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An algebraic approach to on-line signal denoising and

derivatives estimation

Josip Kasac∗, Dubravko Majetic, Danko Brezak

University of Zagreb,
Faculty of Mechanical Engineering and Naval Architecture,

I. Lucica 5, HR-10000 Zagreb, Croatia

Abstract

In this paper, a new algebraic approach to the on-line signal derivatives estimation is pro-
posed. The proposed approach is based on the conversion of the truncated Taylor series
expansion to the set of linearly independent equations regarding the signal derivatives. The
nonhomogeneous parts of the obtained set of equations are convolution integrals, which can
be transformed to the stable linear state-space filter realization. The proposed algebraic
estimator provides stable convergence without the need for periodic re-initialization, as in
the case of the conventional algebraic estimators. In contrast to the Taylor series-based
tracking differentiators, the proposed estimator also provides an estimation of the arbitrary
number of the higher-order signal derivatives. In addition, the tuning of the estimator pa-
rameters does not depends on the filter dimension. The efficiency of the proposed estimator
is illustrated by the simulation examples and experimental results related to the monitoring
of the surgical drilling process.

Keywords: Algebraic estimation; Differentiators; Signal denoising; Linear systems;
Continuous-time filters

1. Introduction

The filtering and derivatives estimation of a measured signal is necessary for many ap-
plications, such as biomechanics [1], failure diagnostics [2], signal processing [3] or control
engineering [4, 5], among others. Various methods have been proposed for derivatives esti-
mation of noisy signals. Numerical differentiation using difference methods is a well-known
direct approach to compute the signal derivatives [6]. However, numerical differentiation is
an ill-posed problem, which means that small errors in the measurement values may lead to
large errors in the derivatives estimate [7].
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Consequently, numerical differentiation is implemented using finite difference schemes
in combination with low-pass filters, which provide attenuation of the measurement noise.
This approach introduces an inevitable signal time delay which is particularly harmful when
the estimated derivatives are used in closed-loop feedback control systems.

Other methods, such as Kalman filtering, have been proposed as an alternative to the
low-pass derivative estimation filter [8]. Given that the Kalman filtering is a model-based
approach that requires a priori knowledge of the noise variance, it cannot be successfully
applied to the cases where arbitrary signal with unknown internal model is measured and
where the statistical properties of the noise may vary.

The high-gain differentiator proposed in [9, 10] provides tracking of the signal derivative
in the limit case when the gains tend to infinity. Unfortunately, their sensitivity to high-
frequency noise also grows by increasing the values of the gains. A second-order sliding-mode
differentiator has been proposed in [11, 12]. In this kind of differentiator, the upper bound
for Lipschitz constants of the signal derivatives are needed. Although there is no chattering
phenomenon in signal tracking, in the second dynamical equation a switching function exists,
so that the output of derivative estimation is continuous but not smooth. Therefore, the
chattering phenomenon still exists in derivative estimation.

In [13, 14], the tracking differentiators based on inverse Taylor series expansion [15] are
introduced. The proposed methods provide limited accuracy because the estimator filters
cannot be designed for the order of Taylor series expansion larger than n = 4. For n ≤ 4,
the estimation accuracy can be enhanced by increasing the filter gain but, simultaneously,
the sensitivity to the small high-frequency noise grows rapidly.

An algebraic approach to derivative estimation that is based on truncated Taylor series
expansion is proposed in [16, 17]. This approach provides the ability to compute fast and
non-asymptotic derivative estimations of signal corrupted by noise, which is attenuated by
low-pass filters without any precise knowledge of its statistical properties. However, one of
the main disadvantages of this method is that the estimation process has to be periodically
re-initialized to sustain accuracy because the estimator filter state-space realization is in
unstable time-varying Brunovsky’s form.

Despite the many derivative estimator design techniques and their application in the liter-
ature, there are only a few comparative performance studies of different derivative estimators
[18, 19, 20]. A performance comparison of several differentiators is made in [20], which in-
cludes tracking differentiator and three variant of higher-order sliding-mode differentiators.
It is shown that all differentiators perform well in the case of the derivative estimation of
low frequency signal. However, in the case of a high-frequency signal, and whether it has
noise or not, most of the differentiators perform poorly, except for the tracking differentiator
[13].

In this paper, a new approach to on-line algebraic derivatives estimation is proposed.
The proposed approach is based on the truncated Taylor series expansion, similarly to
tracking [13, 14] and algebraic [16, 17] differentiators. However, in contrast to the tracking
differentiators, the proposed estimator filter can be designed for arbitrary order of the of
the Taylor series expansion, providing the arbitrary level of the estimation accuracy. In
addition, in contrast to the algebraic differentiators, the proposed estimator filter state-
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space realization is in the stable Jordan canonical form, so that periodic re-initialization is
not necessary.

The rest of this paper is organized as follows. The formulation of the derivative estimation
problem is presented in Section 2. The solution for a particular choice of the impulse response
functions is presented in Section 3. The continuous-time filter realization is considered in
Section 4. The simulation results are presented in Section 5. The experimental results are
presented in Section 6. Finally, the concluding remarks are summarized in Section 7.

2. Problem formulation

2.1. A general framework for estimator design

Let u(t) be a continuous-time signal with bounded derivatives u(1)(t), u(2)(t), ..., u(n−1)(t),
which we want to estimate. The truncated Taylor series expansion of u(t− τ) around t,

u(t− τ) =
n−1∑
j=0

(−1)j

j!
u(j)(t)τ j +

(−1)n

n!
u(n)(ξ)τn, ξ ∈ [t− τ, t], (1)

provides a connection between signal derivatives in time instant t and signal value in a
previous time t−τ , where τ > 0. To determine the signal derivatives u(i)(t), i = 0, 1, ..., n−1,
on the right-hand side of (1), it is necessary to generate n linearly independent equations,
which is similar to the algebraic approach to parameter identification [21].

By multiplying the expression (1) with the linearly independent, bounded, square inte-
grable functions gi(τ), i = 1, ..., n, and integrating along τ from zero to t, the following set
of equations is obtained∫ t

0

gi(τ)u(t− τ)dτ =
n−1∑
j=0

(−1)j

j!
u(j)(t)

∫ t

0

τ jgi(τ)dτ + ri(t) ≡ yi(t), (2)

where the integral of the Lagrange remainder is

ri(t) =
(−1)n

n!

∫ t

0

u(n)(ξ)τngi(τ)dτ, ξ ∈ [t− τ, t]. (3)

By using the commutativity property of the convolution integral in Eq. (2), we get

yi(t) =

∫ t

0

gi(t− τ)u(τ)dτ, (4)

for i = 1, 2, ..., n, so that gi(t) can be interpreted as the impulse response function of the
continuous linear time-invariant filter.

By defining the elements of the moments matrix

Mij(t) =
(−1)j−1

(j − 1)!

∫ t

0

τ j−1gi(τ)dτ, i, j = 1, 2, ..., n, (5)
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the expression (2) can be rewritten as

yi(t) =
n∑
j=1

Mij(t)u
(j−1)(t) + ri(t). (6)

Because the truncation errors ri(t) are unknown and the bounded functions with upper
bounds which can be arbitrarily small for the appropriate choice of the impulse functions,
the following expression

yi(t) =
n∑
j=1

Mij(t)û
(j−1)(t), (7)

will be used for the estimation of the signal derivatives û(i), i = 0, 1, ..., n− 1.
Expressions (6) and (7) can be rewritten in the matrix representation

y(t) = M(t)u(t) + r(t), y(t) = M(t)û(t), (8)

where y(t) = [y1(t) y2(t) · · · yn(t)]T , u(t) = [u(t) u(1)(t) · · · u(n−1)(t)]T , û(t) =
[û(0)(t) û(1)(t) · · · û(n−1)(t)]T and r(t) = [r1(t) r2(t) · · · rn(t)]T . The elements of the
moments matrix M(t) are defined by (5).

The estimation of signal derivatives can be obtained from Eq. (8)

û(t) = M−1(t)y(t). (9)

Expression (9) can be evaluated for some t ≥ ε > 0, because the matrix M(t) is singular
in t = 0 (Mij(0) = 0 for i, j = 1, 2, ..., n). This singularity in the origin is typical for the
algebraic estimators, [22, 21], and can be avoided by using the following approximation

û(t) =

{
M−1(ε)y(t), t < ε,
M−1(t)y(t), t ≥ ε,

(10)

In another approach, instead of using the time-varying matrix M(t), we use the constant
matrix M̄ = limt→∞M(t).

The estimation error, which is defined by ũ(t) = û(t)− u(t), can be obtained from Eq.
(8),

ũ(t) = M−1(t)r(t). (11)

The performances of the estimator (9) depend on the choice of the impulse response
functions gi(t), i = 1, 2, ..., n. A good choice of the impulse response functions should satisfy
the following criteria: a) the estimation error ũ(t) should decrease as dimension n of the es-
timator increases; b) the transfer functions Gi(s) = L{gi(t)} must have low-pass amplitude-
frequency characteristics that provide attenuation of the high-frequency measurement noise;
and c) matrix M(t) should be well-conditioned as the dimension n of the estimator increase.
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2.2. Diagonalization of the moments matrix

The computationally most simple estimator (9) is found in the case when the matrix
M(t) is diagonal. The impulse response functions which provide diagonalization of the
matrix M(t) are time derivatives of the Dirac delta function

gi(t) = δ(i−1)(t), i = 1, 2, ..., n. (12)

By using the following property of delta function [23],

τnδ(n)(τ) = (−1)nn!δ(τ),

the elements of the moments matrix becomes

Mij(t) =
(−1)j−1

(j − 1)!

∫ t

0

τ j−1δ(i−1)(τ)dτ = δij, (13)

where δij is the Kronecker delta, so that

yi(t) =
∞∑
j=1

Mij(t)u
(j−1)(t) =

∞∑
j=1

δiju
(j−1)(t) = u(i−1)(t). (14)

However, the transfer function Gi(s) = L{gi(t)} = L{δ(i−1)(t)} = si−1 has a high-pass
amplitude-frequency characteristic, which amplifies the high-frequency additive noise.

Although the solution (12) is not implementable, it will be a good starting point for the
choice of the impulse response functions based on the appropriate approximation of the Dirac
delta function. The main idea is to chose the continuous square integrable impulse response
functions gi(a, n; t) which depend on a free parameter a and on the order of truncation error
n, such that lima→∞ gi(a, n; t) → δ(t). In this way, the accuracy of the estimator can be
enhanced by increasing the values of the parameters a and n.

3. The estimator impulse response functions

3.1. A choice of the impulse response functions

We choose the following impulse response function

g1(t) =
an

(n− 1)!
tn−1e−at, (15)

and its time derivatives

gi(t) =
d

dt
gi−1(t) =

di−1

dti−1
g1(t) = g

(i−1)
1 (t), i = 2, 3, ..., n, (16)

where a is some positive parameter and n is positive integer. Now, we will show that function
(15), in limit when a→∞, satisfies basic properties of the Dirac delta function [24],∫ ∞

−∞
δ(t)dt =

∫ ∞
0−

δ(t)dt = 1, δ(t) =

{
∞, t = 0,
0, t 6= 0.

(17)
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The integral of the impulse function (15) is∫ ∞
0

g1(t)dt =
an

(n− 1)!

∫ ∞
0

tn−1e−atdt = 1, (18)

for any n = 1, 2, ... and a > 0. The maximum of the function g1(t) is in the time instant
t0 = (n− 1)/a, so that

lim
a→∞

max
t∈R+

g1(t) = lim
a→∞

g1(t0) = lim
a→∞

(
a

(n− 1)n−1

(n− 1)!
e−(n−1)

)
=∞, (19)

and lima→∞ t0 = lima→∞
n−1
a

= 0+. Furthermore, if we introduce t = t0 + t̃, where t̃ > 0,
and look for lima→∞ g1(t0 + t̃) for any t̃ > 0, then we get

g1(t0 + t̃) =
an

(n− 1)!

(
t0 + t̃

)n−1
e−a(t0+t̃) =

(n− 1)n−1e−(n−1)

(n− 1)!
a

(
1 +

a

n− 1
t̃

)n−1
e−at̃, (20)

so that
lim
a→∞

g1
(
t0 + t̃

)
= 0, ∀ t̃ > 0. (21)

So, the function δ+(t) = lima→∞ g1(t) is very similar to Dirac delta function with differ-
ence in the property: δ+(0+) =∞ and δ+(0) = 0, which is in contrast with the property of
the Dirac delta function: δ(0) =∞ and δ(0−) = 0. This property provide that the function
δ+(t) is contained inside of the limits of integration [0, t]. This is in contrast to the Dirac
delta function, which is contained inside the interval (0−, t], [25].

3.2. Properties of the moments matrix

Proposition 1. The elements of the moments matrix (5) where the impulse functions gi(t),
i = 1, ..., n, are defined by (15) and (16) can be analytically computed as follows

Mij(t) = M̄ij + e−atHij(t), (22)

with

M̄ij = (−1)i+j−2ai−j
i−1∑
l=0

γijl, (23)

Hij(t) = (−1)i+j−2ai−j
i−1∑
l=0

γijl

n+j−l−2∑
k=0

ak

k!
τ k, (24)

where

γijl = (−1)l
(
i− 1

l

)(
n+ j − l − 2

j − 1

)
. (25)
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Proof. By shifting indexes i→ i+1 and j → j+1 in expression (5), where gi(t) = g
(i−1)
1 (t),

we get

Mi+1,j+1(t) =
(−1)j

j!

∫ t

0

τ jg
(i)
1 (τ)dτ. (26)

The derivatives of the impulse function g1(t) = Atn−1e−at, where A = an/(n− 1)!, are

g
(i)
1 (t) = A

di

dti
(
tn−1e−at

)
= A

i∑
k=0

(
i

k

)(
di−k

dti−k
e−at

)(
dk

dtk
tn−1

)
, (27)

where Leibnitz’s product rule for higher derivatives is used. The multiple derivatives on the
right-hand side of the expression (27) are

di−k

dti−k
e−at = (−1)i−kai−ke−at, k = 0, 1, ..., i, (28)

and
dk

dtk
tn−1 =

(n− 1)!

(n− k − 1)!
tn−k−1, k = 0, 1, ..., n− 1. (29)

By inserting expressions (28) and (29) in Eq. (27), we get

g
(i)
1 (t) = ane−at

i∑
k=0

(
i

k

)
(−1)i−kai−k

(n− k − 1)!
tn−k−1. (30)

By inserting Eq. (30) in Eq. (26), and using analytic solution of the following integral∫ t

0

τne−aτdτ =
n!

an+1

(
1− e−at

n∑
k=0

ak

k!
tk

)
, (31)

we get after some algebraic manipulations

Mi+1,j+1(t) = (−1)i+jai−j
i∑

k=0

λijk

(
1− e−at

n+j−k−1∑
p=0

ap

p!
tp

)
, (32)

where

λijk = (−1)k
(
i

k

)(
n+ j − k − 1

j

)
. (33)

After rearranging the expression (32) and shifting indexes back i→ i− 1 and j → j − 1 we
get the final analytic solution (22)-(25). �

From the analytic solution of the moments matrix (22) it follows that

lim
t→∞

Mij(t) = M̄ij, (34)

since the term e−atHij(t) converges to zero as t→∞. The convergence to the zero is faster
as the parameter a is larger. In other words, after a short transient response, the constant
matrix M̄ will be good approximation of the time-varying matrix M(t). This provides much
easier computation of the matrix inverse.
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Proposition 2. Matrix M̄ with elements M̄ij is the upper triangular Toeplitz matrix with
the property: M̄ij = m̄j−i for j ≥ i, and M̄ij = 0 for j < i, where

m̄k =
m̂k

ak
, m̂k = (−1)k

(
n+ k − 1

k

)
, k = 1, 2, ..., n− 1. (35)

For k = 0 we have m̄k = 1, so that matrix M̄ has the following structure

M̄ =



1 m̂1

a
m̂2

a2
m̂3

a3
· · · m̂n−1

an−1

0 1 m̂1

a
m̂2

a2
· · · m̂n−2

an−2

0 0 1 m̂1

a
· · · m̂n−3

an−3

0 0 0 1 · · · m̂n−4

an−4

...
...

...
...

. . .
...

0 0 0 0 · · · 1


. (36)

Proof. By definition (34) and (22), the elements of matrix M̄ are

M̄i,j = Aj

∫ ∞
0

τ j−1g
(i−1)
1 (τ)dτ, Aj =

(−1)j−1

(j − 1)!
, (37)

where i, j = 1, ..., n. By replacing the index j = i+ k, the previous expression becomes

M̄i,i+k = Ai+k

∫ ∞
0

τ i+k−1g
(i−1)
1 (τ)dτ, (38)

where i = 1, ..., n and k = −i+ 1,−i+ 2, ...,−i+ n. After taking i− 1 partial integrations,
where the property of the impulse functions gi(0) = gi(∞) = 0 is used, we get

M̄i,i+k = (−1)i−1Ai+k

∫ ∞
0

(
di−1

dτ i−1
τ i+k−1

)
g1(τ)dτ, (39)

where

di−1

dτ i−1
τ i−1+k =

{
(i− 1 + k)!

k!
τ k, k = 0, 1, ..., n− i,

0, k = −1,−2, ...,−(i− 1),
(40)

so that

M̄i,i+k =
(−1)k

k!

∫ ∞
0

τ kg1(τ)dτ, k = 0, 1, ..., n− i, (41)

and M̄i,i+k = 0 for k = −1,−2, ...,−(i − 1). By inserting Eq. (15) in Eq. (41) and using
(31) in limit when t→∞, we finally obtain

M̄i,i+k =
(−1)k

k!

an

(n− 1)!

∫ ∞
0

τn+k−1e−aτdτ =
(−1)k

ak

(
n+ k − 1

k

)
, (42)

for k = 0, 1, ..., n − i and M̄i,i+k = 0 for k = −1,−2, ...,−(i − 1). We can see that the
right-hand side of the above expression does not depends on the index i, which means that
M̄i,i+k = m̄k and the matrix M̄ is upper triangular Toeplitz matrix. �
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Proposition 3. The inverse of the upper triangular Toeplitz matrix M̄, denoted as W =
M̄−1, is also the upper triangular Toeplitz matrix with the elements which satisfy Wij = wj−i
for j ≥ i, and Wij = 0 for j < i, where

wk =
1

ak
ŵk, k = 0, 1, 2, ..., n− 1, (43)

with

ŵk = −
k∑
j=1

ŵk−jm̂j, ŵ0 = 1, k = 1, 2, ..., n− 1. (44)

Proof. The inverse of upper triangular Toeplitz matrix M̄ with the elements M̄ij = m̄j−i
is also the upper triangular Toeplitz matrix W = M̄−1 with the elements which satisfy
Wij = wj−i for j ≥ i, and Wij = 0 for j < i, where

wk = −
k∑
j=1

wk−jm̄j, w0 = 1, k = 1, 2, ..., n− 1. (45)

(see [26]). Now, we will prove by induction that

wk =
1

ak
ŵk, ŵk = −

k∑
j=1

ŵk−jm̂j, ŵ0 = 1, k = 1, 2, ..., n− 1, (46)

where m̂j = ajm̄j, from Eq. (35).
First, we will prove the base case when k = 1. From Eq. (45), it follows for k = 1,

w1 = −
1∑
j=1

w1−jm̄j = −m̄1 = −m̂1

a
=

1

a

(
−

1∑
j=1

ŵ1−jm̂j

)
=
ŵ1

a
, (47)

and (46) is true for k = 1.
In inductive step, we suppose that Eq. (46) is true for some k and we should prove that

(46) holds for k + 1. From Eq. (45), (35) and induction hypothesis (46) it follows

wk+1 = −
k+1∑
j=1

wk+1−jm̄j = −
k+1∑
j=1

ŵk+1−j

ak+1−j ·
m̄j

aj
=

1

ak+1

(
−

k+1∑
j=1

ŵk+1−jm̂j

)
=
ŵk+1

ak+1
. (48)

Thus, Eq. (46) holds for k + 1, and the proof of the induction step is complete. �

In other words, matrix W has the same structure as matrix M̄, in the case when the
coefficients m̂k are replaced by ŵk, k = 1, 2, ..., n− 1.
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Proposition 4. Let ũ(∞) = Wr(∞) be the asymptotic value of the estimation error de-
fined by Eq. (11), where ũ(∞) = limt→∞ ũ(t) and r(∞) = limt→∞ r(t). The integral of
truncation error r(t) is defined by Eq. (3) and the elements of the matrix W = M̄−1 are
obtained from (43) and (44). Assume that the n-th derivative of the signal is bounded by

max
t≥0

∣∣u(n)(t)∣∣ ≤ Kn. (49)

Then, the upper bounds on the estimation errors in asymptotic state of the signal derivatives
are defined by the following expression

|ũi(∞)| = lim
t→∞

∣∣u(i−1)(t)− û(i−1)(t)∣∣ ≤ Kn

an−i+1
|Ci| , i = 1, 2, ..., n, (50)

where

Ci =
n∑
j=i

(−1)n+1−j
(

2n− j
n+ 1− j

)
ŵj−i. (51)

Proof. The asymptotic error ũ(∞) = Wr(∞) can be estimated as

|ũi(∞)| =

∣∣∣∣∣
n∑
j=1

Wijrj(∞)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
j=i

wj−irj(∞)

∣∣∣∣∣
≤ max

ξ∈[0,∞)

∣∣u(n)(ξ)∣∣ ∣∣∣∣∣
n∑
j=i

wj−i
(−1)n

n!

∫ ∞
0

τngj(τ)dτ

∣∣∣∣∣ , (52)

where we used Eq. (3) in the case t→∞ and the Toeplitz matrix property Wij = wj−i for
j ≥ i and Wij = 0 for j < i. Further, by using expressions (5), (35), (43), (49) and property
of the the Toeplitz matrix M̄ij = m̄j−i, the above error estimation can be continued

|ũi(∞)| ≤ max
ξ∈[0,∞)

∣∣u(n)(ξ)∣∣ ∣∣∣∣∣
n∑
j=i

wj−iM̄j,n+1

∣∣∣∣∣ = Kn

∣∣∣∣∣
n∑
j=i

wj−im̄n+1−j

∣∣∣∣∣
= Kn

∣∣∣∣∣
n∑
j=i

ŵj−i
aj−i

m̂n+1−j

an+1−j

∣∣∣∣∣ =
Kn

an+1−i

∣∣∣∣∣
n∑
j=i

ŵj−im̂n+1−j

∣∣∣∣∣ . (53)

Finally, by inserting the expression for m̂n+1−j from Eq. (35) in the last term of Eq. (53),
the following error estimate is obtained

|ũi(∞)| ≤ Kn

an+1−i

∣∣∣∣∣
n∑
j=i

(−1)n+1−j
(

2n− j
n+ 1− j

)
ŵj−i

∣∣∣∣∣ , (54)

which is equivalent with the expressions (50) and (51). �

Fig. 1 shows the estimation error bounds, as defined by the right-hand side of Eq. (50),
depending on the parameter a and the dimension of estimator n. From expression (50) and
Fig. 1 we can conclude that the estimation error is smaller as the parameter a and the filter
dimension n is larger. In addition, the estimation accuracy decreases as the signal derivative
order increases.
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Figure 1: The upper bounds of the estimation errors for the signal û(0) and derivatives û(1) and û(2), defined
by Eq. (50), depending on the parameter a and the dimension of estimator n.

4. The continuous-time filter realization

4.1. Decomposition of the filter transfer function

By taking the Laplace transform of the impulse response functions (15) and (16), Gn
i (s) =

L{gi(t)} for i = 1, 2, ..., n, the filter transfer functions are obtained

Gn
1 (s) =

an

(s+ a)n
, · · · Gn

i (s) =
ansi−1

(s+ a)n
, · · · Gn

n(s) =
ansn−1

(s+ a)n
. (55)

Note that all transfer functions Gn
i (s) in (55) have low-pass amplitude-frequency character-

istics with a slope of −(n− i+ 1)20 dB/dec, and the cut-off frequency ωc = a.
The following properties of the transfer functions directly follow from the previous ex-

pressions
Gk

1(s)Gl
1(s) = Gk+l

1 (s), Gk
1(s) = [G1

1(s)]
k. (56)

By using these properties we can evaluate the transfer functions (55) as follows

Gn
2 (s) = a

an−1

(s+ a)n−1
s

(s+ a)
= a

an−1

(s+ a)n−1

(
1− a

s+ a

)
= aGn−1

1 (s)
(
1−G1

1(s)
)
, (57)

that is
Gn

2 (s) = aGn−1
1 (s)− aGn

1 (s). (58)

Similarly,

Gn
3 (s) = a2Gn−2

1 (s)(1−G1
1(s))

2 = a2(Gn−2
1 (s)− 2Gn−1

1 (s) +Gn
1 (s)), (59)
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and by continuing this procedure, finally we obtain

Gn
i (s) = ai−1Gn−i+1

1 (s)(1−G1
1(s))

i−1 = ai−1
i−1∑
k=0

(−1)k
(
i− 1

k

)
Gn+k−i+1

1 (s), (60)

where the binomial expansion is used in the last expression. By introducing the shorthand
notation

µik = (−1)kai−1
(
i− 1

k

)
, (61)

the expression (60) becomes

Gn
i (s) =

i−1∑
k=0

µikG
n+k−i+1
1 (s) =

i−1∑
k=0

µik[G
1
1(s)]

n+k−i+1. (62)

In this way, the transfer functions (55) are represented by the serial-parallel connections of
the basic transfer function G1

1(s) = a/(s+ a).
The transfer function G1

1(s) is the first order low-pass filter with the cut-off frequency
ωc = a, and the amplitude-frequency characteristic with the slope of -20 dB/dec. In the case
of a noisy signal, there will be a trade-off between the tuning rule defined by the estimation
error bounds (50) and the tuning rule for the low-pass filter. By increasing parameter a, with
the aim to improve the estimation accuracy, the cut-off frequency ωc = a will also increases
and this leads to a more noisy signal estimate. Meanwhile, by decreasing parameter a, with
the aim to improve the noise attenuation properties, the estimation accuracy will also be
decreased. A practical compromise to resolve the mentioned trade-off is the choice of the
cut-off frequency ωc = a with a value that is somewhat larger than the leading frequencies
of the estimated signal.

4.2. The state-space realization

The input-outputs relation (4) can be expressed in complex domain as

yi(s) = Gn
i (s)u(s) =

i−1∑
k=0

µikG
n+k−i+1
1 (s)u(s). (63)

Now, we choose the following state variables

x1(s) = G1
1(s)u(s), (64)

x2(s) = G2
1(s)u(s) = G1

1(s)G
1
1(s)u(s) = G1

1(s)x1(s), (65)

and finally
xi(s) = Gi

1(s)u(s) = G1
1(s)xi−1(s), (66)

12



for i = 2, 3, ..., n. These expressions can be represented in time domain by the following
system of linear differential equations

ẋ1 = −ax1 + au(t),

ẋ2 = −ax2 + ax1,
...

ẋi = −axi + axi−1,
...

ẋn = −axn + axn−1,

(67)

and output variables follows from (63)

yi(t) =
i−1∑
k=0

µikxn+k−i+1(t). (68)

The system (67)-(68) can be rewritten in the matrix state-space representation ẋ = Ax+bu,
y = Cx, where x(t) = [x1(t) x2(t) · · · xn(t)]T ,

A =


−a 0 0 · · · 0
a −a 0 · · · 0
0 a −a · · · 0
...

...
...

. . .
...

0 0 0 · · · −a

 , b =


a
0
0
...
0

 , (69)

or A = aJTn (−1), b = ae1, where e1 = [1 0 · · · 0]T , Jn(−1) is n× n Jordan block, and

C =


0 · · · 0 0 µ10

0 · · · 0 µ20 µ21

0 · · · µ30 µ31 µ32
...

. . .
...

...
...

µn,0 · · · µn,n−3 µn,n−2 µn,n−1

 . (70)

The final state-space realization of the estimator is

ẋ(t) = Ax(t) + bu(t), x(0) = 0, (71)

û(t) = M̄−1Cx(t), (72)

where M̄ is defined by Eq. (34), and the elements of W = M̄−1 are calculated by Eq. (43)
and (44).
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4.3. Multiple filtering

The filter (63) has a low-pass amplitude-frequency characteristic with a slope of -20
dB/dec. The filtered signal û(0)(t), which is estimated with the best accuracy, can be used as
the input of the another filter with the same structure as (71)-(72). The amplitude-frequency
characteristic of such a serially connected filters has a slope of -40 dB/dec, providing better
noise attenuation properties.

Generally, in the case of the more serially connected filters, the output of the j-th filter
is denoted as ûj(t) = [û

(0)
j (t) û

(1)
j (t) · · · û(n−1)j (t)]T , where û

(k)
j (t) is the k-th derivative

estimate after j-th filtering. The input of the (j + 1)-th filter in the series is û
(0)
j (t) =

eT1 ûj(t) = eT1 WCxj(t), where xj(t) is the state vector of the j-th filter.
Finally, the serially connected filters can be represented by the following linear system

ẋ1 = −Ax1 + ae1u(t),
ẋ2 = −Ax2 + ae1e

T
1 WCx1,

...
ẋk = −Axk + ae1e

T
1 WCxk−1,

(73)

and output variables
ûj(t) = WCxj(t), j = 1, 2, ..., k, (74)

where the transfer function between input signal u(t) and estimate ûj(t) has the low-pass
amplitude-frequency characteristic with the slope of −20 · j dB/dec.

5. Simulation examples

The performance of the proposed estimator will be illustrated in an example, considered
in [13, 20], related to the denoising and derivatives estimation of the signal u(t) = sin(ωt) +
anξ(t), where ξ(t) is some Gauss noise of standard normal distribution N (0, 1), an is the
noise amplitude and ω is the frequency of the periodic signal. In the case without noise,
the upper bounds on the estimation errors (50) are |ũ(i)(∞)| ≤ (ω/a)nai|Ci+1| for i =
0, 1, 2, ..., n − 1. The necessary conditions that should be satisfied if we want that the
estimation error decreases when the filter dimension n increases, is a > ω. In the case with
noise, the value of the parameter a should not be much higher than ω, because the parameter
a is the cut-off frequency of the low-pass filter (63).

Fig. 2 shows signal u(t) = sin(2t) and the first five derivatives estimations in the case
without noise for the proposed algebraic estimator and Fig. 3 shows the estimation errors.
The dashed lines in Fig. 3 are estimation error bounds obtained by Eq. (50), where Kn = 2n.
The parameters of the algebraic estimator are a = 10 and n = 12. It can be seen that, after
some transient time, all of the estimation errors are below the bounds defined by Eq. (50).
A consequence of placing poles far in the left-half plane to provide high estimation accuracy
is an impulsive-like transient behavior known as the peaking phenomenon [27, 28]. This
transient behavior can be avoided with a similar approach as in the case of the algebraic
parameter estimation [22, 21], by the evaluation of the estimates starting at a later time
t ≥ t0 > 0.
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Figure 2: The estimated signal and the first five estimated derivatives for the algebraic estimator in the case
without noise. The dashed lines are analytic solutions.

Given that the algebraic estimator provides the best accuracy and the best noise atten-
uation properties in the case of the estimation of the signal û(0)(t), the denoising aspect
appears as a specially interesting feature of the proposed estimator. Fig. 4 illustrates the
denoising properties of the algebraic estimator in the case of the low signal-to-noise ratio,
for the 1st, 2nd and 3rd filtering. The input signal is u(t) = sin(2t) + 0.5ξ(t), where ξ(t) is
some Gauss noise of standard normal distribution N (0, 1). The parameters of the algebraic
estimator are a = 5 and n = 6. It can be seen that every additional signal filtering provides
a smoother signal estimation.

5.1. Comparison with the tracking differentiator (TD)

The performances of the proposed algebraic differentiator (AD) will be compared with
the tracking differentiator (TD) proposed in [13], which is also based on the Taylor se-
ries expansion and which have demonstrated good performance in comparison with other
differentiators [20].

The third-order TD is represented by

...
r +

3

ε
r̈ +

6

ε2
ṙ +

6

ε3
r =

6

ε3
u(t),

û(1)(t) =
3

ε
u(t)− 3

ε
r(t)− 2ṙ(t)− ε

2
r̈(t),

û(2)(t) =
6

ε2
u(t)− 6

ε2
r(t)− 6

ε
ṙ(t)− 2r̈(t),

(75)
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Figure 3: The estimation errors of the signal and the first five derivatives for the algebraic estimator in the
case without noise. The dashed lines are bounds of the estimation errors defined by Eq. (50).
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Figure 5: The estimated derivatives and estimation errors for the tracking differentiator (TD) [13] in the
case without noise. The dashed lines are the same error bounds as in Fig. 3.
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while signal u(t) is estimated by û(0)(t) = r(t+ ε), where ε is a small positive parameter.
Fig. 5 shows the signal u(t) = sin(2t) and the first two derivatives estimations in the

case without noise for the TD. Note that TD cannot estimate higher-order derivatives. The
gain parameter of the TD is chosen as ε = 0.005 to provide the similar level of accuracy for
the estimation of the first derivative û(1)(t), as the algebraic estimator. The dashed lines
are the same error bounds as in Fig. 3 for the algebraic estimator. It can be seen that for
a similar level of accuracy of the first derivative estimation û(1)(t), the algebraic estimator
provides better accuracy of the second derivative estimate û(2)(t) and much better accuracy
of the signal û(0)(t).

Fig. 6 shows estimations of the first two derivatives of the noisy signal for the algebraic
estimator with the 1st and 2nd filtering, and the TD. The input signal is u(t) = sin(2t) +
0.01ξ(t), where ξ(t) is some Gauss noise of standard normal distribution N (0, 1). The
parameters of the algebraic estimator are a = 5 and n = 8, and the parameter of the TD is
ε = 0.1, as in [13]. It can be seen that algebraic estimator provide better noise attenuation
for the second derivative estimate.

Note that the accuracy of the TD in the case without noise depends on high gains 3/ε,
6/ε2, 6/ε3 in Eq. (75). In addition, the estimated derivatives û(1)(t) and û(2)(t) depend
directly on the input signals via terms 3

ε
u(t) and 6

ε2
u(t), respectively. In the case with noise,

the gain parameter ε = 0.005, which is used for the case without noise in Fig. 5, will
significantly amplify the input noise. This is the reason why the gain parameter is changed
to ε = 0.1 in the case with noise. The parameters of the algebraic estimator are also changed
in the case with noise to provide better noise attenuation. However, while the parameters
of the algebraic estimator are changed by a rate of approximately two times, the parameter
of the TD is changed by a rate of 20 times. In other words, in comparison to the TD, the
parameter tuning of the algebraic estimator is less sensitive to the stochastic characteristics
of the input signal.

5.2. Comparison with the overlapping algebraic derivatives estimator (OADE)

In this subsection, the performance of the proposed AD will be compared with the on-
line signal filtering algorithm presented in [17, 29]. The proposed filter, which is based on
algebraic parameter and state estimation techniques [22], is composed of two subsystems:
(i) an estimation scheme for the time derivatives of the measured signal u(t), which is based
on an overlapping implementation of the algebraic approach for time derivative estimation;
and (ii) an overlapping implementation of the algebraic filtering estimation in which the
input to the algebraic filter estimator is the output of the overlapping derivative estimator.

The estimates of the first three derivatives, û(j)(t) for j = 1, 2, 3, of a smooth signal
affected by an additive noise are given by

û(j)(t) =


û
(j)
2 (t), (0 ≤ t mod Tr < Tr/2) AND (t ≥ ε),

û
(j)
1 (t), (Tr/2 ≤ t mod Tr < Tr) AND (t ≥ ε),

(76)
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Figure 7: The estimated derivatives and estimation errors for the OADE [17] with the 1st and 3rd order
filtering, in the case without noise.

where

û
(1)
i (t) =


1

t7i

[
42t6iu(t) + zi1(t)

]
, for ti ≥ ε,

û
(1)
i (t−i ), for 0 ≤ ti < ε,

û
(2)
i (t) =


1

t8i

[
840t6iu(t) + 35zi1(t) + tizi2(t)

]
, for ti ≥ ε,

û
(2)
i (t−i ), for 0 ≤ ti < ε,

û
(3)
i (t) =


1

t9i

[
10080t6iu(t) + 560zi1(t) + 28tizi2(t) + t2i zi3(t)

]
, for ti ≥ ε,

û
(3)
i (t−i ), for 0 ≤ ti < ε,

(77)

and the corresponding filter equations are

żi1 = −882t5iu(t) + zi2, żi4 = 52920t2iu(t) + zi5,

żi2 = 7350t4iu(t) + zi3, żi5 = −35280tiu(t) + zi6,

żi3 = −29400t3iu(t) + zi4, żi6 = 5040u(t),

(78)
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Figure 8: The estimated signals and derivatives for the proposed AD, TD [13] and OADE [17] with the 1st
order signal filtering in the case with noise.

for i = 1, 2, where Tr is the reset time, and two time lines, t1 and t2, are defined as follows

t1 = t mod Tr, t2 = (t− Tr/2) mod Tr. (79)

Two estimators run simultaneously but in an overlapping fashion to obtain valid results
at all times except in the initial short time interval 0 ≤ t < ε. During this time interval, the
zero values of derivative estimates are used. During the time interval 0 ≤ ti < ε, the last
computed values before resetting, denoted as û

(j)
i (t−i ) for j = 1, 2, 3 and i = 1, 2, are used

instead of an arbitrary constant [29].
The re-initialization of each estimator is separated by a time interval of duration Tr/2.

The first estimator (i = 1) is re-initialized when t1 = 0 and the second estimator (i = 2) is
re-initialized when t2 = 0. The proposed technique resets one of the estimators while the
original remains active, and vice versa. This allows the avoidance of burst noises owing to
discontinuities induced in the states of the estimator when these states are re-initialized.
This policy is called the switched overlapping estimators technique.

In a similar way to the time derivative estimator, the algebraic signal filtering algorithm
is obtained as follows

û
(0)
i (t) =


1

t3i
wi3, for ti ≥ ε,

û
(0)
i (t−i ), for 0 ≤ ti < ε,

ẇi1 = t3i û
(3)(t) + 6u(t),

ẇi2 = −18tiu(t) + wi1,

ẇi3 = 9t2iu(t) + wi2,

(80)
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where the final signal estimation û(0)(t) is obtained by Eq. (76) for j = 0 and i = 1, 2.
During the time interval [0, ε), in which the results of the algebraic signal filtering is not
yet valid, the original noisy signal u(t) is used instead of an arbitrary constant. The use of
the overlapping signal filtering makes it possible to re-initialize without singularities and it
substantially improves the accuracy of the estimation of the original signal.

This is the 3rd-order algebraic signal filtering algorithm since the filter input is the third
derivative estimate û(3)(t). Even better accuracy of the signal estimation can be obtained
by the 1st-order algebraic signal filtering algorithm

û
(0)
i (t) =


1

ti
xi, for ti ≥ ε,

û
(0)
i (t−i ), for 0 ≤ ti < ε,

ẋi = tiû
(1)(t) + u(t), (81)

because the first derivative is estimated with the better accuracy than the third derivative.
Fig. 7 shows the signal and the first two derivatives estimations in the case of the input

signal u(t) = sin(2t) without noise, for the OADE. The reset time is chosen as Tr = 2.4
and ε = 0.4 after several trial and error simulations to provide the best possible accuracy of
the signal and derivatives estimations. As can be seen, the OADE has the lower derivatives
estimation accuracy than the AD and TD but the estimated signal for the 1st order filtering
has somewhat better accuracy than in the case of the TD. The estimation accuracy of the
OADE can not be significantly improved by tuning the parameter Tr. Meanwhile, the OADE
has no large transients as in the case of the AD and TD.

Fig. 8 shows estimations of the first two derivatives of the noisy signal for the proposed
AD, the TD and OADE. In this case, the input signal u(t) = sin(20t)+0.01ξ(t) has 10 times
higher angular frequency then in the previous examples. The parameters of the algebraic
estimator are a = 35 and n = 10, the parameter of the TD is ε = 0.01, and the reset time of
the OADE is Tr = 0.3 and ε = 0.08. It can be seen that algebraic estimator provides better
noise attenuation for the second derivative estimate. It can also be seen that the OADE has
lower noise attenuation performance in the derivatives estimation than the AD and TD but
the estimated signal is not delayed as in the case of the TD.

6. Experimental results

The experimental part of this study analyzed the application of the proposed estimator
in the monitoring of the surgical drilling process. The modern medical drilling systems that
are used in bone and joint surgery are characterized by a relatively low level of automation
(i.e., with no process monitoring and/or adaptive control characteristics), which prevents
mechanical and thermal bone damage. However, the quality of the drilling process depends
solely on the operator’s skills and the tool’s characteristics (especially the tool’s quality and
condition of the cutting edges).

A review of the currently available scientific papers and patents reveals the appearance of
the first solutions for advanced medical drills with integrated sensors, in the form of concept
design or concrete patented types [30]. These systems combine force/torque sensors, and
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Figure 9: The experimental setup.

vibration and acceleration sensors to identify drilling depth (i.e., drilling time and feed), and
also the transition from one material into another.

An important feature of the next-generation of surgical drills is the development of an
automated feed movement system, which would allow the application of high-speed machin-
ing and reduce human influence in the drill’s guidance. The operator would only define the
drilling location and the desired tool direction/angle, all of the other activities would be
performed autonomously by the machine monitoring and control system.

One of the crucial and necessary features for a semi-automated surgical drilling system is
its ability to identify the beginning of the cutting process and, more important, the precise
moment when the drill cutting edges exit the bone. This feature is vitally important in the
reduction of the soft tissue damages located in the drill exit zone.

6.1. The experimental setup and measurement results

To obtain drilling process signals, an experiment was performed using surgical drill 4.5
mm in diameter, with a cutting speed 30 m/min, and the feed rate 0.03 mm/rev and fresh
bovine tibia with average diaphysis cortical thickness (drilling depth) of 8.5 mm. Drilling
was performed using the 3-axis bench-top mini milling machine (Fig. 9), which was ad-
justed for the purpose of bone drilling research [31]. This machine has been retrofitted with
the 0.4 kW (1.27 Nm) permanent magnet synchronous motors with integrated incremen-
tal encoders (type Mecapion SB04A), corresponding motor controllers (DPCANIE-030A400
and DPCANIE-060A400), ball screw assemblies, and a LinuxCNC open architecture control
(OAC) system.
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Figure 10: The measured signal for the force F (t) and electric current I(t). The dashed lines are filtered
signals obtained by using the off-line FFT filter.

Two types of signals were measured during the drilling process: the main spindle current
I(t) was sampled from the motor spindle controller and the axial cutting force F (t) was
measured using Kistler piezoelectric dynamometer 9257B and 5017B charge amplifier. All
of the signals were measured with a 1 ms sampling rate. The main challenge was the reliable
detection of the drill exit in real time, based on highly noised measurement signal of the
electric current (if possible, force signals should be replaced with the current signals to
reduce the price of the system and to simplify machine handling in surgical conditions).

Fig. 10 shows the measured signal for the force F (t) and electric current I(t). The
dashed lines are filtered signals obtained by using the off-line FFT filter with the cut-off
frequency ωc = 3Hz. The measurements of force and current signals started while the drill
bit was moving towards the bone specimen at a distance of approximately 2-3 mm away
from the hole entrance position. When the chisel point of the drill touched the cortical
bone surface, the value of the force/current signals started to increase. The values reached
a maximum at the moment when both cutting edges fully entered into the bone. The values
of these two signals then remained high up to the moment when chisel point broke through
the cortical bone, after which they started to decrease gradually until both cutting edges
had fully exited the bone.

We define the following switching function

R(u(0)(t), u(1)(t)) =

1;
(
um ≤ u(0)(t) ≤ uM

)
AND

(
u(1)(t) < 0

)
,

0; elsewhere,
(82)

where u(0)(t) is the estimation of the measured signal, u(1)(t) is the estimation of the signal
first derivative, uM is the defined constant below the maximal value of the signal, and um is
the defined constant above the nominal value of the signal.
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Figure 11: The filtered signals and switching functions for the force and electric current.

Fig. 11 shows the function R(F
(0)
FFT(t), F

(1)
FFT(t)) and R(I

(0)
FFT(t), I

(1)
FFT(t)). The function

value R(u(0)(t), u(1)(t)) = 1 means that the force and current decrease in the defined interval
between maximal and minimal values, which indicate the exit of the drill from the bone.

So, the function R(u(0)(t), u(1)(t)), where u(0)(t) and u(1)(t) are estimated on-line, can
be used to stop and reverse the drill feed movement in real-time applications, which allows
us to successfully remove the drill bit from the bone. The similarity of the on-line function
R(u(0)(t), u(1)(t)) with the ideal off-line function R(u

(0)
FFT(t), u

(1)
FFT(t)) will be the measure of

the quality of the on-line estimators for the detection of the exit of the drill from the bone.

6.2. Comparison of the estimation results for AD, TD, and OADE

The proposed AD, TD, and OADE will be used in the estimation of the measured force
and current signals, and their first derivatives. Based on these estimations, the switching
function will be calculated and then compared with the ideal off-line switching function.
The parameters of the algebraic estimator are a = 3 and n = 5, the parameter of the TD is
ε = 0.25, and the reset time of the OADE is Tr = 1.5 and ε = 0.2.

Fig. 12 shows the estimation of the force F
(0)
1 (t), the estimation of the force first deriva-

tive F
(1)
1 (t) and switching function R(F

(0)
1 (t), F

(1)
1 (t)) by using the proposed AD, TD, and

OADE. The low noise attenuation performance in the estimation of the force first deriva-
tive for TD and OADE leads to the non-reliable behavior of the switching function. The
high frequency chattering-like switching between zero and one values has occurred, even
during the time interval when the drill is entering the bone. The proposed AD has a better
noise attenuation performance in the estimation of the signal first derivative, which pro-
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Figure 12: The first filtering estimation results for the force signal F
(0)
1 (t) and its derivative F

(1)
1 (t) for the

proposed AD, TD [13] and OADE [17]. The switching function R(F
(0)
1 (t), F

(1)
1 (t)) (full line) is compared

with the ideal switching function R(F
(0)
FFT(t), F

(1)
FFT(t)) (dashed line).

vides a reliable switching function, and is almost the same as an ideal switching function
R(F

(0)
FFT(t), F

(1)
FFT(t)).

Fig. 13 shows the force estimation results in the case of the second filtering, for the
proposed AD, TD and OADE. As explained in Section 4.3, the second filtering means that
the filtered signal F

(0)
1 (t) is used as the input of the another filter with the same structure.

The outputs of the second filter are the estimated force F
(0)
2 (t) and its derivative F

(1)
2 (t). As

was expected, additional filtering provides better noise attenuation in the case of the first
derivative estimation F

(1)
2 (t) but it also causes a larger error of the estimated signal F

(0)
2 (t).

Consequently, the best performance of the switching function can be obtained by taking the
first filtering signal estimate F

(0)
1 (t) and the second filtering derivative estimate F

(1)
2 (t) as

arguments.
In the case of the TD, the chattering of the switching function is completely eliminated

and there is no switching during the interval when the drill is entering the bone. However,
the switching function has a time delay that similar to the time delay of the estimated signal
F

(0)
1 (t) for TD in Fig. 12. In the case of the OADE, the chattering of the switching function

is reduced but switching still appears in the interval when drill is entering the bone. The
switching function of the proposed AD is the same as that in the case of the first filtering.

Fig. 14 and Fig. 15 show the results of the first and second filtering in the case of the
estimation of the electric current and its time derivative. Because the electric current signal
is more noisy than the force signal, it is especially reflected on the estimation of the signal
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Figure 13: The second filtering estimation results for the force signal F
(0)
2 (t) and its derivative F
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2 (t) for

the proposed AD, TD [13] and OADE [17]. The switching function R(F
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1 (t), F

(1)
2 (t)) (full line) is compared
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derivative in the case of the TD and OADE. The second filtering improved the estimation
of the signal derivative in the case of the TD but the switching function delay was too large
to prevent reliable detection of the drill’s exit from the bone. In the case of the OADE,
the estimation of the signal derivative is not improved after the second filtering and the
chattering of the switching function still appears. The proposed AD, similarly to the case of
the force signal estimation, provides a reliable switching function, which is almost the same
as the ideal switching function R(I

(0)
FFT(t), I

(1)
FFT(t)).

6.3. Discussion of the estimation results with experimental measurements

The main reason why the TD and OADE exhibit poor noise attenuation performance in
the case of the signal derivative estimation is the explicit appearance of the measured noisy
signal in the filter output equations (75) and (77), respectively, which is in contrast to the
proposed AD where the filter output equation (72) contains only filter state variables.

In the case of the TD, the first derivative estimate contains the term with the signal
measurement noise multiplied with the gain 3/ε. By increasing the value of the parameter
ε, the noise influence will be reduced but the signal delay will also be increased.

Similarly, in the case of OADE, the first derivative estimate contains the term with the
signal measurement noise multiplied with the gain 42/ti, where ti ∈ [ε, Tr). By simultane-
ously increasing the value of the parameters ε and Tr, the noise influence will be reduced
but the accuracy of the signal estimation will be decreased. Furthermore, the parameter
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Tr cannot be arbitrarily increased because of the overflow of the unstable filter (79) state
variables.

The estimation results illustrate the high performances of the proposed AD. The main
advantages can be summarized as follows: a) high attenuation of the noise effects in the case
of derivatives estimation, in comparison with the TD and OADE; b) there is no substantial
delay in the filtered signal, in comparison with TD; c) easy implementation in the form of
stable continuous linear time-invariant state-space system, in comparison with the OADE;
and d) relatively straightforward and less sensitive tuning of filter parameters, in comparison
with the TD and OADE.

7. Conclusions

This paper presents a new algebraic approach to the estimation of the signal derivatives.
The proposed linear estimator provides a stable on-line estimation of the arbitrary number
of the higher-order signal derivatives. The estimator has only two tuning parameters: the
dimension of the filter and a real stable multiple-pole in the complex domain. These pa-
rameters can be easily tuned to provide a good trade-off between estimation accuracy and
measurement noise attenuation. Our future work will be oriented towards improvement of
the transient performances and application of the proposed estimator for the output tracking
problem in feedback control systems.
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of the European Control Conference, Zürich, Switzerland, 2013, pp. 9152–9158.

[19] V. Judalet, S. Glaser, C. Boussard, S. Mammar, Implementation of first order algebraic estimators for
numerical filtering and derivation applications, IFAC Proceedings Volumes 47 (3) (2014) 9152–9158.

[20] W. Hongwei, W. Heping, A comparison study of advanced tracking differentiator design techniques,
Procedia Engineering 99 (2015) 1005–1013.

[21] J. Kasac, T. Zilic, V. Milic, A. Jokic, Frequency-shifting-based stable on-line algebraic parameter
identification of linear systems, Journal of the Franklin Institute, available online 22 March 2017,
https://doi.org/10.1016/j.jfranklin.2017.03.008.
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