddy Simulation [6].

2.5.3. PIMPLE Algorithm

The PIMPLE algorithm is a combination of the SIMPLE and PISO algorithms. It

is frequently used for transient problems as it allows for large Courant numbers, which

allows a large increase in time-step size of the simulation.

As explained in [9], the PIMPLE algorithm searches for the correct steady-state

solution for each time-step using under-relaxation. The algorithm uses outer corrector

loops to ensure convergence inside a time-step loop. When the defined tolerance criterion

for the steady-state solution is reached, the outer correction loop is ended and the

algorithm moves on to the next time-step.
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2.6. Turbulence Modelling

Turbulence plays an important part in CFD simulations of turbomachines as its

influence on the operation of turbomachinery can be significant. The stochastic nature

of turbulent flows makes the task of modelling turbulence demanding field of study. The

task of turbulence modelling is to create models and manipulate equations to be able

to simulate turbulence interaction for specific conditions [6].

There exist several different approaches to turbulence modelling such as: Direct

Numerical Simulation (DNS), Reynolds-Averaged Navier-Stokes Equations (RANS) and

Large Eddy Simulation (LES).

The RANS model is frequently used in most turbomachinery CFD simulations. The

basic idea of this model is to describe the variables of interest into fluctuating and mean

values reducing the cost of simulation.

Reynolds-Averaged Navier-Stokes may be assembled by decomposing the values of

pressure and velocity into a sum of mean (u, p) and fluctuating values (u′, p’) as follows:

u = u + u′ , (2.56)

p = p+ p′ . (2.57)

By inserting Eq. 2.56 and 2.57 into Eq. 2.11 and eliminating products of mean and

fluctuating values, the following expression is given:

∂u

∂t
+∇ · (u u)−∇ · (ν∇u) = −∇p+∇ · (u′u′) , (2.58)

∇ · u = 0 ,

where the term u′u′ is a second rank symmetric tensor called the Reynolds stress tensor

R:

R = u′u′ . (2.59)
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The Reynolds Stress tensor can be assembled by using the second rank symmetric mean

velocity gradient S and turbulent viscosity νt:

R = νt︸︷︷︸
turbulent viscosity

1

2

[
∇u + (∇u)T

]︸ ︷︷ ︸
tensor S

, (2.60)

where the turbulent viscosity νt is modelled using the velocity scale U, the length-scale

∆ and a dimensionless constant A, which allows the model to be tuned to actual physical

phenomena:

νt = AU∆ . (2.61)

The velocity scale can be approximated using turbulent kinetic energy U ≈ |u′|, where

the turbulent kinetic energy is given by:

k =
3

2
u′

2
. (2.62)

Two frequently used two-equation models were used for turbulence modelling in the

scope of this Thesis. The first was the k − ε model and the second was the modified

version of the k − ω model, the k − ω SST model.

2.6.1. The k − ε Model

This model is a popular, yet simple, two-equation model consisting of two partial dif-

ferential equations used to describe turbulence. The first of the two equations describes

the turbulence kinetic energy k:

∂k

∂t
+∇ · (uk)−∇ · [(νeff )∇k] = G− ε . (2.63)

The second equation of the k − ε model is the equation for the turbulent dissipation ε,

i.e. the dissipation of the turbulent kinetic energy:
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∂ε

∂t
+∇ · (uε)−∇ · [(νeff )∇ε] = C1G

ε

k
− C2

ε2

k
. (2.64)

Where the terms for G used in Eq. 2.63 and 2.64 and for νt are given by:

G = νt

[
1

2
(∇u +∇uT )

]2

, (2.65)

νt = Cµ
k2

ε
. (2.66)

A detailed overview of the model, its implementation and the various constants used, is

given by Launder et al. in [10, 11].

2.6.2. The k − ω SST Model

The k−ω SST model is the result of combining the k−ε model with the k−ω model

developed by Wilcox [12]. The adaptation of the k− ε model is used in the free-stream

where the k−ω model shows sensitivity. For the inner boundary layer close to the wall,

the k − ω model is used. The fundamental two-equation model is described by:

∂k

∂t
+∇ · (uk)−∇ · [(νeff )∇k] = min (G,C1, β

∗kω)− β∗kω , (2.67)

describing the turbulent kinetic energy k, and the following equation describing the

specific dissipation rate ω:

∂ω

∂t
+∇ · (uω)− ω∇ · u−∇ · [νeff∇ω] = γ min

[
S2,

c1

a1

β∗ωmax
(
a1ω, b1F23

√
S2

)]
− βω2 + (1− F1)CDkω . (2.68)

Where the terms for G used in Eq. 2.67 are given by:
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G = νtS2 , (2.69)

S2 = 2

[
1

2
(∇u +∇uT )

]2

, (2.70)

and the turbulent viscosity νt is described by:

νt =
a1k

max
[
a1ω, b1F23

√
2
∣∣1

2
(∇u +∇uT )

∣∣] . (2.71)

Eq. 2.67 and 2.68 describe the k−ω SST model according to Menter and Esch [13] with

updated coefficients from [14]. The consistent production term from [13] and [14] were

updated according to [15], while the optional F3 term was added according to [16].

2.7. Closure

In this chapter an overview of the Finite Volume Method was given, as well as the

fundamental equations of fluid flow and their discretisation, so that they may be used

for CFD simulations. A basic overview of the pressure-velocity coupling algorithms and

turbulence models used in the scope of this thesis was also presented.

The next chapter deals with the theoretical background needed to develop a mathe-

matical model used for turbomachinery CFD. In this chapter, various methods of domain

and interface handling are presented and discussed.



3 Extensions of the

Flow Model for

Turbomachinery

Applications

3.1. Introduction

The previous chapter gave a brief overview of the Finite Volume Method, which

is an important basis for any CFD simulation. The present chapter deals with the

theoretical background needed to extend the flow model for use in various approaches

to CFD simulations of turbomachines. It also offers an overview of different interfaces

that are at disposal for turbomachinery CFD. Methods used for domain and interface

handling are presented. Domain handling deals with the way the rotation of moving

components is handled in the computational domain, i.e. the computational mesh.

Interface handling manages the way mesh regions are interconnected.

3.2. Domain Handling

The decision on how to approach domain handling in turbomachinery CFD depends

on the way the domain is modelled. This, on the other hand, depends on whether the

considered problem and connected phenomena need to be simulated using a steady-state

or a transient approach.

The steady-state approach in turbomachinery CFD is also known as the ”frozen

rotor” approach. This is due to the fact that no actual movement of the mesh occurs

and that movement is modelled by inclusion of additional terms into the equations of

motion for the rotating region [17]. The ”frozen rotor” approach is used when transient

25
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phenomena are not dominant in the flow or are of no major significance to the analysis

of the observed problem. The absence of actual mesh movement makes the frozen rotor

model very robust and computationally less demanding, which makes it suitable for

steady-state analysis of geometries with rotating and/or stationary parts.

If transient phenomena are to be modelled, the frozen rotor approach must be aban-

doned and the transient Moving (Dynamic) Mesh Model must be used instead. The use

of a Moving Mesh Model makes the simulation require more computational resources,

mainly because of the requirements of the transient simulation used with this model.

The fact that any rotation of the mesh needs to be resolved by additional sets of equa-

tions compensating for topological changes of the computational domain, increases the

computational effort only slightly. The actual cost of a dynamic mesh transient CFD

simulation, when compared to a static mesh transient simulation, is lower than 5% of the

computational effort per time-step [6]. Furthermore, interfaces are required to enable

communication between the stationary and moving (rotating) portion of the mesh.

3.2.1. Moving Reference Frame

The use of Moving Reference Frame modelling in turbomachinery CFD simulations

constitutes a way of representing the flow around moving parts of turbomachines as a

steady-state problem. This is achieved by imposing a moving frame of reference created

by selecting cells of the computational mesh (cell zones) with added inertia. The set of

equations used to describe the motion of the mesh is modified by addition of acceleration

terms occurring due to the transformation from the stationary reference frame to the

moving reference frame [17].

If the entire domain (computational mesh) rotates as a single rotating frame, i.e.

the whole domain can be modelled as a single moving zone, the Single Reference Frame

(SRF) approach is used. An example of a geometry that is modelled as a single rotating

zone is shown in Figure 3.1. As most turbomachines contain not only rotating, but also

stationary parts, a single rotating zone cannot encompass the whole domain. In such

cases the Multiple Reference Frame (MRF) approach is applied. The computational

mesh is divided into different zones depending on the motion of the geometry, which are

assigned either to the rotating or stationary frames of reference. Usually a part of the

computational mesh close to the rotating part of the machine is selected as a zone in
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the rotating frame of reference. Figure 3.2 shows a geometry consisting of a rotor and

a stator (outer rim) with the rotating zone coloured red and the stationary part of the

computational mesh shown in grey.

Figure 3.1: Example of a SRF model. Figure 3.2: Example of a MRF model.

SRF Model

As previously described, the use of the SRF model is limited to simulations where

the computed fluid flow adheres to the rotating turbomachinery, i.e. the entire com-

putational domain moves with non-stationary geometry. The equations of motion are

modified for the Moving Reference Frame and solved for the whole computational do-

main.

As presented in [18], when a general vector a is observed in an inertial frame of reference

a term for the angular velocity ω is added:[
d a

dt

]
I

=

[
d a

dt

]
R

+ ω × a . (3.1)

If the general vector a is substituted with the position vector r, the following expression

is presented: [
d r

dt

]
I

=

[
d r

dt

]
R

+ ω × r . (3.2)

By definition, the temporal derivation of the position vector r corresponds to velocity

vector in either the inertial or relative frame of reference:
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uI = uR + ω × r . (3.3)

The term uI in Eq. 3.3 represents the absolute velocity, i.e. the velocity as viewed from

the stationary (inertial) frame of reference. On the other hand the term uR represents

the relative velocity as viewed from the rotating frame of reference. By substitution of

the general vector r in Eq. 3.1 further derivation of Eq. 3.3 is performed:[
d uI
dt

]
I

=

[
d uI
dt

]
R

+ ω × uI . (3.4)

The term uI on the right-hand side of Eq. 3.4 may be replaced by Eq. 3.3 forming:[
d uI
dt

]
I

=

[
d [uR + ω × r]

dt

]
R

+ ω × [uR + ω × r] , (3.5)

after sorting, the standard form for the acceleration in the inertial frame of reference

becomes:

[
d uI
dt

]
I

=

[
d uR
dt

]
R

+
dω

dt
× r︸ ︷︷ ︸

Tangential acceleration

+ 2ω × uR︸ ︷︷ ︸
Coriolis acceleration

+ ω × ω × r︸ ︷︷ ︸
Centrifugal acceleration

. (3.6)

Equations 2.9 and 2.10 can be easily observed in the inertial frame forming the incom-

pressible Navier-Stokes equations for the inertial frame of reference:
DuI
Dt

= ∇ · (νeff∇uI)−∇
p

ρ
,

∇ · uI = 0 .
(3.7)

The Material Derivative in Eq. 3.7 can be expressed as a sum of local and convective

rates of change:

Dφ

Dt
=
∂φ

∂t
+∇ · v φ −→ DuI

Dt
=
∂uI
∂t

+∇ · (uIuI) . (3.8)

Using Eq. 3.8 and the continuity equation ∇ · uI = 0 the incompressible Navier-Stokes

equation for the inertial frame becomes:
∂uI
∂t

+∇ · (uIuI)−∇ · (νeff∇uI) = −∇p
ρ
,

∇ · uI = 0 .

(3.9)
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The left-hand side of the momentum equation from Eq. 3.7 can be expanded by using

the expression presented in Eq. 3.6:

DuI
Dt

=
DuR
Dt

+
dω

dt
× r + 2ω × uR + ω × ω × r . (3.10)

Taking note of the fact that the continuity equation must be satisfied, i.e. ∇ · uR =

∇ · uI = 0 the following can be derived:

∇ · uR = ∇ · uI = 0

= ∇ · uR︸ ︷︷ ︸
= 0

+∇ · [ω × r]︸ ︷︷ ︸
= 0

= 0 , (3.11)

resulting in the equivalence: ∇ · [ω × r] = 0. This can be used to transform the diffusion

term Eq. 3.9 to a form suitable for the rotating frame of reference by taking notice of

the relation shown in Eq. 3.3:

∇ ·∇(uI) = ∇ ·∇ [uR + ω × r] = 0

= ∇ ·∇(uR) +∇ · ∇(ω × r)︸ ︷︷ ︸
= 0

. (3.12)

By replacing the term DuI

Dt
in Eq. 3.7 with the expression shown in Eq. 3.10 and taking

notice of Eq. 3.12, the following equation can be constructed:


∂uR
∂t

+
dω

dt
× r + 2ω × uR + ω × ω × r +∇ · (uRuR) = ∇ · (νeff∇uR)−∇p

ρ
,

∇ · uR = 0 .

(3.13)

For steady-state simulations, usually used with Moving Reference Frame methods, the

temporal derivatives are disregarded and the expression can be written as follows:


∇ · (uRuR) + 2ω × uR︸ ︷︷ ︸

Coriolis force

+ ω × ω × r︸ ︷︷ ︸
Centrifugal force

= ∇ · (νeff∇uR)−∇p
ρ
,

∇ · uR = 0 .

(3.14)

The Equations 3.14 constitute the steady-state incompressible Navier-Stokes equa-

tions in the rotating frame of reference. This equation is the governing equation used
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to solve steady fluid flow in the SRF method. As stated in [17], feasible steady-state

solutions using this method are possible, provided the correct boundary conditions are

applied and that the following requirements are met:

• Walls defining the boundary can assume any shape as long as they move with the

rotating reference frame.

• Walls can be defined as stationary with respect to the inertial reference frame only

if they correspond to surfaces of revolution about the axis of rotation.

• In case of the wall rotating with the frame of reference, a no slip boundary con-

dition must be applied in the rotating frame, making the relative velocity of the

walls zero. In case of the walls defined as stationary with respect to the inertial

frame, the no slip boundary condition in the inertial frame of reference is applied

making the absolute velocity zero on the stationary walls.

• The use of cyclic boundaries is possible as long as the surface defining the boundary

is rotationally periodic about the axis of rotation.

• 3D geometries are defined taking notice of the origin and axis of rotation for the

rotating frame (cell zone). Using the origin of the global coordinate system as

the reference frame origin and either the x, y or z axis as the axis of rotation is

recommended.

Due to a high degree of coupling between the momentum equations when solving

for fluid flow in the moving reference frame, instabilities may arise. Large rotational

terms lead to a large radial pressure gradient, inducing flow in both the axial and

radial direction. Some techniques are offered [17] to help reach convergence if such

instabilities arise: gradually increasing the rotational speed starting from lower values,

fine mesh resolution allowing for resolution of large pressure gradients, lowering the

under-relaxation factors for the velocity, etc.

Geometry found in most turbomachinery rarely meets the previously stated prereq-

uisites without considerable simplification. If stationary parts of the geometry do not

correspond to surfaces of rotation, the model needs to be broken up into rotating and

stationary zones. In such cases use of the MRF model is required.
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MRF Model

The basis of the Multiple Reference Frame (MRF) model is the idea that the compu-

tational domain can be broken up into zones, each assigned with different motion. The

flow for each zone is solved using equations of motion modified for the moving reference

frame and with terms describing different rotation or translation [17].

The MRF approach models fluid flow using both the stationary and the rotating

frames of reference. The rotating part of the domain (rotating zone) is solved using

equations of motion in the rotating (relative) frame, while the stationary part (zone) is

solved in the stationary frame. For stationary zones the equations of motion are reduced

to their stationary forms. In both the rotating and stationary zones, vectors are defined

for the global Cartesian coordinate system. The equations can also be solved for the

locally defined velocity in the relative frame of reference, but this would require the use

of jump conditions for the velocity at the rotor-stator interface.

The governing equations of the MRF method can be derived using the equations

presented in the previous section. The term representing the convected velocity in

Eq. 3.14 may be further developed [18]:

∇ · (uRuR) = ∇ · (uR [uI − ω × r)]

= ∇ · (uRuI)−∇ · uR︸ ︷︷ ︸
= 0

(ω × r)− uR ·∇(ω × r)︸ ︷︷ ︸
ω×uR

= ∇ · (uRuI)− ω × uR .

(3.15)

The final form of Eq. 3.15 can be inserted into the left-hand side of the momentum

equation from Eq. 3.14 transforming the left-hand side as follows:

∇ · (uRuR) + 2ω × uR + ω × ω × r = ∇ · (uRuI)− ω × uR + 2ω × uR + ω × ω × r

= ∇ · (uRuI) + ω × uR + ω × ω × r

= ∇ · (uRuI) + ω × (uR + ω × r)︸ ︷︷ ︸
=uI

= ∇ · (uRuI) + ω × uI .

(3.16)

With the final form of Eq. 3.16 replacing the left-hand side of the momentum equation

Eq. 3.14 and by taking notice of Eq. 3.12, the governing equation used in the MRF
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method may be presented:
∇ · (uRuI) + ω × uR = ∇ · (νeff∇uI)−∇

p

ρ
,

∇ · uR = 0 .
(3.17)

The equations presented above form the steady-state incompressible Navier-Stokes equa-

tion for the rotating frame of reference with absolute convected velocity. To resolve fluid

flow of rotating zones in the MRF model, Eq. 3.17 is used. To resolve fluid flow in sta-

tionary zones, the steady-state equation in the inertial (stationary) frame is used, which

follows from Eq 3.9: 
∇ · (uIuI)−∇ · (νeff∇uI) = −∇p

ρ
,

∇ · uI = 0 .
(3.18)

The MRF approach combines the use of stationary and rotating zones. The interac-

tion of neighbouring cell zones is performed by transformation in a local reference frame

allowing flow variables in one zone to be used to calculate fluxes at the boundary of the

adjacent zone [17]. Same as with SRF, several limitations are imposed on the use the

MRF model [17]:

• The interface separating a moving frame must be oriented in a way that the

rotational velocity normal to the interface is zero. This means that interfaces

should be parallel to the translational velocity for a translational frame or, in case

of a rotating frame, should be surfaces of revolution around a rotational axis.

• The MRF method is not suitable for accurate modelling of axisymmetric swirl.

• Translational and rotational velocities are assumed to be constant through time.

• MRF is applicable only for steady-state flow.

The MRF model is a good option when modelling turbomachinery with one or more

rotating parts. This method produces good results when modelling cases without strong

influence of transients or for when transient phenomena are not the object of study.

The results of MRF simulations may be used to initialize transient simulations when

transient flow at the beginning of the simulation is of no interest. When a case with

strong influence of transients is studied, the Moving Mesh model should be used.
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3.2.2. Moving Mesh

When simulating time-varying geometry without the use of Moving Reference Frame

methods, the computational domain is modelled in such a way that it changes during

the simulation. Such motion can either be prescribed as a pre-defined sequence or

can be solution-dependent. Solution-dependent mesh motion means that solution pa-

rameters influence the shape of the computational mesh [19]. As most turbomachines

operate in such a way that a control volume with fixed boundaries can be determined,

solution-dependent mesh motion is not common practice in tubomachinery CFD. When

simulating turbomachines, non-deforming meshes with a fixed topology and prescribed

mesh motion are generally used.

For simulation of mesh movement using the FVM, the governing conservation laws

need to be rewritten as to take into account the movement of the computational mesh.

The General Transport Equation 2.7 for a static mesh is used assuming V = const.

and as such is used in its differential form. For a moving mesh the integral form of the

General Transport Equation is used:∫
V

∂φ

∂t
dV +

∮
S

φ [n · (u− ub)] dS −
∮
S

γ(n ·∇φ) dS =

∫
V

qv dV . (3.19)

Further modification of Eq. 3.19 is needed[20]. The term describing the rate of change

should be changed to account for the changing volume:∫
V

∂φ

∂t
dV ≈ φnV n − φoV o

∆t
, (3.20)

and the convection term should incorporate the relative velocity ur = u− ub resulting

from the movement of the mesh:∮
S

φ [n · (u− ub)] dS =
∑
f

∫
S

φf [n · (u− ub)] dSf =
∑
f

φfFr . (3.21)

The term Fr from Eq. 3.21 denotes the relative flux and is expressed as:

Fr = sf · (u− ub) = F − Fb ,

Fb = sf · ub .
(3.22)

As stated in [20], an auxiliary law is derived to aid in resolving problems concerning

mesh motion. Describing the Conservation of Space, it checks for numerical consistency



Chapter 3. Extensions of the Flow Model for Turbomachinery Applications 34

during the discretisation of a moving mesh:∫
V

∂V

∂t
−
∮
S

(n · ub) dS = 0 . (3.23)

The flux through the moving boundary surface Fb from Eq. 3.22 cannot be calculated

using the velocity of the moving boundary ub, as it would not satisfy the Space Con-

servation Equation 3.23. Instead, the discrete form of the Space Conservation Law is

used:

V n − V o

∆t
−
∑
f

Fb = 0 . (3.24)

Knowing old and new point positions in a moving mesh enables direct calculation of

volumes for new (V n) and old (V o) point positions for a certain time-step. The resulting

volume swept by a face in motion V f can be used to determine the flux Fb:

Fb = Vf/∆t . (3.25)

Boundary conditions used in static mesh simulations are defined using absolute ve-

locity. This means that all velocity boundary condition used in moving mesh models

need to be modified to account for velocity of the moving walls. To resolve this, a Moving

Wall Velocity boundary condition is introduced [20]. This special boundary condition

is used on moving walls to specify a boundary velocity in a local (moving) coordinate

system and adjusting the normal component of velocity by using the calculated mesh

motion flux.

For transient simulation of turbomachines, motion (rotation) is added to certain

parts of the computational mesh. The definition and details of the desired motion are

defined using Dynamic Mesh Motion, found in foam-extend. Dynamic Mesh Motion

combines topology modifiers with user-prescribed definitions of moving surfaces, based

on turbomachine geometry, to actuate motion in pre-defined regions (zones) of the

computational domain. The coupling between the mesh regions with defined mesh

motion and the rest of the computational mesh is handled by interfaces facilitating

communication.



Chapter 3. Extensions of the Flow Model for Turbomachinery Applications 35

3.3. Interface Handling

Depending on the choice of domain handling, i.e. choice of the type of simulation

used for turbomachinery CFD, the computational domain may consist of several regions.

Multi-region domains are necessary when simulating motion in the domain, both using

steady-state (MRF) and transient (Dynamic Mesh) approaches. To facilitate communi-

cation between disconnected domains consisting of several regions, interfaces connecting

the domains are introduced.

A discontiguous computational mesh may also be a product of combining different

domains in order to create a single mesh for later use in the simulation. The process

of merging meshes that do not connect ideally requires the use of interfaces to enable

adequate communication between connected domains.

Furthermore, special interfaces are also used when only part of a circumferentially

periodic geometry is simulated. In such cases, only that part of the domain which

encapsulates the repetitive portion of geometry is chosen. A great example would be

using only a quarter of the domain when simulating flow around a four-bladed propeller.

A number of interfaces are available for establishing communication between mesh

regions depending on domain-handling, expected results, phenomena under investiga-

tion, geometry used and temporal discretisation. The following interfaces, which are

available in foam-extend, are of interest to the subject of this Thesis and shall be de-

scribed in detail: General Grid Interface (ggi), overlapGgi, cyclicGgi and the mixing

plane interface (mixingPlane).

3.3.1. General Grid Interface

Typical operation of turbomachines involves a number of components in relative mo-

tion which needs to be taken into account when performing CFD simulations. Typical

methods of handling relative motion (rotation) in CFD involve the creation of different

zones inside the computational domain, making the domain discontiguous. To join mul-

tiple regions of a computational domain (mesh) into a single contiguous mesh, coupling

interfaces are introduced.

Implicit coupling interfaces, such as the cyclic or processor found in foam-extend,

are used for establishing communication between conformal mesh regions. A mesh

region is described as conformal when patch nodes on each side of a connecting interface
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correspond one-to-one [21]. When dealing with turbomachinery CFD, conformal mesh

regions are rarely found, prompting the use of the General Grid Interface (GGI). The

GGI is a coupling interface designed to connect mesh regions with non-matching patch

nodes on different sides of the interface, i.e. non-conformal meshes.

The use of GGI resolves a number of problems in both steady-state and transient

CFD simulations of turbomachines. It provides communication between non-conformal

mesh regions with different levels of discretisation. Different levels of discretisation are

used for complex geometries as a way of ensuring numerical stability without compro-

mising the geometry [21]. Furthermore, GGI can be used to establish communication

between mesh zones with assigned relative rotation making them non-conformal, and

the rest of the domain, Fig. 3.3.

Figure 3.3: Exmaple of usage of GGI.

The idea behind GGI is to enable coupling between non-conformal mesh regions at

the level of discretisation, without the need to use topological changes and re-meshing

of cells next to the interface, as is the case when using Sliding Interface models [22].
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Governing Equations

As presented in [21] the governing equations of GGI are based on weighted inter-

polation as a way of evaluating and transmitting variables (flow values) across a pair

of patches, either conformal or non-conformal in nature. The objective of the GGI al-

gorithm is to establish coupling at the matrix level, which directly corresponds to the

discretised form of the interface equations where a topological change with face cutting

would occur. As foam-extend offers support for arbitrary polyhedral cells at matrix

level, both the Sliding Interface approach and GGI can be applied. To achieve this, a

special from of interface discretisation, which relies on GGI interpolation, is used. A

master patch and a slave patch are defined on a pair of coupled patches with the flow

values between the two patches controlled by equations derived from FVM discretisation:

ΦSi
=
∑
n

WMn to Si
ΦMn , (3.26)

ΦMj
=
∑
m

WSm to Mj
ΦSm . (3.27)

Equation 3.26 controls the variables from the master patch to the slave patch by using

a master facet to shadow facet weighting factor WMn to Si
. On the other hand, Eq. 3.27

controls the variables from the slave patch to the master patch using a shadow to master

facet weighting factor WSm to Mj
.

For the FVM reasoning to be valid and the interface discretisation to remain con-

servative, constraints must be applied to the weighting factors:

∑
n

WMn to Si
= 1 , (3.28)

∑
m

WSm to Mj
= 1 . (3.29)

Additionally the product of the facet surface area and the corresponding weighting

factor for shadow and master facets must be equal to the surface area of the intersection

between master and shadow facets:

WMn to Si
|SMn| = WSm to Mj

|SSm| = |S∩M to S| . (3.30)
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Furthermore, symmetry constraints need to be applied:

if WMn to Si
> 0 ⇒ WSm to Mj

> 0 ,

WMn to Si
6= WSm to Mj

.
(3.31)

The presented constraints help in assuring the computation of correct weighting factors

and, as such, assure correct distribution of flow values across the interface. Their im-

portance is made clear by the fact that even minimal errors in weighting factors lead to

significant errors in the discretisation process.

Eq. 3.30 can be used to determine the values of necessary weighting factors:

• Master to shadow patch weighting factor:

WSm to Mj
=
|S∩M to S|
|SMn|

, WSm to Mj
∈ [ 0, 1 ] . (3.32)

• Master to shadow patch weighting factor:

WMn to Si
=
|S∩M to S|
|SSm|

, WMn to Si
∈ [ 0, 1 ] . (3.33)

Other Considerations

The GGI weighting factors calculated from Eq. 3.32 and 3.33 represent percentages

of surface interaction between a pair of overlapping faces. By using the aforementioned

equations, weighting factor values are produced solely by using values of facet area

and polygonal intersection [21]. As shown by Eq. 3.31 the weighting factors must be

greater than zero, which is made obvious by the fact that a zero value weighting factor

would mean that the two faces in a patch pair do not intersect. The surface area of

the master/shadow patch intersection used in Eq. 3.32 and 3.33 is determined by the

Sutherland-Hodgman algorithm [23]. The algorithm is designed as a simple and fast

algorithm, robust enough to handle convex n-sided polygon.

The occurrence of non-overlapped facets produces weighting factors with zero value

and is specially handled by the GGI interface. Non-overlapped faces are treated as an

error in the geometry and are reassigned to a symmetry plane boundary condition. On

the other hand, the GGI interface can also be used when the weighting factor equals 1,
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i.e. for conformal coupled patches. Such use of GGI is required when creating meshes

from multiple parts which results in leftover internal faces.

3.3.2. overlapGgi

The basic GGI interface operates on coupled patches by interpolating between the

master and shadow patches and updating the flow values accordingly. The basic algo-

rithm was modified to work with cases where full coverage of interfaces is not possible

[17], an example of which can be seen in Fig. 3.4. Such cases cases are standard when

working with turbomachines where the rotor and stator have different pitch (Fig. 3.5).

Domain 1

Domain 2

Overlap

Figure 3.4: Example of partially over-

lapping meshes.

Figure 3.5: Rotor-stator interaction

with overlap.

The overlapGgi algorithm builds on the basic GGI to achieve full overlap for par-

tially overlapping faces. Transformed surfaces of the shadow patch are created by copy-

ing the patch geometry multiple times. The geometry is copied as many times as

necessary to achieve full overlap of the master and shadow patch. Transformation of the

data (scalar, vector or tensor) is performed and the data is expanded over the copied

patch. Then, after the data has been populated for the full 360 degrees, standard GGI

interpolation is used [24].
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3.3.3. cyclicGgi

Another variant of the GGI widely used in turbomachinery CFD is the cyclicGgi.

An important prerequisite for cyclicGgi to be applicable is that the geometry used

and the phenomena simulated are periodically repetitive. If such requirements are met,

general periodic boundary condition, such as the cyclic boundary condition, may be

used. If the periodic planes of the cyclic computational domain do not have identical

(conformal) meshes, the ordinary cyclic interface cannot be applied. For this reason

the GGI algorithm was modified to work with cyclically periodic boundaries, resulting

in the cyclicGgi interface.

Several improvements of the cyclicGgi over the cyclic interface are presented in

[17]:

• Cyclic boundary conditions require both boundaries of the periodic geometry to

be defined as one patch with the first half of the patch faces representing one side

of the cyclic boundary and the second half of the faces representing the other side.

The use of the cyclicGgi nullifies this requirements, allowing for separate patches

to be defined as periodic boundaries.

• Use of the cyclicGgi interface does not require the interface to be flat, as is the

case with cyclic boundary conditions, but requires constant rotational pitch for

the whole interface.

• Whereas the cyclic boundary conditions only allow for completely matching meshes

of the periodic boundary, cyclicGgi allows for non-conformal boundary meshes.

• cyclicGgi does not require boundary patches defining the periodic domain to be

planar, which is a necessary requirement of the cyclic boundary condition.

Figures 3.6 and 3.7 show potential uses of the cyclicGgi interface. While Fig. 3.6

shows a simple depiction of rotor stator interaction with both the cyclicGgi and

overlpaGgi, Fig. 3.7 shows a more complex use of cyclicGgi in an axial turbine. A

periodic part of a single passage through a rotor of an axial turbine is shown, expanding

the use of cyclicGgi for non-planar and non-conformal periodic patches.
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Figure 3.6: Rotor-stator interaction

with cyclicGGI.
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Figure 3.7: Axial turbine stage with

cyclicGGI.

The cyclicGgi uses the same basic algorithm as GGI with the addition of an internal

transform to the shadow patch. The transformation is achieved by superposing shadow

patch data over master patch data to help determine the neighbours of the cyclicGgi

patch faces, compute weighting factors and transform shadow patch vector fields before

computation of the GGI weighted interpolation [21].

3.3.4. Mixing Plane Interface

The Mixing Plane Interface (mixingPlane) is an alternative to the GGI interface

based on circumferential averaging or ”mixing”. Similarly to GGI, the mixingPlane

model facilitates non-conformal interpolation between coupled patches.

One of the requirements of the MRF model stated in [17] is that the flow at the

interface between neighbouring moving and stationary zones must be as closely uniform

as possible. Non-uniform flow at the interface produces solution that are not physically

meaningful. In realistic turbomachinery each row of blades leaves significant flow fea-

tures that interact with the next blade row (e.g. shear layers, fluctuating turbulence,

turbulent wakes). This makes it impossible to define a steady-state for simulations using

approaches such as the ”frozen rotor” approach because, in reality, the point where the

flow impacts on the blade in the following row changes with rotation. This is solved by

stating that the downstream rotor blade row will see the mean flow conditions of the
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upstream flow. To achieve this, it is necessary to perform averaging in the sweeping di-

rection. The mixingPlane model, which uses averaging to ”mix out” the flow, makes the

flow uniform. Furthermore, the mixingPlane model provides a great alternative when

simulating simplified turbomachinery components that connect to full-geometry compo-

nents. This is because for complex geometries, such as multi-stage turbomachinery with

varying number of blades in each row, which require large meshes consisting of several

blade passages to maintain circumferential periodicity, the use of unsteady models is

highly impractical [17]. Using the mixingPlane model for such cases produces steady-

state results reducing the computational time required and boosting cost-effectiveness,

while providing averaged data.

U

D

R

Figure 3.8: Upstream (U) and down-

stream (D) domains with ribbon patchs

(R).

U

D R

Figure 3.9: Upstream (U), downstream

(U) and ribbon (R) patches.

The mixingPlane interface builds upon the GGI algorithm by using an intermedi-

ate patch surface to handle interpolation between two modified GGI interfaces. The

intermediate patch surface is cylindrical or radial and consists of a stack of 360° ribbons

shared by the GGI interfaces on both sides. The 2D profiles of the upstream and down-

stream GGI interfaces are used as basis for discretisation generating the intermediate

ribbon patch. The mixingPlane averaging factors are computed based on the GGI

weighting factors and the shape of the intermediate patch ribbons [25]. The aforemen-

tioned upstream (U) and downstream (D) interfaces and the mixingPlane ribbon patch

(R) can be seen in Figures 3.8 and 3.9.

The mixingPlane model deals with each fluid zone (region of the computational

domain) as a separate steady-state problem. Communication between adjacent zones is

established by passing flow-field data as partially averaged boundary conditions through

the mixingPlane interface. The data is averaged at prescribed iteration intervals by
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either area-weighted averaging, mass averaging or mixed-out averaging, as a combination

of the previous two averaging methods. Circumferential averaging along the ribbons of

the intermediate patch is used to compute flow values which are then used to update

boundary condition along the interface. The use of such averaging removes potential

unsteadiness due to variations in passage-to-passage flow fields, producing a steady-state

result that provides a good approximation of the time-averaged flow field [17].

3.4. Closure

This chapter presented the theoretical background needed for understanding the

various approaches to domain handling and interface handling used in turbomachinery

CFD. The basis of the Moving Reference Frame steady-state models (SRF and MRF)

was presented alongside the Moving Mesh transient model. The available interpolation

interfaces used for coupling of non-conformal meshes, such as the GGI (ggi) and Mixing

Plane (mixingPlane) interfaces, were presented. Finally, variants of the GGI model

used with partially overlapping patches (overlapGgi) and cyclically periodic domains

(cyclicGgi) were discussed.

The next chapter introduces the Contra-Rotating Propeller set as a good example

of an unshrouded turbomachine, which can be simulated by using various domain and

interface handling techniques described above. Benefits of contra-rotating propellers

and their implementation are discussed, with an overview of previous and connected

research also presented.



4 Contra-Rotating

Propellers

4.1. Introduction

The previous chapter gives an overview of various methods of domain and interface

handling and their implementation in turbomachinery CFD.

The following chapter includes a description of the Contra-Rotating Propellers set

(CRP), its operation, benefits and implementation. An overview of previous studies

regarding CRP sets is made, focusing on the experimental studies used, which are later

used for comparison with data produced by numerical simulations in this thesis. Further-

more, an overview of CRP characteristics is given in form of hydrodynamic coefficients

and the Q-criterion, as a mean of visualising vorticity.

4.2. Design, Development and Benefits

Conventional single-blade propellers have been used as predominant means of propul-

sion for ships and submarines since the late 19th century. With an increasing complexity

of maritime propulsion and a continued need to design faster, more reliable and quieter

means of propulsion with greater manoeuvrability, the focus shifted towards Contra-

Rotating Propellers [26].

The Contra-Rotating Propeller set (CRP) usually consists of two propellers with

collinear axes rotating in opposite directions. The main reason for employing such a

design is the idea that positioning a secondary propeller behind the main propeller

and having it rotate in the opposite direction positively affects the performance of the

propulsion system and removes the bulk of the torque transferred from the propeller to

44
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the vessel. This is due to the fact that the secondary propeller harvests the additional

energy otherwise lost in the rotating flow.

Classic CRP design recognises two approaches to CRP installation with regard to

shaft design [27]: coaxially mounted and single shaft CRP. Coaxially mounted CRP set

consists of two propellers fitted on two separate shafts with coaxial axes of rotation.

The main (fore) propeller is fitted on the main shaft, with the secondary (aft) propeller

mounted on a shaft positioned behind the main propeller. Single shaft CRP design

features both the fore and the aft propeller on a single shaft (Fig. 4.2). Such design is

historically older than the dual-shaft design and was abandoned because of problems

with inner shaft lubrication, which lead to the stagnation of further CRP research in

general [28].

Figure 4.1: Podded CRP design [1]. Figure 4.2: Single shaft CRP design [2].

Application of CRP is usually limited to torpedoes and high-speed outboard units of

smaller sizes [29]. After an increased interest in CRP sets and their application during

the late 1980s, examples of CRP can be seen fitted to a bulk carrier in 1988 and a very

large crude carrier in 1993 [28].

Implementing CRP in ship design, introducing the secondary propeller, helps in

reducing the load which would normally be exerted on the main propeller. The same

amount of power needed to generate sufficient thrust and to propel the vessel is shared

between the two propellers of the CRP set. Furthermore, part of the rotational energy,

which would otherwise be transferred to the surrounding fluid, is now recovered by the

aft propeller. As the propellers share the load exerted on them, the risk of cavitation

along the blades of the propellers is also greatly reduced. The reduced risk of cavitation
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results in longer service intervals and an overall increase in the life-cycle of the propellers.

An important benefit of CRP sets, discussed in [30], is better uniformity of flow in

downstream wake of the propeller set, resulting in lower noise signatures. Furthermore,

if sets with equal and even number of blades are used, fluctuating thrust will be present.

If the number of blades is odd, the fluctuation is smaller, but a sideways force will be

present. Finally, the primary reason for the use of CRP is to remove torque from the

system.

With recent developments in electromagnetic motors and electric propulsion systems,

a renewed interest in CRP design and development has emerged. Design based on the

classic coaxial dual-shaft design was developed, introducing the concept of podded CRP

sets (Fig. 4.1). In this concept, the secondary (aft) propeller is fitted to a pod-mounted

shaft. The main (fore) propeller is connected to a ships engine via a shaft, while the

secondary propeller is mounted to an electric motor inside the pod. The pod carrying

the secondary propeller may be fixed or can rotate repositioning the secondary propeller

to help increase manoeuvrability [28].

Because of the rapid development of electric and hybrid propulsion systems, which

was brought on by an increased need for the reduction in fuel consumption and emissions

produced by large transport vessels, the concept of podded CRP becomes of great

interest. Newer designs, which feature a podded CRP set, have the secondary propeller

connected to an electromagnetic motor powered by electricity produced by the excess

heat from the main engine [28]. Benefits of using two coaxial contra-rotating propellers

with a podded aft propeller include reduction in torque exerted on the vehicle by the

CRP set and an increase in efficiency resulting in a decrease in fuel consumption. When

the design includes a rotatable pod the aft propeller may be used to aid in executing

various manoeuvres and may even be used as a secondary electric propulsion system in

case of main engine failure [28].

4.3. Previous Studies

Single propellers were used on most maritime vessels as the main system of propulsion

for a long time and, as such, were the focus of a large number of studies focusing on

different aspects of propeller design. Advancements in numerical simulations and CFD

simulations allowed for a series of studies focusing on propeller characteristics and ship
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manoeuvring simulations [31, 32, 33].

With the rising interest in CRP and their use for ship propulsion, a growing number

of numerical and experimental studies focusing on CRP sets can be found. Some of the

first experiments were performed using a scaled CRP model and focused on defining

the open-water characteristics [34] and the effects of axial displacements of such sets

[35]. More recent studies were performed by Miller in 1976 [36] and again in 1981 [37].

These experiments were aimed at determining the unsteady forces on a CRP set in

uniform flow and are of great interest to the subject of this Thesis, as they were used

for comparison with the data produced by CFD simulations run for the purpose of this

thesis.

A number of numerical simulations dealing with CRP was performed by numerous

authors, which will be outlined briefly. Hoshino [38] expanded experimental research on

CRP model and used the experimental data to validate numerical simulations performed

using Lifting Surface Theory. The same theory was used by Tsakonas et al. [39] and

Yang et al. [40] to calculate the hydrodynamic coefficients of CRP. On the other hand,

Ghassemi and Taherinasab [30] implemented the Boundary Element Method to model

steady hydrodynamic performance of CRP, while Gu and Kinnas used a combination of

FVM and the Vortex-Lattice Method. Use of CFD for investigation of CRP blade inter-

action and performance surfaced only recently with Wang and Xiong [41] using RANS

modelling to determine the effects time-step size and turbulence on CRP performance

and with Nouri et al. [42] using CFD for CRP optimisation.

4.4. Characteristics of CRP

This section is dedicated to describing how the performance of CRP is to be evalu-

ated. Besides examining the pressure and velocity fields of propellers, it is common to

define propeller open-water characteristics. Open-water characteristics of CRP sets are

defined by calculating hydrodynamic performance coefficients for each propeller sepa-

rately and for the whole set.

Another interesting phenomena examined as part of this thesis, are vortices. The

Q-criterion is used as a method of vortex identification. It is used to define structures

of different vorticity and examine the influence of propeller interaction in CRP sets on

interacting vortices.
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4.4.1. Hydrodynamic Coefficients

Hydrodynamic coefficients are calculated to determine the open-water characteristics

of the CRP set. The calculated coefficients include the thrust coefficient KT , the torque

coefficient KQ and propeller efficiency η. The aforementioned coefficients are calculated

for each propeller and for the whole CRP set. If values for each of these coefficients are

given in relation to the advance coefficient J , determined for different operating points,

a diagram showing the open-water characteristics of the CRP set can be drawn.

Depending on the type of simulation used, two different types of hydrodynamic

coefficients may be determined: steady coefficients may be expressed from data collected

from both steady state and transient simulations, while the unsteady coefficients may

be determined from transient data only.

It should be noted that the procedure for determining steady and unsteady CRP

hydrodynamic coefficients was defined as to adhere to the procedure used by Miller

[36, 37] in his experimental studies. This was done to allow for comparison between the

experimental data acquired by Miller and the numerical data simulated for the purpose

of this thesis.

Steady Coefficients

The propeller advance ratio J is a non-dimensional coefficient which defines the

ratio of the free-stream fluid velocity compared to propeller rotation speed. It can be

calculated by using the following expression:

J =
U

nDf

, (4.1)

where U defines the free-stream velocity of the fluid, n defines the rotational speed of

the propeller and Df is the propeller diameter. The advance ratio J for both propellers

and the whole CRP set is calculated using the diameter of the fore (forward) propeller,

Df . By using the corresponding values of thrust for each propeller, thrust coefficients

may be calculated using the following expressions:
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KTf =
Tf

n2D4
fρ
, (4.2)

KTa =
Ta

n2D4
aρ
. (4.3)

Eq. 4.2 nad 4.3 produce values of aft/fore thrust coefficients for given values of thrust

T , rotational speed n, water density ρ and the corresponding propeller diameter Df , Da.

The same value of the propeller rotation speed n is used for both propellers as their

movement is synchronised in both the experiments and simulations used in the thesis.

By using the same assumptions as above and the corresponding values of torque, the

propeller torque coefficients can be determined using:

KQf =
Qf

n2D5
fρ
, (4.4)

KQa =
Qa

n2D5
aρ
. (4.5)

The values of the torque and thrust coefficients are used to calculate propeller efficiency

for the corresponding advance ratio J :

ηf =
KTf

KQf

J

2π
, (4.6)

ηa =
KTa

KQa

J

2π
. (4.7)

Once the steady thrust and torque coefficients are calculated for each of the two pro-

pellers forming the CRP set, the total hydrodynamic coefficients of the CRP set may

be determined using:

KT = KTf +KTa , (4.8)

KQ = KQf +KQa , (4.9)

with the total set efficiency determined by the following expression:
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η =
KT

KQ

J

2π
. (4.10)

Unsteady Coefficients

Time-varying data gathered from transient simulations is analysed as a part of this

thesis. The values of unsteady thrust and torque are calculated in a way that makes

them comparable to corresponding experimental values from studies performed by Miller

[36, 37]. The Direct Fourier Transform (DFT) was used to transform the transient

data and analyse the resulting amplitudes as functions of frequency. The amplitudes of

unsteady torque and thrust at certain frequencies (or harmonics) were used to determine

unsteady thrust and torque coefficients.

Values of unsteady thrust and torque may be presented as a sum of sine and cosine

amplitudes for any harmonic N :

T̃N = T1,N cos(Nθ) + T2,N sin(Nθ) , (4.11)

Q̃N = Q1,N cos(Nθ) +Q2,N sin(Nθ) . (4.12)

Eq. 4.11 and 4.12 allow the unsteady coefficients for each propeller to be defined for a

certain harmonic N as:

K̃T,prop,N =
(T 2

1,N + T 2
2,N)

1
2

n2D4ρ
, (4.13)

K̃Q,prop,N =
(Q2

1,N +Q2
2,N)

1
2

n2D5ρ
. (4.14)

The total coefficients of unsteady thrust and torque for the complete CRP set may be

calculated from the following equations:

K̃T,N = K̃Tf,N + K̃Ta,N , (4.15)

K̃Q,N = K̃Qf,N + K̃Qa,N . (4.16)
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4.4.2. Q-Criterion

An interesting aspect of turbomachinery CFD is the possibility of investigating vor-

ticity of the flow. This becomes of special interest when dealing with multi-blade multi-

rotor machines, such as the CRP set. Rotor interactions of the two propellers result in

interesting vortex interaction.

The vortices in the flow-field around and after the propeller set shall be defined

using the Q-criterion. Historically, one of the first three-dimensional vortex criteria, the

Q-criterion was developed by Hunt, Wray and Moin in 1988 [43].

As shown in [44] the velocity gradient ∇u of a three-dimensional velocity field u may

be decomposed as follows:

∇u = S︸︷︷︸
rate-of-strain

tensor

+ Ω︸︷︷︸
vortricity

tensor

. (4.17)

Eq. 4.17 represents the decomposition of the velocity gradient into the rate-of-strain

tensor S and the vorticity tensor Ω, both given below:

S =
1

2

[
∇u + (∇u)T

]
, (4.18)

Ω =
1

2

[
∇u− (∇u)T

]
. (4.19)

The Q-criterion defines a vortex as a region in space where by the Euclidean norm of the

vorticity tensor dominates over the Euclidean norm of the rate-of-strain tensor. Thus

described as:

Q =
1

2

[
|Ω|2 − |S|2

]
> 0 . (4.20)

4.5. Closure

The concluded chapter gave an examination of the design of CRP, its implemen-

tation and development. The most important benefits of CRP implementation were

discussed, as well as some of the disadvantages of older designs. Moreover, an overview
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of experimental and numerical studies was given. The basic equations used to describe

the characteristics of CRP in terms of open-water characteristics and vorticity were also

presented.

The next chapter deals with geometries used for CFD simulations of CRP and the

resulting computational domains. An overview of patches, regions, domain interfaces

and the necessary boundary conditions is given as an introduction to the numerical

simulations made using the CRP computational model.



5 Geometry and

Computational Domain

5.1. Introduction

The previous chapter dealt with CRP sets in general, their design, application and

improvements over single-propeller designs. Moreover, an overview of previous experi-

mental and numerical studies was given.

The forthcoming chapter deals with the CRP geometry and the resulting computa-

tional domain. An overview of domain characteristics of both the whole geometry and

quarter geometry meshes is presented. An description of domain boundary patches and

interfaces is given with an overview of boundary conditions imposed on the patches.

5.2. Model Geometry

The geometry used as a starting point for creating a computational domain (mesh)

is the model used in experimental studies performed by Miller [36, 37]. The propeller set

geometry closely mimics the CRP set described by Miller, which is a necessary condition

for the numerical results to be comparable to experimental data.

The CRP set consists of two four-bladed propellers mounted on hubs with co-linear

rotational axes. The two propellers are mounted as to face one another and to rotate

in opposite directions at identical rotational speed. The specifications defining the

individual propellers are given in Table 5.1.

53
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Table 5.1: Propeller geometry specification.

Propeller type 3686 3687A

Position in set FORE AFT

Blades 4 4

Diameter [ m ] 0.2991 0.3052

Rotation CW CCW

Expanded area ratio 0.303 0.324

Section Meanline NACA a = 0.8 NACA a = 0.8

Thickness Distribution NACA 66 NACA 66

The model is defined in such a way that the x-axis of the global coordinate system

corresponds to the axial direction of water flow. Thus, defining the rotation of the front

(fore) propeller (type 3686) as clockwise (CW) in regard to the x-axis of the coordinate

system. On the other hand, the back (aft) propeller (type 3687A) rotates in the counter-

clockwise direction (CCW).

Based on propeller specifications from Table 5.1, two geometries are derived for use

in CFD simulations: a full geometry and a quarter geometry. The full geometry model

uses the whole propeller hub with all four blades for each of the two propellers in the

CRP set (Fig. 5.1-left). On the other hand, the quarter geometry model is created by

using only a quarter of the propeller hub and only one of the four blades of each propeller

with appropriate use of cyclic conditions (Fig. 5.1-right).

Creating a computational domain based on a quarter geometry instead of using a

domain based on the whole propeller geometry results in minimised computational costs.

This becomes of great importance when running transient simulations as it reduces the

total computation time needed for the simulation to converge. A comparison between

the two geometries is shown in Fig. 5.2 by an overlay of the quarter CRP geometry on

top of the full geometry. Use of the quarter CRP geometry requires the assumption of

periodicity of the whole geometry and the connected phenomena.
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Figure 5.1: Whole (left) and quarter (right) propeller geometry.

Figure 5.2: Overlay of the quarter over the whole geometry.
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5.3. Computational Domain

Two geometries of the CRP set were used to create two domains, a quarter and a full

geometry domain, that are used in CFD simulations of the CRP using foam-extend.

The different nature of the domains in question requires different interface and boundary

conditions to be applied.

The use of domain interfaces is necessary as the computational domain is constructed

from three separate domains, thus resulting in the computational mesh having three

mesh regions. The regions in question are: the region around the front propeller (FORE

propeller), the region around the back propeller (AFT propeller) and the region repre-

senting the far field (FarField) which surrounds the two propeller regions. The main

reason for dividing the computational mesh into the aforementioned mesh regions is the

ability to define different zones, connected by appropriate interfaces, for each region.

Different zones and interfaces can then be used for defining MRF and dynamicMesh

zones used for resolving movement in the simulations.

5.3.1. Full Propeller Domain

The full propeller computational domain (mesh) is created using the full CRP ge-

ometry shown in Fig. 5.1. The mesh is divided into three mesh regions separated by

appropriate internal and boundary patches. An overview of different mesh region and

their specifics in given in Table 5.2.

Table 5.2: Overview of full geometry mesh regions.

Mesh Region Number of Cells Type NOTE

FarField 1117248 hexahedra No moving cell zones.

FORE propeller 1316400 hexahedra MRF/DynamicMesh zone: Prop1

AFT propeller 2778144 hexahedra MRF/DynamicMesh zone: Prop2

Total 5211792 hexahedra

The largest mesh region is the one defining the far field surrounding the CRP set

(designated as FarField). This region is bounded by the inlet, outlet and outerWall

boundary patches (Fig. 5.3). Non-rotating hubs suspending the propellers in water are

denoted by the hubMain patch name. Furthermore, the boundaries between this region

and the two propeller regions are defined by internal patches. Such patches exist inside
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the computational domain separating different regions, unlike boundary patches that

separate the domain from the ”outside world”.

Figure 5.3: Whole geometry: FarField patch identification.

Internal patches of the FarField mesh region are shown in Figure 5.4 and are used as

interfaces enabling communication between propeller mesh regions.

Figure 5.4: Whole geometry: FarField interfaces near propeller region.

All interfaces belonging to the FarField region are denoted by including the prefix

”MAIN” in their name. Similarly, all patches (interfaces) belonging to the FORE pro-
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peller region have the prefix ”FORE” and the ones belonging to the AFT propeller

region have the prefix ”AFT” in their names.

Figure 5.5: Whole geometry: Propeller region interfaces.

Figure 5.5 examines the two propeller regions and the accompanying patches. Each of

the cylindrical propeller regions consists of a front, back and a side patch. To establish

the communication using one of the interfaces described in Ch. 3., patch pairs are

established as follows: side patches of the propeller regions are paired with matching

side patches of the far field region, front patches of the two propellers are matched as a

pair, the back patch of the FORE propeller is matched with the front patch of the far

field region and the back patch of the AFT propeller is matched with the back patch of

the far field region.

5.3.2. Quarter Propeller Domain

The quarter propeller domain is created from the quarter CRP geometry. The same

as with full domain, the quarter domain is divided into three regions following the

same terminology (FarField, FORE propeller and AFT propeller). An overview of full

geometry mesh regions is given in Table 5.3.

Comparing mesh region data for the quarter geometry domain shown in Tbl. 5.3 to

same data for the whole geometry in Tbl. 5.2, a considerable decrease in cell count can be

seen for the FORE and AFT regions of the quarter mesh, resulting in a smaller number



Chapter 5. Geometry and Computational Domain 59

of cells for the total computational domain. This was achieved by reducing propeller

regions to a quarter of the original, which was possible by using only one propeller blade

and quarter of the hub geometry. On the other hand, the cell count for the FarField

is the same as for the whole domain, as this region is used in its entirety for both the

quarter and the whole propeller domains.

Table 5.3: Overview of quarter geometry mesh regions.

Mesh Region Number of Cells Type NOTE

FarField 1117248 hexahedra No moving cell zones.

FORE propeller 329100 hexahedra MRF/DynamicMesh zone: Prop1

AFT propeller 694536 hexahedra MRF/DynamicMesh zone: Prop2

Total 5211792 hexahedra

Figure 5.6 shows how the quarter propeller regions connect to the FarField region.

As this mesh region is the same as the one used for the whole propeller domain, the

boundary patches (inlet, outlet, outerWall, hubMain) and internal patches defining the

region have not changed.

Figure 5.6: Quarter geometry: FarField patch identification.

The geometric definition of internal patches belonging to the FarField region shown in

Fig. 5.7 have not changed when compared to the whole geometry mesh. Nevertheless,

they are paired with patches bounding the quarter propeller regions, which is why they

require different patch (interface) definition and a different set of boundary conditions.
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Figure 5.7: Quarter geometry: FarField interfaces near propeller region.

Figure 5.8 shows the quarter propeller mesh regions with corresponding boundary patches.

The positions of the front, back and side patches is analogous to those of their whole

geometry counterparts, but they are reduced to a quarter of their original geometry.

New patches defining the boundaries where the quarter regions would expand into the

full geometry region are present (cyclic and cyclic shadow). These patches bound the

cyclically periodic boundary of the propeller regions and are defined as cyclicGgi in-

terfaces.

Figure 5.8: Quarter geometry: Propeller region interfaces.
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5.4. Boundary Definition

All of the patches described in previous sections need to be defined in the boundary

file used by foam-extend to define boundary patch types. By defining the patches inside

the aforementioned file, they are given a certain type dictating how they are identified

when running the simulation. This is especially important when dealing with internal

patches which are defined as interfaces.

Varying combinations of interfaces were used depending on mesh and geometry

(quarter or whole) and whether the simulation was setup as steady-state or transient.

A generic patch type was applied to the inlet and outlet patches, whereas the wall type

was applied to all propeller and hub parts. For quarter geometry cases, the interface

used for the internal patches is switched from ggi to overlapGgi to enable communica-

tion between the full domain of the far field and the quarter domains of the propellers.

Additionally, quarter cases use the cyclicGgi interface for cyclically periodic boundary

patches. A series of steady-state simulations was carried out using the mixingPlane

interface, replacing the ggi interfaces. This was done for steady-state cases only, as the

averaging performed by the mixingPlane interfaces should not be applied to transient

data. An overview of patches with matching patch types and corresponding pairs is

given tabularly. Three tables are presented (Tbl. 5.4, 5.5 and 5.6) systematising patches

according to mesh region allocation.

Table 5.4: Farfield boundary patches.

FarField

No. Patch Name
Patch Type

Pair No.
steady-state transient

01 inlet patch patch n/a

02 outlet patch patch n/a

03 outerWall wall wall n/a

04 hubMain wall wall n/a

05 MAIN interface front ggi / overlapGgi* / mixingPlane� ggi / overlapGgi* 13

06 MAIN interface side1 ggi / overlapGgi* / mixingPlane� ggi / overlapGgi* 12

07 MAIN interface side2 ggi / overlapGgi* / mixingPlane� ggi / overlapGgi* 19

08 MAIN interface back ggi / overlapGgi* / mixingPlane� ggi / overlapGgi* 20

* quarter-case only, � used for mixingPlane test cases
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Table 5.5: FORE propeller boundary patches.

FORE propeller

No. Patch Name
Patch Type

Pair No.
steady-state transient

09 FORE prop wall wall n/a

10 FORE hub wall wall n/a

11 FORE interface front ggi / overlapGgi* / mixingPlane� ggi / overlapGgi* 18

12 FORE interface side ggi / overlapGgi* / mixingPlane� ggi / overlapGgi* 06

13 FORE interface back ggi / overlapGgi* / mixingPlane� ggi / overlapGgi* 05

14 FORE cyclic* cyclicGgi cyclicGgi 15

15 FORE cyclic shadow* cyclicGgi cyclicGgi 14

* quarter-case only, � used for mixingPlane test cases

Table 5.6: AFT propeller boundary patches.

AFT propeller

No. Patch Name
Patch Type

Pair No.
steady-state transient

16 AFT prop wall wall n/a

17 AFT hub wall wall n/a

18 AFT interface front ggi / overlapGgi* / mixingPlane� ggi / overlapGgi* 11

19 AFT interface side ggi / overlapGgi* / mixingPlane� ggi / overlapGgi* 07

20 AFT interface back ggi / overlapGgi* / mixingPlane� ggi / overlapGgi* 08

21 AFT cyclic* cyclicGgi cyclicGgi 22

22 AFT cyclic shadow* cyclicGgi cyclicGgi 21

* quarter-case only, � used for mixingPlane test cases

While the quarter cases require the use of both cyclicGgi and overlapGgi interfaces

to resolve cyclically periodic and non-overlapping patch communication brought on by

the use of a quarter domain, the whole cases allowed for the use of the basic ggi
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interface. As all of the aforementioned interfaces require specific entries in the boundary

file, examples on how each interface type is set-up are offered in Appendix A.

5.5. Boundary Conditions

Boundary conditions (b.c.) must be applied to various patches of the computational

domain to define conditions which make the system of equations numerically well posed

and solvable.

The Dirichlet (fixedValue) b.c. is applied to the inlet patch for velocity u with a

reference value Ux. This value is equivalent to different axial velocities of flow for each

simulated operating point. The same b.c. is applied for k and ω, but with different

reference values. The pressure p at the inlet patch is defined by the Neumann boundary

condition (zeroGradient). The values of u, k and ω at the outlet patch are all defined

using the inletOutlet b.c. derived from a combination of the Dirichlet and Neumann

boundary conditions. The Dirichlet b.c. with pref = 0 is applied to the pressure p at

the outlet patch for steady-state and transient simulations.

All patches defined by the wall patch type (outerWall, hubMain, FORE prop,

FORE hub, AFT prop, AFT hub) are defined by the Dirichlet b.c. for u with uref = 0

and with the Neumann b.c. for p. Values for k and ω at the wall are defined by using the

appropriate wall functions, i.e. the omegaWallFunction for ω and the kqRWallFunction

for k.

The remaining patches are defined as interfaces and were set-up in the boundary

file. The boundary conditions for these patches correspond to the interface type used.

The choice of interface type depends on the type of simulation and geometry used.

An overview of all boundary patches and the given boundary conditions is given in

the following three tables, grouped by affiliation to mesh regions:
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5.6. Closure

This chapter introduced the two geometries used as basis for CRP simulations: the

quarter and the whole (full) geometry. The resulting computational domains were dis-

cussed and the regions which form the domains analysed. An overview of boundary

patches and interface was given. The boundary conditions necessary for running the

CFD simulations of CRP were defined and discussed.

The next chapter presents the results of various numerical simulations of the CRP set

made using foam-extend. A comparison of quarter and whole computational domains

is presented as verification of the quarter domain. The data acquired from transient

and steady-state simulations is assessed and compared to available experimental data.



6 Results

6.1. Introduction

The previous chapter described the full propeller and quarter propeller geometries,

which were the basis for the two CRP computational domains used in numerical simu-

lations. An overview of various mesh regions forming the computational domains was

given with a detailed overview of interface and patch types used. Boundary conditions

applied to patches for simulations using different approaches to interface and domain

handling were given tabularly.

This chapter presents the data acquired from a series of numerical simulations con-

ducted on both the quarter and full CRP domains. Both steady-state and transient

simulation results are offered, taking notice of how the use of different interfaces effects

the resulting data.

The results are presented in form of graphical representations of pressure, velocity

and other significant flow fields, with an analysis of open-water characteristics using

hydrodynamic coefficients.

6.2. Full CRP Geometry

Results presented in this section are of simulations performed using the full CRP

geometry and the resulting domain. Rotating motion of the propellers was handled by

employing the MRF method with two rotational zones, one for each propeller of the

CRP set.

68
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The use of MRF for modelling of rotational zones resulted demanded separate mesh

regions in the domain, thus requiring ggi interfaces to enable patch communication.

The interface were set-up as presented in Chapter 5.

The rotational speed for both propellers was set as at a constant value of 12 rps

with the propeller rotation modelled as synchronous to match the conditions of the

experiments used as reference [36, 37].

6.2.1. Steady-State Simulation, J = 0.5

A series of full CRP geometry steady-state simulations using the MRF method was

performed for different operating points defined by the propeller advance coefficient J .

The results presented in continuation are those of an arbitrary CRP operating point

denoted by advance coefficient J = 0.5.

Pressure Field

The graphical representation of the pressure field is given by values of kinematic

pressure, i.e. the value of pressure divided by fluid density ρ. Figure 6.1 shows the

pressure field around the propeller set in the z = const. plane and direction of fluid flow

corresponding to the x+ axis. The occurrence of low-pressure and high-pressure areas

along the propeller blades, attributed to propeller rotation, can be seen clearly. (The

pressure field for the quarter CRP simulation is given in Fig. 6.13.)

Figure 6.1: Full CRP: Pressure field in z = const. plane.
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The low and high-pressure areas can further examined in Fig. 6.2, which show mid-

propeller slices for the FORE (Fig. 6.2-left) and AFT (Fig. 6.2-right) propeller. The

slightly larger high and low-pressure regions near the AFT propeller seen in the z =

const. plane (Fig. 6.1) become more apparent in mid-propeller slices. Higher values of

pressure are concentrated near the blade tips of the FORE propeller, with the lower

pressure regions spread along the suction side of the blades.

Figure 6.2: Full CRP: Mid-propeller slice.

Focusing on the AFT propeller shown in Fig. 6.2-right, larger areas of high and low

pressure may be noticed. Such an occurrence may be attributed to propeller interaction,

i.e. the effects of the FORE propeller wake on the AFT propeller.

Figures 6.3 and 6.4 show the pressure distribution along the propeller blades. The

values of pressure along the front (pressure) side of the FORE propeller (Fig. 6.3-left)

show the high pressure areas concentrated along the leading edge of each blade. The low-

pressure areas seen on the suction side (Fig. 6.3-right) of the FORE propeller following

the same leading edge. Pressure distribution on the pressure side (Fig. 6.4-left) of the

AFT propeller is similar to that of the FORE propeller, yet reaching slightly higher

values from blade tip to root. On the other hand, the suction side (Fig. 6.4-right) of the

AFT propeller differs to that of the FORE propeller due to propeller interaction. As a

result, low-pressure areas occur near the tip and root, with another low pressure area

in the middle of the blade face.
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Figure 6.3: Full CRP: Pressure (left) and suction (right) side of FORE propeller.

Figure 6.4: Full CRP: Pressure (left) and suction (right) side of AFT propeller.
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Velocity Field

A graphical representation of the velocity field around the propeller set is shown

below. Figure 6.5 depicts the axial velocity field in the z = const. plane. The velocity

field is presented as a ratio of the axial velocity Ux and the inlet velocity Ui, which

depends on the operating point. For J = 0.5 the corresponding inlet velocity equals

Ui = 1.8312 m/s. The highest values of axial velocity may be seen along the blades of

the AFT propeller and wake of the CRP set. (Equivalent quarter CRP simulation data

is given in Fig. 6.16.)

Figure 6.5: Full CRP: Velocity field in z = const. plane.

Propeller interaction can be studied further by assessing the axial velocity in x =

const. planes positioned behind each of the propellers. Both cutting-planes are po-

sitioned at the same distance behind the corresponding propeller. The velocity field

behind the FORE propeller (Fig. 6.5-left) peaks at Ux/Ui values of around 3 m/s, while

the same values at an axial slice behind the AFT propeller rise to about 4 m/s.

Higher values of the axial velocity after the second propeller may be attributed to

the contra-rotating motion of the AFT propeller. The second propeller of the CRP set

”rectifies” the flow, reducing the tangential component of the velocity and increasing

axial velocity. (Equivalent quarter CRP simulation data is given in Fig. 6.17.)
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Figure 6.6: Full CRP: Velocity field at x/R = 0 and x/R = 0.334.

Turbulence and Vorticity

Turbulent kinetic energy k (TKE) was chosen as a value indicative of the occurrence

of turbulence in the flow field. The values of TKE in the z = const. plane are presented in

Fig. 6.7, showing higher values of TKE near the blades of the AFT propeller. (Equivalent

quarter CRP simulation data is given in Fig. 6.18.)

A closer examination of TKE distribution is given in Fig. 6.8. The high values of

TKE are concentrated in near-tip regions on the suction side of the AFT propeller. The

highest TKE values originate at the leading edge of the AFT propeller, where the high

pressure of the pressure side abruptly changes to the low pressure of the suction side.

Figure 6.7: Full CRP: TKE in z = const. plane.
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Figure 6.8: Full CRP: Distribution of TKE on propeller blades.

The Q-criterion was used as a measure of vorticity. Q was described in subsection

4.4.2. An arbitrary value of Q defines areas where vortices with an energy rate higher

than the value set by Q can form. Q-contours depicting vortices with Q > 3 · 103 and

coloured by values of the velocity magnitude are shown in Fig. 6.9. Tip vortices are

clearly seen and captured by the simulation, they disappear further downstream as they

enter the far field mesh, which does not have sufficient resolution to preserve them.

(Equivalent quarter CRP simulation data is given in Fig. 6.20.)

Figure 6.9: Full CRP: Vortices matching Q-criterion Q > 3 · 103



Chapter 6. Results 75

6.2.2. Hydrodynamic Performance

Open-water characteristics are offered as a way of determining propeller performance

throughout various operating points. A steady-state simulation using the MRF approach

was carried out for each operating point determined by a different value of the advance

coefficient J .

For each of the simulations, representing a single operating point of the CRP set,

the resulting values of propeller thrust T and torque Q were used to determine the

appropriate hydrodynamic performance coefficients. The equations and the supporting

theory used to determine the hydrodynamic coefficients were introduced in subsection

4.4.1. Values of the coefficients describing the hydrodynamic performance were calcu-

lated separately for each propeller and summed to produce the total values of the set.

The coefficients given tabularly:

Table 6.1: Full CRP: Hydrodynamic performance coefficients.

FORE AFT TOTAL

J KT KQ η KT KQ η KT KQ η

1.5 0.0022 0.0062 8.40 0.0053 0.0059 21.13 0.0075 0.0122 14.61

1.4 0.0281 0.0117 53.58 0.0369 0.0146 56.26 0.0650 0.0263 55.07

1.3 0.0565 0.0167 69.85 0.0786 0.0232 70.11 0.1351 0.0399 70.01

1.2 0.0838 0.0215 74.51 0.1184 0.0311 72.61 0.2023 0.0526 73.39

1.1 0.1102 0.0259 74.48 0.1520 0.0377 70.61 0.2622 0.0636 72.19

1 0.1351 0.0297 72.35 0.1869 0.0442 67.31 0.3220 0.0739 69.34

0.9 0.1585 0.0330 68.78 0.2182 0.0498 62.74 0.3768 0.0828 65.15

0.8 0.1789 0.0355 64.09 0.2437 0.0542 57.24 0.4227 0.0898 59.96

0.75 0.1864 0.0362 61.52 0.2564 0.0564 54.27 0.4428 0.0926 57.10

0.7 0.1903 0.0361 58.79 0.2687 0.0584 51.23 0.4589 0.0945 54.12

0.6 0.2066 0.0377 52.36 0.2947 0.0626 44.92 0.5013 0.1003 47.71

0.5 0.2158 0.0379 45.26 0.3168 0.0660 38.22 0.5326 0.1039 40.79

0.4 0.2258 0.0388 37.00 0.3286 0.0674 31.02 0.5543 0.1063 33.20

0.3 0.2267 0.0382 28.37 0.3202 0.0657 23.25 0.5469 0.1039 25.13

0.25 0.2308 0.0388 23.69 0.3324 0.0684 19.34 0.5632 0.1071 20.91

0 0.2422 0.0407 0.00 0.3456 0.0707 0.00 0.5878 0.1113 0.00

The data shown in Table 6.1 presents the thrust coefficient KT , torque coefficient KQ

and propeller efficiency for the FORE and AFT propellers separately and the CRP set as

a whole. The same data is offered graphically with addition of comparable experimental
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data from Miller [36, 37] in Figures 6.10, 6.11 and 6.12:
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Figure 6.10: Full CRP: Fore propeller steady hydrodynamic coefficients.

Figure 6.10 shows the open-water characteristic of the FORE propeller based on

data from full CRP numerical simulations and experimental data. The data based on

simulation results shows good agreement with experimental data in higher efficiency,

i.e. higher J , regions. The data deviates as the values of J decrease and the operating

points move to regions of lower efficiency. This is explained by the fact that as the

advance coefficient J decreases so does the axial velocity, thus moving into region with

increasingly transient flow that cannot be accurately represented by the MRF method.

Open-water characteristics of the AFT propeller are presented in Fig. 6.11. As

with the FORE propeller, the results of the AFT simulations show good agreement

with experimental data for higher values of J with some deviation as the values of

J decrease. Furthermore, the values of KT follow the experimental data curve well,

whereas the values of KQ follow the trend of the experimental data but appear to be of

equally lower value for each data point.
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Figure 6.11: Full CRP: Aft propeller steady hydrodynamic coefficients.
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Figure 6.12: Full CRP: Total propeller set steady hydrodynamic coefficients.
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By comparing the results for the FORE (Fig. 6.10) and the AFT (Fig. 6.11) propeller,

it can be noted that the AFT propeller has generally higher values of thrust and torque

coefficients throughout the simulated span of advance coefficients. This would mean

that the secondary propeller of the set bears higher loads, which can be attributed to

the wake of the first propeller affecting the secondary propeller.

The total open-water characteristics of the full propeller set is shown in Figure 6.12.

The numerical data shows good agreement with the experimental values for regions of

higher axial velocity, i.e. higher J , as the transient phenomena have little effect on the

flow in such regions. As the the transient effects increase and the values of J decrease,

the results deviate from the experimental curve. The deviation from experimental data

is attributed to the inability of the steady-state MRF approach to capture transient

phenomena.

The steady-state approach may not be accurate for operating points in the lower

regions of the advance coefficient J , yet it provide satisfactory data for regions of near

the best efficiency point (BEP) of the propeller. As most propellers are designed to work

at BEP, data from steady-state MRF simulations becomes of great interest for propeller

design.

6.3. Quarter CRP Geometry

In the previous section, an overview of data and flow fields from full domain simula-

tions of the CRP set was given. The simulations served as an analysis of the fundamental

behaviour of the CRP set, thus becoming a reference for further simulations where vari-

ants of the basic ggi interface will be used.

In this section, a quarter-geometry based computational domain is used for the

simulation of a CRP set. This requires the use of the cyclicGgi and overlapGgi

interfaces available in foam-extend, which are validated by comparison of quarter and

full CRP simulation data. Both propellers are given a constant rotation of 12 rps and

varying values of the advance coefficient J , depending on the simulated operating point.

By using the quarter-geometry domain, the simulation time needed to reach satisfy-

ing convergence may be greatly reduced as the quarter CRP simulation is less resource-

intensive.
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6.3.1. Steady-State Simulation, J = 0.5

For the full CRP simulation and the quarter CRP simulation to be comparable,

using the cyclicGgi and the overlpaGgi interfaces, the same operating point J = 0.5

was chosen for both simulations. Moreover, the steady-state MRF method was used to

handle modelling of the propeller rotation. Again, a rotational MRF zone was set-up

around each propeller with the designated rotational speed.

The details of the geometry, boundary conditions and interfaces used are given in 5.

Detailed examples on how the overlapGgi and cyclicGgi need to be set-up are given

in Appendix A.

It should be noted that the post-processing software used for creation of graphical

representation of numerical data, allows for transformation of the domain. The quarter

domain is copied until the full domain is assembled, thus making the visualised data

seem as if it were created from a complete domain.

Pressure Field

The kinematic pressure field from the quarter CRP simulation is given in Fig 6.13.

The same as with the full CRP simulation (Fig. 6.1), the pressure field in the z =

const. plane shows higher and lower pressure areas near the propeller blades. These

areas correspond to the suction and pressure sides of the propeller blades, depicted in

detail in Fig. 6.14 and Fig. 6.14.

Figure 6.13: Quarter CRP: Pressure field in z = const. plane.
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Closer examination of the pressure distribution over the blade surfaces of the FORE

and AFT propellers, reveals nearly identical distribution on both the pressure and suc-

tion sides of the blades as seen for the full CRP geometry. This would point to the fact

that the use of cyclicGgi and overlapGgi interfaces has no apparent effect on pressure

distribution over propeller surfaces.

Figure 6.14: Quarter CRP: Pressure (left) and suction (right) side of FORE propeller.

Figure 6.15: Quarter CRP: Pressure (left) and suction (right) side of AFT propeller.
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Velocity Field

The velocity field in the z = const. plane represented by values of the ratio of axial

and inlet velocities Ux/Ui is given in Fig. 6.16. The same values are seen as for the full

CRP simulations (Fig. 6.5), showing no effect potentially caused by the difference in

interface handling).

Figure 6.16: Quarter CRP: Velocity field in z = const. plane.

Figure 6.17 shows the propeller wake field downstream of the two propellers. Looking

at the same scale for values of Ux/Ui, the velocity field at x/R = 0 and x/R = 0.334

closely resembles the one seen for the full CRP geometry at same locations (Fig. 6.6).

The higher values of the axial velocity in the wake of the second propeller are attributed

to the reduction in tangential velocity caused by the addition of the AFT propeller.

Figure 6.17: Quarter CRP: Velocity field at x/R = 0 and x/R = 0.334.
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Turbulence and Vorticity

The turbulence in the CRP flow field is presented by values of TKE. The distribution

of TKE in the z = const. plane presented in Fig. 6.18 shows very good agreement with

results of the full CRP simulation (Fig. 6.7).

Figure 6.18: QuarterCRP: TKE in z = const. plane.

As expected, close examination of the distribution of TKE over CRP blade surfaces

reveals the highest values to be concentrated at the leading edge and blade tips. The

surface distribution of TKE for both propellers of the quarter domain simulation of CRP

is given in Fig. 6.19.

Q-contours with values Q > 3 · 103 were used to represent vorticity in the near-

propeller regions (Fig. 6.20). Interestingly, the contours calculated from quarter ge-

ometry simulation show minor differences when compared to those of the full geometry

simulations (Fig. 6.9). As the differences do not appear to be significant, they are not the

result of different interface handling methods and may be attributed the post-processing

tool used to calculate the Q-criterion values.

In summary, analysis of the quarter CRP simulation data fields did not yield any

significant differences when compared to the full domain simulation. This validates the

use of quarter of the CRP computational domain for further numerical simulations of

the CRP set. Furthermore, the use of overlapGgi and cyclicGgi interfaces to facilitate

communication between the two rotating quarter-domain regions and with the static far

field region, has no apparent effect on the simulation result, other than reducing the

simulation runtime.
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Figure 6.19: Quarter CRP: Distribution of TKE on propeller blades.

Figure 6.20: Quarter CRP: Vortices matching Q-criterion Q > 3 · 103
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6.3.2. Steady-State Simulation, J = 1.1

With the quarter CRP simulation set-up verified against the full CRP simulation, it

may be used to simulate different operating points. J = 1.1 was chosen as it represents a

CRP operating point with high values of efficiency. Graphical representations of various

fields from the quarter CRP simulation with J = 1.1 simulation are presented next.

Pressure Field

Figure 6.21 depicts the kinematic pressure field around the CRP set. As expected,

lower pressure areas are present on the suction side of the propeller blades and the higher

pressure areas may be noticed on the blade pressure side. When compared to the same

representation of the pressure field for the quarter CRP case with J = 0.5 (Fig. 6.1),

lower absolute values of pressure may be seen near the blade surfaces.

Figure 6.21: Quarter CRP: Pressure field in z = const. plane, J = 1.1.

A more detailed representation of the kinematic pressure distribution over the blade

surfaces is given in Figures 6.22 and 6.23. The high pressure regions may be found along

the leading edge of both the FORE and AFT propeller blades. On the other hand, the

lower pressure regions are spread over the blade surface of the suction side. Higher

absolute values of pressure on the AFT propeller of the set may be attributed to the

wake of the FORE propeller and the resulting interaction.
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Figure 6.22: Quarter CRP: Pressure (left) and suction (right) side of FORE propeller,

J = 1.1.

Figure 6.23: Quarter CRP: Pressure (left) and suction (right) side of AFT propeller,

J = 1.1.
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Velocity Field

The velocity field is presented as values of the axial and inlet velocity ratio Ux/Ui.

The value of the inlet velocity corresponding to the advance coefficient J = 1.1 equals

Ui = 4.0286. As the values of the inlet velocity of J = 1.1 and J = 0.5 differ, the

two fields may not be compared directly. Fig. 6.24 represents the velocity field in the

z = const. plane, with a representation of velocity at two x = const. planes is given

in Fig. 6.17. As expected, the axial velocity downstream of the AFT (x/R = 0.334)

propeller shows higher values than downstream of the FORE propeller (x/R = 0).

Figure 6.24: Quarter CRP: Velocity field in z = const. plane, J = 1.1.

Figure 6.25: Quarter CRP: Velocity field at x/R = 0 and x/R = 0.334, J = 1.1.
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Turbulence and Vorticity

The values of TKE, as a chosen measure of turbulence, in the z = const. plane are

shown in Figure 6.26 and the surface distribution of TKE over the propeller blades is

presented in Fig. 6.27. TKE values in the downstream wake of the CRP set appear to

be low with highest values concentrated at the propellers. The distribution of TKE over

the blade surfaces shows the highest values to be concentrated near the leading edge of

each blade. Moreover, values of TKE appear to be higher at the blade pressure side.

Figure 6.26: QuarterCRP: TKE in z = const. plane, J = 1.1.

Figure 6.27: Quarter CRP: Distribution of TKE on propeller blades, J = 1.1.

Q-contours are used to represent vorticity around the CRP set. A Q-criterion value

of Q > 3 · 103 was chosen as a threshold for the contours presented in Figure 6.28.
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Figure 6.28: Quarter CRP: Vortices matching Q-criterion Q > 3 · 103, J = 1.1.



Chapter 6. Results 89

6.3.3. Hydrodynamic Performance

The hydrodynamic performance coefficients calculated from the results of the quarter

CRP numerical simulation are presented in Table 6.2. A separate numerical simulation

was performed for each of the data points, i.e. CRP operating point, and the corre-

sponding value of J from the table.

Table 6.2: Quarter CRP: Hydrodynamic performance coefficients.

FORE AFT TOTAL

J KT KQ η KT KQ η KT KQ η

1.5 0.0028 0.0061 10.91 0.0068 0.0056 29.42 0.0096 0.0117 19.73

1.4 0.0275 0.0115 53.05 0.0360 0.0144 55.82 0.0635 0.0259 54.59

1.3 0.0561 0.0166 69.74 0.0774 0.0228 70.08 0.1335 0.0395 69.94

1.2 0.0836 0.0214 74.48 0.1173 0.0308 72.67 0.2009 0.0523 73.41

1.1 0.1101 0.0259 74.51 0.1515 0.0375 70.69 0.2616 0.0634 72.25

1 0.1351 0.0298 72.20 0.1855 0.0439 67.20 0.3207 0.0737 69.22

0.9 0.1611 0.0337 68.46 0.2072 0.0477 62.27 0.3682 0.0814 64.84

0.8 0.1812 0.0360 64.06 0.2309 0.0517 56.82 0.4121 0.0878 59.79

0.75 0.1902 0.0370 61.41 0.2413 0.0534 53.91 0.4315 0.0904 56.98

0.7 0.1923 0.0365 58.68 0.2525 0.0553 50.87 0.4448 0.0918 53.98

0.6 0.2114 0.0387 52.22 0.2814 0.0601 44.71 0.4928 0.0988 47.65

0.5 0.2161 0.0380 45.25 0.3168 0.0659 38.25 0.5328 0.1039 40.81

0.4 0.2323 0.0401 36.87 0.3210 0.0662 30.89 0.5533 0.1063 33.15

0.3 0.2318 0.0391 28.28 0.3135 0.0647 23.14 0.5453 0.1038 25.08

0.25 0.2333 0.0391 23.74 0.3186 0.0660 19.22 0.5518 0.1051 20.90

0 0.2417 0.0405 0.00 0.3387 0.0699 0.00 0.5804 0.1104 0.00

Open-water characteristics of the FORE and AFT propeller, shown in Fig. 6.29,

are given by curves, fitted to data points acquired from performed steady-state MRF

numerical simulations. They represent the KT and KQ coefficients, together with pro-

peller efficiency η. Analysis of propeller characteristics shows higher values of thrust

and torque for the AFT propeller, which is consistent with the findings of full CRP sim-

ulations.Hydrodynamic performance coefficients of the total CRP set and the resulting

open-water characteristic of the set are given in Fig. 6.30. The figure shows a com-

parison of the quarter CRP simulation with comparable experimental results [36, 37].

The same as with the full CRP set, the numerical data shows good agreement with the

experiments for higher efficiency regions and stronger disagreement as the values of J

descend towards regions with larger influence of transient phenomena.
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Figure 6.29: Quarter CRP: Fore and aft propeller steady hydrodynamic coefficients.
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Figure 6.30: Quarter CRP: Total propeller set steady hydrodynamic coefficients.
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Hydrodynamic performance coefficients of each propeller and the whole CRP set, for

both the J = 0.5 and J = 1.1 simulations, are compared to experimental in Table 6.3.

Furthermore, values of the relative error are included as means assessing the accuracy

of each solution when compared to experimental data. Analysis of the data presented

in Table 6.3 confirms the previously stated notion that accuracy of steady-state data

is dependent on the CRP operating point. Relative error is larger for hydrodynamic

coefficients associated with J = 0.5 operating point, as it is farther from high efficiency

performance points, making the influence of transients more pronounced. This makes

the steady-state simulation unable to produce accurate results. On the other hand, data

for the J = 1.1 operating point shows good agreement for most of the hydrodynamic

coefficients, as this operating points resides near the best efficiency point where transient

phenomena have little effect.

Table 6.3: Steady hydrodynamic performance coefficients.

J = 0.5 J = 1.1

Value Error [%] Value Error [%]

KTf 0.2161 37.24 0.1101 9.82

KTa 0.3168 12.80 0.1515 0.76

KT 0.5328 22.71 0.2616 4.57

KQf 0.0378 52.10 0.0259 25.71

KQa 0.0659 -6.50 0.0375 -14.23

KQ 0.1389 14.93 0.0634 2.07
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6.3.4. Quarter CRP Hydrodynamic Performance Validation

The comparison of field data from quarter CRP and full CRP numerical simulation

did not show any significant differences, which validated the use of quarter geometry

simulations from the aspect of field data analysis. As the open-water characteristics of

CRP are to be studied in further simulations based on the quarter CRP domain, the

validity of these characteristics must be examined.

A comparison of the hydrodynamic performance coefficients KT , KQ and resulting

propeller efficiency calculated from quarter and full domain CRP simulations is given

in Fig. 6.31 and 6.32. Data for the FORE propeller is shown in Fig. 6.31 and the data

for the AFT propeller is given in Fig. 6.32.
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Figure 6.31: FORE prop. hydrodynamic coeff. comparison: quarter vs. full CRP.
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Figure 6.32: AFT prop. hydrodynamic coeff. comparison: quarter vs. full CRP.
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Figure 6.33: Total CRP set. hydrodynamic coeff. comparison: quarter vs. full CRP.
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Hydrodynamic performance of FORE propeller shown in Fig. 6.31 shows nearly ideal

agreement between quarter and full CRP results. On the other hand, some differences

between the full and quarter simulation data for the AFT propeller shown in Fig. 6.32

are present. These minor discrepancies may be considered as having no effect on the

total open-water characteristic of CRP.

Comparison of the total CRP hydrodynamic performance coefficients is shown in

Fig. 6.33. The full and quarter CRP simulation data shows nearly identical characteris-

tics with some minor disagreement which may be considered negligible. With the results

of the two simulated domains showing no major differences in regard to hydrodynamic

performance, the quarter domain approach may be considered valid for use in further

simulations with the purpose of determining propeller open-water characteristics.

6.4. Effects of Initial Propeller Position

This section investigates the idea that different starting positions of one of the pro-

pellers, relative to the other propeller, may affect the results of steady-state simulations.

It is suspected that a transient component of propeller-to-propeller interaction may

be significant. For MRF simulations, all relative positions of ”frozen rotor” blades should

be equally representative. It is suspected that this is not the case and will be further

investigated. As a computationally undemanding way of determining the influence of

relative blade positions to ”frozen rotor” results, the simulation is repeated for various

propeller blade positions. For the ”frozen rotor” approach to be valid for this case,

results for all blade positions should the be the same.

Four new simulations based on the steady-state quarter CRP simulation were con-

ducted. Variations of the quarter propeller geometry presented in Chapter 5. were used

with addition of varying propeller displacement. The geometry was varied by keeping

the AFT propeller at a fixed starting position and changing the angular displacement

of the FORE propeller, as shown in Figure 6.34.

Different values of the relative rotation angle θ were chosen to determine the initial

propeller position for the steady-state simulation. The baseline values were determined

by the MRF quarter-case with J = 0.5 and θ = 0. The same value of the displacement

angle θ = 0 was used for all simulations analysed preceding this section. New steady-

state simulations were performed with a fixed value of the advance coefficient J = 0.5
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and with the angle θ varied in value from 15◦ to 60◦ by increments of 15◦.

AFT propeller

FORE propeller

θ

Figure 6.34: Initial propeller placement.

The results were analysed in form of steady hydrodynamic performance coefficients.

The values of total CRP set coefficients are compared to available experimental data for

θ = 0 and are given in Table 6.4.

Table 6.4: Unsteady hydrodynamic performance coefficients.

KT KQ η

θ Value Error [%] Value Error [%] Value Error [%]

0◦ 0.5328 22.71 1.0390 14.93 0.4081 6.77

15◦ 0.5903 10.76 1.1656 2.44 0.4030 8.12

30◦ 0.6339 3.15 1.2504 -4.50 0.4034 8.01

45◦ 0.6445 1.44 1.2655 5.64 0.4053 7.50

60◦ 0.6368 2.68 1.2599 5.22 0.4022 8.33

Analysis of the data given in Table 6.4 reveals how much the initial positioning of

propellers in the CRP set affects the final solution. This could be explained by looking

at how the unsteady thrust of the propeller set changes during a transient simulation

(e.g. Figure 6.57 a)). It may be noted that the thrust changes with the relative position



Chapter 6. Results 96

of the propeller, meaning that if the propeller is ”frozen” in a different position, different

values of thrust would be measured. In the same way, if steady-state simulations were

conducted with the propellers ”frozen” in different relative position, different results

could be expected, which is supported by data from the Table 6.4.

6.5. Mixing Plane Simulation

With the overlapGgi and cyclicGgi interfaces used in quarter CRP simulations

successfully validated, a quarter domain simulation using the mixingPlane interface is

conducted. CyclicGgi interfaces are used to establish communication with periodically

rotating patches with the mixingPlane interface facilitating communication between

mesh region. Detailed explanation of the geometry, interfaces and domain used was

presented in Chapter 5. with examples of interface set-up given in appendix A.

6.5.1. Simulation Results

Results of a steady-state simulation using the mixingPlane interface for a propeller

operating point with a corresponding value of the advance coefficient of J = 0.5 are

presented, thus making them comparable to previously presented simulations.

Pressure Field

The kinematic pressure field in the z = const. plane is presented in Fig 6.35. The

expected high- and low- pressure areas can be seen near the blades of each propeller.

Additional relatively high pressure areas may be seen downstream of the CRP set. These

areas occur at the exact position of the interface separating the AFT propeller region

from the far field region and may be attributed to the way the mixingPlane interface

handles communication.
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Figure 6.35: mixingPlane: Pressure field in z = const. plane.

Mid-propeller slices of the kinematic pressure field are shown in Fig. 6.36. The higher

pressure regions at the FORE propeller slice (Fig. 6.36-left), which originate from the

blade tips, appear larger than those found in the previous simulation, indicating higher

pressure values. On the other hand, both the high and low pressure regions at the AFT

propeller (Fig. 6.36-right) appear to be concentrated, showing more consistent values of

pressure.

Figure 6.36: mixingPlane: Mid-propeller slice.

Figures 6.37 and 6.38 show the pressure distribution along the blades of the FORE

and AFT propeller respectively. The most notable difference when compared to the

quarter CRP simulation presented in the previous section can be seen on the suction
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side of both propellers. Lower values of pressure may be observed on the suction side of

the propellers, without the discontinuity of the low pressure region at the leading edge

of AFT propeller seen in the previously presented simulations.

Figure 6.37: mixingPlane: Pressure (left) and suction (right) side of FORE propeller.

Figure 6.38: mixingPlane: Pressure (left) and suction (right) side of AFT propeller.
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Velocity Field

The velocity field, represented by the ratio of the axial velocity Ux and the inlet

velocity Ui, is shown in Fig. 6.39. The value of the inlet velocity corresponding to the

advance coefficient is Ui = 1.8312. The velocity field shows an abrupt discontinuity at

the mixingPlane, which is the result of averaging performed at the interface. After the

interface, the flow continues to show consistent values of the axial/inlet velocity ratio.

Figure 6.39: mixingPlane: Velocity field in z = const. plane.

Figure 6.40 shows the velocity field at two cutting planes positioned behind the

FORE (x/R = 0) and AFT (x/R = 0.334) propeller. By using the same scale and

comparing to Fig. 6.17 lower values of axial velocity may be noticed. Moreover, the

distribution of velocity over the cutting planes more averaged values, which is an effect

of the mixing performed at the interface.

Figure 6.40: mixingPlane: Velocity field at x/R = 0 and x/R = 0.334.
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Turbulence and Vorticity

The turbulent kinetic energy over the z = const. plane is presented in Fig. 6.41. As

with previous simulations, the highest values of k are concentrated near the blade tips.

The only major difference from other simulations is the discontinuity of the k field at

the mixingPlane. As result of the averaging at the interface the downstream becomes

highly regular.

Figure 6.41: mixingPlane: TKE in z = const. plane.

Presence of the mixingPlane at the interface connecting the AFT propeller mesh

region to the far field region affects the TKE distribution over the propeller surfaces.

Shown in Fig. 6.42 is the distribution of TKE over the blades of the CRP set. When

compared with previous simulations of the CRP, lower values of TKE may be noticed.

The Q-criterion, described in subsection 4.4.2., with an arbitrary value of Q was

used as a measure of vorticity, thus defining areas with vortices having an energy rate

higher than the value set by Q. Q-contours with Q > 3 · 103, which are coloured by

values of velocity magnitude, are shown in Fig. 6.43. It can be concluded that the Q-

contours from the mixingPlane simulation show good agreement with the Q-contours

of the overlapGgi quarter case shown in Fig. 6.20.
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Figure 6.42: mixingPlane: Distribution of TKE on propeller blades.

Figure 6.43: mixingPlane: Vortices matching Q-criterion Q > 3 · 103
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6.5.2. Hydrodynamic Performance

Hydrodynamic performance coefficients calculated from the results of the quarter

CRP simulation which uses the mixingPlane are presented in Table 6.5. A separate

numerical simulation was performed for each of the data points, i.e. CRP operating

point, and the corresponding value of J from the table.

Table 6.5: mixingPlane: Hydrodynamic performance coefficients.

FORE AFT TOTAL

J KT KQ η KT KQ η KT KQ η

1.5 0.0057 0.0048 28.31 0.0025 0.0063 9.43 0.0082 0.0111 17.62

1.4 0.0249 0.0115 48.07 0.0356 0.0139 57.16 0.0605 0.0254 53.04

1.3 0.0587 0.0178 68.10 0.0727 0.0213 70.63 0.1314 0.0391 69.48

1.2 0.0910 0.0238 72.97 0.1077 0.0280 73.36 0.1988 0.0519 73.18

1.1 0.1205 0.0290 72.72 0.1398 0.0339 72.12 0.2603 0.0630 72.40

1.0 0.1484 0.0336 70.31 0.1661 0.0386 68.55 0.3145 0.0721 69.37

0.9 0.1740 0.0374 66.56 0.1947 0.0435 64.08 0.3687 0.0810 65.23

0.8 0.1975 0.0407 61.77 0.2163 0.0469 58.75 0.4138 0.0876 60.15

0.7 0.2184 0.0433 56.14 0.2354 0.0496 52.82 0.4538 0.0930 54.37

0.6 0.2340 0.0449 49.75 0.2590 0.0536 46.18 0.4930 0.0985 47.81

0.5 0.2516 0.0470 42.62 0.2781 0.0569 38.91 0.5298 0.1039 40.59

0.4 0.2698 0.0494 34.78 0.3064 0.0621 31.42 0.5762 0.1114 32.91

0.3 0.2879 0.0520 26.43 0.3232 0.0657 23.50 0.6111 0.1177 24.79

0.2 0.3046 0.0548 17.69 0.3504 0.0709 15.73 0.6550 0.1257 16.59

0.1 0.3267 0.0591 8.79 0.3608 0.0735 7.81 0.6875 0.1326 8.24

0.0 0.3106 0.0557 0.00 0.3713 0.0741 0.00 0.6819 0.1298 0.00

Separate plots showing the open-water characteristics of each of the two propellers

are presented in Figures 6.44 and 6.45 respectively. Each propeller characteristic is

accompanied by corresponding experimental data [36, 37]. The same trend seen in pre-

vious cases may be in the aforementioned figures, with the numerical data showing good

agreement with the experiments for regions of high efficiency and high advance coeffi-

cient. The lower-efficiency region correspond to operating points which are influenced

by transient phenomena and need to be modelled using transient simulations. The same

trend may be noticed for the open-water characteristic of the total CRP set, show in

Fig. 6.46, which was to be expected as the total hydrodynamic performance coefficients

are derived from the separate propeller characteristics.
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Figure 6.44: mixingPlane: Fore propeller steady hydrodynamic coefficients.
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Figure 6.45: mixingPlane: Aft propeller steady hydrodynamic coefficients.
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Figure 6.46: mixingPlane: Total propeller set steady hydrodynamic coefficients.

Comparison to the overlapGgi Interface

A comparison of the hydrodynamic performance coefficients for the same quarter

CRP case with the overlapGgi and mixingPlane interfaces is given next. A plot

comparing the two cases with experimental data is given in Figure 6.47. Analysis of the

plot reveals that both the mixingPlane and the overlapGgi cases show good agreement

with the experimental data for operating points near the advance coefficient of J =

1 − 1.2. For values lower than that, the results of the mixingPlane case show better

adherence to experimental data. For values of the advance coefficient smaller than

1, the axial velocity diminishes with rising influence of transients on the flow. This

is the reason why steady-state numerical data shows poor adherence to experimental

values. While both the mixingPlane and the overlapGgi cases show disagreement with

experiments for lower values of J , data from the mixingPlane cases follows the trend

of the experimental data better.
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Figure 6.47: mixingPlane: Total propeller set steady hydrodynamic coefficients.

6.6. Transient Simulation

The simulations presented in the previous sections handled the CRP domain as a

steady-state method. The ”frozen rotor” MRF approach is used to specify a rotational

zone without actual motion of the mesh. Such results proved satisfactory for higher effi-

ciency operating points residing in regions with weak influence of transient phenomena.

For operating points at lower efficiency, transient phenomena have increasingly pro-

nounced influence on the flow, thus rendering steady-state simulations ineffective, i.e. pro-

ducing data with increasing deviation from experimental values. This makes it necessary

for lower advance coefficient (efficiency) to be modelled using transient simulations.

In this section, data produced from a transient simulation of the CRP set is presented

as graphical visualisation of field data and as hydrodynamic performance of the set. As

the previous sections, and therein discussed results, validate the use of the quarter CRP

domain, thus reducing the computational costs of the simulation. This becomes of great

importance for transient simulations, reducing the already high computational time.
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The geometry used is the quarter CRP geometry with accompanying domain and

necessary boundary conditions, as presented in Chapter 5. Interface are handled by the

cyclicGgi and overlapGgi interfaces. The propeller rotation was modelled by actually

rotating the computational mesh in the moving regions. The DyMesh dynamic mesh

model implemented in foam-extend is used. By employment of the aforementioned

model rotation is assigned to two mesh regions surrounding the propellers of the CRP

set: the FORE propeller region and the AFT propeller region. A constant rotational

speed of 12 rps is assigned, taking note that the axis of rotation is aligned with the

x-axis of the global coordinate system.

A variant of the PIMPLE algorithm, which supports mesh motion (pimpleDyMFoam),

available in foam-extend was used for the transient simulation. A fixed time-step size

was chosen and set to a low value to avoid fluctuations of time-varying results which may

produce errors in the Fourier Analysis of the numerical data. The chosen time-step ∆t =

5e− 5 resulted in high computational time and maximum Courant numbers of Co ≈ 5.

As the PIMPLE algorithm allows for larger values of the Co number, the maximum Co

values occurring in the simulation were of no concern. It is important to properly resolve

transient interaction between propeller blades, that is why approximately 100 time-step

per repeating pitch period (one quarter of a full rotation) should be used. Using the

chosen time-step size (∆t = 5e − 5) and set rotational speed (12 rps), approximately

1667 time-steps are needed for the transient simulation to complete one full rotation

and 417 time-steps for a quarter of a rotation.

Despite the fact that the quarter CRP domain is used, the transient simulation

requires considerable computational resources to reach a state of periodic convergence

in a reasonable amount of time. For that reason, only one simulation is analysed as a

part of this Thesis. The operating point chosen for the transient simulation corresponds

to a value of the advance coefficient equal to J = 0.5, making the transient results

comparable to both the steady-state and the experimental data.

It should be noted that at the time of writing, the transient simulation had run for

approximately 0.15 seconds, i.e. 3000 time-steps, with the chosen ∆t. As the CRP

set rotates at 12 rps, the simulation run-time allowed for only one full rotation of the

set which was not enough to reach full periodic convergence. That is why the result

presented in continuation, although indicative of the final solution, are susceptible to

change as the simulation continues to converge.
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6.6.1. Simulation Results

In this section, numerical data from a transient CRP simulation based on the quarter

propeller domain is presented. Although the quarter CRP domain was used, the post-

processing software enables transformation and copying of the periodically repeating

part of the domain, allowing for the full CRP domain to be presented.

The transient simulation spans over a large number of simulated time-steps, making

it impossible to present all of the results for each time-step. That is why the results for

three distinct time steps are presented, spaced around the point in which the blades of

the two propellers pass each other. The first time-step t = 0.1 s represents the moment

the blades are about to meet, in time-step t = 0.1025 s the blade have just met and in

time-step t = 0.1075 s the propeller blades have already parted.

Pressure Field

Figure 6.48 offers an overview of the kinematic pressure field in the z = constant. plane

for three different time-steps. The pressure near the propeller blades shows higher values

as the blades move closer (Fig. 6.48 a) ) and lower values as the propellers part (Fig. 6.48

b) ). As both the higher and the lower pressure areas are situated near the propeller

surfaces, a closer look at the pressure distribution on the propeller blades is given in

Fig. 6.49. As expected, higher values of pressure over blade surfaces may be seen as the

propellers move closer with the average pressure at the blade surfaces dropping after as

they separate. Overall, the highest values of pressure are present at the pressure side

of the AFT propeller for all time-steps. This is because the AFT propeller suction side

suffers most from the wake of the FORE propeller.

Velocity Field

The velocity field is presented as a ratio of axial velocity Ux and the inlet velocity

Ui = 1.8312 m/s. Fig. 6.50 shows the velocity field for the three time-steps, showing

consistent values of velocity in the CRP wake and with the only fluctuations happening

as blades cut through the z = const. plane used for post-processing. Another analysis of

the CRP set wake is offered in form of graphical representation of axial and tangential

velocities at x/R = 0.334. Distribution of the axial velocity in the wake, presented

in Fig. 6.51 shows only small changes throughout the presented time-steps, while more
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considerable changes may be noticed for the distribution of tangential velocity. In figures

showing axial velocity in the wake, areas of back-flow represented by negative values of

the Ux/Ui ratio may be seen. Back-flow may be noticed at blade tips (Fig 6.51) and at

the suction side of the AFT propeller (Fig. 6.50).

Turbulence and Vorticity

The distribution of TKE in the CRP wake for the three selected time-steps is shown

in figure 6.52. Similarly to the velocity field, the TKE field in the z = const. plane shows

only slight temporal variations which are concentrated at the propeller blades, thus

requiring examination of TKE distribution over the blade surfaces. Such distribution

is offered in Fig. 6.53. The highest values of TKE may be noticed at the leading edges

just before and at the moment the propellers meet.

The same as for the steady-state simulations, the Q-criterion is used to visualise vor-

ticity in the region surrounding the propeller set for transient simulations. Q-contours

corresponding to the value of Q > 5 · 105 were used to provide better visibility of pro-

peller interaction. The contours coloured by values of the velocity magnitude are pre-

sented in Figure 6.54. Areas of increased vorticity may be noticed in the region between

the two propellers just as the propeller move past each other 6.54 b).
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a) Time t = 0.1 s

b) Time t = 0.1025 s

c) Time t = 0.1075 s

Figure 6.48: Pressure field in z = const. plane for transient simulation of CRP.
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a) Time t = 0.1 s

b) Time t = 0.1025 s

c) Time t = 0.1075 s

Figure 6.49: Pressure distribution on propeller surfaces for transient simulation of CRP.
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a) Time t = 0.1 s

b) Time t = 0.1025 s

c) Time t = 0.1075 s

Figure 6.50: Velocity field in z = const. plane for transient simulation of CRP.
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a) Time t = 0.1 s

b) Time t = 0.1025 s

c) Time t = 0.1075 s

Figure 6.51: Axial and tangential velocity at x/R = 0.334 for trans. sim. of CRP.
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a) Time t = 0.1 s

b) Time t = 0.1025 s

c) Time t = 0.1075 s

Figure 6.52: TKE in z = const. plane for transient simulation of CRP.
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a) Pressure and suction side at time t = 0.1 s

b) Pressure and suction side at time t = 0.1025 s

c) Pressure and suction side at time t = 0.1075 s

Figure 6.53: Distribution of TKE on prop. blades for transient simulation of CRP.
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a) Time t = 0.1 s

b) Time t = 0.1025 s

c) Time t = 0.1075 s

Figure 6.54: Vortices matching Q-criterion Q > 5 · 104, transient CRP.
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6.6.2. Hydrodynamic Performance

Comparison of the hydrodynamic performance data for operating points J = 0.5 and

J = 1.1, presented in Table 6.3, leads to the conclusion that transient simulations are

necessary to accurately calculate hydrodynamic performance coefficients for operating

points with lower values of the advance coefficients J . As transient simulation are

computationally more demanding than steady-state MRF simulation, performance for

only one operating point shall be analysed (J = 0.5).

The transient solver produces new solutions for each time-step, resulting in time-

varying data. The Direct Fourier Transform (DFT) based on equally spaced time in-

tervals was used to analyse time dependent values of force and torque produced by the

simulation. Time-varying values of thrust and torque of each propeller and the whole

CRP set for one complete rotation, with data transformed by using DFT, are shown in

Figures 6.55, 6.56 and 6.57.

By transferring time dependent data to the frequency domain using DFT, values of

thrust and torque may be analysed more easily. The base amplitudes in the frequency

domain represent mean values of thrust/torque and may be use to calculate steady

hydrodynamic coefficients. Such values may be compared results from steady-state

simulations. As expected, the appearance of unsteady components of thrust and torque

may be seen at eight times shaft frequency (N = 8). The frequency at which unsteady

components occur is equal to the product of the number of propeller blades, number of

propellers in the set and the propeller rotation speed in rps: 4 · 2 · 12 = 96Hz. Values

of unsteady thrust and torque may be used with equations presented in Chapter 4.

to calculate the unsteady hydrodynamic performance coefficients. Both steady and

unsteady coefficients for the whole CRP set are given tabularly:

Table 6.6: Unsteady hydrodynamic performance coefficients.

Transient Transient∗ Experimental

Value Error [%] Value Error [%] data

KT 0.8456 -22.71 0.6891 -5.12 0.6538

KQ 0.1461 -18.24 0.1170 2.10 0.1194

η 0.4609 -5.46 0.4689 -7.07 0.4357

K̃T 0.1902 - 0.1655 - -

K̃Q 0.0328 - 0.0284 - -
∗ Unrevised, near periodic convergence.
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Table 6.6 presents the data for two transient simulations. The first simulation is the

final variation with revised setting and boundary conditions showing consistent values

for the analysed data fields. The other simulation, which is denoted by the superscript ∗,

showed some inconsistencies in the pressure distribution prompting revision of boundary

conditions for pressure at the outlet. The transient simulation with revised boundary

conditions shows large errors when compared to experimental data. This is due to the

fact that the revised simulation did not achieve periodic convergence because of insuffi-

cient runtime, with the simulated CRP set managing to complete only one full rotation.

It is believed that as the simulation continues and better convergence is achieved, the

relative error will diminish greatly. This is supported by the fact that the unrevised

simulation, which was allowed more runtime and managed to achieve several full pro-

peller rotations, shows good agreement with experimental data. The revised simulation

is expected to achieve the same or even better agreement with experimental data.

It should also be noted that no error estimation of unsteady thrust and torque

coefficients was given in Table 6.6. The reason why the comparison of numerical and

experimental values of unsteady coefficients could not be presented is lack of experimen-

tal data for these coefficients at J = 0.5. It should also be noted that both experimental

studies performed by Miller Miller76, Miller81 suffer from high measuring errors.

The author predicts the error to be as high as 20% for total CRP set values and 10%

for individual thrust and torque values.

Furthermore, the converged results of the unrevised simulation point to the fact that

the transient simulation for J = 0.5 produces hydrodynamic coefficients which are closer

to the experimental values than those of the steady-state MRF simulation, as they are

able to encompass the transient effects influencing the solution.
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Figure 6.55: Fore propeller unsteady hydrodynamic performance for J = 0.5
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Figure 6.56: Aft propeller unsteady hydrodynamic performance for J = 0.5
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Figure 6.57: Total CRP unsteady hydrodynamic performance for J = 0.5
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6.7. Closure

In this chapter the results of several different simulations of CRP were presented in

hope of analysing the different choices in regard to interface and domain handling. First,

the results of quarter and full CRP domain simulations were analysed showing no major

differences. This validated the overlapGgi and cyclicGgi interfaces, thus allowing

for further use of the smaller quarter CRP case and positively affecting simulation

runtime. Secondly, an overview of the differences between the mixingPlane and the

overlapGgi interfaces was investigated and presented both graphically and in term of

numerical values. Thirdly, a comparison between transient and steady-state simulation

of the CRP set was offered, commenting on the results. Lastly, steady-state simulations

were conducted to analyse the influence of different initial propeller positions on steady

hydrodynamic coefficients.

The next chapter serves as conclusion of the Thesis, offering an overview of completed

task, the resulting findings and possible future work on the subject of CRP.



7 Conclusion

7.1. Conclusion

This Thesis covered an overview of interface handling methods used to establish

rotor-stator interaction in CFD simulations. An introduction was given explaining the

complexity of various turbomachines, acknowledging the need to simplify their geometry

when performing CFD simulations. The mixingPlane and ggi interfaces were intro-

duced, with additional explanation of two ggi variants: the overlapGgi and cyclicGgi

interfaces. The interfaces were established as means of providing communication be-

tween partially connected or disconnected mesh regions, thus enabling the use of sim-

plified, partial geometry, computational domains. The theoretical part of the thesis was

expanded to include practical examples of these interfaces using numerical simulations

of a CRP set, performed in foam-extend.

A series of CRP steady-state simulations was performed for an operating point de-

termined by the propeller advance ratio J = 0.5. First, baseline results were established

using a full CRP geometry with the Ggi interface. Secondly, a quarter CRP simula-

tion using a combination of the cyclicGgi and overlapGgi interfaces was performed,

with the results validated against those of the full geometry simulation. Thus, fur-

ther use of the quarter CRP simulation was made possible, saving on computational

runtime needed to reach convergence of results. Several steady-state simulations were

performed to study the effects of different initial propeller position on resulting hydrody-

namic performance data. Once the quarter simulation was validated, the next series of

steady-state simulations, aimed at comparing the use of mixingPlane and overlapGgi

interfaces, was performed. As the mixingPlane introduces averaging at the interface,

122
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overlapGgi was adopted for ensuing transient simulations, performed for the same op-

erating point J = 0.5. The resulting unsteady data was analysed by using DFT and

compared to results from previous simulations. The data gathered from both the steady-

state and transient simulations was presented graphically and by studying the resulting

hydrodynamic performance coefficients, i.e. open-water characteristics of the CRP set.

Conclusions made possible by analysis of numerical data from various simulations

performed on the CRP set are presented next. Firstly, the open-water characteristic

resulting from the full CRP simulations shows the best efficiency point (BEP) of the set

to be around the advance coefficient values of J = 1.2−1.3. The data showed higher val-

ues of torque and thrust on the AFT propeller of the set, which was expected because

the second propeller is influenced by the wake of the FORE propeller. Steady-state

hydrodynamic coefficients show good agreement with experimental data for operating

points near the BEP, with some disagreement for both lower and higher values of J . The

explanation being that, as the CRP operating point moves farther away from the BEP,

transient effects become more pronounced making the steady-state approach unable to

produce fully accurate data. For accurate results of such operating points, transient

simulations should be performed. Nevertheless, steady-state simulations provide accu-

rate data for higher efficiency operating points, which are generally used for propeller

design.

The second series of simulations focused on verifying the validity of quarter geom-

etry CRP simulations. Both the data field analysis and hydrodynamic performance

coefficients showed no major deviations when compared to full CRP simulation results.

This lead to the conclusion that the overlapGGi and cyclicGgi interfaces, used in the

quarter simulation, function as expected and described in the theoretical part of the

Thesis. This fact has a highly positive impact on simulation runtime and computa-

tional demands, allowing for a smaller number of cells in the computational domain by

replacing the full propeller domains with quarter domains. Cases based on the quarter

domain and the mixingPlane interface produce hydrodynamic performance data with

similar behaviour in the higher and lower efficiency regions as the simulations based on

the overlapGgi and Ggi interfaces, with some differences for low values of J . More

specifically, the mixingPlane cases seem to follow the experimental data curve slightly

better, but no difference high enough to justify further use of the mixingPlane interface

over ggi was noticed. As the mixingPlane performs averaging of data at the interface,
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which can be seen in graphical representations of various data fields, it is not suitable

for use in transient simulations, as it would average out the unsteady data affecting the

validity of the simulations. The other two interfaces may be used for both steady-state

and transient simulations.

Transient simulation of the CRP set offered several insights into propeller behaviour.

Analysis of resulting transient data fields and unsteady values of force and thrust showed

the values to be time-dependant and influenced by propeller interaction. Considering

the values of unsteady thrust, changes in thrust may be noticed as the propeller rotates

and the blades pass each other. Furthermore, the appearance of unsteady component of

thrust and torque was noticed at eight times shaft frequency (N = 8). As the propellers

rotate synchronous to each other and have the same number of blades, the unsteady

components may be attributed to propeller interaction. Fourier transformation of tran-

sient data allowed for calculation of steady and unsteady hydrodynamic performance

coefficients, which were compared to both steady-state simulation results and experi-

mental data. The previously postulated theory explaining how the steady-state results

disagree with experimental data for lower values of J because of the inability of steady

simulations to capture transient phenomena, was validated by transient data. The data

showed very good agreement with the experiments even for a lower efficiency operating

point J = 0.5, when enough time is allowed for the transient simulation to reach a

periodic steady state.

Finally, it is concluded that steady state simulations provide sufficiently accurate

results for high efficiency operating points. If low efficiency regions are to be modelled,

transient simulations should be performed. A major issue regarding transient simu-

lations is high turnaround time in combination with high computational costs. This

makes transient simulations of little use for practical application when modelling CRP

sets, even with quarter domain simulations, and makes steady-state methods such as

MRF viable alternative for certain operating points.

All things considered, turbomachines prove to be complex machines which require

various simplifications for practically usable CFD simulations. These simplifications may

be offered in form of different interface and domain handling methods which depend on

the problem and the geometry that is to be analysed. A contra-rotating propeller set

proved a good example of a turbomacine on which various approaches to interface and

domain handling could be studied.
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7.2. Future Work

A possible continuation of the work in this Thesis would consist of running more

transient simulations on both lower and higher efficiency operating points and repeating

the analysis of the existing transient simulation after a satisfactory periodic steady state

had been achieved.

Furthermore, a study of the effects of different axial spacing of propellers form-

ing the CRP set would provide interesting data from both steady-state and transient

simulations. The data would be comparable to experimental values, as the required

experimental data already exists for the same CRP set as the one used in this Thesis.

Similar research could be conducted on CRP sets with different rotational speed and/or

different number of blades for each propeller in the set.

Lastly, the insights on propeller interaction, case set-up and data analysis gathered

while working on simulations of a maritime CRP set could be used to further the research

to include CRP used in aviation.
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A Interface Set-up

Examples

Appendix A offers several examples of boundary file entries for different interface

types. All entries are based on set-up files used in working CRP simulations and with

existing patches described in Ch. 5.

A.1. ggi

An example of the code used to define an Ggi patch in the boundary file found in

case dir/constant/polymesh, with accompanying explanation.

AFT inter face back

{
type gg i ;

nFaces 3712 ;

s ta r tFace 6401114;

shadowPatch MAIN interface back ;

zone AFT back zone ;

br idgeOver lap true ;

}

• type - Defines type of boundary patch.

• nFaces, startFace - Internally defined with mesh.

• shadowPatch - GGI patch pair should be defined.

• zone - Name of the faceZone analogous to the GGI patch being defined.

• bridgeOverlap - If set to false completely and partially uncovered faces are

disallowed. When set to true for cases with non-overlapping cases, a slip boundary

condition is defined (preferably use overlapGgi).
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A.2. overlapGgi

An example of the code used to define an overlapGgi patch in the boundary file

found in case dir/constant/polymesh, with accompanying explanation.

FORE inter face f ront

{
type over lapGgi ;

nFaces 2320 ;

s ta r tFace 6358544;

shadowPatch FT in t e r f a c e f r on t ;

zone FORE front zone ;

br idgeOver lap fa l se ;

r o ta t i onAx i s (1 0 0 ) ;

nCopies 4 ;

}

• type - Defines type of boundary patch.

• nFaces, startFace - Internally defined with mesh.

• shadowPatch - GGI patch pair should be defined.

• zone - Name of the faceZone analogous to the GGI patch being defined.

• bridgeOverlap - Should be set to false for overlapGgi.

• rotationAxis - Defines the axis of rotation.

• nCopies - Set exact number of patch copies needed for defining a full geometry

(360◦) .
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A.3. cyclicGgi

An example of the code used to define an cyclicGgi patch in the boundary file

found in case dir/constant/polymesh, with accompanying explanation.

FORE cyclic

{
type cy c l i cGg i ;

nFaces 5064 ;

s ta r tFace 6369274;

shadowPatch FORE cyclic shadow ;

zone FORE cyclic zone ;

br idgeOver lap fa l se ;

r o ta t i onAx i s (1 0 0 ) ;

ro ta t ionAng le 90 ;

s epa r a t i onO f f s e t (0 0 0 ) ;

}

• type - Defines type of boundary patch.

• nFaces, startFace - Internally defined with mesh.

• shadowPatch - GGI patch pair should be defined.

• zone - Name of the faceZone analogous to the GGI patch being defined.

• bridgeOverlap - Should be set to false for cyclicGgi.

• rotationAxis - Defines the axis of rotation.

• rotationAngle - Sets the rotation angle, i.e. degrees of rotation around the

rotationAxis need to match with the corresponding shadowPatch.

• separationOffset - Used for cyclic patches with transitions.
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A.4. mixingPlane

An example of the code used to define mixingPlane patches in the boundary file

found in case dir/constant/polymesh, with accompanying explanation.

FORE inter face s ide

{
type mixingPlane ;

nFaces 6090 ;

s ta r tFace 6363184;

shadowPatch MAIN inter face s ide1 ;

zone FORE side1 zone ;

coordinateSystem

{
type c y l i n d r i c a l ;

name mixingCS ;

o r i g i n (0 0 0 ) ;

ax i s (1 0 0 ) ;

d i r e c t i o n (0 1 0 ) ;

inDegrees fa l se ; // rad ians

}
ribbonPatch

{
sweepAxis Theta ;

s tackAxis Z ;

d i s c r e t i s a t i o n bothPatches ;

}
}

• type - Defines type of boundary patch.

• nFaces, startFace - Internally defined with mesh.

• shadowPatch - mixingPlane patch pair should be defined.

• zone - Name of the faceZone analogous to the mixingPlane patch being defined.
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coordinateSystem

• type - Defines the coordinate system used for defining mixingPlane ribbon patches.

Available types are: cylindrical, ellipticCylindrical, parabolicCylindrical,

spherical and toroidal.

• name - Defines the name of the coordinate system.

• origin - Defines the origin of the mixingPlane coordinate system in relation to

global coordinates.

• axis - Set the axis of rotation used.

• direction - Sets the direction in which the averaging will be performed.

• inDegrees - Set to true for degrees or to false for radians.

ribbonPatch

• sweepAxis - Defines the sweeping axis for averaging in chosen the mixingPlane

coordinate system. In the example above, Theta is used as the sweep axis in the

cylindrical coordinate system.

• stackAxis - Defines the stacking axis in the chosen mixingPlane coordinate sys-

tem. This example uses Z as the stack axis and for defining the manner in which

the ribbon patches of the mixingPlane interface are stacked. If, for example, the

FORE interface front patch is used, the stack axis should be set to R. Examples

of different stack axes are given in Fig. A.1 and A.2.

• discretisation - Defines the type of discretisation used. Availabe options are:

bothPatches, uniform, slavePatch, masterPatch and userDefined.
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Figure A.1: Use of mixingPlane with θ as sweep axis and R as stack axis.
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Figure A.2: Use of mixingPlane with θ as sweep axis and Z as stack axis.
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[31] Borna Šeb. Numerical characterisation of a ship propellers. Master’s thesis, Uni-

versity of Zagreb, 2017.
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