Proračun koncentracija naprezanja strukture tankera korištenjem metode konačnih elemenata

Kosanović, Nenad

Undergraduate thesis / Završni rad

2012

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:557512

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-31

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Nenad Kosanović

Zagreb, 2012. godina.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentor:

Doc. dr. sc. Jerolim Andrić, dipl. ing.

Student:

Nenad Kosanović

Zagreb, 2012. godina.

Izjavljujem da sam ovaj rad izradio samostalno, koristeći stečena znanja tijekom studija na Fakultetu strojarstva i brodogradnje Sveučilišta u Zagrebu, služeći se navedenom literaturom i uz stručnu pomoć Doc. dr. sc. Jerolima Andrića.

Zahvaljujem se mentoru, Doc. dr. sc. Jerolimu Andriću na pruženoj pomoći i stručnom vodstvu tijekom izrade ovog rada.

Zahvaljujem se svim profesorima i asistentima na prenesenom znanju i na profesionalnoj suradnji tokom studija.

Zahvaljujem se kolegama koji su mi pružali stručnu pomoć kada je to bilo potrebno.

Zahvaljujem se svojim roditeljima koji su mi bili glavna financijska potpora.

Zahvaljujem se svojoj djevojci koja mi je bila glavna podrška u teškim trenucima.

Nenad Kosanović

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE Središnje povjerenstvo za završne i diplomske ispite Povjerenstvo za završne i diplomske ispite studija brodogradnje

Sveuči	lište u Zagrebu				
Fakultet stro	jarstva i brodogradnje				
Datum Prilog					
Klasa:					
Ur.broj:					

ZAVRŠNI ZADATAK

Student:

Nenad Kosanović

Mat. br.: 0069033030

Naslov rada na hrvatskom jeziku: Naslov rada na engleskom jeziku: Opis zadatka:

PRORAČUN KONCENTRACIJA NAPREZANJA STRUKTURE TANKERA KORIŠTENJEM METODE KONAČNIH ELEMENATA STRESS CONCENTRATION CALCULATION OF A TANKER STRUCTURE BY FINITE ELEMENT METHOD

Izvršiti analizu karakterističnih strukturnih detalja tankera definiranog prema priloženoj dokumentaciji brodogradilišta 3.MAJ, koristeći tehniku fine mreže konačnih elemenata (MKE). Proračun provesti prema *novim* unificiranim Pravilima za tankerske konstrukcije IACS CSR(T).

U okviru završnog zadatka potrebno je:

- 1. Analizirati dostupnu literaturu i upoznati se s Pravilima IACS CSR(T). Posebnu pažnju posvetiti proračunu koncentracije naprezanja u kritičnim strukturnim detaljima prema Appendix B (*Fine mesh FE analysis*).
- 2. Analizirati postojeći MKE model tankerske konstrukcije (dostupan na FSB-u), te za identificirane kritične detalje izvršiti profinjenije MKE mreže sukladno Pravilima IACS CSR(T)-App.B.
- 3. Provesti proračun odziva za definirane slučajeve opterećenja. Postupak provesti koristeći računalne programe (MAESTRO, FEMAP) dostupne na FSB-u.
- Izvršiti analizu podobnosti razmatranih strukturnih detalja prema kriterijima definiranim u Pravilima IACS CSR(T)-App.B. U slučaju nezadovoljenja predložiti strukturno rješenje koje zadovoljava razmatrane kriterije.

Zadatak zadan:

14. studenog 2011.

Zadatak zadao:

Doc.dr. sc. Jerolim Andrić

Rok predaje rada: 1. rok: 10. veljače 2012. 2. rok: 6. srpnja 2012. 3. rok: 14. rujna 2012. Predviđeni datumi obrane: 1. rok: 15., 16. i 17. veljače 2012. 2. rok: 9., 10. i 11. srpnja 2012. 3. rok: 19., 20. i 21. rujna 2012. Predsjednik Povjerenstva:

dr. sc. Kalman Ziha

SADRŽAJ

1.	UVOD	1
2.	PROJEKTIRANI TANKER	3
3.	ANALIZA IACS (CSR-T) PRAVILA	4
	3.1 Analiza metodom konačnih elemenata globalnog modela teretnog prostora	4
	3.1.1 Opterećenje globalnog MKE modela	5
	3.1.2 Rubni uvjeti globalnog modela	8
	3.2 Analiza kritičnih detalja strukture	10
4.	ANALIZA POSTOJEĆEG GLOBALNOG (MKE) MODELA I IDENTIFIKACIJA KRITIČNIH MJESTA	12
5.	MODELIRANJE STRUKTURE TANKERA FINOM MKE MREŽOM	20
6.	PRORAČUN ODZIVA ZA DEFINIRANE SLUČAJEVE OPTEREĆENJA I PRIJEDLOG RIJEŠENJA	24
	6.1 Maksimalno dopuštena naprezanja u analizi fine mreže	24
	6.2 Detalj donjeg postolja uzdužne naborane pregrade	25
	6.3 Detalj spoja gornjeg postolja poprečne naborane pregrade i unutarnje oplate	
	dvoboka	31
ZA	KLJUČAK	43
Lľ	TERATURA	44

POPIS SLIKA

Slika 1. Pregled procesa projektiranja brodske konstrukcije [1]	2
Slika 2. FE model tri središnja tanka tereta [1]	4
Slika 3. FE model naborane poprečne pregrade [1]	5
Slika 4. Rubni uvjeti globalnog modela [1]	8
Slika 5. Zahtijevana područja fine mreže (označeno sivom bojom) [1]	11
Slika 6. Primjer fine mreže detalja donjeg postolja uzdužne naborane pregrade	11
Slika 7. Nacrt glavnog rebra izgrađenog broda [3]	12
Slika 8. Poprečna pregrada (frame 101/101 ⁺⁶⁰⁰) [3]	13
Slika 9. 3-D pogled na FE model tri središnja tanka [2]	14
Slika 10. Statička i dinamička komponenta tlaka na vanjskoj oplati dna za LC1 [2]	16
Slika 11. Von Mises naprezanja središnjeg tanka za LC1 [2]	17
Slika 12. Von Mises naprezanja središnjeg tanka za LC12 [2]	19
Slika 13. Model donjeg postolja uzdužne naborane pregrade u programu FEMAP	21
Slika 14. Detalj donjeg postolja uzdužne naborane pregrade sa pridruženom mrežom	
konačnih elemenata	22
Slika 15. Model detalja spoja gornjeg postolja poprečne naborane pregrade i unutarnje	
oplate dvoboka u programu FEMAP	23
Slika 16. Detalj spoja gornjeg postolja poprečne naborane pregrade i unutarnje	
oplate dvoboka sa pridruženom mrežom konačnih elemenata	23
Slika 17. 3-D pogled na središnji tank s identificiranim kritičnim detaljem donjeg	
postolja uzdužne naborane pregrade	25
Slika 18. Prikaz "rigid splinea" donjeg postolja uzdužne naborane pregrade	26
Slika 19. Pomaci za LC1 (S+D)	28
Slika 20. Pomaci za LC13 (S+D)	28
Slika 21. Von Mises naprezanja za LC3 (S+D))	29
Slika 22. Von Mises naprezanja za LC13 (S)	29
Slika 23. 3-D pogled na središnji tank s analiziranim kritičnim detaljem spoja gornjeg	
postolja poprečne naborane pregrade i dvoboka	31
Slika 24. Prikaz "rigid splinea" spoja gornjeg postolja poprečne naborane	
pregrade i dvoboka	31

Slika 25. Pomaci za LC2 (S+D)	32
Slika 26. Pomaci za LC11 (S+D)	32
Slika 27. Pomaci za LC12 (S)	
Slika 28. Pomaci za LC13 (S)	
Slika 29. Von Mises naprezanja za LC3 (S+D)	34
Slika 30. Von Mises naprezanja za LC5 (S+D)	34
Slika 31. Von Mises naprezanja za LC7 (S+D)	35
Slika 32. Von Mises naprezanja za LC8 (S+D)	35
Slika 33. Von Mises naprezanja za LC12 (S)	
Slika 34. Von Mises naprezanja za LC13 (S)	
Slika 35. Debljine materijala zadane projektom	
Slika 36. Predložene debljine materijala	
Slika 37. Vrste materijala zadane projektom	40
Slika 38. Predložene vrste materijala	40

POPIS TABLICA

Tablica 1. Stanja krcanja za tanker s jednom uzdužnom pregradom [1]	6
Tablica 2. Tablica korelacijskih koeficijenata za dinamička opterećenja [1]	7
Tablica 3. Zahtijevani rubni uvjeti za krajeve modela prema Pravilima [1]	9
Tablica 4. Tablica slučajeva opterećenja LC1-14 sa dinamičkim komponentama	15
Tablica 5. Vrijednosti faktora k za različite materijale [1]	24
Tablica 6. Maksimalno dopuštena von Mises naprezanja po materijalu	25
Tablica 7. Najveća von Mises naprezanja za razna stanja krcanja	30
Tablica 8. Usporedba očitanih i dopuštenih von Mises naprezanja kritičnih područja	
donjeg postolja uzdužne naborane pregrade	30
Tablica 9. Najveća von Mises naprezanja za razna stanja krcanja	37
Tablica 10. Usporedba očitanih i dopuštenih von Mises naprezanja spoja gornjeg	
postolja poprečne naborane pregrade i dvoboka	
Tablica 11. Predložene promjene u strukturi	41
Tablica 12 Usporedba očitanih i dopuštenih von Mises naprezanja spoja gornjeg	
postolja i dvoboka nakon predloženog rješenja	42

POPIS OZNAKA

Oznaka	Jedinica	Opis
As-net50	N/mm ²	Smična površina opločenja uzdužnog elementa
υ		Poissonov koeficijent
\mathbf{l}_{tk}	mm	Duljina tanka (između poprečnih pregrada)
n		Broj čvorova kojima su opruge vezane za strukturu
c	N/mm ²	Koeficijent linearnog rastezanja opruge
E	N/mm ²	Youngov modul
σ_{dop}	N/mm ²	Dopušteno naprezanje
t _{cor}	mm	Korozijski odbitak
σ_{vm}	N/mm ²	Von Mises naprezanje
σ_{x}	N/mm ²	Naprezanje u smjeru osi x
σ_y	N/mm ²	Naprezanje u smjeru osi y
$ au_{_{xy}}$	N/mm ²	Smično naprezanje
λ_y		Faktor iskoristivosti
r	mm	Polumjer otvora
h ₀	mm	Visina otvora
l_0	mm	Širina otvora
k		Faktor materijala
h	mm	Visina elementa u kojem je otvor

SAŽETAK

U uvodnom dijelu završnog rada dan je kratki opis novih unificiranih pravila za projektiranje i gradnju tankera s dvostrukom oplatom IACS CSR(T). Navedene su današnje članice IACS-a, kratki povijesni razvoj, te cilj uvođenja novih pravila. Prikazan je i pregled procesa projektiranja brodske konstrukcije, gdje je naglašeno područje koje obuhvaća ovaj rad.

Zatim slijedi upoznavanje s novim Pravilima. Kratko su opisani zahtjevi koje nalažu nova Pravila gdje je utvrđeno da je potrebno analizirati globalni model tri središnja tanka, te kritične detalje strukture. Pravilima su definirana opterećenja i rubni uvjeti primijenjeni na samom modelu.

U analizi globalnog modela, modeliranog programom MAESTRO, dostupnog na FSBu identificirani su kritični detalji strukture za koje je potrebno napraviti profinjenje mreže konačnih elemenata kako bi se odredila točnija razina koncentracije naprezanja u razmatranom detalju.

Programom FEMAP su modelirani kritični detalji strukture, pridružena su im svojstva materijala te je definirana fina mreža konačnih elemenata prema zahtjevima Pravila. Potom su detalji fine mreže pridruženi globalnom modelu u program MAESTRO.

Pristupilo se proračunu odziva kritičnih detalja uklopljenih u globalni model za definirana opterećenja, gdje je utvrđeno da su naprezanja u pojedinim elementima strukture veća od dopuštenih. Za takve detalje dan je prijedlog rješenja koji zadovoljava zadane strukturne kriterije.

1. UVOD

Ovaj završni rad obuhvaća proračun koncentracija naprezanja strukture tankera pomoću metode konačnih elemenata (MKE). Bilo je potrebno provesti analizu strukturnih detalja tankera definiranog prema priloženoj dokumentaciji brodogradilišta 3. MAJ, koristeći tehniku fine mreže konačnih elemenata. Proračun se provodio prema novim unificiranim pravilima za tankerske konstrukcije IACS CSR(T) [1], u daljnjem tekstu Pravila.

Krajem 2005. prihvaćena su CSR (*Comon Structural Rules*) pravila za gradnju tankera i brodova za rasuti teret od strane IACS-a (*International Association of Classification Society*), a polovicom 2006. su se Pravila počela i primjenjivati.

Cilj novih unificiranih (od strane vodećih svjetskih klasifikacijskih društava) i strožih zahtijeva je smanjiti rizik od oštećenja brodske konstrukcije, osiguranja postojanosti brodske konstrukcije kroz životni vijek broda, kao i povećanje sigurnosti posade, putnika i ostalih sudionika u brodskom prometu. Također je i bitno smanjen rizik od zagađenja morske flore i faune.

Današnje članice IACS-a:

- Lloyd`s Register of shipping (LR);
- Bureau Veritas (BV);
- Registro Italiano Navale (RINA);
- American Bureau of Shipping (ABS);
- Det Norske Veritas (DNV);
- Germanischer Lloyd (GL);
- Nippon Kaiji Kyokai (NKK);
- Russian Maritime Register of Shipping (RS);
- Polish Register of Shipping (PRS);
- Croatian Register of Shipping (CRS);
- China Classification Society (CCS);
- Korean Register of Shipping (KR);
- Indian Register of shipping (IRS).

U ovom radu posebna pažnja posvećena je proračunu koncentracija naprezanja u kritičnim strukturnim detaljima definiranim prema pravilima za strukturnu analizu, Prilog B (Local Fine Mesh Structural Strength Analysis) [1].

Proračun se provodio za definirane slučajeve opterećenja, korištenjem računalnih programa MAESTRO [v8.9.3], FEMAP [v10.2.0] dostupnih na FSB-u.

Slika 1 prikazuje pregled procesa projektiranja brodske konstrukcije, prema [1]. Plavom bojom je označeno područje analize globalnog modela dostupnog na FSB-u, koji je poslužio kao osnova ovom završnom radu. Crvenom bojom je označeno područje analize kritičnih detalja koju obuhvaća ovaj završni rad. Analiza kritičnih detalja strukture provodi se u kasnijoj fazi projektiranja broda.

2. PROJEKTIRANI TANKER

Glavne karakteristike razmatranog broda dane su u nastavku:

Length overall	: 195.30 m
Length between perpendiculars	: 187.30 m
Breadth, moulded	: 32.20 m
Depth, moulded	: 17.18 m
Design draft	: 12.00 m
Scantling draft	: 12.50 m
Deadweight at design draft	: 49 000 t
Deadweight at scantling draft	: 51 800 t
Max. Service speed	: 15.0 kn
Class:	DNV, CRS

Ship compliant with IACS Common Structural Rules for Tankers

3. ANALIZA IACS (CSR-T) PRAVILA

Područje djelovanja Pravila pokriva cijelu strukturu trupa, uključujući pramčani i krmeni pik, vanjsku oplatu trupa broda, poprečne i uzdužne pregrade, te elemente primarne čvrstoće, poprečne i lokalne čvrstoće. Pravila se odnose na tankere za prijevoz sirove nafte i naftnih prerađevina, duljine veće od 150 m.

Pravila nalažu strukturnu analizu:

-globalnog MKE modela, koji obuhvaća tri središnja tanka;

-fini MKE model, za identificirane kritične detalje;

3.1 Analiza metodom konačnih elemenata globalnog modela teretnog prostora

Cilj strukturne analize je provjeriti razinu naprezanja strukturnih elemenata, te izvijanje oplate i ukrepa uslijed djelovanja statičkih i dinamičkih opterećenja.

Pravila zahtijevaju analizu modela tri središnja tanka tereta kako je prikazano na Slici 2. Veličina konačnih elemenata i gustoća mreže određeni su Pravilima [1].

Slika 2. FE model tri središnja tanka tereta [1]

Slika 3. FE model naborane poprečne pregrade [1]

3.1.1 Opterećenje globalnog MKE modela

Opterećenja su rastavljena na dvije glavne komponente: statička i dinamička opterećenja. Statička opterećenja (na mirnoj vodi) predstavljaju opterećenja vezana uz stanje krcanja broda (npr. laki brod, teret, balast). Dinamička opterećenja (inducirana valovima) predstavljaju opterećenja vezana za:

- globalne momente i sile;
- dinamičke tlakove;
- ubrzanja uslijed gibanja broda na valovima;

Pravila propisuju stanja krcanja (Tablica 1) i obrasce punjenja tankova, kao i odgovarajuća dinamička opterećenja koja je potrebno primijeniti.

U Tablici 2 dani su korelacijski koeficijenti dinamičkih opterećenja zahtijevani u Tablici 1. Koeficijenti su definirani za različite slučajeve nailaženja valova na brod.

A PRENIDIV B	STRUCTURAL	STRENCTH	ASSESSMENT
APPENDIX D	- SIRUCIURAL	JIKENGIH	ASSESSMENT

Common Structural Rules for Oil Tankers

Table B.2.4 Load Cases for Tankers with One Centreline Oil-tight Longitudinal Bulkhead									
			C+:11	Wator T	aben	Dynamic load cases			
Loading	Figure			% of	% of	Strength Strength assessment (Ia) Shear loads (Ib)		ssessment ull girder ads (1b)	
Pattern			Draught	Perm. SWBM ⁽²⁾	Perm. SWSF ⁽²⁾	Midship region	Forward region	Midship and aft regions	
Design	load combinatio	on S + D (Sea-g	oing loa	d cases)					
		P		100% (sag)	See note 3	1	Λ.	١	
B1		S	0.9 T _{sc}	100% (hog)	100% (-ve fwd) See note 4	2, 5a	N	\	
		P	00.0000	100% (sag)	See note 3	1	λ	١	
B2 (6)		S	0.9 T _{sc}	100% (hog)	100% (-ve fwd) See note 4	2, 5b	λ	\	
B3		P	0.9 T -	100%	100% (-ve fwd) See note 5	2	4	2	
55		S	0.7 1 ₅₀	(hog)	100% (-ve fwd) See note 4	5a, 5b, 6a, 6b	Λ.	\	
B4		P S	0.6 Tsc	100% (sag)	75% (+ve fwd) See note 4	1, 5a	Ν	١	
B5 (6)		P S	0.6 T _{sc}	100% (sag)	75% (+ve fwd) See note 4	1, 5b	λ	١	
B6		P	0.6 T _{sc}	100%	100% (+ve fwd) See note 5	1	3	1	
		S		(sag)	(+ve fwd) See note 4	5a, 5b	λ.	\	
B7 (7)		P S	T_{bal-em}	100% (sag)	100% (+ve fwd) See note 4	1	λ	١	
Design	load combinatio	on S (Harbour a	and tank	testing	load case	s)			
BS (8)		P S	1/3T _{sc}	100% (sag)	100% (+ve fwd) See note 5	Applicable assessment (see 1(a)) an assessment shear loads	to strength of midship ad strength against hul (see 1(b))	region l girder	
B9 (8)		P S	$1/3T_{sc}$	100% (sag)	75% (+ve fwd) See note 4	Only applicable to strength assessment of midship region (see note 1(a))			
B10 (6, 8)		P	$1/3T_{sc}$	100% (sag)	75% (+ve fwd) See note 4	Only applicable to strength assessment of midship region (see note 1(a))			
B11 ⁽⁸⁾		P S	T _{sc}	100% (Hog)	100% (-ve fwd) See note 5	Applicable assessment (see 1(a)) an assessment shear loads	to strength of midship d strength against hul (see 1(b))	region l girder	

Table 7.6.2										
Dynamic Load Cases for Strength Assessment (by FEM)										
Wave direction				Head	l sea		Bear	n sea	Obliq	ue sea
Max response			M_{wv}	M_{zvv}	Q_{wv}	Q_{wv}			M_{wv-h}	
			(Sagging)	(Hogging)	(Sagging)	(Hogging)		-	(Hogging)	
Dynamic Load (lase		1	2	3	4	5a	5b	6a	6b
	M_{wv}	fmv	-1.0	1.0	-1.0	1.0	0.0	0.0	0.4	0.4
Global loads	Q_{wv}	fqu	1.0	-1.0	1.0	-1.0	0.0	0.0	0.0	0.0
	M_{ww-h}	fmh	0.0	0.0	0.0	0.0	0.0	0.0	1.0	-1.0
	a_v	fv	0.5	-0.5	0.3	-0.3	1.0	1.0	-0.1	-0.1
Accelerations	at	ft	0.0	0.0	0.0	0.0	-0.6	0.6	0.0	0.0
	amg	fing	-0.6	0.6	-0.6	0.6	-0.5	-0.5	0.5	0.5
Dynamic wave	P_{WL}	fwl	-0.3	0.3	0.1	-0.1	1.0	0.4	0.6	0.0
pressure for	$P_{\it bilge}$	fbilge	-0.3	0.3	0.1	-0.1	1.0	0.4	0.4	0.0
port side	Pctr	fetr	-0.7	0.7	0.3	-0.3	0.9	0.9	0.5	0.5
Dynamic wave	PWL	fwl	-0.3	0.3	0.1	-0.1	0.4	1.0	0.0	0.6
pressure for	$P_{\it bilge}$	fbilge	-0.3	0.3	0.1	-0.1	0.4	1.0	0.0	0.4
starboard side	Pctr	f _{ctr}	-0.7	0.7	0.3	-0.3	0.9	0.9	0.5	0.5
Where:				•						
Symbols	are as defi	ned in 3.3,	, 6.3.5.1, Table 7.6	.1 and below:						
f_{v-mid} dynamic load combination factor associated with the vertical acceleration of a centre cargo and ballast tank										
fv-pt	<i>f_{v-pt}</i> dynamic load combination factor associated with the vertical acceleration of a port cargo and side ballast tank									
fw-stb	d	lynamic l	oad combinatio	n factor associa	ted with the ve	rtical acceleratio	n of a starboard	l cargo and side	ballast tank	
Note:										
1. Load parameters and locations to be used for the calculations are to be taken as specified in Appendix B/2.4.1										

Tablica 2. Tablica korelacijskih koeficijenata za dinamička opterećenja [1]

3.1.2 Rubni uvjeti globalnog modela

Da bi se dobili realni rezultati odziva potrebno je definirati rubne uvjete kako bi spriječili pomake u određenim točkama. Na Slici 4 su prikazane opruge smještene u globalnom koordinatnom sustavu koje predstavljaju rubne uvjete.

Koeficijent linearnog rastezanja opruge računa se prema izrazu iz [1].

$$c = \left(\frac{E}{1+\nu}\right) \frac{A_{s-net50}}{l_{tk} n} = 0.77 \frac{A_{s-net50}E}{l_{tk} n} \qquad \text{N/mm}$$

gdje je:

A_{s-net50} – smična površina opločenja uzdužnog elementa [N/mm²]

υ - Poissonov koeficijent

l_{tk} - duljina tanka (između poprečnih pregrada) [mm]

E - Youngov modul elastičnosti [N/mm²]

n - broj čvorova kojima su opruge vezane za strukturu

Slika 4. Rubni uvjeti globalnog modela [1]

Table B.2.9 Boundary Constraints at Model Ends								
.		Translation	I		Rotation			
Location	δ_x	δ_y	δ_z	θ_x θ_y		θ_z		
		Aft E	nd					
Aft end (all longitudinal elements)	RL	-	-	-	RL	RL		
Independent Point aft end, see <i>Figure</i> <i>B.2.13</i>	Fix	-	-	-	Mv-end	Mh-end		
Deck, inner bottom and outer shell	-	Springs	-	-	-	-		
Side, inner skin and longitudinal bulkheads	-	-	Springs	-	-	-		
		Fore	End					
Fore end (all longitudinal elements)	RL	-	-	-	RL	RL		
Independent point fore end, see <i>Figure</i> B.2.13	-	-	-	-	M _{v-end}	M _{h-end}		
Deck, inner bottom and - Sp outer shell			-	-	-	-		
Side, inner skin and longitudinal bulkheads	-	-	Springs	-	-	-		
Where:	combined (free							
RL nodal points neutral axis o	of all longitu n centreline	e) 1dinal eleme	nts rigidly li	nked to ind	ependent poi	int at		
 Note All translation and rotation displacements are in accordance with the global coordinate system defined in <i>Section 4/1.4</i>. Where <i>M</i>_{h-end} is not applied, the independent points at the fore and aft ends are to be free in θ₂. Where <i>M</i>_{h-end} is not applied, the independent points at the fore and aft ends are to be free in 								
 θ_y. Where no bending m be free in θ_y and θ_z. Where bending mom ends are to be free in 	oment is app ent is applie the correspo	plied, the ind d as nodal fo inding degre	lependent porces, the inc	oints at the f lependent p n of rotation	fore and aft e points at the f is (i.e. 0 _y and/	nds are to ore and aft ′ or 0z).		

Tablica 3. Zahtijevani rubni uvjeti za krajeve modela prema Pravilima [1]

3.2 Analiza kritičnih detalja strukture

Stvarnu razinu koncentracije naprezanja nije moguće dobiti iz globalnog FE modela gdje je nivo naprezanja na razini nominalnih vrijednosti. U tu svrhu grade se detaljniji fini FE modeli čiji je model krutosti mnogo točniji i precizniji od ekvivalentnih modela implementiranih u globalnom modelu. Oni omogućavaju preciznije određivanje polja naprezanja u neposrednoj blizini promatranog dijela strukturnog detalja.

U ovom radu posebna pažnja posvećena je proračunu koncentracija naprezanja u kritičnim strukturnim detaljima, pa je i u skladu s tim bilo potrebno detaljnije analizirati (IACS CSR-T) pravila *Appendix B (Local Fine Mesh Structural Strength Analysis)*.

Prema zahtjevima Pravila postoje nekoliko područja koja moraju biti analizirana finom mrežom konačnih elemenata:

1) Područja koja su sustavno usitnjena: zgibovi uzvojnog tanka, spojevi uzdužnjaka palube i dvodna s vertikalnim ukrepama poprečnih pregrada, te korugirane pregrade (Slika 5);

2) Vrhovi koljena okvirnih rebara, otvori na poprečnoj strukturi i uzdužnim provezama;

U Pravilima su određeni zahtjevi za područja "fine" mreže i područja neposredno izvan "fine" mreže konačnih elemenata [1].

U zoni "fine" mreže postavljeni su zahtjevi za veličinu konačnih elemenata:

- oplata u zoni "fine" mreže modelira se pločastim konačnim elementima veličine 50x50mm;
- zahtijevano je minimalno 10 elemenata u svim smjerovima od polazne točke;
- omjer stranica elemenata mora biti što bliži 1.;
- uzdužnjaci se modeliraju korištenjem pločastih konačnih elemenata;
- u zoni "fine" mreže primjenjuje se pola dodatka za koroziju, 0,5tcor;
- dijafragma unutar donjeg postolja modelirana pločastim konačnim elementima;
- prirubnice uzdužnjaka unutar donjeg postolja modelirane štapnim konačnim elementima;

Izvan zone "fine" mreže zahtjevi su sljedeći:

- potrebno je ostvariti postepeni glatki prijelaz prema većim elementima;
- omjer stranica elemenata je približno 3;
- kut unutar elementa mora biti ne manji od 60° i ne veći od 120°;

- primjenjuje se pola dodatka za koroziju;
- -oplata se modelira pločastim konačnim elementima;
- -uzdužnjaci se modeliraju grednim konačnim elementima;

Slika 5. Zahtijevana područja fine mreže (označeno sivom bojom) [1]

Slika 6. Primjer fine mreže detalja donjeg postolja uzdužne naborane pregrade [1]

4. ANALIZA POSTOJEĆEG GLOBALNOG (MKE) MODELA I IDENTIFIKACIJA KRITIČNIH MJESTA

Ovaj rad temelji se na već postojećem globalnom (MKE) modelu koji je izrađen programom MAESTRO stoga će sami model biti ukratko opisan [2]. Osnovna ideja analize postojećeg globalnog modela je identificirati kritična mjesta, kako bi se moglo pristupiti modeliranju fine mreže konačnih elemenata za identificirane detalje.

Globalni MKE model je izrađen na temelju postojeće dokumentacije broda [3] izgrađenom u brodogradilištu 3.MAJ prema DNV, Yard no. 712, 713.

Slika 7. Nacrt glavnog rebra izgrađenog broda [3]

Slika 8. Poprečna pregrada (frame 101/101⁺⁶⁰⁰) [3]

Kao što je opisano u poglavlju 3, globalni model se sastoji od tri središnja tanka (3,4,5) koji je izrađen u programu MAESTRO,

Za izradu modela korišteni su četverokutni i trokutasti pločasti konačni elementi za oplatu palube, dna, dvodna i pregrada, te gredni konačni elementi za uzdužnjake, poprečnjake i ukrepe.

Slika 9. 3-D pogled na FE model tri središnja tanka [2]

Odobreni materijal korišten za izradu:

- ST 24 obični brodograđevni čelik $E=2,04 \times 10^5 N/mm^2$, $\sigma_{dop}=235 N/mm^2$
- AH 32 (NV 32)– čelik povišene čvrstoće i $E=2,06 \times 10^5 \text{ N/mm}^2$, $\sigma_{dop}=315 \text{ N/mm}^2$
- AH 36 (NV 36)- čelik povišene čvrstoće i $E=2,06 \times 10^5 N/mm^2$, $\sigma_{dop}=355 N/mm^2$

U skladu s Pravilima [1] definirana su statička i dinamička opterećenja za 14 slučajeva opterećenja LC1 do LC14, kao i ciljane vrijednosti globalnih momenata savijanja (statičkih+valnih) i poprečnih sila za svaki. Slučajevi opterećenja LC1 do LC11 definirana su kao statička + dinamička (S+D) i simuliraju opterećenja broda tijekom njegove eksploatacije, dok LC12 do LC14 imaju samo statičku komponentu (S) (bez dodatnih akceleracija).

Load	Loading	Figure	Acc	elerations [m	/s ²]	Bending moments ((target value) [kNm]	Shear force	
Case	Pattern	1.500	Longitudinal	Transverse	Vertical	Vertical	Horizontal	(target value) [kN]	
Des	sign load o	combination S + D (Sea-goi	ng load cases)	C.					
1	Bl	P s	-0.35		2.01	-2829000	4	18330	
2	Bl	P 5	0.35	-	-2.01	2830000	-	-113300	
3	Bl		-0.23	-1.41	3.26	1157000		-95000	
4	B3		0.35	2	-2.01	2830000		-113300	
5	B3	P S	-0.23	-1.41	3.19	1157000	-	-95000	
6	B3		0.29		-0.40	1826000	1208000	-95000	
7	B4		-0.36		2.02	-2829000	2	89580	
8	B4		-0.24	-1.55	3.36	-1051000	2	71250	
9	B6		-0.36		2.02	-2829000	-	113300	
10	B6		-0.24	-1.55	3.19	-1051000	-	95000	
11	B 7		-0.57	-	2.01	-2829000	a.	113300	
Des	sign load o	ombination S (Harbour and	tank testing 1	oad cases)					
12	B8		-	-	1	-1994000	-	104300	
13	В9		la.	-	-	-1994000		78220	
14	B11			a		1994000	51	-104300	

Tablica 4. Tablica slučajeva opterećenja LC1-14 sa dinamičkim komponentama

Slika 10. Statička i dinamička komponenta tlaka na vanjskoj oplati dna za LC1 [2]

Nakon definiranja opterećenja proveo se postupak balansiranja modela i ostvarivanja ciljanih vrijednosti globalnih momenata savijanja i poprečnih sila (prema Pravilima), te se proveo proračun naprezanja i pomaka modela.

Program MAESTRO jasno predočava globalne odzive uslijed zadanih opterećenja. Na Slici 11 su prikazana von Mises naprezanja promatranog središnjeg tanka za jedno stanje krcanja (LC1).

Slika 11. Von Mises naprezanja središnjeg tanka za LC1 [2]

Iz Slike 11 je vidljivo da su povećana naprezanja u elementima donjeg postolja uzdužne naborane pregrade. Pregrade donjeg postolja gdje se javljaju povećana naprezanja imaju u sebi provlaku dimenzija 800x600 mm. U MAESTRO modelu je takav element zamijenjen ekvivalentnom debljinom ploče, dok je kod analize profinjenom mrežom taj dio strukture modeliran sa provlakom, kako je to i projektom određeno.

Pravila definiraju kriterij po kojem se utvrđuje dali je potrebno modelirati model fine mreže oko otvora u nosivim elementima. Model fine mreže je potreban ukoliko vrijedi:

 $\lambda_y > 1,7$ za opterećenja (S+D)

 $\lambda_y > 1,36$ za opterećenja (S)

 λ_y - faktor iskoristivosti koji se računa prema [1]

$$\begin{split} \lambda_y &= 0.85 C_h \bigg(\bigg| \sigma_x + \sigma_y \bigg| + \bigg(2 + \bigg(\frac{I_0}{2r} \bigg)^{0.74} + \bigg(\frac{h_0}{2r} \bigg)^{0.74} \bigg) \bigg| \tau_{xy} \bigg| \bigg) \frac{k}{235} \\ C_h &= 1.0 - 0.23 \bigg(\frac{h_0}{h} \bigg) + 2.12 \bigg(\frac{h_0}{h} \bigg)^2 \end{split}$$

 λ_y =1,38 za slučaj opterećenja (S+D)

 $\lambda_y = 1,31$ za slučaj opterećenja (S)

r – polumjer otvora, u mm

h₀ – visina otvora, u mm

 l_0 – širina otvora, u mm

- h visina elementa u kojem je otvor, u mm
- σ_x normalna naprezanja u smjeru osi x lokalnog koordinatnog sustava, u N/mm^2
- σ_{y} normalna naprezanja u smjeru osi y lokalnog koordinatnog sustava, u N/mm^{2}
- τ_{xy} posmična naprezanja očitana iz globalnog modela , u $N\!/mm^2$

k – faktor materijala

Izračunom je utvrđeno da je λ_y vrlo blizu zadanom kriteriju pa će za ovaj detalj biti potrebno napraviti model fine mreže.

Slika 12. Von Mises naprezanja središnjeg tanka za LC12 [2]

Na Slici 12 su prikazana von Mises naprezanja središnjeg tanka za jedan slučaj opterećenja. Pojava koncentracija naprezanja moguća je na području spoja gornjeg postolja poprečne naborane pregrade i unutarnje oplate dvoboka pa će taj detalj zahtijevati profinjenje mreže konačnih elemenata kako bi se dobili realni rezultati za zadana opterećenja. Analiza profinjenom mrežom ovog detalja je zahtijevana Pravilima [1].

5. MODELIRANJE STRUKTURE TANKERA FINOM MKE MREŽOM

Profinjenje mreže konačnih elemenata napravljen je programom FEMAP za dva detalja:

- 1. Detalj donjeg postolja uzdužne naborane pregrade;
- Detalj spoja gornjeg postolja poprečne naborane pregrade i unutarnje oplate dvoboka;

Kod modeliranja same geometrije modela trebalo je obratiti pažnju na nekoliko stvari kao npr:

- 1. Geometrija modela u FEMAPU odgovara geometriji globalnog modela;
- 2. Definirani materijali sukladni materijalima globalnog modela;
- 3. Zadane debljine oplate i nosača sukladne debljinama globalnog modela;

Da bi se pristupilo modeliranju geometrije potrebno je najprije iz globalnog modela u programu MAESTRO očitati koordinate točaka elemenata koji će predstavljati geometriju modela fine mreže. Nakon očitanja koordinata iz globalnog modela pristupilo se modeliranju geometrije. Geometrija je generirana plohama na način da su najprije unesene koordinate točaka "point", zatim su točke povezane linijama "curve", a nakon toga su linije povezane u plohu naredbom "extrude". Na Slici 13 je prikazan 3-D pogled na generiranu geometriju modela donjeg postolja uzdužne naborane pregrade u programu FEMAP.

Slika 13. Model donjeg postolja uzdužne naborane pregrade u programu FEMAP

Nakon generiranja geometrije, modelu je potrebno pridružiti finu mrežu konačnih elemenata. Mreža konačnih elemenata se definira za svaku plohu tako da se prvo upiše željena dimenzija konačnog elementa fine mreže što je određeno Pravilima [1]. Zatim se mreža konačnih elemenata, debljina i materijal pridružuje svakoj plohi. Nakon pridruživanja mreže konačnih elemenata potrebno je spojiti čvorove na slobodnim rubovima "free edges" kako bi se pomaci jednog čvora prenijeli na drugi. Na Slici 14 je prikazan model sa pridruženom mrežom konačnih elemenata.

Slika 14. Detalj donjeg postolja uzdužne naborane pregrade sa pridruženom mrežom konačnih elemenata

Nakon generiranja mreže konačnih elemenata potrebno je napraviti prijenos "export" podataka u MAESTRO-u razumljivom jeziku.

Na sličan način se pristupilo modeliranju detalja spoja gornjeg postolja poprečne naborane pregrade i unutarnje oplate dvoboka.

Slika 15. Model detalja spoja gornjeg postolja poprečne naborane pregrade i unutarnje oplate dvoboka u programu FEMAP

Slika 16. Detalj spoja gornjeg postolja poprečne naborane pregrade i unutarnje oplate dvoboka sa pridruženom mrežom konačnih elemenata

6. PRORAČUN ODZIVA ZA DEFINIRANE SLUČAJEVE OPTEREĆENJA I PRIJEDLOG RIJEŠENJA

6.1 Maksimalno dopuštena naprezanja u analizi fine mreže

Proračun se provodi prema pravilima IACS CSR-T gdje vrijedi:

$$\lambda_y = \frac{k \cdot \sigma_{vm}}{235}$$

 λ_y -faktor iskoristivosti koji se računa prema [1], koji mora biti manji od dolje definiranih

 $\lambda_y \leq 1,7$ kad se element nalazi dalje od zavara za kombinaciju opterećenja S+D

 $\lambda_y \leq 1,36$ kad se element nalazi dalje od zavara; za opterećenje S

 $\lambda_y \leq 1,5$ kad se element nalazi uz zavar; za kombinaciju opterećenja S+D

 $\lambda_y \leq 1,2$ kad se element nalazi uz zavar; za opterećenje S

S+D-kombinacija statičkog i dinamičkog opterećenja (LC1 do LC11)

S-statičko opterećenje (LC12 do LC14)

$$\sigma_{vm=\sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2}$$

 σ_{vm} -Von Mises naprezanja za različite slučajeve opterećenja, očitane u središtu elementa

k-faktor materijala

Table 6.1.1	
Values of <i>k</i>	
Specified minimum yield stress, N/mm ²	k
235	1.00
265	0.93
315	0.78
340	0.74
355	0.72
390	0.68
Note	
1. Intermediate values are to be calculated by linear	interpolation.

Tablica 5. Vrijednosti faktora *k* za različite materijale [1]

Na osnovu maksimalno dopuštenih λ_y i faktora materijala *k* proračunata su maksimalna dopuštena von Mises naprezanja koja su prikazana u Tablici 6.

		S	ST24	Ν	W32	NV36		
		$\frac{k=1,00}{blizu zavara} dalje od zavara b$		k=	0,78	k= 0,72		
				blizu zavara	dalje od zavara	blizu zavara	dalje od zavara	
S+D	λy	1,50	1,70	1,50	1,70	1,50	1,70	
	σvmdop [N/mm2]	352,50	399,50	451,92	512,18	489,58	554,86	
S	λy	1,20	1,36	1,20	1,36	1,20	1,36	
	σvmdop [N/mm2]	282,00	319,60	361,54	409,74	391,67	443,89	

Tablica 6. Maksimalno dopuštena von Mises naprezanja po materijalu

6.2 Detalj donjeg postolja uzdužne naborane pregrade

Potrebno je "exportirane" podatke iz FEMAP-a "importirati" u postojeći MKE model u program MAESTRO. Model fine mreže valja odgovarajuće smjestiti u globalni koordinatni sustav modela.

Slika 17. 3-D pogled na središnji tank s identificiranim kritičnim detaljem donjeg postolja uzdužne naborane pregrade

Najčešći model opterećivanja detaljnog FE modela sastoji se u prenošenju pomaka/rotacija iz globalnog modela kao rubnih uvjeta pomaka na ekvivalentnim čvorovima lokalnog detaljnog FE modela. Na taj način deformacije globalnog modela postaju "opterećenje" pod-modela. Ovakav postupak poznat je kao metoda pod-modela (*top-down approach*). Prijenos globalnih deformacija na lokalni pod-model obično je automatizirani postupak u većini programa za strukturnu analizu. Pomaci dodatnih čvorova na granicama detaljnog modela koji leže između čvorova prenesenih sa globalnog modela dobiju se interpolacijom (funkcijom "rigid spline" u programu MAESTRO).

Drugi način je da se fina mreža direktno inkorporira u globalni model postepenim prijelazom. Ovakav način daje najpouzdanije rezultate ali je nedostatak leži u povećanom vremenu računanja i povećanju stupnjeva slobode globalnog modela.

Slika 18. Prikaz "rigid splinea" donjeg postolja uzdužne naborane pregrade (crveno)

Za definirane slučajeve opterećenja (LC1-14) potrebno je oplati donjeg postolja i naboranoj pregradi dodati tlakove koji se javljaju uslijed dodatnih akceleracija i težine samog tereta.

Potom je proveden proračun modela fine mreže povezanog sa globalnim modelom grube mreže u programu MAESTRO. Detalj donjeg postolja promatran je za slučajeve opterećenja LC1, LC2, LC3, LC7, LC8 i LC13 jer su ovi slučajevi opterećenja definirani kao relevantni za analizu naprezanja u ovom detalju.

Fakultet strojarstva i brodogradnje

Slika 21. Von Mises naprezanja za LC3 (S+D)

Slika 22. Von Mises naprezanja za LC13 (S)

Vrsta	Stanje	Uzdužn	ijaci; ST24	Pregrada stule; NV36		
opterećenja	krcanja	blizu zavara	dalje od zavara	blizu zavara	dalje od zavara	
S+D	LC1	120	110	270	395	
	LC2	92	95	190	254	
	LC3	150	170	350	465	
	LC7	130	120	252	353	
	LC8	120	140	280	382	
S	LC13	90	95	260	340	

Nakon proračuna modela fine mreže pristupilo se analizi dobivenih rezultata.

Tablica 7. Najveća von Mises naprezanja za razna stanja krcanja

U Tablici 7 dana su najveća von Mises naprezanja u kritičnim područjima očitana iz programa MAESTRO za definirana stanja krcanja. Kritično područje se nalazi oko samog otvora provlake 800x600 na pregradi donjeg postolja, što je i vidljivo na Slikama 21 i 22. U Tablici 7 se vidi da su naprezanja znatno manja od dozvoljenih naprezanja određenih u Tablici 6. Usporedba očitanih i dopuštenih naprezanja prikazana je Tablicom 8.

Vrsta	Stanje	Uzdužn	ijaci; ST24	Pregrada stule; NV36			
opterećenja krcanja		blizu zavara	dalje od zavara	blizu zavara	dalje od zavara		
	LC1	120<352,5	110<399,5	270<489,58	395<554,86		
	LC2	92<352,5	95<399,5	190<489,58	254<554,86		
S+D	LC3	150<352,5	170<399,5	350<489,58	465<554,86		
	LC7	130<352,5	120<399,5	252<489,58	353<554,86		
	LC8	120<352,5	140<399,5	280<489,58	382<554,86		
S	LC13	90<282	95<319,6	260<391,66	340<443,88		

Tablica 8. Usporedba očitanih i dopuštenih von Mises naprezanja kritičnih područja donjeg postolja uzdužne naborane pregrade

Budući da su naprezanja znatno manja od dopuštenih, oplata i pregrade donjeg postolja uzdužne naborane pregrade mogle su se izvesti i od čelika NV32, gdje bi naprezanja i dalje bila u granici dopuštenih.

Sličnim pristupom je izvršena implementacija i detalja gornjeg postolja poprečne naborane pregrade i unutarnje oplate dvoboka.

Slika 23. 3-D pogled na središnji tank s analiziranim kritičnim detaljem spoja gornjeg postolja poprečne naborane pregrade i dvoboka

Slika 24. Prikaz "rigid splinea" spoja gornjeg postolja poprečne naborane pregrade i dvoboka (crveno)

Slika 27. Pomaci za LC12 (S)

Slika 28. Pomaci za LC13 (S)

Slika 29. Von Mises naprezanja za LC3 (S+D)

Slika 30. Von Mises naprezanja za LC5 (S+D)

Slika 31. Von Mises naprezanja za LC7 (S+D)

Fakultet strojarstva i brodogradnje

Slika 33. Von Mises naprezanja za LC12 (S)

Slika 34. Von Mises naprezanja za LC13 (S)

Nenad Kosanović

Vrsta	Stanje	Uzdužn	jaci; ST24	T pro	T profil; ST24		Proveza; ST24		Oplata stule; NV32		Korugacija; NV36	
opterećenja	krcanja	blizu zavara	dalje od zavara	blizu zavara	dalje od zavara							
	LC1	223	190	176	140	241	195	264	175	175	120	
	LC2	256	215	207	178	235	188	221	145	90	90	
	LC3	184	156	395	331	356	280	485	290	150	150	
	LC4	211	180	196	167	235	225	189	121	80	80	
S+D	LC5	150	150	368	309	337	237	431	255	135	135	
	LC6	175	145	252	215	217	180	280	160	105	105	
	LC7	285	230	379	324	331	285	433	275	150	130	
	LC8	199	135	395	335	360	309	463	261	174	120	
	LC9	233	201	367	301	310	260	415	260	140	119	
	LC10	250	213	375	317	344	290	421	260	169	121	
	LC11	230	211	401	240	345	296	448	277	143	121	
s	LC12	196	135	359	302	313	260	412	251	145	83	
	LC13	228	200	370	315	332	280	430	264	144	110	
	LC14	173	121	241	203	240	235	234	140	136	120	

Tablica 9. Najveća von Mises naprezanja za razna stanja krcanja

Vrsta	Stanje	T pro	T profil; ST24		Proveza; ST24		Oplata stule; NV32		
opterećenja	krcanja	blizu zavara	dalje od zavara	blizu zavara	dalje od zavara	blizu zavara	dalje od zavara		
	LC1	176	140	241	195	264	175		
	LC2	207	178	235	188	221	145		
	LC3	395>352,5	331	356>352,5	280	485>451,92	290	vidi sl 29	
	LC4	196	167	235	225	189	121		
S+D	LC5	368>352,5	309	337	237	431	255	vidi sl 30	
	LC6	252	215	217	180	280	160		
	LC7	379>352,5	324	331	285	433	275	vidi sl 31	
	LC8	395>352,5	335	360>352,5	309	443>451,92	261	vidi sl 32	
	LC9	367>352,5	301	310	260	415	260		
	LC10	375>352,5	317	344	290	421	260		
	LC11	401>352,5	240	345	296	448	277		
s	LC12	359>282	302	313>282	260	412>361,53	251	vidi sl 33	
	LC13	370>282	315	332>282	280	430>361,53	264	vidi sl 34	
	LC14	241	203	240	235	234	140		

U Tablici 9 dana su najveća von Mises naprezanja spoja gornjeg postolja poprečne naborane pregrade i dvoboka za razna stanja krcanja.

Vidljivo je da su naprezanja na kritičnim mjestima veća od dopuštenih što je prikazano Tablicom 10 (crvena boja), pa će biti potrebna promjena u samoj strukturi. Kritično mjesto gornjeg postolja, kao što je vidljivo iz Slika 29-34, je spoj jakog T700x13,5/150x12 profila, oplate gornjeg postolja i proveze.

Budući da naprezanja ne zadovoljavaju zadani kriterij $\sigma_{vm} < \sigma_{vmdop}$ predložene su slijedeće promjene, Tablica 11.

Zadano projektom	Predloženo rješenje
Oplata donjeg postolja debljine 11mm; NV32	Zakrpa debljine 14,5mm; NV32
T700x13,5/150x12; ST24	T700x13,5/150x12; NV36
Proveza debljine 10mm; ST24	Zakrpa debljine 10mm; NV32

Tablica 11. Predložene promjene u strukturi

Na Slikama 35-38 prikazane su debljine i vrste materijala zadane projektom i predložena rješenja. Na Slikama 37 i 38 definirani su slijedeći materijali:

- 1 Obični brodograđevni čelik ST24;
- 2 Čelik povišene čvrstoće NV32;
- 3 Čelik povišene čvrstoće NV36;

Tablica 10. Usporedba očitanih i dopuštenih von Mises naprezanja spoja gornjeg postolja poprečne naborane pregrade i dvoboka

Slika 36. Predložene debljine materijala

Slika 37. Vrste materijala zadane projektom

Slika 38. Predložene vrste materijala

Nakon predloženog rješenja ponovo se pristupa proračunu odziva kritičnog detalja fine mreže, te usporedba očitanih naprezanja sa maksimalno dopuštenim, što je prikazano u Tablici 12.

Iz Tablice 12 je vidljivo da su očitana naprezanja manja od dopuštenih pa nisu potrebne daljnje analize i promjene strukture.

Vrsta	Stanje	T prot	fil; NV36	Zakrpa pr	oveze; NV32	Zakrpa oplate stule; NV36		
opterećenja	krcanja	blizu zavara	dalje od zavara	blizu zavara	dalje od zavara	blizu zavara	dalje od zavara	
	LC1	176<489,58	140<554,86	241<451,92	195<512,17	264<489,58	175<554,86	
	LC2	207<489,58	178<554,86	235<451,92	188<512,17	221<489,58	145<554,86	
	LC3	410<489,58	331<554,86	376<451,92	280<512,17	431<489,58	290<554,86	
	LC4	196<489,58	167<554,86	235<451,92	225<512,17	189<489,58	121<554,86	
S+D	LC5	381<489,58	309<554,86	343<451,92	237<512,17	382<489,58	255<554,86	
	LC6	252<489,58	215<554,86	217<451,92	180<512,17	280<489,58	160<554,86	
	LC7	394<489,58	324<554,86	340<451,92	285<512,17	388<489,58	275<554,86	
	LC8	408<489,58	335<554,86	368<451,92	309<512,17	392<489,58	261<554,86	
	LC9	381<489,58	301<554,86	318<451,92	260<512,17	370<489,58	260<554,86	
	LC10	388<489,58	317<554,86	350<451,92	290<512,17	372<489,58	260<554,86	
	LC11	416<489,58	240<554,86	280<451,92	296<512,17	400<489,58	277<554,86	
s	LC12	373<391,66	302<443,88	320<361,53	260<409,74	367<391,66	251<443,88	
	LC13	385<391,66	315<443,88	340<361,53	280<409,74	384<391,66	264<443,88	
	LC14	241<391,66	203<443,88	240<361,53	235<409,74	234<391,66	140<443,88	

Tablica 12. Usporedba očitanih i dopuštenih von Mises naprezanja spoja gornjeg postolja i dvoboka nakon predloženog rješenja

ZAKLJUČAK

Težnja novih usuglašenih Pravila je veća pouzdanost brodske konstrukcije, kao i povećanje sigurnosti posade i putnika, te bolja zaštita okoliša. Nova Pravila su pridonijela povećanju mase lakog broda. Ona su usuglašena od vodećih svjetskih klasifikacijskih društava, što brodu u eksploataciji daje mogućnost plovidbe gotovo svim morima.

U ovom završnom radu cilj je bio upoznavanje s novim unificiranim Pravilima kao i provođenje proračuna kritičnih detalja, koji su se modelirali finom mrežom konačnih elemenata na temelju globalnog modela modeliran grubom mrežom konačnih elemenata. U izradi obaju modela koristili su se programi MAESTRO i FEMAP dostupni na FSB-u.

Provedena je identifikacija kritičnih zona na osnovu dostupnih rezultata globalnog modela [2], te su izdvojena dva kritična detalja za koje je proveden proračun koncentracije naprezanja pomoću MKE modela koristeći tehniku pod-modela.

Analizom rezultata odziva donjeg postolja uzdužne naborane pregrade utvrđena su povećana naprezanja oko samog otvora u pregradama donjeg postolja. Nakon izračuna maksimalno dopuštenih naprezanja utvrđeno je da su naprezanja oko otvora u granicama dopuštenih, te se umjesto čelika NV36 mogao primjeniti čelik NV32 gdje bi naprezanja ostala u granicama dopuštenih.

Analizom rezultata odziva detalja spoja gornjeg postolja poprečne naborane pregrade i dvoboka utvrđeno je da su naprezanja veća od dopuštenih, pa je bilo potrebno pristupiti reprojektiranju uočenih kritičnih dijelova strukture (kroz povećanje debljine i promjenu materijala).

Treba naglasiti da u analizu nisu uključene nikakve optimizacijske metode, pa strukturnim dijelovima u kojima su naprezanja znatno manja od dozvoljenih, nisu smanjene dimenzije u svrhu uštede.

LITERATURA

- [1] IACS, Common Structural Rules for Double Hull Oil Tankers, July 2010.
- [2] Vedran Žanić, Jerolim Andrić, Karlo Pirić, Mate Grgić, Marko Stipčević, Stanko Kitarović, Structural analysis of TANKER FOR OIL, OIL PRODUCTS AND CHEMICALS 49000/51800 TDW (3.MAJ: Yard no. 712, 713) according to IACS Common Structural Rules for Double Hull Oil Tankers, Sveučilište u Zagrebu, 2009.
- [3] 3.MAJ, Klasifikacijski nacrti konstrukcije, 2008.
- [4] J. Sorić: "Metoda konačnih elemenata", Golden marketing-Tehnička knjiga, Zagreb, 2004.
- [5] Jadranbrod, hrvatsko brodograđevno društvo, "Brodograđevno nazivlje", 2.izdanje, Zagreb, 1995