Eksperimentalna analiza geotermalne dizalice topline u režimu grijanja

Gjuras, Ivana

Undergraduate thesis / Završni rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:273209

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-19

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Ivana Gjuras

Zagreb, 2018.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentor:

Prof. dr. sc. Vladimir Soldo, dipl. ing.

Student:

Ivana Gjuras

Zagreb, 2018.

Izjavljujem da sam ovaj rad izradila samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se svome mentoru prof.dr.sc. Vladimiru Soldi na savjetima i pomoći tijekom izrade ovog rada, kao i svojoj obitelji i prijateljima na podršci tijekom dosadašnjeg studiranja.

Ivana Gjuras

SVEUCILISTE U ZAGREBU		
FAKULTET STROJARSTVA I BRODOGRADNJE		
Središnje povjerenstvo za završne i diplomske ispite		

Povjerenstvo za završne ispite studija strojarstva za smjerove:

procesno-energetski, konstrukcijski, brodostrojarski i inženjersko modeliranje i računalne simulacije

Sveuč	ilište u Zagrebu
Fakultet stro	ojarstva i brodogradnje
Datum	Prilog
Klasa:	1.
Ur.broj:	

ZAVRŠNI ZADATAK

Student:

Ivana GJURAS

grijanja

Mat. br.: 0035199005

Naslov rada na hrvatskom jeziku: Naslov rada na engleskom jeziku:

Experimental analysis of ground source heat pump in heating mode

Eksperimentalna analiza geotermalne dizalice topline u režimu

Opis zadatka:

U radu je potrebno provesti mjerenja na ispitnoj dizalici topline tlo-voda s vertikalnim bušotinskim izmjenjivačem topline dubine 130 m, koja se koristi za grijanje i hlađenje učionica S7 i S8 na Fakultetu strojarstva i brodogradnje. Navedena dizalica topline koristi propan kao radnu tvar i opremljena je s više mjerila za energetsko bilanciranje i optimiranje sustava: mjerilima temperature na strani radne tvari, izvora i ponora topline, mjerilima tlaka, protoka, kalorimetrima, mjeračima električne energije i snage, optičkim kabelima za mjerenje temperature duž bušotinskog izmjenjivača topline u tlu.

Mjerenje parametara rada sustava s geotermalnom dizalicom topline potrebno je provesti u režimu grijanja učionica S7 i S8.

Rad treba sadržavati:

- 1. Analizu rezultata mjerenja i učinkovitosti dizalice topline u režimu grijanja.
- 2. Termodinamički proračun isparivača i kondenzatora dizalice topline.
- 3. Proračun koeficijenta prolaza topline međuizmjenjivača.
- 4. Dispozicijski crtež dizalice topline.

U radu navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

30. studenog 2017,

Zadatak zadao:

V Soldo

Prof. dr. sc. Vladimir Soldo

Rok predaje rada: 1. rok: 23. veljače 2018. 2. rok (izvanredni): 28. lipnja 2018. 3. rok: 21. rujna 2018. Predviđeni datumi obrane: 1. rok: 26.2. - 2.3. 2018. 2. rok (izvanredni): 2.7. 2018. 3. rok: 24.9. - 28.9. 2018.

Predsjednik Povjerenstva:

Prof, dr. sc. Igor Balen

SADRŽAJ

SADRŽAJ
POPIS SLIKAII
POPIS TABLICAIV
POPIS TEHNIČKE DOKUMENTACIJE V
POPIS OZNAKA
SAŽETAKX
SUMMARYXI
1. UVOD
2. GEOTERMALNE DIZALICE TOPLINE
3. ISPITNI UREĐAJ I OPREMA 7
4. RADNE TVARI
5. TEORIJSKI PRORAČUN OGRJEVNOG PROCESA
6. TERMODINAMIČKI PRORAČUN ISPARIVAČA 28
7. TERMODINAMIČKI PRORAČUN KONDENZATORA
8. TERMODINAMIČKI PRORAČUN MEĐUIZMJENJIVAČA 47
9. PRORAČUN PADA TLAKA KONDENZATORA 52
10. DIMENZIONIRANJE CJEVOVODA
11. REZULTATI I ANALIZA MJERENJA
12. ZAKLJUČAK
LITERATURA
PRILOZI

POPIS SLIKA

	2
Slika 2, Vrste bušotinskih izmjenjivača topline, [2]	3
Slika 3, Utjecaj dizalice topline na temperaturu zemlje, [3]	3
Slika 4, Shematski prikaz sustava dizalice topline, [3]	4
Slika 5, Razdioba temperature po dubini, [3]	5
Slika 6, Shema ispitnog sustava, [5]	7
Slika 7, Dizalica topline, spremnik ogrjevne vode, sustav za praćenje parametara	8
Slika 8, Ventilokonvektori za grijanje učionice	8
Slika 9, Shematski prikaz procesa, [2]	9
Slika 10, Pločasti izmjenjivač topline, [6]	. 10
Slika 11, Princip rada kompresora, [7]	.11
Slika 12, Kompresor ispitne dizalice topline, [8]	. 12
Slika 13, Elektronski ekspanzijski ventil u sustavu, [9]	. 12
Slika 14, Sakupljač radne tvari, [10]	. 13
Slika 15, Digitalni multimetar, [11]	. 15
Slika 16, Usporedba volumetričkog učinka radnih tvari, [12]	. 17
Slika 17, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [1	3]
	19
Slika 18, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [1	. 17 3]
Slika 18, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [1	. 19 3] . 20
Slika 18, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [1 Slika 19, Volumetrička energetska potrošnja R290 u odnosu na druge radne tvari, [13]	. 1) 3] . 20 . 21
Slika 18, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [1 Slika 19, Volumetrička energetska potrošnja R290 u odnosu na druge radne tvari, [13] Slika 20, Prikaz ogrjevnog procesa u T,s dijagramu	. 19 3] . 20 . 21 . 24
Slika 18, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [1 Slika 19, Volumetrička energetska potrošnja R290 u odnosu na druge radne tvari, [13] Slika 20, Prikaz ogrjevnog procesa u T,s dijagramu Slika 21, Shema dizalice topline, [5]	. 19 3] . 20 . 21 . 24 . 24
Slika 18, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [1 Slika 19, Volumetrička energetska potrošnja R290 u odnosu na druge radne tvari, [13] Slika 20, Prikaz ogrjevnog procesa u T,s dijagramu Slika 21, Shema dizalice topline, [5] Slika 22, Odabrani pločasti isparivač B25T, [14]	. 19 3] . 20 . 21 . 24 . 24 . 24
Slika 18, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [1 Slika 19, Volumetrička energetska potrošnja R290 u odnosu na druge radne tvari, [13] Slika 20, Prikaz ogrjevnog procesa u T,s dijagramu Slika 21, Shema dizalice topline, [5] Slika 22, Odabrani pločasti isparivač B25T, [14] Slika 23, Dijagram izmjene topline u isparivaču	. 19 3] . 20 . 21 . 24 . 24 . 24 . 28 . 29
Slika 18, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [1 Slika 19, Volumetrička energetska potrošnja R290 u odnosu na druge radne tvari, [13] Slika 20, Prikaz ogrjevnog procesa u T,s dijagramu Slika 21, Shema dizalice topline, [5] Slika 22, Odabrani pločasti isparivač B25T, [14] Slika 23, Dijagram izmjene topline u isparivaču Slika 24, Geometrija ploče isparivača, [15]	. 19 3] . 20 . 21 . 24 . 24 . 24 . 28 . 29 . 31
Slika 18, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [1 Slika 19, Volumetrička energetska potrošnja R290 u odnosu na druge radne tvari, [13] Slika 20, Prikaz ogrjevnog procesa u T,s dijagramu Slika 21, Shema dizalice topline, [5] Slika 22, Odabrani pločasti isparivač B25T, [14] Slika 23, Dijagram izmjene topline u isparivaču Slika 24, Geometrija ploče isparivača, [15] Slika 25, Odabrani pločasti kondenzator B25T, [14]	<i>3]</i> . 20 . 21 . 24 . 24 . 24 . 28 . 29 . 31 . 35
Slika 18, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [1 Slika 19, Volumetrička energetska potrošnja R290 u odnosu na druge radne tvari, [13] Slika 20, Prikaz ogrjevnog procesa u T,s dijagramu Slika 21, Shema dizalice topline, [5] Slika 22, Odabrani pločasti isparivač B25T, [14] Slika 23, Dijagram izmjene topline u isparivaču Slika 24, Geometrija ploče isparivača, [15] Slika 25, Odabrani pločasti kondenzator B25T, [14]	3] .20 .21 .24 .24 .24 .28 .29 .31 .35 .36
Slika 18, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [1 Slika 19, Volumetrička energetska potrošnja R290 u odnosu na druge radne tvari, [13] Slika 20, Prikaz ogrjevnog procesa u T,s dijagramu Slika 21, Shema dizalice topline, [5] Slika 22, Odabrani pločasti isparivač B25T, [14] Slika 23, Dijagram izmjene topline u isparivaču Slika 24, Geometrija ploče isparivača, [15] Slika 25, Odabrani pločasti kondenzator B25T, [14] Slika 26, Dijagram izmjene topline u kodenzatoru	3 <i>J</i> .20 .21 .24 .24 .24 .28 .29 .31 .35 .36 .39
Slika 18, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [1 	3 <i>J</i> .20 .21 .24 .24 .24 .28 .29 .31 .35 .36 .39 .44
Slika 18, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [1 Slika 19, Volumetrička energetska potrošnja R290 u odnosu na druge radne tvari, [13] Slika 20, Prikaz ogrjevnog procesa u T,s dijagramu Slika 21, Shema dizalice topline, [5] Slika 22, Odabrani pločasti isparivač B25T, [14] Slika 23, Dijagram izmjene topline u isparivaču Slika 24, Geometrija ploče isparivača, [15] Slika 25, Odabrani pločasti kondenzator B25T, [14] Slika 26, Dijagram izmjene topline u kodenzatoru Slika 27, Geometrija ploče kondenzatora, [15] Slika 28, Geometrija ploče kondenzatora, [15]	3] .20 .21 .24 .24 .24 .24 .28 .29 .31 .35 .36 .39 .44 .47
Slika 18, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [1 Slika 19, Volumetrička energetska potrošnja R290 u odnosu na druge radne tvari, [13] Slika 20, Prikaz ogrjevnog procesa u T,s dijagramu Slika 21, Shema dizalice topline, [5] Slika 22, Odabrani pločasti isparivač B25T, [14] Slika 23, Dijagram izmjene topline u isparivaču Slika 24, Geometrija ploče isparivača, [15] Slika 25, Odabrani pločasti kondenzator B25T, [14] Slika 26, Dijagram izmjene topline u kodenzatoru Slika 27, Geometrija ploče kondenzatora, [15] Slika 28, Geometrija ploče kondenzatora, [15] Slika 28, Geometrija ploče kondenzatora, [15]	3 <i>J</i> .20 .21 .24 .24 .24 .28 .29 .31 .35 .36 .39 .44 .47 .48

Ivana Gjuras	Završni rad
Slika 31, Geometrija ploče međuizmjenjivača, [15]	
Slika 32, Promjena temperature vode u spremniku u vremenu	
Slika 33, Temperatura glikolne smjese na ulazu i izlazu iz spremnika i temperatura	
kondenzacije	
Slika 34, Tlak isparavanja i kondenzacije kroz vrijeme	
Slika 35, Temperatura isparavanja, kondenzacije i na kraju kompresije kroz vrijeme	59
Slika 36, Učin isparivača i kondenzatora, snaga kompresora i COP	60
Slika 41, Izometrijski prikaz dizalice topline	1

POPIS TABLICA

Tablica 1, Oprema ispitnog sustava	8
Tablica 2, Tipovi termoparova	
Tablica 3, Svojstva radnih tvari dana za standardni rashladni proces (temperatura	
kondenzacije +30°C, temperatura pothlađenja +25°C i temperatura ispara	vanja -
15°C), [9]	17
Tablica 4, Svojstva radnjih tvari koje se koriste u srednjim i većim rashladnim uređajim	1a, [9]
	19
Tablica 5, Rezultati proračuna procesa	
Tablica 6, Svojstva R290 u ovisnosti o sadržaju pare	33
Tablica 7, Svojstva R290 u ovisnosti o sadržaju pare	41
Tablica 8, Odabrane brzine strujanja	55
Tablica 9, Odabrane cijevi	55
Tablica 10, Izmjereni podaci za učin kondenzatora 13,9 kW	56

2018 – 01 Dispozicija dizalice topline

POPIS OZNAKA

Latinične oznake

Oznaka	Jedinica	Opis
Α	m^2	površina
A_c	m^2	površina jednog kanala
В	m	širina izmjenjivača
b	m	dubina orebrenja
Во		Boilingov broj
Cp	kJ/(kgK)	specifični toplinski kapacitet
d	m	promjer
G	$kg/(s m^2)$	gustoća masenog toka
8	m/s ²	gravitacijska konstanta
Н	m	visina izmjenjivača
h	kJ/kg	specifična entalpija
k	$W/(m^2 K)$	koeficijent prolaza topline
L	m	duljina
Ν	-	broj ploča izmjenjivača
Nu	-	Nusseltov broj
р	bar	tlak
P_k	W	snaga kompresora
Pr	-	Prandltov broj
q	W/m^2	specifični toplinski tok
q_m	kg/s	maseni tok
Re	-	Reynoldsov broj
S	kJ/(kg K)	specifična entropija
t	m	debljina ploče
W	m/s	brzina strujanja
x	-	sadržaj pare

Ivana Gjuras

Grčke oznake

Oznaka	Jedinica	Opis
α	$W/(m^2 K)$	koeficijent prijelaza topline
β	0	kut orebrenja
$\varDelta \vartheta_m$	°C	srednja logaritamska razlika temperatura
$\varDelta \vartheta$	°C	razlika temperatura
$\varDelta p$	Pa	pad tlaka
З	-	faktor grijanja/hlađenja
η_{is}	-	izentropski stupanj djelovanja kompresora
9	°C	temperatura
λ	W/(m K)	toplinska vodljivost
μ	Pa s	dinamička viskoznost
ρ	kg/m ³	gustoća
${\Phi}$	W	toplinski učin

Ivana Gjuras

Indeksi

akceleracija
čelik
ekvivalentni
gravitacija
glikolna smjesa
grijanje
hidraulički
hlađenje
isparavanje
izlaz
izentropski
kondenzacija
kapljevinski
kapljevina
projicirana
pothlađenje
pregrijanje
radna tvar
srednja
sredjni
tlačni
trenje
dvofazno (two-phased)
ulaz
ukupno
usisni
para

Fakultet strojarstva i brodogradnje

Ivana Gjuras		Završni rad
'	kapljevine	
"	pare	

U ovom radu je provedeno mjerenje na ispitnoj dizlalici topline tlo-voda s vertikalnim bušotinskim izmjenjivačem topline dubine 130 m u režimu grijanja, koja se koristi za grijanje i hlađenje učionica S7 i S8 na Fakultetu strojarstva i brodogradnje. Dizalica topline koristi propan kao radnu tvar i opremljena je s više mjerila za energetsko bilanciranje i optimiranje sustava. U radu se nalazi analiza izmjerenih podataka kao i učinkovitost dizalice topline. Proveden je termodinamički proračun isparivača, kondenzatora i međuizmjenjivača. Također, proračunat je pad tlaka kondenzatora.

Ključne riječi: geotermalna dizalica topline, pločasti kondenzator, pločasti isparivač, propan, koeficijent prijelaza topline

The aim of this bachelor's degree was to measure the geothermal heat pump in heating mode in order to monitor, analyze results and calculate components of the heat pump. The heat pump is used for heating and cooling two classrooms on the Faculty of Mechanical Engineering and Naval Architecture. The working fluid is R290. This heat pump is equiped with measuring devices for energy balancing and system optimization. The heating cycle has been calculated, with thermodynamic calculation of evaporator, condenser and desuperheater.

Key words: geothermal heat pump, plate condenser, plate evaporator, propan, heat transfer coefficient

1. UVOD

Predviđa se da će se do 2050. godine potražnja za energijom udvostručiti ili čak utrostručiti zbog rasta populacije i širenja gospodarstva zemalja u razvoju. Takav razvitak je povezan sa sve većom potražnjom prirodnih resursa i uzrokuje značajan rast potrošnje energije. Korištenje fosilnih goriva s većom učinkovitošću nije smanjilo emisije štetnih plinova, stoga je preporučeno posvetiti više pažnje obnovljivim izvorima energija. Zemljina površina konstantno zrači energiju u svemir. Većinom je to aposrbirana energija Sunčevog zračenje, ali je uočeno da 1% te energije dolazi iz unutrašnjosti Zemlje. Taj postotak je više nego dovoljan da se zadovolje energetske potrebe mnogih zemalja. Spomenuta toplinska energija je geotermalna energija koja je ostatak topline od formacije planeta prije 4,5 milijarde godina kao i toplina raspada prirodnih radioaktivnih izotopa. Ona je trajan, obnovljiv i neiscrpan izvor energije. Geotermalna energija za korisne svrhe. To se najčešće odnosi na pretvorbu u elektičnu energiju, ali se može koristiti i izravno u zgradarstvu. Da bi se koristila geotermalna energija važno je poznavati geologiju, prirodu topline i njezin prijelaz kako ne bi došlo do oštećenja termalnog izvora. Budućnost geotermalne energije ovisi o budućim tehničkim dostignućima.

U sklopu završnog rada preddiplomskog studija provedeno je mjerenje na geotermalnoj dizalici topline s vertikalnim bušotinskim izmjenjivačem topline dubine 130 m u režimu grijanja, koja grije učionice S7 i S8 Fakulteta strojarstva i brodogradnje u Zagrebu. Ispitni uređaj koristi prirodnu radnu tvari R290 (propan) s obzirom da se prema 'F-gas' regulativi s europskog tržišta izvrštavaju fluorirani staklenički plinovi i potiče se uporaba radnih tvari s malim utjecajem na globalno zagrijavanje. Kod proračuna ogrjevnog procesa je odabrana temperatura kondenzacije 50°C i temperatura isparivanja -6°C za ogrjevni učinak 12 kW. Dizalicom topline se zagrijava spremnik na zadanu temperaturu 45°C. Cilj ovog rada je usporediti teorijski i eksperimentalni pristup u analizi prijelaza topline isparivača i

Ivana Gjuras

2. GEOTERMALNE DIZALICE TOPLINE

Općenito, dizalice topline su uređaji koji prenose toplinsku energiju sa izvora niže temeprature na ponor više temperature prilikom čega se troši rad. One omogućuju iskorištavanje izvora topline relativno niskih temperatura. Geotermalne dizalice topline koriste toplinska svojstva zemlje na drukčiji način od sustava za generiranje električne energije. Sustavi koji direktno proizvode električu energiju ovise o pristupu koncentriranom nalazištu toplinske energije dok s druge strane, imamo li dovoljno zemlje, dizalice topline se mogu instalirati neovisno o lokaciji. Dizalica topline dobiva korist iz relativno konstante temperature tla na dubini od nekoliko metara. Njihova prednost nad dizalicama topline zrak-voda je ta da je razlika temperature prostorije i zemlje manje od razlike temperature prostorije i vanjskog zraka što rezultira u manje utrošenom radu. Stambena dizalica topline djeluje između konstantne temperature zemlje i zraka unutar prostora koji se grije/hladi. Izmjenjivač topline koji je u tlu je sustav cjevodova koji može imati različite konfiguracije ovisno o lokalim uvjetima iako sustav radi jednako učinkovito neovisno o geometriji (slika 1, slika 2).

Slika 1, Geometrija izmjenjivača topline u zemlji, [1]

Slika 2, Vrste bušotinskih izmjenjivača topline, [2]

Sustav je u mogućnosti djelovati dugi niz godina jer se značajan dio toplinske energije može iscrpiti iz tla prije nego li dođe do znatne promjene u temperaturi zemlje. Za to je zaslužan visok specifični kapacitet tla. Kako toplina prelazi iz tla na radni fluid, dolazi do pada temperature u okolici izmjenjivača koja se brzo nadomještava. Na slici 3 je prikazano ispitivanje temperatura tla u okolini izmjenjivača kroz duži vremenski period.

Slika 3, Utjecaj dizalice topline na temperaturu zemlje, [3]

Cijeli sustav se sastoji od tri dijela: izmjenivača topline u tlu - toplinski izvor, dizalice topline i razvodnog sustava – toplinski ponor (slika 4). Radni fluid koji je najčešće mješavina vode i antifriza struji kroz izmjenjivač topline i zagrijava se ili hladi u tlu. Zimi dizalica topline uzima toplinu iz tla i njome grije prostor, a ljeti je proces obrnut i dizalica topline uzima toplinu iz unutarnjeg prostora i predaje ju tlu.

Slika 4, Shematski prikaz sustava dizalice topline, [3]

Temperature tla su obično niže od radnih temperatura koje su potrebne u grijanju. Radni fluid u sustavima grijanja zahtjeva minimalno 20-30°C, dok su temperature tla 7-10°C na dubini od 2 m, a na dubini do 100 m se kreću između 10°C i 13°C. Slika 5 prikazuje promjenu temperature tla s dubinom. Stoga, da bismo koristili geotermalnu energiju za grijanje, moramo radnom fluidu povisiti temperaturu dizalicom topline. Ovisno o dubini sonde, bušotinski izmjenjivač topline može postići temperature fluida 10-12°C ovisno o lokaciji (Središnja Europa). Ekonomska učinkovitost sustava i njegov ekološki utjecaj ovise o potrebnoj temperaturi grijanja. Za podno grijanje su uobičajene temperature od 35°C, dok za klasične toplovodne radijatore je potreban režim 45-65°C. Ovi uvijeti se lako optimiraju prilikom planiranja nove zgrade, no problematični su projekti obnavljanja starih zgrada. Važno je ograničiti toplinsku energiju iz zemlje za vrijeme sezone grijanja za održiv i dugovječan rad sustava kako se ne bi iscrpio rezervoar. Iscprljivanje topline mora biti izbalansirano s prirodnom regeneracijom.

Slika 5, Razdioba temperature po dubini, [3]

Dizalice topline se dijele na kompresorske dizalice topline, sorpcijske koje se dijele na adsorpcijske i apsorpcijske te Vuilleumier dizalice topline. Najčešće su kompresorske dizalice topline. Kompesori mogu biti pogonjeni elektičnim motorom ili motorom s unutrašnjim izgranjem. Kompresor pogonjen gorivom ima prednosti jer otpadna toplina također služi za grijanje što je efikasnije iskorištavanje primarne energije. Sorpcija je fizikalno-kemijski proces gdje kapljevine otapaju druge kapljevine ili plinove (apsorpcija) ili krutine (adsorpcija). Takvi procesi su ovisni o vanjskim fizikalnim parametrima poput temperature ili tlaka i mogu biti reverzibilni ukoliko se parametri promijene. Voda u razvodnom krugu treba biti što manje temperature, tako da razlika temperature između razvodne vode i vode u izmjenivaču pod zemljim bude što manja, a time je i snaga kompresora manja. Također je ekonomski isplativo koristiti dizalice topline za grijanje PTV-a. Nedostatk toga je da sustav radi u istom režimu cijele godine što predstvalja značajno opterećenje termalnog izvora koji više nema period za regeneraciju. Za grijanje PTV-a je željena temperatura viša od 60°C što je značajno više nego kod grijanja. Stoga se takvi sustavi kombiniraju sa solarnim sustavima. Višak topline proizvedem ljeti solarnim sustavom se pohranjuje u tlo za potrebe grijanja zimi.

Direktna primjena geotermalne energije doživljava godišnji rast od 7,7% u kapacitetu s najvećim instaliranim kapacitetom u SAD-u, Kini i Švedskoj. Tom rastu najviše pridonosi rastuća popularnost dizalica toplina. 2010. je zabilježeno korištenje 90 000 $\frac{TJ}{and}$, a u 2014. 325 $000 \frac{TJ}{aod}$, [4]. Iako su tehnologije geotermalne energije prisutne već više od 40 godina i primjenjuju se u mnogim područijma, kontinuirano prolaze kroz istraživanja i razvoj. Takozvani faktor grijanja (Coefficient of Performance - COP) olakšava procjenu kakvoće dizalica topline. COP faktor je definiran odnosom odvedenog toplinskog toka od dizalice topline i privedene nazivne električne snage. COP vrijednosti rastu povećanjem učinkovitosti dizalica topline. COP se također povećava sa smanjivajnem razlike temperatura između izvora topline i opskrbe vode sustava grijanja. Vrijednost COP-a, međutim, ne uključuje potrebu za energijom cirkulacijske crpke geotermalne sonde i kruga grijanja. Očigledno je da učinkovit rad sustava grijanja korelira s visokom temperaturom izvora i s niskom potrebnom temperaturom ponora. Za kompletan sustav grijanja dizalicom topline godišnji toplinski množitelj (Sesonal Performance Factor - SPF) je najznačajniji i relevantniji parametar koji karakterizira vrijednost sustava. SPF je omjer ukupne potrebne godišnje količine toplinske energije za grijanje prostora i zagrijavanje potrošne tople vode i ukupne utrošene godišnje količina električne energije za pogon kompesora, pumpi, ventilatora, pomoćnog grijača i sustava za odleđivanje isparivača (oba broja u J ili kWh). SPF = 4 znači da 1 kWh električna energija proizvodi 4 kWh topline. Što je energetska učinkovitost cijelog sustava bolja, to je veći faktor sezonskog učinka. SPF ne ovisi samo o instaliranom stroju, već i o navikama korisnika, klimatskim uvjetima, radnim uvjetima i drugim čimbenicima. Geotermalne dizalice topline obavljaju istu funkciju kao kotlovi ili klima uređaji dok koriste između 30% i 70% manje energija, [4]. Najveći nedostatak geotermalnih dizalica topline jest da su one skuplje za instalaciju od konvencionalnih uređaja za grijanje i hlađenje. Međutim, kako cijene energenata i dalje rastu, ta će razlika postati manje značajna. Investicijski troškovi su, u odnosu na sustave konvencijalnog grijanja, značajno viši dok su pogonski troškovi značajno niži. Dizalice topline bilježe progresivan rast broja instaliranih jedinica u sustavima grijanja i hlađenja te se predviđa sve veće širenje ove tehnologije u budućnosti.

3. ISPITNI UREĐAJ I OPREMA

Slika 6, Shema ispitnog sustava, [5]

Ispitni sustav, prikazan na slici 6, se sastoji od vertikalnog bušotinskog izmenjivača topline u tlu dubine 130 m, sustava dizalice topline, izmjenjivača topline, spremnika vode 300 l, četiri ventilokonvektora i ostale dodatne opreme. Komponente dizalice topline su pločasti isparivač i kondenzator, kompresor, elektronički ekspanzijski ventil i međuizmjenjivač. Također, dizalica topline je opremljena mjerilima za energetsko bilanciranje i optimiranje sustava: mjerilima temperature na strani radne tvari, izvora i ponora topline, mjerilima tlaka i protoka, kalorimetrima, mjeračima električne energije i snage te optičkim kabelima za mjerenje temperature duž bušotinskog izmjenjivača topline u tlu. Kao radnu tvar u dizalici topline koristimo R290, a kroz izmjenjivač topline u tlu i kroz razvodni sustav struji 30%-tna smjesa etilen-glikola. Akvizicijski sustav za praćenje funkcionira na principu pretvaranja analognog signala u digitalni. Sva mjerila su preko A/D konvertera spojena na računalo gdje se u programu prate i bilježe temperature, tlakovi, protoci, električna energija i snaga tijekom vremena. Ispitni uređaj je namijenjen za grijanje i za hlađenje te se troputnim ventilima može invertitrati namjena. Dijelovi ispitnog sustava su prikazani na slikama 7 i 8.

Tablica	1	Oprema	isnitnog	sustava
ruoncu	1,	opremu	ispunog	susiava

	Proizvođač	Tip
Dizalica topline	Frigo Plus d.o.o	-
Bušotinski izmjenjivač topline	Pipelife	-
Spremnik vode	Elbi	Puffer P-300 Plus
Ventilokonvektori	Sabiana	Carisma CRC 53

Slika 7, Dizalica topline, spremnik ogrjevne vode, sustav za praćenje parametara

Slika 8, Ventilokonvektori za grijanje učionice

Princip rada dizalice topline se sastoji od četiri procesa: isparavanja, kompresije, kondenzacije i ekspanzije. U isparivaču se radnoj tvari predaje toplina iz okoliša i ona se zagrijava i isparava. Pregrijana para radne tvari se kompresorom tlači na viši tlak, tlak kondenzacije čime joj se povisuje temperatura. Zatim radna tvar ulazi u kondenzator gdje predaje toplinu vodi u sustavu grijanja, a sama radna tvar prelazi u kapljevito stanje. Ukapljena radna tvar u zadnjem koraku prolazi kroz ekspanzijski ventil gdje joj se, zbog svojih svojstava, ekspanzijom snizuje temperatura do temperature isparavanja. Time je završen kružni proces koji je prikazan na slici 9 i koji se ponavlja sve dok radi kompresor.

Slika 9, Shematski prikaz procesa, [2]

Komponente dizalice topline:

- 1. Pločasti kondenzator, 66 ploča
- 2. Pločasti isparivač, 30 ploča
- 3. Pločasti međuizmjenjivač, 12 ploča
- 4. Stapni kompresor Dorin
- 5. Elektronski ekspanzijski ventil
- 6. Sakupljač radne tvari

3.1 Pločasti izmjenjivači topline

Slika 10, Pločasti izmjenjivač topline, [6]

Izmjenjivači topline su uređaji koji služe za prijenost topline s jednog medija na drugi, prilikom čega se topliji medij hladi, a hladniji zagrijava. Primjenjuju se u rashladnoj tehnici, klimatizaciji, procesnoj tehnici te u termoenergetskim postrojenjima. Izmjenjivači topline se dijele na rekuperativne, regenerativne i direktne. U rekuperatoru se struje fluida fizički razdvojene čvrstom stijenkom i ne dolazi do miješanja. Regenerativni izmjenjivači imaju akumulacijsku masu koja rotira i preuzima toplinu od toplijeg medija i predaje ju hladnijem. Kod direktnog izmjenjivača struje dolaze u izravni dodir u mješalištu. U daljnem izlaganju baviti ćemo se rekuperatorima. U dizalici topline su ugrađena tri pločasta izmjenjivača topline (slika 10): isparivač, kondenzator i međuizmjenjivač. Ovakva vrsta izmjenjivača se uspješno koristi kao isparivači u sustavima grijanja, hlađenja ili HVAC sustavima zbog visokog koeficijenta prolaza topline pri malim protocima radne tvari. Izgledom su vrlo kompaktni i imaju veliku površinu za izmjenu topline. Sastoje se od mnogo tankih, blago razdvojenih ploča koje imaju veliku površinu. U pločastom izmjenjivaču topline uslijed orebrenosti površine dolazi do povećanja turbulencije i time raste ukupni koeficijent prolaza topline. Time je za isti toplinski tok i istu pokretačku silu potrebna manja površina izmjene topline. Ovaj oblik naslaganih ploča može biti bolje iskoristiv, u zadanom prostoru, od izmjenjivača cijev u plaštu. Ploče imaju udubine koje služe usmjeravanje tvari. Napretci za u tehnologijama brtvljenja i lemljenja su učinili pločaste izmjenjivače topline sve praktičnijim.

Najveći problem ovakvog tipa izmjenjivača predstavlja održavanje stoga se trebaju koristiti radne tvari visoke čistoće.

3.2 Kompresor

U ispitnoj dizalici topline je ugrađen kompresor s oscilirajućim stapom u poluhermetičkoj izvedbi. Kompresori su strojevi ili uređaji koji stlačivanjem plinovima ili parama povisuju energetsku razinu. Teoretski se proces stapnog kompresora može prikazati u p,v-dijagramu kao proces koji se odvija između dva tlaka p₁ i p₂ (slika11). Kretanjem stapa unutar cilindra od GMT prema DMT se usisava plin iz prostora u kojem vlada stalni tlak p₁ (promjena a-1), zatim se kretanjem stapa od DMT prema GMT plin komprimira (promjena 1-2) i istiskuje (promjena 2-b) u prostor u kojem vlada stalni tlak p₂. U slijedećem okretaju vratila ove se pojave ponavljaju, pa ih se naziva teoretskim ciklusom kompresora.

Slika 11, Princip rada kompresora, [7]

Model kompresora koji je ugrađen u dizalicu topline (slika 12) odlikuje visok COP faktor (faktor grijanja/hlađenja). Pogodan je za većinu često korištenih radnih tvari: HC (R290 i R1270) i HFC (R404A, R134a, R407C, R507, R407F, R407A, R448A, R449A, R450A, R513A, R452A) i širok raspon ulja za podmazivanje.

Slika 12, Kompresor ispitne dizalice topline, [8]

3.3 Elektronski ekspanzijski ventil

Slika 13, Elektronski ekspanzijski ventil u sustavu, [9]

Radna tvar se pregrijava u isparivaču da bi se spriječila pojava kapljica u kompresoru i mogućnost hidrauličkog udara. Pregrijanje ne smije biti preveliko jer bi zauzimalo velik dio isparivača pa bi na tom dijelu bio slabiji prijenos topline. Pregrijanje nam omogućuje elektronski ekspanzijski ventil (EEV) koji je prikazan na slici 13. EEV objedinjuje funkcije elektromagnetnog ventila i termoekspanzijskog ventila. Elektronički ekspanzijski ventil je motorni igličasti ventil koji djeluje kao dio regulatora prikazanog na slici 10 i za svoj rad treba električnu energiju. Potreban mu je osjetnik pregrijanja radne tvari na izlaznoj cijevi isparivača, pretvarač tlaka koji je spojen na tlak radne tvari na izlazu iz isparivača te kontroler koji na temelju dobivenih informacija otvara ventil točno onoliko koliko je potrebno da se održi minimalno stabilno pregrijanje radne tvari. Elektronički ekspanzijski ventil koji se koristi na eksperimentalnom postavu ima kontinuiranu modulaciju protoka koja se postiže pomoću elektromotora. EEV se može koristiti za sve radne tvari, nije potrebno podešavanje ventila, ima zamjenjive sapnice i sustav prigušenja hidrauličkih udara. Također, budući da se ulazni signali

obrađuju u regulatoru, može se osigurati proizvoljno pregrijanje, odnosno proizvoljna regulacijska karakteristika.

3.4 Sakupljač radne tvari

Zadatak spremnika radne tvari (slika 14) je prihvat ukapljene radne tvari iz kondenzatora ili čitavog sustava. Također, on akumulira ukapljenu radnu tvar za trenutačnu potrebu isparivača i drži kondenzator praznim. Sakupljač može poslužiti kao pothlađivač radne tvari.

Slika 14, Sakupljač radne tvari, [10]

3.5 Mjerna oprema

3.5.1 Mjerenje temperature termoparovima

Termopar ili termoelement je kontaktni uređaj za mjerenje temperature koji se sastoji od dva različita vodiča koji su spojeni na jednom kraju. Princip rada termopara se zasniva na termoelektričnom efektu (Seebeckov efekt). Termoelektrični efekt je pojava napona kada postoji temperaturni gradijent na spoju vodiča. Taj je napon karakterističan za odgovarajuće kombinacije vodiča. Različite kombinacije vodiča se upotrebljavaju radi postizanja tražene pouzdanosti mjerenja, ovisno o troškovima i stabilnosti. Razlika napona je proporcionalna razlici temperature. Termoparovi imaju visoku točnost u određenom mjernom opsegu. Vremenska konstanta im je mala što znači da brzo reagiraju na promjenu temperature.

Tablica 2, Tipovi termoparova

Tip	Pozitivni metal	Negativni metal	Temperaturno područje
В	Platina - 6% rodij	Platina - 30% rodij	0 °C - 1820 °C

Fakultet strojarstva i brodogradnje

Ivana Gjuras Završni rad					
С	Volfram - 5% renij	Volfram - 26% renij	0 °C - 2320 °C		
Е	Nikal - 10% krom	Bakar - 45% nikal	-270 °C - 1000 °C		
J	Željezo	Bakar - 45% nikal	-210 °C - 760 °C		
K	Nikal - 10%krom	Nikal - 2% aluminij	-270 °C - 1372 °C		
Ν	Nikal-14,2%krom-1,4% silicij	Nikal-4,4% silicij-0,1% magnezij	-270 °С - 1300 °С		
R	Platina - 13% rodij	Platina	-50 °C - 1768 °C		
S	Platina - 10% rodij	Platina	-50 °C - 1768 °C		
Т	Bakar	Bakar - nikal	-270 °C - 400 °C		

Na ispitnom uređaju su korišteni termoparovi K-tipa. Oni se najviše koriste za generalnu primjenu i relativno su jeftini.

Termoparovima se mjere:

- temperatura polaza i povrata od dizalice topline prema međuizmjenjivaču
- temperature polaza i povrata od međuizmjenjivača prema spremniku
- temperature polaza i povrata od spremnika prema prostoru/potrošaču
- temperatura isparavanja
- temperatura nakon prvog pregrijanja
- temperatura nakon drugog pregrijanja
- temperatura na kraju kompresije
- temperatura pothlađene kapljevine
- temperature polaza i povrata od bušotinskog izmjenjivača topline prema izmjenjivaču

3.5.2. Mjerenje protoka

Protok glikolne smjese u bušotinskom izmjenjivaču se mjeri elektromagnetskim protokomjerom. Princip rada uređaja se temelji na zakonu elektromagnetske indukcije. Fluid ima ulogu vodiča koji struji kroz cijev na kojoj su postavljene elektrode. Elektromotorna sila koja se inducira u vodiču koji se giba kroz magnetno polje je proporcionalna brzini promjene magnetskog toka. Ovakav tip protokomjera se primjenjuje gdje se traži veća preciznost i pouzdanost u radu.

Protok radne tvari R290 se mjeri ultrazvučnim protokomjerom. Princip rada uređaja se temelji na činjenici da ultrazvučni val brže putuje niz struju nego uz struju fluida. Mjerenjem razlike u vremenima puta uzvodni i nizvodno se dobiva protok.

3.5.4 Mjerenje toplinskog učina kondenzatora i isparivača

Toplinski tok se mjeri kalorimetrom koji ima ultrazvučni protokomjer kao i osjetnike temperature. Mjereći protok te ulazene i izlazne temperature fluida, uređaj daje podatak o predanom ili primljenom toplinskom toku mjerenog izmjenjivača.

3.5.3 Mjerenje snage kompresora

Snaga kompresora se mjeri digitalnim multimetrom (slika 15).

Slika 15, Digitalni multimetar, [11]

4. RADNE TVARI

4.1 PROPAN (R290)

Uredba br. 517/2014 o fluoriranim stakleničkim plinovima poznatija pod nazivom Fgas regulativa i današnja istraživanja u rashladnoj tehnici i dizalicama topline sve više usmjeravaju na primjenu prirodnih radnih tvari kao što su amonijak, ugljični dioksid i ugljikovodici. Uzrok tome je štetan utjecaj dosad korištenih radnih tvari na razgradnju ozona u stratosferskim slojevima atomosfere i remećenje toplinske ravnoteže Zemlje. Radne tvari osim što ne smiju imati velik utjecaj na razgradnju ozona (Ozone Depletion Potential – ODP), trebaju imati i što manji potencijal globalnog zagrijavanja (Global Warming Potential - GWP). ODP je funkcija koja govori o sposobnosti klora i broma na razgradnju ozona i vremena njihove postojanosti u atmosferi. GWP govorio koliki je relativni utjecaj tvari na stvaranje efekta staklenika u odnosu na utjecaj 1 kg CO₂. Ugljikovodici, propan (R290) i izobutan (R600a), su bili među prvim korišenim radnim tvarima, ali su se prestali koristiti zbog svoje izražene zapaljivosti i iz sigurnosnih razloga. Zbog njihovog zanemarivog utjecaja na okoliš ponovno vraćaju svoju popularnost i danas su uobičajena alternativa fluoriranim ugljikovodicima. R290 je tehnički naziv za propan (C₃H₈) visoke čistoće pogodan za upotrebu u industriji hlađenja i klimatizacije. On je radna tvar neposrednih (direktnih) sustava i primarni je nosioc topline. Kao zmjenska tvar je izbacio iz upotrebe R22, R404A, R407A i A507A u nekim primjenama. Propan (R290) i ostali ugljikovodici odlikuju se izvrsnim termofizikalnim i ekološkim svojstvima, ali se zbog njihove zapaljivosti preporučuje rabiti ih samo u manjim, dobro brtvljenim jedinicama s malom količinom radne tvari, kao što su hladnjaci za kućanstvo i komercijalnu uporabu i hladnjače kod kojih je moguće kontrolirati zdravstvene i sigurnosne rizike.

Prednosti propana (R290):

- nulti potencijal razgradnje ozona (ODP = 0)
- jako niski potencijal globalnog zagrijavanja ($GWP_{100} = 20$)
- odlična termodinamička svojstva \rightarrow visoka učinkovitost sustava
- dobra kompatibilnost s komponentama sustava
- malo punjenje \rightarrow manje dimenzije izmjenjivače topline i cjevovoda

Nedostatak propana je njegova zapaljivost te ga stoga svrstavamo u sigurnosnu skupinu A3 prema HRN EN 378. Temperatura zapaljenja je 470°C, a zapaljiv je ako njegova koncentracija u zraku iznosi između 1,7% i 10,9%. Do zapaljenja dolazi ako istovremeno dođe do propuštanja radne tvari, koncentracija bude u zapaljivom području i postoji prisutnost aktivnog izvora plamena dovoljne energije. Stoga se kućišta rashladih agregata podvrgavaju raznim sigurnosnim mjerama i izvođe se prema norama koje navode detaljne zahtjeve za sigurnu uporabu zapaljivih radnih tvari u komercijalnim i industrijskim svrhama. R290 ima širok raspon primjena koje uključuje dizalice topline, komercijalno hlađenje, hladnjake u prehrambenim lancima, industrijsko i transportno hlađenje, male klimatizacijske uređaje te velike klimatizacijske i rashladne sustave.

Slika 16, Usporedba volumetričkog učinka radnih tvari, [12]

Slika 16 prikazuje usporedbu volumetričkih učina radnih tvari u ovisnosti o GWP faktoru. Jasno je vidljivo da je R290 radna tvar sa vrlo malim GWP-om, a zadovoljavajuće visokim volumetričkim učinkom koji konkurira dugim radnim tvarima.

Tablica 3, Svojstva radnih tvari dana za standardni rashladni proces (temperatura kondenzacije +30°C, *temperatura pothlađenja* +25°C *i temperatura isparavanja* -15°C), [9]

Svojstvo	R290	R600a	R12	R134a
ODP	0	0	1	0
GWP ₁₀₀	20	20	8100	1300
Molekularna masa	44,1	58,12	120,9	102,03

Fakultet strojarstva i brodogradnje

Ivan	a Gjuras				Završn	i rad
	Kritična temperatura, °C	96,7	134,7	111,97	101	
	Kritični tlak, bar	42,5	36,4	41,4	40,6	
	Temperatura isparavanja (1 bar), °C	-42,4	-11,6	-29,8	-26,1	
	Tlak isparavanja (-15°C), bar	2,92	0,89	1,82	1,64	
	Gustoća kapljevine (30°), kg/m ³	484,4	544,3	1293	1187	
	Gustoća pare (-15°C), kg/m ³	6,5	2,49	10,89	8,29	
	Specifična toplina isparavanja (-15°C), kJ/kg	394,4	369,8	159,9	209,6	
	Volumetrički rashladni učinak, kJ/m ³	1897,4	688	1327,5	1285,3	

U tablici 3 su dane radne tvari koje se koriste u rashladnim uređajima manjeg kapaciteta. R290 ima najveću latentnu toplinu isparavanja što znači da će pri istim uvjetima rada i za isti kapacitet sustava imati manju protočnu masu radne tvari. Manja protočna masa radne tvari i manja gustoća kapljevite i parovite faze znače manji promjer kapljevinskog i parnog voda. Umnožak gustoće radne tvari na usisu u kompresor (ρ_1) i specifičnog rashladnog učinka (q_0) naziva se volumetrički učinak radne tvari (q_{0v}) i predstavlja iznimno važnu karakteristiku svake radne tvari: $q_{0v} = \rho_1 q_0 = \rho_1 (h_1 - h_4)$, kJ/m³. Vrijednost rashladnog učinka izravno utječe na kapacitet sustava. R290 ima najveći volumetrički rashladni učinak što znači da će za isti kapacitet sustava imati najmanji radni volumen cilindra kompresora. Za niže temperature isparavanja (slika 17), volumetrički rashladni učinak se smanjuje zbog manje gustoće na usisu u kompresor i manjeg sprecifičnog rashladnog učinaka. To znači da će pri nižim temperaturama isparavanja i za isti rashladni učinak, volumen cilindra biti veći. Kako R290 ima najveći rashladni učinak, dimenzije kompresora su najmanje. Također, mala gustoća kapljevitog propana ima za posljedicu malo punjenje sustava čime se smanjuje mogućnost zapaljenja i eksplozije radne tvari u slučaju propuštanja.

Slika 17, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [13]

Svojstvo	R22	R404a	R410A	R407C	R717	R290
ODP	0,055	0	0	0	0	0
GWP ₁₀₀	1500	3922	2088	1774	0	20
Kritična temperatura, °C	96,2	72,14	70,17	86,05	135,25	96,7
Kritični tlak, bar	49,9	37,4	47,7	46,3	113,3	42,5
Temperatura isparavanja (patm), °C	-40,8	-46,6	-51,6	-43,8	-33,33	-42,4
Gustoća kapljevine (30°), kg/m ³	1171	1021	1035	1116	595,2	484,4
Gustoća pare (-15°C), kg/m ³	12,9	18,57	18,43	11,48	1,97	6,5
Specif. toplina isparavanja (-15°C), kJ/kg	216,5	177,7	237,6	211,9	1312,8	394,4
Volumetrički rashladni učinak, kJ/m ³	2178,8	2250,7	3243,7	1888,5	2214,3	1897

Tablica 4, Svojstva radnjih tvari koje se koriste u srednjim i većim rashladnim uređajima, [9]

U tablici 4 se može vidjeti da je gustoća kapljevitog propana približno dva puta manja od ostalih radnih tvari (halokarbonata), koje se koriste u srednjim i većim rashladnim uređajima, što za isti volumen znači dvostruko manje punjenje. Također, možemo vidjeti da radna tvar R717 (amonijak) ima najveću toplinu isparavanja i samim time i najmanje dimenzije cjevovoda. Zbog izrazito male gustoće radne tvari R290 na usisu u kompresor, volumetrički rashladni učinak je gotovo jednak učinku ostalih radnih tvari (slika 18). Radna tvar R410A ima najveći volumetrički rashladni učinak što je čini vodećom radnom tvari koja se primjenjuje u split rashladnim uređajima (slika 18).

Slika 18, Volumetrički rashladni učinak radnih tvari u funkciji temperature isparivanja, [13]

Propan ima manje radne tlakove od radne tvari R22 za iste temperature. Veći radni tlakovi vode do većih mehaničkih zahtjeva i većih propuštanja, [8].

Latentna toplina isparavanja pojedinih radnih tvari i vrijednost iste određuje raspoloživu toplinu kondenzacije ili isparavanja po kilogramu radne tvari. Preko nje se određuje protočna masa radne tvari koja je potrebna da se postigne određeni kapacitet hlađenja ili grijanja. Najveću toplinu isparavanja imaju ugljikovodici (R290) izuzev amonijaka, odnosno gotovo dva puta veću od radne tvari R22 koju se može naći u širokom rasponu primjena u hlađenju i klimatizaciji i u širokom rasponu temperatura. Veća latentna toplina isparavanja ugljikovodika povlači za sobom manju protočnu masu radne tvari potrebnu za odgovarajući kapacitet hlađenja (grijanja).

Omjer tlakova ima veliki utjecaj na efikasnost kompresora te na njegovu volumetričku efikasnost. Što su niži omjeri tlakova to su efikasnosti više. Omjeri tlakova kondenzacije i isparavanja propana niži su od ostalih radnih tvari. To znači da propan ima potencijal da zamijeni pojedine radne tvari u tehnici hlađenja, malim klimatizacijskim uređajima i dizalicama topline zbog toga što će propan raditi na nižim tlakovima kondenzacije i na nižim omjerima tlakova.

Slika 19, Volumetrička energetska potrošnja R290 u odnosu na druge radne tvari, [13]

Dodatno, korištenjem propana troši se znatno manje energije po jedinici usisnog volumena radne tvari u kompresor. U svim slučajevima u kojima se propan uspoređivao s HFC radnim tvarima (R22 – HCFC), propan zahtijeva manje kompresorskog rada po jedinici protoka od ostalih radnih tvari koje se često mogu naći danas u primjeni. Propan troši 10–20% manje energije po jedinici protoka radne tvari nego sustav s R22 (slika 19). Korištenjem R410A radne tvari troši se preko 40% više energije (slika 19).

U usporedbi s CFC, HCFC i HFC, HC radne tvari pružaju općenito: visoku učinkovitost, smanjenje punjenja sustava, i niže temperature na kraju kompresije što ih čini odličnim za primjenu u dizalicama topline. Radna tvar R290 pokazuje konkurentnost i potencijal za širokim prihvaćanjem u sustavima hlađenja i klimatizacije. Propan se koristi u industrijskom hlađenju već 10 godina, naročito u velikim hladnjacima. Kompatibilan je s postojećim materijalima i pokazuje dobra svojstva prilikom miješanja s mineralnim uljima tako da nema potrebe mijenjati ulje ukoliko se odluči koristiti ovu radnu tvar. Radi velike zapaljivosti moraju se zadovoljiti određeni sigurnosni uvjeti te ako jesu upotreba ove radne tvari je sigurna kao i korištenje ostalih radnih tvari. U svim područjima hlađenja i klimatizacije propan kao radna tvar je već zastupljena te zbog malog utjecaja na okoliš (GWP₂₀=4, 1 kg R290 ima utjecaj kao 4 kg CO2, dok npr. 1 kg R410A ima jednaki utjecaj na globalno zatopljenje kao i 1720 kg CO2) i odličnih termodinamičkih svojstava, očekuje se rast tržišnog udjela te radne tvari u svijetu.

4.2 GLIKOLNA SMJESA

Glikolna smjesa je radna tvar posrednih (indirektnih) sustava i koristi se kao sekundarni nosioc topline. Ona najčešće ne mijenja svoje agregatno stanje. Otopine alkohola u vodi se korise u uvjetima gdje temperature padaju ispod 2-3°C i postoji opasnost od smrzavanja vode. U vertikalnom bušotinskom izmjenjivaču topline dubine 130 m cirkulira 30%-tna otopina etilen-glikol ($C_2H_6O_2 + H_2O$).

5. TEORIJSKI PRORAČUN OGRJEVNOG PROCESA

Toplinski tok koji je potreban za grijanje je ujedno i toplinski tok s kojim se ulazilo u proračun kondenzatora te on iznosi 12 kW. Radna tvar koja se koristi kao primarni nosioc topline je R290 (propan). Za temperaturni režim glikolne smjese na kondenzatoru u režimu grijanja 42/47°C je izabrana temperatura kondenzacije 50°C. Za temperaturni režim glikolne smjese na isparivaču 0/-3°C odabrana je temperatura isparavanja -6°C. Odabrane razlike temperature pregrijanja u isparivača, pothlađenja u kondenzatora i pothlađenja na međuizmjenjivaču su 5°C.

Ulazni podaci:

•	Radna tvar	R290
•	Temperatura isparavanja	$\vartheta_i = -6^\circ C$
•	Temperatura kondenzacije	$\vartheta_k = 50^{\circ}C$
•	Tlak isparavanja	$p_i = 3,94 \text{ bar}$
•	Tlak kondenzacije	$p_k = 17,13$ bar
•	Ogrijevni učinak	$\Phi_k = 12 \ kW$
•	Temperatura glikolne smjese na ulazu u kondenzator	$\vartheta_{GL,u} = 42^{\circ}C$
•	Temperatura glikolne smjese na izlazu iz kondenzatora	$\vartheta_{GL,i} = 47^{\circ}C$
•	Izentropski stupanj djelovanja kompresora	$\eta_{is}=0,7$
•	Pregrijanje	$\Delta \vartheta_{preg} = 5^{\circ} C$
•	Pothlađenje	$\Delta \vartheta_{pot} = 5^{\circ} C$
•	Pothlađenje na međuizmjenjivaču	$\Delta \vartheta_{3-3'} = 5^{\circ} C$

Slika 20 prikazuje kružni proces koji se odvija u dizalici topline u T,s dijagramu, a slika 21 prikazuje shemu ispitne dizalice topline.

Slika 20, Prikaz ogrjevnog procesa u T,s dijagramu

Slika 21, Shema dizalice topline, [5]

Karakteristične točke procesa:

1	-	pregrijana para na izlazu iz isparivača
1'	-	pregrijana para na izlazu iz međuizmjenjivača
2is	-	pregrijana para nakon izentropske kompresije
2	-	pregrijana para nakon realne kompresije
3	-	pothlađena kapljevina na izlazu iz kondenzatora
3'	-	pothlađena kapljevina na izlazu iz međuizmjenjivača
4	-	mokra para na ulazu u isparivač

Točka 1 je definirana tlakom isparavanja i temperaturom nakon pregrijanja:

$$p_1 = p_i \label{eq:p1}$$

$$\vartheta_1 = \vartheta_i + \Delta \vartheta_{\text{preg}} \label{eq:p1}$$

Točka 1' je definirana tlakom isparavanja i entalpijom točke 1 uvećanu za entalpiju izmijenjenu na međuizmjenjivaču pri 100%-tnoj učinkovitosti:

$$p_{1'} = p_i$$

 $h_{1'} = (h_3 - h_{3'}) + h_1$

Točka 2is je definirana tlakom kondenzacije i entropijom koja je jednaka entropiji točke 1':

$$p_{2is} = p_k$$
$$s_{2is} = s_1$$

Točka 2 je definirana tlakom kondenzacije i entalpijom koja ovisi o izentropskom stupnju djelovanja kompresora i entalpiji točke 2is i 1':

$$p_2 = p_k$$
$$h_2 = h_{1\prime} + \frac{h_{2is} - h_{1\prime}}{\eta_{is}}$$

Točka 3 je definirana tlakom kondenzacije i temperaturom nakon pothlađenja:

 $p_3 = p_k$

$$\vartheta_3 = \vartheta_k - \Delta \vartheta_{pot}$$

Točka 3' je definirana tlakom kondenzacije i temperaturom točke 3 umanjenom za iznos pothlađenja na međuizmjenjivaču:

$$p_{3'} = p_k$$
$$\vartheta_{3'} = \vartheta_3 - \Delta \vartheta_{3-3'}$$

Točka 4 je definirana tlakom isparavanja i entalpijom koja je jednaka entalpji točke 3':

$$p_4 = p_i$$
$$h_4 = h_{3'}$$

Točka	θ[°C]	p [bar]	h [kJ/kg]	s [kJ/kgK]
1	-1,00	3,94	576,777	2,404
1'	13,87	3,94	591,725	2,465
2is	68,34	17,13	665,842	2,465
2	82,27	17,13	697,669	-
3	45,00	17,13	322,803	-
3'	40,00	17,13	308,002	-
4	-6,00	3,94	308,002	-

Maseni protok radne tvari:

$$q_{m,RT} = \frac{\Phi_k}{h_2 - h_3} = \frac{12}{697,669 - 322,803} = 0.032 \frac{kg}{s}$$

Snaga kompresora:

$$P_k = q_{m,RT} \cdot (h_2 - h_{1'}) = 0,0032 \cdot (697,669 - 591,725) = 3,4 \, kW$$

Učinak isparivača:

$$\Phi_i = q_{m,RT} \cdot (h_1 - h_4) = 0,0032 \cdot (576,777 - 308,002) = 8,6 \, kW$$

Ivana Gjuras Faktor grijanja:

$$\varepsilon_{gr} = \frac{\Phi_k}{P_k} = \frac{12}{3.4} = 3,53$$

6. TERMODINAMIČKI PRORAČUN ISPARIVAČA

Slika 22, Odabrani pločasti isparivač B25T, [14]

Toplisnki tok izmijenjen na isparivaču:

$$\Phi_i = 8,6 \, kW$$

Pregrijanje:

$$h''(3,94 \ bar) = 567,779 \ \frac{kJ}{kg}$$

$$\Phi_{preg} = q_{m,RT} \cdot (h_1 - h'') = 0,00329 \cdot (576,777 - 567,779) = 0,26 \, kW$$

Udio pregrijanja:

$$x\Phi_{preg} = \frac{\Phi_{preg}}{\Phi_i} = \frac{0.26}{8.6} = 2.99\%$$

Zbog malog postotka toplinskog toka koji se izmjenio pri pregrijanju radne tvari, u proračunu će se zanemariti taj udio topline.

Temperature u isparivaču:

Temperatura glikolne smjese na ulazu $\vartheta_{GL,u} = 0^{\circ}C$

Ivana Gjuras	
Temperatura glikolne smjese na izlazu	$\vartheta_{GL,i} = -3^{\circ}C$
Temperatura radne tvari na ulazu	$\vartheta_{\mathrm{RT,u}} = -6^{\circ}\mathrm{C}$
Temperatura radne tvari na izlazu	$\vartheta_{\rm RT,i} = -1^{\circ} \rm C$

Temperatura radne tvari na izlazu

Slika 23, Dijagram izmjene topline u isparivaču

Termodinamička svojstva glikolne smjese (30%-tna vodena otopina etilen glikola) pri srednjoj temperaturi -1,5°C:

•	gustoća	$\rho_{GL} = 1052,2 \text{ kg/m}^3$
•	specifični toplinski kapacitet	$c_{GL} = 3,584 \text{ kJ/kgK}$
•	koeficijent toplinske vodljivosti	$\lambda_{GL}=0,\!4271~W/mK$
•	dinamički viskozitet	$\mu_{GL} = 0,00441$ Pas
•	Prandltov broj	$Pr_{GL} = 37,0064$

Termodinamička svojstva R290 pri temperaturi isparavanja -6°C:

kondenzat:	• gustoća	$\rho_{RT,l} = 536,59 \text{ kg/m}^3$
	• specifični toplinski kapacitet	$c_{RT,l} = 2,45 \text{ kJ/kgK}$
	• koeficijent toplinske vodljivosti	$\lambda_{RT,l}=0,1091~W/mK$
	• dinamički viskozitet	$\mu_{RT,l} = 0,0001336$ Pas
	• Prandltov broj	$Pr_{RT,l} = 3,0006$

para:

• gustoća	$\rho_{RT,v} = 8,64 \text{ kg/m}^3$
• specifični toplinski kapacitet	$c_{RT,v} = 1,6871 \text{ kJ/kgK}$
• koeficijent toplinske vodljivost	$i \qquad \lambda_{RT,v} = 0,0151 \text{ W/mK}$
• dinamički viskozitet	$\mu_{RT,v} = 0,00000727$ Pas
Prandltov broj	$Pr_{RT,v} = 0,81387$

Maseni protok glikolne smjese:

$$q_{m,GL} = \frac{\Phi_i}{c_{GL} \cdot (\vartheta_{GL,u} - \vartheta_{GL,i})} = \frac{8.6}{3.584 \cdot (0+3)} = 0.8 \frac{kg}{s}$$

Maseni protok R290:

$$q_{m,RT} = \frac{\Phi_i}{h_1 - h_4} = \frac{8,6}{576,777 - 308,002} = 0,032 \ \frac{kg}{s}$$

6.1 Dimenzije odabranog pločastog izmjenjivača (B25T)

Proračun se provodio iterativni postupkom mijenjajući broj ploča. Pomoću odabranih dimenzija isparivača i broja ploča računao se prijelaz topline koji mora biti jednak zadanom.

•	visina isparivača	H = 0,526 m
•	širina isparivača	B = 0,119 m
•	kut orebrenja	$\beta = 60^{\circ}$
•	faktor povećanja površine	$\Phi = 1,6$
•	dubina orebrenja	b = 0,002 m
•	ekvivalentni promjer kanala	$d_e = 2 \cdot \frac{b}{\Phi} = 0,00238 \text{ m}$
•	broj ploča	N = 24
•	površina jednog kanala/poprečni presjek	$A_c = 0,000192 \text{ m}^2$

6.2 Proračun površine izmjene topline za odabrani izmjenjivač topline

 $L_v = 0,479 \text{ m}$ $L_h = 0,072 \text{ m}$ $D_p = 0,024 \text{ m}$

 $L_p = L_v - D_p = 0,479 - 0,024 = 0,455 m$ $L_w = L_h + D_p = 0,072 + 0,024 = 0,096 m$ $L_p > 1,8 L_w = 0,173 m \leftarrow uvjet zadovljen$

Slika 24, Geometrija ploče isparivača, [15]

Projicirana površina:

$$A_p = N \cdot L_p \cdot L_w = 24 \cdot 0,455 \cdot 0,096 = 1,05 \ m^2$$

Ukupna površina izmjene topline:

$$A_i = \Phi \cdot A_p = 1,6 \cdot 1,05 = 1,76 \, m^2$$

6.3 Prijelaz topline na strani glikolne smjese

Broj kanala kroz koj struji glikolna smjesa:

$$N_{GL} = \frac{N}{2} - 1 = \frac{24}{2} - 1 = 11$$

Brzina strujanja:

$$w_{GL} = \frac{q_{mGL}}{\rho_{GL} \cdot A_c \cdot N_{GL}} = \frac{0.8}{1052.2 \cdot 0.000192 \cdot 11} = 0.36 \frac{m}{s}$$

$$Re_{GL} = \frac{\rho_{GL} \cdot w_{GL} \cdot d_e}{\mu_{GL}} = \frac{1052, 2 \cdot 0, 36 \cdot 0, 00238}{0,00441} = 204,7$$

Nusseltov broj prema Muleyju et al., [15]:

$$Nu_{GL} = 0.44 \cdot \frac{\beta}{30}^{0.38} \cdot Re_{GL}^{0.5} \cdot Pr^{0.33} = 0.44 \cdot \frac{60^{0.38}}{30} \cdot 204.7^{0.5} \cdot 37^{0.33} = 27.3$$

Koeficijent prijelaza topline:

$$\alpha_{GL} = \frac{Nu_{GL} \cdot \lambda_{GL}}{d_e} = \frac{27,3 \cdot 0,4271}{0,00238} = 4893,82 \frac{W}{m^2 K}$$

6.4 Prijelaz topline na strani radne tvari R290

Broj kanala kroz koji struji radna tvar R290:

$$N_{RT} = \frac{N}{2} = \frac{24}{2} = 12$$

Srednja logaritamska razlika temperatura:

$$\Delta \vartheta_{m,i} = \frac{(\vartheta_{GL,u} - \vartheta_{RT,u}) - (\vartheta_{GL,i} - \vartheta_{RT,u})}{\ln \frac{(\vartheta_{GL,u} - \vartheta_{RT,u})}{(\vartheta_{GL,i} - \vartheta_{RT,u})}} = \frac{(0+6) - (-3+6)}{\ln \frac{(0+6)}{(-3+6)}} = 4,33^{\circ}C$$

Gustoća masenog toka:

$$G = \frac{q_{m,RT}}{A_c \cdot N_{RT}} = \frac{0,032}{0,000192 \cdot 12} = 13,89 \frac{kg}{sm^2}$$

Pretpostavljeni toplinski tok s kojim se ulazi u proračun i koji se iterira:

$$q_A = 5217, 19\frac{W}{m^2}$$

Razlika entalpija isparavanja:

$$\Delta h_i = h^{\prime\prime} - h_4 = 567,779 - 308,002 = 259,777 \frac{kJ}{kg}$$

Boilingov broj Bo:

$$Bo = \frac{q_A}{G \cdot \Delta h_i} = \frac{5217,19}{13,89 \cdot 259,777} = 0,001445$$

Viskoznost u ovisnosti o sadržaju pare:

$$\mu_x = \mu_{RT,l} + x(\mu_{RT,v} - \mu_{RT,l})$$

Toplinska vodljivost u ovisnosti o sadržaju pare:

$$\lambda_x = \lambda_{RT,l} + x \big(\lambda_{RT,\nu} - \lambda_{RT,l} \big)$$

Reynoldsov broj:

$$Re_{RT} = \frac{\mathbf{G} \cdot d_e}{\mu_x}$$

Nusseltov broj prema Wanniarachchiju, [16]:

$$Nu_{RT} = 30 \cdot Re_{RT}^{0,875} \cdot Bo^{0,714}$$

Koeficijent prijelaza topline:

$$\alpha_{RT} = \frac{Nu_{RT} \cdot \lambda_x}{d_e} \frac{W}{m^2 K}$$

h	Х	μχ	λx	Re	Nu	α
kJ/kg	-	Pas	W/mK	-	-	W/m ² K
h'=185,05	0	0,000134	0,1091	247,76	35,01	1602,84
223,32	0,1	0,000121	0,0997	273,63	38,18	1597,71
261,60	0,2	0,000108	0,0903	305,54	42,05	1593,65
299,87	0,3	0,000096	0,0809	345,87	46,87	1591,32
h ₄ =313,88	0,34	0,000091	0,0774	355,85	48,05	1591,14
338,14	0,4	0,000083	0,0715	398,47	53,05	1591,83
376,41	0,5	0,000070	0,0621	469,94	61,29	1597,16
414,69	0,6	0,000058	0,0527	572,65	72,87	1611,21
452,96	0,7	0,000045	0,0433	732,81	90,42	1642,48
491,23	0,8	0,000033	0,0339	1017,35	120,48	1713,20
529,51	0,9	0,000020	0,0245	1663,11	185,22	1902,92
h''=567,78	1	0,000007	0,0151	4553,32	35,01	2829,32
					prosjek:	1809,907

Tablica 6, Svojstva R290 u ovisnosti o sadržaju pare

6.5 Proračun potrebnog toplinskog toka

Toplinska vodljivost ploče od nehrđajučeg čelika gradacije 316, [17]:

$$\lambda_{c} = 16,5 \ \frac{W}{mK}$$

Debljina ploče:

$$t = 0,0012 m$$

Koeficijent prolaza topline:

$$k = \frac{1}{\frac{1}{\alpha_{GL}} + \frac{t}{\lambda_{c}} + \frac{1}{\alpha_{RT}}} = \frac{1}{\frac{1}{4893,82} + \frac{0,0012}{16,5} + \frac{1}{1809,91}} = 1205,43 \frac{W}{m^2 K}$$

Potreban toplinski tok:

$$q_A = k \cdot \Delta \vartheta_{m,i} = 1205,43 \cdot 4,33 = 5217,19 \frac{W}{mK}$$

Pretpostavljeni toplinski tok je jednak potrebnom te je iteracija završena.

Potrebna površina za izmjene topline:

$$A_{i,pot} = \frac{\Phi_i}{q_A} = \frac{8604}{5217,19} = 1,65 \ m^2$$

Postotak predimenzioniranosti:

$$\Delta A = \frac{A_i - A_{i,pot}}{A_{i,pot}} = \frac{1,76 - 1,65}{1,65} = 6,7\%$$

Ukupan broj ploča proračunskog isparivača je 24 za minimalnu predimenzioniranost izmjenjivača. U isparivaču ispitne dizalice topline se nalazi 30 ploča.

7. TERMODINAMIČKI PRORAČUN KONDENZATORA

Slika 25, Odabrani pločasti kondenzator B25T, [14]

Toplinski učin kondenzatora:

$$\Phi_k = 12 \, kW$$

Kondenzator se u proračunu podijelio na dvije zone zbog različitih koeficijenata prijelaza topline.

Toplinski tok zone I:

$$h''(17,13 \ bar) = 622,137 \frac{kJ}{kg}$$
$$h'(17,13 \ bar) = 337,965 \frac{kJ}{kg}$$
$$\Phi_{k,1} = q_{m,RT} \cdot (h'' - h_3) = 0,0032 \cdot (622,137 - 322,803) = 9,58 \ kW$$
$$\Phi_{pot} = q_{m,RT} \cdot (h' - h_3) = 0,0032 \cdot (337,965 - 322,803) = 0,49 \ kW$$

$$x\Phi_{pot} = \frac{\Phi_{pot}}{\Phi_{k,1}} = \frac{0.49}{9.58} = 5.07 \%$$

Zbog malog postotka toplinskog toka izmijenjenog pri pothlađenju, u proračunu će se taj udio topline zanemariti.

Toplinski tok zone II:

$$\Phi_{k,2} = q_{m,RT} \cdot (h_2 - h'') = 0,0032 \cdot (697,670 - 622,137) = 2,42 \, kW$$

Temperatura glikolne smjese na granici zona:

$$\Phi_{k,1} = q_{m,RT} \cdot (h'' - h_3) = q_{m,GL} \cdot c_{GL} \left(\vartheta_{GL,s} - \vartheta_{GL,u} \right)$$

$$\Phi_{k,2} = q_{m,RT} \cdot (h_2 - h'') = q_{m,GL} \cdot c_{GL} \left(\vartheta_{GL,i} - \vartheta_{GL,s} \right)$$

$$q_{m,GL} \cdot c_{GL} = \frac{\Phi_k}{\vartheta_{GL,i} - \vartheta_{GL,u}}$$

$$\vartheta_{GL,s} = \frac{\Phi_{k,1}}{q_{m,GL} \cdot c_{p,GL}} + \vartheta_{GL,u} = \frac{\Phi_{k,1}}{\frac{\Phi_{k}}{\vartheta_{GL,i} - \vartheta_{GL,u}}} + \vartheta_{GL,u} = \frac{\Phi_{k,1} \cdot \vartheta_{GL,i} + \Phi_{k,2} \cdot \vartheta_{GL,u}}{\Phi_{k}}$$
$$\vartheta_{GL,s} = \frac{9,58 \cdot 47 + 2,42 \cdot 42}{12} = 45,99^{\circ}C$$

Slika 26, Dijagram izmjene topline u kodenzatoru

7.1 Proračun zone I

$$\Phi_{k,1} = 9,58 \, kW$$

Temperatura glikolne smjese na ulazu	$\vartheta_{GL,u} = 42^{\circ}C$
Temperatura glikolne smjese na izlazu	$\vartheta_{GL,s} = 46^{\circ}C$
Temperatura radne tvari na ulazu	$\vartheta_{RT,u}=50^{\circ}C$
Temperatura radne tvari na izlazu	$\vartheta_{RT,i} = 45^{\circ}C$

Termodinamička svojstva glikolne smjese (30%-tna vodena otopina etilen glikola) pri srednjoj temperaturi 44°C:

•	gustoća	$ ho_{GL}$ =1034,9 kg/m ³
•	specifični toplinski kapacitet	$c_{GL} = 3,713 \text{ kJ/kgK}$
•	koeficijent toplinske vodljivosti	$\lambda_{GL}=0,4765~W/mK$
•	dinamički viskozitet	$\mu_{GL} = 0,001226$ Pas
•	Prandltov broj	$Pr_{GL} = 9,553$

Termodinamička svojstva R290 pri temperaturi kondenzacije 50°C:

kondenzat:	• gustoća	$\rho_{RT,l} = 448,43 \text{ kg/m}^3$
	• specifični toplinski kapacitet	$c_{RT,l} = 3,1233 \text{ kJ/kgK}$
	• koeficijent toplinske vodljivosti	$\lambda_{RT,l}=0,0811~W/mK$
	• dinamički viskozitet	$\mu_{RT,l} = 0,00007342$ Pas
	Prandltov broj	$Pr_{RT,1} = 2,828$
para:	• gustoća	$\rho_{RT,v} = 38,71 \text{ kg/m}^3$
	• specifični toplinski kapacitet	$c_{RT,v} = 2,4984 \text{ kJ/kgK}$
	• koeficijent toplinske vodljivosti	$\lambda_{RT,v}=0{,}0234~W/mK$
	 dinamički viskozitet 	$\mu_{RT,v} = 0,00000995$ Pas

Maseni protok glikolne smjese:

$$q_{m,GL} = \frac{\Phi_{k,1}}{c_{GL} \cdot (\vartheta_{GL,s} - \vartheta_{GL,u})} = \frac{9,58}{3,713 \cdot (46 - 42)} = 0,646 \frac{kg}{s}$$

Maseni protok R290:

$$q_{m,RT} = \frac{\Phi_{k,1}}{h'' - h_3} = \frac{\Phi_i}{h_1 - h_4} = 0,032 \frac{kg}{s}$$

7.1.1 Dimenzije odabranog pločastog izmjenjivača (B25T)

Proračun se provodio iterativni postupkom mijenjaći broj ploča pri ćemu se optimirao postotak predimenzioniranosti kondenzatora.

•	visina isparivača	H = 0,526 m
•	širina isparivača	B = 0,119 m
•	kut orebrenja	$\beta = 60^{\circ}$
•	faktor povećanja površine	$\Phi = 1,25$
•	dubina orebrenja	b = 0,002 m
•	ekvivalentni promjer kanala	$d_e = 2 \cdot \frac{b}{\Phi} = 0,0032 \text{ m}$
•	broj ploča	N = 60
•	površina jednog kanala/poprečni presjek	$A_c = 0,000192 \text{ m}^2$

7.1.2 Proračun površine izmjene topline za odabrani izmjenjivač topline

$$\begin{split} L_v &= 0,479 \text{ m} \\ L_h &= 0,072 \text{ m} \\ D_p &= 0,024 \text{ m} \\ \end{split}$$

$$\begin{split} L_p &= L_v - D_p = 0,479 - 0,024 = 0,455 \text{ m} \\ L_w &= L_h + D_p = 0,072 + 0,024 = 0,096 \text{ m} \\ L_p &> 1,8 \text{ L}_w = 0,173 \text{ m} \leftarrow \text{uvjet zadovljen} \end{split}$$

Slika 27, Geometrija ploče kondenzatora, [15]

Projicirana površina:

$$A_p = N \cdot L_p \cdot L_w = 60 \cdot 0,455 \cdot 0,096 = 2,62 \ m^2$$

Ukupna površina izmjene topline:

$$A_{k,1} = \Phi \cdot A_p = 1,25 \cdot 2,27 = 3,28 \ m^2$$

7.1.3 Prijelaz topline na strani glikolne smjese

Broj kanala kroz koj struji glikolna smjesa:

$$N_{GL} = \frac{N}{2} - 1 = \frac{60}{2} - 1 = 29$$

Ivana Gjuras Brzina strujanja:

$$w_{GL} = \frac{q_{mGL}}{\rho_{GL} \cdot A_c \cdot N_{GL}} = \frac{0,646}{1034,9 \cdot 0,000192 \cdot 29} = 0,11\frac{m}{s}$$

Reynoldsov broj:

$$Re_{GL} = \frac{\rho_{GL} \cdot w_{GL} \cdot d_e}{\mu_{GL}} = \frac{1034,9 \cdot 0,11 \cdot 0,0032}{0,001226} = 303$$

Nusseltov broj prema Muleyju i Mangliku, [15]:

$$Nu_{GL} = 1,849 \cdot \left(\frac{Re_{GL} \cdot Pr_{GL} \cdot d_e}{L_p}\right)^{\frac{1}{3}} = 1,849 \cdot \left(\frac{303 \cdot 9,6 \cdot 0,0032}{0,455}\right)^{\frac{1}{3}} = 5,05$$

Koeficijent prijelaza topline:

$$\alpha_{GL} = \frac{Nu_{GL} \cdot \lambda_{GL}}{d_e} = \frac{5,05 \cdot 0,4765}{0,0032} = 751,8 \ \frac{W}{m^2 K}$$

7.1.4 Prijelaz topline na strani radne tvari R290

Broj kanala kroz koji struji radna tvar R290:

$$N_{RT} = \frac{N}{2} = \frac{60}{2} = 30$$

Srednja logaritamska razlika temperatura:

$$\Delta \vartheta_{m,k} = \frac{\left(\vartheta_{RT,u} - \vartheta_{GL,u}\right) - \left(\vartheta_{RT,u} - \vartheta_{GL,s}\right)}{\ln\frac{\left(\vartheta_{RT,u} - \vartheta_{GL,s}\right)}{\left(\vartheta_{RT,u} - \vartheta_{GL,s}\right)}} = \frac{(50 - 42) - (50 - 46)}{\ln\frac{(50 - 42)}{(50 - 46)}} = 5,78^{\circ}C$$

Gustoća masenog toka:

$$G = \frac{q_{m,RT}}{A_c \cdot N_{RT}} = \frac{0,032}{0,000192 \cdot 30} = 5,56 \frac{kg}{sm^2}$$

Viskoznost u ovisnosti o sadržaju pare:

$$\mu_x = \mu_{RT,l} + x(\mu_{RT,\nu} - \mu_{RT,l})$$

Toplinska vodljivost u ovisnosti o sadržaju pare:

$$\lambda_x = \lambda_{RT,l} + x \big(\lambda_{RT,\nu} - \lambda_{RT,l} \big)$$

Reynoldsov broj:

$$Re_{RT} = \frac{\mathbf{G} \cdot d_e}{\mu_x}$$

Nusseltov broj prema Yanu et al., [18]:

$$Nu_{RT} = 4,118 \cdot Re_{RT}^{0,4} \cdot Pr_{RT}^{0,33}$$

Koeficijent prijelaza topline:

$$\alpha_{RT} = \frac{Nu_{RT} \cdot \lambda_x}{d_e} \frac{W}{m^2 K}$$

h	Х	μχ	λx	Re	Nu	α
kJ/kg	-	Pas	W/mK	-	-	W/m ² K
344,15	0,01	0,000073	0,081	244,34	52,52	1331,13
372,09	0,1	0,000067	0,075	265,15	54,27	1375,37
400,01	0,2	0,000061	0,070	292,86	56,47	1431,16
427,95	0,3	0,000054	0,064	327,04	59,02	1495,78
455,88	0,4	0,000048	0,058	370,25	62,02	1571,91
483,81	0,5	0,000042	0,052	426,63	65,64	1663,59
511,75	0,6	0,000035	0,046	503,26	70,12	1777,22
539,69	0,7	0,000029	0,041	613,43	75,90	1923,68
567,61	0,8	0,000023	0,035	785,38	83,79	2123,53
595,54	0,9	0,000016	0,029	1091,25	95,57	2422,12
623,48	0,99	0,000011	0,024	1680,17	113,58	2878,51
					prosjek:	1817,64

Tablica 7, Svojstva R290 u ovisnosti o sadržaju pare

7.1.5 Proračun toplinskog toka zone I

Toplinska vodljivost ploče od nehrđajučeg čelika gradacije 316, [17]:

$$\lambda_{c} = 16,5 \ \frac{W}{mK}$$

Debljina ploče:

$$t = 0,0012 m$$

Koeficijent prolaza topline:

$$k = \frac{1}{\frac{1}{\alpha_{GL}} + \frac{t}{\lambda_{\check{c}}} + \frac{1}{\alpha_{RT}}} = \frac{1}{\frac{1}{751,8} + \frac{0,0012}{16,5} + \frac{1}{1817,6}} = 512 \frac{W}{m^2 K}$$

Toplinski tok:

$$q_A = k \cdot \varDelta \vartheta_{m,isp} = 512 \cdot 5,78 = 2957 \frac{W}{mK}$$

Potrebna površina za izmjene topline:

$$A_{k1,pot} = \frac{\Phi_{k,1}}{q_A} = \frac{9580}{2957} = 3,24 \ m^2$$

Ivana Gjuras Postotak predimenzioniranosti:

$$\Delta A = \frac{A_{k,1} - A_{k1,pot}}{A_{k1,pot}} = \frac{2,28 - 2,24}{2,24} = 1,1\%$$

7.2 Proračun zone II

$$\Phi_{k,2} = 2,42 \ kW$$

Temperatura glikolne smjese na ulazu	$\vartheta_{GL,u} = 46^{\circ}C$
Temperatura glikolne smjese na izlazu	$\vartheta_{GL,s}{=}47^\circ C$
Temperatura radne tvari na ulazu	$\vartheta_{\mathrm{RT,u}} = 82,3^{\circ}\mathrm{C}$
Temperatura radne tvari na izlazu	$\vartheta_{RT,i}=50^{o}C$

Termodinamička svojstva glikolne smjese (30%-tna vodena otopina etilen glikola) pri srednjoj temperaturi 46,5°C:

•	gustoća	$\rho_{GL} = 1033,6 \text{ kg/m}^3$
•	specifični toplinski kapacitet	$c_{GL}=3,721 \ kJ/kgK$
•	koeficijent toplinske vodljivosti	$\lambda_{GL}=0,4765~W/mK$
•	dinamički viskozitet	$\mu_{GL} = 0,00117 \text{ Pas}$
•	Prandltov broj	$Pr_{GL} = 9,059$

Termodinamička svojstva R290 pri temperaturi kondenzacije 66,135°C:

pregrijana para:	•	gustoća	$\rho_{RT,l} = 34,19 \text{ kg/m}^3$
	•	specifični toplinski kapacitet	$c_{RT,l} = 2,3026 \text{ kJ/kgK}$
	•	koeficijent toplinske vodljivosti	$\lambda_{RT,l}=0,025017~W/mK$
	•	dinamički viskozitet	$\mu_{RT,l} = 0,00000974 \text{ Pas}$
	•	Prandltov broj	$Pr_{RT,l} = 0,897$

Maseni protok glikolne smjese:

$$q_{m,GL} = \frac{\Phi_{k,2}}{c_{GL} \cdot (\vartheta_{GL,i} - \vartheta_{GL,s})} = \frac{2,42}{3,721 \cdot (47 - 46)} = 0,645 \frac{kg}{s}$$

Maseni protok R290:

$$q_{m,RT} = \frac{\Phi_{k,2}}{h_2 - h''} = \frac{\Phi_i}{h_1 - h_4} = 0.032 \frac{kg}{s}$$

7.2.1 Dimenzije odabranog pločastog izmjenjivača (B25T)

•	visina isparivača	H = 0,526 m
•	širina isparivača	B = 0,119 m
•	kut orebrenja	$\beta = 60^{\circ}$
•	faktor povećanja površine	$\Phi = 1,25$
•	dubina orebrenja	b = 0,002 m
•	ekvivalentni promjer kanala	$d_e = 2 \cdot \frac{b}{\Phi} = 0,0032 \text{ m}$
•	broj ploča	N = 10
•	površina jednog kanala/poprečni presjek	$A_c = 0,00019 \ m^2$

7.2.2 Proračun površine izmjene topline za odabrani izmjenjivač topline

$$L_v = 0,479 \text{ m}$$

 $L_h = 0,072 \text{ m}$
 $D_p = 0,024 \text{ m}$

$$\begin{split} L_p &= L_v - D_p = 0,479 - 0,024 = 0,455 \text{ m} \\ L_w &= L_h + D_p = 0,072 + 0,024 = 0,096 \text{ m} \\ L_p &> 1,8 \text{ } L_w = 0,173 \text{ } \text{m} \xleftarrow{} \text{uvjet zadovljen} \end{split}$$

Slika 28, Geometrija ploče kondenzatora, [15]

Projicirana površina:

$$A_p = N \cdot L_p \cdot L_w = 10 \cdot 0,455 \cdot 0,096 = 0,44 \ m^2$$

Ukupna površina izmjene topline:

$$A_{k,1} = \Phi \cdot A_p = 1,25 \cdot 0,44 = 0,55 \, m^2$$

7.2.3 Prijelaz topline na strani glikolne smjese

Broj kanala kroz koj struji glikolna smjesa:

$$N_{GL} = \frac{N}{2} - 1 = \frac{10}{2} - 1 = 4$$

Brzina strujanja:

$$w_{GL} = \frac{q_{mGL}}{\rho_{GL} \cdot A_c \cdot N_{GL}} = \frac{0,645}{1033,6 \cdot 0,00019 \cdot 4} = 0,81\frac{m}{s}$$

Reynoldsov broj:

$$Re_{GL} = \frac{\rho_{GL} \cdot w_{GL} \cdot d_e}{\mu_{GL}} = \frac{1033.6 \cdot 0.81 \cdot 0.0032}{0.00117} = 2306.8$$

Nusseltov broj prema Muleyju i Mangliku, [15]:

$$Nu_{GL} = 1,849 \cdot \left(\frac{Re_{GL} \cdot Pr_{GL} \cdot d_e}{L_p}\right)^{\frac{1}{3}} = 1,849 \cdot \left(\frac{2306,8 \cdot 9,06 \cdot 0,0032}{0,455}\right)^{\frac{1}{3}} = 9,76$$

Koeficijent prijelaza topline:

$$\alpha_{GL} = \frac{Nu_{GL} \cdot \lambda_{GL}}{d_e} = \frac{9,76 \cdot 0,4785}{0,0032} = 1459 \frac{W}{m^2 K}$$

7.2.4 Prijelaz topline na strani radne tvari R290

Broj kanala kroz koji struji radna tvar R290:

$$N_{RT} = \frac{N}{2} = \frac{10}{2} = 5$$

Brzina strujanja:

$$w_{RT} = \frac{q_{mRT}}{\rho_{RT} \cdot A_c \cdot N_{RT}} = \frac{0,032}{34,19 \cdot 0,00019 \cdot 5} = 0,97\frac{m}{s}$$

Reynoldsov broj:

$$Re_{RT} = \frac{\rho_{RT} \cdot w_{RT} \cdot d_e}{\mu_{RT}} = \frac{34,19 \cdot 0,97 \cdot 0,0032}{0,0000096} = 10955$$

Nusseltov broj prema Tovazhnyanskiju, [18]:

$$Nu_{RT} = 0.051 \cdot e^{6.64 \cdot \ln(\beta)} \cdot Re^{0.73} \cdot Pr^{0.43} = 0.051 \cdot e^{6.64 \cdot \ln(60)} \cdot 10955^{0.73} \cdot 0.897^{0.43}$$

$$Nu_{RT} = 53$$

Koeficijent prijelaza topline:

$$\alpha_{RT} = \frac{Nu_{RT} \cdot \lambda_{RT}}{d_e} = \frac{53 \cdot 0,0243}{0,0032} = 415,13 \frac{W}{m^2 K}$$

7.2.5 Proračun toplinskog toka zone II

Toplinska vodljivost ploče od nehrđajučeg čelika gradacije 316:

$$\lambda_{\check{c}} = 16,5 \ \frac{W}{mK}$$

Debljina ploče:

$$t = 0,0012 m$$

Koeficijent prolaza topline:

$$k = \frac{1}{\frac{1}{\alpha_{GL}} + \frac{t}{\lambda_{\check{c}}} + \frac{1}{\alpha_{RT}}} = \frac{1}{\frac{1}{1459} + \frac{0,0012}{16,5} + \frac{1}{415}} = 315,8 \frac{W}{m^2 K}$$

Srednja logaritamska razlika temperatura:

$$\Delta \vartheta_{m,k} = \frac{\left(\vartheta_{RT,u} - \vartheta_{GL,i}\right) - \left(\vartheta_{RT,i} - \vartheta_{GL,s}\right)}{\ln\frac{\left(\vartheta_{RT,u} - \vartheta_{GL,i}\right)}{\left(\vartheta_{RT,i} - \vartheta_{GL,s}\right)}} = \frac{(82,27 - 47) - (50 - 46)}{\ln\frac{(82,27 - 47)}{(50 - 46)}} = 14,37^{\circ}C$$

Toplinski tok:

$$q_A = k \cdot \Delta \vartheta_{m,isp} = 315,8 \cdot 14,37 = 4538,8 \frac{W}{mK}$$

Potrebna površina za izmjene topline:

$$A_{k2,pot} = \frac{\Phi_{k,2}}{q_A} = \frac{2420}{4538,8} = 0.53 \ m^2$$

Postotak predimenzioniranosti:

$$\Delta A = \frac{A_{k,2} - A_{k2,pot}}{A_{k2,pot}} = \frac{0,55 - 0,53}{0,53} = 2,5\%$$

Ukupan broj ploča proračunskog kondenzatora je 70 za minimalnu predimenzioniranost izmjenjivača. U kondenzatoru ispitnog sustava se nalazi 66 ploča.

8. TERMODINAMIČKI PRORAČUN MEĐUIZMJENJIVAČA

Slika 29, Odabrani međuizmjenjivač B12L, [14]

Međuizmjenjivač je komponenta dizalice topline koja služi za povećanje efikasnosti procesa. U njemu se radna tvar dodatno pregrijava odnosto pothlađuje čime raste faktor grijanja/hlađenja.

Maseni protok radne tvari:

$$q_{m,RT1} = q_{m,RT2} = 0,032 \ \frac{kg}{s}$$

Toplinski učin međuizmjenjivača:

$$\Phi_m = q_{m,RT} \cdot (h_{1'} - h_1) = 0,0032 \cdot (591,58 - 576,78) = 0,47 \, kW$$

Temperatura radne tvari na ulazu 1	$\vartheta_{1u} = -1^{\circ}C$
Temperatura radne tvari na izlazu 1	$\vartheta_{1i} = 13,87^{\circ}C$
Temperatura radne tvari na ulazu 2	$\vartheta_{2u}=45^{\circ}C$
Temperatura radne tvari na izlazu 2	$\vartheta_{2i} = 40^{\circ}C$

para:

Slika 30, Dijagram izmjene topline u međuizmjenjivaču

Termodinamička svojstva R290 pri srednjoj temperaturi slabije struje 91sr = 6,4°C:

•	gustoća	$\rho_{RT,1} = 8,14 \text{ kg/m}^3$
•	specifični toplinski kapacitet	$c_{RT,1} = 1,7103 \text{ kJ/kgK}$
•	koeficijent toplinske vodljivosti	$\lambda_{RT,1} = 0,01638 \text{ W/mK}$
•	dinamički viskozitet	$\mu_{\text{RT},1} = 0,00000763$ Pas
•	Prandltov broj	$Pr_{RT,1} = 0,796$

Termodinamička svojstva R290 pri srednjoj temperaturi jače struje 92sr = 42,5°C:

kondenzat:	• gustoća	$\rho_{RT,2} = 462,99 \text{kg/m}^3$
	• specifični toplinski kapacitet	$c_{RT,2} = 2,9523 \text{ kJ/kgK}$
	• koeficijent toplinske vodljivosti	$\lambda_{RT,2}=0,085828~W/mK$
	• dinamički viskozitet	$\mu_{RT,2} = 0,0000806$ Pas
	• Prandltov broj	$Pr_{RT,2} = 2,773$

8.1 Dimenzije odabranog pločastog izmjenjivača (B12L)

•	visina isparivača	H = 0,287 m
•	širina isparivača	B = 0,117 m
•	kut orebrenja	$\beta = 60^{\circ}$
•	faktor povećanja površine	$\Phi = 1,25$
•	dubina orebrenja	b = 0,002 m
•	ekvivalentni promjer kanala	$d_{\rm e} = 2 \cdot \frac{b}{\Phi} = 0,0032 \text{ m}$
•	broj ploča	N = 12
•	površina jednog kanala/poprečni presjek	$A_c = 0,000174 \text{ m}^2$

8.2 Proračun površine izmjene topline za odabrani izmjenjivač topline

 $L_v = 0,234 \text{ m}$ $L_h = 0,063 \text{ m}$ $D_p = 0,024 \text{ m}$

$$\begin{split} L_p &= L_v - D_p = 0,235 - 0,024 = 0,210 \text{ m} \\ L_w &= L_h + D_p = 0,063 + 0,024 = 0,087 \text{ m} \\ L_p &> 1,8 \text{ } L_w = 0,157 \text{ } m \textbf{ \leftarrow} \text{ uvjet zadovljen} \end{split}$$

Slika 31, Geometrija ploče međuizmjenjivača, [15]

Projicirana površina:

 $A_p = N \cdot L_p \cdot L_w = 12 \cdot 0,210 \cdot 0,087 = 0,22 \ m^2$

Ukupna površina izmjene topline:

$$A_m = \Phi \cdot A_p = 1,22 \cdot 0,22 = 0,27 \ m^2$$

8.3 Prijelaz topline na strani slabije struje

Broj kanala kroz koji struji slabija struja:

$$N_{RT,1} = \frac{N}{2} = \frac{12}{2} = 6$$

Brzina strujanja:

Ivana Gjuras

$$w_{RT,1} = \frac{q_{mRT}}{\rho_{RT,1} \cdot A_c \cdot N_{RT,1}} = \frac{0,032}{8,14 \cdot 0,000174 \cdot 6} = 3,76\frac{m}{s}$$

Reynoldsov broj:

$$Re_{RT,1} = \frac{\rho_{RT,1} \cdot w_{RT,1} \cdot d_e}{\mu_{RT,1}} = \frac{8,14 \cdot 3,76 \cdot 0,0032}{0,00000763} = 12859,6$$

Nusseltov broj prema Fockeju et al., [18]:

$$Nu_{RT,1} = 1,12 \cdot Re_{RT,1}^{0,6} \cdot Pr_{RT,1}^{0,5} = 1,12 \cdot 12859,6^{0,6} \cdot 0,796^{0,5} = 291,9$$

Koeficijent prijelaza topline:

$$\alpha_{RT,1} = \frac{Nu_{RT,1} \cdot \lambda_{RT,1}}{d_e} = \frac{291,9 \cdot 0,0164}{0,0032} = 1494,5 \frac{W}{m^2 K}$$

8.4 Prijelaz topline na strani jače struje

Broj kanala kroz koji struji jača struja:

$$N_{RT,2} = \frac{N}{2} - 1 = \frac{12}{2} - 1 = 5$$

Brzina strujanja:

$$w_{RT,2} = \frac{q_{mRT}}{\rho_{RT,2} \cdot A_c \cdot N_{RT,2}} = \frac{0,032}{462,99 \cdot 0,000174 \cdot 5} = 0,0795 \frac{m}{s}$$

Reynoldsov broj:

$$Re_{RT,2} = \frac{\rho_{RT,2} \cdot w_{RT,2} \cdot d_e}{\mu_{RT,2}} = \frac{462,99 \cdot 0,0795 \cdot 0,0032}{0,0000806} = 1460,8$$

Nusseltov broj prema Fockeju et al., [18]:

$$Nu_{RT,2} = 1,12 \cdot Re_{RT,2}^{0,6} \cdot Pr_{RT,2}^{0,5} = 1,12 \cdot 1460,8^{0,6} \cdot 2,77^{0,5} = 147,7$$

Koeficijent prijelaza topline:

$$\alpha_{RT,2} = \frac{Nu_{RT,2} \cdot \lambda_{RT,2}}{d_e} = \frac{147,7 \cdot 0,0858}{0,0032} = 3961,8 \frac{W}{m^2 K}$$

8.5 Proračun koeficijenta prolaza topline

Toplinska vodljivost ploče od nehrđajučeg čelika gradacije 316, [17]:

$$\lambda_{c} = 16.5 \ \frac{W}{mK}$$

Debljina ploče:

$$t = 0,0012 m$$

Koeficijent prolaza topline:

$$k = \frac{1}{\frac{1}{\alpha_{RT,1}} + \frac{t}{\lambda_{c}} + \frac{1}{\alpha_{RT,2}}} = \frac{1}{\frac{1}{1494,5} + \frac{0,0012}{16,5} + \frac{1}{3961,8}} = 1005,8 \frac{W}{m^2 K}$$

9. PRORAČUN PADA TLAKA KONDENZATORA

U kondenzatoru se pojavljuje dvofazno strujanje koje se mora uzeti u obzir prilikom proračuna. Proračun pada tlaka trenja unutar kondenzatora se provodio prema [19], a pad tlaka uslijed gravitacije i akceleracije se računao prema [20].

9.1 Pad tlaka trenja

Ivana Gjuras

$$\Delta p_{tr} = 2 \cdot f \cdot \frac{G^2}{\rho_{sr}} \cdot \frac{L_p}{d_h}$$

Gustoća masenog toka G:

$$G = \frac{q_m}{A_c \cdot N_{uk}} = \frac{0,032}{0,000192 \cdot 35} = 4,76 \frac{kg}{m^2 s}$$

Broj kanala kroz koji struji radna tvar kroz kondenzator:

$$N_{uk} = 35$$

Faktora trenja kod kondenzacije f prema Kuou, [19]:

$$f = 21500 \cdot Re_e^{-1.14} \cdot Bo^{0.085}$$

Ekvivalentni Reynoldsov broj:

$$Re_e = G \cdot \left[(1 - x_{sr}) + x_{sr} \cdot (\frac{\rho_l}{\rho_v})^{0.5} \right] \cdot \frac{d_e}{\mu'}$$
$$Re_e = 4,76 \cdot \left[(1 - 0.5) + 0.5 \cdot (\frac{448,43}{34,19})^{0.5} \right] \cdot \frac{0,0032}{0,00007342} = 479,8$$

Boilingov broj:

$$Bo = \frac{q}{G \cdot \Delta h} = \frac{7496}{4,76 \cdot 359,7} = 4,37$$

$$f_{TP} = 21500 \cdot 479, 8^{-1,14} \cdot 4, 37^{0,085} = 19,22$$

Završni rad

Ivana Gjuras

$$\frac{1}{\rho_{sr}} = \frac{1 - x_{sr}}{\rho_l} + \frac{x_{sr}}{\rho_v} = \frac{1 - 0.5}{448.43} + \frac{0.5}{34.19} = 0.01574$$

Hidraulički promjer:

$$d_h = \frac{2 \cdot b}{\Phi} = \frac{2 \cdot 0,002}{1,25} = 0,00256$$

$$\Delta p_{tr} = 2 \cdot 19,22 \cdot 4,76^2 \cdot 0,01574 \cdot \frac{0,455}{0,00256} = 2717,7 \ Pa$$

9.2 Pad tlaka uslijed gravitacije

$$\Delta p_g = L_p \cdot \rho_{sr} \cdot g$$

 $\Delta p_g = 0,479 \cdot 63,54 \cdot 9,80665 = 298,5 Pa$

-

9.3 Pad tlaka uslijed akceleracije

$$\Delta p_a = (G \cdot N_{uk})^2 \cdot \Delta x \cdot (\frac{1}{\rho_v} \cdot \frac{1}{\rho_l})$$
$$\Delta p_a = (4,76 \cdot 35)^2 \cdot 1 \cdot \left(\frac{1}{34,19} \cdot \frac{1}{448,43}\right) = 551,8 Pa$$

9.4 Pad tlaka na priključcima

Gustoća masenog toka na priključku:

$$G_p = \frac{q_m}{A_p} = \frac{q_m}{\frac{D_p^2 \cdot \pi}{4}} = \frac{0.032}{\frac{0.024^2 \cdot \pi}{4}} = 70.76 \frac{kg}{m^2 s}$$

Pad tlaka na ulaznom priključku:

$$\Delta p_{p1} = 1.5 \cdot \frac{G_p^2}{2 \cdot \rho_v} = 1.5 \cdot \frac{70.76^2}{2 \cdot 34.19} = 109.8 \, Pa$$

Pad tlaka na izlaznom priključku:

$$\Delta p_{p2} = 1.5 \cdot \frac{G_p^2}{2 \cdot \rho_l} = 1.5 \cdot \frac{70.76^2}{2 \cdot 448.43} = 8.4 \ Pa$$

Ukupni pad tlaka na priključvima:

$$\Delta p_{p,uk} = \Delta p_{p1} + \Delta p_{p2} = 109,8 + 8,4 = 118,2 Pa$$

9.5 Ukupan pad tlaka

$$\Delta p = \Delta p_{tr} + \Delta p_g + \Delta p_a + \Delta p_{p,uk}$$
$$\Delta p = 2717,7 + 298,5 + 551,8 + 118,2 = 3689 Pa$$

10. DIMENZIONIRANJE CJEVOVODA

Prilikom dimenzioniranja cjevovoda potrebno je zadovoljiti nekoliko uvjeta. Prvi uvjet kaže da brzina strujanja radne tvari mora biti dovoljno mala da ne premaši preporučljive dozvoljene padove tlaka. Drugi uvjet kaže kako brzina mora biti dovoljno velika da se mazivo ulje transportira natrag u kompresor. U proračunu su uzete preporučene vrijednosti brzina iz [9].

Tablica 8, Odabrane brzine strujanja

Cjevovod	Gustoća [kg/m ³]	Odabrana brzina [m/s]
usisni	7,87	10
tlačni	31,13	10
kapljevinski	459,29	1

$$d_{us} = \sqrt{\frac{4 \cdot q_m}{\rho_{us} \cdot w_{us} \cdot \pi}} = \sqrt{\frac{4 \cdot 0,032}{7,87 \cdot 10 \cdot \pi}} = 0,02276 m$$
$$d_{tl} = \sqrt{\frac{4 \cdot q_m}{\rho_{tl} \cdot w_{tl} \cdot \pi}} = \sqrt{\frac{4 \cdot 0,032}{31,13 \cdot 10 \cdot \pi}} = 0,01144 m$$
$$d_{kaplj} = \sqrt{\frac{4 \cdot q_m}{\rho_{kaplj} \cdot w_{kaplj} \cdot \pi}} = \sqrt{\frac{4 \cdot 0,032}{459,29 \cdot 1 \cdot \pi}} = 0,00942 m$$

Tablica 9, Odabrane cijevi

Cjevovod	Odabrana cijev		
usisni	Cu 28x1,5 mm		
tlačni	Cu 12x1 mm		
kapljevinski	Cu 12x1 mm		

11. REZULTATI I ANALIZA MJERENJA

Mjerenja su provedena u laboratoriju Fakulteta strojarstva i brodogradnje, 9.1.2018. Mjereni parametri su temperature glikolnih smjesa na ulazu i izlazu iz kondenzatora i isparivača, kao i temperature i tlakovi točaka ogrjevnog procesa. K tome, mjereni su i učin kondenzatora, isparivača i snaga kompresora.

temperatura ulaza glikola u kondenzator	ϑ_{GLu}	41,56	°C
temperatura izlaza glikola iz kondenzatora	ϑ_{Gli}	47,23	°C
temperatura ulaza glikola u isparivač	ϑ_{Glu}	5,49	°C
temperatura izlaza glikola iz isparivača	ϑ_{Gli}	10,85	°C
temperatura kondenzacije	ϑ_k	48,57	°C
temperatura isparavanja	ϑ_i	3,61	°C
tlak kondenzacije	p _k	16,57	bar
tlak isparavanja	pi	5,19	bar
učin kondenzacije	Φ_k	13,9	kW
učin isparavanja	Φ_{i}	10,8	kW
snaga kompresora	Pk	3,1	kW
faktor grijanja	ε _{gr}	4,48	-
temperatura pregrijanja	ϑ_1	9,28	°C
temperatura pregrijanja nakon međuizmjenjivača	$\vartheta_{1'}$	19,57	°C
temperatura na kraju kompresije	ϑ_2	78,62	°C
temperatura pothlađenja	ϑ_3	45,57	°C
maseni protok glikolne smjese kroz isparivač	q _{m,GL}	0,52	kg/s
vanjska temperatura	$\vartheta_{\rm v}$	8,73	°C

Tablica 10, Izmjereni podaci za učin kondenzatora 13,9 kW

Mjereni rezultati se razlikuju od proračunskih jer je vanjska temperatura tijekom mjerenja bila prilično visoka. Razlici doprinose i različite temperature glikolnih smjesa na ulazu i izlazu iz isparivača. U proračunu su uzete temperature 0°C i -3°C koje propisuje norma HRN EN
14511, dok je mjerenjem dobiveno 5,5°C i 10,9°C. One su referentne pri odabiru proračunskih temperatura kondenzacije i isparavanja. Stoga je i mjerena temperatura isparavanja bitno različita od proračunske.

Slika 32, Promjena temperature vode u spremniku u vremenu

Svrha dizalice topline je zagrijavanje vode u spremniku dok se ne postigne zadana temperature. Čim se prostigne ta zadana temperatura, kompresor se isključuje kao i cirkulacijske pumpe izvora i ponora i spremnik se prestane grijati. Nakon što temperatura u spremniku padne ispod minimalne dozvoljene temperature, kompresor se uključuje u rad i kondenzator predaje toplinski tok fluidu u spremniku. Slika 32 prikazuje promjenu temperature u spremniku. Na dijagramu je uočeno da, nakon što se postigla zadana temperatura, ona više ne raste nego blago pada. To se događa jer kompresor tada nije uključen u rad.

Slika 33, Temperatura glikolne smjese na ulazu i izlazu iz spremnika i temperatura kondenzacije

Kako bi kondenzator grijao spremnik, temperatura kondenzacije mora rasti. Istim trendom raste i temperatura na izlazu iz spremnika (slika 33).

Slika 34, Tlak isparavanja i kondenzacije kroz vrijeme

S rastom temperature kondenzacije, raste i tlak kondenzacije. Tlak i temperatura isparavanja su približno konstantni. To se objašnjava time da tlo ima visok toplinski kapacitet i ne mijenja mu se znatno temperatura kada ga hladimo (slika 34). Kako raste tlak kondenzacije pri čemu tlak isparavanja ostaje isti, raste i kompresijski omjer. Kompresijski omjer u 35. minuti

mjerenja iznosi 3,19, a proračunski je 4,34. Što je veći kompresijski omjer to je usisni volumen manji, a pad tlaka na samoradnim ventilima je veći. Pritom se mora paziti da se ne postigne granični omjer kompresije pri kojem nema dobave zbog izostanka usisavanja radne tvari u kompresor.

Slika 35, Temperatura isparavanja, kondenzacije i na kraju kompresije kroz vrijeme

Posljedica rasta kompresijskog omjera je porast temperature na kraju kompresije (slika 35). Što je spomenuta temperatura viša, to postoji veća opasnost od pregaranja kompresora.

Slika 36, Učin isparivača i kondenzatora, snaga kompresora i COP

S rastom temperature kondenzacije prilikom čega temperatura isparavanja ostaje približno konstantna, raste i snaga kompresora (slika 36). Rast temperature kondenzacije uzrokuje smanjivanjenje učina isparivača. Veća potrebna snaga kompresora i manji učin isparivača uzrokuju pad učina kondenzatora, a na kraju i pad COP vrijednosti. Izmjerena COP vrijednost na kraju mjerenja iznosi 4,48 dok je proračunska 3,53. Veća izmjerena COP vrijednost je posljedica višeg toplinskog učina kondenzatora i približno jednake snage kompresora u proračunu i mjerenju.

Slika 37, Promjena COP faktora u ovisnosti o kompresijskom omjeru

Slika 37 zorno prikazuje kako je COP vrijednost najveća pri najmanjem omjeru kompresije. Što je manji omjer tlakova kondenzacije i isparavanja, to je manja snaga kompresora, a time i veća COP vrijednost.

Slika 38, Izentropski stupanj djelovanja u ovisnosti o kompresijskom omjeru

Slika 38 pokazuje da se izentropski stupanj djelovanja ne mijenja previše u odnosu na omjer kompresije.

$$\eta_{is} = \frac{h_{2is} - h_{1i}}{h_2 - h_{1i}}$$

To se objašnjava time da je tlak isparavanja prilično konstantan, a samim time i entalpija točke 1' se ne mijenja značajno. Entalpije točaka 2is i 2 imaju jednak trend rasta jer su obje definirane istim tlakom kodenzacije, slika 39.

Slika 39, Promjena entalpija u vremenu

Slika 40 prikazuje promjenu temperatura glikolne smjese i radne tvari na ulazu i izlazu iz isparivača. Primjećuje se da se temperatura isparavanja ne mijenja previše što je već objašnjeno ranije.

Slika 40, Temperatura polaza i povrata glikolne smjese i temperature isparavanja i pregrijanja

Ivana Gjuras 12. ZAKLJUČAK

Geotermalne dizalice topline predstavljaju veliki potencijal jer koriste obnovljive izvore energije i neovisne su o energentima. U sklopu ovog završnog rada provedena su mjerenja radnih parametara na ispitnoj dizalici topline koja koristi propan kao radnu tvar. Također, prikazan je termodinamički proračun isparivača i kondenzatora, kao i proračun koeficijenta prolaza topline međuizmjenjivača. U proračunu je odabran broj ploča isparivača i kondenzatora s kojim bi se ostvarila najmanja predimenzioniranost sustava. Odabran broj ploča ne odstupa značajno od onog u ispitnom sustavu. Mjerenjem je pokazan trend promjene učina kondenzatora i isparivača, snage kompresora i faktora grijanja. S rastom tlaka kondenzacije uz konstantan tlak isparavanja, raste kompresijski omjer a time i snaga kompresora. Također, s porastom temperature kondezacije, smanjuje se učin isparavanja. Kako raste snaga kompresora i pada učina kondenzacije i isparavanja, pada faktor grijanja. To znači da se ukupna energetska učinkovitost sustava s vremenom smanjuje. Nevisno o tome, srednja vrijednost izmjerenog faktora grijanja iznosi visokih 4,5 što znači da smo dobili 4,5 kW toplinske energije po 1 kW električne za pogon kompresora. To svrstava geotermalne dizalice topline među najučinkovitije toplinske uređaje.

LITERATURA

- [1] Geothermal Energy Association, Geothermal Basic, 2012.
- [2] Skupina autora, Advances in Ground-Source Heat Pump Systems, 2016.
- [3] Ingrid Stober, Kurt Bucher, Geothermal Energy, From Theoretical Models to Exploration and Development, Springer, 2013.
- [4] Marc A.Rosen, SeamaKoohi-Fayegh, Geothermal Energy Sustainable Heating and Cooling Using the Ground, Wiley, 2017.
- [5] Projektiranje rashladnih sustava, Vježba na geotermalnoj dizalici topline, FSB, 2018.
- [6] <u>https://www.scintex.com.au</u>
- [7] M. Andrassy, Stapni kompresori, FSB, Zagreb, 2004
- [8] https://www.frigopack.com
- [9] V. Soldo, Hlađenje i dizalice topline, Podloge za predavanja, Zagreb, 2017.
- [10] https://www.tradekey.com
- [11] https://www.schneider-electric.com
- [12] Supharuek Konghuayrob, Performance Comparison of R32, R410A and R290 Refrigerant in Inverter Heat pumps application
- [13] Jose M. Corberan, Use od hydrocarbons as working fluids in heat pumps and refrigeratin equipment
- [14] http://www.swep.net/
- [15] S. Kakaç, Heat Exchangers
- [16] ASHRAE 1997 HVAC Fundamentals Handbook, 1997.
- [17] https://www.azom.com/properties.aspx?ArticleID=863
- [18] L. Wang, B. Sunden, R. M. Manglik, Plate Heat Exchangers, Design, Applications and Performance, 2007.
- [19] R. Eldeeb, V. Aute, R. Radermacher, A survey of correlations for heat transfer and pressure drop for evaporation and condensation in plate heat exchangers, ELSEVEIER, 2015.
- [20] V. Solotych, D. Lee, J. Kim, R.L. Amalfi, J.R. Thome, Boling heat transfer and two-phase pressure drops within compact plate heat exchangers: Experiments and flow visualizations, ELSEVIER, 2015.
- [21] Vijaya Sekhar Gullapalli, Estimation of Thermal and Hydraulic Characteristics of Compact Brazed Plate Heat Exchanger

[22] Sadik Kakac, Arthur E. Bergles, E. Oliveira Fernandes, Two-Phase Flow Heat Exchangers

Ivana Gjuras

PRILOZI

- I. CD-R disc
- II. Izometrijski prikaz dizalice topline
- III. Tehnička dokumentacija
 - a) Dispozicija dizalice topline

Slika 37, Izometrijski prikaz dizalice topline

SOLIDWORKS Educational Product. For Instructional Use Only.

n. Crtež broj Norma	Materijal	Sirove dimen Proizvođa	zije Masa č
lme i prezime	Potpis	NO	
Ivana Gjuras			7
Ivana ujuras			Zayreb
of. Vladimir Soldo			
	Objekt broj:		
	R. N. broj: 2018 - 01		
	, ,		Kopija
Masa:	ZAVRŠ	NI RAD	
		Pozicija:	
			Format: A3
			Listova: 1
j:		1	List: 1
10 20 30	40 50	60 70 8	30 90 10