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Abstract: Plug-in hybrid electric vehicles (PHEV) typically combine several power sources, which call
for the use of optimal control strategy design techniques. The PHEV powertrain efficiency can
be improved if the battery is gradually discharged by blending fully electric and hybrid driving
modes during the whole trip. Here, the battery state-of-charge (SoC) trajectory profile is of particular
importance to achieving near-optimal powertrain operation. In order to reveal optimal patterns of
SoC trajectory profiles, numerical optimizations of PHEV control variables based on the dynamic
programing (DP) algorithm are conducted in the paper. The obtained optimal SoC trajectories are
found to form linear-like profiles of minimum length when expressed with respect to travelled
distance. Detailed analyses of the DP results point out that the SoC trajectory length is minimized
in order to minimize electric losses, which is then reflected in reduced total fuel consumption.
This finding is further justified by analyzing the problem of optimal discharging for the simplified
battery-only system and for the powertrain as a whole. The impact of engine specific fuel consumption
characteristic on the optimal SoC trajectory profile under simplified driving conditions is analyzed,
as well.

Keywords: plug-in hybrid electric vehicle; power management; battery state-of-charge trajectory;
efficiency; optimization; dynamic programming

1. Introduction

Plug-in hybrid electric vehicles (PHEV) are proven to be a viable mid-term solution towards
ultimate fully electric vehicles (EV), as they overcome main deficiencies of EVs such as high prices and
short range, while allowing recharging from power grid. PHEVs typically operate in charge depleting
(CD) and charge sustaining (CS) regimes, where in the CD regime pure electric driving is active until
the battery is discharged to a predefined lower-limit level, while in the CS regime hybrid driving
is activated in order to sustain the battery state-of-charge (SoC) [1]. In the case of knowing the trip
length in advance, it is possible to discharge the battery more gradually under a blended regime and
thus further reduce fuel consumption [2–4] (typically from 2% to 5% when compared to the CD/CS
regime [2]). The optimal SoC trajectory in the blended regime (expressed with respect to travelled
distance) tends to have a nearly-linear minimum-length shape for the zero road grade case [2–4],
while it can significantly deviate from the linear trend in the presence of varying road grade [2,4],
low emission zones [5], and non-uniformly distributed driving patterns during driving cycle [3].

In order to fully utilize PHEV potential in the blended regime, it is crucial to determine near-optimal
SoC reference trajectory in advance for a wide range of driving conditions, which should be provided to
powertrain control strategy and its SoC controller [2,4,6]. In [7], the SoC reference trajectory is calculated
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by using prediction of upcoming road grade profiles and average driving speeds. In [8], the road
grade preview is employed for proper planning of battery usage during driving, where heuristic
rules are used to determine a target SoC prior reaching uphill climbing. A predictive HEV energy
management strategy calculating the optimal SoC reference trajectory under uncertainties caused
by traffic flow and traffic lights is proposed in [9]. In [3], an energy management strategy with
road condition preview is proposed, where the optimal SoC reference trajectory is calculated based
on predictions of upcoming driving patterns. In order to further reduce fuel/energy consumption,
a model predictive control (MPC)-based approach can be used to perform on-line optimizations of
PHEV control variables on receding horizon [10–12]. In this approach, it is crucial to feed MPC
by accurate predictions of future vehicle velocity profile, which can be obtained by using different
deterministic or stochastic methods (e.g., based on recurrent neural network [13]). In [11], a hierarchical
control strategy performing combined minimization of energy- and battery aging-related costs in
MPC manner is proposed, where battery aging is tackled by iteratively calculating a proper battery
depth-of-charge (DoD). However, due to inability to predict vehicle velocity profiles accurately on
longer time horizons, these MPC applications typically rely on relatively short time horizon predictions
(around 10 seconds [10]), and thus cannot ensure global optimality of SoC trajectory. Therefore,
the global SoC reference trajectory is typically prepared separately from MPC, and used repeatedly to
provide SoC boundary conditions for MPC optimization.

Since the SoC reference trajectory is important to achieve near-optimal powertrain operation both
in non-predictive and predictive, and rule- and optimization-based control strategies, this paper aims to
provide comprehensive analysis of optimal SoC trajectory patterns in support of SoC reference trajectory
synthesis. The analysis is conducted systematically, starting by analysis of dynamic programming (DP)
optimization results obtained for different driving conditions, and proceeding by analysis of optimal
discharging patterns for the case of simplified battery-only system and for the powertrain as a whole.
A convexity analysis of the relevant powertrain functional dependencies is conducted to explain the
observed optimal SoC trajectory patterns, in order to further gain insights into the optimal powertrain
operation for different driving conditions.

The main contributions of the paper include: (i) proposing a method of generating optimal SoC
trajectories of different length with respect to travelled distance and conducting correlation analyses of
obtained results, (ii) clarifying the cause and conditions under which the optimal SoC trajectory has
the minimum-length linear pattern, and (iii) analytical proof of optimal SoC trajectory pattern for the
simplified scenario of battery-only discharging system.

The paper is organized as follows. Section 2 describes mathematical modelling of PHEV powertrain.
The DP-based optimization of PHEV control variables and analysis of the corresponding optimization
results are presented in Section 3. Section 4 deals with analysis of the optimal SoC trajectory patterns,
by considering the optimal battery discharging under various conditions. Concluding remarks are
given in Section 5.

2. Modelling of PHEV Powertrain

Figure 1a illustrates the parallel PHEV configuration of a city bus powertrain considered herein for
the purpose of analysis. The powertrain consists of internal combustion engine (ICE), electric machine
(M/G), lithium-ion battery and automated manual transmission with 12 gears [14]. When being
switched off, the engine can be disconnected from the powertrain by using a clutch, thus enabling
electric-only driving. The PHEV powertrain is modelled in the backward-looking manner [15],
where the engine and M/G machine rotational speeds are determined by the vehicle velocity vv and
transmission gear ratio h as follows:

ωe = ωMG = iohωw = ioh
vv

rw
, (1)
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while the sum of engine and M/G machine torques is obtained from the demanded torque at wheels τw

and the corresponding drivetrain losses:

τe + τMG =
τcd
ioh

=

(
τw

ηtr(τw)
+

P0(ωw)
ωw

)
ioh

. (2)

In Equations (1) and (2), io denotes the final drive ratio, ωw the wheel speed, rw the effective tire
radius, ηtr the transmission efficiency, and P0 the idle-mode power losses (see Figure 1b,c). The total
power demand including power losses can then be defined as:

Pd = ωwτcd =
ωwτw

ηtr(τw)
+ P0(ωw). (3)

The total wheel torque τw is calculated according to longitudinal vehicle dynamics equation [14,15]:

τw = rw


(
Mv + mpass

)dvv

dt
+ R0

(
Mv + mpass

)
g cos(δr)︸                         ︷︷                         ︸

Froll

+
(
Mv + mpass

)
g sin(δr)︸                     ︷︷                     ︸

Fgrade

+ ρairA f Cdv2
v︸       ︷︷       ︸

Faero

, (4)

where Mv and mpass are the empty bus mass and the total mass of passengers, respectively, R0 is the
rolling resistance coefficient, ρair is the air density, A f is the bus frontal surface, Cd is the aerodynamical
drag coefficient, δr is the road grade, and g is the gravity acceleration (see Appendix A for numerical
values of these parameters). The terms Froll, Fgrade, Faero are rolling, road grade-related and aerodynamic
resistances, respectively.
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Figure 1. Parallel configuration of plug-in hybrid electric vehicles (PHEV) powertrain (a), transmission
idle-mode power loss map (b), and mechanical efficiency map (c).

The engine specific fuel consumption and M/G machine efficiency are modelled by means of 2D
maps, while the corresponding maximum torque characteristics are modelled by 1D maps (Figure 2).
The specific fuel consumption map (Aek), expressed in g/kWh unit, can readily be transformed to the
fuel consumption rate map (

.
m f expressed in g/s unit) by using the following expression:

.
m f = Aek(τe,ωe)

τeωe

3.6·106 . (5)

The battery is modelled as a charge storage by an equivalent electric circuit (Figure 3a), where the
open circuit voltage Uoc and internal resistance R are set to be dependent on the battery SoC (Figure 3b;
SoC ∈ [0, 1]). Finally, the battery model is represented by the following state equation [16,17]:
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.
SoC =

√
U2

oc(SoC) − 4R(SoC)Pbatt −Uoc(SoC)

2QmaxR(SoC)
, (6)

where Qmax is the battery charge capacity (here Qmax = 30 Ah), while Pbatt is the battery power which
is determined by M/G machine power PMG as:

Pbatt = η
ke f f

MGτMGωMG︸    ︷︷    ︸
PMG

. (7)

The variable ηMG is M/G machine efficiency (see Figure 2b), and ke f f is equal to one for the case of
battery charging (Pbatt < 0) and −1 for the case of battery discharging (Pbatt > 0).

World Electric Vehicle Journal 2019, 10, x FOR PEER REVIEW 3 of 15 

𝜏𝑒 + 𝜏𝑀𝐺 =
𝜏𝑐𝑑
𝑖𝑜ℎ

=
(

𝜏𝑤
𝜂𝑡𝑟(𝜏𝑤)

+
𝑃0(𝜔𝑤)
𝜔𝑤

)

𝑖𝑜ℎ
. 

(2) 

In Equations (1) and (2), 𝑖𝑜 denotes the final drive ratio, 𝜔𝑤 the wheel speed, 𝑟𝑤 the effective 

tire radius, 𝜂𝑡𝑟 the transmission efficiency, and 𝑃0 the idle-mode power losses (see Figure 1b,c). The 

total power demand including power losses can then be defined as: 

𝑃𝑑 = 𝜔𝑤𝜏𝑐𝑑 =
𝜔𝑤𝜏𝑤
𝜂𝑡𝑟(𝜏𝑤)

+ 𝑃0(𝜔𝑤). (3) 

The total wheel torque 𝜏𝑤 is calculated according to longitudinal vehicle dynamics equation 

[14,15]: 

𝜏𝑤 = 𝑟𝑤((𝑀𝑣 +𝑚𝑝𝑎𝑠𝑠)
𝑑𝑣𝑣
𝑑𝑡

+ 𝑅0(𝑀𝑣 +𝑚𝑝𝑎𝑠𝑠)𝑔 cos(𝛿𝑟)⏟                
𝐹𝑟𝑜𝑙𝑙

+ (𝑀𝑣 +𝑚𝑝𝑎𝑠𝑠)𝑔 sin(𝛿𝑟)⏟              
𝐹𝑔𝑟𝑎𝑑𝑒

+ 𝜌𝑎𝑖𝑟𝐴𝑓𝐶𝑑𝑣𝑣
2

⏟      
𝐹𝑎𝑒𝑟𝑜

), (4) 

where 𝑀𝑣 and 𝑚𝑝𝑎𝑠𝑠 are the empty bus mass and the total mass of passengers, respectively, 𝑅0 is 

the rolling resistance coefficient, 𝜌𝑎𝑖𝑟  is the air density, 𝐴𝑓  is the bus frontal surface, 𝐶𝑑  is the 

aerodynamical drag coefficient, 𝛿𝑟  is the road grade, and 𝑔  is the gravity acceleration (see 

Appendix for numerical values of these parameters). The terms 𝐹𝑟𝑜𝑙𝑙 , 𝐹𝑔𝑟𝑎𝑑𝑒, 𝐹𝑎𝑒𝑟𝑜 are rolling, road 

grade-related and aerodynamic resistances, respectively. 

 

Figure 1. Parallel configuration of plug-in hybrid electric vehicles (PHEV) powertrain (a), 

transmission idle-mode power loss map (b), and mechanical efficiency map (c). 

The engine specific fuel consumption and M/G machine efficiency are modelled by means of 2D 

maps, while the corresponding maximum torque characteristics are modelled by 1D maps (Figure 2). 

The specific fuel consumption map (𝐴𝑒𝑘), expressed in g/kWh unit, can readily be transformed to the 

fuel consumption rate map (�̇�𝑓 expressed in g/s unit) by using the following expression: 

�̇�𝑓 = 𝐴𝑒𝑘(𝜏𝑒 , 𝜔𝑒)
𝜏𝑒𝜔𝑒

3.6 · 106
 . (5) 

 
Figure 2. Engine specific fuel consumption map (a), and electric machine (M/G) machine efficiency
map (b), given along with maximum torque lines (denoted in blue).

World Electric Vehicle Journal 2019, 10, x FOR PEER REVIEW 4 of 15 

Figure 2. Engine specific fuel consumption map (a), and electric machine (M/G) machine efficiency 

map (b), given along with maximum torque lines (denoted in blue). 

The battery is modelled as a charge storage by an equivalent electric circuit (Figure 3a), where 

the open circuit voltage 𝑈𝑜𝑐  and internal resistance 𝑅 are set to be dependent on the battery SoC 

(Figure 3b; 𝑆𝑜𝐶 ∈ [0,1]). Finally, the battery model is represented by the following state equation 

[16,17]: 

𝑆𝑜𝐶̇ =
√𝑈𝑜𝑐

2 (𝑆𝑜𝐶) − 4𝑅(𝑆𝑜𝐶)𝑃𝑏𝑎𝑡𝑡 − 𝑈𝑜𝑐(𝑆𝑜𝐶)

2𝑄𝑚𝑎𝑥𝑅(𝑆𝑜𝐶)
, (6) 

where 𝑄𝑚𝑎𝑥  is the battery charge capacity (here 𝑄𝑚𝑎𝑥 = 30 Ah), while 𝑃𝑏𝑎𝑡𝑡  is the battery power 

which is determined by M/G machine power 𝑃𝑀𝐺  as: 

𝑃𝑏𝑎𝑡𝑡 = 𝜂𝑀𝐺
𝑘𝑒𝑓𝑓 𝜏𝑀𝐺𝜔𝑀𝐺⏟    

𝑃𝑀𝐺

. (7) 

The variable 𝜂𝑀𝐺 is M/G machine efficiency (see Figure 2b), and 𝑘𝑒𝑓𝑓  is equal to one for the case 

of battery charging (𝑃𝑏𝑎𝑡𝑡 < 0) and −1 for the case of battery discharging (𝑃𝑏𝑎𝑡𝑡 > 0). 

 

Figure 3. Battery equivalent circuit (a), and dependencies of open-circuit voltage and internal battery 

resistance with respect to battery state-of-charge (SoC) for a considered lithium iron phosphate 

battery (b). 

3. Optimization of PHEV Control Variables 

This section deals with DP optimization of PHEV control variables for the blended regime, 

aimed at finding optimal SoC trajectories for which the total fuel consumption is minimized for 

different driving cycles and conditions. More details on DP-based optimization of PHEV control 

variables can be found in [2,18] and references given therein. 

3.1. Optimal Problem Formulation 

The aim of optimization is to find the values of PHEV control variables in each discrete time step 

which minimize the cumulative fuel consumption, while satisfying the state- and control variables-

related constraints. By introducing the following substitutions for the state variable  𝑆𝑜𝐶 , control 

variables 𝜏𝑒  and ℎ, and input variables 𝜏𝑤  and 𝜔𝑤: 

𝑥 = 𝑆𝑜𝐶, 𝐮 = [𝜏𝑒  ℎ]
𝑇 , 𝐯 = [𝜏𝑤  𝜔𝑤]

𝑇 , (8) 

the following discrete-time cost function including cumulative fuel consumption is defined: 

𝐽 =  ∑𝐹(𝑥𝑘 , 𝐮𝑘, 𝐯𝑘 , 𝑘),

𝑁

𝑘=1

 (9) 

Figure 3. Battery equivalent circuit (a), and dependencies of open-circuit voltage and internal battery
resistance with respect to battery state-of-charge (SoC) for a considered lithium iron phosphate
battery (b).

3. Optimization of PHEV Control Variables

This section deals with DP optimization of PHEV control variables for the blended regime, aimed at
finding optimal SoC trajectories for which the total fuel consumption is minimized for different driving
cycles and conditions. More details on DP-based optimization of PHEV control variables can be found
in [2,18] and references given therein.

3.1. Optimal Problem Formulation

The aim of optimization is to find the values of PHEV control variables in each discrete time
step which minimize the cumulative fuel consumption, while satisfying the state- and control
variables-related constraints. By introducing the following substitutions for the state variable SoC,
control variables τe and h, and input variables τw and ωw:

x = SoC, u = [τe h]T, v = [τw ωw]
T, (8)
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the following discrete-time cost function including cumulative fuel consumption is defined:

J =
N∑

k=1

F(xk, uk, vk, k), (9)

F(xk, uk, vk, k) =
.

m f ,k∆T + Kg
{
H−(xk − SoCmin) + H−(SoCmax − xk)

}
+Kg

{
H−

(
Pmax

batt − Pbatt,k
)
+ H−

(
Pbatt,k − Pmin

batt

)}
+Kg

{
H−

(
τe,k − τ

min
e

)
+ H−

(
τmax

e − τe,k
)}

+Kg
{
H−

(
ωe,k −ω

idle
e

)
+ H−

(
ωmax

e −ωe,k
)}

+Kg
{
H−

(
τMG,k − τ

min
MG

)
+ H−

(
τmax

MG − τMG,k
)}

+Kg
{
H−

(
ωMG,k −ω

idle
MG

)
+ H−

(
ωmax

MG −ωMG,k
)}

,

(10)

where k denotes the discrete time step, N the total number of discrete time steps, and ∆T the
discretization time step. Apart from the fuel consumption within each discrete time step

.
m f ,k∆T,

additional terms are aimed to penalize violation of different constraints. The function H−(.) represents
the inverted Heaviside function which is equal to 1 when its argument is negative, while otherwise it
is equal to 0. The factor Kg is weighting factor which is set to a relatively large value (here Kg = 1012)
in order to avoid constraints violation. The state equation given by Equation (6) is discretized in time
in order to take the following discrete-time form:

xk+1 = f (xk, uk, vk, k), k = 0, 1, . . . , N − 1. (11)

The values of initial state variable at k = 0 and final state variable at k = N are defined as:

x0 = SoCi, x f = SoC f . (12)

An additional term J f penalizing the deviation of the final SoC from the target value SoC f is added
to the cost function (9) and the control variables optimization problem as:

min
uk

J f +
N∑

k=1

F(xk, uk, vk, k)

, (13)

J f = K f
(
SoC f − xN

)2
= K f

(
SoC f − f (xN−1, uN−1, vN−1)

)2
, (14)

where K f denotes a weighting factor (here K f = 106).
The above-formulated optimization problem is solved by using a dynamic programming (DP),

which provides globally optimal results for given discretization resolution of the state and control
variables [19] (set as a trade-off between computational efficiency and the optimization accuracy [20]).
Numerical values of DP optimization parameters are listed in Appendix A.

3.2. Optimisation Results

DP optimizations of PHEV control variables are conducted for the blended regime and driving
cycles shown in Figure 4. The driving cycle denoted by DUB, including the time profiles of vehicle
velocity vv, road grade δr, and passengers mass mpass, has been recorded on a real bus operating
on a regular bus route in the city of Dubrovnik. Apart from the varying road grade shown in
Figure 4b (w/grade), the DUB velocity time profile is also considered for zero road grade (w/o grade).
The heavy-duty UDDS driving cycle (HDUDDS) is a certification driving cycle, for which the road
grade is zero and empty bus is assumed (mpass = 0). The DUB driving cycle is repeated three times and
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HDUDDS two times, in order to provide battery discharging to the minimum allowable SoC level (set
here to 30%) in the blended regime under the given driving conditions.World Electric Vehicle Journal 2019, 10, x FOR PEER REVIEW 6 of 15 
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Figure 4. City bus driving cycle including vehicle velocity (vv) (a), road grade (δr ) (b), and passenger
mass (mpass) (c) time profiles recorded in the city of Dubrovnik (DUB); and velocity time profile for
heavy-duty UDDS driving cycle (HDUDDS) which assumes a zero road (d).

The obtained optimal SoC trajectories (denoted in blue in Figure 5) closely follow the linear profile
(red color lines), when they are expressed with respect to travelled distance. Among all possible SoC
trajectories spanning between the initial and final SoC values, the linear-like profile has the minimum
length. The linear trend is somewhat deteriorated in the case of varying road grade (Figure 5a),
where low frequency oscillations appear in the SoC trajectory. These oscillations are caused by battery
recharging during regenerative braking on negative road grade segments. Similarity between the
optimized and minimum-length (linear) SoC trajectory profiles is quantified by giving values of
correlation index K in Figure 5 (calculated by using Matlab function corrcoef (.)), which approaches to
the almost ideal value of 1 in the case of zero road grades, and to somewhat lower but still very high
value in the case of varying road grades.
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Figure 5. Optimal SoC trajectories obtained by the dynamic programing (DP) algorithm in blended
regime for repetitive DUB driving cycle with varying road grade (a) and zero road grade (b); and for
repetitive HDUDDS driving cycle (c) (see Figure 4; in the case of DUB driving cycle varying passengers
mass from Figure 4c is used).

3.3. Generating and Analyzing Optimal SoC Trajectories of Different Length

Based on the results presented in Figure 5 it can be hypothesized that the optimality is closely
related to the SoC trajectory length, i.e., that the minimum-length SoC trajectory is optimal. In order
to test this hypothesis, the optimal SoC trajectories of different length are generated by adding the
following additional SoC constraints to the cumulative cost function (9):
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JSoC,add =
∑

j

KSoC, j
(
SoCconstr, j − x j

)2
=

∑
j

KSoC, j
(
SoCconstr, j − f

(
x j−1, u j−1, v j−1

))2
, j ∈ Ca. (15)

These constraints penalize the deviation of SoC from several prescribed values SoCconstr, j defined for
jth discrete time step, where Ca represents the set of these discrete time steps. Although these SoC
constraints are already defined as soft constraints, additional flexibility for optimization is introduced
by adding a dead zone of 0.05 (i.e., 5%) around the target values SoCconstr, j. This is realized by varying
weighting factor KSoC, j, which takes the value 0 if

∣∣∣SoCconstr, j − x j
∣∣∣ < 0.05, while, otherwise, it takes the

value of 5·105. The effect of extending the DP optimization with two additional SoC constraints is
illustrated in Figure 6, where the optimal SoC trajectory SoCDP and the cumulative cost function Ji are
shown with respect to travelled distance. The optimal cumulative cost function Ji in the discrete time
step i can be calculated as:

Ji = min
uk


J f +

∑
j≥i

KSoC, j
(
SoCconstr, j − x j

)2

︸                            ︷︷                            ︸
JSoC,add

+
N∑

k=i

F(xk, uk, vk, k)


, (16)

and it represents the minimal cumulative cost which can be obtained under the imposed constraints,
when starting in the considered current SoC and finishing at the final target SoC (SoC f = 30%).
Extremely large values of Ji (Ji > 10,000) correspond to the SoC values and discrete time steps i for
which the final (14) and additional SoC constraints (15) cannot be satisfied under the considered driving
conditions. It can be observed that additional SoC constraints cause the cumulative cost function to
take relatively low values only in the narrow SoC range of ±5% (corresponding to dead-zone width) in
the corresponding time instants. Consequently, the optimal SoC trajectory is forced to pass through
these narrow SoC ranges, thus achieving the SoC trajectory of different length when compared to the
optimal SoC trajectory obtained when no additional SoC constraints are included.
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Figure 6. Visualization of cumulative cost function Ji (see Equation (16)) along with the optimal SoC
trajectory SoCDP for the case of two additional SoC constraints (i.e., SoCconstr = 45% at 1/3 of total
trip distance, and SoCconstr = 55% at 2/3 of total trip distance) and 4 x DUB driving cycle with a zero
road grade.

Apart from the total fuel consumption V f , the total electric energy losses EEL,loss consisting of
battery losses Ebatt,loss and M/G machine losses EM/G,loss are also considered in this analysis:
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EEL,loss = Ebatt,loss + EM/G,loss . (17)

The battery losses are dissipated as a heat on its internal resistance R and have quadratic
dependence with respect to the battery current Ibatt (i.e.,

∫
Ibatt

2Rdt), while the M/G machine losses
depend on the efficiency ηMG (see Figure 2b).

The normalized SoC trajectory length is calculated as:

LSoC,norm =
N∑

k=1

√
∆SoC2

k +

(
∆sk
s f

)2

, (18)

where ∆SoCk and ∆sk represent the difference of SoC and travelled distance between two consecutive
time steps (i.e., ∆SoCk = SoCk − SoCk−1, ∆sk = sk − sk−1), respectively, while s f denotes the total
travelled distance. Here, only ∆sk is normalized with respect to the total travelled distance s f , because
the ∆SoCk already lies in the interval [0,1] by definition and its cumulative sum

∑
k ∆SoCk closely

approaches value 1 as
∑

k ∆sk/s f = 1.
Figure 7a shows numerous SoC trajectories obtained by DP optimizations for different randomly

generated SoC constraints (see Equation (15)) and the case of 3 x DUB with a zero road grade.
Some characteristic optimal SoC trajectories are outlined: Blended which corresponds to the case when
no additional SoC constraints are included into DP optimization (cf. Figure 5b), CD/CS where the battery
is first depleted in pure electric driving and then sustained by means of hybrid driving, CS/CD where
the battery discharging is maximally postponed, and maxLSoC,norm which has the maximum length
among all generated SoC trajectories. Note that CD/CS SoC trajectory reveals the all-electric range for
the particular driving cycle to be around 15 km. Figure 7b–d show the total fuel consumption V f with
respect to different metrics, where each point corresponds to one optimal SoC trajectory from Figure 7a.

Figure 7b indicates a very high correlation of the total fuel consumption V f with respect to the
normalized SoC trajectory length LSoC,norm (i.e., larger V f corresponds to larger LSoC,norm). Since all SoC
trajectories end up in the same value (SoC f = 0.3), the observed variations in the fuel consumption
for different SoC trajectories may be caused by: (i) different distribution of operating points in the
engine specific fuel consumption map, and (ii) different total electric losses calculated by Equation
(17). In order to understand these causes better, the total fuel consumptions V f are shown with
respect to the engine mean specific fuel consumptions Aek,mean (Figure 7c), and with respect to the
total electric losses EEL,loss (Figure 7d). The results shown in Figure 7c reveal that the cause (i) may be
discarded since the larger total fuel consumption often corresponds to even lower mean specific fuel
consumption (note negative correlation). On the other hand, very high positive correlation of the total
fuel consumption with respect to total electric losses can be observed in Figure 7d, thus revealing that
the electric losses are responsible for the fuel consumption variations when SoC trajectories of different
length are generated. For most of the SoC trajectories, the engine efficiency reflected through the mean
specific fuel consumption is somewhat sacrificed, in order to minimize obviously more critical total
electric losses and finally to minimize total fuel consumption. It can be observed from Figure 7a that
the blended SoC trajectory has a minimum length and achieves minimal fuel consumption and electric
losses among all generated SoC trajectories, while the SoC trajectory with the maximum SoC trajectory
length achieves nearly maximum fuel consumption and electric losses.

The finding that the optimality of SoC trajectory is closely related to its length minimization can
effectively be used for synthesis of SoC reference trajectory. In the simplified case of zero road grade
and uniform driving conditions, the nearly optimal SoC reference trajectory SoCR(s) can be calculated
simply as a line spanning between the initial and final SoC values [2]:

SoCR(s) = SoCR(0) + s
SoCR

(
s f

)
− SoCR(0)

s f
. (19)
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The same principle of SoC trajectory length minimization can be adapted to more complex
scenarios, such as those related to low emission zones [5] and varying road grades [21]. Since the
final SoC in Equation (19) can be set to arbitrary value, this SoC synthesis method can be effectively
combined with another higher-level system providing the optimal battery depth-of-discharge (DoD)
(i.e., final SoC value; [11]).

The proposed approach for SoC reference trajectory synthesis is suitable for practical applications
due to its computational simplicity and relatively low requirements on related trip information,
as opposed to alternative MPC-based approach relying on computationally costly on-line optimizations.
Regarding the trip requirements, only the driving distance is needed, which is known in advance for
delivery and public transport vehicles, and could be set by driver or extracted from navigation system
for other vehicles.World Electric Vehicle Journal 2019, 10, x FOR PEER REVIEW 9 of 15 

 

Figure 7. Set of DP optimal SoC trajectories of different lengths obtained by imposing an additional 

SoC constraint (14) (a); and corresponding total fuel consumption  𝑉𝑓 shown with respect to 

normalized SoC trajectory length 𝐿𝑆𝑜𝐶,𝑛𝑜𝑟𝑚 (b), mean engine specific fuel consumption 𝐴𝑒𝑘,𝑚𝑒𝑎𝑛  (c), 

and total electric energy losses 𝐸𝐸𝐿,𝑙𝑜𝑠𝑠 (d) (3 x DUB driving cycle when a zero road grade was used). 

4. Analysis of Optimal SoC Trajectory Patterns 

This section is aimed to further explain the observed DP-based optimal SoC trajectory patterns, 

starting by an analysis of the optimal operation of a battery-only system and following by an analysis 

of the whole powertrain including the engine, M/G machine and battery. 

4.1. Simplified Case of Minimizing Solely Battery Energy Losses 

First, the problem of discharging battery from the initial SoC value 𝑆𝑜𝐶𝑖  (here 𝑆𝑜𝐶𝑖 = 0.9) to 

some predefined final value 𝑆𝑜𝐶𝑓 (here 𝑆𝑜𝐶𝑓 = 0.3) with the aim of maximizing energy drawn from 

the battery is analyzed. The useful energy drawn is maximized if the internal battery energy losses 

𝐸𝑏𝑎𝑡𝑡,𝑙𝑜𝑠𝑠 are minimized: 

min𝐸𝑏𝑎𝑡𝑡,𝑙𝑜𝑠𝑠 = min∫ 𝑃𝑏𝑎𝑡𝑡,𝑙𝑜𝑠𝑠𝑑𝑡 = 𝑚𝑖𝑛

𝑡𝑓

0

∫
𝑃𝑏𝑎𝑡𝑡,𝑙𝑜𝑠𝑠
𝑣𝑣

𝑠𝑓

0

𝑑𝑠, s. t. ∫ 𝑆𝑜𝐶̇ 𝑑𝑡 = 𝑆𝑜𝐶𝑓 − 𝑆𝑜𝐶𝑖

𝑡𝑓

0

. (20) 

The derivative of SoC with respect to travelled distance 𝑠 can be expressed as: 

𝑑𝑆𝑜𝐶

𝑑𝑠
=  −

𝐼𝑏𝑎𝑡𝑡(𝑡)

𝑄𝑚𝑎𝑥

1

𝑣𝑣
. (21) 

The battery power losses have quadratic dependence with respect to the battery current 𝐼𝑏𝑎𝑡𝑡 

described by the term 𝑃𝑏𝑎𝑡𝑡,𝑙𝑜𝑠𝑠 = 𝐼𝑏𝑎𝑡𝑡
2𝑅(𝑆𝑜𝐶), which is then combined with Equations (20) and (21), 

and finally resulting in the following optimization problem with 𝑑𝑆𝑜𝐶/𝑑𝑠 serving as argument: 

min
𝐼𝑏𝑎𝑡𝑡

∫
𝐼𝑏𝑎𝑡𝑡
2 𝑅(𝑆𝑜𝐶)

𝑣𝑣

𝑠𝑓

0

𝑑𝑠 = min
𝑑𝑆𝑜𝐶
𝑑𝑠

∫ 𝑄𝑚𝑎𝑥
2 𝑅(𝑆𝑜𝐶) (

𝑑𝑆𝑜𝐶

𝑑𝑠
)
2

𝑣𝑣𝑑𝑠

𝑠𝑓

0

,   s. t. ∫ 𝑆𝑜𝐶̇ 𝑑𝑡 = 𝑆𝑜𝐶𝑓 − 𝑆𝑜𝐶𝑖

𝑡𝑓

0

. (22) 

Discretization of Equation (22) leads to: 
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SoC trajectory length LSoC,norm (b), mean engine specific fuel consumption Aek,mean (c), and total electric
energy losses EEL,loss (d) (3 x DUB driving cycle when a zero road grade was used).

4. Analysis of Optimal SoC Trajectory Patterns

This section is aimed to further explain the observed DP-based optimal SoC trajectory patterns,
starting by an analysis of the optimal operation of a battery-only system and following by an analysis
of the whole powertrain including the engine, M/G machine and battery.

4.1. Simplified Case of Minimizing Solely Battery Energy Losses

First, the problem of discharging battery from the initial SoC value SoCi (here SoCi = 0.9) to some
predefined final value SoC f (here SoC f = 0.3) with the aim of maximizing energy drawn from the
battery is analyzed. The useful energy drawn is maximized if the internal battery energy losses Ebatt,loss
are minimized:

minEbatt,loss = min

t f∫
0

Pbatt,lossdt = min

s f∫
0

Pbatt,loss

vv
ds, s.t.

t f∫
0

.
SoCdt = SoC f − SoCi. (20)
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The derivative of SoC with respect to travelled distance s can be expressed as:

dSoC
ds

= −
Ibatt(t)
Qmax

1
vv

. (21)

The battery power losses have quadratic dependence with respect to the battery current Ibatt
described by the term Pbatt,loss = Ibatt

2R(SoC), which is then combined with Equations (20) and (21),
and finally resulting in the following optimization problem with dSoC/ds serving as argument:

min
Ibatt

s f∫
0

I2
battR(SoC)

vv
ds = min

dSoC
ds

s f∫
0

Q2
maxR(SoC)

(
dSoC

ds

)2

vvds, s.t.

t f∫
0

.
SoCdt = SoC f − SoCi. (22)

Discretization of Equation (22) leads to:

min
∆SoCr

∆sr

NR∑
r=1

R(SoCr)
(∆SoCr

∆sr

)2
vv,r∆sr, s.t.

NR∑
r=1

∆SoCr = SoC f − SoCi, (23)

where ∆SoCr is the SoC depletion on the rth route segment of length ∆sr, while NR is the total number
of discrete route segments. The factor Q2

max is omitted in Equation (23) since it is constant and does not
have influence on the optimization problem solution. Under the assumption of the battery internal
resistance R, vehicle velocity vv,r, and length of all route segments ∆sr will be constant, the optimization
problem can be further simplified:

min
∆SoCr

∆sr

NR∑
r=1

(∆SoCr

∆sr

)2
, s.t.

NR∑
r=1

∆SoCr = SoC f − SoCi. (24)

This assumption related to the resistance R is reasonable because it is relatively constant for a wide
range of SoC values (see Figure 3b), while other assumptions are introduced here for the purpose of
simplification and analysis. Since the quadratic function is convex, the following expression based on
Jensen’s inequality can be established:

∑NR
r=1

(
∆SoCr

∆sr

)2

NR
≥


∑NR

r=1
∆SoCr

∆sr

NR


2

, (25)

where the numerator on the left-hand side of Equation (25) corresponds to the cost function of the
optimization problem (24). Now, the minimum of the left-hand side of Equation (25), corresponding to
equality of the left-hand side and right-hand side terms, is achieved for the constant value of ∆SoCr/∆sr

for all route segments. By combining the equality constraint from Equation (24) related to the SoC
boundary values and posing ∆SoCr/∆sr to be constant, the following expression for the optimal SoC
depletion on rth route segment is obtained:

∆SoCr

∆sr
=

SoC f − SoCi

s f
, (26)

where s f represents the total travelled distance. In this case, the optimal battery operation would be to
discharge the battery with constant SoC depletion rate, thus resulting in the SoC trajectory with linear
shape of minimum length.

The same battery discharging problem is further analyzed by means of DP-based optimization in
order to analyze the impact of varying battery parameters on SoC trajectory shape. Figure 8 shows SoC
trajectories obtained by the constant SoC depletion rate (SoClin) and by DP optimizations for: (i) the
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constant battery parameters (the mean values from Figure 3b are used), and (ii) the SoC-dependent
battery parameters (Figure 3b). The optimization horizon is set to 400 s in order to enable battery
discharging with feasible battery power (mean value of the battery power in this case is equal to
96.6 kW, while the upper limit is 150 kW). It should be emphasized that this is performed only for the
purpose of analysis and it is not related to realistic road conditions.

In the case of constant battery parameters, the optimal operation is related to a constant SoC
depletion rate (Figure 8b; slight deviation from the constant value in the case of DP occurs due to
discretization effects and the requirement on the final SoC value). The results shown in Figure 8a
point out that the impact of variable battery parameters on the optimal SoC trajectory shape is almost
negligible. Figure 8b shows the optimal SoC depletion rate time profiles, where in the case of variable
battery parameters SoC depletion rate slightly deviates from the constant value which is caused by the
battery resistance dependence on SoC (cf. the battery resistance profile from Figure 3b with optimal
SoC depletion rate).World Electric Vehicle Journal 2019, 10, x FOR PEER REVIEW 11 of 15 
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4.2. More Realistic Case of Minimizing Fuel Consumption

The analysis is extended here to the overall powertrain, which includes the engine, M/G machine,
transmission, and battery (see Figure 1a). In order to study the optimal SoC trajectory with respect
to fuel consumption minimization while discharging the battery (i.e., from 90% to 30%), the fuel
consumption rate

.
m f is expressed in dependence on SoC depletion rate

.
SoC for different values of the

battery SoC, power demand Pd, and the engine speed ωe:

.
m f = g

( .
SoC, SoC, Pd,ωe

)
. (27)

The optimal solution for
.

SoC which minimizes the total cumulative fuel consumption can be
found analytically if the function g in Equation (27) is convex, under assumption of constant values of
Pd, SoC, and ωe (i.e., constant vehicle velocity). It can be shown that the optimality is achieved if

.
SoC is

kept constant during whole driving cycle and set to the value which would discharge the battery to
the predefined minimum value (the same reasoning as in the case of deriving optimal SoC depletion
in Equation (26)). The analysis is given here in the time domain, and it is equivalent to the travelled
distance domain considered in previous sections because of the constant vehicle velocity assumption
introduced here.

Figure 9a shows the graphical representation of the function (27) for several Pd values and for
SoC = 50%. The corresponding second derivatives are positive over the whole range thus confirming
the convexity of the analyzed functions (Figure 9b). This convexity analysis is also conducted for
a wide set of Pd and ωe values, and the results are shown in Figure 10 (the function is categorized as
non-convex if its second derivative is not strictly positive). According to the results from Figure 10,
the function g in Equation (27) is convex for a majority of Pd and ωe values.
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These effects are further illustrated and analyzed for the particular ωe and Pd values for two
engine fuel consumption characteristics (g/s): (i) the original one (obtained from Figure 2a by using
Equation (5)) resulting in the function (27) to be convex, and (ii) the modified one resulting in the
function (27) to be concave (see Figure 11). Here, the modified engine specific fuel consumption map
is introduced solely to demonstrate that the optimal SoC trajectory may differ from the linear one of
minimum length depending on the convexity character of function (27).
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SoC = 50%, vv = 86 km/h, ωe = ωMG = 184 rad/s, Pd = 79.7 kW.

Three different scenarios of battery discharging to the predefined low value of 30% are considered
(see related operating points and profiles in Figure 12):
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1. OP1: power demand Pd is partly satisfied by the engine and partly by the M/G machine (operating

points are kept constant during the whole operation; constant
.

SoC < 0),

2. OP2—Phase 1: power demand Pd is completely satisfied by the engine (
.

SoC = 0), Phase 2: power

demand Pd is completely satisfied by the M/G machine (constant
.

SoC < 0),
3. OP3—Phase 1: power demand Pd is completely satisfied by the engine which also provides

additional power to recharge the battery (constant
.

SoC > 0), Phase 2: power demand Pd is
completely satisfied by the M/G machine (constant

.
SoC < 0).

From the standpoint of lower engine specific fuel consumption and regardless of type of engine
fuel consumption characteristic (original or modified), Scenario OP2 is preferable over Scenario OP1,
and Scenario OP3 is preferable over Scenario OP2 (see Figure 12a,b). However, from the standpoint of
overall powertrain fuel consumption, Scenario OP1 related to linear SoC trajectory should be optimal if
the function

.
m f vs.

.
SoC is convex (as it is the case with the original characteristic shown in Figure 11a),

while it should be suboptimal in the case of non-convex function (the modified characteristic shown
in Figure 11a). This is confirmed by the results presented in Figure 13, where the comparative fuel
consumption time profiles are shown for different scenarios. This finding can be explained by the
fact that it is advantageous to place the engine operating point to somewhat larger specific engine
fuel consumption (OP1 vs. OP2 and OP3, see Figure 12a) in the case of original engine characteristic,
and thus avoid relatively large total electric losses whose increase is progressive with the M/G power
(i.e., battery power, Figure 12c). In this case it is optimal to keep

.
SoC constant which results in the

SoC trajectory of minimum length. However, in the case of modified engine characteristic, where the
difference in the specific fuel consumption between OP2 vs. OP1 and OP3 vs. OP2 is more significant
than in the original case, it is advantageous to move the engine operating point in reduced specific fuel
consumption region (OP3 and OP2; see Figure 12a,b) despite the increased electric losses in Phase 2
(Figure 12c).

The above analysis contributes to understanding of the tendency of optimal SoC trajectories to
be of minimum length (as observed in Figure 5), taking into account that the function g in Equation
(27) is convex in a great majority of operating region (Figure 10) for the original engine specific fuel
consumption map.
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Figure 12. Illustration of three different operating scenarios through engine mean specific fuel
consumption (a), engine power (b), total electric energy losses (c), and SoC trajectory profile (d)
(the same operating conditions as in Figure 11: SoC = 50%, vv = 86 km/h, ωe = ωMG = 184 rad/s,
Pd = 79.7 kW).
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5. Conclusions

This paper has presented the analysis of the optimal battery state-of-charge (SoC) trajectory
for the blended operating regime of a parallel plug-in hybrid electric vehicle (PHEV). The analysis
was based on the optimization results obtained by using dynamic programming (DP) algorithm,
for various driving cycles. It has been found that the optimal SoC trajectories expressed with respect
to travelled distance tend to have nearly-linear (i.e. minimum-length) shape for different driving
cycles. The linear SoC trajectory was also proven to be optimal both analytically and numerically
for a simplified battery-only system based on battery power loss minimization. The analysis was
extended to the whole powertrain including the engine, electric machine and battery, where the main
aim was to minimize the total fuel consumption. It has been shown that the linear SoC trajectory is
also optimal for the whole powertrain in the (actual) case of convex shape of engine fuel mass flow
versus SoC depletion rate characteristic. It has been also demonstrated that when modifying the
engine specific fuel consumption characteristic to some extent, the optimal SoC trajectory can have
significantly different patterns than the minimum-length linear one.

In summary, the analyses conducted in this paper have pointed out that the minimum length
linear SoC trajectory is optimal because of its feature to minimize the total electric losses and because of
flexibility in setting the engine operating points due to a relatively flat engine specific fuel consumption
vs. engine power characteristic in a wide range.
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Appendix A. PHEV City Bus Parameters

Appendix A.1. Model Parameters

Vehicle parameters [14]: wheel radius, rw = 0.481 m; bus frontal area, A f = 7.52 m2; aerodynamical
drag coefficient, Cd = 0.70; rolling friction coefficient, R0 = 0.01; empty bus weight, Mv = 12,635 kg,
final drive ratio, io = 4.72.

Battery parameters: Qmax = 30 Ah corresponding to battery energy of 19 kWh (Emax = 19 kWh).
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Table A1. Transmission gear ratios [14].

Gear No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

Gear ratio 14.94 11.73 9.04 7.09 5.54 4.35 3.44 2.70 2.08 1.63 1.27 1.00

Appendix A.2. DP Optimization Parameters

Weighting coefficients: Kg = 1012, K f = 106, KSoC = 5·105.
Constraints: SoCmin = 0.2, SoCmax = 1, Pbatt,min = −150 kW, Pbatt,max = 150 kW, ωe,min = 0 rad/s,

ωMG,min = 0 rad/s, ωe,max = 277.5 rad/s, ωMG,max = 277.5 rad/s.
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