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Abstract: This paper presents an approach for the solution of a zero-sum differential game associated
with a nonlinear state-feedbackH∞ control problem. Instead of using the approximation methods
for solving the corresponding Hamilton–Jacobi–Isaacs (HJI) partial differential equation, we pro-
pose an algorithm that calculates the explicit inputs to the dynamic system by directly performing
minimization with simultaneous maximization of the same objective function. In order to achieve
numerical robustness and stability, the proposed algorithm uses: quasi-Newton method, conjugate
gradient method, line search method with Wolfe conditions, Adams approximation method for time
discretization and complex-step calculation of derivatives. The algorithm is evaluated in computer
simulations on examples of first- and second-order nonlinear systems with analytical solutions of
H∞ control problem.

Keywords: H∞ control; zero-sum differential game; conjugate gradient method; quasi-Newton
method; complex-step method

1. Introduction

Although the theory of nonlinear H∞ control [1,2] is well developed and can be
considered standardized, developing algorithms for solving this problem that enable
practical implementation is a very active area of research. Furthermore, it is well known that
theH∞ control problem can be formulated as a two-player zero-sum differential game [3,4]
with the objective function including a parameter in such a way that the control vector
represents the player that minimizes the objective function while the vector of uncertainty
represents the player that maximizes the same objective function. All available scientific
research is mainly based on two main approaches: the formulation of the problem in the
form of linear matrix inequalities (LMI) [5–8] or on the determination of the approximate
solution of the associated Hamilton–Jacobi–Isaacs (HJI) equation [9–12], which is in linear
case equivalent to the generalized Riccati equation [13].

Furthermore, methods for solving the nonlinear H∞ control problem of singular
or descriptor systems have also been developed. The state-feedback scheme, impulse
controllability and the well-known implicit function theorem for stability analysis for
finite-time H∞ control problem of descriptor systems subject to actuator saturation are
adopted in [14], while in [15] impulse and hybrid controllers are combined, resulting in
less conservative stability conditions than in state-feedback control strategy.

In nonlinear programming-based algorithms that have been proposed in the literature,
the system dynamics is treated as an equality constraint and is included in the optimization
process using the method of Lagrange multipliers. This results in a HJI equation that is very
difficult or almost impossible to solve. For this reason, many approximation methods are
developed in which actual computational complexity increases with the number of system
states which need to be estimated. In [10,12], the reviews of reinforcement adaptive learning
and adaptive dynamic programming techniques to solve multiplayer games related toH∞
control are given. In [16], an improved iterative or successive approximation methods for
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solving the HJI is developed. A game theoretic differential dynamic programming based
algorithm for calculating both minimizing and maximizing inputs based on Taylor series
expansion of the associated HJI equation around a nominal trajectory is proposed in [11].
Using a critic neural network with time-varying activation functions, the HJI equation is
approximately solved in [9]. An event-triggering function for two-player zero-sum games
in the presence of control constraints is designed in [17]. Furthermore, in [13], an iterative
procedure to find the stabilizing solution of a set of Riccati equations related to discrete-time
H∞ control problems for periodic systems is addressed. The randomized algorithm based
on the Ray-Shooting Method forH∞ optimal synthesis of proportional–integral–derivative
(PID) controller for linear systems is proposed in [18].

In the case of the methods and algorithms mentioned above, the application of LMI
and solving Riccati equation requires the linearization, and in this case the optimality of
solution cannot be guaranteed in all operating states of nonlinear system dynamics. On the
other hand, solving the HJI equation can be very complex and therefore difficult to apply
in real control tasks.

In this paper, the nonlinear state-feedbackH∞ control problem is formulated as zero-
sum differential game, and we approach its solution without the LMI formalism or the need
to approximate the solution of the HJI equation. The main idea of the presented approach
is in the application of the conjugate gradient method, where the first-order derivatives are
calculated by matrix relations backwards in time, which gives a direct numerical calculation
of the control and uncertainty variables that explicitly depend on the system states.

In contrast to the approaches proposed in [11,16], which in the case of including a
more complex nonlinearity of the dynamic system in the objective function result in a HJI
equation so complex that it is practically impossible to solve, in our approach the nonlinear
system dynamics is not included in the objective function as an equality constraint, but the
state variables, control law and uncertainty are coupled by recursive matrix relations
and chain rule for ordered derivatives, which are used to calculate the objective function
gradients that appear in conjugate gradient method. Furthermore, in contrast to approaches
presented in [10,12], which can be computationally expensive since the tuning of neural
network weights is based on a method of weighted residuals that includes calculation of
Lebesgue integrals and estimation of state variables, in our approach, the computational
complexity does not depend on the dimension of the state space since procedure proposed
for gradient calculation has a backward in time structure similar to the back propagation
through time algorithm.

Bedsides the conjugate gradient method, which is used for computation of saddle
point of zero-sum differential game, the quasi-Newton method for L2-gain minimiza-
tion, line search method with Wolfe conditions, Adams approximation method for time
discretization and the complex-step method for calculation of derivatives are also systemati-
cally integrated into an efficient mathematical tool in order to achieve numerical robustness
and stability.

The rest of the paper is organized as follows. In Section 2, the preliminaries of the
nonlinear state-feedback H∞ control from the concept of dissipativity point of view and
also from the zero-sum differential games point of view are presented. Although theories
of these concepts are well known, providing basic terms is necessary to understand the
contributions contained in the following sections. A complete framework of the derivation
of the algorithmic procedure that optimizes the L2-gain of nonlinear dynamic systems
without solving the HJI partial differential equation is given in Section 3. In Section 4, the
proposed algorithmic procedure is evaluated on examples of nonlinear systems for which
the input variables can be determined exactly by solving the HJI equation. Finally, Section 5
concludes the paper.

Notation

The notation used is fairly standard. Matrices and vectors are represented in bold
upper and bold lower case, respectively. Scalars are represented in italic lower case. I is
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an identity matrix and 0 is a null matrix. The dimensions of the matrices and vectors can
generally be determined trivially by the context. The symbol ∇ stands for the gradient and
is considered as a row vector. The symbol T denotes transposition.

The vec(·) is a operator that stacks the columns of the matrix one underneath the other.
The Kronecker product of the two matrices A (m× n) and B (p× q), denoted by A⊗B is a
mp× nq matrix defined by A⊗B = (aijB)ij. The definitions of matrix differentials calculus
and the algebras related to Kronecker products can be found in [19,20].

The Euclidean norm of the vector is defined as ‖x‖ =
√

xT x. L2(I,Rn) stands for
the standard Lebesgue spaces of vector valued square-integrable and essentially bounded
functions mapping an interval I ⊂ R to Rn. This space is equipped with an L2 norm

defined by ‖ · ‖L2 =
√∫ t f

t0
‖ · ‖2dt. We avoid explicitly showing the dependence of the

variables from the time when not needed.

2. Preliminaries and Problem Formulation

In this section, we give a review of the basic terms that include nonlinear state-
feedback H∞ control and related differential game theory, and this is mostly based on
classic references from this field [1–4,21,22].

Consider the causal input-affine nonlinear system in the state space defined on a some
manifold X ⊆ Rn in the following form

Σ :


ẋ = f(x) + G1(x)u + G2(x)d, x(t0) = x0,
y = x,
z = h(x) + L(x)u,

(1)

where x ∈ X is the state vector, u ∈ U ⊆ Rm is the control vector, d is the vector representing
internal/external uncertainty belonging to the set D ⊂ L2

([
t0, t f

]
, Rs

)
. The output

vector y ∈ Rn contains all directly measured states of system Σ. The vector z ∈ Rq is
the performance variable. Furthermore, the functions f : X → X , G1 : X → Mn×m(X ),
G2 : X →Mn×s(X ), h : X → Rq, L : X →Mq×m(X ) are real C1-functions of x.

The following assumptions are employed:

Assumption 1. x = 0 is a unique equilibrium point, with u = 0 and d = 0, of system Σ and for
simplicity f(0) = 0, h(0) = 0.

Assumption 2. The vector h(x) and matrix L(x) are such that h(x)T L(x) = 0 i L(x)T L(x) = I
form all x ∈ X , which implies

z =

[
h(x)

u

]
=⇒ ‖z‖2 = ‖h(x)‖2 + ‖u‖2. (2)

By introducing Assumption 2, the so-called singular problem is avoided. More details
on solving the singular problem can be found in [23,24].

Assumption 3. Initial state vector x0 is a priori known.

Furthermore, the following definition is introduced:

Definition 1 (L2-gain). L2-gain from d to z of system Σ is the supremum of γ > 0 satisfies

‖z‖2
L2
≤ γ2‖d‖2

L2
+ β(x0), (3)

for some bounded C0-function β : U ⊂ X → R such that β(0) = 0.
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In general, the problem of nonlinearH∞ control of system Σ where all state variables
are available (measurable or can be estimated) can be formulated as follows:

Problem 1. The problem of optimal nonlinear state-feedbackH∞ control of system Σ is to determine
the control law u∗ = µ(x, t) and the “worst case” d∗ = ν(x, t) such that γ > 0 is minimized.

Assumption 4. The functions µ(x, t) and ν(x, t) are µ ∈ C1(X ), ν ∈ C1(X ).

If for the system Σ there exists some γ ≥ γ∗ that satisfies (3), then a zero-sum differen-
tial game can be defined. The optimal value of this game is given by the following expres-
sion:

J∗(x0) = min
u

max
d

t f∫
t0

(
‖h(x)‖2 + ‖u‖2 − γ2‖d‖2

)
dt, (4)

with dynamic equality constraints (1) on a finite time horizon t f > t0.
The necessary conditions for the saddle point of the zero-sum differential game (4)

follow from the minimum and maximum principles, and are of the form

u∗(x, t) = −1
2

GT
1 (x)∇T

x V(x, t), (5)

d∗(x, t) =
1

2γ2 GT
2 (x)∇T

x V(x, t), (6)

where V is a smooth positive semidefinite solution of the HJI partial differential equation

∇tV(x, t) +∇xV(x, t)f(x) +
1
4
∇xV(x, t)

[
1

γ2 G2(x)GT
2 (x)

−G1(x)GT
1 (x)

]
∇T

x V(x, t) + hT(x)h(x) = 0, V(x(t f ), t f ) = 0.

(7)

3. Synthesis of the Algorithm for the Solution of the Zero-Sum Differential Game

In this section, an approach of determining control and uncertainty variables for
optimalH∞ control (Problem 1) of nonlinear dynamic system Σ is proposed. The proposed
approach does not require solving the HJI Equation (7), but the solution is reduced to the
direct numerical determination of the saddle point of the related zero-sum differential game.

Control and uncertainty variables are approximated by functions with a linear depen-
dence on a finite number of constant parameters. To calculate these parameters, an approach
based on the integration of the quasi-Newton method, the conjugate gradient method,
the Adams method and the complex-step derivative approximation into one algorithm
is proposed. The goal is to obtain a control variable that explicitly depends on the state
variables and in that form is simple for practical implementation. Additionally, the aim
is to achieve a numerical solution that uniformly converges towards the optimal solution
by increasing the order of complexity of the approximation, i.e., by increasing the number
of parameters.

Since we introduced the Assumption 4, based on Weierstraß’s theorem ([25], p. 65)
(which refers to polynomial approximation functions) and its generalizations [26–29] (which
refer to non-polynomial forms of nonlinear approximation functions) on the uniform ap-
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proximation of smooth functions, there are constants pi
j, ri

j ∈ R such that the i-th component
of control and uncertainty vector can be written in the following form:

ûi(x) =
nθ

∑
j=1

pi
jθ

i
j(x), (8)

d̂i(x) =
nψ

∑
j=1

ri
jψ

i
j(x), (9)

where θi
j(x) ∈ C1(X ), ψi

j(x) ∈ C1(X ) such that θi
j(0) = 0, ψi

j(0) = 0. Linear subspaces

generated by sets {θi
j(x)} i {ψi

j(x)} are dense in the Sobolev norm W1,∞ [30].

For well chosen functions θi
j(x) and ψi

j(x), we have

|ûi(x)− ui(x)| < εui (x), (10)

|d̂i(x)− di(x)| < εdi
(x), (11)

where εui (x) i εdi
(x) are the approximation errors. It follows that εui (x) → 0, εdi

(x) → 0
when nθ → ∞, nψ → ∞, respectively, while for fixed nθ and nψ, approximation errors are
bounded by constants on the compact set. It is well known from approximation theory (see
for example [31,32]) that it is often possible to determine in advance how many terms of
the basis functions expansion should be taken for the required accuracy.

Equations (8) and (9) can be written in the following matrix form:

û(x) = Θ(x)π, (12)

d̂(x) = Ψ(x) ρ, (13)

where

Θ(x) ≡


θ1(x) 0 · · · 0

0 θ2(x) · · · 0
...

...
. . .

...
0 0 · · · θm(x)

, Ψ(x) ≡


ψ1(x) 0 · · · 0

0 ψ2(x) · · · 0
...

...
. . .

...
0 0 · · · ψs(x)

,

θi(x) ≡
[
θi

1(x) θi
2(x) · · · θi

nθ
(x)
]
, ψi(x) ≡

[
ψi

1(x) ψi
2(x) · · · ψi

nψ
(x)
]
,

π ≡


p1

p2

...
pm

, ρ ≡


r1

r2

...
rs

, pi ≡


pi

1
pi

2
...

pi
nθ

, ri ≡


ri

1
ri

2
...

ri
nψ

.

(14)

In this paper, based on the previous considerations, the problem that needs to be
solved can be formulated as follows:

Problem 2. Determine the parameters π and ρ such that the L2-gain of the closed-loop

ẋ = f(x) + G1(x)Θ(x)π + G2(x)Ψ(x)ρ, (15)
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is minimized. In other words, according to Definition 1, solve the following minimax optimiza-
tion problem

J∗µ(x0) = min
π

max
ρ

{
‖h(x)‖2

L2
+ ‖Θ(x)π‖2

L2
− µ‖Ψ(x)ρ‖2

L2

}
, (16)

which represents a zero-sum differential game, where the minimal L2-gain is γ∗ =
√

µ.

First, to propose an algorithm for minimization of the parameter µ in (16), the first-
order derivative of the value of the differential game with respect to µ is needed. Since
J∗µ(x0) is non-differentiable because it is defined with the min–max operator, the sub-
differential is employed. It can easily be shown that sub-differential of J∗µ(x0) with respect
to µ is

∂J∗µ = −‖Ψ(x)ρ‖2
L2

. (17)

Next, due to the inaccurate calculation of the previously mentioned derivative, the quasi-
Newton method is considered, for which the superlinear convergence and numerical ro-
bustness have been proven (see for example [33–36]). The quasi-Newton k-th iteration is
defined by

µk+1 = µk −
‖h(xk)‖2

L2
+ ‖Θ(xk)πk‖2

L2
− µk‖Ψ(xk)ρk‖2

L2

∂J∗µk

=
‖h(xk)‖2

L2
+ ‖Θ(xk)πk‖2

L2

‖Ψ(xk)ρk‖2
L2

.

(18)

To minimize the L2-gain of the system (15), we propose the following quasi-Newton
algorithm.

It is important to note that in the second step of Algorithm 1, unlike other known
methods of nonlinear optimization, the dynamics of the system (15) is not included in the
objective function.

Algorithm 1 quasi-Newton method for L2-gain minimization.

Require: µ0 ∈ R+, ε ∈ R+.
Ensure: µ∗.

1: Set k← 0.
2: Solve zero-sum differential game

J∗µk
= min

π
max

ρ

{
‖h(xk)‖2

L2
+ ‖Θ(xk)πk‖2

L2
− µk‖Ψ(xk)ρk‖2

L2

}
, (19)

where xk, πk and ρk are coupled by (15).
3: Calculate

µk+1 =
‖h(xk)‖2

L2
+ ‖Θ(xk)πk‖2

L2

‖Ψ(xk)ρk‖2
L2

. (20)

4: If |µk+1 − µk| ≤ ε then terminate. Otherwise, set k← k + 1 and return to step 2.

To solve the subproblem in the second step of Algorithm 1, we use the conjugate
gradient method as described in the following algorithm.

Note that, in Algorithm 2, the maximization of the objective function is obtained by
changing the sign in front of the gradient with respect to ρ in (23). Additionally, it should
be noted that the strategy for solving Problem 2 proposed by Algorithms 1 and 2 requires
appropriate initialization, i.e., appropriate selection of approximation functions and initial
parameters π0, ρ0 and µ0. If they are inadequate, it cannot be guaranteed that the control
law is for the “worst case” of uncertainty. In the general, it is very difficult to guarantee
whether a solution for the “worst case” of uncertainty is obtained. However, the conditions
that would give recommendations for the initialization of the parameters of the proposed
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algorithms could be derived by applying the concept of inverse min max optimal control.
Solving the problem of inverse min–max optimal control goes beyond the scope of the
research presented in this paper and will be part of future research.

Algorithm 2 Conjugate gradient method for saddle point computation.

Require: x0 ∈ Rn, ξ0 ≡
[
πT

0 ρT
0
]T ∈ Rnξ , µk, β0 ∈ R+, η0 ∈ R+, ε ∈ R+.

Ensure: π∗, ρ∗.
1: Set j← 1.
2: Perform a conjugate gradient descent/ascent algorithm in the following form

ξ j = ξ j−1 + ηj−1sj−1, (21)

sj = −J (ξ j) + β j−1sj−1, (22)

where s is the search direction vector and

J (ξ j) =
[
∇π J −∇ρ J

]T, (23)

J = ‖h(xj)‖2
L2

+ ‖Θ(xj)πj‖2
L2
− µk‖Ψ(xj)ρj‖2

L2
. (24)

3: Determine ηj > 0 by applying the line search strategy that satisfies Wolfe’s conditions
(see Algorithm 3).

4: Determine β j > 0 by applying Dai-Yuan method [37].
5: If ‖J (ξ j)‖∞ ≤ ε then terminate. Otherwise, set j← j + 1 and return to step 2.

Algorithm 3 Line search method with Wolfe conditions.

Require: ξ j, sj, J(ξ j), J (ξ j), 0 < c1 < c2 < 1, ν ∈ (0, 1).
Ensure: ηj.

1: Set l ← 0.
2: Choose initial η0.
3: While ηl satisfies Wolfe’s conditions

J(ξ j + ηlsj) ≤ J(ξ j) + c1ηlJ (ξ j)sj, (25)

J (ξ j + ηlsj)sj ≥ c2J (ξ j)sj, (26)

calculate
(i) ηl+1 = νηl ,
(ii) l ← l + 1.

4: Set ηj = ηl .

Furthermore, the initialization of parameters β and η is dependent on a specific
optimization problem. Through a series of numerical experiments in simulations, we deter-
mined that the Dai–Yuan conjugate gradient method reaches a similar level of numerical
robustness and accuracy for various initial values of β0, whereas for the standard gradient
algorithm, choosing the initial parameters largely affects the convergence and can cause
numerical instabilities.

To determine the convergence step ηj > 0, we use a line search method that satisfies
the Wolfe conditions as described in the following algorithm.

Details related to the line search method and Wolfe conditions can be found in [38].

Gradient Calculation

In this subsection, the relations for calculating the gradients that appear in (22) i.e., (23)
is derived. In order to perform chain rule for derivatives backward in time, first the
system (15) needs to be rewritten in discrete-time state-space form. For this purpose,
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we use the multistep Adams method. Compared to the most popular four stage Runge–
Kutta method, which requires solving the approximation problem four times at each step,
the Adams method requires only one calculation.

The explicit Adams approximation of system (15) can be formulated as follows. Let
the time interval

[
t0, t f

]
consists of ti = t0 + iτ for i = 0, 1, 2, . . . , N − 1, such that

τ = (t f − t0)/N is the time step length, and let x̂ be the extended 4n-dimensional state
vector (n is dimension of state vector x and 4 is order of Adams method). Then, the system
can be written in the following discrete-time state-space form:

x̂(i + 1) = f̂(x̂(i)) + a⊗ B(x(i))π + a⊗D(x(i))ρ, x̂(0) = x̂0, (27)

where the vector a contains a non-zero coefficients of Adams method (see ([39], page 358)),
and where, for simplicity, we introduced

B(x) ≡ G1(x)Θ(x), D(x) ≡ G2(x)Ψ(x). (28)

General considerations regarding Adams method are given in [39], while several novel
schemes for multistep Adams method are proposed in [40].

The discrete-time form of the objective function (24) is

J = τ
N−1

∑
i=0

(
hT(x(i))h(x(i)) + πTP(x(i))π − µρTR(x(i))ρ

)
, (29)

where for simplicity we introduced

P(x) ≡ ΘT(x)Θ(x), R(x) ≡ ΨT(x)Ψ(x). (30)

The following is a derivation of recursive matrix relations for calculating ∇π J using
the basic chain rule arithmetic and matrix differentials calculus as well as certain properties
of vectorization of matrices and Kronecker algebra. The relations for calculating ∇ρ J are
obtained in an analogous way.

The gradient of the objective function (29) with respect to the vector π is

∇π J = τ
N−1

∑
i=0

∂F(i)
∂π

, (31)

where
F(i) = hT(x(i))h(x(i)) + πTP(x(i))π − µρTR(x(i))ρ. (32)

Then, an operation of partial derivative with respect to vector π is performed over the
expression (32), which gives:

∇π F(i) = 2hT(x(i)) · ∇x̂h(x(i)) · ∇π x̂(i)− µ[ρ⊗ ρ]T · ∇x̂vec(R(x(i))) · ∇π x̂(i)

+ [vec(P(x(i)))]T · (π ⊕π) + (π ⊗π)T · ∇x̂vec(P(x(i))) · ∇π x̂(i).
(33)

In (33) it is necessary to calculate ∇π x̂(i), which is obtained based on the expres-
sion (27) as follows:

∇π x̂(i) = a⊗ B(x(i− 1)) +∇x̂[a⊗ B(x(i− 1))π] · ∇π x̂(i− 1)

+∇x̂f̂(x̂(i− 1)) · ∇π x̂(i− 1) +∇x̂[a⊗D(x(i− 1))ρ] · ∇π x̂(i− 1),
(34)
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where

∇x̂[a⊗ B(x(i− 1))π] = a⊗
(

πT ⊗ In

)
· ∇x̂vec(B(x(i− 1))), (35)

∇x̂[a⊗D(x(i− 1))ρ] = a⊗
(

ρT ⊗ In

)
· ∇x̂vec(D(x(i− 1))). (36)

The expressions (34)–(36) represent recursive matrix relations for i = 1, 2, . . . , N − 1
with initial conditions

∇π x̂(0) = 0. (37)

Note that the functions, f̂(x̂), h(x), P(x), R(x), B(x) and D(x), which appear in pre-
vious expressions, are known from system dynamics and predetermined approximation
functions basis and their derivatives can be easily calculated to machine precision by
applying a complex-step method.

The first-order derivative of f̂(x̂) with respect to x̂ using complex-step approximation
is accomplished by approximating its component (let us say the k-th component) with a
complex variable using a Taylor’s series expansion [41,42]

f̂k(x̂ + i h ej) = f̂k(x̂) + i h∇x̂ f̂k(x̂) · ej +
(i h)2

2!
eT

j · ∇2
x̂ f̂k(x̂) · ej + . . . . (38)

where e is unit vector. Taking only the imaginary parts gives

∇x̂ f̂k(x̂) · ej =
Im
{

f̂k(x̂ + i h ej)
}

h
+O(h2). (39)

In the above expressions, i represents an imaginary unit i2 = −1, while previously
with i we denoted the i-th time point. For this reason, the x̂(i) is omitted in these expressions,
but this is implied. It can be seen that subtraction does not appear in the numerator of the
expression (39), i.e., the subtractive cancellation problem has been removed. This means that
the step h can be extremely small, so the derivative can be calculated to machine precision.

The implementation of a complex-step method can be very simply achieved by us-
ing a high-level programming language that does not require a prior definition of the
variable types, but it is possible to define complex variables automatically by applying
built-in functions.

The complex-step method for calculating∇x̂f̂(x̂) is described by the pseudocode given
in Algorithm 4. The calculation of derivatives of other known functions can be obtained in
an analogous manner.

Algorithm 4 Calculation of derivatives at the i-th time point using the complex-step method.

Require: n, h, x̂, f̂(x̂)
Ensure: ∇x̂f̂(x̂)

1: x1← x̂
2: for j = 1 to n do
3: x1j ← complex(x̂j, h)
4: f1← f̂(x1)
5: for k = 1 to n do

6:
∂ f̂k(x̂j)

∂xj
← imag( f 1k)

h
7: end for
8: x1← x̂
9: end for



Algorithms 2023, 16, 48 10 of 15

4. Benchmark Examples with Analytic Solution

In this section, the algorithmic procedure described in the previous sections is tested on
examples of nonlinear systems where the HJI equation can be solved analytically, thereby
exactly determining the control and uncertainty vectors. In this way, it can be directly
assessed whether the proposed algorithmic procedure calculates the required solutions
with sufficient numerical efficiency in terms of convergence and accuracy. The algorithm is
written and implemented in the MATLAB software package. When solving a particular
problem, it is necessary to initialize the algorithm in a suitable way.

4.1. Example—First-Order System

Consider a scalar nonlinear system described by the following equation [21]:

ẋ = u + arctg(x) · d, z =

[
x
u

]
. (40)

If γ > π
2 , then by solving the corresponding HJI equation (for details see [21]), the an-

alytical feedbacks are

u∗ = −x
(

1− 1
γ2 arctg2(x)

)− 1
2
,

d∗ =
1

γ2 x arctg(x)
(

1− 1
γ2 arctg2(x)

)− 1
2
.

(41)

Approximation functions of control and uncertainty variables are chosen in the fol-
lowing form

û(x) = p1x + p2x3 + p3x5 + p4x7 + p5x9,

d̂(x) = r1x + r2x3 + r3x5 + r4x7 + r5x9,
(42)

i.e., written in the form (12) and (13) we have

Θ(x) = Ψ(x) =
[
x x3 x5 x7 x9], π =


p1
p2
p3
p4
p5

, ρ =


r1
r2
r3
r4
r5

. (43)

In this example, we set the following values of the algorithm parameters: we divided
the time interval from t0 = 0, to t f = 10 [s] into N =100,000 equal subintervals, i.e., the
discretization step is τ = 10−4 [s] and we applied the Adams method of the 4-th order;
vector of initial conditions x0 = [1]; initial value of the parameter µ0 = γ2

0 = 5; vectors
of initial parameters of approximation functions π0 = ρ0 = 0; stopping criterion of the
quasi-Newton method ε = 10−3; stopping criterion of conjugate-gradient method ε = 10−6,
Dai–Yuan method is used by default, the initial numerical values of the conjugate gradient
algorithm parameters are chosen as η0 = 0.1 and β0 = 0.5, coefficients c1 = 10−3, c2 = 0.9
and ν = 0.8.

We obtain the following parameter µ and parameters of approximation functions:

µ∗ = 2.4667, π∗ =


−0.9999
−0.2045
0.0781
−0.0391
0.0112

, ρ∗ =


0.0414
0.9638
−1.7517
1.8462
−0.7361

, (44)

i.e., minimum L2-gain is γ∗ =
√

µ∗ = 1.5706.
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Figure 1 shows the time dependence of the state variable, i.e., the response of the
system (40) from the initial condition x0 = 1, where the control variable and uncertainty
variable are of the form (42) with parameters (44). The control and uncertainty variables
from (42) obtained by the proposed algorithm with the parameters from (44) in comparison
with the analytical solutions from the expression (41) depending on the state variable are
shown in Figure 2. Figure 3 shows the solutions obtained by the derived algorithm in
comparison with the analytical solutions (41) as a function of time. Based on everything
shown, it can be concluded that the numerically obtained solutions approximate the
analytical ones well with negligible error.
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Figure 1. Time dependence of the state variable (Example 4.1).
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4.2. Example—Second-Order System

Consider the second order nonlinear system [43]

ẋ1 = −1
8

(
29x1 + 87x1x2

2

)
− 1

4

(
2x2 + 3x2x2

1

)
+ u1 +

1
2

d,

ẋ2 = −1
4

(
x1 + 3x1x2

2

)
+ 3u2 + d,

z =


√

2
(
2x1 + 6x1x2

2
)

√
2
(
4x2 + 6x2

1x2
)

u1
u2

.

(45)

If γ∗ = 1 then by solving the corresponding HJI equation (for details see [43]), the ana-
lytical feedbacks are

u∗1(x) = −x1 − 3x1x2
2,

u∗2(x) = −6x2 − 9x2
1x2,

d∗(x) =
1
2

x1 + 2x2 + 3x2
1x2 +

3
2

x1x2
2.

(46)

Approximation functions of control and uncertainty variables are chosen in the fol-
lowing form:

û1(x) = p1
1x1 + p1

2x2 + p1
3x1x2 + p1

4x2
1x2 + p1

5x1x2
2 + p1

6x2
1x2

2 + p1
7x2

1 + p1
8x2

2,

û2(x) = p2
1x1 + p2

2x2 + p2
3x1x2 + p2

4x2
1x2 + p2

5x1x2
2 + p2

6x2
1x2

2 + p2
7x2

1 + p2
8x2

2,

d̂(x) = r1x1 + r2x2 + r3x1x2 + r4x2
1x2 + r5x1x2

2 + r6x2
1x2

2 + r7x2
1 + r8x2

2,

(47)

i.e., written in the form (12) and (13), we have

θ1(x) = θ2(x) = ψ(x) =
[
x1 x2 x1x2 x2

1x2 x1x2
2 x2

1x2
2 x2

1 x2
2
]
,

Θ(x) =
[

θ1(x) 0
0 θ2(x)

]
, Ψ(x) = ψ(x),

p1 =


p1

1
p1

2
...

p1
8

, p2 =


p2

1
p2

2
...

p2
8

, π =

[
p1

p2

]
, ρ =


r1
r2
...

r8

.

(48)

In this example, we set the following values of the algorithm parameters: we divided
the time interval from t0 = 0, to t f = 3 [s] into N = 5000 equal subintervals, i.e., the
discretization step is τ = 10−4 [s] and we applied the Adams method of the 4-th order by
default; vector of initial conditions x0 = [1 1]T; initial value of the parameter µ0 = γ2

0 = 5;
vectors of initial parameters of approximation functions π0 = ρ0 = 1; stopping criterion
of the quasi-Newton method ε = 10−3; stopping criterion of conjugate-gradient method
ε = 10−3, Dai–Yuan method is used by default, the initial numerical values of the conjugate
gradient algorithm parameters are chosen as η0 = 0.1 and β0 = 0.5, coefficients c1 = 10−3,
c2 = 0.9 and ν = 0.8.
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We obtain the following parameter µ and parameters of approximation functions:

µ∗ = 1.0021, p1∗ =



−0.9997
−0.0241
0.0785
−0.0676
−3.0576
0.0422
−0.0003
0.0287


, p2∗ =



0.0004
−6.0319
0.1224
−9.1208
−0.1533
0.1016
−0.0009
0.0825


, ρ∗ =



0.4995
2.0478
−0.1576
3.1370
1.6151
−0.0847
0.0007
−0.0579


, (49)

i.e., the minimum L2-gain is γ∗ =
√

µ∗ = 1.0010.
Figure 4 shows the time dependence of the state variables, i.e., the response of the sys-

tem (45) from the initial conditions x0 = [1 1]T, where the control variables and uncertainty
variable are of the form (47) with parameters (49). Figure 5 shows the solutions obtained
by the derived algorithm in comparison with the analytical solutions (46). In this example,
as in the previous, it is evident that the numerical solution approximates the analytical
solution well.
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5. Conclusions

In this paper, an approach for the solution of a nonlinear H∞ control problem is
presented. Instead of using the approximation methods for solving the corresponding
HJI equation, the solution is obtained by direct numerical calculation of the control and
uncertainty variables that explicitly depend on the system states. In order to achieve numer-
ical efficiency, the proposed algorithmic procedure uses quasi-Newton method, conjugate
gradient method, line search method with Wolfe conditions, Adams approximation method
for time discretization, and complex-step calculation of derivatives. In spite of the fact that
the methods used in this paper are known from the references cited, in our approach, they
are integrated together to provide a suitable mathematical tool for numerical solution of
the zero-sum differential game related to the nonlinearH∞ control problem.

The extension of this approach can be continued in two research directions: (i) consider
output measurement-feedback H∞ optimal control problem, and (ii) the case where the
initial state vector is unknown and treated as an uncertainty, i.e., the maximizing “player”.
It can be assumed that the proposed strategy can be extended to these two cases without a
significant increase in its complexity.
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