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Citation: Dabčević, Z.; Škugor, B.;

Cvok, I.; Deur, J. A Trip-Based

Data-Driven Model for Predicting

Battery Energy Consumption of

Electric City Buses. Energies 2024, 17,

911. https://doi.org/10.3390/

en17040911

Academic Editor: King Jet Tseng

Received: 5 January 2024

Revised: 9 February 2024

Accepted: 12 February 2024

Published: 15 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

A Trip-Based Data-Driven Model for Predicting Battery Energy
Consumption of Electric City Buses
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Abstract: The paper presents a novel approach for predicting battery energy consumption in elec-
tric city buses (e-buses) by means of a trip-based data-driven regression model. The model was
parameterized based on the data collected by running a physical experimentally validated e-bus
simulation model, and it consists of powertrain and heating, ventilation, and air conditioning (HVAC)
system submodels. The main advantage of the proposed approach is its reliance on readily available
trip-related data, such as travel distance, mean velocity, average passenger count, mean and standard
deviation of road slope, and mean ambient temperature and solar irradiance, as opposed to the
physical model, which requires high-sampling-rate driving cycle data. Additionally, the data-driven
model is executed significantly faster than the physical model, thus making it suitable for large-
scale city bus electrification planning or online energy consumption prediction applications. The
data-driven model development began with applying feature selection techniques to identify the
most relevant set of model inputs. Machine learning methods were then employed to achieve a
model that effectively balances accuracy, simplicity, and interpretability. The validation results of the
final eight-input quadratic-form e-bus model demonstrated its high precision and generalization,
which was reflected in the R2 value of 0.981 when tested on unseen data. Owing to the trip-based,
mean-value formulation, the model executed six orders of magnitude faster than the physical model.

Keywords: city buses; battery electric vehicles; data-driven modeling; battery energy consumption;
prediction; feature selection; machine learning

1. Introduction

The transition to electric urban bus transportation is recognized as a vital strategy for
cutting pollutant and greenhouse gas emissions, reducing noise pollution, and increasing
passenger satisfaction [1]. On the other hand, this transition faces significant challenges,
including increased investment costs related to fully electric buses (e-buses) and their
charging infrastructure, as well as operational constraints corresponding to limited vehicle
range and extended charging durations in comparison to conventional buses [2]. Systematic
planning of the city bus electrification process is an essential step towards the reduction of
both capital and operational expenditures and mitigating the operational constraints [3].

Various factors such as traffic congestion, road gradients, passenger load (ridership),
and ambient conditions (temperature, solar irradiance) can significantly influence e-bus
energy consumption [4]. Thus, predicting e-bus battery energy consumption by means
of a mathematical model becomes a pivotal point for transport planners and operators
in their effort to optimize the transport system electrification process [5]. This process
includes e-bus scheduling [6] and/or timetabling [7], placing charging system locations
and determining their number per station [8], cost-efficient charging management [9], and
fleet management operations in general [10].

Models of e-buses (and e-vehicles in general) can be divided into elementary, physical,
and data-driven models [11]. The elementary models link electric energy consumption with
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basic features of driving cycles such as distance traveled [12]. Physical models generally
offer high prediction accuracy, but they are often unsuitable for application in transport
system planning due to demand on usually unavailable data related to high sampling rate
driving cycles [13], and physical parameters and maps of vehicle powertrains [14]. With the
development of machine learning techniques, data models are gaining popularity owing to
their adaptability and ability to describe complex energy consumption patterns. However,
to achieve good generalization properties, they require broad and diverse datasets for
training and validation, which are often unavailable, especially in the case of low-spread
e-bus fleets [15].

In [16], trip energy consumption for e-buses was segmented into traction and heating,
ventilation, and air-conditioning (HVAC) system energy usage, while considering data
from 31 e-buses operating in Jilin Province, China, under a wide range of temperatures
(−27.0 to 35.0 ◦C) over 14 months. The approach models traction energy by considering
inputs such as ambient temperature, curb weight, travel distance, and trip duration, while
HVAC energy is estimated from the operation mode of the system (both cooling and
heating). A deep learning model for estimating e-bus energy consumption using a minimal
set of readily accessible trip parameters was introduced in [17]. The model was validated
against the data collected in Jaworzno’s bus network in Poland, proving its effectiveness in
infrastructure planning and scheduling optimization with the mean absolute percentage
errors not exceeding 7.1%. A data-driven prediction model for e-bus energy consumption,
incorporating vehicular, operational, topological, and external parameters, was presented
in [18]. Being validated against real-world data from the Altoona test and supported
by 120 diverse drive cycles, this model explains over 96% of the variation in energy
consumption rates. Additionally, reference [19] proposed a deep learning prediction model
using autoencoders, which requires only data such as bus stop locations, route traveled, and
travel times between stops; the model was validated with respect to real data from a mid-
size city in Poland. This model was used to gain energy management insights for public
transport network planning. In [20], a support vector machine regression model, optimized
with the grey wolf optimization algorithm and based on data from three e-bus routes in
Meihekou City, China, highlighted the importance of the state of charge, trip duration,
ambient temperature, and AC operation time in accurate energy consumption estimation,
with a mean average percentage error of 14.47%. The impact of ambient temperature on
electric bus efficiency in colder climates was investigated in [21], where data from four
battery-electric buses in Tampere, Finland, showed a 40–45% higher energy consumption in
winter seasons than in summer periods. Reference [22] addressed the uncertainty in electric
bus operations through a detailed analysis of six buses in southern Finland, using Internet
of Things (IoT) systems for data collection, and it highlights the influence of ambient
temperature, driving style, and route characteristics on energy consumption. This analysis
aims to guide the selection of battery capacity and design of charging infrastructure. A
recurrent neural network (NN) with long short-term memory (LSTM) and a convolutional
NN (CNN) was considered in [23], where the energy consumption and input parameters
were formulated as time series.

While the existing studies provide valuable insights, they are often restricted to a
specific, limited number of features and are validated within singular transport systems.
Such approaches may not fully capture the complexities and variabilities inherent to
different operational environments, underscoring the necessity for models that incorporate
a wider array of features and not demonstrating robust generalization capabilities across
diverse transport systems.

To this end, a numerically efficient, data-driven e-bus energy consumption model is
developed in this paper, which incorporates a wide set of generally available trip-level
driving cycle features gained through a systematic feature selection approach and provides
a high level of generalization. The contributions of this research are threefold. Firstly, an
experimentally validated backward-looking physical model of an e-bus was proposed,
with an emphasis on the HVAC system description and parameter optimization. Secondly,
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a comprehensive feature selection procedure was established to identify statistically the
most impactful per-trip features, while prioritizing those features that are available from
standard city bus transport planning or GPS tracking datasets. Thirdly, a numerically
efficient trip-based data-driven regression model was proposed and validated against the
experimentally validated physical e-bus model, where a diverse range of traffic, road,
and ambient conditions were considered when formulating the training and particularly
validation data sets used to select the model.

The remaining part of the paper is organized as follows. Section 2 describes the
physical e-bus model, including its parameter optimization procedure and experimental
validation. Section 3 presents the data collection framework used for data-driven e-bus
model development. Section 4 elaborates on data-driven model feature selection and
validation. Section 5 presents a comprehensive performance assessment of the final model,
encompassing both the powertrain and HVAC system submodels. Section 6 delves into a
detailed analysis of the model residuals to evaluate its accuracy. Concluding remarks are
presented in Section 7.

2. Physical E-Bus Model
2.1. Recorded Driving Cycle and Energy Consumption Data

The driving cycle and energy consumption data were recorded on a single, 12 m e-bus
operating on Route 15 in the city of Jerusalem [4]. The data were collected in the summer
season in the period from 7 a.m. to 9 p.m., and they include timestamps, geographical
coordinates (longitude, latitude, and altitude), velocity, distance traveled, cumulative
battery energy consumption, and state of charge (SoC). The data sampling time was 1 s.

The considered dataset contains 14 trips in total (7 per each travel direction). The
velocity profile along the day is shown in Figure 1a. The total distance traveled is ap-
proximately 122.5 km for a net operating time of 11.5 h. The corresponding reconstructed
ridership profile is shown in Figure 1b. Finally, the actual ambient temperature (Ta) and
solar irradiance (

.
Qsol) data profiles are shown in Figure 1c.

Figure 1. Recorded city bus driving cycle time profile data: vehicle velocity and distance traveled (a),
ridership (b), and ambient temperature and solar irradiance (c).
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Figure 2a shows the plot of recorded and filtered altitude in relation to distance
traveled for direction A–B and multiple trips. The reconstructed road slope profile is shown
in Figure 2b. The driving direction A–B is characterized by mostly downhill driving with
the road slope peaks up to 5◦.

Figure 2. Reconstructed road altitude (a) and road slope profiles (b) with respect to distance traveled.

Figure 3 shows the recorded battery SoC and cumulative energy consumption time
profiles corresponding to the driving cycle from Figure 1a. These profiles are used as a
reference for e-bus model parameterization. By linearly extrapolating the energy consump-
tion profile over the whole SoC range [0, 1], and subtracting the observed end values, one
obtains a total battery capacity of 292.5 kWh, which equals 91% of the declared, new bus
battery capacity of 324 kWh. The difference between the two battery capacity values can be
attributed partly to nonlinear battery behavior, and partly to battery aging (the bus was
produced in 2017).

Figure 3. Time profiles of battery SoC and cumulative battery energy consumption.

2.2. Physical Powertrain Model

The powertrain of the considered fully electric city bus is modeled in a backward-
looking manner, i.e., in the direction from the wheels towards the electric machine. The
driving cycle-defined vehicle velocity (vv), road slope (θ), and ridership inputs (npass),
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defined in Section 2.1, were fed into the vehicle longitudinal dynamics equations to calculate
the total wheel torque and the wheel speed [24]:

τw = rw Mv
.
vv + rwR0Mvgcos(θ) + rw Mvgsin(θ) + 0.5rwρair A f Cdv2

v, (1)

ωw =
vv

rw
, (2)

where rw is the tire’s effective radius, Mv = Mv0 + Mpass is the sum of the empty vehicle
mass (Mv0) and the total passengers’ mass (Mpass), R0 is the rolling resistance coefficient,
ρair is the air density, A f is the bus frontal area, Cd is the aerodynamical drag coefficient,
and g is the gravity acceleration. The individual passenger mass is estimated to be 68.125 kg
to make a full bus with the passenger capacity of 80 match the declared maximum vehicle
payload of 5450 kg. Therefore, the passenger mass Mpass was calculated as 68.125·npass.

The e-machine torque ( τMG) and speed ωMG are calculated as follows:

τMG =
τwηkt

tr (τw) +
P0(ωw)

ωw

i0
, (3)

ωMG = i0ωw, (4)

where i0 is the final drive ratio, while ηtr(τw) and P0(ωw) are the drivetrain efficiency and
the idle power loss maps [4], respectively, with kt being defined as −1 for τw > 0 (motoring)
and 1 for τw ≤ 0 (regenerative braking). The e-machine efficiency ηMG is modeled by a map
dependent on the e-machine speed and torque (see Figure 4, [4]), from which the e-machine
power load to the battery is calculated as follows:

PMG = ηk
MG(τMG, ωMG)τMGωMG, (5)

where the exponent k depends on the e-machine operating mode: k = −1 for motoring
(PMG > 0), and k = 1 for regenerative braking (PMG < 0).

Figure 4. Normalized efficiency map and maximum torque characteristics of e-machine.

2.3. Battery Model

The battery model is based on a single-cell model scaled up to the appropriate number
of serially connected cells contained in the battery pack. The single-cell equivalent circuit
model (ECM) has been developed based on the available data from the SAFT VL30PFe
cell datasheet and insights from [25]. The ECM is shown in Figure 5a, and it consists of
the source of the open-circuit voltage source (Uoc) and the internal resistance (Rint). Both
parameters are made dependent on the cell SoC, as shown in Figure 5b. Temperature
dependencies of both parameters are neglected since it is assumed that the e-bus includes
an effective battery thermal management system.
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Figure 5. Battery equivalent circuit (a) and SoC dependencies of the open-circuit voltage and internal
battery resistance for considered LFP battery (b).

The battery SoC dynamics are described by the state equation:

.
SoC = − Ibatt

Qmax
=

√
U2

oc(SoC)− 4Rint(SoC)Pbatt − Uoc(SoC)
2QmaxRint(SoC)

, (6)

where Ibatt is the battery current, Qmax is the battery charge capacity, and Pbatt is the total
battery power including the e-machine power PMG given by Equation (5), and the powers
of auxiliary devices (Paux) (Table 1) and HVAC system (PHVAC) determined by the models
described in the next two subsections:

Pbatt = PMG + Paux + PHVAC. (7)

Table 1. Values of nominal power (Paux,N), duty cycle (dc) and duty cycle period (t p) of the modeled
auxiliary devices.

Auxiliary Device Paux,N [W] dc [-] tp [s]

Servo steering 2500 0.09 400
Air compressor 2000 0.15 100

DC/DC converter with low voltage devices 184 1 N/A

Note that the slowly changing SoC variable is the only state variable of the overall e-bus
backward-looking model (a quasi-static model). The battery charge capacity was obtained
from the energy capacity Emax = 292.5 kWh as Qmax = Emax/Uoc (SoC = 50%) = 459 Ah.

2.4. HVAC System Model

Apart from the e-bus powertrain itself, the HVAC system represents the most dominant
battery energy consumer [26]. The ambient conditions such as ambient temperature and
solar irradiance have a predominant effect on HVAC energy consumption, followed by
climatic loads and user preferences [4,22]. It was reported in [27] that the impact of HVAC
is such that it can reduce the range of an EV by up to 60% in cold weather and up to 33% in
hot weather.

Since the considered driving cycle (Figure 1) corresponds to a summer day, the HVAC
model parameterization is presented for the A/C mode. The overall thermal system is
illustrated in Figure 6. A proportional–integral–derivative (PID) controller commands
the cooling power

.
QHVAC to maintain the cabin temperature Tcab at its reference value

Tcab,R. The cooling power
.

QHVAC is limited in accordance with the HVAC datasheet [4].
The reference variable Tcab,R is generated with dependence on the ambient temperature
Ta (see the cyan line in Figure 6), which is set to fall between the bounds defined by VDV
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236:2015 guidelines for public transport (red and blue lines). Based on the assumptions of
fast HVAC system response constant coefficient of performance (COP = 1.8), the HVAC
power consumption PHVAC from Equation (7) was determined as

.
QHVAC/COP.

Figure 6. Illustration of HVAC system energy consumption model.

The thermal dynamics model includes four thermal masses (Figure 6 [4]). The model
is implemented in Dymola 2018 FD01 as illustrated in Figure 7. The model inputs include
ambient temperature (Ta), solar irradiance (

.
Qsol), vehicle velocity (vv), and ridership (npass).

Figure 7. E-bus cabin thermal model implemented in Dymola 2018 FD01.

Certain parameters of the cabin thermal model were difficult to determine or esti-
mate due to either lack of available data or complex parameter dependencies [4]. The
unknown cabin thermal model parameters were determined through optimization by
using modeFRONTIER 2018R2 software. The optimization setup is illustrated by the block
diagram shown in Figure 8. The overall model used in the optimization setup in Figure 8
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includes not only the Dymola thermal model but also the powertrain model implemented
in Python. This is to obtain simulation responses of the battery SoC and the overall energy
consumption Esim =

∫
Pbatt dt, which were compared with the recorded SoC and energy

consumption responses to generate the corresponding RMS errors fed to the optimization
genetic algorithm MOGA-II to minimize those errors. The two-objective optimization
resulted in a Pareto frontier of optimal solutions. The selected solution corresponds to
a low energy consumption RMS error, and it resulted in a favorable overall fit accuracy
(partly because of a better resolution of the recorded energy consumption signal than the
recorded SoC signal).

Figure 8. Block diagram of optimization setup used to determine unknown parameters of e-bus cabin
thermal model.

The simulation profiles of e-bus model variables, obtained through the cabin thermal
model parameter optimization and shown in Figure 9, were further used to optimize the
parameters of an HVAC regression model. The regression model is quadratic but linear in
parameters and its inputs correspond to the inputs of the cabin thermal model (Ta,

.
Qsol ,

vv and npass). The Matlab function stepwiselm available within the Statistics and Machine
Learning Toolbox was used to select the model features and optimize its parameters. The
selected model is given by the following:

PHVAC = β0 + β1Ta + β2
.

Qsol + β3npass + β4vveh + β14Tavveh + β22
.

Qsol
2
. (8)

Figure 9. The response of recorded e-bus model variables for the dataset used in model training and
corresponding simulation responses of SoC, energy consumption, and HVAC power.
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The comparative responses of actual and simulation responses of SoC, energy con-
sumption, and HVAC power, shown in Figure 9, indicate very good modeling accuracy on
the dataset used in model parameterization (training).

The above HVAC modeling approach was demonstrated for the particular case of
12 m e-bus and A/C operating mode. The approach may be extended to other e-bus config-
urations and operating conditions without reoptimizing the physical model parameters.
This is illustrated in Appendix A for examples of heat pump mode (i.e., winter conditions)
and an 18 m e-bus.

2.5. E-Bus Model Validation

For an unbiased assessment of modeling accuracy, the overall e-bus model was also
validated against a couple of other datasets (corresponding to different days of operation
of the same bus on the same route during the same summer month). The results of the first
validation, shown in Figure 10a, confirm the very good modeling accuracy, characterized
by the mean absolute error of SoC prediction (MAESoC) being equal to 0.90%.

Figure 10. E-bus model validation for first (a) and second validation dataset (b), as well as for second
validation dataset but with simulated A/C system switched off from 7 a.m. to 10 a.m. (c).

However, the model performance degraded for the second validation (Figure 10b)
in terms of the occurrence of SoC and energy consumption offsets during a relatively
long bus pause (dwell time) at the end station after the second driving mission (i.e., after
8 a.m.; see also the velocity profile in Figure 9). This is reflected in the increase in the
corresponding MAESoC indicator from 0.9% to 4.09%. It is hypothesized that, unlike in
the previous two datasets, the HVAC was shut down during the morning hours since the
ambient temperature was around the room temperature. Because the model presumes that
the HVAC was active during the whole operation period, its SoC and energy consumption
persistently change, thus accumulating the offset during the morning pause. In order
to check the above hypothesis, the HVAC is shut down in the model in the period from
7 a.m. to 10 a.m. The corresponding results shown in Figure 10c indicate that the modeling
accuracy is significantly improved when compared to the original response in Figure 10b,
which is reflected in the reduction of MAESoC indicator from 4.09% to 1.81%. A small offset
was, though, still present in the SoC and energy consumption results around 10 a.m., which
is expected to be predominantly caused by the fact that the exact HVAC shut-down period
is not known from the available data.

Once the e-bus model is successfully validated, it can be used as a basis for energy
consumption sensitivity analysis for a wide range of scenarios and operating conditions
(including those not covered by the particular recorded data sets). Such an analysis is
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presented in [4]. It is reduced here to the main and compact plots shown in Figure 11.
The specific energy consumption (Figure 11a) varies significantly partly due to the effect
of road slope (the consumption is lower for mostly downhill driving in Direction A–B),
and partly due to the varying ambient, ridership, and traffic conditions (the consumption
scatters for individual route directions). The traffic condition influence is substantiated
by the correlation between the specific energy consumption and the average vehicle ve-
locity (Figure 11b). The individual direction-specific consumptions vary in the range from
around 0.9 to 2.4 kWh/km, while for the two-way trips they fall in the range from 1.2
to 1.8 kWh/km. The good modeling accuracy is confirmed through good alignment of
simulation vs. recorded values with the ideal 1:1 line in Figure 11a. Quantitatively, the plot
in Figure 11a is represented by Pearson’s correlation coefficient of 0.95 and the coefficient
of determination is R2 = 0.85, which are quite close to the ideal value of 1.

Figure 11. Simulated vs. recorded values of specific energy consumption (a) and simulated specific
energy consumption vs. average vehicle velocity (b).

3. Data Collection for Data-Driven E-Bus Modeling
3.1. Data Collection Framework

In the absence of a wide set of recorded e-bus energy consumption data, the framework
depicted in Figure 12 was employed to generate the data needed for data-driven modeling.
Initially, the single-route high-sampling-rate (1 Hz) data were acquired for parametrization
and validation of the physical e-bus model (Section 2).

Figure 12. Illustration of data collection framework.

At the same time, low-sampling-rate data (at around 0.25 Hz) were collected from a
fleet of around 300 conventional buses operating on 29 routes in the same city over the
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period of one month. The recorded low sampling rate data were then transformed into
the corresponding set of representative high sampling rate driving cycles corresponding
to trips between two end stations. Those driving cycles were then fed to the developed
physical e-bus model to obtain the energy consumption data. The transformation was
based on the Markov chain synthesis method proposed in [13].

Finally, a wide set of trip-based statistical features (e.g., mean velocity, number of bus
station stops, average ridership, trip duration, initial SoC, etc.) were extracted from the
synthetic driving cycles. They were paired with the simulation data on energy consumption
to form a dataset employed for the development of a data-driven model in Sections 4 and 5.

3.2. Data Collection Framework

In total, 4057 synthetic driving cycles were generated [13]. Each cycle is unique with
respect to route (considering diverse road and traffic conditions, including varying road
grades) and trip (considering fluctuating traffic and ridership conditions). Additionally,
each driving cycle has a distinct initial battery SoC.

To rigorously assess the data-driven model extrapolation ability (i.e., its generalization
properties), four additional sets of driving cycles were derived from the basic set of synthetic
driving cycles (Set #1):

• Set #2: Faster and shorter trips: For each trip, the mean velocity of every bus station-to-
station segment is amplified by 50% and the traveled distances are randomly reduced;

• Set #3: Flat roads: the road slope is set to zero;
• Set #4: Steeper roads scenario: the road grade profile is scaled up by 50%;
• Set #5: Faster trips: The mean velocity of each station-to-station segment is amplified

by 50%.

Figure 13 shows histograms of the main driving cycle features for all the five indi-
vidual datasets and the corresponding aggregate dataset. The corresponding histogram
of powertrain energy consumption per trip is given, as well. When compared to the ba-
sic dataset (Set #1), the modified datasets extend the range of features, thus making the
aggregate dataset wider and flatter.

Figure 13. Distributions of main features of standard, modified, and aggregate driving cycle sets
and the corresponding distribution of powertrain energy consumption (PDF stands for probability
density function).

4. Feature Selection

Feature selection is an integral component of machine learning and data analytics. It is
aimed at enhancing the model’s accuracy and simplicity by identifying and retaining only
the most relevant features. The presented feature selection method corresponds to e-bus
powertrain (and auxiliary devices) modeling only because HVAC modeling represents an



Energies 2024, 17, 911 12 of 26

independent and straightforward trip-based modification of the approach presented in
Section 2 (see Section 5).

4.1. Data Collection Framework

Two metrics were employed to evaluate energy consumption modeling accuracy [28]:
(i) root mean square error (RMSE) and (ii) coefficient of determination ( R2). To reduce the
number of model inputs, the powertrain energy consumption is normalized with respect
to the traveled distance. The output predicted by such a normalized model (i.e., specific
energy consumption in kWh/km) is in the final modeling stage multiplied by the traveled
distance to calculate the absolute energy consumption in kWh. The model performance
metrics R2 and RMSE metrics are computed with respect to the final model output, i.e.,
the absolute energy consumption.

For the purpose of model evaluation, a five-fold cross-validation method was applied
to the basic dataset (Set #1, Section 3), as depicted in Figure 14. The basic dataset was
randomly partitioned into five sections, which are termed folds. In each iteration of the cross-
validation method, a single fold was designated for model validation, with the remaining
four serving for training. After five iterations corresponding to different folds (Figure 14),
this process yielded individual scores R2

tr,i and R2
val,i, i = 1, . . ., 5, related to training and

validation in each iteration, from which lumped/average scores R2
tr and R2

val were derived
(Figure 14).

Figure 14. Schematic representation of the model cross-validation strategy.

In the sixth iteration, the model is trained on the whole (unpartitioned) basic dataset.
The obtained model is then applied to the extrapolation datasets (Sets #2–#5 from Section 3),
thus resulting in the validation scores R2

s,j, j = 2, . . ., 5 (Figure 14). Finally, the combined

validation score R2
total is obtained from the residuals calculated by merging the predicted

outputs from the validation iterations (ŷval,i for i = 1, . . . 5) with the predicted values for
the extrapolation sets (ŷs,j for j = 2, . . . 5), and subtracting them from their true-value
counterparts. The described validation process (Figure 14) was applied to determine the
RMSE metrics, as well. In addition to the basic data set (see below), it was also applied to
the aggregate dataset (Sections 5 and 6).

4.2. Quadratic Regression Model

Feature selection was conducted by using the following linear-in-parameter quadratic
model:

ŷ = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X2
1 + β6X2

2 + β7X2
3 + β8X2

4 + β9X1X2 +
β10X1X3 + β11X1X4 + β12X2X3 + β13X2X4 + β14X3X4,

(9)
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where ŷ is the dependent variable (here, specific powertrain consumption), X1, X2, . . . , Xn
are the predictor variables (with n = 4 in the example of Equation (9)), β0 is the y-intercept
parameter, and β1, β2, . . . , βm, m = 2n + n(n−1)

2 , are the model parameters corresponding
to individual features and identified by the least square method [29].

The considered predictor variables include (see dark blue block in Figure 12): the total
number of route stations Nstations, the number of stations that the bus actually stopped
at, Nstops, the ratio of stopping to total stations ρstops = Nstops/Nstations, mean velocity µv,
average ridership npass and standard deviation of ridership σpass, trip duration ttrip, trip
distance dtrip, the initial state of charge SoCinit, mean road grade µrg, and the standard
deviation of road grades σrg. With this set of n = 11 predictor variables, the number of
quadratic model features equals m = 77.

4.3. Feature Selection Techniques
4.3.1. LASSO and RANDOM Forest Importance Methods

The LASSO (Least Absolute Shrinkage and Selection Operator) technique applies a
penalty to the absolute values of regression parameters βi, i = 1, . . . , m, as an extension
of the least square cost function, thus encouraging parameters corresponding to non-
influential features to diminish ([30]; Figure 15). This shrinkage mechanism is controlled
by the penalty coefficient lambda λ. As λ grows, more model parameters converge to zero.

Figure 15. Illustration of LASSO feature selection technique in particular case of n = 11 predictor
variables and m = 77 features of energy consumption quadratic regression model.

Random forest importance approach assigns importance scores to features based on
their frequency in splitting data, indicating their contribution to the prediction accuracy.
This relative feature importance is illustrated in Figure 16.

Figure 16. Feature importance distribution as determined by Random forest importance analysis.

The quadratic regression model was re-trained by sequentially adding individual
features based on their significance ranking provided by LASSO and Random forest
importance approaches. The results are shown in Figure 17 based on the R2

total valida-
tion metrics introduced in Section 4.1. They indicate that the LASSO approach achieves
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peak performance with a smaller number of features compared to the Random forest
importance method.

Figure 17. Comparative plots of aggregate R2 values for the LASSO and Random forest importance
feature selection methods.

4.3.2. Wrapper Methods

Wrapper methods select the best feature subsets by building and evaluating models [30].
Forward feature selection, Backward feature elimination, and Stepwise regression are char-
acteristic methods from this category. Each method identifies an optimal set of regression
model features based on the Bayesian Information Criterion (BIC):

BIC = k ln
(

σ2
)
+ (m + 1)ln(k), (10)

where m + 1 represents the number of model parameters (including the intercept), k
signifies the number of observations (sample size), and σ2 represents the average of the
squared differences between the observed values and the values predicted by the model,
quantifying the model prediction error. A lower BIC index suggests a better model fit.

Forward Feature Selection begins with no features and continues with successively
adding them based on model fit improvement until the BIC value increase surpasses a
threshold of 100. Backward Feature Elimination begins with all features and removes them
successively to improve the model while stopping when the BIC falls below the threshold
of 150. Stepwise regression combines both methods, adjusting features based on fit with the
adding threshold of 450 and the removal threshold of 400. The above thresholds have been
determined heuristically to provide a good trade-off of model performance and complexity
(i.e., number of terms).

4.3.3. Best Subset Method

The best subset method searches through all combinations of features to identify the
optimal model subset. Due to the high computational demand, the number of predictor
variables is reduced to the following n = 4 variables highlighted by feature selection results
in Figures 15 and 16: mean road grade, standard deviation of road grade, average number
of passengers, and mean velocity. This leads to the quadratic regression model given by
Equation (9) and having m = 14 features. Consequently, 16,383 distinct linear regression
models can be produced. The performance of each model, depicted in Figure 18 by a point,
is represented by the values of validation metrics R2

total and RMSEtotal .

4.4. Comparative Analysis of Model Gained by Various Feature Selection Methods

Different feature selection methods yield multiple candidate feature sets, which are
summarized in Table 2. Four candidate sets, including from 3 to 6 features, are identified
by the best subset method as a good trade-off of modeling accuracy and simplicity (see
Figure 18a). Although the LASSO and Random forest metrics peaks occur for the sets of
6 and 15 features, respectively, simpler sets that are still close to the performance peak
sets are preferred in Table 2 (see configurations marked in purple and black in Figure 17),
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which is influenced by the best subset approach emphasis on fewer features. The wrapper
methods are each represented by a single optimal configuration.

Figure 18. Validation results for the best subset method in terms of R² metrics vs. number of predictor
variables (a), and RMSE metrics vs. number of predictor variables (b).

Table 2. Comparative performance metrics of optimal models obtained by various feature selection
methods.

Number of
Features

Selected
Features

R2
tr

RMSEtr

R2
val

RMSEval

R2
s,2

RMSEs,2

R2
s,3

RMSEs,3

R2
s,4

RMSEs,4

R2
s,5

RMSEs,5

R2
total

RMSEtotal

LASSO

4 µrg, σ2
rg, µv × µrg, µv × npass

0.9777
0.8873

0.9776
0.8862

0.9650
0.8720

0.9829
0.5911

0.9575
1.5901

0.9592
1.2487

0.9738
1.0126

5 µrg, σ2
rg, µv × µrg, µv × npass,npass × µrg

0.9776
0.8883

0.9776
0.8881

0.9656
0.8649

0.9816
0.6124

0.9568
1.6032

0.9601
1.2350

0.9737
1.0153

Random forest importance

9
µrg, µ2

rg, σrg × µrg, Nstations × µrg,
µv × µrg, µv × dtrip, Nstops × µv,

npass × µrg, µv × σrg

0.9752
0.9346

0.9750
0.9381

0.9645
0.8783

0.9312
1.185

0.9374
1.9290

0.9576
1.2731

0.9621
1.1896

Forward selection

8 µrg, µv × npass, σ2
rg, µ2

rg, µv × µrg,
npass × µrg, σrg, ttrip × µrg

0.9787
0.8673

0.9785
0.8682

0.9636
0.8895

0.8790
1.5719

0.9625
1.4927

0.9556
1.3017

0.9638
1.1652

Backward elimination

10
µrg, µ2

v, µv × npass,
µv × σrg, µv × µrg,npass × µrg,

npass × SoCinit, σpass × σrg, σ2
rg, µ2

rg

0.9781
0.8787

0.9780
0.8788

0.9656
0.8640

0.9464
1.0462

0.9617
1.5088

0.9571
1.2799

0.9710
1.0761

Stepwise regression

6 µrg, µv × npass, σ2
rg, µ2

rg, µv × µrg,
npass × µrg

0.9783
0.8755

0.9782
0.8752

0.9647
0.8757

0.9840
0.5719

0.9660
1.4222

0.9569
1.2825

0.9760
0.9839

Best subset

3 µrg, σ2
rg, µv × npass

0.9778
0.8860

0.9777
0.8849

0.9662
0.8567

0.9828
0.5923

0.9574
1.5919

0.9591
1.2504

0.9739
1.0104

4 µrg, µ2
rg, σ2

rg, µv × npass
0.9784
0.8727

0.9784
0.8721

0.9639
0.8855

0.9825
0.5978

0.9666
1.4091

0.9546
1.3161

0.9755
0.9922

5 µrg, µ2
rg, µrg × σrg, σ2

rg, µv × npass
0.9786
0.8694

0.9785
0.8690

0.9642
0.8817

0.9821
0.6047

0.9681
1.3774

0.9547
1.3153

0.9759
0.9862

6 µrg, npass, µ2
rg, µrg × µv, σ2

rg, µ2
v

0.9781
0.8782

0.9781
0.8782

0.9666
0.8521

0.9823
0.6010

0.9662
1.4178

0.9582
1.2630

0.9763
0.9817

Note: All RMSE values are given in kWh.
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Out of the total of 10 configurations listed in Table 2, the four-feature one given by
the best subset method (given in bold in Table 2 and marked in Figure 18) was selected
for further analysis in Section 5. This is because its score R2

total = 0.9755 nearly matches
the top score R2

total = 0.9763 of the best-subset model with six features. Moreover, minimal
variance in R2 (and RMSE) among different data sets (see metrics Rs,2,. . ., Rs,4 in Table 2)
points to a consistent performance of the selected best subset model, along with its good
interpretability (e.g., there is only a single interaction term—the one between mean velocity
and average ridership).

5. Final Model and Its Performance Assessment

In Section 4, powertrain model features were selected (see the bolded row of Table 2),
and the model was trained and validated on the basic dataset and then tested on four
separate (extrapolation) datasets. Herein, a combined/aggregate dataset, including all
the five data subsets (see Figure 13), was used for both training and validation, i.e., the
training/validation folds in Figure 14 were extracted from the aggregated dataset. This
approach aims to improve the modeling accuracy and allows for a direct performance
comparison between the linear regression model and more complex machine learning
algorithms, which often perform well at interpolation but face challenges with extrapolation.
The training and validation metrics ( R2

tr, R2
val , RMSEtr, RMSEval) were obtained on the

aggregate dataset by using a five-fold cross-validation, as illustrated in Figure 14.

5.1. Powertrain Trip-Based Model

The selected quadratic regression model, given by

Ept

dtrip
= β0 + β1µrg + β2µ2

rg + β3σ2
rg + β4µvnpass, (11)

and trained on the aggregate dataset yields the performance metrics listed in the first row
of Table 3. These metrics are nearly identical to the corresponding ones listed in Table 2,
thus highlighting the model’s robustness and generalizability.

Table 3. Comparative performance metrics of different machine learning algorithms using previously
selected features.

Number of
Features

Features/Predictor
Variables

R2
tr

RMSEtr

R2
val

RMSEval

R2
s,2

RMSEs,2

R2
s,3

RMSEs,3

R2
s,4

RMSEs,4

R2
s,5

RMSEs,5

R2
s

RMSEs

Quadratic Regression

4 µrg, µ2
rg, σ2

rg, µv × npass
0.9756
0.9922

0.9756
0.9922

0.9639
0.8855

0.9825
0.5978

0.9666
1.4091

0.9546
1.3161

0.9669
1.0521

LASSO Regression

4 µrg, µ2
rg, σ2

rg, µv × npass
0.9756
0.9922

0.9756
0.9922

0.9639
0.8855

0.9825
0.5978

0.9666
1.4091

0.9546
1.3161

0.9669
1.0521

RIDGE Regression

4 µrg, µ2
rg, σ2

rg, µv × npass
0.9756
0.9922

0.9756
0.9922

0.9639
0.8855

0.9825
0.5978

0.9666
1.4091

0.9546
1.3161

0.9669
1.0521

Decision Trees

4 µrg, σrg, µv, npass
1.0000
0.0079

0.9558
1.3208

0.9253
1.2769

0.9488
1.0245

0.8676
2.8035

0.9124
1.8356

0.9135
1.7351

Random Forest

4 µrg, σrg, µv, npass
0.9969
0.3518

0.9771
0.9500

0.9569
0.9700

0.9815
0.6165

0.9076
2.3422

0.9520
1.3593

0.9495
1.3220
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Table 3. Cont.

Number of
Features

Features/Predictor
Variables

R2
tr

RMSEtr

R2
val

RMSEval

R2
s,2

RMSEs,2

R2
s,3

RMSEs,3

R2
s,4

RMSEs,4

R2
s,5

RMSEs,5

R2
s

RMSEs

Gradient Boosting

4 µrg, σrg, µv, npass
0.9789
0.9124

0.9776
0.9399

0.9546
0.9936

0.5272
3.1140

0.8388
3.0933

0.9462
1.4393

0.8167
2.1600

K-nearest Neighbors

4 µrg, σrg, µv, npass
0.9801
0.8868

0.9760
0.9848

0.9174
1.3427

−1.3900
7.0018

0.5985
4.8820

0.9009
1.9527

0.2567
3.7948

Support Vector Regression

4 µrg, σrg, µv, npass
0.9774
0.9448

0.9772
0.9477

0.9437
1.1089

0.7150
2.4177

0.5231
5.3207

0.9405
1.5121

0.7806
2.5898

MLP Neural Networks

4 µrg, σrg, µv, npass
0.9774
0.9450

0.9772
0.9473

0.9648
0.8760

0.8337
1.8465

0.9505
1.7138

0.9564
1.2945

0.9263
1.4327

1D Convolution Neural Networks

4 µrg, σrg, µv, npass
0.9767
0.9581

0.9767
0.9582

0.9643
0.8823

0.3889
3.5405

0.9672
1.3961

0.9557
1.3053

0.8190
1.7810

Note: All RMSE values are given in kWh.

5.1.1. Assessment of Alternative Machine Learning Algorithms

To potentially improve the modeling accuracy, alternative machine learning algo-
rithms were evaluated on the aggregate dataset and compared with the quadratic re-
gression model (11). Most of those algorithms were set to use the individual predictor
variables rather than quadratic and interaction terms/features present in the model (11)
(see the second column of Table 3). This is because more sophisticated machine learning
algorithms should automatically detect/realize inherent interactions between individual
predictor variables.

The evaluated machine learning algorithms and their main design parameters are
summarized as follows:

1. LASSO Regression: The parameter λ is set in the range from 0.0001 to 0 with incre-
ments of 0.00001;

2. Ridge Regression: The parameter λ is varied in the same range as for LASSO Regression;
3. Decision Trees: The maximum depth parameter ranges from 10 to 100, with increments

of 1;
4. Random Forest: The number of estimators is in the range from 4 to 200, with incre-

ments of 1;
5. Gradient Boosting: The number of estimators is set in the same way as with the

Random forest method;
6. K-nearest Neighbors: The algorithm is set with neighbors ranging from 1 to 200;
7. Support Vector Regression: various kernels, including Radial Basis Function, and

first-, second-, and third-order polynomials are examined;
8. Multilayer Perceptron (MLP) Neural Networks: The number of layers and nodes

varies from 1 to 4 and from 16 to 512, respectively;
9. 1D Convolution Neural Networks: the same architecture parameters are considered

as with MLP neural network, all with the stride of 1.

Table 3 displays the best-performing configurations. Evidently, the advanced regres-
sion techniques do not considerably surpass the quadratic regression model when the
validation performance is concerned, which is evidenced by the R2

val index differing only
at the third decimal place for the aggregated set. So, even when the advanced models
are trained on the aggregate dataset, as in Table 3, they may considerably underperform
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the quadratic regression model for real-life scenarios not fully captured by the aggregated
dataset. Moreover, the advanced techniques typically perform poorly when tested on
extrapolation datasets.

To substantiate the above observation, the models were also trained on set #1 and
subsequently tested on the extrapolation sets #2–#5 (see Figure 14 and Section 4). The
corresponding results are included in Table 3 through individual extrapolation set metrics
R2

s,j and RMSEs,j, j = 2, . . ., 5, and their average values R2
s and RMSEs. It is evident from

these results that the quadratic regression model surpasses the more complex models in
extrapolation ability performance, with the exceptions of LASSO and RIDGE regression
models that reduce to the quadratic model. Hence, due to its simplicity, interpretability,
and strong performance, the quadratic regression model is recommended in applications.

5.1.2. Assessment of Station-to-Station Segment-Based Modeling Approach

A station-to-station (S2S) segment-based modeling approach was examined as an
alternative to the above trip-based approach. The objective was to identify the potential
benefits of utilizing more granular data in the modeling process. Specifically, the trip was
divided into bus S2S segments, and the predictor variables and energy consumption were
calculated for those segments and stored in the datasets.

The best subset method results, presented in Table 4, indicate that the selected features
for models with three, four, and five inputs are largely consistent with those identified in
the trip-based approach. However, the performance indicators point to certain performance
degradation for the S2S approach. This suggests that breaking down trips into S2S segments
does not tend to capture additional variations influencing energy consumption. Hence, the
trip-based approach, with its less complex data requirements and favorable accuracy, is
recommended for operational planning applications.

Table 4. Comparative performance metrics of station-to-station (S2S) segment-based and trip-based
energy consumption models.

Number of
Features Approach Features/Predictor

Variables
RMSEtr
[kWh]

RMSEval
[kWh] R2

tr R2
val

3 Trip-based µrg, σ2
rg, µv × npass 1.0026 1.0026 0.9743 0.9743

3 S2S based µrg, µ2
rg, σ2

rg × npass 1.0045 1.0046 0.9670 0.9669

4 Trip-based µrg, µ2
rg, σ2

rg, µv × npass 0.9922 0.9922 0.9756 0.9756

4 S2S based µrg, µ2
rg, σ2

rg, µv × npass 1.0270 1.0275 0.9734 0.9733

5 Trip-based µrg, µ2
rg, µrg × σrg, σ2

rg,
µv × npass

0.9862 0.9862 0.
9760 0.9760

5 S2S based µrg, µ2
rg, µrg × npass, σ2

rg,
µv × npass

0.9935 0.9941 0.9755 0.9754

5.1.3. Incorporation of Additional Features

It is demonstrated in Table 3 that the quadratic regression model is characterized by
a high R2 score on different sets of seen and unseen data (at least 0.97, meaning that 97%
of the variability in the dependent variable can be explained by the predictor variables on
aggregated set). In a further attempt to analyze the possible root causes of the remaining
modeling error and potentially enhance the model performance, additional features were
derived from the synthetic driving cycles used in the model development phase. In
addition to the four selected predictor variables (see Table 3), the mean positive (µa+ )
and negative (µa− ) accelerations, as well as their standard deviations (σa+ , σa− ) and the
standard deviation of velocity (σv) were employed as influential variables related to vehicle
dynamics. By using this extended set of predictor variables, an MLP NN model with four
hidden layers was implemented.
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The corresponding modeling results shown in Table 5 indicate that the validation index
R2

val increases from 0.9772 to 0.9890 when using the NN model with the extended set of
predictor variables. This reveals that (i) the limited performance of the models from Table 5
is more because of the limited set of features than the limited model structure; and (ii) the
model with trip-based features can closely match the original, high-sampling-rate physical
model, provided that the trip-based feature set is rich enough. However, despite the
commendable performance, the practical application of the model based on the additional,
acceleration-based features is constrained by limited data availability. Namely, the typical
bus tracking data are sampled too slowly to consistently capture the fast transients of
vehicle acceleration signals.

Table 5. Comparative performance metrics of quadratic regression models and MLP neural network
models with standard and enriched feature set.

Number of
Features

Features/Predictor
Variables RMSEtr [kWh] RMSEval [kWh] R2

tr R2
val

Quadratic Regression

4 µrg, µ2
rg, σ2

rg, µv × npass 0.9922 0.9922 0.9756 0.9756

MLP Neural Networks

4 µrg, σrg, µv, npass 0.9450 0.9473 0.9774 0.9772

9 µrg, σrg, µv, npass, σv, µa+ ,
µa− , σa+ , σa−

0.6994 0.6996 0.9892 0.9890

When excluding the acceleration-related features, and leaving only the velocity stan-
dard deviation as the additional predictor variable, one obtains the best subset method
results shown in Table 6. These results indicate that the additional predictor variable
notably impacts the model only when combined with the basic four predictor variables,
underscoring that the original four predictor variables are more influential than the added
one. The negligible change in the R² metrics reveals that the inclusion of velocity deviation
brings marginal improvements in the modeling accuracy.

Table 6. Comparative performance metrics of selected regression model and the one extended with
velocity standard deviation predictor variable.

Number of
Features

Features/Predictor
Variables RMSEtr [kWh] RMSEval [kWh] R2

tr R2
val

Quadratic Regression

4 µrg, µ2
rg, σ2

rg, µv × npass 0.9922 0.9922 0.9756 0.9756

5 µrg, µ2
rg, σ2

rg, µ2
v,

σv × npass
0.9846 0.9846 0.9761 0.9761

Hence, the quadratic regression model (3) remains to be recommended for application
due to low data demands, simplicity, and favorable accuracy.

5.2. HVAC Trip-Based System Model

The HVAC power consumption regression model developed and indirectly experimen-
tally validated within the physical e-bus model in Section 2 has a quadratic form gained by
a feature selection method for four inputs: ambient temperature Ta, solar irradiation

.
Qsol ,

ridership npass, and vehicle velocity vveh (see Equation (8)).
For integration into the trip-based data-driven model, the features of the HVAC model

should be averaged on a per-trip basis. This modification is justified by two assumptions:
(i) the ambient conditions, such as solar irradiation and temperature, remain approximately
constant during a relatively short bus trip, and (ii) the velocity and ridership variables,
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which may significantly change during the trip, are of secondary influence on the HVAC
consumption when compared to the influence of ambient condition variables. To further
suppress the influence of velocity and ridership variations on mean value model accuracy,
it is suitable to avoid the nonlinear terms of Equation (8), and thus in the model. It is
shown that this intervention does not considerably deteriorate the accuracy of the physical
model, and notably improves the accuracy of the mean value model, which is formulated
as follows:

PHVAC = β0 + β1Ta + β2
.

Qsol + β3npass + β4µv, (12)

where the mean predictor variables are calculated over the trip, i.e., the driving cycle. The
HVAC energy consumption per trip is then determined as follows:

EHVAC = ttripPHVAC, (13)

where ttrip is the trip duration.
The mean value HVAC model (12) and (13) was tested against the original model (8)

by using the five-fold cross-validation method illustrated in Figure 14. The corresponding
R2

val value was 0.999 and an RMSEval was only 0.128 kWh. This confirms that the mean
value HVAC system model can be used with a negligible loss of accuracy.

5.3. Overall E-Bus Model

The overall e-bus regression model integrates the powertrain and HVAC system
submodels given by Equation (11) and Equations (12) and (13), respectively. It is represented
by the expression given in the first row of Table 7 and compared with existing models
from the literature, listed in the remaining rows of Table 7. This comparison reveals that,
although it includes similar features overall, the proposed model is generally richer than the
existing individual models in terms of the number of features and nonlinearities accounted
for (in terms of interactions). By relying solely on readily available and objective features,
the model avoids subjective variables such as driving aggressiveness or road conditions,
which could introduce bias and necessitate city-specific adjustments, potentially leading
to overfitting. Being validated across diverse scenarios, including varying route profiles
and traffic patterns, the model distinguishes itself by demonstrating robustness and broad
applicability in diverse operational environments.

Table 7. Comparative analysis of the overall model with regression models used in literature.

Regression Model

This study
E = β0dtrip + β1µrgdtrip + β2µ2

rgdtrip + β3σ2
rgdtrip + β4µvnpassdtrip +

β5ttrip + β6Tattrip + β7
.

Qsol ttrip + β8npassttrip + β9µvttrip

Abdelaty et al. [18] E = β0 + β1GR + β2Dagg + β3RC + β4PHVAC + β5npass + β6SD +
β7µv + β8SoCinit + β9dtrip

Vepsäläinen et al. [22] E = β0 + β1|20 − Ta|+ β2Pdc + β3SD + β4Dagg

Pamula et al. [17] E = β0dn + β1∆t + β2∆h + β3w

Pamula et al. [19] E = β0dn + β1∆t + β2∆h + β3w + β4tph

Vehviläinen et al. [21] E =

{
β0T3

a + β1T2
a + β2Ta, i f Ta ≥ 0◦C

β3Ta, i f Ta < 0◦C

Bie et al. [31] E = β0SoCinit + β1ttrip + β2Ta

Xing et al. [23] E = β0 + β1ln
(

1−SoCinit
100

)
+ β2ttrip + β3µ2

v + β4µv + β5t2
a + β6ta

GR —road grade; Dagg —driving aggressiveness; RC —road condition; PHVAC —power of the HVAC system;
SD —stops density per km; To —optimal operating temperature; Pdc —DC converter power; dn —distance between
stops; ∆t —travel time between stops; ∆h —elevation difference between stops; w —weather code; tph —hour
code; ta —operation time of the AC system of each trip.
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6. Analysis of Model Residuals

A practical analysis of model residuals was carried out separately for powertrain
and HVAC models, as well as for the full vehicle model. The analysis results relate to the
validation dataset aggregated from individual subsets #1–#5 (Figure 14).

6.1. Powertrain Model

An essential step in evaluating regression models involves examining the spread of
residuals against the predicted values, which should be distributed around a horizontal
zero-value line without forming any distinct patterns [32]. The residual plot of the pow-
ertrain quadratic regression model from Table 3 is shown in Figure 19a. It indicates a
slight slope of −0.015 kWh/kWh around the zero-value line, thus confirming the model
consistency. Figure 19b shows that the model predictions scatter closely around the ideal
identity line.

Figure 19. Powertrain model residuals plotted vs. predicted values (a) and model predicted vs. true
value plot (b).

The normality of residuals is another model assessment criterion. Figure 20a demon-
strates that, despite the p-value being lower than the normality threshold of 0.05, the
residuals exhibit an unbiased, symmetric distribution resembling the normal distribution.
The distribution of relative residuals, shown in Figure 20b, indicates that a great majority
of relative residuals (90% of them, see Table 8) fall below the margin of 8%. The Q–Q plot
in Figure 20c provides further illustration of the residual distribution normality by plotting
the residuals in a manner that should form a straight line if they are normally distributed.
Figure 20d shows a heat plot of the residual versus true value. It reveals that the higher
relative residuals are associated with lower predicted values, which is apparently due to
the nature of relative residual calculation that tends to be more sensitive to smaller values.
Table 8 provides a summarized residual statistics.

Figure 20. Characteristic powertrain model residual plots.
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Table 8. Characterization of the absolute (Abs.) and relative (Rel.) residual distributions of the
powertrain model.

Mean Std. 1% 5% 10% 15% 25% 50% 75% 85% 90% 95% 99%

Abs. [kWh] −0.06 0.85 −2.31 −1.43 −1.02 −0.78 −0.47 −0.06 0.31 0.62 0.87 1.35 2.56

Rel. [%] −0.50 6.93 −18.70 −11.51 −8.52 −6.75 −4.43 −0.45 3.46 5.87 7.65 10.72 17.83

6.2. HVAC Model

Figure 21 shows the main residual plots of the HVAC model given by Equations (12)
and (13), while the corresponding statistics are given in Table 9. Ninety percent of residuals
fall below the absolute and relative margins of 0.16 kWh or 3.74%, respectively, which
confirms the good modeling accuracy.

Figure 21. The HVAC model’s predicted vs. true value plot (a) and corresponding relative residual
distribution plot (b).

Table 9. Characterization of absolute (Abs.) and relative (Rel.) residual distributions for HVAC
model.

Mean Std. 1% 5% 10% 15% 25% 50% 75% 85% 90% 95% 99%

Abs. [kWh] 0.02 0.11 −0.25 −0.16 −0.09 −0.05 −0.02 0.01 0.06 0.11 0.16 0.25 0.37

Rel. [%] 0.85 2.05 −2.86 −2.05 −1.64 −1.29 −0.51 0.52 2.09 3.19 3.74 4.48 6.28

6.3. Overall Model

Figure 22 shows the residual analysis results for the overall e-bus model (both pow-
ertrain and HVAC models). The relative residual distribution was narrower than for the
powertrain model (cf. Figures 20b and 22b) due to the accuracy contribution of the HVAC
submodel. Consequently, the score R2

val of the full model (when validated on the aggregate
dataset) increased from the powertrain model validation value of 0.9756 (Table 3) to 0.9812.

Figure 22. The overall e-bus model’s predicted vs. true value plot (a) and corresponding relative
residuals distribution plot (b).
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Table 10 shows a comparison of the execution time for routines that predict energy
consumption across 20,285 trips using the regression model and its physical counterpart.
The total execution time when using the physical model is 2920 s, which gives the average
value of 0.14 s per trip. In contrast, the regression model requires a total execution time of
only 1.5 milliseconds, averaging about 74 nanoseconds per trip, which is approximately
2,000,000 times faster than the physical model. Accordingly, the regression model can
conveniently be used in large-scale electrification planning simulation and optimization
studies to facilitate assessment and decision-making processes for numerous scenarios.

Table 10. Computational time comparison for physical and regression models (for 20.285 trips).

Type of Model Total Elapsed Time, Texec * Average Execution Time per Trip

Physical model 2920 s 0.14 s

Regression model 1.5 ms 74 ns
* The computations were performed on a Dell G5 15 Laptop (Dell, Round Rock, TX, USA), equipped with an
Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz, 16.0 GB RAM (Intel, Santa Clara, CA, USA), running on a 64-bit
Windows 11 Home operating system, utilizing Python version 3.10 and TensorFlow-gpu version 2.10.0, with an
Intel(R) UHD Graphics GPU.

7. Conclusions

A method for predicting the battery energy consumption of electric city buses (e-buses)
using a trip-based data-driven regression model was proposed in the paper. The method
was designed to strike a balance between model accuracy, computational efficiency, and
generalization capabilities. The key findings of the presented study are as follows:

• A backward-looking physical model of a 12 m electric city bus was developed, with an
emphasis on the heating, ventilation, and air conditioning (HVAC) system submodel.
For the sake of e-bus model implementation simplicity and numerical efficiency, a
quadratic regression HVAC model was set up and its parameters were optimized based
on the responses of a physical HVAC model developed in Dymola 2018 FD01. The
developed e-bus model was successfully validated with respect to several recorded
datasets not used in the stage of model parameterization;

• The emphasis was then placed on the data-driven model, derived from simulations
of the physical model under a wide set of traffic, road, and ambient conditions. The
model relies on typically available trip-related data, as opposed to the physical model,
which requires high-sampling-rate driving cycle data. It consists of independent
powertrain and HVAC submodels to resemble the structure of the physical model.
For the powertrain, a feature selection method was used to find an optimal quadratic
regression model for the specific energy consumption (in kWh/km), where the selected
features include the mean road grade and its square, the road grade standard deviation
square, and the product of mean velocity and ridership. The model performance
(characterized by the validation R2 value of 0.975) is comparable to more complex
methods such as neural networks and gradient boosting but with the added advantage
of greater simplicity and generalization (i.e., robustness);

• An exploration into a better quantized, station-to-station segment modeling approach
did not enhance the modeling accuracy when compared to the trip-based approach.
On the other hand, the modeling accuracy was found to notably grow when extending
the feature set with vehicle acceleration and deceleration features, thus underscoring
the significance of including a broader set of relevant features as opposed to making
the quantization of the basic feature set denser. However, the vehicle acceleration
features are usually unavailable in real city bus transport systems. Thus, the basic,
narrow feature set-based quadratic regression model is generally recommended for
applications due to low data demands, simplicity, and favorable accuracy;

• The original HVAC system model with four inputs (ambient temperature, solar ir-
radiance, vehicle velocity, and ridership) was reformulated to have (i) a mean value
form to be applicable to trip-based inputs of the data-driven model and (ii) a linear
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structure to suppress the influence of velocity and ridership variation on mean value
modeling accuracy;

• When validating the overall model on an aggregated dataset, it registered a notable
R2 score of 0.981. It executes approximately 1,900,000 times faster than the physical
model, thereby offering both accurate energy consumption predictions and computa-
tional efficiency for large-scale simulation and optimization studies of city bus fleet
electrification planning;

• Although the proposed modeling approach was demonstrated on a 12 m fully electric
city bus and A/C operating mode, it can be readily applied to other sizes (e.g., 18 m)
and types of city buses (e.g., HEV, PHEV, and H2 buses), as well as for other operating
conditions (e.g., heat pump mode).
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Appendix A. Modification of HVAC Model for Heat Pump Mode and 18 m E-Bus

Once the physical parameters of the e-bus cabin thermal model are determined through
optimization for the summer conditions (A/C mode; see Figure 6), the HVAC energy
consumption physical model can readily be extended to winter operating conditions,
where the heat pump mode with COP = 1.5 is assumed. The heating capacity limit is set to
19 kW, and it is assumed that the cabin is pre-heated (e.g., during night charging) for the
period of 2 h prior to the start of the trip. The cabin air reference temperature TcabR is set to
22 ◦C, although according to the VDV recommendation it should be reduced if the ambient
temperature falls below −10 ◦C (cf. the form of TcabR(Ta) map in Figure 6 in the case of A/C
mode). The modified thermal model can then be directly run and used for HVAC regression
model parameterization. Nevertheless, if the recorded e-bus energy consumption data
were available, the model can be fine-tuned either manually or by optimization (e.g., COP
can take values of up to 2 or even 3).

The obtained regression model is given by

PHVAC = max
(

0, β0 + β1Ta + β2
.

Qsol + β3npass + β4vveh + β14Tavveh

)
. (A1)

where the max operator ensures that the calculated HVAC power does not fall below zero.
The model has been validated for unseen synthetic driving cycles, reflecting extreme cold,
moderate cold, and warmer winter conditions. The validation results confirm the regression
model accuracy in representing the HVAC system power consumption across different
ambient conditions. On colder days, the HVAC power varies between 4 and 10 kW, while
in warmer days, it remains below 5 kW.
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Figure A1. Validation of 12 m e-bus heating-mode HVAC system regression model in various winter
conditions.

Furthermore, the heating-mode (or similarly cooling-mode) HVAC energy consump-
tion physical model can be modified for the 18 m e-bus. The heating capacity limit is
increased to 22 kW, while the cabin air reference temperature TcabR and the COP are kept at
22 ◦C and 1.5, respectively. The cabin volume, area, and thermal capacity parameters are
increased in accordance to the bus size increase from 12 m to 18 m. The obtained physical
model has been used to reparametrize the regression model (A1). Figure A2 shows the
comparative HVAC power responses for the 12 m and 18 m buses and the three operating
conditions from Figure A1. Expectedly, these responses have the same shape, with the
higher power magnitudes occurring for the larger bus size.

Figure A2. HVAC regression model responses for 12 m and 18 m e-bus in heating mode.
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