Ispitivanje prionjivosti tvrdih PACVD prevlaka na alatnom čeliku za topli rad

Razum, Tomislav

Master's thesis / Diplomski rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:224368

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-04-03

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Tomislav Razum

Zagreb, 2016.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentor:

Student:

Izv. prof. dr. sc. Darko Landek

Tomislav Razum

Zagreb, 2016.

Izjavljujem da sam ovaj rad izradio samostalno koristeći stečena znanja tijekom studija i navedenu literaturu.

Zahvaljujem se izv. prof. dr. sc. Darku Landeku na znanju pruženom tijekom studija, kao i korisnim informacijama i komentarima koji su mi pomogli pri izradi diplomskog rada. Zahvaljujem se također dr. sc. Saši Kovačiću i tehničkom suradniku Ivanu Vovku na pomoći pri realizaciji ovog rada.

Najviše se zahvaljujem svojim roditeljima, bratu, te djedu i baki, koji su me podržavali i motivirali tijekom cijelog studija.

Tomislav Razum

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite

Povjerenstvo za diplomske ispite studija strojarstva za smjerove:

proizvodno inženjerstvo, računalno inženjerstvo, industrijsko inženjerstvo i menadžment, inženjerstvo

materijala i mehatronika i robotika

Sveuč Fakultet stro	ilište u Zagrebu ojarstva i brodogradnje		
Datum Prilog			
Klasa:			
Ur.broj:			

DIPLOMSKI ZADATAK

Student:	Tomislav Razum	Mat. br.: 0035180711
Naslov rada na hrvatskom jeziku:	Ispitivanje prionjivosti tvrdih PACVD topli rad	prevlaka na alatnom čeliku za
Naslov rada na engleskom jeziku:	Adhesivity testing of the hard PACVD steel	coatings applied on hot work tool
Opis zadatka:		

Postupkom plazmom potpomognutog kemijskog prevlačenja iz parne faze (PACVD) proizvode se prevlake specifičnih svojstava na konstrukcijskim dijelovima i alatima. Prema dostupnoj literaturi i izvorima informacija u radu treba opisati provedbu postupka PACVD i međusobno usporediti prionjivost, mehanička i tribološka svojstva tvrdih prevlaka TiN, TiN/TiCN i TiN/TiBN na alatnim čelicima za topli rad.

U eksperimentalnom dijelu rada provesti ispitivanja debljine i prionjivosti višeslojnih prevlaka TiN/TiCN i TiN/TiBN na alatnom čeliku za topli rad X38CrMoV5-3 na sobnoj temperaturi i nakon kratkotrajnog izlaganja povišenoj temperaturi od 500°C. Debljinu prevlaka odrediti primjenom kalotesta. Prionjivost prevlaka odrediti Rockwell-ovom metodom utiskivanja indentora prema normi VDI 3198 i "load scanning" ispitivanjem.

Na osnovi rezultata ispitivanja usporediti prionjivost tvrdih PACVD prevlaka određenu prema različitim metodama i predložiti prevlaku prikladnu za ispitivani alatni čelik u izradi kalupa za tlačni lijev aluminijskih legura.

Zadatak zadan: 10. ožujka 2016.

Zadatak zadao:

Izv.prof. dr.sc. Darko Landek

Rok predaje rada: 12. svibnja 2016. Predvideni datum obrane: 18., 19. i 20. svibnja 2016. Predsjednik Povjerenstva:

Prof. dr. sc. Franjo Cajner

SADRŽAJ

1. UVOD	1
2. ALATNI ČELICI	
 2.1. Alatni čelici za topli rad 2.1.1. Otpornost na popuštanje alatnih čelika za topli rad 2.1.2. Otpornost na toplinski umor 2.1.3. Otpornost na trošenje 	5 12 13 14
3. POSTUPCI MODIFICIRANJA POVRŠINA	19
 3.1. Pregled osnovnih svojstava i primjene postupaka modificiranja 3.2. Nitriranje	
 3.2.1. Plinsko nitriranje 3.2.2. Nitriranje u solnoj kupki 3.2.3. Plazmatsko nitriranje 	
4. POSTUPCI PREVLAČENJA POVRŠINA	
4.1. Osnovne značajke postupaka prevlačenja površina4.2. Prevlačenje površina čelika postupkom PACVD	
4.2.1.Opis postupka PACVD4.2.2.Svojstva PACVD prevlaka	
5. ISPITIVANJE SVOJSTAVA TVRDIH PREVLAKA	
 5.1. Ispitivanje prionjivosti – prema VDI metodi utiskivanjem indentora 5.2. Ispitivanje otpornosti na adhezijsko trošenje metodom "load scanning test" 5.3. Mjerenje debljine prevlake kalotestom 	
6. PLAN I PRIPREMA ISPITIVANJA	43
6.1. Prethodna toplinska obrada čelika X38CrMoV5-36.2. Plan pokusa	
7. REZULTATI ISPITIVANJA I DISKUSIJA REZULTATA	
7.1. Debljina i prionjivost prevlaka7.2. Otpornost na adhezijsko trošenje	
8. ZAKLJUČAK	64
9. LITERATURA	65
10. PRILOZI	67

POPIS SLIKA

Slika 1.	Podjela alatnih čelika prema radnoj temperaturi [3]	4
Slika 2.	TTT dijagram čelika X38CrMoV5-3 [5]	10
Slika 3.	Pojava "sekundarne tvrdoće" kod alatnih čelika za topli rad [6]	11
Slika 4.	Dijagram popuštanja za čelik X38CrMoV5-3 [5]	12
Slika 5.	Faze jediničnog događaja abrazije [7]	15
Slika 6.	Faze jediničnog događaja adhezije [7]	16
Slika 7.	Faze jediničnog događaja umora površine [7]	17
Slika 8.	Jedinični događaj tribokorozije [7]	18
Slika 9.	Postupci modificiranja [10]	19
Slika 10.	Shematski prikaz površinskog sloja dobivenog nitriranjem [11]	23
Slika 11.	Dijagram postupka nitriranja u plazmi	25
Slika 12.	Postupci prevlačenja [10]	27
Slika 13.	Prikaz razlike između neprevučene i prevučene rezne oštrice [10]	28
Slika 14.	Uređaj za plazmatsko nitriranje i PACVD prevlačenje instaliran na Fakultetu	
	strojarstva i brodogradnje u Zagrebu [13]	31
Slika 15.	Shematski prikaz PACVD uređaja [16] [17]	33
Slika 16.	Shematski prikaz mjerenja tvrdoće (utiskivanja indentora) po HRC i HRB meto	di
	[19]	36
Slika 17.	Primjeri za procjenu prionjivosti prevlake izmjerene HRC metodom [20]	37
Slika 18.	Primjer prihvatljive i neprihvatljive prionjivosti tipičnog eksperimentalnog sluča	aia
	[20]	37
Slika 19.	Shematski prikaz uređaja za ispitivanje metodomload scan" [21]	38
Slika 20.	Kalotester [23]	39
Slika 21.	Shema ispitivanja debljine prevlake kalotestom [24]	40
Slika 22.	Određivanje debljine prevlake [24]	40
Slika 23.	Toplinska obrada čelika X38CrMoV5-3	43
Slika 24.	Uzoraka za ispitivanie debliine i prioniivosti	45
Slika 25.	Uzorak za "load scanning" ispitivanje	45
Slika 26.	Tvrdomier za ispitivanie prionijvosti prevlaka	47
Slika 27.	Miesta ispitivania prioniivosti prevlake na ispitnim uzorcima	48
Slika 28.	Uzorci za "load scanning" ispitivanie	51
Slika 29.	Prikaz dielovanja sile na uzorak	51
Slika 30.	Rezultati trošenja ispitnog uzorka A0 20C [.] a) Izgled istrošene površine b)	
211111 0 01	ovisnost širine traga trošenja o opterećenju c) ovisnost faktora trenja o	
	opterećenju	52
Slika 31.	Rezultati trošenja ispitnog uzorka A1 20C [.] a) Izgled istrošene površine b)	-
Since 211	ovisnost širine traga trošenja o onterećenju c) ovisnost faktora trenja o	
	ontereceniu	53
Slika 32.	Rezultati trošenja ispitnog uzorka A2 20C [.] a) Izgled istrošene površine b)	00
21110 0 21	ovisnost širine traga trošenja o onterećenju c) ovisnost faktora trenja o	
	opterećenju	54
Slika 33	Rezultati trošenja ispitnog uzorka A3 20C [.] a) Izgled istrošene površine b)	
21110 001	ovisnost širine traga trošenja o onterećenju c) ovisnost faktora trenja o	
	ontereceniu	55
	~F	

Tomislav Ra	zum Diplomski	rad
Slika 34.	Rezultati trošenja ispitnog uzorka A0_500C: a) Izgled istrošene površine, b)	
	ovisnost širine traga trošenja o opterećenju, c) ovisnost faktora trenja o opterećenju	. 56
Slika 35.	Rezultati trošenja ispitnog uzorka A1_500C: a) Izgled istrošene površine, b) ovisnost širine traga trošenja o opterećenju, c) ovisnost faktora trenja o	
	opterećenju	. 57
Slika 36.	Rezultati trošenja ispitnog uzorka A2_500C: a) Izgled istrošene površine, b) ovisnost širine traga trošenja o opterećenju, c) ovisnost faktora trenja o	
	opterećenju	. 58
Slika 37.	Rezultati trošenja ispitnog uzorka A3_500C: a) Izgled istrošene površine, b) ovisnost širine traga trošenja o opterećenju, c) ovisnost faktora trenja o	
	opterećenju	. 59
Slika 38.	Širine tragova trošenja po uzorcima na 20°C pri opterećenju od 2600 N	. 60
Slika 39.	Širine tragova trošenja po uzorcima na 500°C pri opterećenju od 2600 N	. 60

POPIS TABLICA

Tablica 1.	Usporedba svojstava alatnih čelika za topli rad [4]	6
Tablica 2.	Kemijski sastav niskolegiranih Ni-Cr-Mo alatnih čelika za topli rad [4]	7
Tablica 3.	Kemijski sastav visokolegiranih Cr-Mo-V alatnih čelika za topli rad [4]	8
Tablica 4.	Kemijski sastav visokolegiranih W-Cr-V alatnih čelika za topli rad [4]	8
Tablica 5.	Ocjene za svojstva nekih vrsta alatnih čelika za topli rad [2]	9
Tablica 6.	Usporedba PVD, CVD i PACVD postupka [10]	33
Tablica 7.	Svojstva PACVD prevlaka [10]	35
Tablica 8.	Kemijski sastav čelika X38CrMoV5-3	43
Tablica 9.	Plan pokusa i oznake uzoraka za "Load scanning" test	44
Tablica 10.	Debljine prevlaka određene kalotestom	46
Tablica 11.	Rezultati prionjivosti uzorka A2 prema VDI 3298 metodi	49
Tablica 12.	Rezultati prionjivosti uzorka A3 prema VDI 3298 metodi	50

POPIS OZNAKA

Oznaka	Jedinica	Opis
A_1	°C	temperatura eutektoidne pretvorbe
D	μm	vanjski promjer otiska
d	μm	unutarnji promjer otiska
e	μm	debljina prevlake
F	Ν	sila
Fe ₂₋₃ N		željezni nitrid
Fe ₄ N		željezni nitrid
Fe ₃ C		cementit
$Fe_{x}C_{y}N_{z}$		željezni karbonitridi
$F_{ m N}$	Ν	normalna sila
F_{t}	Ν	tangencijalna sila
HRB		tvrdoća po Rockwellu
HRC		tvrdoća po Rockwellu
HRC _{Tx}		tvrdoća po Rockwellu nakon popuštanja na određenoj temperaturi
HRC _{max}		maksimalna tvrdoća po Rockwellu
HV		tvrdoća po Vickersu
K _p		karbid popuštanja
L_{c1}	Ν	sila pojave prvih pukotina u prevlaci
L_{c2}	Ν	sila delaminacije prevlake
M''		sekundarni martenzit
R	μm	polumjer kugle
R_a	μm	srednja hrapavost površine
R _m	N/mm ²	vlačna čvrstoća
$V_{\rm H_2}$	%	volumen dušika
V_{N_2}	%	volumen vodika
$V_{\rm NH_3}$	%	volumen izlaznog amonijaka topljiv u vodi
v	m/s	brzina
x	μm	mjerna udaljenost
У	μm	mjerna udaljenost
α_0	%	stupanj disocijacije amonijaka
9	°C	temperatura
$\vartheta_{\rm A}$	°C	temperatura austenitizacije
$\vartheta_{\rm N}$	°C	temperatura nitriranja
ϑ_r	°C	radna temperatura
$\vartheta_{\rm p}$	°C	temperatura popuštanja

Fakultet strojarstva i brodogradnje

SAŽETAK

U radu su analizirana svojstva prionjivosti tvrdih PACVD prevlaka na alatnom čeliku za topli rad, X38CrMoV5-3. Provedena su ispitivanja debljine i prionjivosti višeslojnih prevlaka TiN/TiCN i TiN/TiBN na sobnoj temperaturi i nakon kratkotrajnog izlaganja povišenoj temperaturi od 500°C. Debljina prevlaka određena je kalotestom a prionjivost prevlaka je određena Rockwell-ovom metodom utiskivanja indentora prema normi VDI 3198 i "load scanning" ispitivanjem.

Iz provednih ispitivanja zaključeno je da na sobnoj temperaturi ujednačenu otpornost na adhezijsko trošenje imaju neprevučeni uzorak, plazmatski nitriran uzorak i uzorak prevučen PACVD prevlakom TiN/TiCN, dok je uzorak prevučen PACVD prevlakom TiN/TiBN pokazao oko 35% lošiju otpornost. Pri povišenoj temperaturi plazmatski nitriran uzorak je pokazao najbolju otpornost na adhezijsko trošenje, a uzorak prevučen PACVD prevlakom TiN/TiCN se pokazao samo 3% lošiji, za razliku od neprevučenog uzorka i prevučenog PACVD prevlakom TiN/TiBN koji su se pokazali lošiji 20 odnosno 27%.

Na osnovi rezultata ispitivanja tvrdih PACVD prevlaka predlaže se TiN/TiCN prevlaka za izradu kalupa za tlačni lijev aluminijskih legura.

Ključne riječi: alatni čelici za topli rad, PACVD, TiN/TiCN, TiN/TiBN, VDI 3198, load scanning, kalotest, plazmatsko nitriranje

SUMMARY

This thesis analyzes the adhesion properties of PACVD hard coatings on hot-work tool steel, X38CrMoV5-3. Studies of thickness and adhesion of multi-layered coatings, TiN/TiCN and TiN/TiBN, have been conducted at room temperature and after short-term exposure to elevated temperature of 500°C. The thickness of the coating is determined by a calotest, the adhesion of coatings is determined by Rockwell indenter penetration, according to the VDI 3198 norm, and by "load scanning" testing.

From the conducted tests it was concluded that the uncoated sample, the plasma nitrided sample and the sample coated with the PACVD TiN/TiCN coating have a uniform resistance to adhesion wear, while the sample coated with the PACVD TiN/TiBN coating showed about 35% poorer resistance. At elevated temperature plasma nitrided sample showed the best resistance to wear, and the sample coated with the PACVD TiN/TiCN coating proved only 3% worse, unlike the uncoated sample and the sample coated with the PACVD TiN/TiCN coating proved only coating which proved 20 and 27% worse.

For the purpose of making molds, used for casting of aluminum alloys, the application of TiN/TiCN coatings is proposed based on the test results obtained by testing PACVD hard coatings.

Key words: hot work tool steels, PACVD, TiN/TiCN, TiN/TiBN, VDI 3198, load scanning test, calotest, plasma nitriding

1. UVOD

Iako se 1964. godina smatra početkom razvoja tribologije (Bowden i Tabor), njeni korijeni sežu još u davnine. Tako prvi poznati prikaz "tribologa", pronađen u Saqqari (Egipat), datira još iz razdoblja 2400 godina pr. Kr. Jedna od povijesno poznatijih osoba, koja se također bavila proučavanjem problematike trenja, bila je Leonardo Da Vinci. On je postavio dva osnovna načela trenja 200 godina prije nego li je Newton uopće definirao silu [1].

Smanjenje trenja i trošenja veoma je značajna tema u proizvodnoj industriji. Svojstva površinskih slojeva presudno utječu na trajnost u eksploataciji te je zato posvećena velika pažnja znanstveno-tehničkoj disciplini "Inženjerstvo površina" koja se bavi istraživanjem i primjenom postupaka koji pružaju učinkovitu zaštitu od različitih tipova trošenja. Na osnovi fizikalnih i kemijskih zakonitosti procesa izvršena je podjela na postupke modificiranja i postupke prevlačenja. Kod postupaka modificiranja površinski sloj nastaje od polazne površine prema unutrašnjosti materijala za razliku od postupaka prevlačenja kod kojih se površinski sloj stvara na polaznoj površini. Površinski slojevi se razlikuju od osnovnog materijala u kemijskom sastavu, mikrostrukturi, kristalnoj rešetci i drugim fizikalnim i kemijskim svojstvima što rezultira različitim svojstvima na površini obrađivanog predmeta. Ne postoji univerzalni materijal otporan trošenju, a osim postupka prevlačenja i modificiranja moguće ga je usporiti izborom odgovarajućeg materijala, konstrukcijskim rješenjima, podmazivanjem itd. Osim otpornosti na trošenje istovremeno se razvija i otpornost na koroziju te mehanička opterećenja, a postupci mogu biti provedeni i zbog estetskih razloga.

U radu će se provesti ispitivanja prionjivosti, otpornosti na adhezijsko trošenje i određivanje tvrdih PACVD prevlaka TiN/TiCN i TiN/TiBN na alatnom čeliku X36CrMoV5-3.

TEORIJSKI DIO

2. ALATNI ČELICI

Zbog visokih opterećenja u radu i specifičnih funkcija alata, od alatnih čelika se zahtijevaju posebna svojstva kao npr. visoka tvrdoća i otpornost na trošenje, postojanost tvrdoće pri povišenim radnim temperaturama, dobro ponašanje pri toplinskoj obradi, otpornost na popuštanje itd. Alatni čelici se, u pravilu, primjenjuju u toplinski obrađenom stanju, primarno zakaljeni i popušteni. Alternativno ili dodatno se provode i neki od postupaka za oplemenjivanje površine. Stoga alatni čelici čine posebnu skupinu čelika za koju je karakteristična metalna matrica popuštenog martenzita i ravnomjerno raspoređene čestice tvrde faze (karbidi, nitridi, karbonitridi). Alatni čelici isporučuju se u toplo valjanom, hladno vučenom, kovanom, te u lijevanom stanju u obliku šipki, traka i ploča.

Prema kemijskom sastavu alatni čelici mogu biti: nelegirani, niskolegirani i visokolegirani. Prema radnoj temperaturi i uvjetima primjene alatni čelici se dijele na sljedeće podskupine:

- alatni čelici za hladni rad ($\vartheta_r < 200^{\circ}C$)
- alatni čelici za topli rad ($\vartheta_r > 200^{\circ}C$)
- brzorezni čelici [2].

Navedene podjele alatnih čelika prema radnoj temperaturi i namjeni prikazane su na slici 1.

Slika 1. Podjela alatnih čelika prema radnoj temperaturi [3]

Od navedenih vrsta čelika posebno se zbog niza zahtjeva na uporabna svojstva ističe skupina alatnih čelika za topli rad.

2.1. Alatni čelici za topli rad

Alatni čelici za rad u toplom stanju primjenjuju se za izradu alata koji su tijekom rada ugrijani na temperaturu višu od 200°C. Najvažnije svojstvo ovih čelika predstavlja otpornost na popuštanje zbog dugotrajne izloženosti povišenim temperaturama. Otpornost na popuštanje obuhvaća pojave kao što su: smanjenje tvrdoće (mekšanje), promjene mikrostrukture, toplinski umor itd. Uz otpornost na popuštanje na alatne čelike za topli rad postavljaju se zahtjevi otpornosti na:

- trošenje,
- visokotemperaturnu koroziju (intenzivnu oksidaciju),
- pojavu plastičnih deformacija (dovoljna granica tečenja),
- udarno opterećenje (žilavost).

Otpornost na popuštanje i ostala navedena svojstva čelika za topli rad postižu se legiranjem. Niskim masenim udjelom ugljika postiže se dobra žilavost i dobra otpornost na toplinski umor. Legiranje karbidotvorcima – W, Mo, Cr i V omogućuje pri popuštanju stvaranje karbida popuštanja pa se na taj način povisuje i otpornost na trošenje i otpornost na popuštanje. Volfram povisuje tvrdoću i čvrstoću u toplom stanju, a Cr, Mo i Ni prokaljivost čelika.

Zbog povećanja žilavosti i prokaljivosti čelici se legiraju niklom, a za poboljšanje dinamičke izdržljivosti silicijem. Povišen udio legirnih elemenata, naročito volframa, uvjetuje smanjenje toplinske vodljivosti i povećanje osjetljivosti na nagle promjene temperature.

Toplinska obrada ove skupine alatnih čelika se sastoji od kaljenja i visokotemperaturnog popuštanja (dva ili tri puta).

U fazi grijanja na temperaturu austenitizacije alatni čelici za topli rad se obavezno predgrijavaju jedanput na temperaturu između 400 do 500°C, a po potrebi i drugi put (visokolegirani čelici) na temperaturu između 860 do 880°C. Temperaturu i vrijeme austenitizacije treba odabrati tako da se otope eutektoidni karbidi i da se legirni elementi (Cr, Mo, W) ravnomjerno rasporede u zrnima novonastalog austenita. Vrijeme držanja na temperaturi pregrijavanja kod ovih čelika određuje se prema kemijskom sastavu čelika vodeći računa da se izbjegne porast zrna i sniženje žilavosti.

Alati za topli rad visokotemperaturno se popuštaju dva ili tri puta pri čemu pokazuju pojavu sekundarnog otvrdnuća. Također je preporučljivo provesti popuštanje (treće) nakon

određenog vremena rada kako bi se uklonila zaostala naprezanja nastala u radu alata.

Toplinski visokoopterećene alate prije uporabe treba predgrijavati da bi se snizila toplinska naprezanja kao i opasnost od pojave mrežastih pukotina toplinskog umora.

Alatni čelici za topli rad svrstavaju se prema sastavu i području primjene u slijedeće tri skupine [2]:

- Niskolegirani čelici za ukovnje: 56NiCrMoV7, 55NiCrMoV6,...
- Visokolegirani čelici s oko 5% Cr i 1...3% Mo za kalupe za tlačni lijev: X32CrMoV3-3, X38CrMoV5-1, X40CrMoV5-1, X50CrMoV5-1,...
- Visokolegirani W-Cr-V čelici za kalupe za tlačni lijev: X30WCrV4-1, X30WCrV9-3,...

Budući da nijedna od navedenih grupa alatnih čelika za topli rad ne zadovoljava svim zahtjevima (visoka tvrdoća, visoka žilavost, izostanak transformacija, otpornost na toplinski zamor) izbor čelika se provodi unutar skupine čelika s određenim stupnjem legiranja (tablica 1). Uglavnom se legira kombinacijom karbidotvoraca (W, Mo, V), nikla i kobalta.

Vrsta alatnih čalika	Svojstva				
za topli rad	Žilavost	Otpornost na popuštanje	Otpornost na trošenje		
Ni-Cr-Mo-V (niskolegirani)	visoka	osrednja	niska		
Cr-Mo-V (visokolegirani, 5%Cr)	osrednja	povišena	povišena		
W-Cr-V (visokolegirani, 4-10%W)	niska	visoka	srednja		

 Tablica 1.
 Usporedba svojstava alatnih čelika za topli rad [4]

Prema kemijskom sastavu niskolegirani Ni-Cr-Mo čelici slični su čelicima za poboljšavanje. Najznačajniji legirajući element ove podgrupe alatnih čelika za topli rad je nikal koji utječe na transformacijske procese. Nikal pomiče perlitnu pretvorbu prema nižim temperaturama, a bainitnu pretvorbu prema višim temperaturama. Kasniji početak perlitne pretvorbe omogućuje visoku prokaljivost. Zahvaljujući udjelu nikla i malom masenom udjelu ugljika ovi čelici imaju dobru žilavost i pri radnim temperaturama preko 400°C (ocjena 7) uz visoku granicu

razvlačenja i vlačnu čvrstoću ($R_m = 1300-1700 \text{ N/mm}^2$ [2]). Budući da u radu nisu izrazito toplinski opterećeni (npr. kratkotrajni dodir užarenog otkovka s radnom površinom kalupa) ne zahtjeva se posebno visoka otpornost na popuštanje (ocjena 3). Glavni razlozi dodatka molibdena su povišenje prokaljivosti, otpornosti na popuštanje i sprječavanje krhkosti popuštanja. Primjena navedenih čelika je za udarno opterećene alate i toplinski manje opterećene ukovnje. Kemijski sastav niskolegiranih Ni-Cr-Mo čelika prikazan je u tablici 2.

Tablica 2.	Kemijski sastav	niskolegiranih	Ni-Cr-Mo	alatnih čelika	za topli rad	[4]
------------	-----------------	----------------	----------	----------------	--------------	-----

Oznaka čelika	Sastav, %					
VDEh	С	Cr	Ni	Мо	V	
56 NiCrMoV 7	0,55	1	1,7	0,5	0,1	
55 NiCrMoV 6	0,55	0,7	1,7	0,3	0,1	

Visokolegirani čelici s ~5% kroma i 1-3% molibdena imaju dobru kombinaciju visoke čvrstoće, otpornosti na trošenje (ocjena 3), žilavosti (ocjena 9) i otpornosti na popuštanje (ocjena 6) pri radnim temperaturama od 400 do 600°C [2]. Ovi čelici su zakaljivi na zraku, tj. nema opasnosti od pojave većih deformacija pa se s toga primjenjuju za alate najsloženijih oblika. Neosjetljivi su na nagle promjene temperatura pa se smiju koristiti i za alate koji su duže vremena izloženi povišenim temperaturama. Nitriranjem alata, naročito kalupa za tlačni lijev aluminijskih legura, povisuje se otpornost na adhezijsko trošenje i otpornost na toplinski umor. Primjena visokolegiranih Cr-Mo-V čelika je za alate za toplo valjanje, tlačno lijevanje lakih metala i njihovih legura – Al, Mg, Zn, Sn, Pb (do 500°C), ukovnji plitkih gravura za čelik i Cu-legure, štance i škare za topli rad [2]...

Kemijski sastav visokolegiranih Cr-Mo-V čelika prikazan je u tablici 3. U radu će se ispitivati svojstva tvrdih slojeva i prevlaka TiN/TiCN i TiN/TiBN na čeliku X38CrMoV5-3.

Oznaka čelika	Sastav, %						
VDEh	С	Si	Cr	Мо	V		
X32 CrMoV 3 3	0,32	-	3	3	0,5		
X38 CrMoV 5 1	0,4	1	5	1,3	0,4		
X40 CrMoV 5 1	0,4	1	5	1,5	1		
X50 CrMoV 5 1	0,5	1	5	1,5	1		

Tablica 3. Kemijski sastav visokolegiranih Cr-Mo-V alatnih čelika za topli rad [4]

Visokolegirani W-Cr-V čelici imaju dobru otpornost na trošenje (ocjena 4), visoku otpornost na popuštanje (ocjena 8), ali im je značajno smanjena žilavost (ocjena 6-7) [2]. Najviša tvrdoća postiže se popuštanjem pri oko 600°C te se relativno dobro obrađuju obradom odvajanjem čestica [2]. Imaju malu toplinsku vodljivost pa je osjetljiv na promjene temperature tijekom rada, posebno hlađenja. Primjena visokolegiranih W-Cr-V je u izradi alata izloženih najvećim toplinskim opterećenjima poput alata za prešanje s dubokim gravurama, kokila za tlačno lijevanje Cu-legura, alata za ekstruziju, štanci za topli rad [1, 3]... U tablici 4 prikazan je kemijski sastav visokolegiranih W-Cr-V čelika, a u tablici 5 prikazane su ocjene svojstva uobičajenih vrsta alatnih čelika za topli rad.

Tablica 4.	Kemijski sastav	visokolegiranih	W-Cr-V	' alatnih	čelika za	topli rad	[4]
------------	-----------------	-----------------	--------	-----------	-----------	-----------	-----

Oznaka čelika	Sastav, %							
VDEh	С	Si	Cr	W	V			
X30 WCrV 4 1	0,3	1	1	4	0,4			
X30 WCrV 9 3	0,3	-	2,5	9	0,4			

	OZNAKA ČELIKA	OCJENE ZA SVOJSTVA*										
Skupina čelika	EN	otpornost na trošenje	žilavost	otpornost na popuštanje	zakaljivost, Hg, HRC	prokaljivost	tvrdoća nakon popuštanja (radna), HRC	obradivost odvajanjem čestica	sigurnost pri kaljenju	osjetljivost na razugljičenje	deformacije pri kaljenju	cijena
Alatni čelici za topli rad	55NiCrMoV6	2	7	3	54	S	5025	6	S	S	S	2
	56NiCrMoV7	2	7	3	52	V	5030	6	S	S	S	2
	X38CrMoV5-1	3	9	6	52	V	5030	8	V	V	Ν	3
	X40CrMoV5-1	3	9	6	54	V	5230	8	V	V	Ν	3
	X30WCrV4-1	4	7	7	46	S	4433	8	S	S	S	3
	X30WCrV9-3	4	6	8	48	V	4033	6	S	S	S	4

 Tablica 5.
 Ocjene za svojstva nekih vrsta alatnih čelika za topli rad [2]

*Ocjene: 1- najniže do 9 – najviše;

za cijenu: 1 – niska do 5 – visoka.

Tijekom austenitizacije alatnih čelika za topli rad nužno je primijeniti odgovarajuću zaštitu u cilju sprečavanja razugljičenja, pougljičenja i oksidacije. Mogu se koristiti peći sa zaštitnom atmosferom i vakumske peći a za kaljenje jednostavnijih alata može se koristiti i inertna solna kupka [25].

Kaljenje uzoraka u ovom radu je provedeno na 1060°C (ϑ_a =1060°C). Na slici 2 prikazan je TTT dijagram za zadani čelik.

N-malo, S-srednje, V-visoko;

Slika 2. TTT dijagram čelika X38CrMoV5-3 [5]

Popuštanje

Najčešće se alati iz ove skupine čelika toplinski obrađuju na tvrdoće 35-45 HRC (za jaka udarna opterećenja nešto niže).

Kako i u slučaju drugih alatnih čelika, i ove alate treba odmah nakon kaljenja popustiti, budući da asu nakon kaljenja puni zaostalih naprezanja i krhki. Ovi će alati raditi pri povišenoj temperaturi, pa ih treba popuštati pri temperaturi popuštanja koja je viša od radne.

Budući da ovi čelici imaju pojavu "sekundarne tvrdoće" alat treba popuštati minimalno dva puta, a preporuča se i trostruko popuštanje. Na svojstva nakon kaljenja i popuštanja utjecati će i medij u kojem se obradak hladi (gasi).

Gašenjem na zraku (uz povišenje temperature austenitizacije) pomiče se maksimalna tvrdoća (HRC_{max}) u područje viših temperatura popuštanja tj. postiže se veća otpornost na popuštanje.

Gašenje u ulju daje nešto višu maksimalnu tvrdoću (HRC_{max}) ali u području nižih temperatura popuštanja [25].

Nakon popuštanja visokolegiranih čelika za topli rad dolazi do pojave "sekundarnog otvrdnuća" (slika 3). Pojava sekundarnog otvrdnuća posljedica je raspada zaostalog austenita, kojeg ovi čelici mogu imati nakon kaljena od 20 do 30%. Tijekom visokog popuštanja pri temperaturama između 500 do 580°C iz zaostalog austenita izlučuju se legirani karbidi popuštanja (Kp), a tijekom hlađenja do sobne temperature nastaje njegova pretvorba u sekundarni martenzit (M"). Pojava legiranih karbida popuštanja i sekundarnog martenzita povisuje vrijednosti tvrdoće u odnosu na kaljeno stanje i daje dobru otpornost na popuštanje [2].

Slika 3. Pojava "sekundarne tvrdoće" kod alatnih čelika za topli rad [6]

U radu će se ispitivati čelik X38CrMoV5-3 dobre otpornosti na popuštanje proizvođača KIND & CO., koji za ovaj čelik navodi dijagram popuštanja prikazan na slici 4.

Slika 4. Dijagram popuštanja za čelik X38CrMoV5-3 [5]

2.1.1. Otpornost na popuštanje alatnih čelika za topli rad

Otpornost na popuštanje je bitan zahtjev za alate koji rade pri visokim temperaturama, npr. kokile i ukovnji, ili za alate kod kojih se u radu razvijaju visoke temperature, poput visokoopterećenih reznih alata. Povišena temperatura uzrokuje veći ili manji pad čvrstoće, tvrdoće i otpornosti na trošenje, već prema tome o kojoj se vrsti čelika radi. U užem smislu otpornost na popuštanje iskazuje se preko razlike vrijednosti tvrdoće nakon kaljenja i tvrdoće nakon popuštanja pri određenoj temperature (tzv. "dekrement tvrdoće"); Δ HRC = HRC₂₀ – HRC_{Tx}, ili preko razlike vrijednosti izmjerene tvrdoće nakon popuštanja pri 200°C i tvrdoće nakon popuštanja pri određenoj temperaturi; Δ HRC = HRC₂₀₀ – HRC_{Tx} [2]. Ovakva definicija otpornosti na popuštanje je prihvatljiva i uobičajena kod čelika za hladni rad. Te se tvrdoće (eng. *red hardness*) uobičajeno očitavaju iz dijagrama popuštanja za pojedinu vrstu čelika. Mjera za otpornost na popuštanje može biti i vrijednost tvrdoće pri definiranoj temperaturi (eng. *hot hardness*), naročito kod čelika za topli rad i brzoreznih čelika. Najveću otpornost na popuštanje pokazuju alatni čelici za topli rad i brzorezni čelici, odnosno općenito oni čelici koji su legirani barem s jednim od sljedećih elemenata: W, Mo, Co i V [2].

U širem smislu otpornost na popuštanje uključuje i razmatranje ostalih ponašanja čelika pri radnim temperaturama, kao što su: promjena granice razvlačenja, čvrstoće i žilavosti, sklonost oksidaciji, otpornost na promjenu mjera, otpornost na toplinski umor. Takva definicija otpornosti na popuštanje naročito je važna za čelike za topli rad i brzorezne čelike.

2.1.2. Otpornost na toplinski umor

Otpornost na toplinski umor u kalupima za topli rad javlja se kao posljedica promjena toplinskih naprezanja uslijed cikličkih ugrijavanja i ohlađivanja alata. Prekomjerna vlačna naprezanja u površinskim slojevima izazivaju pojavu mrežastih pukotina. Brzina širenja pukotina bit će manja što je viša A_1 temperatura pretvorbe, granica tečenja i žilavost materijala, te što je mikrostruktura jednoličnija (sa što manje ferita, karbida i intermetalih spojeva).

Otpornost na toplinski umor povisuje se unošenjem tlačnih naprezanja u površinske slojeve radne plohe kalupa, postupcima termokemijske obrade (npr. nitriranjem), površinskim prevlačenjem (npr. nanošenjem karbida i nitrida iz parne faze – PVD postupak) ili mehaničkim putem (npr. sačmarenjem) [2].

2.1.3. Otpornost na trošenje

Trošenje je postupni gubitak materijala s površine krutog tijela uslijed dinamičkog dodira s drugim krutim tijelom, fluidom i/ili česticama.

Premda postoji neizbrojivo veliki broj slučajeva trošenja, većina je autora suglasna da su samo četiri osnovna mehanizma trošenja:

- abrazija,
- adhezija,
- umor površine i
- tribokorozija.

Mehanizmi trošenja opisuju se jediničnim događajima. Jedinični događaj je slijed zbivanja koji dovodi do odvajanja jedne čestice trošenja s trošene površine. On uvijek uključuje proces nastajanja pukotina i proces napredovanja pukotina [7].

Abrazija je trošenje istiskivanjem materijala uzrokovano tvrdim česticama ili tvrdim izbočinama. Može se opisati kao mikrorezanje abrazivom nedefinirane geometrije oštrice s dvije faze jediničnog događaja.

Faza I – prodiranje abraziva (a) u površinu materijala (1) pod utjecajem normalne komponente opterećenja F_N

Faza II – istiskivanje materijala u obliku čestica trošenja (č) pod utjecajem tangencijalne komponente opterećenja F_t

Slika 5. Faze jediničnog događaja abrazije [7]

Prema rezultatima više istraživanja, odnošenje materijala u dodiru s tri tijela je znatno manje nego u slučaju abrazije dva tijela. Razlog tomu je što čestice abrazije samo oko 10% vremena provode u odnošenju materijala dok se ostatak vremena kotrljaju u slobodnom međuprostoru. Otpornost na I fazu mehanizama abrazije određena je s više utjecajnih čimbenika, a najznačajniji je međusobni omjer mikrotvrdoće abraziva i materijala trošene površine. Na otpornost na II fazu mehanizma abrazije najutjecajniji čimbenik je način napredovanja pukotine koji općenito može biti:

- duktilni,
- krhki i
- umor (površine) [7].

Fakultet strojarstva i brodogradnje

Adhezijsko trošenje karakterizira prijelaz materijala s jedne klizne plohe na drugu pri relativnom gibanju, ali uslijed procesa zavarivanja krutih faza. Jedinični događaj adhezije može se opisati u tri faze, kao što je prikazano na slici 6 [7].

- Faza I Nastajanje adhezijskog spoja različitog stupnja jakosti na mjestu dodira izbočina
- Faza II Raskidanje adhezijskog spoja. Čestica trošenja ostaje spontano "nalijepljena" najednom članu kliznog para

Faza III - Otkidanje čestice

Slika 6. Faze jediničnog događaja adhezije [7]

Oblik čestica trošenja ovisi o uvjetima, a uglavnom je listićast.

Čestice iščupane s jedne površine ostaju privremeno ili trajno "nalijepljene", odnosno navarene, na drugu kliznu površinu.

Otpornost na adhezijsko trošenje ovisi o sklonosti stvaranju mikrozavarenih spojeva kliznog para i jakosti uspostavljenih adhezijskih veza. Osnovni kriterij za ocjenu otpornosti na adhezijsko trošenje materijala tribopara je njihova tribološka kompatibilnost. Tribološka kompatibilnost je prikladnost za rad u kliznom paru i bolja je za materijale koji nisu skloni mikrozavarivanju u međusobnom dodiru. Suprotna je metalurškoj kompatibilnosti, tj. uzajamnoj topljivosti metala u krutom stanju [7].

Umor površine je pojava odvajanja čestica s površine uslijed cikličkih promjena naprezanja. Tri faze jediničnog događaja umora površine prikazane su na slici 7 [7].

Faza I – Stvaranje mikropukotine, redovito ispod površine
Faza II – Napredovanje mikropukotine
Faza III – Ispadanje čestice trošenja, obično oblika pločice ili iverka

Slika 7. Faze jediničnog događaja umora površine [7]

U prvoj fazi nastaje podpovršinska pukotina jer je najveće smično naprezanje kod koncentriranog dodira uvijek ispod same površine. Kod ove, tzv. faze inkubacije, praktički nema nikakvog odvajanja čestica. U drugoj fazi podpovršinska pukotina izbija na površinu. Od toga trenutka iz pukotine redovito izlaze sitne kuglaste čestice. U trećoj fazi jediničnog događaja umora površine dolazi do ispadanja krupne čestice oblika ivera, što na površini ostavlja oštećenje oblika rupice. Zato se ovaj oblik trošenja uobičajeno naziva *pitting* (rupičenje).

Otpornost na umor površine naziva se i dinamička izdržljivost površine. Ovisi o otporu gibanju dislokacija, a na njega utječe veliki broj čimbenika kao što su podpovršinski koncentratori naprezanja, površinska obilježja, površinske pogreške, diskontinuiteti u geometriji dodira, raspodjela opterećenja u ležaju, elastohidrodinamika, tangencijalne sile [7]...

Fakultet strojarstva i brodogradnje

Tribokorozija ili tribokemijsko trošenje je mehanizam trošenja pri kojem prevladavaju kemijske ili elektrokemijske reakcije materijala s okolišem. Jedinični događaj tribokorozije sastoji se od dvije faze i prikazan je na slici 8 [6].

Faza I – Stvaranje (ili obnavljanje) sloja produkata korozije Faza II – Mjestimično razaranje sloja produkata korozije

Slika 8. Jedinični događaj tribokorozije [7]

Najvažniji čimbenik otpornosti na tribokoroziju je kemijska pasivnost materijala u određenom mediju. Tribokorozija je u pravilu "poželjan" mehanizam trošenja. Razlog tome su slojevi proizvoda korozije koji štite metalne površine od neposrednog dodira metal/metal [7].

3. POSTUPCI MODIFICIRANJA POVRŠINA

3.1. Pregled osnovnih svojstava i primjene postupaka modificiranja

Osnovni cilj modificiranja površinskih slojeva je povišenje otpornosti na mehanička opterećenja, trošenje i koroziju. Modificiranje površinskih slojeva metalnih materijala može se provesti primjenom postupaka koji se u osnovi razlikuju prema vanjskom djelovanju. Shodno tome ih dijelimo na mehaničko, toplinsko i toplinsko-kemijsko modificiranje površine.

Mehaničko modificiranje

Mehaničkim modificiranjem površinskog sloja metalnog materijala unose se tlačne napetosti koje rezultiraju promjenama u kristalnoj rešetci (pomicanje i umnožavanje dislokacija) što pridonosi povećanju otpornosti površine.

Postupak mehaničkog modificiranja se provodi sačmarenjem površine konstrukcijskih dijelova, najčešće zupčanika, u cilju dodatnog povećanja nosivosti boka zuba i povišenja dinamičke izdržljivosti zupčanika [9].

Toplinsko modificiranje

Unošenjem toplinske energije u površinski sloj strojnih dijelova izrađenih od čelika i željeznih ljevova omogućuje se površinsko kaljenje. Pri visokoj gustoći toplinske energije i kratkim trajanjima, ugrijavanje je ograničeno samo na površinski sloj.

Osim plamenog i indukcijskog zagrijavanja primjenjuju se i postupci ugrijavanja primjenom elektronskog ili laserskog snopa. Kod ovih postupaka dubina ugrijavanja i zakaljivanja može biti znatno manja. Uslijed odvođenja topline iz tankog austenitiziranog sloja u unutrašnjosti, koja se nalazi ispod njega, moguća je i pojava "samozakaljenja", i to bez potrebe vanjskog ohlađivanja (gašenje).

U pogledu odabira materijala i njihove primjenjivosti za površinsko kaljenje, jasno je izdvojena prikladna skupina konstrukcijskih čelika za poboljšavanje, te željeznih ljevova (sivi i nodularni) s perlitnom osnovom u kojoj je dovoljno vezanog ugljika.

Razvoj pojedinih tehnologija površinskog kaljenja povezan je s primjenom senzora i fleksibilnog upravljanja (uz primjenu računalnih programa) [9].

Toplinsko-kemijsko modificiranje

U ovu podskupinu spadaju postupci kojima se toplinskom energijom i unošenjem drugih kemijskih elemenata mijenja kemijski sastav, mikrostruktura i svojstva površinskih slojeva. Nemetalni elementi mehanizmom difuzije unose se u površinski sloj metalnog materijala. U industriji strojogradnje česta je primjena postupaka pougljičavanja i nitriranja, te kombinirani postupci istovremene difuzije ugljika i dušika (karbonitriranje i nitrokarburiranje) kao i varijante sa sumporom (sulfonitriranje) ili s kisikom (nitrooksikarburiranje) [9].

Pougljičavanje

Pougljičavanje (cementiranje) je termokemijski postupak obogaćivanja površinskih slojeva čelika ugljikom, u svrhu postizanja veće otpornosti na umor površine. U širem smislu riječi, cementiranje se smatra kombinacija postupaka pougljičenja i kaljenja te niskog popuštanja (do $\approx 220^{\circ}$ C).

Koristi se velik broj postupaka pougljičavanja, i to ponajviše primjenom posebnih granulata, solnih kupki i plinskih atmosfera (generatorskih, sintetičkih, ioniziranih). Iako je pougljičavanje najstariji princip toplinsko-kemijske obrade čelika, i danas je njegova primjena vrlo raširena. Kod nekih vrsta strojnih elemenata cementiranje je gotovo nezamjenjivo u uvjetima visokih specifičnih pritisaka, na primjer kod zupčanika za prijenos snage.

Prisutan je stalan razvoj tehnologija pougljičavanja; primjenjuju se senzori za kontrolu plinskih atmosfera i matematički modeli te programi za upravljanje procesima s ciljem postizanja optimalnih profila koncentracija ugljika i mikrostrukture u cementiranom površinskom sloju čeličnih dijelova [9].

Karbonitriranje

Postupci karbonitriranja (istovremena difuzija ugljika i dušika) imaju relativno malu primjenu u industriji iako daju svojstva koja sadrže pozitivne karakteristike pougljičavanja (cementiranja) i nitriranja. Postoje postupci visokotemperaturnog karbonitriranja (s promjenom mikrostrukture u jezgri) i niskotemperaturnog karbonitriranja (bez promjene mikrostrukture u jezgri) [9].

Boriranje

Postupkom boriranja se pri povišenim temperaturama postižu veoma tvrdi slojevi borida koji imaju visoku otpornost prema abrazijskom mehanizmu trošenja. Iako se radi o postupcima koji ne zahtijevaju velika ulaganja, oni ipak nisu našli široku primjenu u praksi [9].

3.2. Nitriranje

Nitriranje je jedan od najvažnijih postupaka površinske toplinsko-kemijske obrade zbog čega ima široku primjenu u komercijalne svrhe. Koristi se za obradu strojnih dijelova izloženih trošenju.

Nitriranje je toplinsko-kemijska obrada obogaćivanja površinskog sloja dušikom. Obrada se sastoji od izlaganja obradaka na temperaturi, najčešće između 500-600°C, u sredstvu koje otpušta dušik [11].

Dušik intersticijski difundira iz sredstva za nitriranje u površinski sloj obratka pri čemu reagira sa željezom i supstitucijskim legirajućim elementima u željezu, stvarajući nitride.

Ciljevi nitriranja su slijedeći:

- postizanje visoke površinske tvrdoće,
- povećanje otpornosti na trošenje,
- povećanje otpornosti na umor površine,
- bolja korozijska otpornost...

Površinski sloj dobiven nitriranjem sastoji se od zone spojeva i difuzijske zone. Zonu spojeva čini vanjski kompaktni sloj (debline do 30 μ m), koji se sastoji od nitrida željeza (Fe₂₋₃N, Fe₄N), nitrida legirajućih elemenata (Fe_xC_yN_z) te cementita (Fe₃C) kod legiranih čelika. Neposredno ispod zone spojeva nalazi se difuzijska zona koja nastaje difuzijom dušika. To je prilično tvrda i debela zona (20-1500 μ m). Dubina difuzijske zone ovisi o topivosti dušika u feritu, tj. primarno o temperaturi nitriranja.

Na slici 10 prikazan je površinski sloj dobiven postupkom nitriranja [14].

Slika 10. Shematski prikaz površinskog sloja dobivenog nitriranjem [11]

Postupkom nitriranja se u pravilu smanjuje faktor trenja, sklonost naljepljivanja, reaktivnost s okolnim reaktivnim sredstvima te povećava dinamičku izdržljivost, a posebno tvrdoću [14]. Proces nitriranja može se provesti u solnim kupkama, plinu ili plazmi.

3.2.1. Plinsko nitriranje

Nakon čišćenja i pripreme (bez oksida, masnoća i razugljičenja), predmeti se ulažu u peć (komorna ili vertikalna retortna). Nakon ispiranja peći dušikom (N) ili amonijakom (NH₃) ona se zagrijava na temperaturu 500-550°C, te se uvodi suhi amonijak (pri 250 Pa).

Pored temperature i vremena (20-120 sati, a najčešće 40-60 sati), bitan čimbenik je i stupanj disocijacije amonijaka α_0 (prati se nadzorom izlaznih plinova):

$$\alpha_0 = \frac{V_{H_2} + V_{N_2}}{V_{NH_3} + V_{H_2} + V_{N_2}} * 100$$
(1)

 V_{NH_3} – volumen izlaznog amonijaka topljiv u vodi (vol. %), a V_{H_2} i V_{N_2} – volumeni dušika i vodika (vol. %). Ovisno o ukupnom trajanju početnog (4-10 sati, 500-525°C), tzv. jednostrukog nitriranja, stupanj disocijacije amonijaka je niži (15-30%), a plinska se atmosfera sastoji od 70-85% volumnog udjela amonijaka. Nakon takvog postupka dobiva se krhki, dušikom bogati nitridni vanjski sloj na površini obrađivanog predmeta. Metalografskom analizom taj se sloj pokazuje kao bijela faza. Dio sloja može se nesmetano ukloniti (pri 500-580°C, nakon nitriranja), a da to gotovo i ne utječe na tvrdoću i dubinu nitriranog sloja. Smanjuje samo njegova krhkost. Kod tzv. dvostrukog postupka (Floe) nitriranja smanjuje se debljina "bijelog sloja". Riječ je o dupliciranom jednostrukom postupku, s razlikom da se provodi pri višoj temperaturi (550-565°C), duljeg vremena i većeg stupnja disocijacije amonijaka (65-85%). Vrijeme nitriranja je u pravilu dugo (najčešće 40-60 sati), a za relativno veće dubine i 90 sati. Nakon završetka nitriranja obradci se hlade u peći uz pojačani dotok amonijaka, sve dok temperatura ne padne na oko 100°C [14].

3.2.2. Nitriranje u solnoj kupki

Postupak se odvija u smjesi cijanidno-cijanatnih soli pri temperaturi od 570-580°C u trajanju od 2 do 4 sata (osim kod brzoreznih čelika čija obrada traje 10-20 minuta). Odvijanje postupka se sastoji od taljena čvrstih suhih soli, "starenja" solne kupke (zadržavanja na 565-595°C u trajanju od najmanje 12 sati) i uranjanja predgrijanih predmeta (440-450°C) u zagrijanu kupku.

Nakon nitriranja u solnoj kupki obrađeni predmeti, ovisno o sastavu, se mogu ohladiti u vodi, polimernoj otopini, ulju ili na zraku [14].

3.2.3. Plazmatsko nitriranje

Plazmatsko nitriranje je moderan i kraći postupak koji se provodi u pećima ispunjenim dušikom pod niskim tlakom (2 do 10 Pa), na temperaturi od 450 do 600°C. Oplošje peći djeluje kao anoda, a predmeti koji se nitriraju kao katoda. U ioniziranoj atmosferi anioni "bombardiraju" površinu obradaka te dolazi do zagrijavanja površinskog sloja i difuzije dušika. Brzina stvaranja prevlake je 0.02 do 0.2 mm/h a debljina sloja je obično od 200 do 500 μ m [10] [12].

Slika 11. Dijagram postupka nitriranja u plazmi

Plazmatsko nitriranje naspram drugih postupaka nitriranja i modificiranja površina pokazuje niz prednosti. Zbog niskotemperaturne obrađe ne provodi se kaljenje te su minimalne distorzije i dimenzionalne promjene obrađivanih uzoraka (minimalna zaostala naprezanja). Postiže se povećana površinska tvrdoća, viša otpornost na trošenje i zamor, povećana korozijska otpornost (osim kod nehrđajućih čelika), dobra otpornost na mekšanje tijekom popuštanja te visoka vrijednost tvrdoće i na višoj temperaturi. Proizvodi se mogu pouzdano koristiti do temperature 650°C kraće vrijeme, a do 540°C i dulje vrijeme. Plazmatsko nitriranje se može provoditi selektivno (samo na djelu površine obradka) ili na cijeloj površini obradka. Uspješno se mogu nitrirati predmeti nepravilnih oblika. U odnosu na klasično plinsko nitriranje plazmatsko nitriranje traje kraće (30 do 50%) za istu debljinu nitriranog

sloja. Postupak plazmatskog nitriranja se može provoditi kao završna operacija tehnološkog procesa jer su male deformacije obrađivanih predmeta, ako je prethodna toplinska obrada ispravno provedena. Prije plazmatskog nitriranja površina obradaka se mora odmastiti i očistiti ali pri obradi nehrđajućih čelika nije potrebna depasivacija površine. Zbog toga se nakon plazmatskog nitriranja postiže visoka čistoća nitrirane površine i nije potrebno naknadno čišćenje. Izborom odgovarajućih parametara mogu se dobiti slojevi različitog kemijskog sastava ili se može postići difuzijska zona bez zone spojeva. Zona spojeva je žilavija u odnosu na istu kod ostalih postupaka nitriranja. Dobivenu zonu spojeva ili "bijeli sloj" karakterizira visoka otpornost na adhezijsko trošenje, nizak faktor trenja i dobra otpornost na koroziju zbog odsustva poroznosti. Debljina sloja je homogena čak i kod predmeta složenijih oblika. U provedbi selektivnog plazmatskog nitriranja jednostavna je zaštita nenitriranja površina pastama ili prevlakama (galvanskim ili kemijskim). Postupak plazmatskog nitriranja je potpuno ekološki prihvatljiv, prikladan za automatizaciju uz relativno niske troškove obrade (npr. potrošnja energije je za 10-30% niža nego kod plinskog nitriranja) [14].

Nedostaci plazmatskog nitriranja su u značajno većim investicijskim troškovima za nabavu uređaja (relativno složena oprema i visoka ulaganja u opremu). Također provedba postupka zahtjeva stručnog operatera i izbor prikladne kombinacije niza radnih parametara (tlak i protoci plinova, napon i struja plazme, temperatura, trajanje nitriranja). U fazi hlađenja s temperature nitriranja može doći do pojave krhkosti popuštanja. Nitriranje u plazmi je otežano za predmete s dubokim rupama i oštrim bridovima [14].

4. POSTUPCI PREVLAČENJA POVRŠINA

4.1. Osnovne značajke postupaka prevlačenja površina

Osnovni cilj postupaka prevlačenja površina alata i konstrukcijskih dijelova je postizanje otpornosti na trošenje. Određenim se postupcima dodatno povisuje korozijska postojanost, otpornost na visokotemperaturnu oksidaciju, toplinski umor itd. Tijekom prevlačenja primjenjuju se različiti postupci koje se prema temeljnom mehanizmu (toplinski, mehanički, kemijski ili u kombinaciji) mogu svrstati u sljedeće podskupine (slika 12): toplinsko prevlačenje, mehaničko prevlačenje, toplinsko-mehaničko prevlačenje, kemijsko prevlačenje, elektrokemijsko prevlačenje i prevlačenje u parnoj fazi [8][9].

Slika 12. Postupci prevlačenja [10]

Ciljevi primjene postupka prevlačenja su slijedeći:

- povećanje otpornosti na trošenje
- sprječavanje direktnog kontakta između materijala i alata
- niža adhezija na površini sloja
- lakše izbacivanje izratka iz alata/ kalupa
- smanjena upotreba sredstava za podmazivanje
- niža korozija
- skraćenje ciklusa
- dekorativni razlozi [10]

Neprevučena rezna oštrica

Prevučena rezna oštrica

Slika 13. Prikaz razlike između neprevučene i prevučene rezne oštrice [10]

Toplinsko prevlačenje

Površinski sloj nastaje primjenom topline za rastaljivanje metalnog materijala koji potom kristalizira na površini obrađivanog osnovnog metalnog materijala. Tako se nanose metalni slojevi postupcima navarivanja i postupcima uranjanja u rastaljeni metal. Navarivanja se provode u cilju povećanja otpornosti na trošenje kao i za povećanje otpornosti prema kemijskom utjecaju. Obično su to deblji slojevi širokog polja tolerancija dimenzija koji se nakon istrošenja mogu regeneracijom obnoviti. Uranjanje u rastaljeni metal (nižeg tališta od čelika, na primjer Zn, Pb) primjenjuje se uglavnom za povećanje otpornosti na koroziju [9].

Mehaničko prevlačenje

Mehaničkim djelovanjem ostvaruje se deformacijsko spajanje različitih metalnih materijala koji imaju bitno različita svojstva, najčešće otpornost prema kemijskom djelovanju. Pored ranijih postupaka spajanja primjenom toplog valjanja (platiranje limova), sve više se primjenjuje eksplozijsko spajanje [9].

Toplinsko-mehaničko prevlačenje

Toplinsko-mehaničko prevlačenje je postupak u kojem se dodatni materijal rastali toplinskom energijom a rastaljene čestice mehaničkim udarom usmjeravaju na površinu obrađivanog predmeta te tamo kristaliziraju. Različitim postupcima naštrcavanja (plamenom, plazmom, detonacijski, elektrolučno) nanose se različiti metali i legure i mješavine s keramičkim materijalima s ciljem povećanja otpornosti na trošenje ali u cilju povećanja otpornosti prema kemijskom djelovanju. Za razliku od navarivanja, naštrcavanjem se nanose tanji slojevi jednolike debljine a moguće ih je također naknadno obnavljati [9].

Kemijsko prevlačenje

Postupci kemijskog prevlačenja primjenjuju se uglavnom radi povećanja otpornosti prema koroziji i kemijskom djelovanju. To su postupci fosfatiranja, bezstrujnog niklanja, kromatiranja i sol-gel postupci. Neke vrste tako dobivenih površinskih slojeva imaju, osim povišene otpornosti prema koroziji, i povišenu otpornost na trošenje. Tako se na primjer postupkom bez strujnog niklanja postižu tvrdoće oko 500 HV radi otopljenog fosfora u niklu. Dodatnom toplinskom obradom dozrijevanja (starenja) pri temperaturama oko 400°C postiže se povećanje tvrdoće do oko 1000 HV radi povoljnog djelovanja izlučenih precipitata niklova fosfida na otežavanje gibanja dislokacija [9].

Elektrokemijsko prevlačenje

Ovi se postupci uglavnom primjenjuju u cilju povećanja otpornosti prema koroziji i kemijskom djelovanju. Kromirani površinski slojevi imaju visoku otpornost na koroziju, povišenu tvrdoću i otpornost na trošenje ("tvrdi krom"). Lokalno naneseni slojevi mogu se obnavljati nakon istrošenja [9].

Prevlačenje u parnoj fazi

U posljednje je vrijeme posebno intenzivan razvoj i primjena postupaka prevlačenja u parnoj fazi na području izradbe konstrukcijskih elemenata i alata u cilju povećanja njihove otpornosti i trajnosti. Osim na području izradbe elemenata mikroelektronike i optike, izrazito je intenzivan razvoj na području tvrdih "triboloških" slojeva. Prevučeni slojevi na konstrukcijskim elementima i na alatima imaju niži faktor trenja i višestruko dužu trajnost nego neprevučeni dijelovi. Postupcima prevlačenja u parnoj fazi nanose se stabilni i tvrdi spojevi koji spadaju u podskupine neoksidne keramike (TiC, TiN, TiCN, TiAlN, TiAlCN, B₄C, SiC,...), oksidne keramike (Al₂O₃, TiO₂,...), metaloorganskih spojeva Me:CH (W₉₇C₃,...) te dijamantu sličnog ugljika (DLC - Diamond Like Carbon) . Postoje postupci kemijskog prevlačenja u parnoj fazi (PVD) te plazmom potpomognuti postupci kemijskog prevlačenja u parnoj fazi (PACVD) [9].

CVD postupak

Postupci CVD (eng. *Chemical Vapour Deposition*) provode se pri temperaturama oko 1000°C i primjenjuju se najčešće za sinterirane tvrde metale. Budući da je prethodno sinteriranje provedeno pri višim temperaturama, pri postupku CVD na nastaju promjene mikrostrukture i dimenzija. Prevlačenje alatnih čelika po ovom postupku povezano je s tehnološkim poteškoćama koje su vezane uz potrebu naknadnog kaljenja osnovnog materijala ispod prevlake pri čemu se dešavaju promjene dimenzija, a nužna je i primjena vakuumskih peći [9].

PVD postupak

Postupci PVD (eng. *Physical Vapour Deposition*) provode se pri znatno nižim temperaturama (oko 500°C) što omogućuje prevlačenje alata koji su izrađeni od brzoreznih čelika i alatnih čelika za topli rad koji su prethodno kaljeni i popušteni (iznad 500°C) te obrađeni na konačne dimenzije. Alati za obradbu metala rezanjem (glodala, svrdla,...), alati za oblikovanje deformacijom (trnovi, matrice,...), alati za tlačno lijevanje metala (cilindri, kokile,...) kao i alati za oblikovanje polimernih proizvoda (napose s abrazivnim punilima) najčešći su primjeri primjene postupaka prevlačenja tribološkim slojevima [9].

4.2. Prevlačenje površina čelika postupkom PACVD

Postupci PACVD (eng. *Plasma Assisted Chemical Vapour Deposition*) uključuju elemente osnovnih procesa karakterističnih za CVD i PVD postupke što omogućuje sniženje temperature postupka do oko 200°C. Time se proširuje primjena i na alatne čelike za hladni rad koji imaju malu otpornost prema popuštanju te se popuštaju pri niskim temperaturama [9].

4.2.1. Opis postupka PACVD

PACVD - plazmom potpomognuto kemijsko prevlačenje u parnoj fazi (eng. *Plasma-Assisted Chemical Vapour Deposition*).

Slika 14. Uređaj za plazmatsko nitriranje i PACVD prevlačenje instaliran na Fakultetu strojarstva i brodogradnje u Zagrebu [13]

PACVD proces koristi plazmu za ionizaciju i disocijaciju plinova kao i za zagrijavanje osnovnog materijala i aktivaciju kemijskih reakcija. Ako se plinu konstantno dovodi energija on će poprimiti plazmatično stanje nakon što je prekoračen određen energetski prag. Plazmatično stanje plina karakteriziraju parcijalno i potpuno ionizirane čestice nastale električnim pražnjenjem. Energija se pretežno prenosi na elektrone, ali i na teže čestice. Elektroni dosežu temperaturu od nekoliko tisuća °C uz inače nižu temperaturu. Ovo rezultira višom termodinamičkom energijom plazme nego što ju ima plin u termodinamičkoj ravnoteži pri jednakoj temperaturi.

Fakultet strojarstva i brodogradnje

Kemijske reakcije koje se inače odvijaju samo pri visokim temperaturama se sada mogu realizirati pri znatno nižim temperaturama u plazmatiziranom mediju.

Osnovna prednost ovog postupka je veća brzina depozicije (taloženja), a depozicija se može odvijati na relativno niskim temperaturama i nema narušavanja svojstava prevlaka kao posljedica toplinskog učinka.

Ostale prednosti PACVD prevlačenja su slijedeće:

- nitriranje i prevlačenje (duplex) moguće je provesti u jednom procesu kontinuirano,
- niska temperatura procesa (ispod 500°C),
- nema promjena dimenzija obradka,
- prikladnost za masivne predmete kompliciranog oblika,
- nema emisije štetnih tvari,
- ekonomičnost postupka,
- efekt samočišćenja površine,
- velika pouzdanost (ponovljivost) procesa [13].

Nedostaci PACVD postupka :

- ne dobiva se uvijek čista prevlaka,
- skuplji postupak [14].

PACVD postupak izbjegava glavnu "manu" običnog CVD postupka: dvostruko kaljenje, koje je nužno potrebno nakon postupka prevlačenja [10] [14] [15].

Usporedba PVD, CVD i PACVD postupka prikazana je u tablici 6.

Shema rada PACVD uređaja prikazana je na slici 13. PACVD uređaj omogućuje proizvodnju različitih vrlo tankih jednoslojnih, višeslojnih (nanodimenzionalnih) slojeva kao što su : TiN, TiCN, TiAlN, TiBN, TiB₂,... Osim toga, u uređaju se može proizvoditi najmoderniji postupak nitriranja u plazmi i to u integriranom procesu s nanošenjem završnog sloja. Alatima se ovim postupkom znatno mogu poboljšati svojstva: tvrdoće, otpornosti na trošenje, otpornosti na visoke temperature, otpornosti na koroziju te produljiti vijek trajanja u eksploataciji [13].

	PVD	CVD	PACVD
Temperatura (°C)	200-500	800-1000	470-580
Kaljenje poslije prevlačenja	ne	potrebno	ne
Pomicanje šarže	potrebno	ne	ne
Površina	glatka	gruba	vrlo glatka
Poliranje poslije prevlačenja	ovisno	potrebno	ne
Duplex proces	ne	ne	moguće
Prionjivost na tvrde metale	vrlo dobra	vrlo dobra	prosječno
Troškovi održavanja	vrlo visoki	niski	niski
Troškovi pogona	visoki	niski	niski
Troškovi ulaganja	visoki	niski	prosječni

Tablica 6. Usporedba PVD, CVD i PACVD postupka [10]

Slika 15. Shematski prikaz PACVD uređaja [16] [17]

PACVD uređaj shematski prikazan na slici 13 sastoji se od slijedećih dijelova:

- vakumska komora s grijačima
- vakumska crpka
- sustav za dobavu plinova (N₂, Ar, H₂, CH₄) i prekursora (TiCl₄, BCl₃)
- generator plazme
- sustav za neutralizaciju nusprodukata prevlačenja
- PLC regulacijski sustav [16].

4.2.2. Svojstva PACVD prevlaka

Ovaj postupak se primjenjuje za nanošenje prevlaka koje se teško dobivaju klasičnim postupcima CVD ili PVD, npr. za izradbu dijamantskih prevlaka (dijafragma zvučnika, rashladni elementi u mikroelektronici i optoelektronici, senzori), dijamantu sličnih prevlaka (nizak faktor trenja na kontaktu između video glave i trake kod videorekordera), nitridnih prevlake (npr. kubični BN) i drugih. Kod postupaka PACVD na svojstva prevlake utječu:

- sastav plina (Ar, N_2 , H_2),
- parametri električnog pražnjenja,
- temperatura podloge,
- tlak plina,
- volumen plina,
- čišćenje površine u plazmi prije prevlačenja...

Brzina nastajanja TiN sloja na čeliku povećava se s temperaturom, a maksimalna debljina sloja se postiže kod tlaka plina 200 Pa. Nanošenjem PACVD prevlaka dobivaju se slijedeća svojstva (tablica 7):

- povećana otpornost na trošenje,
- povećana otpornost na koroziju,
- manji koeficijent trenja,
- otpornost oksidaciji,
- bolje prianjanje na osnovni materijal
- manja debljina prevlaka [18]...

Prevlaka	Boja prevlake	Tvrdoća HV 0,010	Temperatura	Upotreba
TiN	zlatna	2500	500°C max	Univerzalna
1114	Ziatila	2300	500 C IIIdx	prevlaka
TICN	sivo	3200	450°C max	Prevlaka više
TICN	Siva	5200	450 C max	tvrdoće od TiN
T: A IN	ljubičasta prema	3400	700°C max	Visoka otpornost
IIAIN	crnoj		700 C max	oksidaciji
T:D	anahana	5000	000°C may	Visoka otpornost
11 D ₂	sreorna	3000	900 C max	abraziji
T'DN	brončana	4000	75000	Bolja prionjivost
TIBN			750 C max	od TiB2

Tablica 7. Svojstva PACVD prevlaka [10]

5. ISPITIVANJE SVOJSTAVA TVRDIH PREVLAKA

5.1. Ispitivanje prionjivosti – prema VDI metodi utiskivanjem indentora

Osim ispitivanja tvrdoće Rockwellovom metodom može se mjeriti (odrediti) i prionjivost tankih tvrdih prevlaka. U metal (po ovoj metodi se mjeri tvrdoća samo metalnih materijala) se utiskuje dijamantni stožac (engl. *cone* - HRC metoda) ili kuglica od kaljenog čelika (engl. *ball* - HRB metoda).

Penetrator je dijamantni stožac s vršnim kutem od 120° [19]. Prednost ovog testa je njegova jednostavnost no ima i svoje mane, kao što su nedostaci informacija o kvantiteti koje se temelje na subjektivnoj procjeni ispitivača. Kao što je prikazano na slici 16 (gore), ovaj test uključuje Rockwell ispitivanje tvrdoće koji ima konusni indentor s dijamantnim vrhom. Uslijed opterećenja indentor prolazi kroz prevlaku i uzrokuje plastičnu deformaciju na podlozi (osnovnom materijalu). Pukotina se proučava pomoći mikroskopa te se klasificira prionjivost prevlake (prema VDI 3198 normi) u 6 razreda [20].

Slika 16. Shematski prikaz mjerenja tvrdoće (utiskivanja indentora) po HRC i HRB metodi [19]

Na slici 17 shematska su prikazana četiri slučaja dobre prionjivosti (od 1 do 4) te dva loše (5 i 6). Razlika između dobre i loše prionjivosti je u količini delaminacije (ljuštenja) i pojavi pukotina. Na slici 18 prikazani su primjeri prevlaka dobre i slabe (loše) prionjivosti.

Slika 17. Primjeri za procjenu prionjivosti prevlake izmjerene HRC metodom [20]

Slika 18. Primjer prihvatljive i neprihvatljive prionjivosti tipičnog eksperimentalnog slučaja [20]

5.2. Ispitivanje otpornosti na adhezijsko trošenje metodom "load scanning test"

"Load scanning test" koristi se za ispitivanje otpornosti na adhezijsko trošenje (eng. *galling*). Galling ili naljepljivanje je vrsta intenzivnog adhezijskog trošenja koje se pojavljuje između dva tijela u kliznom dodiru. Trošenje kod naljepljivanja karakterizira makroskopsko, najčešće lokalizirano, pogrubljenje površine uz stvaranje naljepaka, a vrlo često uključuje i plastično tečenje i/ili transfer materijala. Naljepljivanje uzrokuje trenutni porast sila trenja između materijala u dodiru te ih čini neupotrebljivim za daljnji rad. Razvijen je čitav niz različitih postupaka ispitivanja otpornosti na adhezijsko trošenje za dva materijala u dodiru. Najčešće korišteni je prema ASTM G98 standardu "button-on-block" ispitivanje, a koristi se i "button-on-cylinder". Varijanta tog ispitivanja je i "load scanning test" korišten u ovom radu.

Slika 19. Shematski prikaz uređaja za ispitivanje metodom "load scan" [21]

Pri ispitivanju dva uzorka (dimenzija $\Phi 10 \times 100 \text{ mm}$) klize jedan preko drugog uz postupno povećanje normalne sile. Tijekom cijelog ispitivanja svaka točka dodira oba uzorka opterećena je jedinstvenom silom. Ovaj oblik ispitivanja provodi se kod određivanja otpornost na pojavu adhezijskog trošenja između dva određena materijala, tj. kada se ispituje tribološka kompatibilnost materijala, ali se koristi i za ispitivanje maziva.

Kod ispitivanja otpornosti na naljepljivanje promatraju se dvije vrijednosti kritičnih sila; L_{c1} i L_{c2} . Sila L_{c1} označava pojavu naljepljivanja i pojava prvih pukotina. Sila L_{c2} prikazuje početak stvaranja debljeg sloja naljepka i pojavu delaminacije prevlake [16]). Kritične sile određuju se vizualno, pregledom traga trošenja pomoću mikroskopa (što je do prije nekoliko godina bila jedina metoda) i praćenjem promjene faktora trenja (što nije podložno subjektivnoj procjeni ispitivača) [22].

5.3. Mjerenje debljine prevlake kalotestom

Kalotester je uređaj za određivanje debljine tvrdih tankih prevlaka (slika 18). Na ovom uređaju koristi se čelična kuglica premazana dijamantnom pastom se postavlja između pogonske osovine i ispitnog uzorka (slika 19). Kuglica može biti različitog promjera a uređaj na Fakultetu strojarstva i brodogradnje ih ima 5, širina 10, 15, 20, 25 i 30 mm. Rotacijom kuglice dolazi do abrazivnog trošenja prevlake u obliku kalote na mjestu kontakta kuglice i uzorka. Brzinu i trajanje ispitivanja određujemo sami pomoću ugrađenog mikroprocesora, brzina od 200-1000 okretaja/min i vrijeme rada od nekoliko sekundi do 30 minuta. Na mjestu trošenja kuglica mora prodrijeti do osnovnog materijala jer u suprotnom nećemo moči izmjeriti debljinu prevlake te će biti potrebno ponoviti ispitivanje.

Slika 20. Kalotester [23]

Ispitivanje kalotestom je uspješno kada se postigne trošenje prevlake do osnovnog materijala. Tada je u većini slučajeva mjerna veličina "x" 5 puta veća od veličine "y". Na mjestu trošenja mogu se vidjeti dva koncentrična kruga kao što je prikazano na slici 20. Veća kružnica predstavlja presjek kuglice i prevlake, a manja presjek prevlake i osnovnog materijala (slika 20).

Slika 21. Shema ispitivanja debljine prevlake kalotestom [24]

Slika 22. Određivanje debljine prevlake [24]

Debljina prevlake se može odrediti na dva načina, mjerenjem promjera tragova trošenja ili mjerenjem debljine traga trošenja. Prvi način određivanja debljine prevlake provodi se pomoću mikroskopa na kojem se mjeri veći ("D") i manji ("d") promjer traga trošenja.

Uvrštavanjem izmjerenih vrijednosti promjera određuje se debljina prevlake "e", prema jednadžbi (2).

$$e = \frac{D^2 - d^2}{8R} \quad [\mu m]$$
(2)

U drugom načinu određivanja debljine prevlake na mikroskopu se mjere udaljenosti "x" i "y" (slika 20) te se uvrštavanjem u jednadžbu (3) izračuna debljina prevlake "e".

$$e = \frac{xy}{2R} \quad [\mu m] \tag{3}$$

Preciznost mjerenja ovisi o kružnosti traga trošenja, hrapavosti površine, kontrastu na slici prevlake i optičkim svojstvima mikroskopa. Odstupanje od točnosti može biti $\pm 5\%$ a za prevlake tanje od 1 μ m $\pm 10\%$. Uređaj se koristi za određivanje debljine prevlaka od 0,1 do 50 μ m.

Određivanje debljine prevlake kalotestom koristi se za CVD, PVD, PACVD prevlake, prevlake nastale ionskim prevlačenje, prevlake nastale isparavanjem u vakuumu, prevlake nastale anodnom oksidacijom, galvanske i kemijske prevlake te prevlake od polimernih materijala [24].

EKSPERIMENTALNI DIO

6. PLAN I PRIPREMA ISPITIVANJA

6.1. Prethodna toplinska obrada čelika X38CrMoV5-3

U eksperimentalnom djelu korišten je alatni čelik za topli rad X38CrMoV5-3 proizvođača KIND & CO., Edelstahlwerk. Kemijski sastav čelika X38CrMoV5-3 prikazan je u tablici 8, a toplinska obrada u slici 21.

Tablica 8. Kemijski sastav čelika X38CrMoV5-3

Slika 23. Toplinska obrada čelika X38CrMoV5-3

Temeljna svrha kaljena čelika je postizanje maksimalno moguće tvrdoće ovisno o udjelu ugljika u čeliku i postizanje što jednoličnijeg prokaljenja tj. što jednoličnije tvrdoće po poprečnom presjeku. Postupak kaljenja i popuštanja proveden je u vakumskog peći Ipsen VFC25 u inertnoj atmosferi čistog dušika.

Postupak kaljenja i popuštanja bio je sastavljen od slijedećih faza:

- dva predgrijavanja na temperaturi 550 i 860°C
- ugrijavanja i držanja na temperaturi austenitizacije 1060°C/20 minuta
- gašenja u inertnom plinu dušiku atmosferskog tlaka
- dvostrukog popuštanja na 620°C i 570°C [16]. —

Nakon provedene toplinske obrade postignuta je tvrdoća od 45 HRC.

6.2. Plan pokusa

Od alatnog čelika za topli rad X38CrMoV5-3 izrađeno je 10 uzoraka: dva uzorka za ispitivanje kalotestom (slika 24) i osam uzoraka za "load scanning test" (slika 25). Plan pokusa i oznake uzoraka navedeni su u tablici 9. Brušenjem i poliranjem svi uzorci su površinski obrađeni na srednju hrapavost površine Ra= 0,046 µm [16].

Uzorci oznake A0 (2 uzorka) ostavljeni u kaljenom i popuštenom stanju. Nakon toplinske obrade na uzorcima oznake A1 (2 uzorka) površina je modificirana plazmatskim nitriranjem. Površina uzoraka A2 (2 uzorka) i A3 (2 uzorka) je plazmatski nitrirana i prevučena. Na uzorke A2 nanešena je PACVD prevlaka TiCN. Na uzorcima oznake A3 nanešena je višeslojna prevlaka TiBN.

Na uzorcima A2 i A3 (slika 24), ispitivana je prionjivost prevlake prema VDI metodi a debljina prevlaka određena je kalotestom. Po jedan od uzoraka oznake A0, A1, A2 i A3 (slika 25) ispitan je "load scanning testom" na sobnoj temperaturi dok je drugi bio ispitan na povišenoj temperaturi od 500°C.

Oznaka	Parametri toplinske obrade		Temperatura	
			ispitivanja	
	Toplinska obrada	20°C	500°C	
40	osnovna toplinska obrada ($\vartheta_a=1060^{\circ}C + 1$. $\vartheta_p=620^{\circ}C$	A0 20C	A0 500C	
AU	$+ 2. \vartheta_{p} = 570^{\circ}C)$		AU_JUUC	
A1	osnovna toplinska obrada + plazmatski nitrirano (500°C / 6h	A1 20C	A1 500C	
	5% N ₂)		0000	
	osnovna toplinska obrada + plazmatski nitrirano + PACVD			
A2	prevlaka (TiN + TiCN, debljine 3-4 μ m): 1,5h TiN + 0,5h	A2_20C	A2_500C	
	prijelaz + TiCN prevlaka 500°C/6 h			
	osnovna toplinska obrada + plazmatski nitrirano + PACVD			
A3	prevlaka (TiN + višeslojna TiBN (TiN + TiB ₂), debljine 3-4	A3_20C	A3_500C	
	μm): TiN/2h + TiBN (43 sloja TiN–TiB ₂)/7,5h			
1		1		

Tablica 9.	Plan pokusa i oznake uzoraka za "Load scanning" test
------------	--

Fakultet strojarstva i brodogradnje

Slika 24. Uzoraka za ispitivanje debljine i prionjivosti

Slika 25. Uzorak za "load scanning" ispitivanje

Plazmatskim nitriranjem postignuta je efektivna dubina nitriranog sloja $80 + 10 \mu m$ bez zone spojeva. Površinska tvrdoća nitriranog sloja iznosila je 780 HV 0,05, a tvrdoća jezgre od 560 HV 0,05.

Srednja mikrotvrdoća PACVD prevlaka iznosi 3741,3 HV 0,05 za prevlaku TiN/TiCN, odnosno 4250,1 HV 0,05 za prevlaku TIN/TiBN [16].

7. REZULTATI ISPITIVANJA I DISKUSIJA REZULTATA

7.1. Debljina i prionjivost prevlaka

Debljina prevlaka je određena primjenom kalotesta na uzorcima A2 (prevlaka TiN/TiCN) i A3 (TiN/TiBN). Na svakom uzorku ispitivanje debljine provedeni je 5 puta. Parametri ispitivanja bili su slijedeći:

- promjer kuglice: 25 mm
- brzina vrtnje kuglice: 500 okr/min
- trajanje vrtnje kuglice: 20 sekundi

Na svjetlosnom mikroskopu Olympus GX-51 analizirani su tragovi trošenja i izmjereni su vanjski ("D") i unutrašnji ("d") promjer traga trošenja. Izmjerene vrijednosti promjera traga trošenja i izračunate debljine prevlake prikazane su u tablici 10.

Uzorak	A2			A3		
			Debljina			Debljina
Pozicija	D [µm]	d [µm]	prevlake -	D [µm]	d [µm]	prevlake -
			e [µm]			e [µm]
1	699,18	465,55	2,72	689,29	451,23	2,73
2	646,65	505,46	1,63	778,65	454,29	4,00
3	645,75	421,89	4,16	701,57	407,91	3,26
4	806,27	483,97	4,16	707,71	439,97	3,07
5	647,34	331,86	3,08	763,98	399,04	4,24
			3,15 ±1			3,46±0,64

Tablica 10. Debljine prevlaka određene kalotestom

PACVD prevlačenjem dobivene su prevlake ujednačene debljine:

- prevlaka TiN/TiCN srednje debljine 3,15±1 μm
- prevlaka TiN/TiBN srednje debljine 3,46±0,64 μm

Ispitivanje prionjivosti provedeno je prema metodi VDI 3198 na Rockwell C tvrdomjeru INSIZE ISH-MR150 (slika 26) u slijedećim fazama:

- postavljanje uzorka na postolje,
- okretanje vretena do kontakta indentora i uzorka,

- spuštanje poluge nanošenje opterećenja,
- držanje 10 sekundi i
- podizanje poluge rasterećenje.

Slika 26. Tvrdomjer za ispitivanje prionjivosti prevlaka

Nakon ispitnim uzorcima A2 i A3 napravljeno je 5 otisaka indentora koji su potom analizirani na svjetlosnom mikroskopu Olympus GX-51. Na slici 27 prikazani su ispitni uzorci A2 i A3 s označenim mjestima na kojima je provedeno ispitivanje prionjivosti u blizini mjesta određivanja debljine prevlake.

Trag trošenja nakon ispitivanja kalotestom i mjesto utiskivanja dijamantnog indentora na ispitnom uzorku A2 prikazani je u tablici 11 a na ispitnom uzorki A3 u tablici 12.

Slika 27. Mjesta ispitivanja prionjivosti prevlake na ispitnim uzorcima A2 (lijevo) i A3 (desno)

Iz rezultata ispitivanja prionjivosti prevlake TiN/TiCN na uzorku A2 zaključuje se slijedeće:

- Na mjernom mjestu A2-1 vidi se kompaktnost i jednoličnost prevlake uz minimalne pukotine bez delaminacija. Zato je ovo mjerno mjesto smješteno u 1. razred po normi VDI 3198.
- Na mjernom mjestu A2-2 se vidi slabija kompaktnost prevlake u usporedbi sa prethodnim mjernim mjestom. Vidi se više pukotina sa minimalnim delaminacijama.
 Zato je ovo mjerno mjesto smješteno u 3. razred po normi VDI 3198.
- Preostala 3 mjerna mjesta su veoma slična prvome te zato sva 3 spadaju u 1. razred.

Iz rezultata ispitivanja prionjivosti prevlake TiN/TiBN na uzorku A3 zaključuje se slijedeće:

- Mjerno mjesto A3-1 je mjesto s najmanjom debljinom prevlake i pokazalo se kao mjesto s najboljom prionjivošću, 3. razred po VDI metodi.
- Ostala mjerna mjesta su jako slična po količini delaminacija i spadaju u 5. razred, tj.
 imaju neprihvatljivu prionjivost.

Oznaka mjernog mjesta	Debljina prevlake [µm]	Razred prionjivosti	Otisak trošenja kalotesta	Rockwell C otisak
A2-1	2,72	1		
A2-2	1,63	3		
A2-3	4,16	1	- Cooling of the second s	
A2-4	4,16	1		
A2-5	3,08	1		- 00

Tablica 11. Rezultati prionjivosti uzorka A2 prema VDI 3298 metodi

Oznaka mjernog mjesta	Debljina prevlake [µm]	Razred prionjivosti	Otisak trošenja kalotesta	Rockwell C otisak
A3-1	2,73	3		
A3-2	4,00	5		
A3-3	3,26	5		
A3-4	3,07	5		
A3-5	4,24	5		

Tablica 12. Rezultati prionjivosti uzorka A3 prema VDI 3298 metodi

7.2. Otpornost na adhezijsko trošenje

Ispitivanje "load scanning" metodom provedeno je na uzorcima A0, A1, A2 i A3 na sobnoj temperaturi i na temperaturi od 500°C dva puta. Ispitni uzorci nakon ispitivanja prikazani su na slici 28 a na slici 29 shematski je prikazan porast normalne sile tijekom "load scanning" ispitivanja.

Slika 28. Uzorci za "load scanning" ispitivanje

Slika 29. Prikaz djelovanja sile na uzorak

Uvjeti "load scanning" ispitivanja bili su slijedeći [16]:

- metoda: suho klizanje
- protutijelo: WC
- normalna sila: $F_N = 400 2600N$
- brzina ispitivanja: v = 0,01 m/s
- temperatura ispitivanja: $\vartheta_1 = 20^{\circ}C \ \vartheta_2 = 500^{\circ}C$.

Nakon ispitivanja provedena je analiza traga trošenja i određen je faktor trenja u ovisnosti o opterećenju uzorka. Rezultati analize prikazani su na slikama 30 do 37.

Slika 30. Rezultati trošenja ispitnog uzorka A0_20C: a) Izgled istrošene površine, b) ovisnost širine traga trošenja o opterećenju, c) ovisnost faktora trenja o opterećenju

Slika 31. Rezultati trošenja ispitnog uzorka A1_20C: a) Izgled istrošene površine, b) ovisnost širine traga trošenja o opterećenju, c) ovisnost faktora trenja o opterećenju

Slika 32. Rezultati trošenja ispitnog uzorka A2_20C: a) Izgled istrošene površine, b) ovisnost širine traga trošenja o opterećenju, c) ovisnost faktora trenja o opterećenju

Slika 37. Rezultati trošenja ispitnog uzorka A3_500C: a) Izgled istrošene površine, b) ovisnost širine traga trošenja o opterećenju, c) ovisnost faktora trenja o opterećenju

Na slikama 38 i 39 prikazana je širina traga trošenja na svim ispitanim uzorcima pri opterećenju od 2600 N nakon ispitivanja na sobnoj temperaturi i povišenoj temperaturi od 500°C.

Slika 38. Širine tragova trošenja po uzorcima na 20°C pri opterećenju od 2600 N

Slika 39. Širine tragova trošenja po uzorcima na 500°C pri opterećenju od 2600 N

Iz rezultata ispitivanja adhezijskog trošenja na sobnoj temperaturi (30 do 33) zaključuje se slijedeće:

- Faktor trenja toplinski neprevučenog uzorka (A0_20C) nestabilno se mijenja ovisno o
- opterećenju u rasponu od 0,2 do 0,48 (slika 30c). Kod opterećenja od oko 900 N faktor trenja se smanjuje sa 0,32 na 0,2 a kod opterećenja od 1800 N sa 0,38 na 0,29 što ukazuje na pojavu uglačanja površine. U ispitivanom rasponu opterećenja od 400 do 2600 N (slika 30b) širina traga trošenja linearno se povećava sa porastom opterećenja od 0.5 mm (pri 400 N) do 1.3 mm (pri 2600 N).
- Faktor trenja plazmatski nitriranog uzorka (A1_20C) također se nestabilno mijenja ovisno o opterećenju u rasponu od 0,18 do 0,36 (slika 31c). Širina traga trošenja linearno raste s porastom opterećenja od 0.5 mm (pri 400 N) do 1.17 mm (pri 2600 N) (slika 31b). Nešto manji faktor trenja ovog uzorka u odnosu na neprevučeni posljedica je primjene plazmatskog nitriranja i stvaranja difuzijske zone. Širina traga trošenja neprevučenog i plazmatskog uzorka praktično su podjednake.
- Faktor trenja uzorka (A2_20C) prevučenog PACVD prevlakom TiN/TiCN linearno i bez oscilacija raste s porastom opterećenja od 0,26 (pri 400 N) do 0,37 (pri 2000 N) (slika 32c). Pri opterećenju većem od 2000 N pojavljuje se nelinearan i intenzivniji porast vrijednosti faktora trenja do 0,37 (pri 2000 N) do 0,55 (pri 2600 N). Širina traga trošenja također prati navedeni trend porasta faktora trenja pri čemu je početna širina traga trošenja od 0.4 mm (pri 400 N) linearno povećava do 0.8 mm (pri 2000 N) a potom nastupa nelinearno povećanje do 1.25 mm (pri 2600 N) (slika 32b). Navedeni opisani trend promjene faktora trenja i širine traga trošenja ukazuje na vjerojatno probijanje prevlake i pojavu naljepljivanja pri opterećenju od 2000 N.
- Faktor trenja uzorka (A3_20C) prevučenog PACVD prevlakom TiN/TiBN pokazuje skokovitu promjenu pri opterećenju od oko 1200 N (slika 33c). Za opterećenja manja od 1200 N faktor trenja linearno i stabilno raste do 0,25 (pri 400 N) do 0,37 (pri 1200 N) potom dolazi do skokovite promjene na vrijednost 0,68 (pri 1300 N) koja ostaje stabilna do opterećenja od 1800 N. Ova skokovita promjena faktora trenja uzrokovana je pucanjem i delaminacijom prevlake. Na opterećenjima od 1800 N do 2000 N dolazi do uglačavanja trošene površine i stvaranja naljepka pri većim opterećenjima, što rezultira konstantnim faktorom trenja oko 0,79 u rasponu opterećenja od 2000 N do 2600 N. Navedeni trend skokovite promjene ovisno o opterećenju prati i širina traga trošenja (slika 33b). Do opterećenja od 1200 N širina traga linearno se povećava ovisno o opterećenju s 0,5 mm (pri 400 N) do 0,6 (pri 1200 N). Na većim opterećenjima nastupa progresivniji porast širina traga trošenja koji rezultira maksimalnom vrijednost od 2 mm pri vrijednosti od 2600 N.

Iz rezultata ispitivanja adhezijskog trošenja na povišenoj temperaturi od 500°C (34 do 37) zaključuje se slijedeće:

- Na početku trošenja uzorka (A0_500C) pri 400 N faktor trenja iznosi oko 0,45 (slika 34c) što je približno dvostruko više nego pri ispitivanju na sobnoj temperaturi. Povećanjem opterećenja na 700 N faktor trenja skokovito povećava vrijednost na 0,7 a potom približno linearno raste ovisno o opterećenju do vrijednosti 0,8 (pri 1500 N). Daljnjim porastom opterećenja do 2200 N vrijednost faktora trenja nelinearno se povećava do vrijednosti 0,88. Ovo povećanje pretpostavlja se da je uzrokovano stvaranjem naljepka i njegovim uglačavanjem. Daljnjim porastom opretećenja od 2200 N do 2420 N faktor trenja se smanjuje na 0,7 i potom ponovo raste do 0,8. Širina traga trošenja linearno raste ovisno o opterećenju od 0.55 mm (pri 500 N) do 1.7 mm (pri 2600 N) (slika 34b).
- Faktor trenja plazmatski nitriranog uzorka (A1_500C) pokazuje vrlo malu ovisnost o porastu opterećenja (slika 35c). Početna vrijednost 0,32 (pri 400 N) linearno sporo i stabilno raste do 0,4 (pri 2500 N). Širina traga trošenja također sporo i stabilno raste od 0.5 mm (pri 500 N) do 1.3 mm (pri 2500 N) (slika 35b). Povećanjem opterećenja na 2600 N primjećuje se stvaranje naljepka i nagli porast faktora trenja na vrijednost 0,4.
- Faktor trenja uzorka (A2_500C) prevučenog PACVD prevlakom TiN/TiCN uz oscilacije vrijednosti mijenja se u rasponu od 0,35 do 0,56 (slika 36c). Na nižim opterećenjima do 1000 N vrijednost faktora trenja je praktički konstantna oko 0,5. Daljnjim porastom opterećenja do 1200 N faktor trenja se smanjuje na 0,35 što ukazuje na uglačavanje i trošenje prevlake. Pri opterećenju od 1200 N dolazi do skokovitog porasta faktora trenja s 0,35 na 0,53 kao posljedica probijanja i ljuštenja prevlake. Oštećena prevlaka naljepljuje se na ispitni valjak i uzrokuje oscilacije vrijednosti faktora trenja između 0,52 do 0,55 uz opterećenje od 1200 N do 1700 N. U području opterećenja od 1700 N do 2400 N faktor trenja iznosi oko 0,43. Porastom opterećenja na 2600 N dolazi do ponovnog porast faktora trenja uzrokovanog daljnjim stvaranjem naljepka i čestica trošenja. Širina traga trošenja linearno prati porast opterećenja od 0.5 mm (pri 500 N) do 1.3 mm (pri 2600 N) (slika 36b).
- Faktor trenja uzorka (A3_500C) prevučenog PACVD prevlakom TiN/TiBN iznosi 0,28 (pri 500 N) do 0,38 (pri 1600 N) (slika 37c). U navedenom rasponu opterećenja njegov porast pokazuje stabilnu i linearnu promjenu. Pri opterećenju od 1600 N

pojavljuje se skokovita promjena faktora trenja s 0,38 na 0,59 (pri 1700 N) kao posljedica pucanja i ljuštenja prevlake. Narušeni integritet prevlake održava faktor trenja na iznosu od 0,59 do 0,69 pri porastu opterećenja od 1700 N do 2600 N. Širina traga trošenja (slika 37b) linearno ovisi o opterećenju u rasponu do 1700 N potom nastupa skokovita promjena s opterećenjem 2150 N. Na opterećenju 2600 N širina traga trošenja iznosi 1.6 mm.

Usporedbom vrijednosti faktora trenja uzoraka ispitanih na povišenoj temperaturi (500°C) uočava se povećanje vrijednosti faktora trenja za 1.5 do 2 puta u odnosu na vrijednosti faktora trenja određene pri sobnoj temperaturi na istom stanju površine.

Iz prikaza najveće širine traga trošenja pri opterećenju 2600N (slike 38 i 39) zaključuje se slijedeće:

- Ispitivanja adhezijskog trošenja provedena na sobnoj temperaturi (slika 38) pokazala su sličnu sličnu širinu traga trošenja (oko 1.2 mm) za osnovno stanje, plazmatski nitriran i za uzorak prevučen PACVD prevlakom TiN/TiCN. Iz ovog se može zaključiti da je za sve uzorke nastala i sličan gubitak mase odnosno slična brzina trošenja. Uzorak prevučen PACVD prevlakom TiN/TiBN pokazao je značajno veću širinu traga trošenja (1.86 mm) uz vidljivu pojavu pucanja i ljuštenja prevlake.
- Ispitivanja provedena na povišenoj temperaturi pokazala su najveću širinu trošenja na toplinski neobrađenom uzorku (1.78 mm) a najmanje na plazmatski nitriranom uzorku (1.29 mm). PACVD prevlaka TiN/TiCN pokazala je nešto višu širinu traga trošenja od 1.33 mm. PACVD prevlaka TiN/TiBN pokazala je širinu traga trošenja od 1.62 mm uz izraženu pojavu pucanja i ljuštenja prevlake.

Za izbor prikladne prevlake na površini alata za topli rad mjerodavna su ispitivanja provedena na povišenoj temperaturi. Dobiveni rezultati u pogledu relativno nižeg faktora trenja i manje intenzivnog adhezijskog trošenja ukazuju na očekivanu prikladnost primjene plazmatskog nitriranja. Međutim i primjena PACVD prevlake TiN/TiCN također je pokazala dobru otpornost na adhezijsko trošenje uz nešto viši faktor trenja u odnosu na plazmatski nitriranu površinu ali približno sličnu širinu traga trošenja.

8. ZAKLJUČAK

U radu su provedena ispitivanja debljine, prionjivosti i otpornosti na adhezijsko trošenje različitih stanja alatnog čelika X38CrMoV5-3. Istražena je prikladnost primjene plazmatskog nitriranja i dvije vrste PACVD prevlaka TiN/TiCN i TiN/TiCN na navedenom čeliku u uvjetima adhezijskog trošenja na sobnoj temperaturi i pri 500°C.

Ispitivanjima prionjivosti prevlaka prema metodi VDI 3198 utvrđena je dobra prionjivost prevlake TiN/TiCN i loša prionjivost prevlake TiN/TiBN. Srednja debljina prevlake određena kalotestom iznosi za prevlaku TiN/TiCN $3,15\pm1$ µm dok je srednja debljina prevlake TiN/TiCN $3,46\pm0,64$ µm.

Ispitivanja otpornosti adhezijskog trošenja "load scanning" metodom pokazala su promjenu faktora trenja i širine traga trošenja u rasponu opterećenja od 400 N do 2600 N. Na sobnoj temperaturi ujednačenu otpornost na adhezijsko trošenje imali su neprevučeni uzorak, plazmatski nitriran uzorak i uzorak prevučen PACVD prevlakom TiN/TiCN, dok je uzorak prevučen PACVD prevlakom TiN/TiBN pokazao oko 35% lošiju otpornost. Pri povišenoj temperaturi plazmatski nitriran uzorak je pokazao najbolju otpornost na adhezijsko trošenje, a uzorak prevučen PACVD prevlakom TiN/TiCN se pokazao samo 3% lošiji, za razliku od neprevučenog uzorka i prevučenog PACVD prevlakom TiN/TiBN koji su se pokazali lošiji 20 odnosno 27%.

Na osnovi rezultata ispitivanja tvrdih PACVD prevlaka predlaže se TiN/TiCN prevlaka za izradu kalupa za tlačni lijev aluminijskih legura.

U daljnjim ispitivanjima preporučuje se istražiti utjecaj debljine PACVD prevlake TiN/TiCN i efektivne dubine plazmatskog nitriranja na otpornost adhezijskom trošenju kako bi se odredile optimalne vrijednosti za postizanje minimalnog trenja i širine traga trošenja. Također se preporuča provesti ispitivanja PACVD prevlake TiN/TiBN ali uz nanošenje manje debljine prevlake (1-2 µm) koja čini se daje bolji prionjivost.

9. LITERATURA

- [1] http://www.tribology-abc.com/abc/history.htm
- [2] Filetin T., Kovačiček F., Indof J.: Svojstva i primjena materijala, Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje, Zagreb, 2007.
- [3] Novosel, M., Cajner, F., Krumes, D.: Alatni materijali, Strojarski fakultet u Slavonskom Brodu, Slavonski Brod, 1996.
- [4] Kožuh, S.: Specijalni čelici skripta, Sveučilište u Zagrebu, Metalurški fakultet, Sisak, 2010.
- [5] <u>http://www.kind-co.de</u>
- [6] Zhang, S.: Thin Films and Coatings: Toughening and Toughness Characterization, 2015.
- [7] Grilec, K., Jakovljević, S.: Tribologija, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, Zagreb, 2015.
- [8]Landek, D.: Podloge za vježbu iz kolegija Proizvodne tehnologije, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, Zagreb, 2013./2014.
- [9] Stupnišek, M., Matijević B.: Pregled postupaka modificiranja i prevlačenja metala, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, 2000.
- [10] Matijević, B.: Predavanja iz kolegija Tribologija i inženjerstvo površina, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, 2012./2013.
- [11] Filetin, T., Grilec, K.: Postupci modificiranja i prevlačenja površine, Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, 2004.
- [12] http://www.enciklopedija.hr/natuknica.aspx?id=43916
- [13] Cajner, F., Kumić, I., Kovačić, S., Cingesar M., Publikacija ARISE projekta, FSB, Zagreb, 2014.
- [14] Gojić, M.: Površinska obradba materijala, Sveučilište u Zagrebu, Metalurški fakultet, Sisak, 2010.
- [15] Krumes D.: Toplinska obradba, Strojarski fakultet u Slavonskom Brodu, Slavonski Brod, 2000.
- [16] Kovačić, S.: Utjecaj nitriranja i prevlačenja na svojstva alatnih čelika za topli rad, Doktorski rad, Fakultet strojarstva i brodogradnje, Zagreb, 2015.
- [17] Cajner, F., Landek, D., Kovačić, S.: Introduction and application of new tehnologies of plasma nitriding and PACVD coating, Proc. 5th Int. Conf. "Mechanical Technol. Struct. Mater., 2015.

[18] http://www.rubig.com

- [19] <u>http://www.vorax.hr</u>
- [20] Vidakis, N., Antoniadis, A., Bilalis, N.: The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds, ELSEVIER, 2003.
- [21] Podgornik, B., Leskovšek, V., Tehovnik, F., Burja, J.: Vacuum heat treatment optimization for improved load carrying capacityand wear properties of surface engineered hot work tool steel, ELSEVIER, 2015.
- [22] Šolić, S.: Utjecaj mikrostrukture brzoreznog čelika na tribološka svojstva reznih alata, Doktorski rad, Fakultet strojarstva i brodogradnje, Zagreb, 2010.
- [23] TRIBOtechnic, Calotester, User's guide
- [24] http://www.kemet.co.uk
- [25] Cajner, F., Krumes, D.: Novosel, M.: Alatni materijali. Slavonski Brod : Strojarski fakultet, 1996.

10. PRILOZI

I. CD-R disc

II.	Tablica 1.	Prikaz 1. traga trošenja na ispitnom uzorku A0_20C
III.	Tablica 2.	Prikaz 2. traga trošenja na ispitnom uzorku A0_20C
IV.	Tablica 3.	Prikaz 1. traga trošenja na ispitnom uzorku A1_20C
V.	Tablica 4.	Prikaz 2. traga trošenja na ispitnom uzorku A1_20C
VI.	Tablica 5.	Prikaz 1. traga trošenja na ispitnom uzorku A2_20C
VII.	Tablica 6.	Prikaz 2. traga trošenja na ispitnom uzorku A2_20C
VIII.	Tablica 7.	Prikaz 1. traga trošenja na ispitnom uzorku A3_20C
IX.	Tablica 8.	Prikaz 2. traga trošenja na ispitnom uzorku A3_20C
X.	Tablica 9.	Prikaz 1. traga trošenja na ispitnom uzorku A0_500C
XI.	Tablica 10.	Prikaz 2. traga trošenja na ispitnom uzorku A0_500C
XII.	Tablica 11.	Prikaz 1. traga trošenja na ispitnom uzorku A1_500C
XIII.	Tablica 12.	Prikaz 2. traga trošenja na ispitnom uzorku A1_500C
XIV.	Tablica 13.	Prikaz 1. traga trošenja na ispitnom uzorku A2_500C
XV.	Tablica 14.	Prikaz 2. traga trošenja na ispitnom uzorku A2_500C
XVI.	Tablica 15.	Prikaz 1. traga trošenja na ispitnom uzorku A3_500C
XVII	.Tablica 16.	Prikaz 2. traga trošenja na ispitnom uzorku A3_500C

PRILOZI

Tablica 1.Prikaz 1. traga trošenja na ispitnom uzorku A0_20C

	Širina			Širina	
IIdalianaat	tra sa		IIdalianaat	51111a	
Udaijenost	traga	Slika mjernog mjesta	Udaljenost	traga	Slika mjernog mjesta
[mm]	trošenja		[mm]	trošenja	
	[µm]			[µm]	
0-3	505		3-6	544	
6-9	570		9-12	615	
12-15	642		15-18	671	
18-21	656		21-24	685	
24-27	682		27-30	722	
30-33	768		33-36	781	

Tomislav Razum

Tablica 1. Prikaz 1. traga trošenja na ispitnom uzorku A0_20C (nastavak)

	Širina			Širina	
Udaljenost	traga	Slika miernog miesta	Udaljenost	traga	Slika miernog miesta
[mm]	trošenja	Sinka injeritog injesta	[mm]	trošenja	Slika injerilog injesta
	[µm]			[µm]	
36-39	837		39-42	827	
42-45	873		45-48	937	
48-51	976		51-54	975	
54-57	996		57-60	993	
60-63	1099		63-66	1191	
66-69	1271		69-72	1319	

Tablica 1. Prikaz 1. traga trošenja na ispitnom uzorku A0_20C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
72-75	1390		75-78	1348	
78-80	1359		Povećanje 50x		

Tomislav Razum

 Tablica 2. Prikaz 2. traga trošenja na ispitnom uzorku A0_20C

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
0-3	510		3-6	535	
6-9	548		9-12	585	
12-15	579		15-18	618	
18-21	634		21-24	657	
24-27	687		27-30	736	
30-33	729		33-36	739	

Tomislav Razum

Tablica 2. Prikaz 2. traga trošenja na ispitnom uzorku A0_20C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
36-39	772		39-42	801	
42-45	826		45-48	833	
48-51	858		51-54	875	
54-57	903		57-60	906	
60-63	941		63-66	967	
66-69	986		69-72	1020	

Tablica 2. Prikaz 2. traga trošenja na ispitnom uzorku A0_20C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
72-75	1050		75-78	1075	
78-80	1086		Povećanje 50x		

Tomislav Razum

 Tablica 3. Prikaz 1. traga trošenja na ispitnom uzorku A1_20C

	V			V	
Udaljenost [mm]	Sirina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Sirina traga trošenja [µm]	Slika mjernog mjesta
0-3	474		3-6	487	
6-9	515		9-12	543	- Henry Millinger Franker
12-15	565		15-18	589	
18-21	614		21-24	626	
24-27	643		27-30	664	
30-33	715		33-36	732	

Tomislav Razum

Tablica 3. Prikaz 1. traga trošenja na ispitnom uzorku A1_20C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
36-39	745		39-42	786	
42-45	900		45-48	822	
48-51	842		51-54	824	
54-57	868		57-60	898	
60-63	927		63-66	924	
66-69	938		69-72	994	

Tomislav Razum

Tablica 3. Prikaz 1. traga trošenja na ispitnom uzorku A1_20C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
72-75	1049		75-78	1100	
78-80	1055		Povećanje 50x		

Tomislav Razum

 Tablica 4. Prikaz 2. traga trošenja na ispitnom uzorku A1_20C

	ž			ž	
Udalienost	Sirina traga		Udalienost	Sirina traga	
[mm]	trošenja	Slika mjernog mjesta	[mm]	trošenja	Slika mjernog mjesta
	[µm]			[µm]	
0-3	500		3-6	500	
6-9	534		9-12	576	
12-15	606		15-18	599	
18-21	636		21-24	649	
24-27	667		27-30	699	
30-33	718		33-36	776	

Tomislav Razum

Tablica 4. Prikaz 2. traga trošenja na ispitnom uzorku A1_20C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
36-39	784		39-42	809	
42-45	818		45-48	837	
48-51	864		51-54	883	
54-57	919		57-60	900	
60-63	901		63-66	957	
66-69	1021		69-72	1076	

Tomislav Razum

Tablica 4. Prikaz 2. traga trošenja na ispitnom uzorku A1_20C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
72-75	1095		75-78	1149	
78-80	1171			Poveća	nje 50x

Tomislav Razum

 Tablica 5. Prikaz 1. traga trošenja na ispitnom uzorku A2_20C

Udaljenost [mm]	Širina traga trošenja	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja	Slika mjernog mjesta
	[µm]			[µm]	
0-3	488		3-6	489	
6-9	515		9-12	522	
12-15	542		15-18	541	korrasztos terzőneken udok asak
18-21	554	d all definite the second	21-24	581	ies anna an an an tha sha aig
24-27	615		27-30	619	
30-33	647	garti densita yatari	33-36	680	

Tomislav Razum

Tablica 5. Prikaz 1. traga trošenja na ispitnom uzorku A2_20C (nastavak)

	Širina			Širina	
Udaljenost [mm]	traga trošenja	Slika mjernog mjesta	Udaljenost [mm]	traga trošenja	Slika mjernog mjesta
	[µm]			[µm]	
36-39	688		39-42	741	
42-45	781		45-48	784	A Company and Anna an
48-51	820		51-54	844	
54-57	827		57-60	937	
60-63	972		63-66	969	
66-69	1016		69-72	1044	

Tomistav Razum Tablica 5. Prikaz 1. traga trošenja na ispitnom uzorku A2_20C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
72-75	1107		75-78	1156	
78-80	1243			Poveća	nje 50x

Tomislav Razum

 Tablica 6. Prikaz 2. traga trošenja na ispitnom uzorku A2_20C

	Širina			Širina	
Udalienost	traga		Udalienost	traga	
[mm]	trošenia	Slika mjernog mjesta	[mm]	trošenia	Slika mjernog mjesta
[]	[um]		[]	[um]	
	լաույ			[μΠ]	
0-3	389		3-6	396	
6-9	434	ja populational lagent	9-12	513	
12-15	545		15-18	564	
18-21	566		21-24	559	
24-27	589		27-30	633	
30-33	648		33-36	712	

Tomislav Razum

Tablica 6. Prikaz 2. traga trošenja na ispitnom uzorku A2_20C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
36-39	695		39-42	734	
42-45	711		45-48	812	
48-51	829	e 1. marto lon 2. sia	51-54	836	
54-57	838		57-60	904	
60-63	895		63-66	958	
66-69	989		69-72	1043	

Tomislav Razum

Tablica 6. Prikaz 2. traga trošenja na ispitnom uzorku A2_20C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
72-75	1082		75-78	1155	
78-80	1275			Poveća	nje 50x

Tomislav Razum

 Tomistav Razum

 Tablica 7. Prikaz 1. traga trošenja na ispitnom uzorku A3_20C

	Širina			Širina	
Udalianost	trago		Udalianost	trago	
Udaijenost	traga	Slika mjernog mjesta	Udaljenost	traga	Slika mjernog mjesta
[mm]	trošenja		[mm]	trošenja	
	[µm]			[µm]	
0-3	437		3-6	465	
6-9	476		9-12	492	
12-15	571	Que de la composition (Ma	15-18	570	
18-21	551		21-24	600	in an in the second sec
24-27	651	i na te	27-30	693	
30-33	646		33-36	712	

Tomislav Razum

Tablica 7. Prikaz 1. traga trošenja na ispitnom uzorku A3_20C (nastavak)

	Širina			Širina	
Udalianast	troco		Udalianost	troco	
Udaijenost	traga	Slika mjernog mjesta	Udaljenost	traga	Slika mjernog mjesta
[mm]	trošenja		[mm]	trošenja	
	[µm]			[µm]	
36-39	895		39-42	1045	
42-45	1112		45-48	1208	
48-51	1235		51-54	1277	
54-57	1347		57-60	1436	
60-63	1440		63-66	1461	
66-69	1539		69-72	1597	

Tomislav Razum

Tomistav Razum Tablica 7. Prikaz 1. traga trošenja na ispitnom uzorku A3_20C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
72-75	1636	PS-A-TP-M	75-78	1673	
78-80	1722			Poveća	nje 50x

Tomislav Razum

 Tomistic Ruzum

 Tablica 8. Prikaz 2. traga trošenja na ispitnom uzorku A3_20C

Udaljenost [mm]	Širina traga trošenja [μm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
0-3	458		3-6	435	A A A A A A A A A A A A A A A A A A A
6-9	536		9-12	570	
12-15	575		15-18	595	
18-21	611		21-24	684	
24-27	767		27-30	825	
30-33	830		33-36	849	

Tomislav Razum

Tablica 8. Prikaz 2. traga trošenja na ispitnom uzorku A3_20C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [μm]	Slika mjernog mjesta
36-39	956		39-42	1217	
42-45	1314		45-48	1466	
48-51	1440		51-54	1535	
54-57	1604		57-60	1643	
60-63	1742		63-66	1800	
66-69	1863		69-72	1802	

Tomislav Razum

Tomistav Razum Tablica 8. Prikaz 2. traga trošenja na ispitnom uzorku A3_20C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
72-75	1992		75-78	1951	
78-80	2004		Povećanje 50x		

Tomislav Razum

 Tablica 9. Prikaz 1. traga trošenja na ispitnom uzorku A0_500C

	Širina			Širina	
Udalienost	traga		Udalienost	traga	
[mm]	trošenia	Slika mjernog mjesta	[mm]	trošenia	Slika mjernog mjesta
[IIIII]	[um]		[]	[um]	
	[μm]			[μιιι]	
0-3	576.4		3-6	597	
6-9	629.6		9-12	718	
12-15	759.8		15-18	801.8	
18-21	833.4		21-24	910.2	
24-27	937.2		27-30	995.6	
30-33	1046.8		33-36	1086.4	

Tomislav Razum

Tablica 9. Prikaz 1. traga trošenja na ispitnom uzorku A0_500C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
36-39	833.4		39-42	1205	
42-45	1256		45-48	1322.6	
48-51	1371.6		51-54	1402	
54-57	1460.4		57-60	1540.4	
60-63	1579		63-66	1632.4	
66-69	1692.2		69-72	1703.6	

Tablica 9. Prikaz 1. traga trošenja na ispitnom uzorku A0_500C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
72-75	1703.2		75-78	1732.6	
78-80	1788.2		Povećanje 50x		

 Tablica 10. Prikaz 2. traga trošenja na ispitnom uzorku A0_500C

	Širina			Širina	
Udalienost	traga		Udaljenost	traga	
[mm]	trošenia	Slika mjernog mjesta	[mm]	trošenia	Slika mjernog mjesta
LJ	[µm]		r1	[µm]	
0-3	567.6		3-6	588	
6-9	630.6		9-12	659.4	
12-15	768.2		15-18	897.6	
18-21	926.4		21-24	974.8	
24-27	1026.2		27-30	1067.2	
30-33	1134.6		33-36	1149.2	
Tomislav Razum

Tablica 10. Prikaz 2. traga trošenja na ispitnom uzorku A0_500C (nastavak)

Udaljenost [mm]	Širina traga trošenja [μm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
36-39	1209.6		39-42	1269.6	
42-45	1315		45-48	1353	
48-51	1416.2		51-54	1498.6	
54-57	1536.8		57-60	1582.8	
60-63	1601.6		63-66	1643.6	
66-69	1673.2		69-72	1689.2	

Tablica 10. Prikaz 2. traga trošenja na ispitnom uzorku A0_500C(nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
72-75	1709.6		75-78	1736	
78-80	1767			Poveća	nje 50x

 Tomistav Razum

 Tablica 11. Prikaz 1. traga trošenja na ispitnom uzorku A1_500C

	Širina			Širina	
Udalienost	traga		Udalienost	traga	
[mm]	tražania	Slika mjernog mjesta	[]	tražania	Slika mjernog mjesta
[mm]	trosenja		[mm]	trosenja	
	[µm]			[μm]	
0-3	534.6		3-6	597	
6-9	612.6		9-12	626.8	
12-15	658.6		15-18	665.4	
18-21	690.4		21-24	721.6	
24-27	754.6		27-30	750.2	
30-33	806.2		33-36	844.4	

Tablica 11. Prikaz 1. traga trošenja na ispitnom uzorku A1_500C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
36-39	854		39-42	887	
42-45	906.6		45-48	945.4	
48-51	967.8		51-54	998	
54-57	1016.4		57-60	1058.6	
60-63	1072.2		63-66	1099.8	
66-69	1140.6		69-72	1174.6	

Tablica 11. Prikaz 1. traga trošenja na ispitnom uzorku A1_500C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
72-75	1212		75-78	1254.8	
78-80	1280.4			Poveća	nje 50x

 Tablica 12. Prikaz 2. traga trošenja na ispitnom uzorku A1_500C

	Širino			Širino	
Udaljenost [mm]	traga trošenja	Slika mjernog mjesta	Udaljenost [mm]	traga trošenja	Slika mjernog mjesta
	[µm]			[µm]	
0-3	546.8		3-6	557.4	
6-9	606.8		9-12	595.8	
12-15	635.2		15-18	672.8	
18-21	677.8		21-24	704.4	
24-27	722.6		27-30	759.8	
30-33	777		33-36	809.2	

 Tablica 12. Prikaz 2. traga trošenja na ispitnom uzorku A1_500C (nastavak)

Udaljenost [mm]	Širina traga trošenja [μm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [μm]	Slika mjernog mjesta
36-39	841.4		39-42	871.6	
42-45	906.4		45-48	977.2	
48-51	965		51-54	996.2	
54-57	1027		57-60	1047.8	
60-63	1063		63-66	1101.8	
66-69	1124.4		69-72	1162.6	

Tablica 12. Prikaz 2. traga trošenja na ispitnom uzorku A1_500C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
72-75	1198.8		75-78	1230.8	
78-80	1303.2			Poveća	anje 50x

 Tablica 13. Prikaz 1. traga trošenja na ispitnom uzorku A2_500C

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [μm]	Slika mjernog mjesta
0-3	545.8		3-6	557	
6-9	569		9-12	614	
12-15	650	ð 	15-18	690	
18-21	921		21-24	713	
24-27	745		27-30	788	
30-33	794		33-36	842	

Tomislav Razum

 Tomistav Razum

 Tablica 13. Prikaz 1. traga trošenja na ispitnom uzorku A2_500C (nastavak)

Udaljenost [mm]	Širina traga trošenja [μm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
36-39	878		39-42	880	
42-45	893		45-48	955	
48-51	986		51-54	992	
54-57	1029		57-60	1054	
60-63	1089		63-66	1108	
66-69	1150		69-72	1184	

Tablica 13. Prikaz 1. traga trošenja na ispitnom uzorku A2_500C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
72-75	1209		75-78	1298	
78-80	1348		Povećanje 50x		

 Tomistav Razam

 Tablica 14. Prikaz 2. traga trošenja na ispitnom uzorku A2_500C

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
0-3	536		3-6	554	
6-9	589		9-12	615	
12-15	666		15-18	673	
18-21	715		21-24	716	
24-27	768		27-30	778	
30-33	820		33-36	837	

Tomislav Razum

Tablica 14. Prikaz 2. traga trošenja na ispitnom uzorku A2_500C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
36-39	866		39-42	861	
42-45	905		45-48	941	
48-51	964		51-54	1014	
54-57	1028		57-60	1054	
60-63	1078		63-66	1121	
66-69	1137		69-72	1188	

Tablica 14. Prikaz 2. traga trošenja na ispitnom uzorku A2_500C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
72-75	1224		75-78	1289	
78-80	1308		Povećanje 50x		

 Tablica 15. Prikaz 1. traga trošenja na ispitnom uzorku A3_500C

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
0-3	553		3-6	551	
6-9	591	Manager Mar	9-12	633	
12-15	623		15-18	661	
18-21	693		21-24	710	
24-27	743		27-30	771	
30-33	810		33-36	845	

Tomislav Razum

 Tablica 15. Prikaz 1. traga trošenja na ispitnom uzorku A3_500C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [μm]	Slika mjernog mjesta
36-39	858		39-42	894	
42-45	930		45-48	951	
48-51	985		51-54	1022	
54-57	1045		57-60	1278	
60-63	1319		63-66	1387	
66-69	1433		69-72	1484	

Tablica 15. Prikaz 1. traga trošenja na ispitnom uzorku A3_500C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
72-75	1516		75-78	1577	
78-80	1612		Povećanje 50x		

Tomislav Razum

 Tomistav Razum

 Tablica 16. Prikaz 2. traga trošenja na ispitnom uzorku A3_500C

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
0-3	465		3-6	678	
6-9	522		9-12	584	
12-15	581		15-18	691	
18-21	705		21-24	712	
24-27	748	a provinsi se	27-30	764	
30-33	778		33-36	855	

Tomislav Razum

Tablica 16. Prikaz 2. traga trošenja na ispitnom uzorku A3_500C (nastavak)

Udaljenost [mm]	Širina traga trošenja	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja	Slika mjernog mjesta
36-39	[µm] 862		39-42	[μm] 901	
42-45	926		45-48	934	
48-51	983		51-54	1010	
54-57	1117		57-60	1249	
60-63	1306		63-66	1352	
66-69	1437		69-72	1466	

Tablica 16. Prikaz 2. traga trošenja na ispitnom uzorku A3_500C (nastavak)

Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta	Udaljenost [mm]	Širina traga trošenja [µm]	Slika mjernog mjesta
72-75	1528		75-78	1566	
78-80	1623		Povećanje 50x		