
Design and Comparative Analysis of Several Model
Predictive Control Strategies for Autonomous Vehicle
Approaching a Traffic Light Crossing

Cvok, Ivan; Pavelko, Lea; Škugor, Branimir; Deur, Joško; Tseng, H. Eric;
Ivanovic, Vladimir

Source / Izvornik: Energies, 2023, 16, 2006 - 2026

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.3390/en16042006

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:049423

Rights / Prava: Attribution 4.0 International / Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2025-04-02

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering
and Naval Architecture University of Zagreb

https://doi.org/10.3390/en16042006
https://urn.nsk.hr/urn:nbn:hr:235:049423
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://repozitorij.fsb.unizg.hr
https://repozitorij.fsb.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fsb:10809
https://dabar.srce.hr/islandora/object/fsb:10809

Citation: Cvok, I.; Pavelko, L.;

Škugor, B.; Deur, J.; Tseng, H.E.;

Ivanovic, V. Design and Comparative

Analysis of Several Model Predictive

Control Strategies for Autonomous

Vehicle Approaching a Traffic Light

Crossing. Energies 2023, 16, 2006.

https://doi.org/10.3390/en16042006

Academic Editor: Balázs Németh

Received: 4 January 2023

Revised: 10 February 2023

Accepted: 13 February 2023

Published: 17 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Design and Comparative Analysis of Several Model Predictive
Control Strategies for Autonomous Vehicle Approaching a
Traffic Light Crossing
Ivan Cvok 1 , Lea Pavelko 1, Branimir Škugor 1,*, Joško Deur 1, H. Eric Tseng 2 and Vladimir Ivanovic 2

1 University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, 10000 Zagreb, Croatia
2 Ford Motor Company, Dearborn, MI 48124, USA
* Correspondence: branimir.skugor@fsb.hr

Abstract: Recent advancements in automated driving technology and vehicle connectivity are as-
sociated with the development of advanced predictive control systems for improved performance,
energy efficiency, safety, and comfort. This paper designs and compares different linear and nonlinear
model predictive control strategies for a typical scenario of urban driving, in which the vehicle is
approaching a traffic light crossing. In the linear model predictive control (MPC) case, the vehicle ac-
celeration is optimized at every time instant on a prediction horizon to minimize the root-mean-square
error of velocity tracking and RMS acceleration as a comfort metric, thus resulting in a quadratic
program (QP). To tackle the vehicle-distance-related traffic light constraint, a linear time-varying
MPC approach is used. The nonlinear MPC formulation is based on the first-order lag description
of the vehicle velocity profile on the prediction horizon, where only two parameters are optimized:
the time constant and the target velocity. To improve the computational efficiency of the nonlinear
MPC formulation, multiple linear MPCs, i.e., a parallel MPC, are designed for different fixed-lag
time constants, which can efficiently be solved by fast QP solvers. The performance of the three
MPC approaches is compared in terms of vehicle velocity tracking error, root-mean-square accel-
eration, traveled distance, and computational time. The proposed control systems can readily be
implemented in future automated driving systems, as well as within advanced driver assist systems
such as adaptive cruise control or automated emergency braking systems.

Keywords: automated driving; autonomous vehicle; traffic light crossing; model predictive control;
nonlinear control; assessment

1. Introduction

In 2019, traffic congestion caused 8.8 billion hours of extra travel time and 3.3 billion
gallons of wasted fuel for drivers in the USA, where the congestion and idling time at
signalized intersections made up for a large portion of those numbers [1]. Approaching
a signalized intersection is a complex traffic scenario, which often turns into a congested
bottleneck due to the lack of coordination between vehicles and infrastructure, and sudden
acceleration or deceleration maneuvers or idling at a traffic light increase energy con-
sumption and the risk of rear-end collisions [2]. In order to improve vehicle and overall
transport system performance in terms of driving performance, safety, comfort, and energy
efficiency, several predictive control strategies relying on infrastructure-to-vehicle (I2V)
communications have been developed recently [3,4].

A vehicle trajectory planning system for approaching a traffic light is often referred to
as a green-light optimal speed advisory (GLOSA) system, which utilizes traffic light signal
(TLS) information to find an optimal vehicle speed profile to avoid stopping and idling at
traffic lights [5]. It is shown in [6] that a model predictive controller (MPC) having a control
horizon that sees two traffic lights ahead reduces energy consumption by 26% at the expense
of a trip time increase of only 1% when compared to a controller with no TLS information.

Energies 2023, 16, 2006. https://doi.org/10.3390/en16042006 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16042006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-0587-3105
https://doi.org/10.3390/en16042006
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16042006?type=check_update&version=1

Energies 2023, 16, 2006 2 of 20

The authors in [7] exploit the knowledge of an upcoming traffic light location and real-time
traffic flow data to anticipate possible upcoming vehicle speed profiles, and thus robustly
adapt an energy management strategy of a hybrid electric vehicle. When compared to the
control strategy with fixed (nonadapted) parameters, fuel consumption savings between 8
and 11% are reported therein. On the other hand, alternative approaches assuming a lack of
TLS information and infrastructure-to-vehicle (I2V) communication rely only on statistical
learning from driving data to achieve smooth and energy-efficient driving in an average
sense. For instance, the authors in [8] use Gaussian processes as a machine learning method
to facilitate eco-driving while approaching signalized intersections with traffic lights, which,
in addition to the vehicle traveling time, also aims to minimize fuel consumption.

In general, when considering a vehicle approaching a signalized crossing, the objective
is to provide an energy-efficient and timely arrival at the green light with minimal use of
braking, maintain a safe distance between vehicles, and cruise at or near a set speed [9]. This
can be achieved by using different approaches, such as dynamic programming (DP) [10,11],
model predictive control [12,13], sequential convex optimization [14], or reinforcement
learning [15]. These approaches often include fuel and/or electricity consumption models
to obtain energy-efficient vehicle speed trajectories, which increases the dimensionality of
the optimization problem and computational complexity. Additionally, due to the switching
nature of traffic light states and related constraints, the optimization problem turns into a
mixed-integer problem, which demands significant computational effort, and the solution
is not guaranteed to be globally optimal. This issue can be addressed in different ways,
e.g., by assuming that the vehicle is going to pass the crossing before the next red traffic
light state [16]. However, this is not always the case, especially when considering multiple
sequential traffic lights [17]. These challenges call for special attention in formulating the
optimization problem to ensure desired performance and constraint satisfaction.

A number of control strategies for the GLOSA problem involve separating the problem
into multiple steps to obtain the optimal vehicle speed trajectory. A two-step approach is
proposed in [18] for the mixed-integer problem, where the problem is first solved without
the traffic-light-related integer constraint, and then solved again in the second step if the
optimal vehicle intersection arrival time from the first step occurs during the red-light time
interval. In the second step, the problem is solved twice, where the vehicle passing time
is fixed to either before or just after the red-light time interval detected previously, and
the objective is to minimize energy consumption. The authors in [17] also separate the
problem into two steps, where a high-level algorithm first determines the values of desired
arrival time for each traffic light, and then the optimal velocity profile is calculated in the
second step. A similar hierarchical strategy is proposed in [19], where the higher layer
of the strategy determines feasible and suitable arrival time values and velocity profiles
for each traffic light based on the desired vehicle speed and TLS information, while the
lower layer combines the Pontryagin minimum principle and a model predictive control
framework to obtain an optimal vehicle velocity trajectory. In [20] a velocity pruning
algorithm is performed to obtain the minimum and maximum feasible crossing times for
each existing traffic light while accounting for speed limits and TLS information. Then, a
weighted directed acyclic graph is constructed, where the nodes represent crossing times
in the feasible green-light phases, while the edges are weighted by energy cost to travel
along the path. Dijkstra’s algorithm is used to obtain an energy-optimal path from the
origin, which is the current vehicle position to the destination, i.e., the position of the traffic
light. An approach based on the best interpolation in a strip method is proposed in [21]
to plan a vehicle trajectory in the presence of other vehicles and traffic lights. Piecewise
linear constraints related to traffic light signals and other vehicles are constructed, and
the trajectory is optimized for each piecewise linear segment of the constraints, as well as
the trajectory for the whole horizon. The authors in [22] include TLS information as a soft
constraint within the optimization problem, which is then solved by using deterministic
dynamic programming (DDP). The problem can further benefit from the presence of vehicle-
to-everything (V2X) (more specifically, vehicle-to-infrastructure (V2I)) communication [23].

Energies 2023, 16, 2006 3 of 20

In this way, traffic flow can be improved by the simultaneous optimization of both vehicle
speed trajectories and traffic signals phases, as shown in [24], or by reserving a time slot for
the vehicle to cross the signalized crossing by direct communication with the intelligent
traffic light [25].

In this paper, the problem of autonomous vehicle control when approaching a signal-
ized crossing is first addressed by proposing a linear MPC strategy, with the objective of
maintaining reference velocity while obeying traffic lights and vehicle speed and acceler-
ation constraints. Instead of applying the two-step approach to avoid the mixed-integer
problem, the vehicle-position-dependent traffic light constraint is transformed into a time-
dependent constraint by applying a linear time-varying (LTV) approach. In this approach,
the constraint formulation is based on the optimization outcome from the previous sam-
pling step, thus avoiding dual optimization or additional high-level strategies to ensure
stopping at a red light. Different ways of reducing the dimensionality of the optimal control
problem are considered, such as a shorter control horizon and a move-blocking scheme.
To further reduce the dimensionality, an approach relying on the reference velocity profile
mimicking a first-order lag element is proposed, in which only two control parameters (the
lag time constant and the target velocity) are determined by a nonlinear model predictive
control (NMPC) law, thus reducing the control horizon length to the minimum level of one
sampling step. In this way, the computational load is significantly decreased when com-
pared with a more conventional, full-horizon NMPC strategy, while the influence on control
performance degradation is quite modest. The nonlinear MPC law is further improved in
terms of computational efficiency, as well as stability in the general sense, by using multiple
lag terms with a fixed-lag time constant, which results in multiple linear MPCs, or what
is known in control theory as parallel MPC [26]. To avoid acceleration chattering due to
linear lag model switching, a virtual-actuator-like low-pass filter is incorporated into the
vehicle prediction model. The proposed NMPC strategy can be adjusted and applied in
more general cases concerning nonlinear and stochastic process/prediction models, e.g.,
for solving the AV safe speed control problem while interacting with pedestrians when
approaching an unsignalized crosswalk [27,28].

The emphasis of the presented study is on the design and comparative assessment of
different characteristic MPC structures that can be applied in various automated driving
tasks. To this extent, the scenario of AV approaching a signalized crosswalk is taken
more as a case study for the AV MPC design, rather than a specific scenario for which a
comprehensive control strategy is developed. The main contributions of the paper include:
(i) a linear time-varying MPC approach that can handle traffic light constraints while
avoiding the mixed-integer formulation; (ii) the design of an NMPC law with an ultimately
reduced control input sequence based on a first-order lag profiled reference velocity;
(iii) computationally efficient reduction of the NMPC law into a smooth, parallel MPC
strategy, and (iv) comparative analysis of linear, nonlinear, and parallel MPC strategies
with respect to control performance and computational time criteria.

The remainder of the paper is organized as follows. The vehicle modeling and control
methods are presented in Sections 2 and 3. In addition to the vehicle model, Section 2 de-
scribes the considered autonomous vehicle control scenario and related constraints. Section 3
presents different model predictive control design methods for the specified automated driv-
ing scenario, which include linear, nonlinear, and parallel model predictive control. Section 4
presents simulation results and related comparative analysis of the MPC strategies proposed in
Section 3. A discussion of results, including their implications and possible future extensions,
is contained in Section 5. Concluding remarks are given in Section 6.

2. Vehicle and Scenario Model

The considered control scenario (Figure 1) concerns an autonomous vehicle with
the initial position s0 = 0 and the initial velocity v0, approaching a traffic light crossing
positioned at the distance L0 from the initial vehicle position. The objective is to control the
vehicle velocity v in an optimal manner, i.e., as close to the reference velocity vR (e.g., equal

Energies 2023, 16, 2006 4 of 20

to v0), while maintaining comfortable acceleration a and stopping safely at the red traffic
light. The traffic light state S is assumed to be deterministic and known in advance, where
S = 1 and S = 0 indicate red light and green light, respectively.

Energies 2023, 16, x FOR PEER REVIEW 4 of 21

2. Vehicle and Scenario Model
The considered control scenario (Figure 1) concerns an autonomous vehicle with the

initial position s0 = 0 and the initial velocity v0, approaching a traffic light crossing posi-
tioned at the distance L0 from the initial vehicle position. The objective is to control the
vehicle velocity v in an optimal manner, i.e., as close to the reference velocity vR (e.g., equal
to v0), while maintaining comfortable acceleration a and stopping safely at the red traffic
light. The traffic light state S is assumed to be deterministic and known in advance, where
S = 1 and S = 0 indicate red light and green light, respectively.

Figure 1. Traffic light crossing scenario schematic.

The vehicle is modeled by using the following point-mass state-space model ቂ𝑠ሶ𝑣ሶ ቃ = ቂ0 10 0ቃ ቂ𝑠𝑣ቃ + ቂ01ቃ 𝑎, (1)

where s and v are the vehicle position and velocity state variables, respectively, while a is
the vehicle acceleration control input. Note that Model (1) assumes that the acceleration
control input is realized through a high-bandwidth powertrain (e.g., that of an electric
vehicle), and that the nonlinear rolling resistance and aerodynamic drag terms [29] are
compensated for through either feedforward terms or a high-bandwidth vehicle acceler-
ation inner control loop. As needed, the model can be extended to account for powertrain
or acceleration loop lag dynamics, as demonstrated in Section 3 as an example of including
a virtual actuator submodel. Discretizing Model (1) using Z-transform and zero-order
hold element with sampling time Ts yields the following discrete-time model:

𝑠(𝑘 + 1)𝑣(𝑘 + 1)൨ = ቂ1 𝑇௦0 1 ቃ 𝑠(𝑘)𝑣(𝑘)൨ + 12 𝑇௦ଶ𝑇௦ ൩ 𝑎(𝑘). (2)

The vehicle velocity and acceleration are constrained through inequalities

amin ≤ a ≤ amax,
vmin ≤ v ≤ vmax, (3)

which are applied in both simulation and prediction models. Additionally, the vehicle
should stop at a red traffic light, which yields the following conditional constraint on ve-
hicle position depending on the traffic light state time profile S(k): 𝑠(𝑘) ≤ ൜𝐿, for 𝑆(𝑘) = 1 and 𝑠(𝑘 − 1) ≤ 𝐿∞, otherwise (4)

The length of the AV-anticipated traffic light preview, i.e., the prediction horizon,
can be limited to a fixed, relatively narrow value, or a full preview could be used, e.g., the
one which stretches at least up to the next green traffic light state. It is beneficial for the
control algorithm if the fixed preview (related to receding horizon length) is long enough
for the vehicle to reach the first traffic light position, assuming a constant initial velocity,
which gives 𝑡 ≥ 𝐿𝑣. (5a)

Figure 1. Traffic light crossing scenario schematic.

The vehicle is modeled by using the following point-mass state-space model[.
s
.
v

]
=

[
0 1
0 0

][
s
v

]
+

[
0
1

]
a (1)

where s and v are the vehicle position and velocity state variables, respectively, while a is the
vehicle acceleration control input. Note that Model (1) assumes that the acceleration control
input is realized through a high-bandwidth powertrain (e.g., that of an electric vehicle), and
that the nonlinear rolling resistance and aerodynamic drag terms [29] are compensated for
through either feedforward terms or a high-bandwidth vehicle acceleration inner control
loop. As needed, the model can be extended to account for powertrain or acceleration loop
lag dynamics, as demonstrated in Section 3 as an example of including a virtual actuator
submodel. Discretizing Model (1) using Z-transform and zero-order hold element with
sampling time Ts yields the following discrete-time model:[

s(k + 1)
v(k + 1)

]
=

[
1 Ts
0 1

][
s(k)
v(k)

]
+

[1
2 T2

s
Ts

]
a(k). (2)

The vehicle velocity and acceleration are constrained through inequalities

amin ≤ a ≤ amax,
vmin ≤ v ≤ vmax,

(3)

which are applied in both simulation and prediction models. Additionally, the vehicle
should stop at a red traffic light, which yields the following conditional constraint on
vehicle position depending on the traffic light state time profile S(k):

s(k) ≤
{

L0, for S(k) = 1 and s(k− 1) ≤ L0
∞, otherwise

(4)

The length of the AV-anticipated traffic light preview, i.e., the prediction horizon, can be
limited to a fixed, relatively narrow value, or a full preview could be used, e.g., the one which
stretches at least up to the next green traffic light state. It is beneficial for the control algorithm
if the fixed preview (related to receding horizon length) is long enough for the vehicle to reach
the first traffic light position, assuming a constant initial velocity, which gives

ta ≥
L0

v0
. (5a)

Furthermore, the preview should also be long enough for the vehicle to be able to
timely come to a full stop when needed, under the assumption of the worst-case scenario
of the vehicle having the maximum allowed speed, which gives

tb ≥
vmax

|amin|
. (5b)

Energies 2023, 16, 2006 5 of 20

To improve the quality of vehicle speed optimization, the preview should also be long
enough to cover the traffic light change from the current state:

tc ≥ ttls, (5c)

where ttls is the remaining duration of the current traffic light state. Finally, the prediction
horizon length is conservatively determined when initializing the controller (at t = 0) as the
highest value of the above-defined three time limits

tp = max(ta, tb, tc) (5d)

3. Design of Model Predictive Controllers

For the scenario described in Section 2, various model predictive control (MPC) laws
(linear, nonlinear, and parallel) are applied to control the vehicle in an optimal, preemptive,
and closed-loop manner. The MPC algorithms solve a constrained finite-horizon optimal
control problem at each control time step k to obtain an optimal acceleration sequence and
apply the first element of the sequence to the vehicle. The feedback control is realized
by repeating the optimization algorithm on the receding horizon with updated measured
actual states (vehicle position and velocity). Generally, to formulate the MPC optimal
control problem, three building blocks are required: plant dynamics prediction model, cost
function, and constraints.

3.1. Linear Model Predictive Control
3.1.1. Control Law Design

Linear MPC considers a linear prediction model, linear constraints, and a quadratic
cost function, which results in a quadratic program (QP) that could be efficiently solved
online. At a given control time step k, MPC minimizes a cost function JMPC on the prediction
horizon h = 0, . . . , Np − 1 by optimizing the sequence of control inputs u(h|k) over the
control horizon h = 0, . . . , Nc ≤ Np [30]. The first input, u(0|k), is applied to the vehicle
as the actual control input. Note that the prediction horizon length is determined as Np =
int(tp/Ts), where tp is given by Equation (5d).

In the considered scenario, the linear MPC law is designed with the aim of minimizing
the vehicle velocity regulation squared error and the squared acceleration as a comfort
index, which results in the following quadratic cost function:

min
a(h|k)

JMPC =
Np−1

∑
h=0

qv(v(h|k)− vR)
2 +

Nc−1

∑
h=0

qaa2(h|k) (6)

where vR is the constant reference velocity (Section 2), and qv and qa are the velocity
regulation and acceleration weighting coefficients, respectively. Alternative formulations
can be considered, e.g., those that employ the minimum time or maximum distance traveled
criterion instead of the speed regulation criterion. The cost function (6) is subject to the
equality constraints set by the discrete-time plant dynamics model (2):[

s(h + 1|k)
v(h + 1|k)

]
︸ ︷︷ ︸

x(h+1|k)

=

[
1 Ts
0 1

]
︸ ︷︷ ︸

A

[
s(h|k)
v(h|k)

]
︸ ︷︷ ︸

x(h|k)

+

[1
2 T2

s
Ts

]
︸ ︷︷ ︸

B

a(h|k)︸ ︷︷ ︸
u(h|k)

. (7)

By following Equations (3) and (4), the following hard constraints are applied to
acceleration, velocity, and position on the prediction horizon:

amin(h|k) ≤ a(h|k) ≤ amax(h|k)
vmin(h|k) ≤ v(h|k) ≤ vmax(h|k)

(8)

Energies 2023, 16, 2006 6 of 20

s(h|k) ≤
{

L0, for S(h|k) = 1 and s(h− 1|k) ≤ L0
∞, otherwise

(9)

Constraint (9) introduces the traffic light state preview in the optimal control problem.
However, since the vehicle position s is a state that is to be optimized, applying this
constraint directly in the optimal control problem formulation would result in a logical
implication and, thus, in a mixed-integer QP form. To avoid the logical implication within
the optimal control problem, the traffic-light-related constraint for current optimization
step k is constructed by using the vehicle position trajectory predicted in the previous
optimization step, i.e., s(h|k − 1) (h = 0, . . . , Np − 1), which is similar to the linear time-
varying approach in model predictive control. The overall constraint construction algorithm
is given in Appendix A, whereas Figure 2 illustrates the main idea of the algorithm. In
the first step of optimization (k = 0, Figure 2a), the vehicle is predicting that it will cross
the traffic light during the first red-light state. That information is utilized in the next
optimization step (k = 1, Figure 2b), in which, based on the predicted vehicle position (black
line) in step k = 0, the traffic light position constraint based on the original traffic light state
prediction S (dashed blue line) is modified and becomes active for the first red-light state
(green dotted line), thus ensuring that the vehicle crosses only after the first red-light phase
is over. The second red-light phase position constraint is not active, since it is anticipated
that the vehicle is going to cross before the start of that phase. Since this procedure relies
on the previously predicted vehicle position instead of the current vehicle position (cf.
Equation (9)), the final traffic light position-related constraint becomes time-dependent
only and is formulated as

s(h|k) ≤
{

L0, for Smod(h|k) = 1
∞, otherwise

(10)

where Smod(h|k) is the modified traffic light state prediction, which is formally defined
in Appendix A.

Energies 2023, 16, x FOR PEER REVIEW 6 of 21

By following Equations (3) and (4), the following hard constraints are applied to ac-
celeration, velocity, and position on the prediction horizon: 𝑎୫୧୬(ℎ|𝑘) ≤ 𝑎(ℎ|𝑘) ≤ 𝑎୫ୟ୶(ℎ|𝑘) 𝑣୫୧୬(ℎ|𝑘) ≤ 𝑣(ℎ|𝑘) ≤ 𝑣୫ୟ୶(ℎ|𝑘)

(8)

𝑠(ℎ|𝑘) ≤ ൜𝐿, for 𝑆(ℎ|𝑘) = 1 and 𝑠(ℎ − 1|𝑘) ≤ 𝐿∞, otherwise (9)

Constraint (9) introduces the traffic light state preview in the optimal control prob-
lem. However, since the vehicle position s is a state that is to be optimized, applying this
constraint directly in the optimal control problem formulation would result in a logical
implication and, thus, in a mixed-integer QP form. To avoid the logical implication within
the optimal control problem, the traffic-light-related constraint for current optimization
step k is constructed by using the vehicle position trajectory predicted in the previous
optimization step, i.e., s(h|k − 1) (h = 0,…, Np − 1), which is similar to the linear time-varying
approach in model predictive control. The overall constraint construction algorithm is
given in Appendix A, whereas Figure 2 illustrates the main idea of the algorithm. In the
first step of optimization (k = 0, Figure 2a), the vehicle is predicting that it will cross the
traffic light during the first red-light state. That information is utilized in the next optimi-
zation step (k = 1, Figure 2b), in which, based on the predicted vehicle position (black line)
in step k = 0, the traffic light position constraint based on the original traffic light state
prediction S (dashed blue line) is modified and becomes active for the first red-light state
(green dotted line), thus ensuring that the vehicle crosses only after the first red-light
phase is over. The second red-light phase position constraint is not active, since it is antic-
ipated that the vehicle is going to cross before the start of that phase. Since this procedure
relies on the previously predicted vehicle position instead of the current vehicle position
(cf. Equation (9)), the final traffic light position-related constraint becomes time-depend-
ent only and is formulated as 𝑠(ℎ|𝑘) ≤ ൜𝐿, for 𝑆ௗ(ℎ|𝑘) = 1 ∞, otherwise (10)

where Smod(h|k) is the modified traffic light state prediction, which is formally defined in
Appendix A.

Figure 2. Illustration of construction of time-dependent only traffic light position constraint in cur-
rent time step (b) based on vehicle position trajectory predicted in previous step (a).

After the constraint reconstruction, the MPC optimal control problem, given by
Equations (6)–(8) and (10), can be rewritten into the standard QP form:

Figure 2. Illustration of construction of time-dependent only traffic light position constraint in current
time step (b) based on vehicle position trajectory predicted in previous step (a).

After the constraint reconstruction, the MPC optimal control problem, given by Equa-
tions (6)–(8) and (10), can be rewritten into the standard QP form:

min
ξ

JQP = 1
2ξ

THQPξ + fT
QPξ + SQP,

subject to : AineqQPξ ≤ bineqQP,
(11)

where the vector ξ contains a sequence of control inputs ξ = [u(0|k), . . . , u(Nc|k)]T, while
the cost-function-related Hessian symmetric positive-definite matrix HQP, linear cost vector
fQP, constant term SQP, and inequality constraint-related matrix AineqQP and vector bineqQP
are derived from Equations (6) to (8) and (10). Herein, the optimal control problem is

Energies 2023, 16, 2006 7 of 20

automatically transformed into the QP form (11) within MATLAB by using a dedicated
toolbox CasADi [31].

The QP problem (11) can be solved by different quadratic program solvers, such as
the quadprog solver available within MATLAB or mpcInteriorPointSolver from MATLAB’s
MPC Toolbox. Here, the open-source solver qpOASES is used to solve the automatically
generated QP [32].

3.1.2. Optimal Control Problem Size Reduction

The above-described nominal MPC case corresponds to full optimization of control
input u(h|k), with h = 0, . . . , Nc − 1 = Np − 1 (see Figure 3a). To reduce the size of the
optimal control problem and, therefore, improve the computational efficiency, two different
strategies are considered below.

Energies 2023, 16, x FOR PEER REVIEW 8 of 21

a(
h|

k)

(a)

(b)

(c)

a(
h|

k)
a(

h|
k)

Prediction horizon step h
Figure 3. Illustration of full control horizon (a), limited control horizon (b), and move-blocking strat-
egies (c).

3.2. Nonlinear Model Predictive Control
Figure 4 illustrates a novel MPC approach, in which two parameters of the prediction

horizon velocity profile are optimized instead of the acceleration at each prediction time
step. The initial idea would be to optimize the target velocity vF and the initial acceleration
a0 = (vF − v0)/tF, which defines the piecewise linear velocity profile shown by dashed lines
in Figure 4. To avoid the discontinuity of the piecewise linear profile in its breakpoint, the
velocity trajectory is approximated by a first-order lag term response, which is defined by
the target velocity vF and the time constant TF: 𝑇ி𝑣ሶ(𝑡) + 𝑣(𝑡) = 𝑣ி. (14)

Note that the time constant TF directly determines the initial and at the same time
maximum acceleration, which is equal to a0 = (vF − v(0))/TF (see Figure 4).

Figure 4. Illustration of nonlinear MPC velocity trajectory.

To incorporate the specific velocity trajectory defined by Equation (14) in the MPC
formulation, Model (1) is modified into the following form: 𝑠ሶ = 𝑣, 𝑣ሶ = − 1𝑇ி 𝑣 + 1𝑇ி 𝑣ி = −𝑢ଶ𝑣 + 𝑢ଵ𝑢ଶ, (15)

where the control inputs are the target velocity u1 = vF and the time constant inverse, i.e.,
the bandwidth u2 = 1/TF. Due to the multiplications between control inputs and states, the
model given by Equation (15) is nonlinear. In addition, the acceleration constraint (8),
where a is equal to 𝑣ሶ defined in Equation (15), is also nonlinear. For such a nonlinear
problem, it is generally convenient to use nonlinear MPC (NMPC). To obtain the discrete-
time model, the state-space system (15) is discretized by using the forward Euler method.

Figure 3. Illustration of full control horizon (a), limited control horizon (b), and move-blocking
strategies (c).

The first strategy relates to the typical option of reducing the control horizon, i.e.,
setting Nc < Np, and holding the last control input u(Nc − 1|k) until the end of the prediction
horizon (Figure 3b):

a(h|k) =
{

u(h|k), for h < Nc
u(Nc − 1|k), otherwise

(12)

A drawback of this strategy is the potential infeasibility of the QP for very short control
horizons Nc << Np, because the optimizer may not have enough freedom to shape the
acceleration profile to stop the vehicle before the red-state traffic light. This is illustrated
in Appendix B for the case of Nc reduced to the lowest feasible value, which allows the
vehicle to fully stop before the red light with maximum acceleration. Note that the lower
limit of feasible control horizon Nc is dependent on the scenario conditions, such as the
initial position and velocity, and the acceleration limits, as well.

The second option is the so-called move-blocking strategy [33], in which the control
input is held constant over several consecutive prediction horizon steps, which is similar
to the downsampling of the control input rate (see Figure 3c). Note that the block width
can be fixed or varying, resulting in uniformly or unequally distributed blocks. Herein, a
uniform distribution is opted for, and the number of blocks Nb is chosen as a multiple of
prediction horizon Np, which gives

a(h|k) =
{

u(h|k), if mod(h, Nb) = 0
u(h− 1|k), otherwise

(13)

resulting in Np/Nb unique control inputs, where mod(.) denotes the modulo function.
This formulation maintains a feasible QP in all scenarios, as it allows the optimizer more

Energies 2023, 16, 2006 8 of 20

flexibility in shaping the acceleration and velocity over the whole prediction horizon when
compared to the case of limiting the control horizon length, whereas the drawback is the
lower resolution of the control input.

3.2. Nonlinear Model Predictive Control

Figure 4 illustrates a novel MPC approach, in which two parameters of the prediction
horizon velocity profile are optimized instead of the acceleration at each prediction time
step. The initial idea would be to optimize the target velocity vF and the initial acceleration
a0 = (vF − v0)/tF, which defines the piecewise linear velocity profile shown by dashed lines
in Figure 4. To avoid the discontinuity of the piecewise linear profile in its breakpoint, the
velocity trajectory is approximated by a first-order lag term response, which is defined by
the target velocity vF and the time constant TF:

TF
.
v(t) + v(t) = vF (14)

Energies 2023, 16, x FOR PEER REVIEW 8 of 21

a(
h|

k)

(a)

(b)

(c)

a(
h|

k)
a(

h|
k)

Prediction horizon step h
Figure 3. Illustration of full control horizon (a), limited control horizon (b), and move-blocking strat-
egies (c).

3.2. Nonlinear Model Predictive Control
Figure 4 illustrates a novel MPC approach, in which two parameters of the prediction

horizon velocity profile are optimized instead of the acceleration at each prediction time
step. The initial idea would be to optimize the target velocity vF and the initial acceleration
a0 = (vF − v0)/tF, which defines the piecewise linear velocity profile shown by dashed lines
in Figure 4. To avoid the discontinuity of the piecewise linear profile in its breakpoint, the
velocity trajectory is approximated by a first-order lag term response, which is defined by
the target velocity vF and the time constant TF: 𝑇ி𝑣ሶ(𝑡) + 𝑣(𝑡) = 𝑣ி. (14)

Note that the time constant TF directly determines the initial and at the same time
maximum acceleration, which is equal to a0 = (vF − v(0))/TF (see Figure 4).

Figure 4. Illustration of nonlinear MPC velocity trajectory.

To incorporate the specific velocity trajectory defined by Equation (14) in the MPC
formulation, Model (1) is modified into the following form: 𝑠ሶ = 𝑣, 𝑣ሶ = − 1𝑇ி 𝑣 + 1𝑇ி 𝑣ி = −𝑢ଶ𝑣 + 𝑢ଵ𝑢ଶ, (15)

where the control inputs are the target velocity u1 = vF and the time constant inverse, i.e.,
the bandwidth u2 = 1/TF. Due to the multiplications between control inputs and states, the
model given by Equation (15) is nonlinear. In addition, the acceleration constraint (8),
where a is equal to 𝑣ሶ defined in Equation (15), is also nonlinear. For such a nonlinear
problem, it is generally convenient to use nonlinear MPC (NMPC). To obtain the discrete-
time model, the state-space system (15) is discretized by using the forward Euler method.

Figure 4. Illustration of nonlinear MPC velocity trajectory.

Note that the time constant TF directly determines the initial and at the same time
maximum acceleration, which is equal to a0 = (vF − v(0))/TF (see Figure 4).

To incorporate the specific velocity trajectory defined by Equation (14) in the MPC
formulation, Model (1) is modified into the following form:

.
s = v,

.
v = − 1

TF
v + 1

TF
vF = −u2v + u1u2, (15)

where the control inputs are the target velocity u1 = vF and the time constant inverse, i.e.,
the bandwidth u2 = 1/TF. Due to the multiplications between control inputs and states, the
model given by Equation (15) is nonlinear. In addition, the acceleration constraint (8), where
a is equal to

.
v defined in Equation (15), is also nonlinear. For such a nonlinear problem, it is

generally convenient to use nonlinear MPC (NMPC). To obtain the discrete-time model, the
state-space system (15) is discretized by using the forward Euler method. As an alternative,
the more accurate and computationally less efficient fourth-order Runge–Kutta method
can be applied [34].

The cost function (6) is expanded with the control input rate penalization to achieve
oscillation-free commands. In order to keep u1 and u2 constant on the prediction horizon
for a favorable computational efficiency, the control horizon is set to the minimum value
Nc = 1 (note that, in this case, the predicted velocity response corresponds to the one shown
in Figure 4). The final NMPC cost function is

min
u2,u1

J =
Np−1

∑
h=0

(
qv(vR − v(h|k))2 + qa(−u2(k)v(h|k) + u1(k)u2(k))

2
)

+r1∆u2
1 + r2∆u2

2,
(16)

Energies 2023, 16, 2006 9 of 20

where ∆u1 = u1(k)− u1(k− 1) and ∆u2 = u2(k)− u2(k− 1). The cost function is subject
to Constraints (8) and (10), and the following constraints on control inputs:

vmin ≤ u1(k) ≤ vmax (17)

1/TFmax ≤ u2(h|k) ≤ 1/TFmin (18)

In order to solve the optimal control problem given by the discrete-time version of
Equations (15)–(18), a nonlinear program is constructed by applying the direct multiple
shooting method [34]. Within MATLAB, this is again performed automatically by using the
CasADi toolbox, and the nonlinear program is solved by using the interior-point method
solver IPOPT [35].

3.3. Parallel Model Predictive Control

The nonlinear process model (15) transforms into a linear model by fixing the time
constant TF. For the fixed inverse of time constant TF, the control input u2 becomes a
parameter κ = 1/TF, which gives the linear model

.
s = v

.
v = −κv + κvF

(19)

The corresponding cost function (16) becomes (cf. Equation (16)):

min
u1

J =
Np−1

∑
h=0

(
qv(vR − v(h|k))2 + qaκ(−v(h|k) + u1(k))

2
)
+ r1∆u2

1, (20)

which is also subject to Constraints (8), (10), and (17). Each individual linear MPC optimal
control problem is transformed into QP by using the same procedure as explained in
Section 3.1. Parallel MPC (PMPC) that mimics NMPC is realized by formulating M linear
process models with different predefined time constants κ, and applying M MPC laws
in parallel at each sampling instant k, which is illustrated in Figure 5. Once all the MPC
solutions are available, the final PMPC output, i.e., the control input a(k) is adopted from
MPC that gives the lowest cost function (20) (see equation given in Figure 5).

Energies 2023, 16, x FOR PEER REVIEW 9 of 21

As an alternative, the more accurate and computationally less efficient fourth-order
Runge–Kutta method can be applied [34].

The cost function (6) is expanded with the control input rate penalization to achieve
oscillation-free commands. In order to keep u1 and u2 constant on the prediction horizon
for a favorable computational efficiency, the control horizon is set to the minimum value
Nc = 1 (note that, in this case, the predicted velocity response corresponds to the one shown
in Figure 4). The final NMPC cost function is

min௨మ,௨భ 𝐽 = ቀ𝑞௩൫𝑣ோ − 𝑣(ℎ|𝑘)൯ଶ + 𝑞൫−𝑢ଶ(𝑘)𝑣(ℎ|𝑘) + 𝑢ଵ(𝑘)𝑢ଶ(𝑘)൯ଶቁேିଵ
ୀ

+𝑟ଵΔ𝑢ଵଶ + 𝑟ଶΔ𝑢ଶଶ, (16)

where Δ𝑢ଵ = 𝑢ଵ(𝑘) − 𝑢ଵ(𝑘 − 1) and Δ𝑢ଶ = 𝑢ଶ(𝑘) − 𝑢ଶ(𝑘 − 1). The cost function is subject
to Constraints (8) and (10), and the following constraints on control inputs: 𝑣୫୧୬ ≤ 𝑢ଵ(𝑘) ≤ 𝑣୫ୟ୶ (17) 1/𝑇ி௫ ≤ 𝑢ଶ(ℎ|𝑘) ≤ 1/𝑇ி (18)

In order to solve the optimal control problem given by the discrete-time version of
Equations (15)–(18), a nonlinear program is constructed by applying the direct multiple
shooting method [34]. Within MATLAB, this is again performed automatically by using
the CasADi toolbox, and the nonlinear program is solved by using the interior-point
method solver IPOPT [35].

3.3. Parallel Model Predictive Control
The nonlinear process model (15) transforms into a linear model by fixing the time

constant TF. For the fixed inverse of time constant TF, the control input u2 becomes a pa-
rameter κ = 1/TF, which gives the linear model 𝑠ሶ = 𝑣 𝑣ሶ = −𝜅𝑣 + 𝜅𝑣ி

(19)

The corresponding cost function (16) becomes (cf. Equation (16)):

min ௨భ 𝐽 = ቀ𝑞௩൫𝑣ோ − 𝑣(ℎ|𝑘)൯ଶ + 𝑞𝜅൫−𝑣(ℎ|𝑘) + 𝑢ଵ(𝑘)൯ଶቁ + 𝑟ଵΔ𝑢ଵଶ
ேିଵ
ୀ , (20)

which is also subject to Constraints (8), (10), and (17). Each individual linear MPC optimal
control problem is transformed into QP by using the same procedure as explained in Sec-
tion 3.1. Parallel MPC (PMPC) that mimics NMPC is realized by formulating M linear
process models with different predefined time constants κ, and applying M MPC laws in
parallel at each sampling instant k, which is illustrated in Figure 5. Once all the MPC so-
lutions are available, the final PMPC output, i.e., the control input a(k) is adopted from
MPC that gives the lowest cost function (20) (see equation given in Figure 5).

Figure 5. Block diagram of parallel MPC. Figure 5. Block diagram of parallel MPC.

Due to the finite number of (M) linear MPCs, the parameter κ = 1/TF changes in a
stepwise manner when switching individual MPC laws. This would result in a stepwise
change of acceleration command aR = −κ(v + vF), thus causing peaks of vehicle jerk and
affecting the driving comfort. To mitigate the discomfort, one may increase the number
M of parallel MPCs at the expense of increased computational effort. Alternatively, the
PMPC command can be filtered with an acceleration command filter, which results in the
PMPCf strategy shown in Figure 6. The filter may be regarded as a virtual actuator, which

Energies 2023, 16, 2006 10 of 20

should be incorporated into the process model. By assuming the first-order lag-type virtual
actuator, the extended process model is formulated as (cf. Equation (19)):

.
s = v
.
v = x f

.
x f = −κ f x f + κ f

(
−κv + κv f

) (21)

where xf is the virtual actuator state that is equal to the actual acceleration a as a response to
the acceleration command aR = −κ(v + vF), and κf = 1/Tf is the virtual actuator bandwidth
(Figure 6). Once the process model (21) is defined, PMPCf is designed by using the same
procedure as described in Figure 5 and the comments above.

Energies 2023, 16, x FOR PEER REVIEW 10 of 21

Due to the finite number of (M) linear MPCs, the parameter κ = 1/TF changes in a
stepwise manner when switching individual MPC laws. This would result in a stepwise
change of acceleration command aR = −κ(v + vF), thus causing peaks of vehicle jerk and
affecting the driving comfort. To mitigate the discomfort, one may increase the number M
of parallel MPCs at the expense of increased computational effort. Alternatively, the
PMPC command can be filtered with an acceleration command filter, which results in the
PMPCf strategy shown in Figure 6. The filter may be regarded as a virtual actuator, which
should be incorporated into the process model. By assuming the first-order lag-type vir-
tual actuator, the extended process model is formulated as (cf. Equation (19)): 𝑠ሶ = 𝑣 𝑣ሶ = 𝑥 𝑥ሶ = −𝜅𝑥 + 𝜅(−𝜅𝑣 + 𝜅𝑣ி)

(21)

where xf is the virtual actuator state that is equal to the actual acceleration a as a response
to the acceleration command aR = −κ(v + vF), and κf = 1/Tf is the virtual actuator bandwidth
(Figure 6). Once the process model (21) is defined, PMPCf is designed by using the same
procedure as described in Figure 5 and the comments above.

Figure 6. Block diagram of parallel MPC with virtual actuator.

4. Simulation Results
4.1. Simulation Setup and Performance Metrics

This section presents a comparative simulation analysis of the model predictive strat-
egies proposed in Section 3. In the considered scenario, the vehicle should maintain typi-
cal city driving velocity vR = 15 m/s. The initial distance between the vehicle and the traffic
light is set to L0 = 150 m, and the traffic light period is set to 20 s with green- and red-light
periods of 8 and 12 s, respectively. The vehicle should maintain the acceleration within
the bounds of amax = −amin = 5 m/s2, whereas the velocity should stay between vmin = 0 and
vmax = 20 m/s. The sampling time is set to Ts = 0.1 s (if not stated otherwise). Full traffic light
preview is utilized, i.e., Np = 200 steps (unless otherwise stated), and in the case of linear
MPC, Nc = Np is set. Nominally, the cost function weights are chosen to qv = 10, qa = 5, r1 =
0.1, and r2 = 0.1. Unless stated otherwise, PMPC and PMPCf are designed with 10 linear
MPCs (M = 10), and the move-blocking MPC is designed with Nb = Np/10 = 20 uniformly
distributed blocks.

The overall performance of the control systems is compared in terms of the vehicle
velocity RMS regulation error

𝑣ୖୗ = ඨ 1𝑡௦ න (𝑣ோ − 𝑣)ଶ𝑑𝑡௧ೞ , (22)

RMS acceleration (discomfort index)

𝑎ୖୗ = ඨ 1𝑡௦ න 𝑎ଶ𝑑𝑡௧ೞ , (23)

traveled distance:

Figure 6. Block diagram of parallel MPC with virtual actuator.

4. Simulation Results
4.1. Simulation Setup and Performance Metrics

This section presents a comparative simulation analysis of the model predictive strate-
gies proposed in Section 3. In the considered scenario, the vehicle should maintain typical
city driving velocity vR = 15 m/s. The initial distance between the vehicle and the traffic
light is set to L0 = 150 m, and the traffic light period is set to 20 s with green- and red-light
periods of 8 and 12 s, respectively. The vehicle should maintain the acceleration within
the bounds of amax = −amin = 5 m/s2, whereas the velocity should stay between vmin = 0
and vmax = 20 m/s. The sampling time is set to Ts = 0.1 s (if not stated otherwise). Full
traffic light preview is utilized, i.e., Np = 200 steps (unless otherwise stated), and in the case
of linear MPC, Nc = Np is set. Nominally, the cost function weights are chosen to qv = 10,
qa = 5, r1 = 0.1, and r2 = 0.1. Unless stated otherwise, PMPC and PMPCf are designed with
10 linear MPCs (M = 10), and the move-blocking MPC is designed with Nb = Np/10 = 20
uniformly distributed blocks.

The overall performance of the control systems is compared in terms of the vehicle
velocity RMS regulation error

vRMS =

√
1

tsim

∫ tsim

0
(vR − v)2dt, (22)

RMS acceleration (discomfort index)

aRMS =

√
1

tsim

∫ tsim

0
a2dt, (23)

traveled distance:
smax = s(tsim) (24)

and computational time texe evaluated on a personal computer based on Intel® i7 central
processing unit operating at 2.8 GHz.

4.2. Linear MPC

Figure 7 illustrates the effect of reducing the prediction horizon length Np from the
nominal value of 200 to 50. In the case of a limited horizon of only 50 steps (i.e., 5 s), the
vehicle swiftly accelerates to the reference velocity of 15 m/s (Figure 7b) while respecting

Energies 2023, 16, 2006 11 of 20

the acceleration limit of 5 m/s2 (Figure 7c), maintains this velocity, and then slows down
and almost stops before the traffic light (Figure 7a). This is because the prediction horizon is
not long enough to plan for the upcoming red light. Once the light turns green, the vehicle
accelerates again toward the reference velocity (Figure 7b) and continues driving at that
velocity. For the case of a full horizon (20 s), the vehicle maintains a constant velocity lower
than the reference value, which allows it to safely approach and then cross the traffic light
at t = 20 s. By doing so, the vehicle turns out to have a higher velocity when crossing the
traffic light and achieves a somewhat higher final position than in the limited preview case.
More importantly, the acceleration is smoother, and, thus, the comfort level is higher for
Np = 200 than for Np = 50. While the longer prediction horizon allows for better traffic light
anticipation and overall performance, it results in significantly higher execution times than
the limited one, as illustrated in Figure 7d.

Energies 2023, 16, x FOR PEER REVIEW 11 of 21

𝑠୫ୟ୶ = 𝑠(𝑡௦) (24)

and computational time texe evaluated on a personal computer based on Intel® i7 central
processing unit operating at 2.8 GHz.

4.2. Linear MPC
Figure 7 illustrates the effect of reducing the prediction horizon length Np from the

nominal value of 200 to 50. In the case of a limited horizon of only 50 steps (i.e., 5 s), the
vehicle swiftly accelerates to the reference velocity of 15 m/s (Figure 7b) while respecting
the acceleration limit of 5 m/s2 (Figure 7c), maintains this velocity, and then slows down
and almost stops before the traffic light (Figure 7a). This is because the prediction horizon
is not long enough to plan for the upcoming red light. Once the light turns green, the
vehicle accelerates again toward the reference velocity (Figure 7b) and continues driving
at that velocity. For the case of a full horizon (20 s), the vehicle maintains a constant ve-
locity lower than the reference value, which allows it to safely approach and then cross
the traffic light at t = 20 s. By doing so, the vehicle turns out to have a higher velocity when
crossing the traffic light and achieves a somewhat higher final position than in the limited
preview case. More importantly, the acceleration is smoother, and, thus, the comfort level
is higher for Np = 200 than for Np = 50. While the longer prediction horizon allows for better
traffic light anticipation and overall performance, it results in significantly higher execu-
tion times than the limited one, as illustrated in Figure 7d.

Figure 8 compares the responses corresponding to different initial velocities: v0 = 0
and v0 = vR = 15 m/s. In both cases, the nominal value of prediction horizon length is used
(Np = 200), and the resulting performance is similar, i.e., the vehicle adjusts its velocity to
a similar value that allows it to safely cross the traffic light right when it turns green (t =
20 s). In the case of a high initial velocity (v0 = 15 m/s), the vehicle immediately starts
slowing down with the maximum allowed deceleration (5 m/s2) to a constant velocity.
Similarly, for zero initial velocity, the vehicle immediately starts speeding up with the
maximum acceleration (5 m/s2) to a similar constant velocity. After crossing the traffic
light, the vehicle accelerates to the reference velocity in both cases. The MPC code execu-
tion time is comparable to that of Figure 7 for the same (full) prediction horizon length Np
= 200 (Figure 8d).

Figure 7. Comparative responses position (a), velocity (b), acceleration (c) and execution time (d) of
linear MPC systems for prediction horizon lengths Np = 200 and Np = 15.
Figure 7. Comparative responses position (a), velocity (b), acceleration (c) and execution time (d) of
linear MPC systems for prediction horizon lengths Np = 200 and Np = 15.

Figure 8 compares the responses corresponding to different initial velocities: v0 = 0 and
v0 = vR = 15 m/s. In both cases, the nominal value of prediction horizon length is used
(Np = 200), and the resulting performance is similar, i.e., the vehicle adjusts its velocity to a
similar value that allows it to safely cross the traffic light right when it turns green (t = 20 s). In
the case of a high initial velocity (v0 = 15 m/s), the vehicle immediately starts slowing down
with the maximum allowed deceleration (5 m/s2) to a constant velocity. Similarly, for zero
initial velocity, the vehicle immediately starts speeding up with the maximum acceleration
(5 m/s2) to a similar constant velocity. After crossing the traffic light, the vehicle accelerates to
the reference velocity in both cases. The MPC code execution time is comparable to that of
Figure 7 for the same (full) prediction horizon length Np = 200 (Figure 8d).

Energies 2023, 16, x FOR PEER REVIEW 12 of 21

Figure 8. Comparative responses position (a), velocity (b), acceleration (c) and execution time (d) of
linear MPC systems for initial vehicle velocities v0 = 0 and v0 = vR = 15 m/s.

The comparative performance of nominal (full) MPC and move-blocking MPC
(MPC-MB) is shown in Figure 9. As expected, the move-blocking strategy significantly
reduces the code execution time compared to the nominal MPC (Figure 9d), while the
performance is only slightly worse. The performance degradation is due to holding the
control input constant over several consecutive prediction steps (see illustration in Figure
3), which reduces the MPC’s flexibility in shaping the control input.

The effect of cost function tuning is illustrated in Figure 10. Increasing the accelera-
tion penalization results in decreased acceleration peaks (Figure 10c), i.e., better comfort.
MPC achieves this by applying lower acceleration values over a longer period. This means
that the vehicle velocity will reach the steady velocity more slowly, (Figure 10b), thus re-
sulting in somewhat worse performance.

Figure 9. Comparative responses position (a), velocity (b), acceleration (c) and execution time (d)
of nominal and move-blocking (MB) linear MPC systems.

Figure 8. Comparative responses position (a), velocity (b), acceleration (c) and execution time (d) of
linear MPC systems for initial vehicle velocities v0 = 0 and v0 = vR = 15 m/s.

Energies 2023, 16, 2006 12 of 20

The comparative performance of nominal (full) MPC and move-blocking MPC (MPC-
MB) is shown in Figure 9. As expected, the move-blocking strategy significantly reduces
the code execution time compared to the nominal MPC (Figure 9d), while the performance
is only slightly worse. The performance degradation is due to holding the control input
constant over several consecutive prediction steps (see illustration in Figure 3), which
reduces the MPC’s flexibility in shaping the control input.

Energies 2023, 16, x FOR PEER REVIEW 12 of 21

Figure 8. Comparative responses position (a), velocity (b), acceleration (c) and execution time (d) of
linear MPC systems for initial vehicle velocities v0 = 0 and v0 = vR = 15 m/s.

The comparative performance of nominal (full) MPC and move-blocking MPC
(MPC-MB) is shown in Figure 9. As expected, the move-blocking strategy significantly
reduces the code execution time compared to the nominal MPC (Figure 9d), while the
performance is only slightly worse. The performance degradation is due to holding the
control input constant over several consecutive prediction steps (see illustration in Figure
3), which reduces the MPC’s flexibility in shaping the control input.

The effect of cost function tuning is illustrated in Figure 10. Increasing the accelera-
tion penalization results in decreased acceleration peaks (Figure 10c), i.e., better comfort.
MPC achieves this by applying lower acceleration values over a longer period. This means
that the vehicle velocity will reach the steady velocity more slowly, (Figure 10b), thus re-
sulting in somewhat worse performance.

Figure 9. Comparative responses position (a), velocity (b), acceleration (c) and execution time (d)
of nominal and move-blocking (MB) linear MPC systems.
Figure 9. Comparative responses position (a), velocity (b), acceleration (c) and execution time (d) of
nominal and move-blocking (MB) linear MPC systems.

The effect of cost function tuning is illustrated in Figure 10. Increasing the acceleration
penalization results in decreased acceleration peaks (Figure 10c), i.e., better comfort. MPC
achieves this by applying lower acceleration values over a longer period. This means that
the vehicle velocity will reach the steady velocity more slowly, (Figure 10b), thus resulting
in somewhat worse performance.

Energies 2023, 16, x FOR PEER REVIEW 13 of 21

Figure 10. Illustration of influence of acceleration weighting coefficient qa on position (a), velocity
(b), acceleration (c) and execution time (d).

4.3. Nonlinear MPC
Figure 11 illustrates the influence of the nonlinear process discretization method on

the NMPC performance. Applying the Euler forward method and the fourth-order
Runge–Kutta method gives a similar system response. Based on 100 simulations with sim-
ilar initial conditions, the use of the Euler method results in a reduction of the average
code execution time by 24%.

The influence of the sampling time selection in the Euler discretization method is
illustrated in Figure 12. Increasing the sampling time from 100 ms to 200 ms, and accord-
ingly reducing Np from 200 to 100, marginally impacts the overall system performance.
However, by selecting the higher sampling time, the code execution time is reduced by
34% on average.

Figure 11. NMPC system responses for different time-discretization methods applied. Subfigures
show position (a), velocity (b), acceleration (c), execution time (d) and time constant control input
(e).

Figure 10. Illustration of influence of acceleration weighting coefficient qa on position (a), velocity
(b), acceleration (c) and execution time (d).

4.3. Nonlinear MPC

Figure 11 illustrates the influence of the nonlinear process discretization method on
the NMPC performance. Applying the Euler forward method and the fourth-order Runge–
Kutta method gives a similar system response. Based on 100 simulations with similar initial
conditions, the use of the Euler method results in a reduction of the average code execution
time by 24%.

Energies 2023, 16, 2006 13 of 20

Energies 2023, 16, x FOR PEER REVIEW 13 of 21

Figure 10. Illustration of influence of acceleration weighting coefficient qa on position (a), velocity
(b), acceleration (c) and execution time (d).

4.3. Nonlinear MPC
Figure 11 illustrates the influence of the nonlinear process discretization method on

the NMPC performance. Applying the Euler forward method and the fourth-order
Runge–Kutta method gives a similar system response. Based on 100 simulations with sim-
ilar initial conditions, the use of the Euler method results in a reduction of the average
code execution time by 24%.

The influence of the sampling time selection in the Euler discretization method is
illustrated in Figure 12. Increasing the sampling time from 100 ms to 200 ms, and accord-
ingly reducing Np from 200 to 100, marginally impacts the overall system performance.
However, by selecting the higher sampling time, the code execution time is reduced by
34% on average.

Figure 11. NMPC system responses for different time-discretization methods applied. Subfigures
show position (a), velocity (b), acceleration (c), execution time (d) and time constant control input
(e).

Figure 11. NMPC system responses for different time-discretization methods applied. Subfigures
show position (a), velocity (b), acceleration (c), execution time (d) and time constant control input (e).

The influence of the sampling time selection in the Euler discretization method is
illustrated in Figure 12. Increasing the sampling time from 100 ms to 200 ms, and accord-
ingly reducing Np from 200 to 100, marginally impacts the overall system performance.
However, by selecting the higher sampling time, the code execution time is reduced by 34%
on average.

Energies 2023, 16, x FOR PEER REVIEW 14 of 21

Figure 12. NMPC system responses for different sampling time values. Subfigures show position
(a), velocity (b), acceleration (c), execution time (d) and time constant control input (e).

The comparison of the linear and nonlinear MPC systems is supported through re-
sponses shown in Figure 13. The linear MPC opts for slightly lower approaching velocity
during the red-light period (Figure 13b), which allows it to start accelerating before the
traffic light turns green (Figure 13c). In this way, MPC can cross the traffic light with a
higher velocity and consequently travel further than NMPC. MPC can achieve this since
it has the flexibility to fully shape acceleration and velocity over the whole prediction
horizon, whereas NMPC is limited to optimizing only two control parameters (the target
velocity vF and time constant TF, Figure 13b,e). This effectively means that, in the NMPC
case, accelerating before t = 20 s is not possible. The NMPC execution time is comparable
to that of MPC, as the burden of applying a more complex nonlinear system optimization
solver is apparently compensated for by the bare minimum number of control profile pa-
rameters.

In the NMPC case, the optimizer sets the target velocity vF to similar values as in the
MPC case in the first half of the response. It then relies on the time constant TF to shape
the acceleration profile, namely it achieves higher acceleration by reducing TF, with a sim-
ilar effect on the acceleration response as in the case of the more flexible MPC.

Figure 12. NMPC system responses for different sampling time values. Subfigures show position (a),
velocity (b), acceleration (c), execution time (d) and time constant control input (e).

The comparison of the linear and nonlinear MPC systems is supported through
responses shown in Figure 13. The linear MPC opts for slightly lower approaching velocity
during the red-light period (Figure 13b), which allows it to start accelerating before the
traffic light turns green (Figure 13c). In this way, MPC can cross the traffic light with a
higher velocity and consequently travel further than NMPC. MPC can achieve this since it
has the flexibility to fully shape acceleration and velocity over the whole prediction horizon,

Energies 2023, 16, 2006 14 of 20

whereas NMPC is limited to optimizing only two control parameters (the target velocity
vF and time constant TF, Figure 13b,e). This effectively means that, in the NMPC case,
accelerating before t = 20 s is not possible. The NMPC execution time is comparable to that
of MPC, as the burden of applying a more complex nonlinear system optimization solver is
apparently compensated for by the bare minimum number of control profile parameters.

Energies 2023, 16, x FOR PEER REVIEW 15 of 21

Figure 13. Comparative responses of position (a), velocity (b), acceleration (c), execution time (d)
and time constant input (e) of MPC and NMPC systems.

4.4. Parallel MPC
Figure 14 shows comparative responses of the NMPC, PMPC, and PMPCf systems.

PMPC consists of M = 10 linear MPCs, with κ values logarithmically spaced between 0.5
s−1 (TFmax = 2 s) and 5 s−1 (TFmin = 0.2 s). The overall behavior of the NMPC and PMPC sys-
tems is similar, with the difference that the time constant TF(t) commanded by PMPC has
a stepwise shape (Figure 14e), thus resulting in an acceleration chattering effect (Figure
14c). However, the PMPC execution takes approximately 9.8 ms on average, which is
faster than the NMPC execution time of 16.3 ms. Equally important, the execution time of
PMPC is much more consistent, which facilitates the implementation and real-time appli-
cation (Figure 14d).

Figure 14. Comparative responses of position (a), velocity (b), acceleration (c), execution time (d)
and time constant input (e) of NMPC, PMPC, and PMPCf systems.

Figure 13. Comparative responses of position (a), velocity (b), acceleration (c), execution time (d) and
time constant input (e) of MPC and NMPC systems.

In the NMPC case, the optimizer sets the target velocity vF to similar values as in the
MPC case in the first half of the response. It then relies on the time constant TF to shape the
acceleration profile, namely it achieves higher acceleration by reducing TF, with a similar
effect on the acceleration response as in the case of the more flexible MPC.

4.4. Parallel MPC

Figure 14 shows comparative responses of the NMPC, PMPC, and PMPCf systems.
PMPC consists of M = 10 linear MPCs, with κ values logarithmically spaced between
0.5 s−1 (TFmax = 2 s) and 5 s−1 (TFmin = 0.2 s). The overall behavior of the NMPC and
PMPC systems is similar, with the difference that the time constant TF(t) commanded by
PMPC has a stepwise shape (Figure 14e), thus resulting in an acceleration chattering effect
(Figure 14c). However, the PMPC execution takes approximately 9.8 ms on average, which
is faster than the NMPC execution time of 16.3 ms. Equally important, the execution time
of PMPC is much more consistent, which facilitates the implementation and real-time
application (Figure 14d).

Accounting for the virtual actuator dynamics through the design of PMPCf makes the
acceleration response smooth for improved comfort (Figure 14c). Including an additional
state variable in the PMPCf prediction model (cf. Equations (19) and (21)) has a negligible
effect on the execution time (Figure 14d).

4.5. Comparison of Performance Metrics

Table 1 presents a comparison of the performance metrics of different MPC strategies.
The nominal (linear) MPC strategy is considered a performance benchmark, as it gives the
minimum value of the cost function J given by Equation (6), maximum traveled distance, and
the lowest RMS velocity tracking error due to its highest flexibility in shaping the acceleration
profile. The move-blocking MPC strategy is characterized by the best comfort and the lowest
execution time. However, this strategy could be prone to feasibility issues. Although NMPC is

Energies 2023, 16, 2006 15 of 20

the least flexible in terms of shaping the acceleration profile, its performance is still comparable
to other, more flexible strategies. PMPC also provides comparable results to the nominal
MPC, where the increase in parallel MPC components from M = 10 to M = 20 results in
proportional increases in the execution time, without tangible performance improvement. On
the other hand, for a comparable level of overall performance, the execution time of PMPCf is
considerably lower than that of the nominal case, particularly when the number of parallel
MPC components is reduced from M = 10 to M = 5.

Energies 2023, 16, x FOR PEER REVIEW 15 of 21

Figure 13. Comparative responses of position (a), velocity (b), acceleration (c), execution time (d)
and time constant input (e) of MPC and NMPC systems.

4.4. Parallel MPC
Figure 14 shows comparative responses of the NMPC, PMPC, and PMPCf systems.

PMPC consists of M = 10 linear MPCs, with κ values logarithmically spaced between 0.5
s−1 (TFmax = 2 s) and 5 s−1 (TFmin = 0.2 s). The overall behavior of the NMPC and PMPC sys-
tems is similar, with the difference that the time constant TF(t) commanded by PMPC has
a stepwise shape (Figure 14e), thus resulting in an acceleration chattering effect (Figure
14c). However, the PMPC execution takes approximately 9.8 ms on average, which is
faster than the NMPC execution time of 16.3 ms. Equally important, the execution time of
PMPC is much more consistent, which facilitates the implementation and real-time appli-
cation (Figure 14d).

Figure 14. Comparative responses of position (a), velocity (b), acceleration (c), execution time (d)
and time constant input (e) of NMPC, PMPC, and PMPCf systems.
Figure 14. Comparative responses of position (a), velocity (b), acceleration (c), execution time (d) and
time constant input (e) of NMPC, PMPC, and PMPCf systems.

Table 1. Summary of performance metrics for presented strategies.

MPC Overall Cost *
J × 105

Discomfort Index
aRMS (m/s2)

Velocity
Regulation RMS
Error vRMS (m/s)

Traveled Distance
smax (m)

Execution Time
texe (ms)

Linear MPC 1.2007 1.2661 5.1137 295.8402 13.9

MPC-MB 1.2081 (+0.6%) 1.0956 (−13.5%) 5.2070 (+1.8%) 293.0414
(−0.9%) 1.2 (−91.4%)

NMPC 1.2210 (+1.7%) 1.3437 (+6.1%) 5.2136 (+2.0%) 292.8537
(−1.0%) 16.3 (+17.3%)

PMPC
(M = 10) 1.2286 (+2.3%) 1.3132 (+3.7%) 5.2438 (+2.5%) 291.9483

(−1.3%) 9.8 (−29.5%)

PMPC
(M = 20) 1.2272 (+2.2%) 1.3281 (+5.0%) 5.2413 (+2.5%) 292.0224

(−1.3%) 19.1 (+37.4%)

PMPCf
(M = 10) 1.2304 (+2.5%) 1.2009 (−5.1%) 5.2512 (+2.7%) 291.7150

(−1.4%) 9.8 (−29.5%)

PMPCf
(M = 5) 1.2365 (+3.0%) 1.1424 (−9.8%) 5.2851 (+3.4%) 290.6967

(−1.7%) 5.0 (−64.0%)

* Overall cost is calculated by using Equation (6).

5. Discussion

The presented study has focused on the design and comparative assessment of several
practical MPC strategies. The strategies have been proven to be viable through simulation
verification for a typical AV case study. However, before implementing the designed MPC

Energies 2023, 16, 2006 16 of 20

strategies in the considered or a broader AV control scenario, there are several, mostly
practical, considerations that have to be accounted for. Firstly, in real-world applications,
the traffic light state preview will contain some uncertainty. Therefore, the proposed
algorithms should be tested against this uncertainty, and they can be potentially modified
or extended for improved performance in the more complex, stochastic environment.
One of the issues that could arise is related to QP problem infeasibility when a vehicle is
close to the traffic light and its speed is not adapted soon enough due to the presence of
uncertainties. To prevent such cases, traffic light position-related constraints should be
relaxed by introducing a buffer zone, e.g., a 1–2 m long zone, before the traffic light, and a
slack variable should be applied to the position and acceleration constraints to maintain
the QP feasibility while stopping at a safe distance. Similarly, the proposed algorithms
should be tested and potentially modified for the scenarios of multiple traffic lights and
multiple vehicles.

Next, the presented MPC approaches can accommodate a more detailed vehicle
model, which would consider more detailed powertrain lag dynamics and would include
feedforward or feedback-based compensation of aerodynamic drag and rolling resistance.
The extended vehicle model could also include a power consumption submodel. In this
case, the MPC cost function could be extended with an energy/fuel consumption term to
directly account for efficiency (e.g., eco-driving preference of the driver). Similarly, the
cost function can further be reformulated to account for different performance criteria. For
instance, instead of minimizing the vehicle velocity regulation error, one can maximize the
distance traveled. In that case, the vehicle would generally be encouraged to accelerate to
pass the traffic light crossing before the light turns red. The developed MPC framework
should readily be adjusted to allow for such reformulations of the cost function.

Additionally, the robustness of the proposed strategies to unmodeled powertrain
and sensor dynamics should be verified. Besides the robustness analysis, a more detailed
computational efficiency analysis should be carried out to determine appropriate hardware
requirements for the in-vehicle implementation of the control algorithms and/or establish
the tuning trade-off between traffic light preview duration and real-time capability.

Finally, although the considered case study has assumed autonomous driving, the
proposed MPC approaches are not limited to those tasks only. They can be extended
and integrated into existing advanced driving assistance systems, such as adaptive cruise
control, where the speed of the vehicle could be reduced based on the traffic light preview,
and automatic emergency braking systems, which would automatically stop the vehicle if
the driver does not timely react to red traffic light.

6. Conclusions

The presented comparative simulation results have indicated that all the three predic-
tive control approaches (MPC, NMPC, and PMPC) can successfully be applied to control
an AV in the considered scenario of approaching a traffic light. The main advantage of
the proposed NMPC law is that it accommodates a nonlinear process model without com-
promising computational efficiency. This is achieved by describing the vehicle velocity
profile by only a pair of first-order lag term parameters that are optimized on the minimum
(one-step) control horizon. As such, the NMPC strategy can be applied in more general
cases concerning nonlinear and stochastic process/prediction models, e.g., for solving the
AV safe speed control problem while interacting with pedestrians when approaching an
unsignalized crosswalk. The PMPC strategy, particularly its filtered version (PMPCf), can
approach the NMPC performance at a significantly reduced computational cost. However,
due to its structural complexity, it may not be as equally attractive in more general nonlinear
and/or stochastic dynamics cases as in the considered AV case study.

Energies 2023, 16, 2006 17 of 20

Author Contributions: Conceptualization, I.C., J.D., L.P., H.E.T., B.Š. and V.I.; methodology, I.C.,
L.P., J.D., H.E.T. and B.Š.; software, I.C. and L.P.; visualization, I.C. and L.P.; writing—original draft
preparation, I.C., L.P. and B.Š.; writing—review and editing, J.D., I.C., L.P., B.Š., H.E.T. and V.I.;
supervision, J.D., H.E.T. and V.I. All authors have read and agreed to the published version of
the manuscript.

Funding: It is gratefully acknowledged that this work has been supported by Ford Motor Company.

Data Availability Statement: Not applicable.

Acknowledgments: It is gratefully acknowledged that the work of the third and fourth authors has
been supported through the scientific–technological Croatian–Hungarian cooperation project “Design
of Automated Driving Systems Based on Estimation of Wheel-road Contact Features for Handling
Emergency Situations (AVEST)”, and the work of the second author has been supported by the
Croatian Science Foundation through the “Young researchers’ career development project-training of
new doctoral students”.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation Meaning
AV Autonomous vehicle
MPC Model predictive control
NMPC Nonlinear model predictive control
PMPC Parallel model predictive control
PMPCf Parallel model predictive control filtered
MPC-MB Move-blocking model predictive control
RMS Root mean square
TLS Traffic light signal
QP Quadratic program
GLOSA Green-light optimal speed advisory
LTV Linear time varying

Appendix A. Linear Time-Varying Approach to Traffic-Light-Related Constraint

To transform the vehicle position and time-dependent traffic light constraint (4) into a
time-dependent only constraint, the following algorithm is used.

The vehicle position constraint is not applied in the first simulation time step (controller
initialization) since the predicted position vector is empty. In the next and subsequent
sampling instances, the traffic light constraint (10) is based on a modified traffic light state
sequence Smod, which is constructed from the actual traffic light state preview S(h|k) and
the predicted vehicle positions from the perspective of the previous time step, s(h|k − 1).
This is similar to the linear time-varying MPC approach. The algorithm consists of the
following steps:

1. Step-Initialize modified traffic light state prediction with actual traffic light state prediction:

Smod(h|k) = S(h|k), ∀h ∈
{

0, 1, . . . , Np − 1
}

2. Step-Find the prediction time steps in which the vehicle crossed traffic light in the
previous optimization step k − 1 and store the result in vector icross

icross(h− 1|k) =
{

0, for s(h|k− 1) < L0
1, otherwise

3. Step-Modify the traffic light state for the actual prediction horizon, using the following rules:

Energies 2023, 16, 2006 18 of 20

• If the vehicle did not cross the traffic light in the previous prediction, i.e., if
icross = 0, set the modified traffic light state to the actual one:

Smod(h|k) = S(h|k), ∀h ∈
{

0, 1, . . . , Np − 1
}

• If the vehicle crossed the traffic light, i.e., if icross 6= 0, find the first step at which
the allowed crossing happened hc, i.e., if S(hc|k) = 0 and icross(hc|k) = 1. Modify
only the remaining part after the initial allowed crossing step hc:

Smod(hc, . . . , Np − 1|k) = 0

This modification considers all traffic light states after hc to be green, since the
vehicle is going to cross during a green light, and all other traffic light states after
the vehicle crosses are not relevant.

o The special case of hc = 0 indicates that the vehicle just crossed the traf-
fic light and that in the next time step the traffic light state should be
considered green.

o In case the crossing is not allowed on the whole prediction horizon (hc is
not found), the modified traffic light state prediction remains the same as
the actual traffic light state prediction:

Smod(h|k) = (h|k), ∀h ∈
{

0, 1, . . . , Np − 1
}

This means that the vehicle was not able to reach the crossing during the
green traffic light phase, or the traffic light was in the red state for the
whole duration of the prediction horizon. As soon as the next green traffic
light phase is included on the horizon, the vehicle will be able to cross.

Appendix B. Potential Infeasibility of the QP for Very Short Control Horizons Nc << Np

For an extremely reduced control horizon in the linear MPC law (Nc << Np), it is possible
for the QP problem to become infeasible. A simple illustration is presented in Figure A1,
where the traffic light is in the red state on the whole prediction horizon, and the vehicle is,
therefore, not allowed to surpass the traffic light position (orange line). In this case, the initial
vehicle velocity is quite high, and the vehicle needs to apply maximum deceleration for the
whole Nc duration, which is in this case the shortest feasible control horizon Nc*. For the
remainder of the prediction horizon, the optimal acceleration control input is zero in order to
stop before the traffic light. If the control horizon is further reduced, i.e., Nc < Nc*, the vehicle
would not be able to stop in time, since the maximum deceleration must be applied during
the whole Nc* time interval, and since Nc < Nc*, the vehicle would still be moving with some
non-zero velocity at the end of Nc. Note that MPC could maintain small nonzero acceleration
in the last step of the control horizon, and that input could hold for the remainder of the
prediction horizon. However, that would cause the vehicle to surpass the traffic light position,
meaning that in this case the vehicle is not able to safely stop using Nc < Nc*.

Energies 2023, 16, x FOR PEER REVIEW 19 of 21

This modification considers all traffic light states after hc to be green, since the
vehicle is going to cross during a green light, and all other traffic light states
after the vehicle crosses are not relevant.
o The special case of hc = 0 indicates that the vehicle just crossed the traffic

light and that in the next time step the traffic light state should be consid-
ered green.

o In case the crossing is not allowed on the whole prediction horizon (hc is not
found), the modified traffic light state prediction remains the same as the
actual traffic light state prediction:

Smod(h|k) = S(h|k), ∀ℎ ∈ ൛0, 1, … , 𝑁 − 1ൟ

This means that the vehicle was not able to reach the crossing during the
green traffic light phase, or the traffic light was in the red state for the whole
duration of the prediction horizon. As soon as the next green traffic light
phase is included on the horizon, the vehicle will be able to cross.

Appendix B. Potential Infeasibility of the QP for Very Short Control Horizons
Nc << Np

For an extremely reduced control horizon in the linear MPC law (Nc << Np), it is pos-
sible for the QP problem to become infeasible. A simple illustration is presented in Figure
A1, where the traffic light is in the red state on the whole prediction horizon, and the
vehicle is, therefore, not allowed to surpass the traffic light position (orange line). In this
case, the initial vehicle velocity is quite high, and the vehicle needs to apply maximum
deceleration for the whole Nc duration, which is in this case the shortest feasible control
horizon Nc*. For the remainder of the prediction horizon, the optimal acceleration control
input is zero in order to stop before the traffic light. If the control horizon is further re-
duced, i.e., Nc < Nc*, the vehicle would not be able to stop in time, since the maximum
deceleration must be applied during the whole Nc* time interval, and since Nc < Nc*, the
vehicle would still be moving with some non-zero velocity at the end of Nc. Note that MPC
could maintain small nonzero acceleration in the last step of the control horizon, and that
input could hold for the remainder of the prediction horizon. However, that would cause
the vehicle to surpass the traffic light position, meaning that in this case the vehicle is not
able to safely stop using Nc < Nc*.

Figure A1. Illustration of the shortest control horizon case for feasible linear MPC with reduced
control horizon (Nc << Np).

References
1. Texas A&M Transportation Institute 2019 Urban Air Mobility Report. Available online:

https://mobility.tamu.edu/umr/report/#methodology (accessed on 15 December 2022).
2. Chada, S.K.; Purbai, A.; Gorges, D.; Ebert, A.; Teutsch, R. Ecological Adaptive Cruise Control for Urban Environments Using

SPaT Information. In Proceedings of the 2020 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 18
November–16 December 2020; pp. 2–7.

Figure A1. Illustration of the shortest control horizon case for feasible linear MPC with reduced
control horizon (Nc << Np).

Energies 2023, 16, 2006 19 of 20

References
1. Texas A&M Transportation Institute 2019 Urban Air Mobility Report. Available online: https://mobility.tamu.edu/umr/report/

#methodology (accessed on 15 December 2022).
2. Chada, S.K.; Purbai, A.; Gorges, D.; Ebert, A.; Teutsch, R. Ecological Adaptive Cruise Control for Urban Environments Using SPaT

Information. In Proceedings of the 2020 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 18 November–16
December 2020; pp. 2–7.

3. Mintsis, E.; Vlahogianni, E.I.; Mitsakis, E. Dynamic Eco-Driving near Signalized Intersections: Systematic Review and Future
Research Directions. J. Transp. Eng. Part A Syst. 2020, 146, 04020018. [CrossRef]

4. Lawitzky, A.; Wollherr, D.; Buss, M. Energy Optimal Control to Approach Traffic Lights. In Proceedings of the 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 4382–4387.

5. Suzuki, H.; Marumo, Y. Safety Evaluation of Green Light Optimal Speed Advisory (GLOSA) System in Real-World Signalized
Intersection. J. Robot. Mechatron. 2020, 32, 598–604. [CrossRef]

6. Held, M.; Flardh, O.; Martensson, J. Optimal Speed Control of a Heavy-Duty Vehicle in the Presence of Traffic Lights. In
Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; pp. 6119–6124.

7. Bouwman, K.R.; Pham, T.H.; Wilkins, S.; Hofman, T. Predictive Energy Management Strategy Including Traffic Flow Data for
Hybrid Electric Vehicles. IFAC-PapersOnLine 2017, 50, 10046–10051. [CrossRef]

8. Bakibillah, A.S.M.; Kamal, M.A.S.; Tan, C.P.; Hayakawa, T.; Imura, J.I. Event-Driven Stochastic Eco-Driving Strategy at Signalized
Intersections from Self-Driving Data. IEEE Trans. Veh. Technol. 2019, 68, 8557–8569. [CrossRef]

9. Asadi, B.; Vahidi, A. Predictive Cruise Control: Utilizing Upcoming Traffic Signal Information for Improving Fuel Economy and
Reducing Trip Time. IEEE Trans. Control Syst. Technol. 2011, 19, 707–714. [CrossRef]

10. Xing, J.; Chu, L.; Guo, C. Optimization of Energy Consumption Based on Traffic Light Constraints and Dynamic Programming.
Electronics 2021, 10, 2295. [CrossRef]

11. Kamalanathsharma, R.K.; Rakha, H.A. Multi-Stage Dynamic Programming Algorithm for Eco-Speed Control at Traffic Signalized
Intersections. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The
Hague, The Netherlands, 6–9 October 2013; pp. 2094–2099.

12. Kamal, M.A.S.; Mukai, M.; Murata, J.; Kawabe, T. Model Predictive Control of Vehicles on Urban Roads for Improved Fuel
Economy. IEEE Trans. Control Syst. Technol. 2013, 21, 831–841. [CrossRef]

13. Uebel, S.; Kutter, S.; Hipp, K.; Schrödel, F. A Computationally Efficient MPC for Green Light Optimal Speed Advisory of Highly
Automated Vehicles. In Proceedings of the 5th International Conference on Vehicle Technology and Intelligent Transport Systems,
Heraklion, Greece, 3–5 May 2019; pp. 444–451.

14. Huang, X.; Peng, H. Speed Trajectory Planning at Signalized Intersections Using Sequential Convex Optimization. In Proceedings
of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 2992–2997.

15. Pozzi, A.; Bae, S.; Choi, Y.; Borrelli, F.; Raimondo, D.M.; Moura, S. Ecological Velocity Planning through Signalized Intersections:
A Deep Reinforcement Learning Approach. In Proceedings of the 2020 59th IEEE Conference on Decision and Control (CDC),
Jeju, Republic of Korea, 14–18 December 2020; pp. 245–252.

16. Shao, Y.; Sun, Z. Eco-Approach with Traffic Prediction and Experimental Validation for Connected and Autonomous Vehicles.
IEEE Trans. Intell. Transp. Syst. 2021, 22, 1562–1572. [CrossRef]

17. Ozatay, E.; Ozguner, U.; Filev, D.; Michelini, J. Analytical and Numerical Solutions for Energy Minimization of Road Vehicles
with the Existence of Multiple Traffic Lights. In Proceedings of the 52nd IEEE Conference on Decision and Control, Firenze, Italy,
10–13 December 2013; pp. 7137–7142.

18. Meng, X.; Cassandras, C.G. Optimal Control of Autonomous Vehicles for Non-Stop Signalized Intersection Crossing. In
Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; pp. 6988–6993.

19. Dong, S.; Chen, H.; Yang, Z.; Liu, Q.; Wang, P. A Hierarchical Strategy for Velocity Optimization of Connected Vehicles with the
Existence of Multiple Traffic Lights. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July
2019; pp. 6680–6685.

20. De Nunzio, G.; De Wit, C.C.; Moulin, P.; Di Domenico, D. Eco-Driving in Urban Traffic Networks Using Traffic Signals Information.
Int. J. Robust Nonlinear Control 2016, 26, 1307–1324. [CrossRef]

21. Mahmoud, Y.H.; Brown, N.E.; Motallebiaraghi, F.; Koelling, M.; Meyer, R.; Asher, Z.D.; Dontchev, A.; Kolmanovsky, I. Au-
tonomous Eco-Driving with Traffic Light and Lead Vehicle Constraints: An Application of Best Constrained Interpolation.
IFAC-PapersOnLine 2021, 54, 45–50. [CrossRef]

22. Mahler, G.; Vahidi, A. An Optimal Velocity-Planning Scheme for Vehicle Energy Efficiency through Probabilistic Prediction of
Traffic-Signal Timing. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2516–2523. [CrossRef]

23. Li, L.; Wen, D.; Yao, D. A Survey of Traffic Control with Vehicular Communications. IEEE Trans. Intell. Transp. Syst. 2014, 15,
425–432. [CrossRef]

24. Xu, B.; Ban, X.J.; Bian, Y.; Wang, J.; Li, K. V2I Based Cooperation between Traffic Signal and Approaching Automated Vehicles. In
Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1658–1664.

25. Van Middlesworth, M.; Dresner, K.; Stone, P. Replacing the Stop Sign: Unmanaged Intersection Control for Autonomous Vehicles.
In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, Estoril, Portugal,
12–16 May 2008; Volume 3, pp. 1381–1384.

https://mobility.tamu.edu/umr/report/#methodology
https://mobility.tamu.edu/umr/report/#methodology
http://doi.org/10.1061/JTEPBS.0000318
http://doi.org/10.20965/jrm.2020.p0598
http://doi.org/10.1016/j.ifacol.2017.08.1775
http://doi.org/10.1109/TVT.2019.2931519
http://doi.org/10.1109/TCST.2010.2047860
http://doi.org/10.3390/electronics10182295
http://doi.org/10.1109/TCST.2012.2198478
http://doi.org/10.1109/TITS.2020.2972198
http://doi.org/10.1002/rnc.3469
http://doi.org/10.1016/j.ifacol.2021.10.139
http://doi.org/10.1109/TITS.2014.2319306
http://doi.org/10.1109/TITS.2013.2277737

Energies 2023, 16, 2006 20 of 20

26. Jerez, J.L.; Constantinides, G.A.; Kerrigan, E.C.; Ling, K.V. Parallel MPC for Real-Time FPGA-Based Implementation. IFAC Proc.
Vol. 2011, 44, 1338–1343. [CrossRef]

27. Jayaraman, S.K.; Robert, L.P.; Yang, X.J.; Pradhan, A.K.; Tilbury, D.M. Efficient Behavior-Aware Control of Automated Vehicles at
Crosswalks Using Minimal Information Pedestrian Prediction Model. In Proceedings of the 2020 American Control Conference
(ACC), Denver, CO, USA, 1–3 July 2020; pp. 4362–4368.

28. Škugor, B.; Deur, J.; Ivanovic, V.; Tseng, H.E. Stochastic Model Predictive Control of Autonomous Vehicles Approaching
Unsignalized Crosswalks with Pedestrians. In Proceedings of the European Control Conference, Bucharest, Romania, 13–16 June
2023. submitted for publication.

29. Xiao, S.; Ge, X.; Han, Q.L.; Zhang, Y. Secure and Collision-Free Multi-Platoon Control of Automated Vehicles under Data
Falsification Attacks. Automatica 2022, 145, 110531. [CrossRef]

30. Maciejowski, J.M. Predictive Control: With Constraints; Prentice Hall: Hoboken, NJ, USA, 2002; ISBN 0201398230.
31. Andersson, J.A.E.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi: A Software Framework for Nonlinear Optimization and

Optimal Control. Math. Program. Comput. 2019, 11, 1–36. [CrossRef]
32. Ferreau, H.J.; Kirches, C.; Potschka, A.; Bock, H.G.; Diehl, M. QpOASES: A Parametric Active-Set Algorithm for Quadratic

Programming. Math. Program. Comput. 2014, 6, 327–363. [CrossRef]
33. Cagienard, R.; Grieder, P.; Kerrigan, E.C.; Morari, M. Move Blocking Strategies in Receding Horizon Control. In Proceedings of

the 2004 43rd IEEE Conference on Decision and Control (CDC), Nassau, Bahamas, 14–17 December 2004; pp. 2023–2028.
34. Grüne, L.; Pannek, J. Nonlinear Model Predictive Control, 1st ed.; Springer: London, UK, 2011; ISBN 978-0-85729-500-2.
35. Wächter, A.; Biegler, L.T. On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear

Programming. Math. Program. 2005, 106, 25–57. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3182/20110828-6-IT-1002.01392
http://doi.org/10.1016/j.automatica.2022.110531
http://doi.org/10.1007/s12532-018-0139-4
http://doi.org/10.1007/s12532-014-0071-1
http://doi.org/10.1007/s10107-004-0559-y

	Introduction
	Vehicle and Scenario Model
	Design of Model Predictive Controllers
	Linear Model Predictive Control
	Control Law Design
	Optimal Control Problem Size Reduction

	Nonlinear Model Predictive Control
	Parallel Model Predictive Control

	Simulation Results
	Simulation Setup and Performance Metrics
	Linear MPC
	Nonlinear MPC
	Parallel MPC
	Comparison of Performance Metrics

	Discussion
	Conclusions
	Appendix A
	Appendix B
	References

