
Synthesis of Driving Cycles Based on Low-Sampling-
Rate Vehicle-Tracking Data and Markov Chain
Methodology

Dabčević, Zvonimir; Škugor, Branimir; Topić, Jakov; Deur, Joško

Source / Izvornik: Energies, 2022, 15, 4108 - 4129

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.3390/en15114108

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:321736

Rights / Prava: Attribution 4.0 International / Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2025-02-24

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering 
and Naval Architecture University of Zagreb

https://doi.org/10.3390/en15114108
https://urn.nsk.hr/urn:nbn:hr:235:321736
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://repozitorij.fsb.unizg.hr
https://repozitorij.fsb.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fsb:10813
https://dabar.srce.hr/islandora/object/fsb:10813
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Abstract: The authors of this paper propose a Markov-chain-based method for the synthesis of
naturalistic, high-sampling-rate driving cycles based on the route segment statistics extracted from
low-sampling-rate vehicle-tracking data. In the considered case of a city bus transport system, the
route segments correspond to sections between two consecutive bus stations. The route segment
statistics include segment lengths and maps of average velocity, station stop time, and station-
stopping probability, all given along the day on an hourly basis. In the process of driving cycle
synthesis, the transition probability matrix is built up based on the high-sampling-rate driving cycles
purposely recorded in a separate reference city. The particular emphasis of the synthesis process
is on satisfying the route segment velocity and acceleration boundary conditions, which may be
equal to or greater than zero depending on whether a bus stops or passes a station. This enables
concatenating the synthesized consecutive micro-cycles into the full-trip driving cycle. The synthesis
method was validated through an extensive statistical analysis of generated driving cycles, including
computational efficiency aspects.

Keywords: driving cycle; synthesis; boundary conditions; city bus; vehicle-tracking data; Markov
chain method; validation

1. Introduction

Increasing environmental awareness has been a key initiator of stricter regulations
towards reductions in vehicle energy consumption and greenhouse gas emissions [1].
A vehicle’s energy consumption and related emissions strongly depend on the driving
cycle [2–4], which is usually defined as the vehicle speed vs. time profile [5,6]. As such,
it represents a characteristic driving pattern that reflects driver behavior (e.g., driving
aggressiveness) and road conditions (road type, road slope, traffic conditions, etc.) [7,8].
From the early 1960s, specific, so-called certification driving cycles have served as input
to standardized emissions and energy-consumption-related certification processes world-
wide [4,5]. They can also be used to select optimal vehicle powertrain configurations and
develop optimal vehicle control strategies [9,10], as well as to determine effective vehicle
range, battery life expectancy, and optimal charging management strategies in the case of
electric vehicles [11–14]. Therefore, the driving cycles should represent the actual driving
behavior and road conditions as much as possible [15].

Although the certification processes have been proven to be successful in facilitating
continuous reductions in vehicle energy consumption and greenhouse gas emissions, a
significant gap has been observed between energy-consumption rates obtained for certifica-
tion driving cycles and real driving conditions [16–18]. To reduce this gap, recent research
efforts have been focused on developing statistically representative synthetic driving cycles
derived from GPS-recorded vehicle-tracking data [19,20]. The main aim of driving cycle
synthesis is to replace a wide set of recorded driving cycles with a single or several synthetic
cycles that are statistically representative in terms of reflecting the average driving pattern
of the initial (recorded) set.
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The most common approach to the synthesis of driving cycles is based on the Markov
chain stochastic method [21–23]. Its main advantages over micro-trip-based methods [24,25]
are its (i) flexibility of generating a synthetic driving cycle with a desired travel time or
total distance traveled [19,20] and (ii) inherent ability to solve the problem of missing GPS
data through omitting the irregular transitions between Markov states when determining
the driving-cycle model in the form of a transition probability matrix (TPM). By means of
repetitive random sampling from a TPM, it is possible to generate an unlimited number
of synthetic driving cycles [26]. Finally, applying certain validation criteria enables the
extraction of the synthetic driving cycles that are most representative in the statistical
sense [27,28].

For the aforementioned vehicle testing and simulation applications (see also [29,30]),
the driving cycles should be synthesized based on input data of a high sampling rate
(at least 1 Hz). However, widely deployed GPS tracking devices broadcast data at a
significantly lower sampling rate, which is typically in the range from 0.025 to 0.2 Hz [31].
The issue can be overcome n the following distinct ways: (i) adjusting the tracking device
hardware or software to allow for high-rate broadcasting [20,32,33] and (ii) developing
a synthesis method that could generate high-sampling-rate (HSR) driving cycles from
the low-sampling-rate (LSR) input database. The former imposes additional workload
and/or cost and is subject to permission by the transport company. The latter is generally
more convenient because it relies on readily available tracking data, but it also requires the
development of a specific driving cycle generation method, which is the main subject of
this paper.

The proposed method consists of three distinctive steps. Firstly, the LSR data are
post-processed to obtain the route/trip segment statistics in terms of segment length and
maps of average velocity, station stop time, and station-stopping probability given along
the day on an hourly basis. In the particular case of the city bus transport system, the trip
segments correspond to road sections between two consecutive bus stations at which the
bus may or may not stop. Secondly, HSR tracking data recorded in a separate (reference,
“donor”) city are split into the trip segment micro-cycles, which are used to build the TPM
model. For numerical efficiency reasons, the TPM model is represented by a number of
TPMs corresponding to different clusters of recorded micro-cycles in terms of mean velocity.
Thirdly, the post-processed LSR data and the HSR TPM model are used to synthesize the
HSR driving cycles. The synthesis is essentially conducted over the trip segments to match
the LSR data segment statistics. By providing that the vehicle velocity and acceleration
boundary conditions (i.e., initial and final conditions) are satisfied, the synthesized trip
segment micro-cycles can be readily concatenated into the final, full trip driving cycle.
While the Markov-chain-based driving cycle synthesis method itself is well-known [32–34],
its use to generate trip-segment micro-cycles that satisfy the LSR data statistical features
and provide the zero or non-zero boundary conditions has not been addressed in the
available literature.

The main contributions of the paper include: (i) a general framework for synthesizing
HSR driving cycles based on readily available LSR fleet tracking data and a reference
HSR recorded driving cycle database; (ii) a micro-cycle synthesis method that satisfies
the prescribed velocity and acceleration boundary conditions while accounting for the
multi-TPM micro-cycle model.

The paper is organized as follows. Section 2 describes the considered city bus transport
system, outlines the motivation and requirements for the synthesis of HSR driving cycles
from LSR tracking data, and presents the LSR tracking data-based traffic model. Section 3
briefly describes the standard Markov chain method for the synthesis of naturalistic driving
cycles. Section 4 elaborates the proposed trip segment-based HSR driving cycle synthesis
method, which satisfies the predetermined LSR data’s statistical features and related
boundary conditions. Section 5 deals with the validation of the proposed driving cycle
synthesis method. Concluding remarks are given in Section 6.
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2. Problem Description
2.1. On Importance of Microsimulations for Transport Electrification Planning Purposes

Transport system operators, e.g., those managing city bus or delivery fleets, experience
pressure to reduce the number of vehicles and fuel/energy-consumption costs through
proper fleet scheduling/routing [35]. The introduction of electrified transport systems led
to the need for even more comprehensive planning because of the limited e-vehicle range
and the need to optimally deploy a charging infrastructure [29].

Since the energy consumption of future electrified transport system cannot be known
in advance, planning studies can be conducted based on virtual (computer) microsimula-
tions that rely on physical vehicle models and available (historical) GPS vehicle-tracking
data [29]. The main advantage of such a microsimulation approach is that it provides
accurate energy-consumption estimates for a wide range of road and ambient conditions
when using experimentally validated vehicle models. However, it requires driving cycles
recorded at a high sampling rate (HSR; typically around 1 Hz) even though the fleet op-
erators routinely make recordings at orders-of-magnitude lower sampling rates (LSRs).
Therefore, there is a necessity to develop a method that could synthesize HSR driving
cycles for a target (“acceptor”) transport system, whose statistical features correspond
to the recorded LSR data of the same system, and replicate the features of HSR driving
cycles purposely recorded in a separate reference (“donor”) transport system with similar
characteristics. Such a method is proposed in this paper based on a Markov chain synthesis
method and demonstrated with an example city bus transport system.

2.2. High-Sampling-Rate (HSR) Driving Cycle Synthesis Framework

Figure 1 illustrates the overall framework of the HSR driving cycle synthesis proposed
in this paper. The initial step involved splitting a rich set of already available recorded
HSR driving cycles of the reference city bus transport system (corresponding to the city of
Dubrovnik; see [28,29,34]) into bus station-to-station (S2S) segments. This allowed for the
isolation of a large set of HSR micro-cycles, where each micro-cycle was described by vehicle
velocity vs. time profile corresponding to an S2S segment. The extracted HSR micro-cycles
were then clustered according to their mean velocities and used for establishing multiple
stochastic driving-cycle models represented by transition probability matrices (TPMs).

The next step comprised the mapping of the recorded LSR driving cycle data for
the target city bus transport system (related to the city of Jerusalem in this paper) into
relevant statistical features over the S2S segments. The statistical features included the ith
S2S segment length LS2S,i and the corresponding spatial–temporal maps of mean velocity
(vS2S,i), station dwell time (TS2S,i), and station-stopping probability (pS2S,i).

The final step comprised the generation of target city HSR S2S micro-cycles that
matched the reference city TPM model and the LSR driving cycle features (Section 4). The
generation process was based on the Markov chain synthesis method (Section 3). The
generated micro-cycles also needed to satisfy the S2S velocity boundary conditions. The
full-trip HSR synthetic driving cycles were then obtained by concatenating the synthetic
S2S micro-cycles and inserting station idle pauses in accordance with the LSR driving cycle
features. The representativeness of such generated HSR synthetic driving cycles was finally
confirmed by their validation with respect to recorded LSR data (Section 5).
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Figure 1. High-level concept of Markov-chain-based method for generating high-sampling-rate (HSR)
synthetic driving cycles with predetermined statistical features extracted from low-sampling-rate
(LSR) driving cycle database.

2.3. Requirements on Process of Generating HSR Driving Cycles

The following minimalistic LSR dataset was required to establish the target transport
system traffic model and ultimately obtain the HSR synthetic driving cycles (see Figure 2
for details of the overall procedure):

• Information related to bus route(s): reference GPS coordinates of route, station loca-
tions, and route timetable.

• LSR GPS tracking data: time series of vehicle geographical coordinates (latitude and
longitude), elevation (altitude), velocity, and cumulative distance travelled.
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Figure 2. Procedure for converting LSR driving data into HSR synthetic driving cycles including:
(a) route segmentation into S2S segments and mapping of recorded GPS tracking data to each S2S
segment; (b) establishment of a data–driven traffic model based on spatial–temporal mean velocity,
station dwell time and vehicle-stopping probability maps; and (c) generation of HSR synthetic driving
cycles with target statistical features based on proposed Markov chain synthesis method.

Reference route coordinates facilitated the assignment of the recorded LSR tracking
data to corresponding S2S segments. Bus station locations were needed for route segmen-
tation into S2S segments. Vehicle GPS coordinates were used to identify the current S2S
segment during the LSR GPS data-mapping process. Altitude data were needed for the
reconstruction of the road slope profile along the route [36], which could be fed directly
to the fleet microsimulation model. The mapped S2S segment data (Figure 2a) were used
to generate the data-driven traffic model described by spatial–temporal maps of (i) mean
velocities, (ii) bus-stopping probabilities, and (iii) bus dwell times at stations (Figure 2b).
Based on the established traffic model and the known route timetable, a set of HSR synthetic
driving cycles was finally generated for each trip by utilizing the Markov-chain-based
synthesis method and the reference transport system TPM model (Figure 2c).

2.4. LSR Data-Supported Traffic Model Generation

A rich set of LSR city bus driving cycles was continuously recorded in the target city
over a period of one month. The average GPS sampling time was 40 s (i.e., the average
sampling rate was 0.25 Hz). The data considered here correspond to both directions of the
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single city route shown in Figure 3. Direction 1 included 23 S2S segments, and Direction 2
consisted of 30 S2S segments. The route length was approximately 9 km.

Figure 3. Geographical coordinates of considered target city bus route segmented into station-to-
station (S2S) segments for Direction 1.

During the one-month recording period, multiple buses (including those from other
overlapping routes) traveled over each S2S segment numerous times all over the day.
To account for time-varying traffic conditions, the recorded mean velocities of each S2S
segment were averaged on an hourly basis. The resulting heat map, shown in Figure 4a for
Direction 1, indicates that the average velocities could significantly vary throughout the
day (higher velocities in night) and road segments (lower velocities in congested roads).

Figure 4. Mean velocity (a), stopping probability (b), and dwell time (c) maps for Direction 1 of
considered target city route.
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The stopping probability for each bus station was calculated as:

pS2S,i =
nstp,i

ntot,i
, (1)

where nstp,i is the number of stopping occurrences at the ith bus station and ntot,i is the total
number of recorded S2S micro-cycles. The resulting map, which was averaged in time and
is shown for Direction 1 in Figure 4b, indicates that stopping occurred regularly for certain
stations (the probability approaches 1), while it was rare or occasional for other stations.

The time needed for a bus to traverse the ith S2S segment could be estimated from the
segment length (LS2S,i) and its mean velocity (vS2S,i):

tS2S,i =
LS2S,i

vS2S,i
. (2)

The average dwell time (tdwell) at each bus station and for a single recorded driving
cycle could then be determined from the actual route traversing time (tdrv,real) and the
cumulative value of S2S segment traversing time (tdrv,est):

tdwell =
tdrv,real − tdrv,est

nst,stp
=

tdrv,real −∑N
i = 1 tS2S,i

nst,stp
, (3)

where nst,stp represents the number of stations at which the bus stopped for the considered
driving cycle. The individual dwell times, given by Equation (3), were then averaged
for each station along the day, on an hourly basis, to map the overall average dwell time
TS2S,i. The resulting map, shown in Figure 4c, shows that the dwell time TS2S,i increased
in the morning and the afternoon commuting hours, which could be explained by higher
numbers of passengers entering and exiting buses during these periods.

2.5. Comparative Characteristics of Target and Reference City

The comparative distributions of the city bus transport system S2S segment features
for the reference city (Dubrovnik) and the target city (Jerusalem) are shown in Figure 5.
Although certain differences can be observed between the two sets of distributions (e.g.,
the mean velocities and the segment lengths are somewhat lower for the target city than
the reference city), the distributions are quite similar in shape and values, including very
similar road slope features. Therefore, the available city bus HSR driving cycles recorded
in the reference city could be used as a basis for generating synthetic HSR driving cycles
for the target city.

Figure 5. Comparative histograms of reference (Dubrovnik) and target (Jerusalem) city bus transport
system features.
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3. Fundamentals of Markov-Chain-Based Method of Driving Cycles Synthesis

The Markov-chain-based driving cycle synthesis procedure can be divided into three
distinctive steps [4,19]: (i) modeling, (ii) generation, and (iii) validation of synthetic driv-
ing cycles.

3.1. Modeling of Driving Cycles

A Markov chain is defined as an attainable set of discrete-time states {X0, X1, X2, . . .}
of a considered system, for which the following Markov property condition is satisfied at
any discrete time step k [37]:

P(Xk+1 = sk+1|Xk = sk, . . . , X0 = s0) = P(Xk+1 = sk+1|Xk = sk), (4)

where s0, . . . , sk, sk+1 represent exact realizations of the system states and
P(Xk+1 = sk+1|Xk = sk) denotes the transition probability from the state Xk to the state
Xk+1. The interpretation of Equation (4) is that the transition of the system to the next state
Xk+1 solely depends on the current state Xk, and not on the previous states X0, . . . , Xk−1.

In the context of driving-cycle synthesis, combinations of discrete-amplitude values of
vehicle velocity and acceleration are typically used as Markov chain states [19–21]. Here,
the (city bus) velocity was discretized in the range from 0 to 90 km/h with a resolution of
0.1 km/h (901 discrete values in total) and the acceleration was in the range from −2 to
2 m/s2 with a resolution of 0.1 m/s2 (41 discrete values in total) [28,34].

The transition probabilities between states are expressed through a four-dimensional
(4D) transition probability matrix (TPM; see Figure 6), and they are defined as:

pqr,xy := P
(
Xk+1 =

{
ax, vy

}∣∣Xk =
{

aq, vr
})

. (5)

Figure 6. Illustration of 4D TPM realized in 4D array form.

To determine the TPM from recorded driving cycles, each recorded acceleration–
velocity pair is rounded to the nearest discrete Markov chain state. Then, the transitions
between states are counted and stored within the TPM; e.g., if the transition from the state{

aq, vr
}

to the state
{

ax, vy
}

is observed, the corresponding element of the TPM is increased
by 1. Finally, the number of transitions from each state are scaled (normalized) to have a
total sum of 1 according to Equation (6) in order to obtain a proper probability distribution:

∑
x

∑
y

pqr,xy = 1, ∀q, r. (6)

TPMs are typically implemented in the form of an array (see Figure 6). For very high
number of Markov chain states, this could lead to excessive memory requirements and low
cycle-generation computational efficiency (in total, 36,9412 transition probabilities for the
particular study). This problem can be overcome by exploiting the TPM sparsity property,
i.e., that it contains many zero elements [20], which is because a lot of state transitions are
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absent (e.g., high jumps in vehicle velocity between two consecutive steps are impossible).
The TPM can thus be implemented in a sparse form based on the dictionary-of-keys data
structure [34,38,39], which was applied in this paper. In this notation, ordered tuples are
used as dictionary keys to retrieve transition probabilities P(Xk+1|Xk) for a certain state
Xk. Each tuple representing one Markov state is defined by indices of discrete values of
vehicle velocity and acceleration. Non-relevant, zero-probability transitions are avoided in
this way.

3.2. Generation of Synthetic Driving Cycles

Synthetic driving cycles are generated by using the TPM and a random number
generator. The procedure is known as Monte Carlo Markov Chain (MCMC) method, and it
can be described as follows [40]:

� In the initial time step (k = 0 the vehicle velocity and acceleration states are initialized
to arbitrary values (typically to zeros).

� Being in the state Xk = {vk, ak} the next state Xk+1 = {vk+1, ak+1} is determined
by sampling from the distribution P(Xk+1|Xk) stored in the TPM by using a random
number generator.

� The process is iteratively repeated until meeting a terminating condition (e.g., the
target time duration or target travelled distance).

3.3. Validation of Synthetic Driving Cycles

Since driving cycle synthesis is based on stochastic modeling and generation, theoreti-
cally infinite number of driving cycles can be generated using a single TPM. Therefore, a
validation procedure should be employed to select the most representative driving cycle(s),
which, in statistical sense, faithfully resemble the recorded driving cycles. This is typically
done through comparisons of key statistical features of synthetic and recorded driving cy-
cles, such as mean value and standard deviation of velocity and acceleration (see [19,20,28]
for more details).

4. Synthesis of HSR Driving Cycles from LSR Data-Based Traffic Model
4.1. Procedure of S2S Micro-Cycle Synthesis

The main idea of this method is to iteratively generate HSR micro-cycles for each
S2S segment and finally select the representative synthetic micro-cycle. The micro-cycle
selection criteria are to closely match the target statistical features represented by the LSR
data-gained traffic model for the given S2S segment, which includes (see Figure 4): (i) the
mean velocity vS2S,i, (ii) the stopping probability for the segment end-station pS2S,i, (iii) the
dwell time at the segment end-station TS2S,i, and (iv) the segment length (i.e., the travelled
distance) LS2S,i. The selected micro-cycles, with properly arranged boundary conditions
and the dwell time TS2S,i added, are finally concatenated into a full-trip HSR driving cycle.

The micro-cycle synthesis procedure is illustrated in Figure 7, and it can be divided
into the following steps:

i. Clustering the HSR-recorded micro-cycles and determining the corresponding TPMs
(Section 4.2).

ii. Setting the velocity and acceleration initial conditions to match the final conditions of
the prior S2S segment micro-cycle, acquiring the target statistical features from the
LSR data-based traffic model for the given S2S segment, and selecting the TPM based
on the target S2S segment mean velocity.

iii. Randomly determining if the vehicle should stop at the segment end-station based on
the predefined stopping probability pS2S,i as:

FS2S,i =

{
0, r < pS2S,i
1, r ≥ pS2S,i

, r ∼ U(0, 1), (7)
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where FS2S,i is the bus-stopping flag and r is random number sampled from the
uniform distribution. If this condition is satisfied, the final condition is set to zero
velocity/acceleration; otherwise, the final condition is unspecified/floating.

iv. Generating synthetic micro-cycle based on the selected TPM and target statistical
features including travelled distance and the determined boundary (initial and fi-
nal) conditions.

v. Checking if the target S2S segment mean vehicle velocity is achieved under the
specified tolerances (±5%). If the selection condition is satisfied, the generated micro-
cycle is adopted. Otherwise, new micro-cycles are iteratively generated and the
selection condition is continuously checked. If the selection condition is not satisfied
in a pre-defined number of iterations (500 here), the micro-cycle with the mean velocity
closest to the target value is selected.

Figure 7. Flowchart of HSR micro-cycle synthesis procedure.

Special emphasis is devoted to the feasibility of overall procedure in terms of matching
the final and initial conditions of the consecutive micro-cycles while considering realization
features of the TPM including possible absorbing states (see Section 4.4 for more details).

4.2. Clustering of HSR-Recorded Micro-Cycles and Determining Corresponding TPMs

The mean velocities of generated synthetic driving cycles tend to group around the
mean value of widely distributed, HSR-recorded velocities (see Figure 7) if a single TPM
is used to model the reference transport system. This can lead to an excessively high
number of generated micro-cycles until a valid one is selected. In order to make the
synthesis procedure numerically more efficient, the recorded HSR micro-cycles in this
research were clustered with respect to their mean velocities (see illustration in Figure 8),
and an associated TPM was determined for each cluster. The clusters were defined in
the range from 0 to 68 km/h, with a width of 2 km/h, thus resulting in 35 clusters and
accordingly 35 TPMs in total. As such, the micro-cycle synthesis is based on the TPM that
corresponds to the target mean velocity of the current S2S segment. By narrowing the
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range of recorded micro-cycle mean velocities covered by the TPM model, the number of
iterations needed to select the valid micro-cycle could be substantially reduced.

Figure 8. Illustration of clustering of HSR recorded micro-cycles (a) aimed at generating multiple
TPM models for narrower velocity range (b).

4.3. Accounting for Stopping-Related Final Condition

A bus may or may not stop at the S2S segment end-station depending on condition (7).
The micro-cycle synthesis method should cover both of these final condition scenarios. The
synthesis is straightforward if the bus does not stop at the station, because the final condi-
tion is not imposed in that case. On the other hand, realizing the zero velocity/acceleration
final condition in a statistically representative way poses a challenge. To solve this prob-
lem, three distinct methods were developed and assessed: (i) using an additional TPM
corresponding to end-cycle-stopping data only, (ii) employing a dual TPM reflecting the
recorded micro-cycle features in forward-looking and backward-looking senses, and (iii) ex-
tending the micro-cycle to satisfy the zero-velocity final condition and compressing the
extended micro-cycle to the target length.

4.3.1. Using Additional TPM Related to Stopping Mode

The stopping-mode TPM is extracted from the final-phase data of all recorded micro-
cycles that end with the zero-velocity final condition. The final phase is bounded by the
stopping start and end points. The stopping start point is determined by counting the
individual acceleration samples starting from the (zero-velocity) end point (i.e., backward
in time) based on the condition that the ratio of negative/stopping accelerations to all
accelerations falls below a predefined threshold (set to 80% here).

To establish a right timing of the transition from regular TPM (TPMreg) to stopping
TPM (TPMstp) when generating the micro-cycles (Figure 9b), numerous micro-cycles were
synthesized based on the stopping TPM for different initial velocities. This resulted in
the initial velocity vs. stopping distance plot illustrated by dots in Figure 9a, which was
approximated with a constant-deceleration square root function (solid line in Figure 9a).
The transition from TPMreg to TPMstp was set to occur if the current micro-cycle velocity
vs. remaining distance point fell below the stopping limit curve (see illustration of this
transition in Figure 9b).
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Figure 9. Illustration of determining stopping limit curve (a) and micro-cycle generation transition
from using regular TPM to using stopping TPM (b).

It should be noted that the target stopping and, thus, the overall travelled distance
could not be guaranteed because of the approximation of stopping limit curve and the
stochastic nature of the micro-cycle synthesis method. To overcome this issue, the termi-
nation condition of the iterative synthesis procedure (see Figure 7) had to be extended to
request that the target distance was satisfied with some error tolerance (set to ±5% here).
However, this intervention significantly affected the overall numerical efficiency; for in-
stance, it turned out that only 25% of all generated micro-cycles satisfied the target distance
condition. Additionally, the statistical representativeness of the generated micro-cycle was
affected by certain ambiguities of determining and activating the stopping TPM.

4.3.2. Using Dual TPMs

The dual TPM method is aimed to generate micro-cycle of the exact/target length in
a single step. The first TPM (denoted as FWD TPM) is constructed regularly (Section 3),
i.e., by counting transitions between recorded micro-cycle states in the forward-in-time
direction. The second TPM (designated as BWD TPM) is determined in the backward
manner, i.e., by counting transitions between states backward-in-time (i.e., from the end-
station to the start-station of an S2S segment). After normalization, the BWD TPM finally
contains the following conditional probability distributions:

pqr,xy := P
(
Xk =

{
ax, vy

}∣∣Xk+1 =
{

aq, vr
})

, (8)

which represents the probability of being in the state
{

ax, vy
}

in the kth time step if the
state in the (k+1)th time step is known and equal to

{
aq, vr

}
. It should be noted that

(i) the same set of recorded micro-cycles with the zero-velocity final condition is used for
constructing both FWD and BWD TPMs, (ii) both FWD and BWD synthesis results in TPMs
that faithfully resemble the real/recorded data, and (iii) synthesizing the BWD micro-cycle
with the zero-velocity initial condition and combining it with the FWD one into the final
micro-cycle (see Figure 10a) allows for defining the final/merged micro-cycle with the
zero-velocity final condition.

In the micro-cycle synthesis step, two micro-cycles of the target length are generated,
both having the zero-velocity initial condition: the first one is based on the FWD TPM
and evaluates forward in time (from start to end-segment station), while the second one
employs the BWD TPM and evaluated backward in time (from end to start-segment station;
see Figure 10a for illustration). The FWD and BWD micro-cycles are then combined into a
single, final micro-cycle, as illustrated in Figure 10a by the dashed yellow line. The two
micro-cycles are merged together in one of their intersection points to provide a smooth
velocity transition. Note that there is at least one intersection point due to the zero-velocity
initial conditions and positive velocities. When there is more than one intersection point,
the intersection point that minimizes the difference in the boundary accelerations of the
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two micro-cycles is selected as the final micro-cycle merging point (Figure 10b). A certain
weakness of this approach is the need of calculating and storing dual TPMs, which leads to
computationally less efficient preprocessing and higher memory requirements.

Figure 10. Illustration of micro-cycle synthesis method based on dual TPMs.

4.3.3. Using Compression of Micro-Cycle Expanded to Stopping

To keep the exactness of the second approach, while avoiding usage of dual TPMs
per each cluster, the following third method is proposed. The method is again based on
one-step merging of FWD and BWD micro-cycles that are, however, generated by only
using the regular FWD TPM. The synthesis procedure is elaborated below based on the
illustration in Figure 11:

i. Using the regular TPM to generate a single micro-cycle whose length Lm,i is greater or
equal than the target length LS2S,i and at the same time corresponds to the minimum
length for which the zero-velocity final condition is reached (Figure 11a). It should
be noted that only the TPMs corresponding to the range from 0 to 48 km/h can be
selected in this procedure, because the recorded driving cycles used for calculating
TPMs with mean velocities greater than 48 km/h did not include S2S segment end-
station-stopping. Therefore, if the target mean velocity is in the range [50, 68] km/h
(see Figure 8b), the TPM corresponding to the mean-velocity range [46, 48] km/h is
exceptionally employed in the synthesis process to make it consistent.

ii. Decomposing the generated micro-cycle into left- and right-end sections, denoted in
Figure 11b as m1 and m2, respectively, where both have the length equal to the target
length LS2S,i.

iii. Translating the right-end section m2 in the backward direction to become aligned with
the left-end section m1 in terms of equal lengths corresponding to the target length
(see Figure 11c and note that the initially longer micro-cycle length in Figure 11a is
now compressed to the target length).

iv. Detecting intersection points (P1, P2, . . . , Pn) of the aligned velocity vs. distance pro-
files m1 and m2 (Figure 11c).

v. Determining the merging point P* as the one that minimizes the acceleration bump
between the profiles m1 and m2 (see illustration in Figure 11d, showing that P∗ = P4
is the merging point).

vi. Merging the profiles m1 and m2 in the intersection point P∗ to obtain the final, single
micro-cycle (Figure 11e).
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Figure 11. Illustration of micro-cycle synthesis method based on extension and compression of
micro-cycle.

4.3.4. Brief Comparative Assessment and Recommendation

As discussed in Section 4.3.1, the first approach is based on approximation of vehicle-
stopping model and its activation in the final stage of micro-cycle synthesis. As such, it
suffers from an inaccuracy of synthetic micro-cycle features with emphasis on its length or
computational inefficiency when the condition on micro-cycle length is “artificially” imposed.

On the other hand, the second and third approaches are exact because they realize the
zero-velocity final condition by evaluating an extra micro-cycle in the backward-in-time
direction with the zero-velocity initial condition. The weakness of the second approach is
that generating the extra micro-cycle requires the corresponding extra TPM model, thus
affecting modeling computational efficiency and memory requirements. The third approach
does not share this weakness, as it does not rely on dual TPM model but rather expands
the forward-in-time micro-cycle generation until the zero-velocity final condition is met.

However, potential drawbacks of the third method include the necessity for long micro-
cycle generation until reaching the stopping final condition (Lm,i � LS2S,i in Figure 11a)
and discarding the high-mean-velocity TPM models (Section 4.3.3). This is deemed to
be of lesser concern compared to the excessive memory requirement of the second, dual
TPM-based method. Hence, the third approach was adopted for further consideration
in this paper and is generally recommended. However, the second approach is a very
competitive alternative, and it is up to the designer to decide which one would better suit a
particular application.
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4.4. Ensuring Feasibility of Micro-Cycle Synthesis Procedure

As described in Section 4.2, the synthesis of consecutive micro-cycles over a sequence
of S2S segments is based on multiple TPMs, which are determined from different sets of
HSR-recorded micro-cycles depending on their mean velocity. Each TPM possesses unique
combinations of velocity-acceleration states, as well as transition probabilities between
them. Consequently, the multi-TPM synthesis approach can cause the stopping of micro-
cycle generation in cases when the velocity-acceleration state at the end of an ith micro-cycle
is not present in the TPM of the following (i+1)th micro-cycle for the proper realization of
the boundary condition (i.e., providing that the initial condition of (i+1)th micro-cycle is
equal to the final condition of the ith micro-cycle). In order to prevent the stalling of the
micro-cycle generation procedure, an additional boundary condition was introduced to be
satisfied (see the 2nd condition in the orange-shaded box of Figure 7), i.e., it is checked if the
final velocity-acceleration state of the ith micro-cycle is included in the TPM of the (i+1)th
micro-cycle. If this boundary condition is not satisfied, the iterative process of generating
new micro-cycles is continued, as shown in Figure 7.

The multi-TPM-based micro-cycle generation procedure can also stall if a so-called
absorbing state of the TPM is reached (see Figure 12 for graphical illustration of absorbing
Markov chain example). The absorbing state is defined as the state without transition to
any other state, i.e., the state for which one of the following two conditions holds [41]:

P(Xk+1 = sk+1|Xk = sk) = 1, ∀sk+1 = sk, or (9a)

(Xk+1 = sk+1|Xk = sk) = 0, ∀sk+1. (9b)

Figure 12. Graphical illustration of absorbing Markov chain example and absorbing state elimina-
tion procedure.

For instance, the absorbing states could appear if the final state of a recorded micro-
cycle appears one or eventually more times as the sequence of the same state (Case (9a)) or
as the individual state (Case (9b)) among all states/samples of the recorded micro-cycles
from a single mean velocity cluster that are used for calculating the single-cluster TPM.
Therefore, it is necessary to detect and eliminate the absorbing states. The elimination
procedure applied to each TPM is described as follows (Figure 12):

1. Iterate through all TPM states, detect all absorbing states based on conditions (9a) and (9b),
and set their transition probabilities to zero (see states and transition probabilities high-
lighted in red in Figure 12a).
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2. Find all TPM states that directly lead to the absorbing states detected in Point 1 (see
transition probabilities highlighted in orange in Figure 12a).

3. Set the TPM probabilities corresponding to the transitions from the states detected in
Point 2 to the absorbing states from Point 1 to zero (see “X” marks in Figure 12a).

4. If the transitional states found in Point 2 are such that they lead only to absorbing
states detected in Point 1 (see state highlighted in orange in Figure 12a), then declare
these transitional states as the absorbing ones (Figure 12b) and apply the elimination
steps defined by Points 1-3 to them, as well.

5. Re-normalize the corrected TPM (Figure 12c) to satisfy condition (6).

5. Validation of Proposed Micro-Cycle-Based Synthesis Method

For the considered single-route, full-month case study (Section 2), a total of 5777 HSR
micro-cycles concatenated into 218 full-trip driving cycles were generated for both route
directions by using the synthesis method presented in Section 4. In order to validate the
generated driving cycles and the synthesis method itself, the generated synthetic micro-
cycles were analyzed, as discussed below, with emphasis on mean velocity replication
accuracy and numerical efficiency. The micro-cycle target length and final conditions were
explicitly satisfied, so they were omitted from the numerical analysis.

Figure 13 shows examples of two synthetic driving cycles in each direction. Visual
inspection indicates that the generated driving cycles followed the S2S segment target
velocities, which varied along the day based on the traffic model shown in Figure 4a.
Similarly, the S2S segment end-station-stopping outcome could vary along the day (e.g.,
stopping occurred for the end-station of 12th segment for Driving cycle 1 but not for
Driving cycle 2) because the stopping flag was randomly generated based on the stopping
probability model shown in Figure 4b and Equation (7).

Figure 13. Examples of two HSR synthetic driving cycles per each driving direction, given along
with target mean velocities obtained from LSR data-based traffic model given over S2S segments.
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The mean velocity replication accuracy is assessed based on the relative residual
metrics given by:

ε =

–
vS2S,i −

–
vm,i

–
vS2S,i

·100%, (10)

where
–
vS2S,i and

–
vm,i denote the target and actual micro-cycle mean velocity, respectively.

The results shown in Table 1 illustrate that a great majority of generated micro-cycles
(i.e., 99.4% of them) satisfied the mean velocity matching condition |ε| < 5% (Section 4).
The remaining micro-cycles corresponded to the case when the maximum number of
iterations (500 here) was reached. The residuals of those very rare micro-cycles could
still be considered relatively small (up to 23%). The graphical visualization of the above
results is presented in Figure 14a. Figure 14b illustrates that the actual share of stopping
outcome closely followed the target-stopping probabilities given in Figure 4b, where certain
discrepancies can be explained by the stochastic nature of stopping determination based
on Equation (7).

Table 1. Micro-cycle mean velocity validation statistics.

Mean Velocity
Condition Total Number

Relative Mean Velocity Residual Statistics, ε [%]

Min Median Mean Max Std

Satisfied 5740
(99.4%) −5.0 0.28 0.19 5.0 2.9

Unsatisfied 37
(0.64%) −13.3 9.8 8.7 23.3 10.6

Figure 14. Graphical representation of micro-cycle mean velocity (a) and stopping probability
(b) validation results.

The numerical efficiency was analyzed in terms of the number of micro-cycles needed
to be synthesized until obtaining the valid one, i.e., the one which satisfied the prescribed
mean velocity and boundary conditions (see Figure 7 and Section 4 for details). The results
given in Table 2 indicate that, on average, 18.3 invalid micro-cycles were needed to generate
a valid micro-cycle. This ratio was larger for non-stopping micro-cycles (20.7) compared to
stopping ones (17.1). This was because the boundary conditions, related to the existence of
the ith micro-cycle final state in the (i+1)th micro-cycle TPM, were exclusively applied to
non-stopping micro-cycles (Section 4). However, the main cause for micro-cycle invalidity
was violating the mean-velocity condition. This is directly illustrated by the data in Table 3,
which indicate that from 90 to 95% of all generated micro-cycles were invalid due to
mean-velocity condition violation.
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Table 2. Basic statistics of number of invalid micro-cycles needed to be generated to obtain valid
micro-cycle.

Case
Number of Generated Invalid Micro-Cycles per Single Valid Micro-Cycle

Min Median Mean Max Std

Stopping applies
(3982 valid cycles in total) 0 7 17.1 500 46.1

Stopping does not apply
(1795 valid cycles in total) 0 8 20.7 500 53.5

In total 0 7 18.3 500 48.6

Table 3. Further statistics of valid and invalid generated micro-cycles given for individual synthe-
sis conditions.

Case

Total Number of Generated Micro-Cycles

Valid
Not Valid

TotalMean Velocity
Condition

Velocity/Acceleration
Boundary Condition

Combined
Conditions

Stopping applies 3982 (5.5%) 68,228 (94.5%) 0 0 72,210
Stopping does not

apply 1795 (4.6%) 35,061 (89.9%) 199 (0.5%) 1950 (5.0%) 39,005

In total 5777 (5.2%) 103,289 (92.9%) 199 (0.2%) 1950 (1.8%) 111,215

The number of generated invalid micro-cycles per a single valid micro-cycle is plotted
in Figure 15a with respect to target micro-cycle length. Evidently, the lower the micro-cycle
length, the higher the number of invalid micro-cycles. This phenomenon can be explained
by the fact that for an initial micro-cycle velocity, which differs greatly from the target mean
velocity, reaching the target mean velocity could be very improbable or even impossible for
a small micro-cycle length (see Figure 15b for illustration).

Figure 15. Number of invalid micro-cycles generated per single valid micro-cycle depending on
micro-cycle length (a) and invalid micro-cycle-based illustration of root-cause for anti-correlation
observed in left-hand side plot (b).

The total execution time Texec,tot required to generate all 5777 valid synthetic micro-
cycles was 201 s. The execution time Texec required to generate a single micro-cycle had
a mean value of 35 ms (Table 4), with significant variations due to the varying number
of synthesis iterations needed to generate the valid micro-cycle. The execution time was
by an order of magnitude higher for the station-stopping case, apparently because of
computational overhead related to micro-cycle expansion and compression applied in that
case (see Figure 11).
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Table 4. Basic statistics of micro-cycle synthesis execution time.

Case
Execution Time, Texec * [ms]

Min Median Mean Max Std

Stopping applies 3.9 32.9 50.0 237.5 49.2
Stopping does not apply 0.3 3.8 6.3 37.89 6.8

In total 0.3 15.1 35.4 237.5 45.3
* The computations were performed on a Dell Inspiron 5593 Notebook equipped with 8 GB RAM and an Intel(R)
Core(TM) i7-1065G7 CPU @ 1.30 GHz and executed in a Linux Ubuntu 20.04 environment.

6. Conclusions

The paper presents a Markov-chain-based method for the synthesis of high-sampling-
rate (HSR) driving cycles that satisfy statistical features extracted from low-sampling-rate
(LSR) vehicle-tracking data over trip segments (e.g., city bus station-to-station segments).
These statistical features include: (i) the road segment length and spatial–temporal maps of
segment (ii) mean velocity, (iii) station-stopping probability, and (iv) station dwell time. To
make the synthesis method representative and numerically efficient, HSR data recorded in a
separate reference transport system (i.e., city) were used to build mean velocity-dependent,
multiple transition probability matrices (TPMs) for the Markov-chain-trip-segment-based
micro-cycle-synthesis.

For a segment end-station-stopping scenario, it is necessary to ensure that the synthetic
micro-cycle ends with zero velocity and acceleration and achieve the target length in
the single synthesis step if possible. For this purpose, a method based on expanding
the synthetic micro-cycle toward the zero final velocity and compressing it to the target
length was proposed. On the other hand, to make the synthesis feasible for the station
non-stopping scenario, the micro-cycle final state was set to exist within the TPM of the
forthcoming micro-cycle and the so-called absorbing states were eliminated from all TPMs.
Once the micro-cycles with proper boundary (i.e., initial and final) conditions could be
generated, they could be readily expanded with the station dwell time and concatenated
into the full-trip synthetic driving cycle.

The proposed HSR driving cycle synthesis method was validated against the LSR
recorded data in terms of micro-cycle mean velocity and stopping probability. It was
demonstrated that the synthetic and recorded micro-cycles’ features matched each other
under the prescribed tolerance and a rather low execution time. Therefore, a large set of
realistic HSR synthetic driving cycles can be generated in a numerically efficient way to
faithfully characterize a transport system features represented by LSR tracking data. As
such, the synthetic driving cycles can conveniently be used in various vehicle-model-based
energy-consumption prediction studies.

The main directions of future research should be related to the direct experimental val-
idation of the proposed HSR driving cycle synthesis method. This could be achieved in two
distinct ways: (i) by comparing the synthetic and recorded HSR driving cycles for the target
city in terms of various relevant statistical features of driving cycles, such as those consid-
ered in [34]; and (ii) by comparing predicted and recorded vehicle energy-consumption
rates, where the former is based on synthetic driving cycles and experimentally validated
vehicle models. The accuracy of approach (iii) should be compared with a trip-based
vehicle energy-consumption prediction utilizing a regression model fed by the LSR driving
cycle features as inputs. Once the above-mentioned validation tool is established, it would
be possible to quantitatively analyze the inaccuracies caused by differences between the
reference and target city HSR driving cycle features. Additionally, what extent the predic-
tion accuracy would be improved if the driving cycle validation criteria included the LSR
data segment velocity deviation in addition to its mean value could be analyzed.
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